WorldWideScience

Sample records for soil radon concentration

  1. Radon in soil concentration levels in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Mena, M

    1991-09-15

    Radon in soil surveys in Mexico have been carried out since 1974 both for uranium prospectus and to correlate mean values of the gas emanation with local telluric behaviour. The mapping includes the northern uranium mining region, the Mexican Neo volcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of {sup 222} Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon in soil map covering one third of the Mexican territory is presented. The lowest mean values have been found in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (Author)

  2. Soil gas radon concentration across faults near Caracas, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, L. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Caracas (Venezuela); Flores, N.; Urbani, F. [Universidad Central de Venezuela, Dept. de Geologia, Caracas (Venezuela); Carreno, R. [Sociedad Venezolana de Espeleologia, Apdo. 47334, Caracas 1041A (Venezuela)

    2001-09-01

    SSNTD were used across tectonic features of different degree of activity and lithology in four localities north of Caracas, Venezuela. The homemade dosimeters with LR115 film were buried 20-30 cm in the ground. This cheap and low- tech method proved very useful to understand the tectonic features involved, measuring higher Radon concentration above traces of active faults while in old and sealed faults the results only show the effect of the surrounding lithology. Radon concentration range is 4.3 - 27.2 kB/m{sup 3}. (Author)

  3. Effect of soil moisture on seasonal variation in indoor radon concentration: modelling and measurements in 326 Finnish houses

    Science.gov (United States)

    Arvela, H.; Holmgren, O.; Hänninen, P.

    2016-01-01

    The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611

  4. A campaign of discrete radon concentration measurements in soil of Niska Banja town, Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade, Serbia (Serbia); Kozak, K. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)], E-mail: Krzysztof.Kozak@ifj.edu.pl; Ciotoli, G. [Department of Earth Sciences, University of Rome ' La Sapienza' , Piazzale A. Moro, 5-00185 Rome (Italy); Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India); Kochowska, E. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Ujic, P.; Celikovic, I. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade (Serbia); Mazur, J.; Janik, M. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Demajo, A. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade (Serbia); Birovljev, A. [RADONLAB, Forskningsveien 3 B, 0373 Oslo (Norway); Bochicchio, F. [Italian National Institute of Health, Department of Technology and Health, Unit of Radioactivity and Related Health Effects, Viale Regina Elena 299, 00161 Rome (Italy); Yarmoshenko, I.V. [Radiation Laboratory Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, 20A S. Kovalevskoy Street, Ekaterinburg 620219 (Russian Federation); Kryeziu, D. [Low-level Counting Laboratory, Faradaygasse 3, Arsenal Objekt 214, A-1030 Vienna (Austria); Olko, P. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)

    2007-11-15

    The first radon soil gas survey in Serbia, using passive detectors (SSNTD, CR-39), was carried out in June 2005 at field sites in Niska Banja town. The aim of the survey was to identify risk zones characterised by high levels of this radioactive gas. Radon measurements were made at the depth of 50 cm, in the ground according to a systematic grid pattern. Furthermore, at all 48 measurement points, the surface gamma dose rates in the air was also measured at the same locations and soil samples were collected for gamma spectrometric analysis for the radionuclides {sup 226}Ra, {sup 228}Th and {sup 40}K. Radon concentrations were found to range from 1270 to 155000Bqm{sup -3} with an average of 33765Bqm{sup -3} and a median value of 12626Bqm{sup -3}. The geometrical mean value and geometrical standard deviation were calculated as 16160Bqm{sup -3} and 3.5Bqm{sup -3}, respectively. Gamma dose rate varies from 92 to 316nGyh{sup -1}, with an average of 132nGyh{sup -1}. The radium content in collected soil samples ranges from 24 to 1810Bqkg{sup -1} with an average of 187Bqkg{sup -1}. High correlations (r{sup 2}>0.8) between soil gas radon concentration, gamma dose rate and {sup 226}Ra content in soil were found for each pair. The distribution of radon concentrations in soil gas shows bimodal shape.

  5. Radon soil-gas concentration and exhalation from mine tailings dams in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ongori, J.; Lindsay, R. [University of the Western Cape, Department of Physics, Private Bag X17, Bellville 7535 (South Africa); Newman, R. [Stellenbosch University, Department of Physics, Private Bag X1 Matieland 7602 (South Africa); Maleka, P. [iThemba LABS, Department of Nuclear Physics, P. O. Box 722, Somerset West 7129 (South Africa)

    2014-07-01

    In Africa as well as in the world, South Africa plays an important role in the mining industry which dates back almost 120 years. Mining activities in South Africa mainly take place in Gauteng Province. Every year million of tons of rocks are taken from underground, milled and processed to extract gold. The uranium bearing tailings are disposed in dumpsites. These tailings dumps contain considerable amounts of radium ({sup 226}Ra) and have therefore been identified as large sources of radon ({sup 222}Rn). Radon is a noble gas formed by the decay of radium which in turn is derived from the radioactive decay of uranium ({sup 238}U). Radon release from these tailings dumps pose health concerns for the surrounding communities. Radon soil gas concentrations and exhalations from a non-operational mine dump (Kloof) which belongs to Carletonville Gold Field, Witwatersrand, South Africa have been investigated. The continuous radon monitor, the Durridge RAD7 was used to measure {sup 222}Rn soil gas concentration in the tailings dump at five different spots. The radon soil gas concentration levels were measured at depths starting from 30 cm below ground/air interface up to 110 cm at intervals of 20 cm. The concentrations recorded ranged from 26±1 to 472±23 kBq.m{sup -3}. Furthermore, thirty four soil samples were taken from the spots where radon soil gas measurements were measured for laboratory-based measurement using the low background Hyper Pure Germanium (HPGe) gamma-ray detector available at the Environmental Radioactivity Laboratory (ERL), iThemba LABS, Western Cape Province. The soil samples were collected in the depth range 0-30 cm. After analysis the weighted average activity concentrations in the soils samples were 308±7 Bq.kg{sup -1}, 255±5 Bq.kg{sup -1} and 18±1 Bq.kg{sup -1} for {sup 238}U, {sup 40}K and {sup 232}Th, respectively. A number of factors such as the radium activity concentration and its distribution in soil grains, soil grain size, soil porosity

  6. Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India

    Directory of Open Access Journals (Sweden)

    Sudhir Mittal

    2016-04-01

    Full Text Available In the present investigation, analysis of radon concentration in 20 water and soil samples collected from different locations of Bikaner and Jhunjhunu districts of Rajasthan, India has been carried out by using RAD7 an electronic Radon detector. The measured radon concentration in water samples lies in the range from 0.50 to 22 Bq l−1 with the mean value of 4.42 Bq l−1, which lies within the safe limit from 4 to 40 Bq l−1 recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2008. The total annual effective dose estimated due to radon concentration in water ranges from 1.37 to 60.06 μSV y−1 with the mean value of 12.08 μSV y−1, which is lower than the safe limit 0.1 mSv y−1 as set by World Health Organization (WHO, 2004 and European Council (EU, 1998. Radon measurement in soil samples varies from 941 to 10,050 Bq m−3 with the mean value of 4561 Bq m−3, which lies within the range reported by other investigators. It was observed that the soil and water of Bikaner and Jhunjhunu districts are suitable for drinking and construction purpose without posing any health hazard.

  7. Development of a continuous radon concentration monitoring system in underground soil

    Science.gov (United States)

    Yamamoto, S.; Tarutani, K.; Yamasoto, K.; Iskandar, D.; Iida, T.

    2001-06-01

    A continuous radon (Rn-222) concentration monitoring system for use in underground soil was developed and tested. The system consists of a 19-mm-diameter, 1100-mm-long detector assembly and a microprocessor based data logger. A small volume chamber is installed at the tip of the detector assembly. A thin ZnS(Ag) scintillator film inside the chamber and a photomultiplier tube (PMT) detect alpha particles from radon and its daughters. When the system is in measurement, the detector part is buried into underground soil. An energy resolution of approximately 70% full width half maximum (FWHM) was obtained for 5.5 MeV alpha particles from Am-241. Both the rise time and fall time for the system were measured to be approximately 1-2 h. Temporal variations in underground radon concentration at different depths were investigated simultaneously using four sets of the developed system. The results confirmed that the developed system is useful for continuous measurement of radon concentration in underground soil.

  8. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    Science.gov (United States)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-01

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m2 and has 350 palm trees and the second farm is about 7000 m2 and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir. A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K. The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically. The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m3. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  9. Thermo-diffusional radon waves in soils

    Energy Technology Data Exchange (ETDEWEB)

    Minkin, Leonid, E-mail: lminkin@pcc.edu [Portland Community College, 12000 SW 49th Ave, Portland, OR 97219 (United States); Shapovalov, Alexander S. [Saratov State University, 83 Astrakhanskay Street, Saratov 410012 (Russian Federation)

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil–atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown. - Highlights: • Temperature oscillations in atmosphere generate radon waves in soil. • Radon flux in atmosphere is a harmonic function of time. • Radon concentration waves in soil have the same frequency as the temperature waves.

  10. Soil-gas radon concentration monitoring in an active granite quarry from Central Portugal

    Science.gov (United States)

    Neves, Luís.; Barbosa, Susana; Pereira, Alcides; Aumento, Fabrizio

    2010-05-01

    This study was carried out in an active quarry located nearby the town of Nelas (Central Portugal), with the primary objective of assessing the effect of regular explosions on soil-gas radon concentrations. Here, a late-orogenic Hercynian porphyritic biotite granite occurs and is exploited for the production of high quality aggregates for different building purposes. This granite is part of the Beiras batholiths, being a geochemically moderately evolved rock, slightly peraluminous, and widely known by the frequent occurrence of associated uranium mineralizations. In fact, more than 4000t of U3O8 was produced from 60 mines of the Beiras region in the last century, over a wide area of more than 10.000 km2, and thousands of anomalies related with the local accumulation of uranium in fault filling materials, metasedimentary enclaves and doleritic veins were recognized during prospecting works. The heterogeneity of uranium distribution in this rock is reflected at the test site; indeed, a gamma ray survey shows that some of the faults that occur in the quarry are slightly mineralized. A total of 7 radon monitoring stations were implemented in the quarry, at a typical depth comprised between 1 and 2 meters, in holes drilled for the purpose. Aware RM-70 pancake GM detectors were used, sensitive to alpha, beta and gamma/X-rays above 10 keV, connected to palmtop computers for data registration (1 minute interval) and power supplied by batteries. Monitoring was carried out during 6 months, in Spring/Summer conditions and the exact time of each explosion was registered manually. Several problems of data loss and power supply affected the stations during the experiment, leading to discontinuities in the records. Still the available data showed important differences in the soil-gas radon concentrations between stations, which can be explained by the heterogeneity of uranium distribution in the rock and increased local permeability. Furthermore, all stations showed a clear daily

  11. Is high indoor radon concentration correlated with specific activity of radium in nearby soil? A study in Kosovo and Metohija.

    Science.gov (United States)

    Gulan, Ljiljana; Stajic, Jelena M; Bochicchio, Francesco; Carpentieri, Carmela; Milic, Gordana; Nikezic, Dragoslav; Zunic, Zora S

    2017-08-01

    This paper presents indoor radon concentrations and specific activities of natural radionuclides measured in soils of Kosovo and Metohija. The measurements of radon concentration were performed during two consecutive 6-month periods in two rooms of 63 houses using CR-39 detectors. The annual radon concentration ranged from 30 to 810 Bq m-3 with the average value of 128 Bq m-3. Almost 15% of the houses had radon concentration higher than 200 Bq m-3. The difference between radon concentrations measured in the two 6-month periods was analyzed, showing, as expected, a slightly higher radon concentration in the "winter period" than in the "summer period". The variation between different rooms of the same houses was also analyzed, showing that 20% of the dwellings had a significantly higher radon concentration (>100 Bq m-3) in one room compared to the other (the coefficient of variation ranged up to 96%). The specific activities of natural radionuclides in the nearby soil were determined by gamma spectrometry. The estimated average value (and standard deviation) of 226Ra, 232Th, and 40K specific activities were 32 (13), 35 (16), and 582 (159) Bq kg-1, respectively. The correlation between indoor 222Rn and 226Ra content in soil was investigated. Only a weak correlation was found (Spearman's rho = 0.220) indicating that other factors might affect diffusion and accumulation of radon indoors, as confirmed also by the high variability between the rooms of the same houses.

  12. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Alameda, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Colmenero Sujo, L.; Montero Cabrera, M.E. E-mail: elena.montero@cimav.edu.mx; Villalba, L.; Renteria Villalobos, M.; Torres Moye, E.; Garcia Leon, M.; Garcia-Tenorio, R.; Mireles Garcia, F.; Herrera Peraza, E.F.; Sanchez Aroche, D

    2004-07-01

    High-resolution gamma spectrometry was used to determine the concentration of {sup 40}K, {sup 238}U and {sup 232}Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m{sup 3}; the radon concentrations detected exceeded 148 Bq/m{sup 3} in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m{sup 3}. The high activity of {sup 238}U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  13. Radon in the soil air of Estonia.

    Science.gov (United States)

    Petersell, Valter; Täht-Kok, Krista; Karimov, Mark; Milvek, Heli; Nirgi, Siim; Raha, Margus; Saarik, Krista

    2017-01-01

    Several investigations in Estonia during 1996¬-1999 have shown that permissible level (200 Bq/m3) of radon (222Rn) in indoor air is exceeded in 33% of the inspected dwellings. This makes Estonia one of the five countries with highest radon risk in Europe (Fig 1). Due to correlation between the soil radon risk level and radon concentration in houses, small scale radon risk mapping of soil air was carried out (one study point per 70-100 km2). It turned out that one-third of Estonian mainland has high radon risk potential, where radon concentration in soil air exceeds safe limit of 50 kBq/m3. In order to estimate radon content in soil air, two different methods developed in Sweden were used simultaneously. Besides measuring radon content from soil air at the depth of 80 cm with an emanometer (RnM), maximum potential content of radon in soil (RnG) was estimated based on the rate of eU (226Ra) concentration in soil, which was acquired by using gamma-ray spectrometer. Mapping and following studies revealed that simultaneously measured RnG and RnM in study points may often differ. To inspect the cause, several monitoring points were set up in places with different geological conditions. It appeared that unlike the RnG content, which remains close to average level in repeated measurements, the RnM content may differ more than three times periodically. After continuous observations it turned out that concentration of directly measured radon depended on various factors being mostly controlled by mineral composition of soil, properties of topsoil as well as different factors influencing aeration of soil. The results of Rn monitoring show that reliable level of radon risk in Estonian soils can only be acquired by using calculated Rn-concentration in soil air based on eU content and directly measured radon content of soil air in combination with interpreting specific geological and geochemical situations in the study points. Copyright © 2016 Elsevier Ltd. All rights

  14. High annual radon concentration in dwellings and natural radioactivity content in nearby soil in some rural areas of Kosovo and Metohija

    Directory of Open Access Journals (Sweden)

    Gulan Ljiljana R.

    2013-01-01

    Full Text Available Some previous studies on radon concentration in dwellings of some areas of Kosovo and Metohija have revealed a high average radon concentration, even though the detectors were exposed for three months only. In order to better design a larger study in this region, the annual measurements in 25 houses were carried out as a pilot study. For each house, CR-39-based passive devices were exposed in two rooms for the two consecutive six-month periods to account for seasonal variations of radon concentration. Furthermore, in order to correlate the indoor radon with radium in nearby soil and to improve the knowledge of the natural radioactivity in the region, soil samples near each house were collected and 226Ra, 232Th, 40K activity concentration were measured. The indoor radon concentration resulted quite high from the average (163 Bq/m3 and generally it did not differ considerably between the two rooms and the two six-month periods. The natural radionuclides in soil resulted to be distributed quite uniformly. Moreover, the correlation between the226Ra content in soil and radon concentration in dwellings resulted to be low (R2=0.26. The annual effective dose from radon and its short-lived progeny (5.5 mSv, in average was calculated by using the last ICRP dose conversion factors. In comparison, the contribution to the annual effective dose of outdoor gamma exposure from natural radionuclides in soil is nearly negligible (66 mSv. In conclusion, the observed high radon levels are only partially correlated with radium in soil; moreover, a good estimate of the annual average of radon concentration can be obtained from a six-month measurement with a proper choice of exposure period, which could be useful when designing large surveys.

  15. Comparative Measurements of Radon Concentration in Soil Using Passive and Active Methods in High Level Natural Radiation Area (HLNRA) of Ramsar.

    Science.gov (United States)

    Amanat, B; Kardan, M R; Faghihi, R; Hosseini Pooya, S M

    2013-12-01

    Radon and its daughters are amongst the most important sources of natural exposure in the world. Soil is one of the significant sources of radon/thoron due to both radium and thorium so that the emanated thoron from it may cause increased uncertainties in radon measurements. Recently, a diffusion chamber has been designed and optimized for passive discriminative measurements of radon/thoron concentrations in soil. In order to evaluate the capability of the passive method, some comparative measurements (with active methods) have been performed. The method is based upon measurements by a diffusion chamber, including two Lexan polycarbonate SSNTDs, which can discriminate the emanated radon/thorn from the soil by delay method. The comparative measurements have been done in ten selected points of HLNRA of Ramsar in Iran. The linear regression and correlation between the results of two methods have been studied. The results show that the radon concentrations are within the range of 12.1 to 165 kBq/m(3) values. The correlation between the results of active and passive methods was measured by 0.99 value. As well, the thoron concentrations have been measured between 1.9 to 29.5 kBq/m(3) values at the points. The sensitivity as well as the strong correlation with active measurements shows that the new low-cost passive method is appropriate for accurate seasonal measurements of radon and thoron concentration in soil.

  16. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    Science.gov (United States)

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m(-3); range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R(2) = 0.68 for linear regression and R(2) = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Radon in soil gas in Kosovo.

    Science.gov (United States)

    Kikaj, Dafina; Jeran, Zvonka; Bahtijari, Meleq; Stegnar, Peter

    2016-11-01

    An assessment of the radiological situation due to exposure to radon and gamma emitting radionuclides was conducted in southern Kosovo. This study deals with sources of radon in soil gas. A long-term study of radon concentrations in the soil gas was carried out using the SSNTDs (CR-39) at 21 different locations in the Sharr-Korabi zone. The detectors were exposed for an extended period of time, including at least three seasonal periods in a year and the sampling locations were chosen with respect to lithology. In order to determine the concentration of the natural radioactive elements 238 U and 226 Ra, as a precursor of 222 Rn, soil samples were collected from each measuring point from a depth of 0.8 m, and measured by gamma spectrometry. The levels (Bq kg -1 ) of naturally occurring radionuclides and levels (kBq m -3 ) of radon in soil gas obtained at a depth 0.8 m of soil were: 21-53 for 226 Ra, 22-160 for 238 U and 0.295-32 for 222 Rn. With respect to lithology, the highest value for 238 U and 226 Ra were found in limestone and the highest value for 222 Rn was found in metamorphic rocks. In addition, the results showed seasonal variations of the measured soil gas radon concentrations with maximum concentration in the spring months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy.

    Science.gov (United States)

    Cinelli, G; Tositti, L; Capaccioni, B; Brattich, E; Mostacci, D

    2015-04-01

    Vulsini Volcanic district in Northern Latium (Central Italy) is characterized by high natural radiation background resulting from the high concentrations of uranium, thorium and potassium in the volcanic products. In order to estimate the radon radiation risk, a series of soil gas radon measurements were carried out in Bolsena, the principal urban settlement in this area NE of Rome. Soil gas radon concentration ranges between 7 and 176 kBq/m(3) indicating a large degree of variability in the NORM content and behavior of the parent soil material related in particular to the occurrence of two different lithologies. Soil gas radon mapping confirmed the existence of two different areas: one along the shoreline of the Bolsena lake, characterized by low soil radon level, due to a prevailing alluvial lithology; another close to the Bolsena village with high soil radon level due to the presence of the high radioactive volcanic rocks of the Vulsini volcanic district. Radon risk assessment, based on soil gas radon and permeability data, results in a map where the alluvial area is characterized by a probability to be an area with high Radon Index lower than 20 %, while probabilities higher than 30 % and also above 50 % are found close to the Bolsena village.

  19. Radon concentrations in a spa in Serbia.

    Science.gov (United States)

    Manic, G; Petrovic, S; Vesna, Manic; Popovic, Dragana; Todorovic, Dragana

    2006-05-01

    The paper presents the results of indoor radon concentration survey in 201 homes and offices in Niska Banja (the Spa of Nis), a well-known health resort and a spa in the South-East of Serbia. Radon indoor concentrations were determined by active charcoal method, according to standard EPA procedure. The indoor radon concentrations were in the range of up to 200 Bq/m(3) (47%), from 200-600 Bq/m(3) (26%) and over 600 Bq/m(3) (27%). Three areas of extremely high average radon concentrations were found (1,340-4,340 Bq/m(3)), with a maximum above 13,000 Bq/m(3). The content of natural radionuclides ((226)Ra, (214)Pb, (214)Bi, (235)U, (228)Ac, (212)Pb, (212)Bi, (208)Tl, (40)K) and (137)Cs, as well as the content of total uranium, thorium and potassium in mud used in peloidotherapy in the Health Institute "Niska Banja" was determined, too. The activities of the radionuclides were determined on an HPGe detector, by standard gamma spectroscopy. The results indicated considerably high amounts of total uranium and thorium (0.021 g/kg mud and 0.003 g/kg mud, respectively), due to the karsts origin of the soil.

  20. Nanomaterial containing wall paints can increase radon concentration in houses located in radon prone areas.

    Science.gov (United States)

    Haghani, M; Mortazavi, S M J; Faghihi, R; Mehdizadeh, S; Moradgholi, J; Darvish, L; Fathi-Pour, E; Ansari, L; Ghanbar-Pour, M R

    2013-09-01

    Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m-3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m(3) while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m(3). The difference between these means was statistically significant (P<0.001). To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes.

  1. Determination of the radon concentration in soil and ground water and its association with the seismicity; Determinacion de la concentracion del radon en suelo y agua subterranea y su asociacion con la sismicidad

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    The coast of the Mexican Pacific is one of the seismic areas more active of the world due to the subduction of the badges of Coconuts and Rivera under the badge of North America. The earthquakes that happen in this part of Mexico they are of great magnitude and they affect to the central plateau of the country where finds the biggest population density. On the other hand the coast of the Gulf of Mexico presents one relatively low seismic activity. It is in this region where it is the nuclear plant of Laguna Verde (PNLV) and the studies of seismicity of the area should be carried out for questions of nuclear security. One carries out a study of fluctuations of the concentration of the radon in floor and it dilutes underground in the mentioned areas using accustomed to detectors of nuclear appearances (LR-115). Possibly they were also used detecting automatic (Clipperton sounds out). In some cases it was analysed the gamma radiation in soil using thermoluminescent dosemeters (CaSO{sub 4}: Dy + Ptfe). The mineralogical composition of rock samples was obtained, by means of technical conventional and Electron scanning microscopy and an X-ray diffractometer. The study one carries out along the coast of Guerrero, from Guacamayas, Mich. until Marquelia, Gro., of 1993 at 1998 and in the coast of the Gulf of Mexico, in the PNLV and their surroundings, of 1994 at 1996. The fluctuations of the radon concentration and of the gamma radiation, were analysed in function of the local seismic activity, the meteorological parameters and those characteristic geologic. In the area of the PNLV, the results showed that in general the averages of those value of the radon concentration, as much in floor as in water, they were low. A station located in a flaw area (New Ranch) the one that I present the values was but high of radon concentration, corresponding those but first floor to the PNLV. The seismic activity during the one period of sampling was sporadic and of low intensity and alone

  2. Indoor and soil radon measurements in the Hyblean Foreland (South-East Sicily

    Directory of Open Access Journals (Sweden)

    G. Alessandro

    2007-06-01

    Full Text Available Indoor radon behavior in two sites of SE Sicily was studied as a function of the soil radon concentration. The chosen locations were Ragusa and Modica towns, placed in the Hyblean Plateau (northern margin of the African Plate. Soil samples were analysed by gamma spectrometry to determine the amount of radionuclides. Indoor air and soil gas radon measurements were simultaneously performed in both sites using active detectors. Radon in soil was measured one meter deep. A positive correlation was obtained between indoor radon concentration and the soil gas concentration.

  3. Measurement of radon potential from soil using a special method of sampling

    National Research Council Canada - National Science Library

    Cosma, Constantin; Papp, Botond; Moldovan, Mircea; Cosma, Victor; Cindea, Ciprian; Suciu, Liviu; Apostu, Adelina

    2010-01-01

    Soil radon gas and/or its exhalation rate are used as indicators for some applications, such as uranium exploration, indoor radon concentration, seismic activity, location of subsurface faults, etc...

  4. Radon and thoron concentrations in public workplaces in Brisbane, Australia.

    Science.gov (United States)

    Alharbi, Sami H; Akber, Riaz A

    2015-06-01

    Radon and thoron are radioactive gases that can emanate from soil and building materials, and it can accumulate in indoor environments. The concentrations of radon and thoron in the air from various workplace categories in Brisbane, Australia were measured using an active method. The average radon and thoron concentrations for all workplace categories were 10.5 ± 11.3 and 8.2 ± 1.4 Bq m(-3), respectively. The highest radon concentration was detected in a confined area, 86.6 ± 6.0 Bq m(-3), while the maximum thoron level was found in a storage room, 78.1 ± 14.0 Bq m(-3). At each site, the concentrations of radon and thoron were measured at two heights, 5 cm and 120 cm above the floor. The effect of the measurement heights on the concentration level was significant in the case of thoron. The monitoring of radon and thoron concentrations showed a lower radon concentration during work hours than at other times of the day. This can be attributed to the ventilation systems, including the air conditioner and natural ventilation, which normally operate during work hours. The diurnal variation was less observed in the case of thoron, as the change in its concentration during and after the working hours was insignificant. The study also investigated the influence of the floor level and flooring type on indoor radon and thoron concentrations. The elevated levels of radon and thoron were largely found in basements and ground floor levels and in rooms with concrete flooring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Radon concentration levels in dwellings and mine atmospheres in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Pena, P. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mireles, F.; Davila, I.; Quirino, L. [Universidad Autonoma de Zacatecas (Mexico). Centro Regional de Estudios Nucleares

    1993-12-31

    Atmospheric radon surveys have been conducted in dwellings and mine atmospheres from the city of Zacatecas and single family homes in Mexico City. The monitoring was performed with track detectors, LR115 type II. The radon concentration values in most of the atmospheres studied were less than 150 Bq/m{sup 3}; the maximum value at the top soil in mines reached 1200 Bq/m{sup 3}. (author).

  6. Time variation of radon daughters concentration in snowfall.

    Science.gov (United States)

    Nishikawa, T; Aoki, M; Okabe, S

    1984-05-01

    Time variation of radon daughters concentration in snowfall was measured continuously. The relations of radon daughters concentration in snowfall to the precipitation and to atmospheric radon daughters concentration were investigated. It has become clear that when precipitation is small, radon daughters concentration in snowfall is distributed in a wide range, and that the quantity of radon daughters brought to ground surface by snowfall is proportional to precipitation. Washout effect of the snowfall on atmospheric radon daughters was also investigated.

  7. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the

  8. Analysis of soil radon data in earthquake precursory studies

    Directory of Open Access Journals (Sweden)

    Hari Prasad Jaishi

    2014-10-01

    Full Text Available Soil radon data were recorded at two selected sites along Mat fault in Mizoram (India, which lies in the highest seismic zone in India. The study was carried out during July 2011 to May 2013 using LR-115 Type II films. Precursory changes in radon concentration were observed prior to some earthquakes that occurred around the measuring sites. Positive correlation was found between the measured radon data and the seismic activity in the region. Statistical analysis of the radon data together with the meteorological parameters was done using Multiple Regression Method. Results obtained show that the method employed was useful for removing the effect of meteorological parameters and to identify radon maxima possibly caused by seismic activity.

  9. Indoor radon concentration forecasting in South Tyrol.

    Science.gov (United States)

    Verdi, L; Weber, A; Stoppa, G

    2004-01-01

    In this paper a modern statistical technique of multivariate analysis is applied to an indoor radon concentration data base. Several parameters are more or less significant in determining the radon concentration inside a building. The elaboration of the information available on South Tyrol makes it possible both to identify the statistically significant variables and to build up a statistical model that allows us to forecast the radon concentration in dwellings, when the values of the same variables involved are given. The results confirm the complexity of the phenomenon.

  10. Soil radon levels across the Amer fault

    Energy Technology Data Exchange (ETDEWEB)

    Font, Ll. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)], E-mail: lluis.font@uab.cat; Baixeras, C.; Moreno, V. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bach, J. [Unitat de Geodinamica externa, Departament de Geologia, Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2008-08-15

    Soil radon levels have been measured across the Amer fault, which is located near the volcanic region of La Garrotxa, Spain. Both passive (LR-115, time-integrating) and active (Clipperton II, time-resolved) detectors have been used in a survey in which 27 measurement points were selected in five lines perpendicular to the Amer fault in the village area of Amer. The averaged results show an influence of the distance to the fault on the mean soil radon values. The dynamic results show a very clear seasonal effect on the soil radon levels. The results obtained support the hypothesis that the fault is still active.

  11. Measurement of soil-gas radon in some areas of northern Rajasthan ...

    Indian Academy of Sciences (India)

    The health hazards of the radioactive gas radon on general public are well known. In order to understand ... Rn survey was carried out for the first time using RAD7, an electronic radon detector manufactured by. Durridge Company (USA), at ... to find a relationship between the soil-gas radon concentration and depth. 2.

  12. EVALUATION OF RADON EMANATION FROM SOIL WITH VARYING MOISTURE CONTENT IN A SOIL CHAMBER

    Science.gov (United States)

    The paper describes measurements to quantitatively identify the extent to which moisture affects radon emanation and diffusive transport components of a sandy soil radon concentration gradient obtained in the EPA test chamber. The chamber (2X2X4 m long) was constructed to study t...

  13. Influence of architectural style on indoor radon concentration in a radon prone area: A case study.

    Science.gov (United States)

    Baeza, A; García-Paniagua, J; Guillén, J; Montalbán, B

    2018-01-01

    Indoor radon is a major health concern as it is a known carcinogenic. Nowadays there is a trend towards a greater energy conservation in buildings, which is reflected in an increasing number of regulations. But, can this trend increase the indoor radon concentration? In this paper, we selected a radon prone area in Spain and focused on single-family dwellings constructed in a variety of architectural styles. These styles ranged from 1729 up to 2014, with varying construction techniques (from local resources to almost universally standard building materials) and regulations in force (from none to the Spanish regulation in force). The (226)Ra concentrations in soil and surface radon exhalation rates were rather similar in this area, mean values ranging 70-126Bq/kg and 49-100mBq/m(2)·s, respectively. Indoor radon concentration was generally greater than the contribution from soil exhalation (surface exhalation rates), especially in New dwellings (1980-2014). Its concentration in dwellings built in the Traditional style (1729-1940) was significantly lower than in the new houses. This can be consequence of the air tightness of the dwellings as a consequence of the different regulations in force. In the period covered by the Traditional style, there was no regulation in force, and dwelling had loose air tight. Whereas in recent times, there are mandatory regulations assuring a better air tightness of the buildings. Refurbishment of Traditional dwellings also seems to increase the indoor radon concentration, as they must also comply with the regulations in force. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Radon in indoor air of primary schools: a systematic survey to evaluate factors affecting radon concentration levels and their variability.

    Science.gov (United States)

    Bochicchio, F; Žunić, Z S; Carpentieri, C; Antignani, S; Venoso, G; Carelli, V; Cordedda, C; Veselinović, N; Tollefsen, T; Bossew, P

    2014-06-01

    In order to optimize the design of a national survey aimed to evaluate radon exposure of children in schools in Serbia, a pilot study was carried out in all the 334 primary schools of 13 municipalities of Southern Serbia. Based on data from passive measurements, rooms with annual radon concentration >300 Bq/m(3) were found in 5% of schools. The mean annual radon concentration weighted with the number of pupils is 73 Bq/m(3), 39% lower than the unweighted 119 Bq/m(3) average concentration. The actual average concentration when children are in classrooms could be substantially lower. Variability between schools (CV = 65%), between floors (CV = 24%) and between rooms at the same floor (CV = 21%) was analyzed. The impact of school location, floor, and room usage on radon concentration was also assessed (with similar results) by univariate and multivariate analyses. On average, radon concentration in schools within towns is a factor of 0.60 lower than in villages and at higher floors is a factor of 0.68 lower than ground floor. Results can be useful for other countries with similar soil and building characteristics. On average, radon concentrations are substantially higher in schools in villages than in schools located in towns (double,on average). Annual radon concentrations exceeding 300 Bq/m3 were found in 5% of primary schools (generally on ground floors of schools in villages). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used provided that the measurement error is considerable lower than variability of radon concentration between rooms. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Residential, soil and water radon surveys in north-western part of Romania.

    Science.gov (United States)

    Cucoş Dinu, Alexandra; Papp, Botond; Dicu, Tiberius; Moldovan, Mircea; Burghele, Denissa Bety; Moraru, Ionuţ Tudor; Tenţer, Ancuţa; Cosma, Constantin

    2017-01-01

    The exposure to radon and radon decay products in homes and at workplaces represents the greatest risk from natural ionizing radiation. The present study brings forward the residential, soil and water radon surveys in 5 counties of Romania. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurements Protocol. Radon concentrations in soil and water were measured using the LUK3C device. The indoor radon concentrations ranged from 5 to 2592 Bq⋅m-3 with an updated preliminary arithmetic mean of 133 Bq⋅m-3, and a geometric mean of 90 Bq⋅m-3. In about 6% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq⋅m-3. The soil gas radon concentration varies from 0.8 to 169 kBq⋅m-3, with a geometric mean of 28.4 kBq⋅m-3. For water samples, the results show radon concentrations within the range of 0.3-352 kBq⋅m-3 with a geometric mean of 7.7 Bq⋅L-1. The indoor radon map was plotted on a reference grid developed by JRC with the resolution 10 × 10 km2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation of the uniformity of concentration of radon in a radon chamber.

    Science.gov (United States)

    Xiongjie, Zhang; Ye, Zhang; Yang, Liu; Bin, Tang

    2016-04-01

    In order to solve the problem that the evaluation results of the uniformity of concentration of radon in a radon chamber via various methods were difficult to compare, according to its statistical properties, a mathematical model was built to analyze the uniformity of concentration of radon; an evaluation method for the overall uniformity of concentration of radon was proposed on the basis of single-factor multi-group ANOVA, and a detection method for nonuniform points in a radon chamber was proposed on the basis of single-factor two-group t-test; an evaluation process of the uniformity of concentration of radon in a radon chamber was established. The proposed method was applied to evaluate the HD-6 small and medium-sized radon chambers and achieved good results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    Indoor radon levels in 1618 Norwegian dwellings located in different geological settings were compared with geological information in order to determine potential correlations between geological factors and indoor radon concentrations in Norway and to establish whether geological information is useful in radon risk analysis. In two geographically limited areas, Kinsarvik and Fen, detailed geological and geochemical investigations were carried out in order to explain their elevated natural radiation environment. Significant correlations between geology and indoor radon concentrations in Norway are found when the properties of both the bedrock and the overburden are taken into account. Areas of high radon risk in Norway include 1) exposed bedrock with elevated levels of radium (mainly alum shale and granites) and b) highly permeable unconsolidated sediments derived from all rock types (mainly glaciofluvial and fluvial deposits) and moderately permeable sediments containing radium rich rock fragments (mainly basal till). More than 20 % of Norwegian dwellings located in the high-risk areas can be expected to contain radon levels exceeding 200 Bq/m3. The elevated radon risk related to penneable building grounds is illustrated in Kinsarvik where the highly permeable sediments and the large vadose zone underlying the Huse residential area enable the transport of radon from large volumes into the dwellings resulting in enhanced indoor radon concentrations. Subterranean air flows caused by temperature/pressure differences between soil air and atmospheric air and elevations differences within the Huse area are shown to strongly affect the annual variations in indoor radon concentrations. The marked contrasts in radon risk potential between different types of building grounds are clearly illustrated in the Fen area where outcrops of the radium rich Fen carbonatites represent areas of high radon risk while only low levels of both indoor radon concentrations and indoor gamma

  18. Determination of radon gas and respirable ore dust concentrations ...

    African Journals Online (AJOL)

    This study has estimated the concentrations of radon gas and respirable ore dust in the Merelani underground tanzanite mines. Two different portable monitors were used to measure the radon gas and respirable ore dust concentrations respectively. The mean radon gas concentration (disintegrations per second per cubic ...

  19. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  20. Radon occurrence in soil-gas and groundwater around an active landslide

    Energy Technology Data Exchange (ETDEWEB)

    Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)], E-mail: rcramola@gmail.com; Choubey, V.M. [Wadia Institute of Himalayan Geology, Dehradun 248 001 (India); Negi, M.S.; Prasad, Yogesh; Prasad, Ganesh [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)

    2008-01-15

    This paper presents the results of investigation of radon levels in the soil-gas and groundwater of Uttarkashi, India within the distance of 5 km in vertical and horizontal directions from the landslide of Varunawat hill. Radon release from the soil and groundwater was found higher than the normal values. Radon concentration in groundwater over and around the landslide was found to vary from 0.51 to 86kBqm{sup -3}. The soil-gas radon concentration was found to vary from 219 to 3kBqm{sup -3} along the slope of landslide. Radon exhalation rate in collected soil samples was found to vary from 2.28x10{sup -5} to 9.01x10{sup -5}Bqkg{sup -1}h{sup -1}. Radon values were not found correlated with major and trace element contents in the upper soil of the area, which indicate that the migration of radon from deeper part of the earth along with landslide contribute to the surface radon concentration. Recorded values show a close association with local geology and Varunawat eruptions.

  1. How to Ensure Low Radon Concentrations in Indoor Environments

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    2011-01-01

    This paper focuses on methods for measuring radon levels in the indoor air in buildings as well as on concrete solutions that can be carried out in the building to prevent radon leakage and to lower the radon concentration in the indoor air of new buildings. The radon provision in the new Danish...... Building Regulations from 2010 has been tightened as a result of new recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for its harmfulness. It is therefore important to reduce the radon concentration as much as possible in new...... buildings. The airtightness is a major factor when dealing with radon in buildings. Above the ground it is important to build airtight in compliance with energy requirements and against the ground it is important to prevent radon from seeping into the building. There is a direct connection between...

  2. Measurement of soil-gas radon in some areas of northern Rajasthan ...

    Indian Academy of Sciences (India)

    The health hazards of the radioactive gas radon on general public are well known. In order to understand the level and distribution of 222Rn concentrations in soil-gas in Sri Ganganagar district of Rajasthan, a 222Rn survey was carried out for the first time using RAD7, an electronic radon detector manufactured by Durridge ...

  3. Radon survey related to construction materials and soils in Zacatecas, Mexico using LR-115

    Energy Technology Data Exchange (ETDEWEB)

    Mireles, F. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Frac. La penuela, Zacatecas, Zac., CP 98068 (Mexico)], E-mail: fmireles@uaz.edu.mx; Garcia, M.L.; Quirino, L.L.; Davila, J.I.; Pinedo, J.L.; Rios, C. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Frac. La penuela, Zacatecas, Zac., CP 98068 (Mexico); Montero, M.E. [Centro de Investigacion en Materiales Avanzados, S.C. Complejo Industrial Chihuahua, Miguel de Cervantes 120, Chihuahua, Chih., CP 31109 (Mexico); Colmenero, L. [Instituto Tecnologico de Chihuahua II, Ave de las Industrias 11101, Chihuahua, Chih. (Mexico); Villalba, L. [Facultad de Ingenieria, Universidad Autonoma de Chihuahua, Circuito No. 1, Nuevo Campus Universitario, Chihuahua, Chih. C.P. 31125 (Mexico)

    2007-09-15

    Indoor radon gas ({sup 222}Rn), present in the air inside buildings, is one of the most important sources of radiation exposure to the population. This gas originates in the {sup 238}U radioactive decay chain, which is contained in rock and solid soil particles. Radon accumulation in confined spaces, inside buildings, depends on several factors such as the type of soils, type of constructions, building materials, and ventilation. The aim of this work is to present indoor and outdoor radon concentrations for 202 dwellings and indoor concentrations for 148 public clinics; and the radon concentrations relate to the type of predominant soils, the construction years; and building materials used in the ceilings, walls and floors, for cities and towns of the 57 municipalities in the State of Zacatecas, Mexico. The {sup 222}Rn concentrations were measured with a passive-type radon monitor, with LR-115 as detector material; and the radon survey was made during four stages of three months each throughout Zacatecas from 2001 to 2002. The indoor and outdoor radon concentration averages in dwellings were 55.6{+-}4.9Bqm{sup -3} and 46.5{+-}5.3Bqm{sup -3}, respectively. The indoor radon concentration average in public clinics was 57.8{+-}5.4Bqm{sup -3}. These values were lower than the US EPA action limit of 148Bqm{sup -3}.

  4. Estimation of radon concentration in dwellings in and around ...

    Indian Academy of Sciences (India)

    It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon.

  5. Estimation of radon concentration in dwellings in and around ...

    Indian Academy of Sciences (India)

    It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and ...

  6. Factors affecting yearly variations of indoor radon concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Steck, D.J.; Baynes, S.A. [John`s Univ., Collegeville, MN (United States)

    1996-06-01

    Since indoor radon exposures take place over many years while radon measurement periods are shorter, we are studying the yearly variation of indoor radon concentrations in approximately 100 houses located throughout Minnesota. Most houses were initially measured for one or more years in the late 1980`s and for 5 consecutive years starting in 1990. Two houses have been monitored for 12 y. Each year, two alpha track detectors were placed on the two lowest livable levels. The year-to-year variations averaged about 35% (corrected for instrumental uncertainties) in both basements and first floors. The minimum observed variation was 5% and the maximum was 130%. Some homes have shown substantial variation associated with Structural modifications. While most homes show no obvious systematic trends, a few houses have shown temporal trends that may be associated with aging or climate. We are studying possible correlation between year-to-year radon variation, climatic variables (yearly-average and seasonal such as heating/cooling degree days, precipitation, soil moisture), and structural changes.

  7. Indoor radon and decay products: Concentrations, causes, and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  8. Variations of radon concentration in the atmosphere. Gamma dose rate

    Science.gov (United States)

    Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.

    2018-02-01

    The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.

  9. Measurements on, and modelling of diffusive and advective radon transport in soil

    DEFF Research Database (Denmark)

    Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....

  10. Methane uptake in soils of Southern Spain estimated by two different techniques: Static chamber and 222radon flux and soil air concentration profiles

    Science.gov (United States)

    Dueñas, C.; Fernández, M. C.; Carretero, J.; Liger, E.

    Measurements of methane fluxes from four differing soils in the surroundings of Málaga (Spain) were carried out by two methods: a direct method using a static accumulation chamber at the soil surface and an indirect method obtained from simultaneously measured 222Rn flux from the soil surface in parallel with the concentration profile measurements of 222Rn and CH 4 in the air of soil. The directly measured methane flux at all the investigated soils was higher than the methane fluxes derived from the indirect method. Atmospheric methane was consumed by all the soils and mean direct flux to the atmosphere were 3.25 μmol m -2 h -1. The study showed no correlation between methane uptake and soil temperature, which might be due to the dry conditions prevailing during the study period.

  11. Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition ?

    Science.gov (United States)

    De Simone, Gabriele; Lucchetti, Carlo; Pompilj, Francesca; Galli, Gianfranco; Tuccimei, Paola; Curatolo, Pierpaolo; Giorgi, Riccardo

    2017-05-01

    A soil radon-deficit survey was carried out in a site polluted with kerosene (Rome, Italy) in winter 2016 to assess the contamination due to the NAPL residual component in the vadose zone and to investigate the role of the vapor plume. Radon is indeed more soluble in the residual NAPL than in air or water, but laboratory experiments demonstrated that it is also preferentially partitioned in the NAPL vapors that transport it and may influence soil radon distribution patterns. Specific experimental configurations were designed and applied to a 31-station grid to test this hypothesis; two RAD7 radon monitors were placed in-series and connected to the top of a hollow probe driven up to 80-cm depth; the first instrument was directly attached to the probe and received humid soil gas, which was counted and then conveyed to the second monitor through a desiccant (drierite) cylinder capturing moisture and eventually the NAPL volatile component plus the radon dissolved in vapors. The values from the two instruments were cross-calibrated through specifically designed laboratory experiments and compared. The results are in agreement within the error range, so the presence of significant NAPL vapors, eventually absorbed by drierite, was ruled out. This is in agreement with low concentrations of soil VOCs. Accordingly, the radon-deficit is ascribed to the residual NAPL in the soil pores, as shown very well also by the obtained maps. Preferential areas of radon-deficit were recognised, as in previous surveys. An average estimate of 21 L (17 Kg) of residual NAPL per cubic meter of terrain is provided on the basis of original calculations, developed from published equations. A comparison with direct determination of total hydrocarbon concentration (23 kg per cubic meter of terrain) is provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Design Criteria for Achieving Low Radon Concentration Indoors

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving low radon concentration indoors are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most...... the radon concentration in the indoor air. In addition, a cheap and reliable method for measuring the radon concentration in the air indoors is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause...... lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible indoors in buildings. Airtightness is an important factor when dealing with buildings. For the building envelope...

  13. Estimation of radon concentration in dwellings in and around Guwahati

    Science.gov (United States)

    Dey, Gautam Kumar; Das, Projit Kumar

    2012-02-01

    It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. Taking this into account, an attempt has been made to estimate radon concentration in dwellings in and around Guwahati using aluminium dosimeter cups with CR-39 plastic detectors. Results of preliminary investigation presented in this paper show that the mean concentration is 21.31 Bq m - 3.

  14. Anomalous soil radon fluctuations – signal of earthquakes in Nepal ...

    Indian Academy of Sciences (India)

    . (2005a) and Yang et al. (2005) carried out a study on the variation of radon-222 in sub-soil ... (1995) in Central America and. Mexico, Planinic et al. (2000) in Croatia studied the temporal variation of soil radon-222 concentra- tion in search of ...

  15. Soil Radon In The Nigerian Younger Granites | Dewu | Nigerian ...

    African Journals Online (AJOL)

    ... not had enough time to attain equilibrium with its daughters. In general, the results suggest that with proper control, soil radon measurements over the Younger Granite can be used for uranium exploration in the region. Keywords: Radon, younger granite, soil uranium, half-lifeand thorium. Nigerian Journal of Physics Vol.

  16. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential.

    Science.gov (United States)

    Kabrt, Franz; Seidel, Claudia; Baumgartner, Andreas; Friedmann, Harry; Rechberger, Fabian; Schuff, Michael; Maringer, Franz Josef

    2014-07-01

    With the aim to predict the radon potential by geological data, radon soil gas measurements were made in a selected region in Styria, Austria. This region is characterised by mean indoor radon potentials of 130-280 Bq m(-3) and a high geological diversity. The distribution of the individual measuring sites was selected on the basis of geological aspects and the distribution of area settlements. In this work, the radon soil gas activity concentration and the soil permeability were measured at 100 sites, each with three single measurements. Furthermore, the local dose rate was determined and soil samples were taken at each site to determine the activity concentration of natural radionuclides. During two investigation periods, long-term soil gas radon measurements were made to study the time dependency of the radon activity concentration. All the results will be compared and investigated for correlation among each other to improve the prediction of areas with high radon potential. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A theoretical investigation of the distribution of indoor radon concentrations

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2017-05-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. In recent times, numerical modelling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement the Finite Volume Method (FVM) for studying the radon distribution indoor. The findings show that the radon concentration which is distributed in a non-homogeneous way in the room is due to the difference in the radon concentration of different sources (wall, floor and ceiling). Moreover, the radon concentration is much larger near walls, and decreases in the middle of the room because of the effect of air velocity. We notice that the simulation results of radon concentration are in agreement with the results of other experimental studies. The annual effective dose of radon in the model room has been also investigated.

  18. Spatial distribution of the radon concentration in soil and subterranean water in the Nuclear Center of Mexico and its surrounding using a geographical information system; Distribucion espacial de la concentracion de radon en suelo y agua subterranea en el Centro Nuclear de Mexico y sus alrededores utilizando un sistema de informacion geografica

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, S.; Pena, P.; Lopez, M.B.E.; Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Madrigal, D. [UAEM, Facultad de Geografia, 50000 Toluca, estado de Mexico (Mexico)

    2003-07-01

    The radon concentration in soil of the Nuclear Center of Mexico using solid detectors of nuclear traces (LR 115, type ll) and in water of two aquifers of the Asuncion Tepexoyuca, by means of the liquid scintillation technique it was determined; both places located in the Ocoyoacac municipality, Estado de Mexico. The analysis of spatial distribution it was supported by means of a Geographic Information System. The results of the radon concentration in soil, they registered an average of 2. 64 kBq m{sup -3} in the study area, the more high average value it was of 5. 25 kBq m{sup -3} in the station 12-ZM (Military Area) and the minimum value was of 0. 54 kBq m{sup -3} in the point 7-CO (Dining room). In the radon concentration in water of La Perita it was observed an average value 0.52 Bq L{sup -1} and in El Tunel it was of 0.7 Bq L{sup -1}. (Author)

  19. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  20. Measurements of radon activity concentration in mouse tissues and organs.

    Science.gov (United States)

    Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro

    2017-05-01

    The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m(3) of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m(3) of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

  1. Radon and helium in soil gases at Cañadas caldera, Tenerife, Canary Islands, Spain

    Science.gov (United States)

    Hernández, Pedro; Pérez, Nemesio; Salazar, José; Reimer, Mike; Notsu, Kenji; Wakita, Hiroshi

    2004-03-01

    The spatial distribution of soil radon was investigated at Cañadas caldera, Tenerife, in two surveys carried out in the summers of 1992 and 1995 by using α-particle-sensitive cellulose nitrate films (Track-Etch) and emanometry, respectively. Soil helium was studied at several transects crossing different structural features of the area. Radon concentration measured by Track-Etch ranged from 1.0 to 1990 pCi/l while that measured by emanometry ranged from 0.1 to 618 pCi/l. Soil helium concentration varied from 5250 to 15 560 ppb with an average value of 6197 ppb. The spatial distribution of soil radon correlates quite closely with structural features (fractures, emission centers, etc.), where the main geothermal manifestations (fumaroles, steam ground and high subsurface temperature and gas contents) also occur. Areas showing high soil Rn concentrations occur at the summit of Teide, Roques de Garcı´a, caldera rim and south and east off side of the caldera. High soil helium anomalies correlate well spatially with those of radon, especially at the summit of Teide where relatively high 3He/ 4He isotopic ratios occur, suggesting a deep contribution for these emanations. Data indicate that radon and helium are supplied mostly from a deep source, with a minor contribution from U- and Th-rich shallow rocks and soils.

  2. Effect of environmental conditions on radon concentration-track ...

    Indian Academy of Sciences (India)

    Abstract. In this work, the effect of environmental conditions viz., temperature (Т) and relative humidity (RH) on the track density-radon concentrations calibration factor (K) has been studied for CR-39 and LR-115 track detectors. The factor K was determined using a reference radon chamber in the National Institute for ...

  3. Correlation analysis of the natural radionuclides in soil and indoor radon in Vojvodina, Province of Serbia.

    Science.gov (United States)

    Forkapic, S; Maletić, D; Vasin, J; Bikit, K; Mrdja, D; Bikit, I; Udovičić, V; Banjanac, R

    2017-01-01

    The most dominant source of indoor radon is the underlying soil, so the enhanced levels of radon are usually expected in mountain regions and geology units with high radium and uranium content in surface soils. Laboratory for radioactivity and dose measurement, Faculty of Sciences, University of Novi Sad has rich databases of natural radionuclides concentrations in Vojvodina soil and also of indoor radon concentrations for the region of Vojvodina, Northern Province of Serbia. In this paper we present the results of correlative and multivariate analysis of these results and soil characteristics in order to estimate the geogenic radon potential. The correlative and multivariate analysis were done using Toolkit for Multivariate Analysis software package TMVA package, within ROOT analysis framework, which uses several comparable multivariate methods for our analysis. The evaluation ranking results based on the best signal efficiency and purity, show that the Boosted Decision Trees (BDT) and Multi Layer Preceptor (MLP), based on Artificial Neural Network (ANN), are multivariate methods which give the best results in the analysis. The BDTG multivariate method shows that variables with the highest importance are radio-nuclides activity on 30 cm depth. Moreover, the multivariate regression methods give a good approximation of indoor radon activity using full set of input variables. On several locations in the city of Novi Sad the results of indoor radon concentrations, radon emanation from soil, gamma spectrometry measurements of underlying soil and geology characteristics of soil were analyzed in detail in order to verify previously obtained correlations for Vojvodina soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Measurement of Radon Concentration in Selected Houses in Ibadan, Nigeria

    Science.gov (United States)

    Usikalu, M. R.; Olatinwo, V.; Akpochafor, M.; Aweda, M. A.; Giannini, G.; Massimo, V.

    2017-05-01

    Radon is a natural radioactive gas without colour or odour and tasteless. The World Health Organization (WHO) grouped radon as a human lung carcinogen. For this reason, there has been a lot of interest on the effects of radon exposure to people all over the world and Nigeria is no exception. The aim of this study is to investigate the radon concentration in selected houses in three local government areas of Ibadan. The indoor radon was measured in both mud and brick houses. Fifty houses were considered from the three Local government areas. A calibrated portable continuous radon monitor type (RAD7) manufactured by Durridge company was used for the measurement. A distance of 100 to 200 m was maintained between houses in all the locations. The living room was kept closed during the measurements. The mean radon concentration measured in Egbeda is 10.54 ±1.30 Bqm -3; Lagelu is 16.90 ± 6.31 Bqm -3 and Ona-Ara is 17.95 ± 1.72 Bqm -3. The mean value of the annual absorbed dose and annual effective dose for the locations in the three local government areas was 0.19 mSvy-1 and 0.48 mSvy-1 respectively. The radon concentration for location 10 in Ono-Ara local government exceeded the recommended limit. However, the overall average indoor radon concentration of the three local governments was found to be lower than the world average value of 40 Bqm -3. Hence, there is need for proper awareness about the danger of radon accumulation in dwelling places.

  5. Radon concentration measurements in the desert caves of Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mustafa, Hanan [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco P.O. Box 13027, Dhahran 31311 (Saudi Arabia)

    2005-11-15

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm{sup -3}. The average radon concentration in four of the caves was low in the range 74-114Bqm{sup -3}. However, one cave showed an average radon concentration of 451Bqm{sup -3}. Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides.

  6. Simulation of the steady-state transport of radon from soil into houses with basements under constant negative pressure

    Energy Technology Data Exchange (ETDEWEB)

    de Oliveira Loureiro, C.

    1987-05-01

    A theoretical model was developed to simulate this phenomenon, under some specific assumptions. The model simulates: the generation and decay of radon within the soil; its transport throughout the soil due to diffusion and convection induced by the pressure disturbance applied at a crack in the basement; its entrance into the house through the crack; and the resultant indoor radon concentration. The most important assumptions adopted in the model were: a steady-state condition; a house with a basement; a geometrically well-defined crack at the wall-floor joint in the basement; and a constant negative pressure applied at the crack in relation to the outside atmospheric pressure. Two three-dimensional finite-difference computer programs were written to solve the mathematical equations of the model. The first program, called PRESSU, was used to calculate: the pressure distribution within the soil as a result of the applied disturbance pressure at the crack; and the resultant velocity distribution of the soil gas throughout the soil matrix. The second program, called MASTRA, was used to: solve the radon mass-transport equation, and to calculate the concentration distribution of radon in the soil gas within the whole soil; and to calculate the entry rate of radon through the crack into the basement, and the final indoor radon concentration. A parametric sensitivity analysis performed on the model, revealed several features of the mechanisms involved in the transport of radon into the house. 84 refs., 66 figs., 16 tabs.

  7. Radon

    Science.gov (United States)

    ... or Measurement and Mitigation Professional Radon in Drinking Water Radon Hotlines and Resources ( En Español ) Radon Publications ( En Español ) En Español - Acerca del radón Home Buyers and Sellers Radon Protection: Buying a Home Radon Protection: Building a Home ...

  8. Residential radon exposure and esophageal cancer. An ecological study from an area with high indoor radon concentration (Galicia, Spain).

    Science.gov (United States)

    Ruano-Ravina, Alberto; Aragonés, Nuria; Pérez-Ríos, Mónica; López-Abente, Gonzalo; Barros-Dios, Juan M

    2014-04-01

    To analyze the correlation between municipal esophageal cancer relative risk and municipal residential radon concentration in a high radon emission Spanish area. We performed an ecological study at municipal level in Galicia, Spain. For each municipality we estimated the median radon concentration and the relative risk (RR) for esophageal cancer mortality for males and females. The relative risk was calculated using a Bayesian approach. Homes with data on radon concentration were selected through stratified random sampling. To be included, each municipality had to have at least five radon measurements. We obtained Spearman's correlations for median residential radon concentration and esophageal cancer mortality RR for males and females, separately. We included 129 municipalities, covering the 79% of Galician population. 14% of municipalities had radon concentrations above the United States Environmental Protection Agency (USEPA) action level. We found a statistically significant correlation among residential radon and esophageal cancer mortality RR for males (p radon measurements the correlation pattern remained. This is the first study analyzing the association between residential radon and esophageal cancer. The results suggesting a possible effect of residential radon on esophageal cancer mortality should be explored through more robust epidemiological designs such as case-control studies.

  9. Anomalous radon concentration in a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m{sup -3}. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m{sup -3}, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  10. Spatio-temporal variations of soil radon patterns around the Sea of Marmara

    Science.gov (United States)

    Passarelli, Luigi; Seyis, Cemil; Woith, Heiko

    2016-04-01

    Typically, the noble gas radon displays cyclic daily (S1), semidiurnal (S2) as well as seasonal variations in geological environments like soil air, groundwater, rock, caves, and tunnels. But there are also cases where theses cycles are absent. We present examples from a radon monitoring network of 21 sites around the Sea of Marmara. The works were carried out in the frame of MARsite, a project related to the EU supersite initiative (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). Alpha-meters from the Canadian company alpha-nuclear are used to measure the radon concentration in counts per 15 minutes at a depth of 80 cm. The long-term average radon concentrations at 21 sites vary between 35 and 1,000 counts per 15 minutes. Typical seasonal variations are absent at more than 6 sites. Sites with seasonal variations have radon minima usually during winter (December to April), radon maxima during summer months (June to October). We carefully investigated radon time series for all the monitoring stations. We find that at some sites the empirical distribution of radon counts is clearly bimodal and in other bimodality is absent. In those stations we analysed the time series in different time intervals in order to highlight seasonal periodicity in the radon emission. The empirical distributions obtained by time-windowing of the radon signals results to be statistically different one another after applying a Kolmogorov-Smirnov test at significance level of 0.1. Usually the maxima in radon emission occur in summer time but, interestingly enough, two sites are characterized by radon maxima in winter periods. We further investigate the radon signals seeking for smaller scale periodicity. We calculated Fourier spectra of all 21 sites. Daily cycles are absent at 6 sites which is an unusual phenomenon. Daily cycles may disappear, if the local system is heavily

  11. Variance of indoor radon concentration: Major influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, I., E-mail: ivy@ecko.uran.ru [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Vasilyev, A.; Malinovsky, G. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Bossew, P. [German Federal Office for Radiation Protection (BfS), Berlin (Germany); Žunić, Z.S. [Institute of Nuclear Sciences “Vinca”, University of Belgrade (Serbia); Onischenko, A.; Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation)

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. - Highlights: • Influence of lithosphere and anthroposphere on variance of indoor radon is found. • Level-by-level analysis reduces GSD by a factor of 1.9. • Worldwide GSD is underestimated.

  12. Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, K., E-mail: Krzysztof.Kozak@ifj.edu.pl [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Mazur, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); KozLowska, B. [University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Karpinska, M. [Medical University of Bialystok, Jana Kilinskiego 1, 15-089 BiaLystok (Poland); Przylibski, T.A. [WrocLaw University of Technology, Wybrzeze S. Wyspianskiego 27, 50-370 WrocLaw (Poland); Mamont-Ciesla, K. [Central Laboratory for Radiological Protection, Konwaliowa 7, 03-194 Warszawa (Poland); Grzadziel, D. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Stawarz, O. [Central Laboratory for Radiological Protection, Konwaliowa 7, 03-194 Warszawa (Poland); Wysocka, M. [Central Mining Institute, Plac Gwarkow1, 40-166 Katowice (Poland); Dorda, J. [University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Zebrowski, A. [WrocLaw University of Technology, Wybrzeze S. Wyspianskiego 27, 50-370 WrocLaw (Poland); Olszewski, J. [Nofer Institute of Occupational Medicine, Sw.Teresy od Dzieciatka Jezus 8, 91-348 lodz (Poland); Hovhannisyan, H. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Dohojda, M. [Institute of Building Technology (ITB), Filtrowa 1, 00-611 Warszawa (Poland); KapaLa, J. [Medical University of Bialystok, Jana Kilinskiego 1, 15-089 BiaLystok (Poland); Chmielewska, I. [Central Mining Institute, Plac Gwarkow1, 40-166 Katowice (Poland); KLos, B. [University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Jankowski, J. [Nofer Institute of Occupational Medicine, Sw.Teresy od Dzieciatka Jezus 8, 91-348 lodz (Poland); Mnich, S. [Medical University of Bialystok, Jana Kilinskiego 1, 15-089 BiaLystok (Poland); KoLodziej, R. [Central Mining Institute, Plac Gwarkow1, 40-166 Katowice (Poland)

    2011-10-15

    The method for the calculation of correction factors is presented, which can be used for the assessment of the mean annual radon concentration on the basis of 1-month or 3-month indoor measurements. Annual radon concentration is an essential value for the determination of the annual dose due to radon inhalation. The measurements have been carried out in 132 houses in Poland over a period of one year. The passive method of track detectors with CR-39 foil was applied. Four thermal-precipitation regions in Poland were established and correction factors were calculated for each region, separately for houses with and without basements. - Highlights: > Using radon concentration results in houses we calculated the correction factors. > Factors were calculated for each month, 2 house types in different regions in Poland. > They enable the evaluation of average annual radon concentration in the house. > Annual average radon concentration basing on 1 or 3 months detector exposure.

  13. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics.

    Science.gov (United States)

    Collignan, Bernard; Le Ponner, Eline; Mandin, Corinne

    2016-12-01

    A monitoring campaign was conducted on a sample of more than 3400 dwellings in Brittany, France from 2011 to 2014. The measurements were collected using one passive dosimeter per dwelling over two months during the heating season, according to the NF ISO 11665-8 (2013) standard. Moreover, building characteristics such as the period of construction, construction material, type of foundation, and thermal retrofit were determined using a questionnaire. The final data set consisted of 3233 houses with the measurement results and the questionnaire answers. Multivariate linear regression models were applied to explore the relationships between the indoor radon concentrations and building characteristics, particularly the thermal retrofit. The geometric mean of the indoor radon concentration was 155 Bq m(-3) (with a geometric standard deviation of 3). The houses that had undergone a thermal retrofit had a higher average radon concentration than those that had not, which may have been due to a decrease in air permeability of the building envelope following rehabilitation work that did not systematically include proper management of the ventilation. Other building characteristics, primarily the building material and the foundation type, were associated with the indoor radon concentration. The indoor radon concentrations were higher in older houses built with granite or other stone, with a slab-on-grade foundation and without any ventilation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Seasonal variations of radon concentrations in single-family houses with different sub-structures

    DEFF Research Database (Denmark)

    Majborn, B.

    1992-01-01

    with track detectors on a quarterly basis throughout a year. For living rooms and bedrooms the seasonal variations range from being highly significant for the slab-on-grade houses to being insignificant for the crawl space houses. For basements and crawl spaces the geometric mean radon concentrations do......Seasonal variations of indoor radon concentrations have been studied in 70 single-family houses selected according to the type of sub-structure and the type of soil underneath the house. Five categories of sub-structure were included - slab-on-grade, crawl space, basement, and combinations...... of basement with slab-on-grade or crawl space. Half of the houses are located on clayey till and the other half on glaciofluvial gravel. In each house radon was measured in a living room and a bedroom, in the basement if present, and in the crawl space if present and accessible. The measurements were made...

  15. Traceability of radon-222 activity concentration in the radon chamber at the technical university of Catalonia (Spain)

    Science.gov (United States)

    Vargas, A.; Ortega, X.; Martín Matarranz, J. L.

    2004-07-01

    In order to provide reference 222Rn activity concentration, a device based on the alpha spectrometric measurement of 218Po collected electrostatically on a PIPS detector, has been developed and characterised. Traceability is achieved by the use of primary 222Rn standard activity inside a glass bulb obtained from the Physikalisch-Technische Bundesanstalt. Radon standard activity is then transferred to the instrument that measures the reference radon activity concentration. The instrument is used in the walk-in radon chamber of the Institute of Energy Technology at the Technical University of Catalonia in order to provide a reference atmosphere for the calibration of radon concentration detectors. Under typical environmental calibration conditions within the radon chamber, an expanded uncertainty of roughly 4% ( k=2) for radon concentration is usually estimated.

  16. A study of radon indoor concentration; Un estudio de concentracion de radon intramuros

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G. [ININ, Gerencia de Ciencias Ambientales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m{sup 3} obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  17. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    Science.gov (United States)

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  18. Measurement of radon concentration in super-Kamiokande's buffer gas

    Science.gov (United States)

    Nakano, Y.; Sekiya, H.; Tasaka, S.; Takeuchi, Y.; Wendell, R. A.; Matsubara, M.; Nakahata, M.

    2017-09-01

    To precisely measure radon concentrations in purified air supplied to the Super-Kamiokande detector as a buffer gas, we have developed a highly sensitive radon detector with an intrinsic background as low as 0.33 ± 0.07 mBq /m3 . In this article, we discuss the construction and calibration of this detector as well as results of its application to the measurement and monitoring of the buffer gas layer above Super-Kamiokande. In March 2013, the chilled activated charcoal system used to remove radon in the input buffer gas was upgraded. After this improvement, a dramatic reduction in the radon concentration of the supply gas down to 0.08 ± 0.07 mBq /m3 . Additionally, the Rn concentration of the in-situ buffer gas has been measured 28.8 ± 1.7 mBq /m3 using the new radon detector. Based on these measurements we have determined that the dominant source of Rn in the buffer gas arises from contamination from the Super-Kamiokande tank itself.

  19. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    Science.gov (United States)

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Radon

    Science.gov (United States)

    ... forming a different element with different radioactive properties. Radium and then radon are formed midway through these ... the main source of health concerns. The main isotope of health concern is radon-222 ( 222 Rn). ...

  1. Seasonal variation of radon concentration in dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fremlin, J.H.

    1984-05-01

    Estimating long-term exposure of populations to low levels of radon and its decay products in dwellings is a general problem. Some surveys measure the integrated value of radon over long periods of time using passive track detectors. The long-time integrated measurements should give a better estimation of population dose than short-time ones, since they give long-term average exposures for normal living conditions of dwelling inhabitants. Even measurements over a period of three months may not represent the average of the whole year because of possible seasonal variability. Recently, it was shown that winter-to-summer ratios in a few rooms range from 3 to 10, averaging 5.3 emphasizing the danger of brief readings taken in a single season and the importance and usefulness of integrating readings over a full year. In this note, long-term measurements which were carried out in 85 houses in Birmingham plus 19 houses in London are described.

  2. The effect of home weatherization on indoor radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Egert, G.W. [Westinghouse Hanford Co., Richland, WA (United States); Kathren, R.L. [Univ. of Washington, Seattle, WA (United States)]|[Washington and Hanford Environmental Health Foundation, Richland, WA (United States); Cross, F.T. [Pacific Northwest Lab., Richland, WA (United States); Robkin, M.A. [Univ. of Washington, Seattle, WA (United States)

    1992-12-31

    In an effort to reduce energy consumption costs, increasing numbers of homeowners are weatherizing their homes to minimize the loss of heated and cooled air to the outside. These house-tightening measures decrease the natural infiltration rate of fresh air into the house, potentially increasing the concentration of indoor pollutants, including the radioactive gas, radon. We measured radon concentrations with track-etch detectors in 17 wooden frame homes for a period of 3 months before and after weatherization. An additional 42 homes that were not weatherized were also sampled; they constituted the control group. The measured concentrations in the weatherized homes, the control group, and in both groups combined were described by log-normal distributions. The differences between final and initial concentrations approximate both a log-normal and a normal distribution. Student`s t-test and the Wilcoxon Rank Sum Test of both log-normal and normal-data distributions at the 0.05 significance level show an increase in the indoor radon concentration following home weatherization of 40% and 60%, respectively. This suggests that standard weatherization techniques may increase indoor radon levels by approximately 50%.

  3. STATEWIDE MAPPING OF FLORIDA SOIL RADON POTENTIALS VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report gives results of a statewide mapping of Florida soil radon potentials. Statewide maps identify Florida Regions with different levels of soil radon potential. The maps provide scientific estimates of regional radon potentials that can serve as a basis for implementing r...

  4. STATEWIDE MAPPING OF FLORIDA SOIL RADON POTENTIALS VOLUME 2. APPENDICES A-P

    Science.gov (United States)

    The report gives results of a statewide mapping of Florida soil radon potentials. Statewide maps identify Florida Regions with different levels of soil radon potential. The maps provide scientific estimates of regional radon potentials that can serve as a basis for implementing r...

  5. The use of track registration detectors to reconstruct contemporary and historical airborne radon ( sup 2 sup 2 sup 2 Rn) and radon progeny concentrations for a radon-lung cancer epidemiologic study

    CERN Document Server

    Steck, D J

    1999-01-01

    Epidemiologic studies that investigate the relationship between radon and lung cancer require accurate estimates for the long-term average concentrations of radon progeny in dwellings. Year-to-year and home-to-home variations of radon in domestic environments pose serious difficulties for reconstructing an individual's long-term radon-related exposure. The use of contemporary radon gas concentrations as a surrogate for radon-related dose introduces additional uncertainty in dose assessment. Studies of glass exposed in radon chambers and in a home show that radon progeny deposited on, and implanted in, glass hold promise for reconstructing past radon concentrations in a variety of atmospheres. We developed an inexpensive track registration detector for the Iowa Radon Lung Cancer Study (IRLCS) that simultaneously measures contemporary airborne radon concentrations, surface deposited alpha activity density, and implanted sup 2 sup 1 sup 0 Po activity density. The implanted activity is used to reconstruct the cum...

  6. The radon 222 transport in soils. The case of the storage of residues coming from uranium ores processing; La migration du radon 222 dans un sol. Application aux stockages de residus issus du traitement des minerais d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C

    2000-07-01

    Uranium Mill Tailings (UMT) contain comparatively large quantities of radium-226. This radionuclide yields, by radioactive decay, the radioactive gas radon-222. Tailing piles are routinely covered to reduce the radon release-rate into the atmosphere. In order to assess the long term environmental impact of a UMT repository, mechanisms governing radon exhalation at the soil surface must be deciphered and understood. A model of radon transport in the unsaturated zone is developed for this purpose: water- and air-flow in the porous material are determined, as well as radon transport by diffusion in the pore space and advection by the gas phase. The radon transport model in the unsaturated zone - TRACI (which stands, in French, for Radon Transport within the Unsaturated Layer) - calculates moisture contents in the soil, Darcy's velocities of the liquid and gas phases, radon concentrations in the gas phase and radon flux at the soil surface. TRACI's results are compared with observations carried out on a UMT and a cover layer. Input parameters are derived from the textural analysis of the material under study, whereas upper boundary conditions are given by meteorological data. If we consider measurement errors and uncertainties on the porous medium characterisation, model's results are generally in good agreement with observations, at least on the long run. Moreover, data analysis shows hat transient phenomena are understood as well, in most situations. (author)

  7. Modelling radon progeny concentration variations in thermal spas.

    Science.gov (United States)

    Nikolopoulos, Dimitrios; Vogiannis, Efstratios

    2007-02-01

    Radon and its short-lived progenies (218Po, 214Pb, 214Bi and 214Po) are well known radioactive indoor pollutants identified as the major radiation burden component of the thermal spa users. Monitoring of short-lived progeny concentration is of great importance for short-term dose estimations both for bathers and working personnel. A prediction model of the short-lived progeny concentration variations was developed and applied on published data of the thermal spas of Lesvos Island. The physical procedures involved were modeled in a set of differential equations describing radon progeny concentration variations on the basis of radon measurements. Published daughter data were fitted on model predictions adjusting non-measured parameters, e.g. attachment and deposition rate constants for attached and unattached progenies. Attachment rate constants were estimated between 50 and 200 h-1 while the deposition rate constants between 0.25 and 5 h-1 for attached progenies and 0.5 and 170 h-1 for the unattached ones. In addition, unattached 218Po, 214Pb and 214Bi progenies were found to be shifted forward in respect to radon approximately 0.001 h, 0.05 h and 0.40 h respectively, while attached 218Po, 214Pb and 214Bi progenies 0.05 h, 0.45 h and 0.65 h respectively.

  8. Radon and thoron daughter concentrations in Romanian houses

    Energy Technology Data Exchange (ETDEWEB)

    Milu, C.; Gheorghe, R. [Institute of Public Health, Bucharest (Romania)

    1998-12-31

    The indoor and outdoor radon and thoron daughter concentrations were determined in 119 Romanian dwellings, by air sampling on a membrane filter, followed by repeated gross - alpha countings. Several constructive and physical parameters have been recorded. Knowing the radon and thoron daughters concentrations, the Potential Alpha Energy Concentration (PAEC), the Equilibrium Equivalent Concentration (EEC), the equilibrium factor (F) and the effective dose for adults (ED) have been calculated. EEC (Rn) experimental values for indoor exposure ranged from 3 to 130 Bq/m{sup 3}, with a mean value of 22 Bq/m{sup -3}. The main observed influencing parameters were: ventilation rate, type of building material and indoor relative humidity. It was also pointed out that the contribution of the thoron daughters to the total ED is about 20%. The results of the concentrations within an experimental house with a part of walls from phosphogypsum are presented. (author)

  9. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    Science.gov (United States)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-12-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Determination of concentration of radon, volatile organic compounds (VOC) and water chemistry in springs near to Popocatepetl volcano; Determinacion de la concentracion de radon, VOCs y Quimica del agua en manantiales cercanos al volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez M, B.E.; Cisniega, G. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Valdes, C.; Armienta, M.A.; Mena, M. [Instituto de Geofisica, UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both the meteorological parameters and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed stability along the monitoring period indicating also differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (Author)

  11. Radon Concentration in the Cataniapo-Autana River Basin, Amazonas State, Venezuela

    Science.gov (United States)

    Sajo-Bohus, L.; Greaves, E. D.; Alvarez, H.; Liendo, J.; Vásquez, G.

    2007-10-01

    Radon activity concentration is measured in rivers of the Autana-Cataniapo hydrologic basin. The region experiments mining and it is forecasted that the basin will be perturbed. Radon activity monitoring is one of the methods to measure environmental changes. Values of radon concentration in water range between 0.4 and 30 Bq L-1.

  12. Spatial variation of radon and helium in soil gas vis-à-vis geology of area, NW Himalayas, India

    Science.gov (United States)

    Mahajan, Sandeep; Singh Bajwa, Bikramjit; Singh, Surinder; Kumar, Arvind; Yang, Tsanya Frank; Dhar, Sunil; Walia, Vivek

    2010-05-01

    In an effort to quantify the geological/lithological control on radon, helium soil gas potential and appraise the use of soil gas technique as a geological mapping tool, soil gas measurements were made, in some parts of Himachal Himalayas of NW Himalayan range, using soil gas grab sampling technique. More than 360 soil gas samples were collected from four different geological/lithologic rock units of the area under consideration. The collected soil gas samples were analyzed for radon and helium using RTM-2100 (SARAD) and Helium leak detector (ALCATEL) respectively. The observed values were then correlated with the geology/lithology of the study area. The study area is broadly divided into four different units on the basis of geology/lithology i.e. (A) Upper Shiwaliks (B) Middle & Lower Shiwaliks (C) Lesser Himalayan rocks (D) Higher Himalayan rocks. Significant differences in the soil gas concentrations among the geologic units were observed, where Lesser Himalayan rocks showing maximum concentrations of both radon (254 KBq/m3) and helium (5.46 ppm). Lesser Himalayan zone lies mainly between two major thrusts MBT and MCT running along the Himalayan trend, which still are tectonically active. It can be concluded from the present study that soil gases (radon and helium) can be used as a productive tool for geological mapping. These findings may have very important connation for health risk assessment of the area. It has been shown that soil gas radon found in soils overlying basement rocks are the main source for indoor radon concentrations since the radioactive isotopes attach rapidly to atmospheric aerosols and enter into human body thus constitute significant hazard to human health.

  13. RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.

    Science.gov (United States)

    Stránský, V; Thinová, L

    2017-11-01

    In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  15. Soil-gas radon monitoring in an active granite quarry from central Portugal

    Science.gov (United States)

    Pereira, A. J. S. C.; Barbosa, S. M.; Neves, L. J. P. F.; Aumento, F.

    2011-07-01

    Seven soil-gas radon monitoring stations were placed along the active front of a granite quarry in Canas de senhorim, Central Portugal, recording continuously for 81 days. Important differences in the radon concentration were found between stations, with average values comprised between 102 and 2982 Bq m-3, which can be explained by the local presence of uranium anomalies in the regional late-orogenic Hercynian granite, usually associated with faults. One of the boreholes exhibits large radon anomalies lasting for several days, and two, contrary to the others, show a clear daily periodic behaviour, with minima around 19:00 LT and maxima around 07:00 LT. The different patterns observed in stations placed at such a short distance (<100 m) has no clear explanation and deserves further investigation. Data analysis shows no evidence of soil-gas radon concentration changes during explosions carried out at the quarry. This is likely to result from the absence of a progressive stress field affecting the rock, as typically occurs before an earthquake.

  16. Soil-gas radon monitoring in an active granite quarry from central Portugal

    Directory of Open Access Journals (Sweden)

    A. J. S. C. Pereira

    2011-07-01

    Full Text Available Seven soil-gas radon monitoring stations were placed along the active front of a granite quarry in Canas de senhorim, Central Portugal, recording continuously for 81 days. Important differences in the radon concentration were found between stations, with average values comprised between 102 and 2982 Bq m−3, which can be explained by the local presence of uranium anomalies in the regional late-orogenic Hercynian granite, usually associated with faults. One of the boreholes exhibits large radon anomalies lasting for several days, and two, contrary to the others, show a clear daily periodic behaviour, with minima around 19:00 LT and maxima around 07:00 LT. The different patterns observed in stations placed at such a short distance (<100 m has no clear explanation and deserves further investigation. Data analysis shows no evidence of soil-gas radon concentration changes during explosions carried out at the quarry. This is likely to result from the absence of a progressive stress field affecting the rock, as typically occurs before an earthquake.

  17. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  18. Survey of Indoor Radon Concentrations in California Elementary Schools. Final Report.

    Science.gov (United States)

    Zhou, Joey Y.; Liu, Kai-Shen; Waldman, Jed

    This paper reports on the concentrations of radon found within a sample of 378 elementary schools in California. Long-term alpha-track radon detectors were placed in 6,485 classrooms within participating schools to detect radon levels for between 220 to 366 days. Only classrooms were tested. Results show that about 5.6 percent of the schools…

  19. Seismo-volcanic monitoring at Furnas Volcano (Azores): radon (222Rn) concentration in groundwater

    Science.gov (United States)

    Silva, Catarina; Virgílio Cruz, José; Ferreira, Teresa; Viveiros, Fátima; Freire, Pedro; Allard, Patrick

    2017-04-01

    environmental conditions as soil temperature, rainfall and soil water content, rather than by volcanic activity, with the exception of one spring where radon activity seems to change more closely relate to the seismic activity of Furnas Volcano. Because some of the surveyed waters are often drunk by the local population and tourists, our results are also useful in a public health perspective. We conclude that the measured radon activities do not pose any health problem, as they remain under the safety threshold (100 Bq/L) defined by the World Health Organization. The research performed allowed to define the radon background for each one of the groundwater discharges sampled and to identify the environmental parameters that can influence the radon concentration in the groundwater of Furnas Volcano, allowing more easily to identify a future reactivation of this volcanic system.

  20. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    Science.gov (United States)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  1. Large scintillation cells for high sensitivity radon concentration measurements

    Science.gov (United States)

    Cohen, B. L.; El Ganayni, M.; Cohen, E. S.

    1983-07-01

    Methods for improving the sensitivity of scintillation cells for radon concentration measurements were studied with emphasis on improving light collection efficiency. This allows the length and hence the volume of the cell to be increased. Variables studied were choice of scintillator material, its method of application and thickness, length of cell, cell material, type and configuration of reflectors, choice of photomultipliers, and factors affecting background. Response from various areas of the cell surface was studied with an alpha source and with radon filling. Coating the window with phosphor was found to be counter-productive. The optimum results obtained were with the inside of the cell (other than the window) covered with a thick layer of ZnS(Ag), or with a thick layer of reflective material coated with a thin layer of phosphor. With it, a 10 cm diameter plexiglass cell can be extended to at least 50 cm length without difficulty from insufficient pulse height.

  2. Indoor randon concentration. Temperature and wind effects; Concentrazione di radon indoor. Effetto del vento e della temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Sesana, L.; Benigni, S. [Milan Univ., Milan (Italy). Ist. di Fisica Generale Applicata

    2000-12-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied. [Italian] Si analizza e si discute il comportamento della concentrazione di radon indoor nel seminterrato di una casa di ricerca. Misure orarie sono state effettuate da novembre 1998 a giugno 1999. In molte sequenze di giorni la concentrazione del radon nel locale in analisi presenta forti variazioni nel corso della giornata con un accumulo notturno e decrescita nelle ore diurne. Sono state eseguite misure della velocita' del vento, delle temperature outdoor e indoor e della differenza di pressione outdoor-indoor e il loro andamento e' stato confrontato con quello della concentrazione del radon. Vengono discusse l'esalazione del radon dalle pareti, dal pavimento e dal soffitto e l'esalazione pressure difference driven dal suolo. Il rateo dei ricambi d'aria tra il locale e l'aria outdoor e' studiato.

  3. Validation and application of the methodology for analysis of radon concentration in the air through the technique of solid state nuclear track detectors (SSNTD)

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Caroline de [Pontificia Universidade Catolica de Minas Gerais (PUC-Pocos), Pocos de Caldas, MG (Brazil); Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas; Silva, Nivaldo Carlos da, E-mail: ncsilva@cnen.gov.b [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    Radon is a radioactive noble gas that occurs naturally in soil and could enter into residential. The decay products of radon are radioactive metals which, when inhaled, can be retained in the respiratory system, leading to an internal dose of radiation. The monitoring of radon levels in residences and workplaces is extremely important, since high concentrations of this gas can cause serious public health problems. This study analyzed the concentration of radon in the air in 94 work environments at the Laboratory of Pocos de Caldas - LAPOC/CNEN, including laboratories, administrative rooms, workshop, warehouse and guardhouse. The method employed in the monitoring was the technique of solid state nuclear track detectors, known as SSNTD. For calibration and validation of this method, controlled experiments were conducted in laboratory with specific instrumentation. The monitoring results indicated that most environments present radon concentrations above 100 Bq m{sup -3}, which is the reference level recommended by the World Health Organization. (author)

  4. Relevance of air conditioning for {sup 222}Radon concentration in shops of the Savona Province, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Panatto, Donatella [DiSSal, Department of Heath Sciences, University of Genoa, Via Pastore 1, 16132 Genoa (Italy)]. E-mail: panatto@unige.it; Ferrari, Paola [DiSSal, Department of Heath Sciences, University of Genoa, Via Pastore 1, 16132 Genoa (Italy); Lai, Piero [DiSSal, Department of Heath Sciences, University of Genoa, Via Pastore 1, 16132 Genoa (Italy); Gallelli, Giovanni [DiSSal, Department of Heath Sciences, University of Genoa, Via Pastore 1, 16132 Genoa (Italy)

    2006-02-15

    Radon ({sup 222}Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to {sup 222}Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m{sup -3} for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems.

  5. UTILITY OF SHORT-TERM BASEMENT SCREENING RADON MEASUREMENTS TO PREDICT YEAR-LONG RESIDENTIAL RADON CONCENTRATIONS ON UPPER FLOORS.

    Science.gov (United States)

    Barros, Nirmalla; Steck, Daniel J; William Field, R

    2016-11-01

    This study investigated temporal and spatial variability between basement radon concentrations (measured for ∼7 d using electret ion chambers) and basement and upper floor radon concentrations (measured for 1 y using alpha track detectors) in 158 residences in Iowa, USA. Utility of short-term measurements to approximate a person's residential radon exposure and effect of housing/occupant factors on predictive ability were evaluated. About 60 % of basement short-term, 60 % of basement year-long and 30 % of upper floor year-long radon measurements were equal to or above the United States Environmental Protection Agency's radon action level of 148 Bq m(-3) Predictive value of a positive short-term test was 44 % given the year-long living space concentration was equal to or above this action level. Findings from this study indicate that cumulative radon-related exposure was more closely approximated by upper floor year-long measurements than short-term or year-long measurements in the basement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Result of alpha track detection of radon in soil gas in the Khlong Marui Fault Zone, Southern Thailand: A possible earthquake precursor

    Directory of Open Access Journals (Sweden)

    Tripob Bhongsuwan

    2011-10-01

    Full Text Available Measurements of radon concentration in soil gas were conducted at ten stations (ST1-ST10, located mainly in theKhlong Marui Fault Zone, Thap Put District, Phang Nga Province over a period from 28 January to 25 April, 2007. The resultsof the radon concentration were presented as the variation of cumulative alpha track over a week period. At Station ST10 theradon concentrations are in general higher than those at other stations for every week. Two significant radon anomalies werefound to have the concentration above the mean value plus one standard deviation. During the period of monitoring thelocal and regional earthquake activities were observed showing patterns consistent with the occurrence of the radon anomalies.The maximum radon concentration is interpreted to be related to a possible influence of the pressure and stress increasedin the subsurface. An increase in the number of earthquakes is observed correlating to a lower radon concentration when thesubsurface pressure dropped due to tectonic stress release by seismic activities. Therefore, it would be possible to use thevariation of soil gas radon concentration as an earthquake precursor in the Khlong Marui Fault Zone.

  7. Validation of a geographic information system for the evaluation of the soil radon exhalation potential in South-Tyrol and Veneto, Italy.

    Science.gov (United States)

    Bertolo, A; Verdi, L

    2001-01-01

    The PERS (soil radon exhalation potential) project was promoted by ANPA (Italian Environmental Protection Agency) together with the Università Cattolica del Sacro Cuore of Rome: the aim was to produce a geographic information system allowing the discovery of regions with different radon exhalation potential starting from some territorial knowledge. Some environmental measurements were carried out within this project in selected areas in South-Tyrol and Veneto. The measurement of radon in springwater and groundwater as well as in soil gas plays a decisive role for the validation of the algorithm for computing the PERS. Along with technical aspects, a possible use of the PERS method by the Regional Environmental Protection Agencies and by other agencies is discussed with the scope of identifying radon prone areas, as stated in the Italian 'Decreto Legislativo' 26 May 2000, n. 241. Moreover the forecasting power of PERS regarding indoor radon concentration is analysed.

  8. Validation of a geographic information system for the evaluation of the soil radon exhalation potential in South-Tyrol and Veneto (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Bertolo, A.; Verdi, L

    2001-07-01

    The PERS (soil radon exhalation potential) project was promoted by ANPA (Italian Environmental Protection Agency) together with the Universita Cattolica del Sacro Cuore of Rome: the aim was to produce a geographic information system allowing the discovery of regions with different radon exhalation potential starting from some territorial knowledge. Some environmental measurements were carried out within this project in selected areas in South-Tyrol and Veneto. The measurement of radon in springwater and groundwater as well as in soil gas plays a decisive role for the validation of the algorithm for computing the PERS. Along with technical aspects, a possible use of the PERS method by the Regional Environmental Protection Agencies and by other agencies is discussed with the scope of identifying radon prone areas, as stated in the Italian 'Decreto Legislativo' 26 May 2000, n. 241. Moreover the forecasting power of PERS regarding indoor radon concentration is analysed. (author)

  9. Radon concentration variations between and within buildings of a research institute

    Energy Technology Data Exchange (ETDEWEB)

    Antignani, S., E-mail: sara.antignani@iss.i [Istituto Superiore di Sanita (Italian National Institute of Health), Viale Regina Elena, 299, I-00161 Roma (Italy); Bochicchio, F.; Ampollini, M.; Venoso, G.; Bruni, B.; Innamorati, S.; Malaguti, L.; Stefano, A. [Istituto Superiore di Sanita (Italian National Institute of Health), Viale Regina Elena, 299, I-00161 Roma (Italy)

    2009-10-15

    Radon concentration in indoor air has been measured in many countries in a large number of buildings - mainly in houses but also in apartments and workplaces - mostly as a result of the application of radon policies and regulation requirements. However, few systematic analyses are available on radon concentration variations within buildings and between close buildings, especially as regards workplaces; such variations can have a significant impact on indoor radon exposure evaluation, and ultimately on the assessment of the dose from radon received by workers. Therefore, a project was started in 2006 aimed to study the spatial variation of radon concentration among and within about 40 buildings of the Istituto Superiore di Sanita (ISS), a research institute of public health located in Rome over a small area of less than 1 km{sup 2}. Nuclear track detectors (CR-39) were used to measure radon concentration for two consecutive six-month periods, in more than 700 rooms of the surveyed buildings. The paper describes the project in detail and preliminary results regarding 558 rooms in 29 buildings. Coefficient of variation (CV) was calculated as a measure of relative variation of radon concentration between buildings, between floors, and between rooms on the same floor. The CV between buildings resulted quite high (88%), a lower CV (42%) was found for variation between floors, whereas room-to-room CV on the same floor ranged from 25% at first floor level to 48% at basement level. Floor mean ratios, with ground floor as the reference level, were calculated for each building in order to study the correlation between radon concentration and floor levels. Although no clear trend was observed, the average basement/ground floor ratio of radon concentrations resulted about 2.0, whereas the average sixth floor/ground floor ratio of radon concentrations was 0.5. Some discussion on the potential impact of the results of this study on policies and radon regulations are also included

  10. Influence of Blasted Uranium Ore Heap on Radon Concentration in Confined Workspaces of Shrinkage Mining Stope

    Science.gov (United States)

    Ye, Y. J.; Liang, T.; Ding, D. X.; Lei, B.; Su, H.; Zhang, Y. F.

    2017-07-01

    A calculation model for radon concentration in shrinkage mining stopes under various ventilation conditions was established in this study. The model accounts for the influence of permeability and area of the blasted ore heap, ventilation air quantity, and airflow direction on radon concentration in a confined workspace; these factors work together to allow the engineer to optimize the ventilation design. The feasibility and effectiveness of the model was verified by applying it to mines with elevated radon radiation exposure. The model was found to accurately changes in radon concentration according to the array of influence factors in underground uranium mines.

  11. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration.

    Science.gov (United States)

    Muñoz, E; Frutos, B; Olaya, M; Sánchez, J

    2017-10-01

    The focus of this study is broadly to define the physics involved in radon generation and transport through the soil and other materials using different parameter-estimation tools from the literature. The effect of moisture in the soil and radon transport via water in the pore space was accounted for with the application of a porosity correction coefficient. A 2D finite element model is created, which reproduces the diffusion and advection mechanisms resulting from specified boundary conditions. A comparison between the model and several analytical and numerical solutions obtained from the literature and field studies validates the model. Finally, the results demonstrate that the model can predict radon entry through different building boundary conditions, such as concrete slabs with or without joints, variable slab thicknesses and diffusion coefficients, and the use of several radon barrier membranes. Cracks in the concrete or the radon barrier membrane have been studied to understand how indoor concentration is affected by these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Directory of Open Access Journals (Sweden)

    Yun-Yun Wu

    2014-10-01

    Full Text Available 222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  13. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Science.gov (United States)

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  14. Soil gas and radon entry into a simple test structure: Comparison of experimental and modelling results

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1994-01-01

    A radon test structure has been established at a field site at Riso National Laboratory. Measurements have been made of soil gas entry rates, pressure couplings and radon depletion. The experimental results have been compared with results obtained from measured soil parameters and a two......-dimensional steady-state numerical model of Darcy flow and combined diffusive and advective transport of radon. For most probe locations, the calculated values of the pressure couplings and the radon depletion agree well with the measured values, thus verifying important elements of the Darcy flow approximation......, and the ability of the model to treat combined diffusive and advective transport of radon. However, the model gives an underestimation of the soil gas entry rate. Even if it is assumed that the soil has a permeability equal to the highest of the measured values, the model underestimates the soil gas entry rate...

  15. The reduction of indoor radon concentration by using lightweight concrete in high-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.N.; Young, E.C.M.; Stokes, M.J. [City Univ., Hong Kong (Hong Kong). Dept. of Physics and Materials Science; Lo, T. [City Univ., Hong Kong (Hong Kong). Dept. of Building and Construction

    1996-12-31

    The radon exhalation rates from surfaces of different types of lightweight concrete used in the building industry in Hong Kong have been studied using standardised activated charcoal canisters and {gamma} spectroscopy. It is found that all the lightweight concretes investigated have considerably smaller radon exhalation rates than those from ordinary concrete. Considering a concrete room of a typical size for Hong Kong, the possible reduction in the indoor radon concentrations has been calculated to be greater than 15 Bq.m{sup -3} when lightweight concrete is used instead of ordinary concrete for the non-construction walls. The average indoor radon concentration in Hong Kong is about 45 Bq.m{sup -3}. Therefore, a simple and economic way to reduce the indoor radon concentrations and the corresponding radiation dose from radon has been demonstrated. This technique applies to future buildings. (Author).

  16. RADON CONCENTRATIONS IN UNDERGROUND DRINKING WATER IN PARTS OF CITIES, CHINA.

    Science.gov (United States)

    Wu, Yunyun; Cui, Hongxing; Liu, Jianxiang; Shang, Bing; Su, Xu

    2017-08-31

    222Rn concentrations in underground drinking water samples in 12 cities from seven provinces (municipalities), China were determined by using a continuous radon monitor with air-water exchanger. A total of 73 underground water samples were collected. The observed radon levels were in a range of 1.0-63.8 Bq l-1, with a mean of 11.8 Bq l-1. The annual effective dose from inhalation of water-borne radon for average radon content in underground water was 72.6 μSv and for maximal observed radon concentration in underground water the corresponding dose was 393.8 μSv. The dose contribution of inhalation dose from water-borne radon should be paid attention in some granitic area. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Radon levels in groundwaters and natural radioactivity in soils of the volcanic region of La Garrotxa, Spain.

    Science.gov (United States)

    Moreno, V; Bach, J; Baixeras, C; Font, Ll

    2014-02-01

    Groundwater radon level and soil radionuclide concentration have been measured in the volcanic region of La Garrotxa (Catalonia, Spain) to further research on the origin and dynamics of high radon levels over volcanic materials found in this region. Water samples from different aquifers have been collected from wells and springs and the water radon levels obtained have been lower than 30 Bq l(-1). Soil samples have been collected from different geological formations (volcanic and non-volcanic), being Quaternary sedimentary deposits those that have presented the highest mean values of (40)K, (226)Ra and (232)Th concentrations (448 ± 70 Bq kg(-1), 35 ± 5 Bq kg(-1) and 38 ± 5 Bq kg(-1), respectively). Additionally, indoor/outdoor terrestrial radiation absorbed dose rate in air have been measured to better characterize the region from the radiological point of view. Terrestrial radiation absorbed dose rates measurement points have been chosen on the basis of geological and demographical considerations and the results obtained, from 27 to 91 nGy h(-1), show a clear relation with geological formation materials. The highest terrestrial gamma absorbed dose rate is observed over Quaternary sedimentary deposits as well. All these results help to better understand previous surveys related with indoor and outdoor radon levels and to reinforce the hypotheses of a radon transport through the fissure network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Study, measurement and reduction of the radon concentration in the University School of Technical Architecture of the University of Coruña

    Directory of Open Access Journals (Sweden)

    A. Otero-Pazos

    2017-09-01

    Full Text Available A study of radon concentration has been carried out at the University of A Coruña’s Technical Architecture School. For that purpose, soil and construction materials, as well as building location have been analyzed. After that, measurements have been performed in order to find out radon concentrations. Two techniques have been used to make that enquiry for both short term and long term measurements: for short term, measurements were made using an on-site ionization chamber detector, while, for long term, trace detectors have been employed. Due to the results, and according with the Spanish Law (Spanish Official Bulletin – Boletín Oficial del Estado, of December 21, 2011, IS-33 Instruction, corrective works have taken place (cracks sealing, installation of a forced ventilation system in order to diminish the high radon concentrations. After works, new measurements proved that radon concentration values lowered about 50 % and 90 %.

  19. RADON CONCENTRATION IN THE AIR OF NEWLY BUILT AND OPERATING BUILDINGS IN THE ROSTOV REGION

    Directory of Open Access Journals (Sweden)

    M. Yu Soloviev

    2010-01-01

    Full Text Available The article presents issues of radon accumulation in the air of dwellings and public buildings in the Rostov region. It is shown that radon concentration in the air of commissioned buildings does not depend on the season when the investigation was carried out, while equivalent equilibrium volumetric activity of radon in the operating buildings is approximately twice higher during the cold period, then during the hot period of a year.

  20. Comparison of radon exposure assessment results: {sup 210}Po surface activity on glass objects vs. contemporary air radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, F. E-mail: francesco.bochicchio@iss.it; McLaughlin, J.P.; Walsh, C

    2003-06-01

    Radon exposure assessment in case-control studies on radon and lung cancer is generally based on contemporary radon concentration measurements, which can be affected by significant changes in the building structures or in living habits. Another method to estimate the radon exposure of the subjects is the recently developed retrospective dosimetry technique based on the {sup 210}Po surface activity from glass objects. In order to compare the results obtained by the two methods, a study has been carried out in a sample of 26 dwellings in Rome, with radon concentration values ranging from 28 to 623 Bq m{sup -3}. Retrospective detectors based on CR-39 and LR 115 were exposed on 50 glass objects in bedrooms and living rooms. The correlation factor between the two sets of data, after removing six extreme values, is 0.67, which is similar to results obtained in other validation studies of similar sample size. The correlation increases to 0.83 if the 21 objects exposed in non-smoky dwellings are selected, while it vanishes to -0.01 for the 23 objects exposed in smoky dwellings, suggesting quite larger variations of plate-out in presence of environmental tobacco smoke.

  1. Geographical information system for radon gas from soil measurement; Il sistema informativo territoriale per la valutazione del potenziale di esalazione di radon dal suolo

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, P.; Amici, M.; Altieri, A.; Massari, P.; Miccadei, E.; Onofri, A.; Orlando, C.; Paolelli, C.; Paron, P.; Perticaroli, P.; Piacentini, T.; Silvestri, C. [Milan Univ. Sacro Cuore, Milan (Italy). Servizio Centralizzato Radioisotopi; Belli, M.; Marchetti, A.; Petrocchi, A.; Rosamilia, S.; Serva, L.; Singh, G.; Tommasino, L. [Agenzia Nazionale per la Protezione dell' Ambiente, Rome (Italy); Minach, L.; Verdi, L. [Agenzia Provinciale per la Protezione dell' Ambiente, Bolzano (Italy); Bertolo, A.; Trotti, F. [Agenzia Regionale per la Protezione dell' Ambiente, Regione Veneto (Italy)

    2000-07-01

    The working program foresees the realization of an geographical information system for the check in field of the geological parameters and determination of uranium and radium contents in various type of rocks. It is here also pointed out a measuring method for radon concentration in soil. [Italian] In questo documento viene presentato il lavoro svolto fino ad oggi: dalla definizione dei parametri geologici ritenuti piu' significativi per la presenza di radon nel suolo e dalle misure in campo e in laboratorio, fino alla realizzazione del Sistema Informativo Territoriale (SIT) per la gestione dei suddetti parametri. Nel primo capitolo sono descritte le caratteristiche del radon, dal punto di vista chimico-fisico e geologico, per introdurre i criteri adottati nella scelta dei paramentri geologici e del loro peso per la valutazione del PERS (Potenziale di Esalazione Radon dal Suolo). Il secondo capitolo descrive il progetto in generale, mentre i successivi capitoli descrivono piu' in dettaglio la parte informatica e quella delle indagini sperimentali.

  2. On the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian Uranium Province

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.J.S.C., E-mail: apereira@dct.uc.p [IMAR, Department of Earth Sciences, University of Coimbra, 3000-272 Coimbra (Portugal); Godinho, M.M. [Department of Earth Sciences, University of Coimbra, 3000-272 Coimbra (Portugal); Neves, L.J.P.F. [IMAR, Department of Earth Sciences, University of Coimbra, 3000-272 Coimbra (Portugal)

    2010-10-15

    In order to evaluate the influence of faulting on the variability of geogenic radon at detailed scale (1:2000), data on gamma ray fluxes, U and Th concentrations in rocks, radon in soil-gas and radon in groundwater were collected in three target areas on the Oliveira do Hospital region (Central Portugal). This region stands on the Iberian Uranium Province, and is dominantly composed of Hercynian granites and metasedimentary rocks of pre-Ordovician age, crosscut by faults with dominant strike N35{sup o}E, N55{sup o}E and N75{sup o}E. Radiometric anomalies are frequent, associated with faults of the referred systems and metasedimentary enclaves; the analytical data confirms that these anomalies are produced by local high uranium contents in rocks and fault-filling materials (n = 34, range 13-724 ppm), while other radiogenic elements are relatively constant (e.g. Th 4-30 ppm). Radon concentration in soil can be extremely high, up to 12,850 kBq m{sup -3} (n = 215), with a large proportion of results above 100 kBq m{sup -3}. Unsurprisingly, groundwater also shows high radon concentrations, with observed values in the range 150-4850 Bq.L{sup -1} (n = 17). From the results it is concluded that metasedimentary enclaves, as well as faults, can accumulate uranium from circulating fluids, and as a consequence, strongly locally enhance geogenic radon potential. Due to this fact, for the purpose of land use planning in such uranium-enriched regions, very detailed geological mapping is needed to precisely recognize radon high risk areas. A correlation between radon concentration in soil or in groundwater and gamma ray fluxes was established pointing to the possible use of these fluxes as a first step in assessing geogenic radon potential, at least to geological setting similar to the study area.

  3. Soil gas radon measurements around Mt. Etna volcano in terms of evaluation of geodynamic events

    Science.gov (United States)

    Immè, Giuseppina; Catalano, Roberto; Giammanco, Salvatore; Ichedef, Mutlu; Neri, Marco; Morelli, Daniela; Murè, Filippo; Giudice, Nunzio

    2017-04-01

    Soil gas radon measurements were performed continuously in the east flank of Mt. Etna since July 2015 volcano in order to correlate soil gas radon anomalies with local geodynamic processes. Both volcanic activity and seismic monitoring have been carried out by means of seismic stations and video-cameras located around the volcano, while the evaluation of radon data has been done using basic statistics and signal processing methods. Preliminary analysis of data seems to indicate a clear correlation between soil gas radon variations and volcanic activity of Mt. Etna, being the November 2015 and May 2016 eruptions preceded by marked anomalous variations (mainly decreases) of radon levels in all monitoring stations. Further anomalies have been recognized since November 2016, which may suggest new arrival of fresh magma into the volcano, possibly leading to future eruptions.

  4. Basement radon entry and stack driven moisture infiltration reduced by active soil depressurization

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2015-01-01

    This case study presents measurements of radon and moisture infiltration from soil gases into the basement of an unoccupied research house in Madison, Wisconsin, over two full years. The basement floor and exterior walls were constructed with preservative-treated lumber and plywood. In addition to continuous radon monitoring, measurements included building air...

  5. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    Science.gov (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  6. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    Science.gov (United States)

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  7. Radon concentration assessment in water sources of public drinking of Covilhã's county, Portugal

    Directory of Open Access Journals (Sweden)

    M. Inácio

    2017-04-01

    Radon concentration measurements were performed on thirty three samples collected from water wells at different depths and types of aquifers, at Covilhã's County, Portugal with the radon gas analyser DURRIDGE RAD7. Twenty three, of the total of water samples collected, gave, values over 100 Bq/L, being that 1690 Bq/L was the highest measured value.

  8. Study on radon and radium concentrations in drinking water in west region of Iran

    CERN Document Server

    Forozani, Ghasem

    2011-01-01

    One of the most important characterizations of social health is existence the availability of safe drinking water. Since one of the sources of water contamination is nuclear contamination from radon gas, so in this research radon 222 concentration levels in water supplies in the Toyserkan (a region located in the west of Iran) is investigated. For measuring radon gas in water wells and springs Lucas chamber method is used. Review the results of these measurements that taken from 15th place show that, only five sites have radon concentrations above the limit dose. To reduce radon concentration, it is better to keep water in open pools in contact with air before the water is delivered to users.

  9. Radioactivity level and soil radon measurement of a volcanic area in Cameroon.

    Science.gov (United States)

    Ngachin, M; Garavaglia, M; Giovani, C; Kwato Njock, M G; Nourreddine, A

    2008-07-01

    The radioactivity level of soils in a volcanic area in Cameroon was determined and discussed. Thirty soils samples were collected from Buea and Limbé cities located in the south-western Cameroon. These two regions are known for theirs volcanic grounds due to the presence of Mount Cameroon Mountain. The activity concentrations of natural radionuclides as well as that of the fission product were evaluated by gamma-ray spectrometry using a hyper-purity germanium detector (HPGe). The ranges of concentrations in the surveyed soils were 11-17 Bq kg(-1), 22-36 Bq kg(-1) and 43-201 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The radioisotope (137)Cs was also found but in a very small amount. The outdoor absorbed dose rate 1m above ground with the corresponding annual effective dose rate, assuming a 20% occupancy factor was estimated. The radium equivalent and the external hazard index were also evaluated and results are compared with available data from other studies and with the world average value [United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly on the Effects of Atomic Radiation. United Nations, New York; UNSCEAR, 2000. Sources and Effects of Ionizing Radiations. Report to the General Assembly with Scientific Annexes. United Nations, New York]. A solid state nuclear track detector (SSNTD), LR-115 was used for soil radon measurements at a depth of 50 cm. The ranges of soil radon concentrations were 6.7-10.8 kBq m(-3) and 5.5-8.7 kBq m(-3) in Buea and Limbé, respectively. A positive correlation was found between concentrations of radium measured with gamma-spectrometry and the soil radon concentrations measured with the nitrate cellulose detectors. The results of this study provide the radioactivity level in soil of a volcanic area, which has been found to be within the safety limits. The south-western Cameroon can be considered as having

  10. The radon; Le radon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings.

  11. Air conditioning impact on the dynamics of radon and its daughters concentration.

    Science.gov (United States)

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Measurement of radon-222 concentration in environment sampled within short time using charcoal detector

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Tadashi; Sekiyama, Shigenobu (Chubu Electric Power Co. Inc., Nagoya (Japan)); Tokin, Mina; Nakayasu, Yumiko; Watanabe, Tamaki

    1994-08-01

    The concentration of [sup 222]Rn in air sampled within a very short period of time was measured using activated charcoal as the adsorber. The detector is the plastic canister containing mixture of the activated charcoal and the silica gel. The radon gas was adsorbed in the charcoal in the radon chamber at the temperature of 25degC. A little amount of liquid scintillation cocktail was added into the vial of liquid scintillation counter with the canister. The radon in the charcoal was extracted in the liquid scintillation cocktail. Alpha particles emitted from radon and its daughter nuclei in the cocktail were detected using the liquid scintillation counter. Present method has advantages of not only short sampling time of air but also adsorption of radon in charcoal under a constant temperature. The concentration of radon in air down to 2 Bq/m[sup 3] could be detected. A kinetic model for adsorption of radon in the charcoal is also presented. The ratio of radon concentration in the charcoal to that in air under the equilibrium state of adsorption was estimated to be from 6.1 to 6.8 m[sup 3]/kg at the temperature of 25degC. (author).

  13. Effects of bedrock type on the indoor radon concentrations at the office buildings in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Park Hee Chan

    2011-01-01

    Full Text Available This study measured the indoor radon concentrations at 23 administrative office buildings in Gyeongju, Korea, which consists of 23 administrative districts. Using the Korean geological information system, the type of bedrock under the administrative office buildings was identified and classified in 3 major types: granite, sedimentary rock, and sedimentary rock-based fault. The changes in the indoor concentrations at the 23 administrative office buildings were analyzed according to the type of bedrock. As a result, the radon concentration in the areas with the granite bedrock was generally higher than that in the region of two other types of bedrock. In addition, the radon concentration was evaluated according to surface area and construction timing of the building. The indoor radon concentration generally increased with decreasing surface area of the building, particularly in granite distributed areas. For a building aged more than 15 years, the radon concentration in the building in the granite area was much higher. For the building aged 1 or 2 years, the radon concentration was high regardless of the type of the bedrock due to radon emanation from the building material, such as concrete.

  14. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    Science.gov (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Distribution of radon concentrations in child-care facilities in South Korea.

    Science.gov (United States)

    Lee, Cheol-Min; Kwon, Myung-Hee; Kang, Dae-Ryong; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun

    2017-02-01

    This study was conducted to provide fundamental data on the distribution of radon concentrations in child day-care facilities in South Korea and to help establish radon mitigation strategies. For this study, 230 child-care centers were randomly chosen from all child-care centers nationwide, and alpha track detectors were used to examine cumulative radon exposure concentrations from January to May 2015. The mean radon concentration measured in Korean child-care centers is approximately 52 Bq m(-3), about one-third of the upper limit of 148 Bq m(-3), which is recommended by South Korea's Indoor Air Quality Control in Public Use Facilities, etc. Act and the U.S. Environmental Protection Agency (EPA). Furthermore, this concentration is about 50% lower than 102 Bq m(-3), which is the measured concentration of radon in houses nationwide from December 2013 to February 2014. Our results indicate that the amount of ventilation, as a major determining factor for indoor radon concentrations, is strongly correlated with the fluctuation of indoor radon concentrations in Korean child-care centers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. RADIUM AND RADON EXHALATION RATE IN SOIL SAMPLES OF HASSAN DISTRICT OF SOUTH KARNATAKA, INDIA.

    Science.gov (United States)

    Jagadeesha, B G; Narayana, Y

    2016-10-01

    The radon exhalation rate was measured in 32 soil samples collected from Hassan district of South Karnataka. Radon exhalation rate of soil samples was measured using can technique. The results show variation of radon exhalation rate with radium content of the soil samples. A strong correlation was observed between effective radium content and radon exhalation rate. In the present work, an attempt was made to assess the levels of radon in the environment of Hassan. Radon activities were found to vary from 2.25±0.55 to 270.85±19.16 Bq m(-3) and effective radium contents vary from 12.06±2.98 to 1449.56±102.58 mBq kg(-1) Surface exhalation rates of radon vary from 1.55±0.47 to 186.43±18.57 mBq m(-2) h(-1), and mass exhalation rates of radon vary from 0.312±0.07 to 37.46±2.65 mBq kg(-1) h(-1). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Design Criteria for Achieving Acceptable Indoor Radon Concentration

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating...

  18. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  19. MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Parovik R.I.

    2010-04-01

    Full Text Available We consider a mathematical model for unsteady transport of radon from the constant coefficients in the soil – atmosphere. An explicit analytical solution for this model and built at different times of his profiles.

  20. Signal processing of diurnal and semidiurnal variations in radon and atmospheric pressure: A new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity

    Science.gov (United States)

    Pinault, Jean-Louis; Baubron, Jean-Claude

    1997-08-01

    Signal processing of diurnal and semidiurnal variations of both atmospheric pressure and radon concentration in soil gases is shown to be useful for estimating soil gas transport parameters. The two daily-cycle peaks at 12- and 24-hour periods in the Power Spectral Density (PSD) of atmospheric pressure seem to be present everywhere on Earth's surface, and it is the effect of these regular pressure variations on the radon concentration in soil gases that makes it possible to determine three soil gas transport parameters which can be used to estimate real gas velocity; i.e. tortuosity τ, the ratio k/n between intrinsic permeability and effective porosity (that part of porosity involved in gas transport), and the pressure gradient α. The parameters k and n can be determined independently if the gas flux at the surface is measured at the same time. The method is robust, representative, and accurate: since it allows reliable estimation of transport parameters, it can provide relevant information about the depth of the radon source and the time it takes for information to reach the surface when radon bursts occur at depth. Radon is an appropriate soil gas tracer because it exists in all soils. Moreover, the measurement of radon concentration requires only passive sensors that do not hamper the rising gas column. Gas flux data obtained in Andalusia, Spain, in connection with mineral exploration are processed as examples. Determining the complete set of transport parameters helps in the interpretation of recorded radon outbursts, which are found to be correlated with regional seismic activity.

  1. Indoor radon and thoron concentrations in some towns of central and South Serbia.

    Science.gov (United States)

    Vuckovic, Biljana; Gulan, Ljiljana; Milenkovic, Biljana; Stajic, Jelena M; Milic, Gordana

    2016-12-01

    This study presents the results of indoor radon and thoron activity concentrations of some municipalities in central and south part of Serbia: Krusevac, Brus, Blace and Kursumlija. Measurements were carried out in 60 dwellings during the winter season. Passive discriminative radon-thoron detectors known as UFO detectors were used. The mean values of indoor radon and thoron concentrations were 82 Bq m(-3) and 42 Bq m(-3), respectively. Population-weighted mean values were 76 Bq m(-3) and 40 Bq m(-3), respectively. 26.7% of dwellings had radon concentration higher than 100 Bq m(-3) (one location had even more than 300 Bq m(-3)). There are no statistically significant correlations of indoor radon and thoron concentrations neither with the period of house construction, nor with the existence of a basement. The results of this study represent the first step of investigating radon and thoron levels in these parts of Serbia and therefore could be the basis for creating a radon map. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Long-term radon concentrations estimated from 210Po embedded in glass

    Science.gov (United States)

    Lively, R.S.; Steck, D.J.

    1993-01-01

    Measured surface-alpha activity on glass exposed in radon chambers and houses has a linear correlation to the integrated radon exposure. Experimental results in chambers and houses have been obtained on glass exposed to radon concentrations between 100 Bq m-3 and 9 MBq m-3 for periods of a few days to several years. Theoretical calculations support the experimental results through a model that predicts the fractions of airborne activity that deposit and become embedded or adsorbed. The combination of measured activity and calculated embedded fraction for a given deposition environment can be applied to most indoor areas and produces a better estimate for lifetime radon exposure than estimates based on short-term indoor radon measurements.

  3. Mapping of gas radon in soil of the Fresnillo City, Zacatecas; Mapeo de gas radon en suelo de la Ciudad de Fresnillo, Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Q, I. S.; Lopez del R, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-10-15

    With the purpose of locating areas with high rates of gas radon exhalation, it has begun to measure the radon flow in soil for residence use in the Fresnillo City, Zacatecas State, Mexico, applying the method of the open vial and liquid scintillation. The gas radon accumulation is made in a camera situated to a depth between 25 and 35 cm. In this work the partial results of the research in course are presented. The values obtained for the radon exhalation have varied of <2.25 up to 14.42 Bq/m{sup 2}{center_dot}h. (Author)

  4. Update of Ireland's national average indoor radon concentration - Application of a new survey protocol.

    Science.gov (United States)

    Dowdall, A; Murphy, P; Pollard, D; Fenton, D

    2017-04-01

    In 2002, a National Radon Survey (NRS) in Ireland established that the geographically weighted national average indoor radon concentration was 89 Bq m(-3). Since then a number of developments have taken place which are likely to have impacted on the national average radon level. Key among these was the introduction of amending Building Regulations in 1998 requiring radon preventive measures in new buildings in High Radon Areas (HRAs). In 2014, the Irish Government adopted the National Radon Control Strategy (NRCS) for Ireland. A knowledge gap identified in the NRCS was to update the national average for Ireland given the developments since 2002. The updated national average would also be used as a baseline metric to assess the effectiveness of the NRCS over time. A new national survey protocol was required that would measure radon in a sample of homes representative of radon risk and geographical location. The design of the survey protocol took into account that it is not feasible to repeat the 11,319 measurements carried out for the 2002 NRS due to time and resource constraints. However, the existence of that comprehensive survey allowed for a new protocol to be developed, involving measurements carried out in unbiased randomly selected volunteer homes. This paper sets out the development and application of that survey protocol. The results of the 2015 survey showed that the current national average indoor radon concentration for homes in Ireland is 77 Bq m(-3), a decrease from the 89 Bq m(-3) reported in the 2002 NRS. Analysis of the results by build date demonstrate that the introduction of the amending Building Regulations in 1998 have led to a reduction in the average indoor radon level in Ireland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The indoor concentration of radon daughters in three different areas of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fremlin, J.H.

    1983-05-01

    The concentration of radon daughters were measured in 86 rooms in three different areas in U.K.: Birmingham, Aberdeen and mainland Orkneys. The geometrical means of the concentrations in these areas were found to be 2.0, 6.7, and 2.5 mWL, respectively. In many cases, the ground beneath the houses was an important source of radon; where there was good sub-floor ventilation, the ground contribution was not important.

  6. The indoor concentration of radon daughters in three different areas of the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fremlin, J.H.

    1983-05-01

    The concentrations of radon daughters were measured in 86 rooms in three different areas in U.K.: Birmingham, Aberdeen and mainland Orkneys. The geometrical means of the concentrations in these areas were found to be 2.0, 6.7, and 2.5 mWL, respectively. In many cases, the ground beneath the houses was an important source of radon; where there was good sub-floor ventilation, the ground contribution was not important.

  7. The indoor concentration of radon daughters in three different areas of the U.K.

    Science.gov (United States)

    Abu-Jarad, F; Fremlin, J H

    1983-05-01

    The concentrations of radon daughters were measured in 86 rooms in three different areas in U.K.: Birmingham, Aberdeen and mainland Orkneys. The geometrical means of the concentrations in these areas were found to be 2.0, 6.7, and 2.5 mWL, respectively. In many cases, the ground beneath the houses was an important source of radon; where there was good sub-floor ventilation, the ground contribution was not important.

  8. A large-scale study of a measure against soil gas radon

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.

    1999-01-01

    This paper presents the results of a large-scale study (50 single family houses with a crawl space) on the effectiveness of using a foil on the crawl space floor in combination with a Sub-Foil Air Removal (SFAR) system as a measure for reducing indoor radon concentrations. Radon measurements in both

  9. Measuring radon in soil gas and groundwaters: a review

    Directory of Open Access Journals (Sweden)

    C. Papastefanou

    2007-06-01

    Full Text Available Instruments for the measurements of radon and its decay products in earthquake research are based mostly on the detection of alpha particles. The devices and methods used depend on whether the techniques measure radon or radon decay products, and the duration of the measurements, of which there are three types: i grab or instantaneous, ii integrating and iii continuous. Other criteria used in the design of these instruments are field measurements applicability, portability, convenience and reliability. With the recent increased demand for radon and radon decay products measurements, instruments development has focused on the design of appropriate devices for short-term measurements, as well as on more complex and sophisticated instruments for long-term measurements used in radon research for geophysical, geochemical and hydrological studies.

  10. A study on surveillance of environmental factors affecting the variation of indoor radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Ae; Kim, Ok Ja; Lee, Mi Kyeong; Cho, Eun Ok; Choi, Yun Sun; Choi, Jin Kyeong; Park, Seon Hye; Han, Hyeon Sun [Hankook Research, Seoul (Korea, Republic of)

    2000-03-15

    Before the main survey, a preliminary survey was carried out to decide the most suitable type of a radon detector the most appropriate places to install such a radon detector. To this end, three types of detectors were set up in 108 locations, approximately 3% of 3,000 to measure the radon levels, and 102 detectors(94%) were collected. As a result of the preliminary survey, Radtrack was chosen as a radon detector for the main survey, and bedrooms on the first floor of houses and the first floor of public buildings were decided to be the places for the first installment of detectors. It is most desirable to survey the radon concentrations in all houses nationwide. Considering the survey period and budgets, however, 3,000 spots were targeted for the main survey at the recommendation of the Korea Institute of Nuclear Safety in charge of this study. As it is important to maintain the same panels for a year to measure the radon concentrations at 3,000 locations, a total of 3,237 panels, 10% more than the target sample number, were surveyed considering the possible loss of panels during the survey period. The first radon detector was installed in each of 3,237 spots in December 1999, and collected three months later in March 2000, followed by the installment of the second detector.

  11. Study on variation of indoor radon concentration and its concentration in ground water in granite regions of Karnataka State, India

    Energy Technology Data Exchange (ETDEWEB)

    J, D.S.; DR, R. [Kuvempu University (India); Nagaraj, S. [Department of Physics, Govt. First grade college, Malleswaram, Bangalore (India); C, D.N. [Department of Physics, Vidya Vikas Institute of Engineering and Technology Mysore (India); E, S. [I D S G Govt. College Chickmagalore (India)

    2014-07-01

    Environmental pollution and management of water is a national and international priority today. Our environment is continuously irradiated by naturally occurring radioactive elements and their decay products found in the earth's crust. {sup 222}Rn, a noble radioactive gas produced by decay of {sup 226}Ra, is a member of the {sup 238}U series. Radon concentration measurements in water and atmosphere are necessary to understand the effect of {sup 222}Rn on human health. Epidemiological studies reveal that the exposure to radon and its progeny is the one of the main causes of lung cancer after smoking. The high concentration of radon in ground water poses a potential health risks in two ways by inhalation and ingestion. In the present study, the radon concentration in indoor air atmosphere and in drinking water have been determined by collecting various drinking water samples from bore well, tank, tap and river water from different locations in granite regions of Karnataka state and were estimated by using Solid State Nuclear Track Detector (SSNTD) technique and Emanometry technique. The radon concentration in indoor atmosphere is depends mainly on radon emanation from ground water used for domestic purposes, ventilation condition, type of building materials used for construction. The present study highlights the variation of indoor radon concentration with water used for different purposes and estimates the dose to the publics of this study area. The estimated total equivalent effective dose is higher than the global average. According to US EPA and WHO report majority of the drinking water samples and their radon concentration exceeds the reference levels. Document available in abstract form only. (authors)

  12. Radon and radium concentration in water from North-West of Romania and the estimated doses.

    Science.gov (United States)

    Moldovan, M; Benea, V; Niţă, D C; Papp, B; Burghele, B D; Bican-Brişan, N; Cosma, C

    2014-11-01

    In the present study, the measurements of radon were carried out using the LUK-VR system based on radon gas measurements with Lucas cells. The radium concentration in water was determined, with the same device, immediately after was established the radon equilibrium with radium. The results presented here are from a survey carried out in the N-W region of Transylvania (Romania) in which were investigated the radon concentrations in natural (spring, well and surface) and drinking (tap) waters. The results showed radon concentrations within the range of 0.4-187.3 Bq l(-1) with an average value of 15.9 Bq l(-1) whereas radium concentration varied between 0.05 and 0.825 Bq l(-1) with an average value of 0.087 Bq l(-1) for all types of water covered within this survey. The corresponding annual effective ingestion dose due to radon and radium from water was determined from drinking water used by the population inhabiting the area. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The use of mechanical ventilation with heat recovery for controlling radon and radondaughter concentrations in houses

    Science.gov (United States)

    Nazaroff, W. W.; Boegel, M. L.; Hollowell, C. D.; Roseme, G. D.

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for 2 weeks under varying ventilation conditions [0.07-0.8 air changes per hour (ach)] and radondaughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher, radon-daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in many houses designed or retrofitted to achieve low infiltration.

  14. Soil radon measurements as potential tracer of seismic and volcanic activity at Etna

    Science.gov (United States)

    Neri, Marco; Giammanco, Salvatore; Galli, Gianfranco; Ferrera, Elisabetta

    2014-05-01

    Radon is a radioactive noble gas present in all rocks of the Earth. It's used by the scientific community as a tracer of natural phenomena related to outgassing from the soil along faults, fractures and crustal discontinuity. Recently, radon has also been used on active volcanoes such as Etna, both as a precursor of volcanic phenomena as well as in the study of the dynamics of faults. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) performs discrete and continuous measurements of radon from soil at Etna since 2002. First studies concerned measurements of radon and thoron emissions from soil carried out on the E and SW flanks of Etna, in zones characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds, producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. These studies confirmed that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover. INGV permanent radon monitoring network was installed in July 2005. First results were obtained during the July 2006 eruption. The radon signal recorded at Torre del Filosofo (TdF, ~2950 m asl) was compared with volcanic tremor and thermal radiance data. The onset of explosive activity and a lava fountaining episode were preceded by some hours with increases in radon activity and more gradual increases in volcanic tremor. After 2006, Etna produced dozens of paroxysmal episodes from a new vent opened on the eastern flank of the Southeast Crater (summit area), that have built up a new, huge pyroclastic cone. In many cases we observed increase in radon activity some hours before the eruptive events. These observations suggest that radon emissions from the TdF zone are sensitive to the local geodynamic pressure induced by magma dynamics in the conduit systems. Other promising results were

  15. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    Science.gov (United States)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  16. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions.

    Science.gov (United States)

    Vizzini, Fabio; Brai, Maria

    2012-11-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily - Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M(max) = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon fluctuations

  17. THE PROBLEM OF THE STUDYING OF RADON INDOOR AIR CONCENTRATION IN THE JEWISH AUTONOMOUS REGION

    Directory of Open Access Journals (Sweden)

    O. V. Surits

    2012-01-01

    Full Text Available An article presents the results of radon indoor air concentration estimations for dwellings and public buildings of the Jewish Autonomous region in 2000–2011. More than 15 000 measurements were carried out in all areas of the region during the entire observation period. Areas with an enhanced radon content in indoor air were revealed. The maximum values are registered in Obluchensky area, in separate buildings reaching 2 000 Bq/m3.

  18. Inter-comparison of different direct and indirect methods to determine radon flux from soil

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, C., E-mail: claudia.grossi@upc.ed [Institute of Energy (INTE), Technical University of Catalonia (UPC) (Spain); Vargas, A.; Camacho, A. [Institute of Energy (INTE), Technical University of Catalonia (UPC) (Spain); Lopez-Coto, I.; Bolivar, J.P. [University of Huelva (Spain); Xia Yu; Conen, F. [University of Basel (Switzerland)

    2011-01-15

    The physical and chemical characteristics of radon gas make it a good tracer for use in the application of atmospheric transport models. For this purpose the radon source needs to be known on a global scale and this is difficult to achieve by only direct experimental methods. However, indirect methods can provide radon flux maps on larger scales, but their reliability has to be carefully checked. It is the aim of this work to compare radon flux values obtained by direct and indirect methods in a measurement campaign performed in the summer of 2008. Different systems to directly measure radon flux from the soil surface and to measure the related parameters terrestrial {gamma} dose and {sup 226}Ra activity in soil, for indirect estimation of radon flux, were tested. Four eastern Spanish sites with different geological and soil characteristics were selected: Teruel, Los Pedrones, Quintanar de la Orden and Madrid. The study shows the usefulness of both direct and indirect methods for obtaining radon flux data. Direct radon flux measurements by continuous and integrated monitors showed a coefficient of variation between 10% and 23%. At the same time, indirect methods based on correlations between {sup 222}Rn and terrestrial {gamma} dose rate, or {sup 226}Ra activity in soil, provided results similar to the direct measurements, when these proxies were directly measured at the site. Larger discrepancies were found when proxy values were extracted from existing data bases. The participating members involved in the campaign study were the Institute of Energy Technology (INTE) of the Technical University of Catalonia (UPC), Huelva University (UHU), and Basel University (BASEL).

  19. Constraining annual and seasonal radon-222 flux density from the Southern Ocean using radon-222 concentrations in the boundary layer at Cape Grim

    Directory of Open Access Journals (Sweden)

    W. Zahorowski

    2013-02-01

    Full Text Available Radon concentrations measured between 2001 and 2008 in marine air at Cape Grim, a baseline site in north-western Tasmania, are used to constrain the radon flux density from the Southern Ocean. A method is described for selecting hourly radon concentrations that are least perturbed by land emissions and dilution by the free troposphere. The distribution of subsequent radon flux density estimates is representative of a large area of the Southern Ocean, an important fetch region for Southern Hemisphere climate and air pollution studies. The annual mean flux density (0.27 mBq m−2 s−1 compares well with the mean of the limited number of spot measurements previously conducted in the Southern Ocean (0.24 mBq m−2 s−1, and to some spot measurements made in other oceanic regions. However, a number of spot measurements in other oceanic regions, as well as most oceanic radon flux density values assumed for modelling studies and intercomparisons, are considerably lower than the mean reported here. The reported radon flux varies with seasons and, in summer, with latitude. It also shows a quadratic dependence on wind speed and significant wave height, as postulated and measured by others, which seems to support our assumption that the selected least perturbed radon concentrations were in equilibrium with the oceanic radon source. By comparing the least perturbed radon observations in 2002–2003 with corresponding ‘TransCom’ model intercomparison results, the best agreement is found when assuming a normally distributed radon flux density with σ=0.075 mBq m−2 s−1.

  20. Radon monitoring and hazard prediction in Ireland

    Science.gov (United States)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  1. Radon concentration: A tool for assessing the fracture network at ...

    African Journals Online (AJOL)

    drinie

    2003-01-01

    Jan 1, 2003 ... geothermal systems. In: Ivanovich M and Harmon RS(eds.) Uranium. Series Disequilibrium: Applications to Earth, Marine and Environ- mental Sciences. Clarendon Press, Oxford. 631-668. LEVIN M (2000 ) The radon emanation technique as a tool in ground water exploration. Borehole Water J. 46 22-26.

  2. Sensitivity to thoron of an SSNTD-based passive radon measuring device: Experimental evaluation and implications for radon concentration measurements and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, F., E-mail: francesco.bochicchio@iss.i [Istituto Superiore di Sanita (Italian National Institute of Health) (ISS), Viale Regina Elena, 299, I-00161, Roma (Italy); Ampollini, M. [Istituto Superiore di Sanita (Italian National Institute of Health) (ISS), Viale Regina Elena, 299, I-00161, Roma (Italy); Tommasino, L. [THL, Via Cassia 1727, I-00123, Roma (Italy); Sorimachi, A.; Tokonami, S. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2009-10-15

    Passive devices based on SSNTDs (Solid State Nuclear Track Detectors) are widely used to measure radon concentration in indoor air. These devices often include a filter or other types of barrier to prevent the sampling of decay products. However, such filters and barriers have different degrees of effectiveness in preventing thoron from entering the sensitive volume of the passive device, with the result that in some cases the measured track density is affected by thoron concentration, especially if devices are placed very close to walls exhalating thoron. This can produce a bias in epidemiological studies aimed to evaluate the risk from radon. A radon measuring device with LR 115 detectors enclosed in a heat-sealed 35 mum low density (0.92 g/cm{sup 3}) polyethylene bag has been largely used in Italy and other countries. Moreover, it was used in an epidemiological study carried out in an Italian region where a large fraction of dwellings are built with materials containing high thorium concentration and exhalating a remarkable quantity of thoron. The sensitivity to thoron of this device was experimentally evaluated by exposing groups of 10 devices each in the NIRS (Japan) radon/thoron chamber to three different thoron exposures, i.e. 500, 1000 and 2000 kBq/m{sup 3} h. The sensitivity to thoron of these devices resulted to be about 0.4% of their sensitivity to radon. In conclusion, radon concentrations measured with the evaluated passive device are not significantly affected by the presence of thoron. Therefore both the distribution of radon concentration obtained in the national and regional surveys in Italy and the risk of lung cancer from radon exposure in dwellings, as estimated in an epidemiological study carried out in an Italian region with high radon and thoron, have not been biased by the presence of thoron.

  3. Final report of evaluation of dose and measurement of radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A mean annual exposure to radon daughters in indoor air was estimated on the basis of measurement of radon concentration in indoor air in Japan from fiscal 1992 to 1996. Doses were estimated by UNSCEAR method. The representative values in this report show the mean values in whole Japan. Each dose in the local area was different reflecting the different concentration of radon daughters. However, the same parameters were used in each area. When mean annual dose of radon daughters was estimated, we used 15.5 Bq m{sup -3} mean annual exposure to radon daughters in indoor air, 5 Bq m{sup -3} that in outdoor air, 0.4 the equilibrium factor indoor, 0.6 the equilibrium factor outdoor and 0.9 of P. The model of UNSCEAR based on these above values gave 0.46 mSv y{sup -1} mean annual dose of radon daughters which were consisted of from 0.38 mSv y{sup -1} in Kanto district to 0.52 mSv y{sup -1} Kyushu, Okinawa district. (S.Y.)

  4. [Experimental study on the influence of natural and artificial ventilation on indoor radon concentration].

    Science.gov (United States)

    Remetti, R; Gigante, G E

    2010-01-01

    The study presents the results of a campaign of measurements on the daily radon concentration using a Genitron Alpha Guard spectrometer. All the measurements have been intended to highlight the radon concentration variability during the 24 hours of the day and trying to find correlations with other ambient parameters such as temperature and pressure or local conditions such as the presence or not of a forced ventilation system. The main part of the measurements have been carried in the area of the Nuclear Measurement Laboratory of the Department of Basic and Applied Sciences for Engineering of "Sapienza" University of Rome. Results show a rapid rise of radon concentration in the night, when the artificial ventilation system was off and with door and windows closed. In the morning, after the opening of door and windows, the concentration falls down abruptly. With artificial ventilation system in function concentration never reaches significant values.

  5. Indoor radon concentration data: Its geographic and geologic distribution, an example from the Capital District, NY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.J. [Skidmore College, Saratoga Springs, NY (United States); Overeynder, H.M. [C.E.S., Gabon (Central African Republic); Thomas, B.R. [CMT Independent Laboratories, Clifton Park, NY (United States)

    1995-09-01

    Most studies of the geographic distribution of indoor radon levels are plotted by county or ZIP code. This method is used for the radon potential maps produced by the U.S. Environmental Protection Agency (EPA) and the New York State Department of Health (NYSDOH). The basis for the mapping is the mean or median indoor radon count for all the data provided by NYSDOH within each geographic area. While testing the indoor radon analyses provided to the authors by CMT Independent Laboratories, we discovered data that deviated markedly from the EPA and NYSDOH means for the Capital District of New York (Albany and surrounding counties). Their screening indoor radon average concentrations in pCi/L, indicate low potential for Schenectady (3.0), Saratoga (3.2), and Albany (3.7) counties; and moderate potential for Rensselaer (6.4) and Columbia (7.0) counties. Our database of over 3,000 analyses contains over 800 records of indoor radon counts above 4 pCi/L (14-47% of each county`s analyses), many high enough to be rated as a serious health hazard. In order to obtain greater precision of information, the authors plotted their indoor radon data by street address using MapInfo, a geographic Information System (GIS), and StreetInfo, MapInfo`s TIGER address database. We compared the geographic distribution of our data to both the Bedrock Geology and Surficial Geology Maps of New York State. The results show a striking relationship of radon concentrations to bedrock, faults and permeability of surficial material. Data being compiled and mapped by street address by the NYSDOH in Erie County in western New York, confirm our results.

  6. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Colmenero Sujo, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Instituto Tecnologico de Chihuahua II, Ave. de las Industrias 11101, Chihuahua, Chih. (Mexico); Montero Cabrera, M.E. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)]. E-mail: elena.montero@cimav.edu.mx; Cano Jimenez, A. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Renteria Villalobos, M. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Delgado Mendoza, C.J. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Jurado Tenorio, L.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Davila Rangel, I. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 20, Zacatecas, Zac. (Mexico); Herrera Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)

    2005-07-01

    This paper reports {sup 222}Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited {sup 222}Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of {sup 222}Rn found may be entirely attributed to the nature of aquifer rocks.

  7. Ecological association between indoor radon concentration and childhood leukaemia incidence in France, 1990-1998.

    Science.gov (United States)

    Evrard, A S; Hémon, D; Billon, S; Laurier, D; Jougla, E; Tirmarche, M; Clavel, J

    2005-04-01

    The objective of this study was to evaluate the ecological association between indoor radon concentration and acute leukaemia incidence among children under 15 years of age in the 348 geographical units (zones d'emploi, ZE) of France between 1990 and 1998. During that period, 4015 cases were registered by the French National Registry of Childhood Leukaemia and Lymphoma. Exposure assessment was based on a campaign of 13 240 measurements covering the whole country. The arithmetic mean radon concentration was 85 Bq/m (range, 15-387 Bq/m) and the geometric mean, 59 Bq/m (range: 13-228 Bq/m). A positive ecological association, on the borderline of statistical significance (P=0.053), was observed between indoor radon concentration and childhood leukaemia incidence. The association was highly significant for acute myeloid leukaemia (AML) (P=0.004) but not for acute lymphocytic leukaemia (ALL) (P=0.49). The standardized incidence ratio (SIR) increased by 7, 3 and 24% for all acute leukaemia, ALL and AML, respectively, when radon concentration increased by 100 Bq/m. In conclusion, the present ecological study supports the hypothesis of a moderate association between indoor radon concentration and childhood acute myeloid leukaemia. It is consistent with most previous ecological studies. Since the association is moderate, this result does not appear inconsistent with the five published case-control studies, most of which found no significant association.

  8. Preliminary results regarding the first map of residential radon in some regions in Romania.

    Science.gov (United States)

    Cosma, C; Cucoş Dinu, A; Dicu, T

    2013-07-01

    Radon represents the most important contribution of population exposure to natural ionising radiation. This article presents the first indoor radon map in some regions of Romania based on 883 surveyed buildings in the Ştei-BăiŢa radon-prone region and 864 in other regions of Romania. Indoor radon measurements were performed in the last 10 y by using CR-39 nuclear track detectors exposed for 3-12 months on ground floor levels of dwellings. Excluding the Ştei-BăiŢa radon-prone region, an average indoor radon concentration of 126 Bq m(-3) was calculated for Romanian houses. In the Ştei-BăiŢa radon-prone area, the average indoor concentration was 292 Bq m(-3). About 21 % of the investigated dwellings in the Ştei-BăiŢa radon-prone region exceed the threshold of 400 Bq m(-3), while 5 % of the dwellings in other areas of Romania exceed the same threshold. As expected, indoor radon concentration is not uniformly distributed throughout Romania. The map shows a high variability among surveyed regions, mainly due to the differences in geology. The radon emanation rate is substantially influenced by the soil characteristics, such as the soil permeability and soil gas radon concentration. Since higher permeability enables the increased migration of soil gas and radon from the soil into the building, elevated levels of indoor radon can be expected in more permeable soil environments.

  9. Measurement of low radon gas concentrations with good time resolution; Zeitaufgeloeste Messung niedriger Radongaskonzentrationen

    Energy Technology Data Exchange (ETDEWEB)

    Ruckerbauer, F.; Aehlig, K.; Winkler, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Strahlenschutz

    1998-04-23

    It is discussed which requirements have to be fulfilled by continuously operating instruments for the determination of low radon gas concentrations (ca. 2-200 Bq/m{sup 3}) with good time resolution. Several commercially available instruments are examined with respect to this application. For the determination of radon these instruments utilise different detectors: Pulse ionisation chambers, semiconductor detectors and scintillations cells. Comparing the radon concentrations obtained by parallel measurements with the different instruments in typical offices and laboratories, remarkable differences are observed in some cases. However, taking into account the detector background and, after recalibration of some instruments, also low radon concentrations can be determined reproducibly and with adequate accuracy. Due to specific construction features of the instruments, some limits are set with respect to time resolution and minimum detectable activity concentration. (orig.) [Deutsch] Es werden Anforderungen an kontinuierlich messende Geraete zur zeitaufgeloesten Bestimmung niedriger Radongaskonzentrationen (ca. 2 bis 200 Bq/m{sup 3}) diskutiert und es wird untersucht, wie diese Anforderungen von verschiedenen kommerziellen Geraeten erfuellt werden. In den hier eingesetzten Geraeten werden verschiedene Detektortypen zur Messung des Radons verwendet: Impulsionisationskammern, Halbleiterdetektoren und Scientillationszaehler (Lucaszellen). Vergleichsmessungen in normal genutzten Buero- und Laborraeumen zeigen zum Teil deutliche Abweichungen zwischen den Radongaskonzentrationen, die mit den verschiedenen Messgeraeten ermittelt wurden. Nach Beruecksichtigung des Eigennulleffekts der Geraete und nach einer Rekalibrierung von einigen Geraeten, koennen jedoch auch niedrige Radongaskonzentrationen reproduzierbar und mit ausreichender Genauigkeit bestimmt werden. In Bezug auf erreichbare Zeitaufloesung und minimal nachweisbare Aktivitaetskonzentration sind den verschiedenen

  10. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France)

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Zakaria; Guillevic, Jerome [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-DGE/SEDRAN/BRN, 31 avenue de la Division Leclerc, B.P. 17, 92262, Fontenay-aux-Roses, Cedex (France)

    2014-07-01

    Uncertainties on the mathematical modelling of radon transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon flux to the atmosphere at the landfill cover, which must be less than the threshold value 0.74 Bq.m{sup -2}.s{sup -1}recommended by the federal standard (EPA 40 CFR 192). These uncertainties are usually attributed to the numerical errors from the numerical schemes dealing with soil layering and to inadequate representations of the modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we compare one-dimensional simulation results from two numerical models of two-phase (water-air) porous media flow and radon transport to the data of radon activity exhalation flux and depth-volumetric concentration measured during a field campaign from June to November of 1999 in a two-layered soil of 1.3 m thickness (i.e., cover material/UMT: 0.5/0.8 m) of an experimental pond located at the Lavaugrasse UMT-landfill site (France). The first numerical modelling approach is a coupled finite volume compositional (i.e., water, radon, air) transport model (TOUGH2/EOS7Rn code, Saadi et al., 2013), while the second one is a decoupled finite difference one-component (i.e., radon) transport model (TRACI code, Ferry et al., 2001). Transient simulations during six month of hourly rainfall and atmospheric pressure variations showed that calculations from the one-component transport model usually overestimate both measured radon exhalation flux and depth-concentration. However, considering the effective unsaturated pore air-component diffusivity to be different from that of the radon-component in the compositional transport model allowed to significantly enhancing the modelling of these radon experimental data. The time-averaged radon flux calculated by EOS7Rn (3.42 Bq

  11. Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia - application of geostatistical methods.

    Science.gov (United States)

    Bossew, P; Žunić, Z S; Stojanovska, Z; Tollefsen, T; Carpentieri, C; Veselinović, N; Komatina, S; Vaupotič, J; Simović, R D; Antignani, S; Bochicchio, F

    2014-01-01

    Between 2008 and 2011 a survey of radon ((222)Rn) was performed in schools of several districts of Southern Serbia. Some results have been published previously (Žunić et al., 2010; Carpentieri et al., 2011; Žunić et al., 2013). This article concentrates on the geographical distribution of the measured Rn concentrations. Applying geostatistical methods we generate "school radon maps" of expected concentrations and of estimated probabilities that a concentration threshold is exceeded. The resulting maps show a clearly structured spatial pattern which appears related to the geological background. In particular in areas with vulcanite and granitoid rocks, elevated radon (Rn) concentrations can be expected. The "school radon map" can therefore be considered as proxy to a map of the geogenic radon potential, and allows identification of radon-prone areas, i.e. areas in which higher Rn radon concentrations can be expected for natural reasons. It must be stressed that the "radon hazard", or potential risk, estimated this way, has to be distinguished from the actual radon risk, which is a function of exposure. This in turn may require (depending on the target variable which is supposed to measure risk) considering demographic and sociological reality, i.e. population density, distribution of building styles and living habits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Shallow circulation groundwater - the main type of water containing hazardous radon concentration

    Science.gov (United States)

    Przylibski, Tadeusz

    2010-05-01

    Radon dissolves in water very good. As an effect this gas is present in surface and groundwater, which are used in households. The range of Rn-222 concentration in water is very wide, it changes from below 1 Bq/dm3 up to several hundreds of thousands Bq/dm3. Inhabitants may be exposed to an important additional dose from ionizing radiation if they use in household radon water (concentration of Rn-222 between 100 and 999.9(9) Bq/dm3), high-radon water (1000 - 9999.9(9) Bq/dm3) or extreme-radon water (10 000 Bq/dm3 and more). Value of the dose depends on the amount of radon released from water during cooking, washing, taking bath or shower, and it not depends on the amount of radon dissolved in drinked water or water used for making a meal. Radon released from water to the air in a house may be inhaled by inhabitants and increase the risk of lung cancer. Knowing the risk, international organizations, i.e. WHO, publish the recommendations concerning admissible levels of radon concentration in water in the intake (before supplying households). In a few countries these recommendations became a law (i.e. USA, England, Finland, Sweden, Russia, Czech Rep., Slowak Rep.). Law regulations force to measuring concentrations of radon dissolved in water in all the intakes of water supplying hauseholds. Knowing radon behaviour in the environment it is possible to select certain types of water, which may contain the highest radon concentration. As a result one may select these intakes of water, which should be particularly controled with regard to possible hazardous radon cencentration. Radon concentration in surface water depends on partial pressure of this gas over the water table - in the atmosphere. Partial pressure of radon in the atmosphere is very low, so the radon concentration in surface water is usually low and as a rule it is not higher than several, rarely several tens of Bq/dm3. In the spring, where the groundwater flows out on the surface, and groundwater become a

  13. Modeling and measuring the indoor radon concentrations in high-rise buildings in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, C.K.; Yeung, H.S

    1999-06-01

    A newly constructed, uninhabited high-rise building has been measured for its indoor and outdoor radon concentrations at similar locations on each of the 18 floor levels. Grab sampling technique has been used so that many locations can be measured within short period of time to minimize the variations due to temperature, pressure and humidity. Air exchange rates inside rooms were obtained by tracer gas method. Standard concrete samples were manufactured in laboratory to simulate the concrete used in the construction of the high-rise building. The concrete samples were measured for their radon exhalation rates by calculating the initial growth rates of radon inside an airtight container. The air exchange rates have been found to increase with floor levels, whilst the indoor and outdoor radon concentrations decreased with floor levels. Using a model utilizing a simple mass balance equation, the indoor radon concentration inside a room on each of the 18 floor levels has been calculated and the results agreed very well with measurements.

  14. Method to calibrate an ionization chamber for measuring indoor radon concentrations with standard gamma-ray sources

    Science.gov (United States)

    Matsumoto, Yuzuru; Tokumori, Kenji; Iwata, Toru; Sakae, Takeji; Ishibashi, Kenji; Katase, Akira

    1989-06-01

    Most instruments for measuring radon concentrations in the air should be calibrated using air with known radon concentrations, obtained from a solution of radium. However, safe handling of such a solution of alpha-active elements can be troublesome. Standard gamma-ray sources of low activity are handled more safely and typically used to obtain the absolute detection efficiency of a Ge detector with high accuracy. A new method has been developed to calibrate a radon detector with such sources. A radon exhalation rate for a substance containing a small amount of radium is measured with the radon detector to be calibrated. After this, the vessel containing the radium is sealed so that the radon does not escape from it. The buildup of the activity of 214Bi in it is obtained from gamma-ray measurements and gives the radon exhalation rate on the basis of the activity of the standard sources. From the comparison between the two values of the exhalation rate, the radon detector is calibrated. A plane multiwire-electrode ionization chamber is used as a radon detector, and its detection efficiency is calculated from its geometrical form. The radon exhalation rate computed from the calculated efficiency agrees with that determined from the activity of the standard gamma-ray sources within their specified 6% error.

  15. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    caused by the homogenous radon concentrations measured in the Laxemar area. The radon concentrations in near surface water measured in Forsmark showed large variability with both low and high radon concentrations. This large variability in radon concentration could not be explained by the flow pattern of the groundwater since no clear correlation between radon concentration and recharge/discharge classification was found. The radon concentration was also measured at different depths in the soil profile at three locations in the Forsmark area. The results showed large differences with increasing radon concentration with increasing depth. This gradient of radon concentration can be explained largely by the radon emanation potential of the local soil type at different depths. High radon concentrations were found in wells with higher radon emanation potential like till and bedrock. These observations showed the importance of the radon emanation potential of the local soil for the radon concentration in groundwater. The main purpose of this study has been to evaluate the use of radon as a tracer for groundwater flow patterns. The method is based on the ingrowth of radon from its progenitor radium according to the law of radioactive decay. According to this law the radon concentration in groundwater will reach equilibrium conditions after approximately 30 days in contact with the surrounding soil. The equilibrium radon concentration of the near surface groundwater was measured at several location in the Forsmark area and a range of the steady state radon concentration was calculated. The measured steady state radon concentration was then used to evaluate the radon concentrations measured in near surface groundwater in the area. A recharge/discharge classification of the wells was done based on the range of steady state radon concentration and the measured radon concentrations in groundwater. All wells with radon concentration below the steady state radon concentration were

  16. Measurements of indoor radon concentrations in the Santiago de Compostela area.

    Science.gov (United States)

    Cortina, D; Durán, I; Llerena, J J

    2008-10-01

    Galician soils are among those with the highest 222Rn exhalation rates in Spain. A year-round study of the indoor 222Rn concentration in buildings in the Santiago de Compostela area (Galicia, Northwest of Spain) was performed. The study is based on systematic samplings with active charcoal canisters, following a modified EPA 520/5-87-005 protocol. These measurements were complemented by others obtained using etched track dosimeters. Each data set follows a log-normal distribution, with a geometric mean of (253+/-3) Bq m(-3) for charcoal canisters and (285+/-2.5) Bq m(-3) for etched track detectors. After correcting for the different measuring conditions, the mean value of both methods differed by only 2%. A careful analysis of the seasonal dependence of our measurements did not reveal any significant seasonal variations in the 222Rn concentration. Parallel to these measurements, different meteorological parameters were recorded, which revealed a direct correlation between the indoor radon concentration and the outdoor temperature derivative with respect to time.

  17. Measurements of indoor radon concentrations in the Santiago de Compostela area

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, D.; Duran, I. [Departamento de Fisica de Particulas, Grupo Experimental de Nucleos y Particulas (GENP), Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Llerena, J.J. [Departamento de Fisica de Particulas, Grupo Experimental de Nucleos y Particulas (GENP), Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain)], E-mail: jjllerena@usc.es

    2008-10-15

    Galician soils are among those with the highest {sup 222}Rn exhalation rates in Spain. A year-round study of the indoor {sup 222}Rn concentration in buildings in the Santiago de Compostela area (Galicia, Northwest of Spain) was performed. The study is based on systematic samplings with active charcoal canisters, following a modified EPA 520/5-87-005 protocol. These measurements were complemented by others obtained using etched track dosimeters. Each data set follows a log-normal distribution, with a geometric mean of (253 {+-} 3) Bq m{sup -3} for charcoal canisters and (285 {+-} 2.5) Bq m{sup -3} for etched track detectors. After correcting for the different measuring conditions, the mean value of both methods differed by only 2%. A careful analysis of the seasonal dependence of our measurements did not reveal any significant seasonal variations in the {sup 222}Rn concentration. Parallel to these measurements, different meteorological parameters were recorded, which revealed a direct correlation between the indoor radon concentration and the outdoor temperature derivative with respect to time.

  18. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia

    Science.gov (United States)

    Abuelhia, E.

    2017-11-01

    The aim of this study is to determine the indoor radon concentration and to evaluate the annual effective dose received by the inhabitants in Dammam, Al-Khobar, and compare it with new premises built at university of dammam. The research has been carried out by using active detection method; Electronic Radon Detector (RAD-7) a solid state α-detector with its special accessories. The indoor radon concentration measured varies from 10.2 Bqm-3 to 25.8 Bqm-3 with an average value of 18.8 Bqm-3 and 19.7 Bqm-3 to 23.5 Bqm-3 with an average value of 21.7 Bqm-3, in Dammam and Al-khobar dwellings, respectively. In university of dammam the radon concentration varies from 7.4 Bqm-3 to 15.8 Bqm-3 with an average value of 9.02 Bqm-3. The values of annual effective doses were found to be 0.47mSv/y, 0.55mSv/y, and 0.23mSv/y, in Dammam, Al-khobar and university new premises, respectively. The average radon concentration in the old dwellings was two times compared to that in the new premises and it was 25.4 Bqm-3 lower than the world average value of 40 Bqm-3 reported by the UNSCEAR. The annual effective doses in the old dwellings was found to be (0.55mSv/y) two times the doses received at the new premises, and below the world wide average of 1.15mSv/y reported by ICRP (2010). The indoor radon concentration in the study region is safe as far as health hazard is concerned.

  19. Prospecting fractured rock aquifers using radon soil gases method; Analise de radonio no solo para prospeccao de agua em aquiferos fraturados

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Paulo Henrique Prado; Roisenberg, Ari, E-mail: paulohenriquestefano@hotmail.com, E-mail: ari.roisenberg@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Gallas, Jose Domingos Faraco, E-mail: jgallas@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Rocha, Zildete, E-mail: zildete@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Groundwater prospecting in fractured aquifers depends on the detection of tectonic lineaments, which may be difficult in urban areas. A survey was carried out using radon soil gases concentrations in four localities in the region of Granite Santana and Viamao Granite, Porto Alegre, Rio Grande do Sul, in order to test the method for water prospecting in fractured aquifers. The radon data have been compared with electrical resistivity survey executed using dipole-dipole arrangement. At four studied areas, an interesting correlation was noted between the two methods. At regions of low resistivity, positive radon anomalies were found in fracture zones, reaching values up to 7 times the background of the region, starting from a concentration value of 2500 Bq/m{sup 3} in a non-fractured zones to 22187 Bq /m{sup 3} in the fractured zones. (author)

  20. Radon in Soil Gas Above Bedrock Fracture Sets at the Shepley’s Hill Superfund Site

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Giles; T.L. McLing; M.V. Carpenter; C.J. Smith; W. Brandon

    2012-12-01

    The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrock outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or “detection” time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepley’s Hill site.

  1. Nanomaterial Containing Wall Paints Can Increase Radon Concentration in Houses Located in Radon Prone Areas Haghani M.2 , Mortazavi S. M. J.1, 2*, Faghihi R.3, Mehdizadeh S.3, Moradgholi J.4, Darvish L.5, Fathi-Pour E.5, Ansari L.5, Ghanbar-pour M. R.3 1The Center for Radiological Research, Shiraz University of Medical Sciences, Shiraz, Iran 2Department of Med

    Directory of Open Access Journals (Sweden)

    Haghani M.

    2013-09-01

    Full Text Available Background: Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m–3 have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. Objective: This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Methods: Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonite nanoclay. Results: Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint was 515.3 ± 17.8 Bq/m3 while the mean radon concentration in the 2nd house model (nano-painted house model was 570.8 ± 18.5 Bq/m3. The difference between these means was statistically signifcant (P<0.001. Conclusion: To the best of our knowledge, this study is the frst investigation on the effect of nano-material containing wall paints on indoor radon concentrations. It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes.

  2. High concentrations of radon. Specifically affected buildings; Hohe Radonkonzentrationen. Besonders betroffene Gebaeudetypen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Winfried [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    2015-07-01

    The paper presents a concept for the prognosis of exceeding probabilities of thresholds of radon in dwellings in different building types. A transfer model for the interface subsoil - building was used as a basis. The partial datasets obtained by stratification of five relevant building characteristics can be de-scribed by a 3-parametric-lognormal distribution good in most times. The available data permit statistical predictions to 60 combinations of building characteristics for the region ''east'' and 85 combinations of building characteristics for the region ''West''. The uncertainties for the probability of exceeding a threshold were estimated from the data with bootstrapping. The importance of different building characteristics for the presence of enhanced radon concentrations can be predicted from the results of this estimation. Therefore, targeting of affected buildings is possible on this basis. Regional prognoses of exceeding probabilities for building types with high presence can also be created by the use of transfer factors. A Strategy to reduce the health risk from radon in the long run might be derived, where alongside the delineation of radon prone areas, special attention should be paid to a set out building characteristics, also outside the radon prone areas.

  3. MEASUREMENTS ON, AND MODELING OF DIFFUSIVE AND ADVECTIVE RADON TRANSPORT IN SOIL

    NARCIS (Netherlands)

    VANDERGRAAF, ER; WITTEMAN, GAA; VANDERSPOEL, WH; ANDERSEN, CE; DEMEIJER, RJ

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted into

  4. Diffusion of radon through concrete block walls: A significant source of indoor radon

    Science.gov (United States)

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  5. Seasonal variation of indoor air radon concentration in schools in Kosovo

    Energy Technology Data Exchange (ETDEWEB)

    Bahtijari, M. [Faculty of Education, University of Prishtina, Kosovo (Country Unknown); Stegnar, P. [Randon Center, Jozef Stefan Institute, P.O. Box 3000, 1001 Ljublajna (Slovenia); Shemsidini, Z. [Faculty of Education, University of Prishtina, Kosovo (Country Unknown); Ajazaj, H. [Faculty of Education, University of Prishtina, Kosovo (Country Unknown); Halimi, Y. [Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Vaupotic, J. [Randon Center, Jozef Stefan Institute, P.O. Box 3000, 1001 Ljublajna (Slovenia); Kobal, I. [Randon Center, Jozef Stefan Institute, P.O. Box 3000, 1001 Ljublajna (Slovenia)]. E-mail: ivan.kobal@ijs.si

    2007-02-15

    Indoor air radon (Rn222) concentrations were measured in March, May, August and December in 15 rooms of five elementary and in six rooms of one high school in Sharr, Kosovo, using alpha scintillation cells. Only in one room did the value exceed 200Bqm{sup -3}. Values decreased from December to August, and from basement to first floor.

  6. Radon sources emanation in granitic soil and saprolite

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Flexser, S. [Lawrence Berkeley Lab., CA (United States); Brimhall, G.; Lewis, C. [California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics

    1993-08-01

    Petrological and geochemical examinations of soil, saprolite, and quartz diorite protolith have been made at the Small Structures field site, Ben Lomond Mountain, California. Variations in Ra in soil and saprolite are mainly controlled by heterogeneities inherited from the parent quartz diorite. Fission-track radiography shows that U is concentrated in the primary accessory minerals, zircon and sphene. However, most importantly for Rn emanation, U is also concentrated in secondary sites: weathered sphene, biotite and plagioclase, grain coatings, and Fe-rich fracture linings which also contain a rare-earth phosphate mineral. This occurrence of U along permeable fracture zones suggests that soil-gas Rn from depth (> 2 m) is a significant contributor to Rn availability near the surface. Zones highest in emanation occur where fine pedogenic phases: gibbsite, amorphous silica, and iron oxyhydroxide are most abundant. Mass balance analyses of this soil-saprolite profile are in progress and preliminary indicate that a high-emanation zone corresponds to the upper portion of a zone of accumulation of U and Ba.

  7. Effective dose and concentration of radon and thoron gases at hospitals of Kermanshah University of Medical Sciences (2012

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2014-09-01

    Full Text Available Background: Considering the health care importance of indoor radon, especially in the case of lung cancer, this study was aimed to evaluate indoor radon and thoron levels in three hospitals of Kermanshah city with high recourse. Methods: Measurements of indoor radon and thoron levels in Imam Reza, Imam Khomaini and Taleghani hospital buildings in Kermanshah city in different parts, including ICU, inpatient wards, operating rooms and offices were done using RTM 1688-2 radon meter. Measurements were performed in three months of fall season in 2012 (once per month, and totally 102 measurements were done. The annual effective dose was assessed using the equation for annual effective dose calculation introduced by United Nations Scientific Committee on the Effects of Atomic Radiation. Results: Average indoor radon and thoron levels were 11.44±4.9 Bq/m3 and 4±3.9 Bq/m3, respectively. Maximum radon concentration was measured in Imam Raza hospital (13.7±4.3 Bq/m3 and minimum radon concentration was observed in Imam khomaini hospital (6.8±4.4 Bq/m3. The average annual effective dose due to radon and thoron was estimated to be 0.13 mSv/y. Conclusion: Based on the results, radon and thoron levels and their average effective dose in all hospital buildings were below the proposed limits. The concentrations of radon and thoron were influenced by natural and artificial ventilation of the rooms and building materials used for walls and floors. Radon and thoron concentration level was reported high in ICU.

  8. Lung Cancer Mortality and Radon Concentration in a Chronically Exposed Neighborhood in Chihuahua, Mexico: A Geospatial Analysis

    Science.gov (United States)

    Hinojosa de la Garza, Octavio R.; Sanín, Luz H.; Montero Cabrera, María Elena; Serrano Ramirez, Korina Ivette; Martínez Meyer, Enrique; Reyes Cortés, Manuel

    2014-01-01

    This study correlated lung cancer (LC) mortality with statistical data obtained from government public databases. In order to asses a relationship between LC deaths and radon accumulation in dwellings, indoor radon concentrations were measured with passive detectors randomly distributed in Chihuahua City. Kriging (K) and Inverse-Distance Weighting (IDW) spatial interpolations were carried out. Deaths were georeferenced and Moran's I correlation coefficients were calculated. The mean values (over n = 171) of the interpolation of radon concentrations of deceased's dwellings were 247.8 and 217.1 Bq/m3, for K and IDW, respectively. Through the Moran's I values obtained, correspondingly equal to 0.56 and 0.61, it was evident that LC mortality was directly associated with locations with high levels of radon, considering a stable population for more than 25 years, suggesting spatial clustering of LC deaths due to indoor radon concentrations. PMID:25165752

  9. Annual average and seasonal variations of residential radon concentration for all the Italian Regions

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, F. [Istituto Superiore di Sanita, Viale Regina Elena 299, I-00161 Roma (Italy)]. E-mail: francesco.bochicchio@iss.it; Campos-Venuti, G. [Istituto Superiore di Sanita, Viale Regina Elena 299, I-00161 Roma (Italy); Piermattei, S. [APAT, Via V. Brancati 48, I-00144 Roma (Italy); Nuccetelli, C. [Istituto Superiore di Sanita, Viale Regina Elena 299, I-00161 Roma (Italy); Risica, S. [Istituto Superiore di Sanita, Viale Regina Elena 299, I-00161 Roma (Italy); Tommasino, L. [APAT, Via V. Brancati 48, I-00144 Roma (Italy); Torri, G. [APAT, Via V. Brancati 48, I-00144 Roma (Italy); Magnoni, M. [ARPA Piemonte, Ivrea (Italy); Agnesod, G. [ARPA Valle d' Aosta, Aosta (Italy); Sgorbati, G. [ARPA Lombardia, Milan (Italy); Bonomi, M. [APPA Trentino, Trento (Italy); Minach, L. [APPA Alto Adige, Bolzano (Italy); Trotti, F. [ARPAV, Verona (Italy); Malisan, M.R. [Az. Osp. S.Maria della Misericordia, Udine (Italy); Maggiolo, S. [ARPAL, Genova (Italy); Gaidolfi, L. [ARPA Emilia-Romagna, Piacenza (Italy); Giannardi, C. [ARPAT, Firenze (Italy); Rongoni, A. [Univ. Perugia, Perugia (Italy); Lombardi, M. [ARPA Marche, Ancona (Italy); Cherubini, G. [ARPA Lazio, Tarquinia (Italy); D' Ostilio, S. [ARPA Abruzzo, Pescara (Italy); Cristofaro, C. [ARPA Molise, Campobasso (Italy); Pugliese, M. [University Napoli, Naples (Italy); Martucci, V. [ARPA Puglia, Bari (Italy); Crispino, A. [ARPA Basilicata, Potenza (Italy); Cuzzocrea, P. [ARPA Calabria, Reggio Calabria (Italy); Sansone Santamaria, A. [ARPA Sicilia, Palermo (Italy); Cappai, M. [CRR ASL-8, Cagliari (Italy)

    2005-11-15

    A representative National Survey to evaluate the exposure to natural sources of ionizing radiation in dwellings was conducted in all the 21 Italian Regions from 1989 to 1998, and the complete results are reported in this paper. Radon concentration was measured for two consecutive 6-month periods (generally covering the spring-summer and autumn-winter seasons) in one room, usually the main bedroom, of each surveyed dwelling. Validated radon concentration measurements were obtained for a total of 5631 dwellings, distributed in 232 towns (all the 50 towns with more than 100,000 inhabitants and 182 randomly sampled smaller towns). The national average, weighted by the population of each Region, of the annual radon concentration is 70Bqm{sup -3}, the geometric mean is 52Bqm{sup -3}, and the geometric standard deviation is 2.1. The fraction of dwellings with a radon concentration exceeding the reference levels of 150, 200, 400, and 600Bqm{sup -3} are 7.7%, 4.1%, 0.9%, and 0.2%, respectively. Regional averages ranged from about 25Bqm{sup -3} to about 120Bqm{sup -3}. The uncertainty of regional values can be relevant in the case of small Regions, where few small towns were sampled, however such uncertainties do not affect national values significantly. A log-normal model underestimates the fraction of dwellings with high radon concentration and needs to be adjusted to obtain a better fitting. Two complete 6-month measurements were obtained for 4742 dwellings. The regional values of the geometric mean and of the geometric standard deviation of the winter/summer ratio ranged from 0.81 to 2.58 and from 1.32 to 1.88, respectively. The corresponding national values were 1.23 and 1.71, respectively. These results and their implications are discussed in the paper.

  10. Study of different factors which can explain the radon exhalation potential of soils; Recherche de differents parametres caracterisant le potentiel d`exhalation en radon des sols

    Energy Technology Data Exchange (ETDEWEB)

    Demongeot, St

    1997-10-27

    Radon is a natural radioactive gas belonging to the Uranium-238 chain, which is present in the earth crust and produced by the disintegration of radium-226. It is considered as the major source of radiological exposure of man to natural radiation because it can accumulate in indoor atmosphere. So, this health risk must be take into account.The aim of this study is to find some tools in order to identify high radon level area. The first part of this study has consisted in measurement of radon emission from different not sufficient for the estimation of the radon exhalation potential in a given area. In the second part of this work, we have studied the variations of in situ radon concentration as a function of different geological and pedologic parameters of the site. With the results obtained, we have determined the data which have to be considered, and the methodology to be applied for the determination of the radon exhalation of a given area. Furthermore, by the mean of numerical simulations (TRACH Model), it was possible to know the scale of radon flux variation in a given point versus the hydric state of the ground and thus the permeability: these parameters are not easy to measure because of their variabilities with time. The methodology ESPERAS (EStimation du Potential d`Exhalation en Radon des Sols) developed during this work was applied first, at a local scale and then to greater area. The values estimated by this way are in a good agreement with the results of measurements. So, we can determine the areas which are affected by high radon levels. (author)

  11. Concentration of heavy metal As, Pb, Mn, Ni, Sn, Zn, Cr, Fe and radon gas in bottom sediment from abandoned tin mines in the Phuket Province

    Directory of Open Access Journals (Sweden)

    Suteerasak, T.

    2006-05-01

    Full Text Available This research is aimed at analyzing the heavy metals: As, Pb, Mn, Ni, Sn, Zn, Cr, Fe, and radon gas emission in bottom sediment from six abandoned tin mines in Phuket Province. Fe, Mn, and Sn were found in higher concentrations (but non-polluting than Cr and Ni. As, Pb, and Zn were polluting at lower levels. The concentration ranges for As, Pb, and Zn were 75.3-169, 98.6-547.5, and 120.4-323.3 mg/kg respectively. The activity of radon gas emission from bottom sediment from an abandoned tin mine in Amphur Muang was in the range of 162-212 Bq/kg., in the Amphur Katoo mine the range was 122-266 Bq/kg. and in the Amphur Talang mine the range was 180-263 Bq/kg. All these sites have higher concentrations of radon gas emissions than other similar sites. The heavy metals and radon gas come from geochemical materials such as soil and granite rock, found around the abandoned tin mines.

  12. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data.

    Science.gov (United States)

    Appleton, J D; Miles, J C H; Young, M

    2011-03-15

    Publicly available information about radon potential in Northern Ireland is currently based on indoor radon results averaged over 1-km grid squares, an approach that does not take into account the geological origin of the radon. This study describes a spatially more accurate estimate of the radon potential of Northern Ireland using an integrated radon potential mapping method based on indoor radon measurements and geology that was originally developed for mapping radon potential in England and Wales. A refinement of this method was also investigated using linear regression analysis of a selection of relevant airborne and soil geochemical parameters from the Tellus Project. The most significant independent variables were found to be eU, a parameter derived from airborne gamma spectrometry measurements of radon decay products in the top layer of soil and exposed bedrock, and the permeability of the ground. The radon potential map generated from the Tellus data agrees in many respects with the map based on indoor radon data and geology but there are several areas where radon potential predicted from the airborne radiometric and permeability data is substantially lower. This under-prediction could be caused by the radon concentration being lower in the top 30 cm of the soil than at greater depth, because of the loss of radon from the surface rocks and soils to air. Copyright © 2011. Published by Elsevier B.V.

  13. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M., E-mail: meigikos@if.uff.br [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); Juri Ayub, J. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); GEA-Instituto de Matematica Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas, CCT-San Luis, Ej. de los Andes 950, D5700HHW San Luis (Argentina); Cid, A.S.; Cardoso, R.; Lacerda, T. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil)

    2011-11-15

    Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of {sup 232}Th, {sup 226}Ra, and {sup 40}K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg{sup -1}, 4.9-160 Bq kg{sup -1} and 190-2029 Bq kg{sup -1}, respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m x 4.0 m area, 2.8 m height) was found to be 120 nGy h{sup -1}, which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h{sup -1} due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of {sup 226}Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h{sup -1}) will be lower than 100 Bq m{sup -3}, value recommended as a reference level by the World Health Organization. - Highlights: > We used indirect methods to predict external gamma dose rate and radon concentration. > The gamma-ray dose rate was estimated by a Monte Carlo simulation method. > The results were validated by in-situ measurements with a NaI spectrometer. > Radon concentrations in the room were estimated by a simple mass balance equation. > Radon concentration in the room ventilated adequately will be lower than 100 Bq m{sup -3}.

  14. Shallow circulation groundwater – the main type of water containing hazardous radon concentration

    Directory of Open Access Journals (Sweden)

    T. A. Przylibski

    2011-06-01

    Full Text Available The main factors affecting the value of 222Rn activity concentration in groundwater are the emanation coefficient of reservoir rocks (Kem, the content of parent 226Ra in these rocks (q, changes in the volume and flow velocity as well as the mixing of various groundwater components in the circulation system. The highest values of 222Rn activity concentration are recorded in groundwaters flowing towards an intake through strongly cracked reservoir rocks undergoing weathering processes. Because of these facts, waters with hazardous radon concentration levels, i.e. containing more than 100 Bq dm−3 222Rn, could be characterised in the way that follows. They are classified as radon waters, high-radon waters and extreme-radon waters. They belong to shallow circulation systems (at less than a few dozen metres below ground level and are contemporary infiltration waters, i.e. their underground flow time ranges from several fortnights to a few decades. Because of this, these are usually poorly mineralised waters (often below 0.2–0.5 g dm−3. Their resources are renewable, but also vulnerable to contamination.

    Waters of this type are usually drawn from private intakes, supplying water to one or at most a few households. Due to an increased risk of developing lung tumours, radon should be removed from such waters when still in the intake. To achieve this aim, appropriate legislation should be introduced in many countries.

  15. Residential radon in Finland: sources, variation, modelling and dose comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-09-01

    The study deals with sources of indoor radon in Finland, seasonal variations in radon concentration, the effect of house construction and ventilation and also with the radiation dose from indoor radon and terrestrial gamma radiation. The results are based on radon measurements in approximately 4000 dwellings and on air exchange measurements in 250 dwellings as well as on model calculations. The results confirm that convective soil air flow is by far the most important source of indoor radon in Finnish low-rise residential housing. (97 refs., 61 figs., 30 tabs.).

  16. Radon daughter concentrations in and around dwellings in the northern part of the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Wolfs, F.; Hofstede, H.; Meijer, R.J. de; Put, L.W. (Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.)

    1984-01-01

    The concentration of radon daughters in and around 80 dwellings located in the northern part of the Netherlands has been determined using a one-filter method. Median values of 2.0 and 0.4 mWL were measured for the indoor and outdoor concentrations, respectively. The average outdoor concentration was about an order of magnitude higher for wind directions between SE-SW than for SW-NW. On average, dwellings with double pane windows and/or concrete floors were found to have significantly higher radon concentrations than those with single pane windows and/or wooden floors. For the living room of a particular dwelling, 18 measurements were carried out. The data for this dwelling indicate a linear relation between the concentration indoors and outdoors with a slope of 3.8 +- 2.0. This unexpected behaviour is thought to be related to ventilation via the crawl space. Measurements of ventilation patterns and measurements of radon concentrations in the living room and the crawl space are consistent with this picture.

  17. An Alpha spectrometer for measuring radon daughter individual activity concentration; Spettrometro Alfa per la misura delle concentrazioni individuali in attivita' della progenie del radon

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Formignani, M. [ENEA, Div. Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche E. Clementel, Bologna (Italy); Mariotti, F. [Bologna Univ., Bologna (Italy). Dipt. di Fisica

    2001-07-01

    In the frame of the program of the Institute for Radiation Protection of ENEA, related to the evaluation of dose from radon and thoron progeny, an alpha spectrometer for the continuous air monitoring (CAM type) of radon and thoron has been realized. The constructive characteristics of the device are here presented together with energy and efficiency calibration. The device allows, by means of a screen type diffusion battery and a filter, to determinate the single radioactivity of each radionuclide of the progeny selecting them in relation to their diffusive behaviour (dichotomous particle size selection). The three-count filter method has been employed to measure the concentrations of {sup 218}Po, {sup 214}Pb and {sup 214}Bi in air. Radon and thoron effective doses using a dosimetric, instead of an epidemiologic approach, will be then evaluated. [Italian] Presso l'Istituto per la Radioprotezione, nell'ambito del programma di valutazione di dose da radon e' stato progettato e realizzato uno spettrometro alfa per il monitoraggio continuo in aria (CAM) della progenie del radon e del toron. Le caratteristiche costruttive dello strumento permettono, tramite l'utilizzo di batterie a diffusione a reti, di determinare l'attivita' individuale della progenie per diverse dimensioni granulometriche in particolare per la frazione attaccata e non al particolato amosferico con un taglio granulometrico di qualche nanometro. E' stato inoltre applicato un metodo spettrometrico a tre conteggi per il calcolo delle concentrazioni individuali della progenie del radon, {sup 218}Po, {sup 214}Pb and {sup 214}Bi, effettuando un conteggio alfa di {sup 218}Po e due conteggi alfa di {sup 214}Po. Tale informazione consentira' una valutazione della dose di radon utilizzando il modello dosimetrico in alternativa a quello epidemiologico.

  18. Variation of indoor radon concentrations in two-storey houses in Nowshera District, Pakistan.

    Science.gov (United States)

    Khan, F; Wazir, Z; Tufail, M; Nusrat, M

    2015-01-01

    A study was performed for the measurement of indoor radon concentration in two-storey houses in district Nowshera in the Khyber Pakhtunkhwa province of Pakistan. This area was not previously surveyed for such kind of study. The aim was to find some correlation of radon levels in first and second storey houses in the area. The measurements were carried out for 1 y from 1 December 2012 to 30 November 2013 using CR-39 detector. The area was divided into four parts, namely, Jhangera, Nowshera city, Akora Khattak and Pabbi. In the first storey houses, radon concentration ranged from 29 to 103 Bq m(-3) with the mean value of 64 ± 12 Bq m(-3) and that in the second storey houses ranged from 25 to 92 Bq m(-3) with the mean value of 56 ± 11 Bq m(-3). Relatively higher values of indoor radon levels in the first stories than the second stories were observed in all four parts of the study area. The effective doses received by the residents of the area were estimated for each part. The mean annual effective doses received by the inhabitants of the area from indoor radon ranged from 0.68 to 2.88 mSv with the mean value of 1.68 ± 0.32 mSv. The doses received by the people of the area were within the ICRP-65 recommended range (3-10 mSv). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The latest trend of the research on radon

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Hiroshi [Science Univ. of Tokyo, Noda, Chiba (Japan). Faculty of Science and Technology

    1996-12-01

    In June, 1995, the international conference of sixth Natural Radiation Environment was held in Montreal. More than 80% of more than 200 published researches were concerned with radon and thoron. The participants came from 32 countries. The classification of the research on radon and the number of the publication are shown. The contents of the researches in respective items of measuring method, concentration level and dose evaluation, indoor model and indoor and outdoor radon balance, the countermeasures for reducing indoor radon, radon potential, dose evaluation model, the particle size distribution of aerosol including the particle size distribution of free daughter nuclides and radon in the atmosphere are described. The research on the radon in water is excluded. The most remarkable trend is the theme of radon potential. The trend of connecting the research on radon in soil and the research on dissipation rate to radon potential and the forecast of indoor and outdoor radon concentration seems to become stronger. As to the research on concentration level, the detection of hot spots and the supplementary measurement for clarifying cause are carried out in the advanced countries concerning radon based on the results of survey in whole country. The researches in schools are conspicuous. (K.I.)

  20. Determining Radium-226 concentration from Radon-222 emanation in building materials: a theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Rafael C.; Perna, Allan F.N.; Narloch, Danielle C.; Del Claro, Flavia; Correa, Janine N.; Paschuk, Sergei A., E-mail: baarreth@gmail.com, E-mail: allan_perna@hotmail.com, E-mail: daninarloch@hotmail.com, E-mail: aviadelclaro@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: spaschuk@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica e Departamento Academico de Construcao Civil

    2017-07-01

    It was developed an improved theoretical model capable to estimate the radium concentration in building materials solely measuring the radon-222 concentration in a con ned atmosphere. This non-destructive technique is not limited by the size of the samples, and it intrinsically includes back diffusion. The resulting equation provides the exact solution for the concentration of radon-222 as a function of time and distance in one dimension. The effective concentration of radium-226 is a fit parameter of this equation. In order to reduce its complexity, this equation was simplified considering two cases: low diffusion in the building material compared to the air, and a building material initially saturated with radon-222. These simplified versions of the exact one dimension solution were used to t experimental data. Radon-222 concentration was continuously measured for twelve days with an AlphaGUARD{sup TM} detector, located at the Laboratory of Applied Nuclear Physics at Universidade Tecnologica Federal do Parana (UTFPR). This model was applied to two different materials: cement mortar and concrete, which results were respectively (15:7 ±8:3) Bq=kg and (10:5±2:4) Bq=kg for the radium-226 effective concentration. This estimation was confronted with the direct measurements of radium in the same materials (same sources) using gamma-ray spectrometry, fulfilled at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), which results were respectively (13:81±0:23) Bq=kg and (12:61±0:22) Bq=kg. (author)

  1. The concentrations and exposure doses of radon and thoron in residences of the rural areas of Kosovo and Metohija

    Energy Technology Data Exchange (ETDEWEB)

    Milic, Gordana; Jakupi, Bajram [Faculty of Natural Sciences Kosovska Mitrovica, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Tokonami, Shinji [National Institute for Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Trajkovic, Radmila [Faculty of Natural Sciences Kosovska Mitrovica, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Ishikawa, Tetsuo [National Institute for Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Celikovic, Igor, E-mail: icelikovic@vinca.r [Institute of Nuclear Sciences ' Vinca' , ECELab, P.O. Box 522, 1001 Belgrade (Serbia); Ujic, Predrag; Cuknic, Olivera [Institute of Nuclear Sciences ' Vinca' , ECELab, P.O. Box 522, 1001 Belgrade (Serbia); Yarmoshenko, Ilia [Institute of Industrial Ecology of Ural Branch of Academy of Sciences of Russia, S. Kovalevskoy Str., 20A, 620219 Ekaterinburg (Russian Federation); Kosanovic, Katica; Adrovic, Feriz [Faculty of Natural Sciences Kosovska Mitrovica, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Sahoo, Sarat K. [National Institute for Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Veselinovic, Nenad; Zunic, Zora S. [Institute of Nuclear Sciences ' Vinca' , ECELab, P.O. Box 522, 1001 Belgrade (Serbia)

    2010-01-15

    This paper deals with the results of indoor radon and thoron concentrations and exposure doses obtained for 63 dwellings out of the 14 rural communities of Central Kosovo, North Kosovo and Prizren region. These research activities are part of overall radiological research that has systematically been carried out since 1986, particularly in Kosovo and Metohija regions. Passive radon/thoron discriminative detectors, exposed for three months, were used. The arithmetic mean concentrations of indoor radon and thoron are C{sub Rn} = 429 Bq m{sup -3}C{sub Tn} = 85 Bq m{sup -3}.

  2. Dose evaluation and measurement of radon concentration in some drinking water sources of the Ramsar region in Iran.

    Science.gov (United States)

    Mowlavi, Ali Asghar; Shahbahrami, Amrolah; Binesh, Alireza

    2009-09-01

    Ramsar is one of the highest background radiation areas in the world, whose natural radioactivity is due to (238)U natural series and its decay products, especially (226)Ra and (220)Rn, which have been brought to the surface by water of hot springs. In this study, radon concentration in 14 drinking water sources of the Ramsar region has been measured with the PRASSI system. The results show all of the water supplies have radon concentration greater than 10kBq/m(3) as normal level. Moreover, the estimated mean annual radiation dose to public due to waterborne radon has also been evaluated.

  3. Variation in long-term radon and daughters concentration with position inside a room

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. (Birmingham Univ. (UK). Dept. of Physics)

    1982-01-01

    Bare plastic detectors (LR-115 and CR-39) were used in similar conditions to record ..cap alpha..-particles from radon and its daughters in more than one hundred houses in the U.K. It was found that LR-115 is more convenient than CR-39 because of its energy discriminating properties. Variation in the long-term radon and daughter concentration ir air was observed in houses by placing bare nuclear track detectors of both types at different positions in the same room. Variation in the concentration of tracer gases at different positions in a room has also been observed through ventilation measurements using gas chromatographic techniques. The significance of these variations for exposure assessment is discussed.

  4. Quality assurance program for LR 115 based radon concentration measurements in a case-control study: description and results

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, F. E-mail: francesco.bochicchio@iss.it; Forastiere, F.; Farchi, S.; Marocco, D.; Quarto, M.; Sera, F

    2003-06-01

    A case-control study on lung cancer and radon exposure in dwellings has been carried out in Lazio, a high indoor radon region of Central Italy. A total of about 400 cases and 400 controls were recruited and radon concentration was measured in a total of about 1850 dwellings. In each dwelling, radon concentration measurement devices were placed in both the main bedroom and living room for two consecutive six-month periods. Each radon device, enclosed in a sealed polyethylene bag, contains two LR 115 detectors, each being covered by a thin absorber to reduce the alpha-energy within the detector sensitive range. A quality assurance program, described in this paper, was applied in order to reduce radon concentration measurement uncertainty, which have a significant impact on the results of an epidemiological study. The reported internal quality control and intercomparison results are compared with the results of other studies, and show that the radon measurement precision and accuracy obtained in this study can be considered quite good.

  5. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement; Medida de los descendientes del radon en aire por Espectrometria Alfa

    Energy Technology Data Exchange (ETDEWEB)

    Acena, M. L.; Crespo, M. T.

    1989-07-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs.

  6. Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary.

    Science.gov (United States)

    Mentes, Gyula; Eper-Pápai, Ildikó

    2015-11-01

    Radon concentration variation has been monitored since 2009 in the artificial gallery of the Sopronbánfalva Geodynamic Observatory, Hungary. In the observatory, the radon concentration is extremely high, 100-600 kBq m(-3) in summer and some kBq m(-3) in winter. The relationships between radon concentration, temperature and barometric pressure were separately investigated in the summer and winter months by Fast Fourier Transform, Principal Component Analysis, Multivariable Regression and Partial Least Square analyses in different frequency bands. It was revealed that the long-period radon concentration variation is mainly governed by the temperature (20 kBq m(-1) °C(-1)) both in summer and winter. The regression coefficients between long-period radon concentration and barometric pressure are -1.5 kBq m(-3) hPa(-1) in the summer and 5 kBq m(-3) hPa(-1) in the winter months. In the 0.072-0.48 cpd (cycles per day) frequency band the effect of the temperature is about -1 kBq m(-3) °C(-1) and that of the barometric pressure is -5 kBq m(-3) hPa(-1) in summer and -0.5 kBq m(-3) hPa(-1) in winter. In the high frequency range (>0.48 cpd) all regression coefficients are one order of magnitude smaller than in the range of 0.072-0.48 cpd. Fast Fourier Transform of the radon concentration, temperature and barometric pressure time series revealed S1, K1, P1, S2, K2, M2 tidal constituents in the data and weak O1 components in the radon concentration and barometric pressure series. A detailed tidal analysis, however, showed that the radon tidal components are not directly driven by the gravitational force but rather by solar radiation and barometric tide. Principal Component Analysis of the raw data was performed to investigate the yearly, summer and winter variability of the radon concentration, temperature and barometric pressure. In the summer and winter periods the variability does not change. The higher variability of the radon concentration compared to the variability of

  7. Measurements of radon concentrations in a sample representative of housing in Franche-Comte; Mesure de concentrations en radon dans un echantillon representatif de logements de Franche-Comte

    Energy Technology Data Exchange (ETDEWEB)

    Aury, K.; Clinard, F.; Tillier, C. [Cire Centre-Est, 21 - Dijon (France); Catelinois, O.; Pirard, P. [Institut de Veille Sanitaire, Saint-Maurice (France); Aury, K. [Centre d' Epidemiologie de Population, Registre Dijonnais des AVC, 21 - Dijon (France); Nourry, L. [Direction Regionale des Affaires Sanitaires et Sociales de Franche-Comte, 25 - Besancon (France); Hochart, A. [Observatoire Regional de la Sante de Franche-Comte, 25 - Besancon (France)

    2008-09-15

    Three departments on four ones in Franche-Comte are classified at risk for radon: measurements are so compulsory in establishments receiving public. For the residential sector, no obligation of measurement are compulsory when french people spend 70% of their time in it. The data concerning homes are fragmentary and deserve to be completed. This campaign of measurements has confirmed the existence of radon in relatively high concentrations in Franche-Comte, including the sedimentary areas, justifying the necessity to realize a precise evaluation of the sanitary impact. The model will allow to study different strategies to reduce radon in houses. (N.C.)

  8. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovska, Zdenka; Janevik, Emilija; Taleski, Vaso [Goce Delcev University, Faculty of Medical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Boev, Blazo [Goce Delcev University, Faculty of Natural and Technical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Zunic, Zora S. [University of Belgrade, Institute of Nuclear Sciences ' ' Vinca' ' , Belgrade (Serbia); Ivanova, Kremena; Tsenova, Martina [National Center of Radiobiology and Radiation Protection, Sofia (Bulgaria); Ristova, Mimoza [University in Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematic, Institute of Physics, Skopje (Macedonia, The Former Yugoslav Republic of); Ajka, Sorsa [Croatian Geological Survey, Zagreb (Croatia); Bossew, Peter [German Federal Office for Radiation Protection, Berlin (Germany)

    2016-05-15

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m{sup 3} for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. (orig.)

  9. Reduction of radon progeny concentration in ordinary room due to a mixing fan

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Sextro, R.G.

    1988-01-01

    Three experiments were carried out at the Indoor Air Quality Research House (IAQRH) at Lawrence Berkeley Laboratory, University of California, to study the effect on the radon progeny of operating a mixing fan. At the beginning of every experiment, about 15 kBq.m/sup -3/ of radon was injected into a 36 m/sup 3/ ordinary room. Measurements were conducted with three different aerosol particle concentrations of about 10/sup 2/, 10/sup 4/ and 10/sup 5/ per cm/sup 3/. Real-time measurements of radon and progeny concentrations, particles and environmental parameters, were made throughout the experiments. Measurements of plated out activity on the surfaces of internal walls of the room and fan blades were measured directly by filter papers and CR-39 nuclear track detectors placed on the surfaces. The ratio of plated out activity to the total progeny activity in the room varied from 17% to 84%, in inverse relation to the particle concentrations. More than 99% of the plateout activity was found on walls and less than 1% on the fan blades. (author).

  10. Measurements of the radon-222 concentration in residences of Lima - Peru; Mediciones de la concentracion de radon 222 en residencias de Lima - Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, P.; Lopez, M. E.; Perez, B., E-mail: ppereyr@pucp.edu.pe [Pontificia Universidad Catolica del Peru, Seccion Fisica, Av. Universitaria 1801, Lima (Peru)

    2014-08-15

    The measurement of the Radon-222 levels was realized in the first semester of 2013 in residences corresponding to 16 districts of the metropolitan area of Lima, including to the zones North, Center and South of the city, during one period of 3 to 6 months in continuous form, with measurement periods of 1 to 2 months. The houses where the measurements were made were selected considering diverse variables as antiquity, construction materials, coatings, soil type, occupational use of the monitored rooms, etc. The measurements were realized in basements, first and second floor of the residences. For the Radon-222 measurements passive detectors of cellulose nitrate (Lr-115) were used. The procedure of data collection, dosimeters reading and the measurement results are shown in this work; this monitoring is the first one that is carried out in this city. The results are only indicators of the present radon rate, by the detectors type not is possible to discriminate the presence of the Radon-222 descendants. (Author)

  11. Does balneotherapy with low radon concentration in water influence the endocrine system? A controlled non-randomized pilot study.

    Science.gov (United States)

    Nagy, Katalin; Berhés, István; Kovács, Tibor; Kávási, Norbert; Somlai, János; Bender, Tamás

    2009-08-01

    Radon bath is a well-established modality of balneotherapy for the management of degenerative musculoskeletal disorders. The present study was conducted to ascertain whether baths of relatively low (80 Bq/l) radon concentration have any influence on the functioning of the endocrine system. In the study, a non-randomized pilot study, 27 patients with degenerative musculoskeletal disorders received 30-min radon baths (of 31-32 degrees C temperature and 80 Bq/l average radon concentration) daily, for 15 days. Twenty-five patients with matching pathologies were subjected to balneotherapy according to the same protocol, using thermal water with negligible radon content (6 Bq/l). Serum thyroid stimulating hormone, prolactin, cortisol, adrenocorticotropic hormone, and dehydroepiandrosterone levels were measured before and after a balneotherapy course of 15 sessions. Comparison of the accumulated data using the Wilcoxon test did not reveal any significant difference between pre- and post-treatment values or between the two patient groups. It is noted that while the beneficial effects of balneotherapy with radon-containing water on degenerative disorders is widely known, only few data have been published in the literature on its effect on endocrine functions. The present study failed to demonstrate any substantial effect of thermal water with relatively low radon content on the functioning of the endocrine system.

  12. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland; Huoneilman radonmittaukset Kymen laeaenissae: Tilannekatsaus ja radonennuste

    Energy Technology Data Exchange (ETDEWEB)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m{sup 3}. It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including (1) houses with a slab-on-grade and (2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m{sup 3} will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m{sup 3}. The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m{sup 3} will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m{sup 3}. (orig.) (14 refs.).

  13. Radon and radon daughters' concentration in spring and wells waters from Presidente Prudente: preliminary results; Concentracao de Rn-222 e filhos em aguas provenientes de pocos e emergencias de agua da regiao de Presidente Prudente: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Ana Maria Araya; Saenz, Carlos Alberto Tello [Universidade Estadual Paulista Julio de Mesquita Filho (FCT/UNESP), Presidente Prudente, SP (Brazil). Departamento de Fisica Quimica e Biologia; Aguiar, Claudinei Rodrigues de [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil); Pereira, Luiz Augusto Stuani [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Presidente Prudente, SP (Brazil)

    2009-07-15

    This work presents the preliminary results about the concentration of radon and radon daughters in wells and springs water from Presidente Prudente. Six water samples were studied: three from well-water, two from springs water and one from potable water. For the determination of α-activity the samples were placed inside plastic containers where the CR-39 tracks detectors were outside the water. The track density of α-particles were measured by using optical microscopy. The results show that one sample from well-water presented higher concentration of radon and radon daughters than the other samples. (author)

  14. Reduction of radon progeny concentration in ordinary room due to a mixing fan

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. (University of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering); Sextro, R.G. (Lawrence Berkeley Lab., CA (USA))

    1988-01-01

    Three experiments were carried out at the Indoor Air Quality Research House (IAQRH) at Lawrence Berkeley Laboratory, University of California, to study the effect of operating a mixing fan on the radon progeny. In every experiment, about 15 KBq.m{sup -3} of radon was injected into a 36 m3 ordinary room. Measurements were conducted with three different aerosol particle concentrations of about 10{sup 2}, 10{sup 4} and 10{sup 5} per cm3. Real-time measurements of radon and progeny concentrations, particles, and environmental parameters were made throughout the experiments. Measurements of plate-out activity on the surfaces of internal walls of the room were measured directly by filter papers and CR-39 nuclear track detectors, while on fan blades CR-39 detectors were used. The ratio of plated-out activity to the total progeny activity in the room varied from 17% to 84%. More than 99% of the plated-out activity was found on walls and less than 1% on fan blades. (author).

  15. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    Science.gov (United States)

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  16. The activity of radon daughters in high-rise buildings and the influence of soil emanation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. (Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia); Fremlin, J.H.

    1982-01-01

    Forty measurements are reported in similar rooms in two high-rise buildings. The geometrical means for the concentration of radon daughters including and excluding the basement results, respectively, were 0.90 and 1.00mWL, which is less than the quoted mean 2.0 mWL for 65 measurements in typical houses in the same city. The frequency distribution of these measurements shows a log-normal distribution. The concentrations did not depend on the distance from ground level but may depend on the ventilation rate of the room examined. The correlation between the concentration of radon daughters in WL in rooms above the first floor in the two high-rise buildngs with the inverse of their ventilation rate were 0.73 and 0.67, respectively.

  17. Activity of radon daughters in high-rise buildings and the influence of soil emanation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. (University of Petroleum and Minerals, Dhahran, Saudi-Arabia. Dept. of Physics); Fremlin, J.H. (Birmingham Univ. (UK). Dept. of Physics)

    1982-01-01

    Forty measurements are reported in similar rooms in two high-rise buildings. The geometrical means for the concentration of radon daughters including and excluding the basement results, respectively, were 0.90 and 1.00 mWL, which is less than the quoted mean 2.0 mWL for 65 measurements in typical houses in the same city. The frequency distribution of these measurements shows a log-normal distribution. The concentrations did not depend on the distance from ground level but may depend on the ventilation rate of the room examined. The correlation between the concentration of radon daughters in WL in rooms above the first floor in the two high-rise buildings with the inverse of their ventilation rate were 0.73 and 0.67, respectively.

  18. Concentration distributions of thoron and radon near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Katase, Akira [Tohwa Univ., Fukuoka (Japan). Faculty of Engineering

    1996-12-01

    One dimensional diffusion model with a constant diffusion coefficient is applied to the thoron concentration distributions in air above the ground. The experimental distributions are well described by the exponential function obtained from the model. Diffusion coefficients and thoron exhalation rates are estimated from the measured distributions, which are the average values for three months. The present values of thoron exhalation are however several times as small as those measured by other researchers. (author)

  19. determination of radon gas and respirable ore dust concentrations in ...

    African Journals Online (AJOL)

    nb

    J. Sci. Vol. 40, 2014. 15 the concentrations of respirable dust and quartz of 10.30 mg/m3 and 1.28 mg/m3 respectively, which were very high comparing to the guidance level of 2 mg/m3. The pilot study by Bråtveit et al. (2003) on respirable dust exposure during small scale mining at Merelani tanzanite mines showed that.

  20. HANDBOOK: SUB-SLAB DEPRESSURIZATION FOR LOW PERMEABILITY FILL MATERIAL DESIGN AND INSTALLATION OF A HOME RADON REDUCTION SYSTEM

    Science.gov (United States)

    Radon, a radioactive gas, comes from the natural decay of uranium. It moves to the earth's surface through tiny openings and cracks in soil and rocks. In outdoor air, radon is diluted to such low concentrations that it is usually nothing to worry about. However, radon can accumul...

  1. Preliminary Study for 3D Radon Distribution Modelling in the Room

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ChoongWie; Kim, HeeReyoung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Radon exists in the form of noble gas, which comes from decay of {sup 238}U, becoming stable {sup 206}Pb going through 4 alpha and 4 beta decays. If this process occurred in human body after inhalation, lung could be damaged by interaction with these radiations causing lung cancer. Most radon in indoor air comes from soil (85 - 97%) through crack of the wall but it also came from wall (2 - 5%) itself in home. Due to its hazardous and unpredictable characteristic, radon became one of the concerning nuclides in indoor air. Hence, the number of survey and research about radon has been increased. Although accurate radon measurement is important to evaluate health risk, it is hard to actually achieve because radon is affected by many conditions, where its concentration can vary easily. Moreover, radon concentration can vary according to the height because of density of radon in the spatial aspect. 3D distribution modelling in the room of radon with aerodynamic features and sources variations was carried out to find average and maximum radon concentration. 3D radon distribution in the room would be find through this computational analysis and it is thought to be possible to correct measured radon concentration with spatial variation to fit the height of nose where inhalation occur. The methodological concept for 3D modelling was set up to solve transport equation for radon behavior by using computational fluid dynamics (CFD) software such as FLUENT.

  2. Primary evaluation of the radon situation in dwellings in Saxony by long-time integrating measurements, comparison of the results with short-time measurements and determination of the radon activity concentration in the ground of the land; Erstbewertung zur Radonsituation von Haeusern im Freistaat Sachsen mittels langzeitintegrierenden Messungen, Vergleich der Ergebnisse mit Kurzzeitmessungen und Erfassung der Radon-Aktivitaetskonzentration in der Bodenluft der Grundstuecke

    Energy Technology Data Exchange (ETDEWEB)

    Alisch-Mark, M.; Keck, D.; Preusse, W.; Taube, A.; Busch, H.; Heinrich, T. [Staatliche Betriebsgesellschaft fuer Umwelt und Landwirtschaft, Sachsen (Germany)

    2016-07-01

    A measurement program was carried out for primary evaluation of dwellings in terms of radon situation. Short-time measurements were compared with annual averages and checked for their suitability for forecasting the annual averages. In 89% of the cases studied, the average annual values could be predicted by short-time measurements, differences were observed depending on the date of the short-time measure. In addition, radon activity concentrations were determined in the soil air in the ground and compared with the expected areas of forecasting map of Saxony. Discrepancies were found primarily in areas which are marked by a smallscale geology. The data obtained showed that the geogenic radon potential and the year of construction of the house represent factors influencing the probability of exceedance of the reference value of 300 Bq/m{sup 3}.

  3. Dosimetric studies in a facility with high concentrations of radon; Estudio dosimetrico en una instalacion con altas concentraciones de radon

    Energy Technology Data Exchange (ETDEWEB)

    Ferrero Calabuig, J. L.; Martinez Sanchis, S.; Camara Garcia, T.; Delgado Belmar, V.

    2011-07-01

    In a coastal marsh area have high levels of radon found in some locations, one of them is a wastewater treatment plant, which far exceeds the recommended level in work zones. We present the results of the study for the evaluation of excess doses received by workers in that facility. (Author)

  4. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling

  5. Analytical method for evaluating (and correcting) the impact of outdoor radon concentration on the estimates of percentage of dwellings exceeding reference levels.

    Science.gov (United States)

    Antignani, S; Venoso, G; Carpentieri, C; Bochicchio, F

    2018-02-02

    Outdoor radon concentration contributes to indoor radon levels, generally causing a shift from lognormal distribution of measured radon concentration data distribution, and it makes more challenging the estimation of radon distribution parameters on the basis of the lognormal assumption. In particular, lognormal assumption with no correction could lead to a significantly biased estimate of the percentage of dwellings exceeding a certain level, e.g. a reference level (RL), since this is based on biased estimates of geometric mean (GM) and geometric standard deviation (GSD) of radon concentration distribution. Subtracting to each measured data a constant outdoor radon level can usually compensate data distribution departure from log-normality (except for low radon levels), if the appropriate outdoor level value is chosen by means of a lognormal fit of the data. This approach - already (but not always) used in literature - cannot be applied in cases where all the data of radon concentrations are not available (e.g., for a review study). For these cases, this work presents an analytical method to quantitatively evaluate and correct the impact of outdoor on the lognormal distribution parameter estimates and, in particular, on the percentages of dwellings exceeding radon reference levels. The proposed method is applied to a number of possible situations, with different values of outdoor radon level, GM and GSD. The results show that outdoor radon levels generally produce an underestimation of the actual GSD parameter, which increases as the outdoor level increases, and in the worse cases, could lead to an underestimation higher than 50%. Consequently, if the outdoor contribution is not properly taken into account, the percentage of dwellings exceeding a certain RL is almost always underestimated, even by 80%-90% for RL equal to 300 Bq/m3. This could have implications for the classification of areas as regards radon concentration and for the estimation of avertable lung

  6. Measurement of indoor radon, thoron and their progeny concentrations in the dwellings of district Hamirpur, Himachal Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Bajwa, B.J.S.; Singh, P.; Singh, S. [Guru Nanak Dev University (India); Sahoo, B.K. [Bhabha Atomic Research Center - BARC (India)

    2014-07-01

    In the present investigation indoor radon, thoron and their progeny concentrations have been measured in the wide range of dwellings from 12 different villages situated in the uranium mineralized zones of Hamirpur district, Himachal Pradesh, India by using LR-115 type-?? based Pin-hole Radon-Thoron discriminating Twin-Cup dosimeters, direct radon and thoron progeny sensors (DRPS/DTPS). As inhalation doses are predominantly due to daughter products of radon and thoron and not due to gases, it is important to measure the decay products directly for health risk assessments. In the study region different types of houses were selected randomly according to methodologies described by Radiological Physics and Advisory Division (RPAD), BARC, Mumbai. The indoor radon concentrations in these dwellings have been found vary from 22 to 573 Bq/m{sup 3} with average value of 113.48 Bq/m{sup 3} and for thoron vary from 10 to 739 Bq/m{sup 3} with average value of 116.17 Bq/m{sup 3}. The progeny concentrations of radon and thoron are found within the limits of 8 to 141 Bq/m{sup 3} and 0.53 to 15.26 Bq/m{sup 3} respectively, with average values 36.97 Bq/m{sup 3} and 3.19 Bq/m{sup 3} respectively. The radon, thoron and their progeny concentration variations and the corresponding inhalation dose received by the inhabitants in this region will also be discussed in the light of the recommendations given by the International Commission on Radiological Protection (ICRP). Document available in abstract form only. (authors)

  7. The Reference Laboratory for Radon Gas Activity Concentration Measurements at PSI; Das Referenzlabor fuer Radongas-Konzentrationsmessungen am PSI

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, Christoph

    1998-09-01

    Active or passive radon gas measuring instruments are exposed during intercomparison exercises in the radon chamber of the Reference Laboratory for Radon Gas Concentration Measurements at Paul Scherrer Institut: The traceability of radon gas measurements to nationally and internationally acknowledged standards is inspected in the reference atmosphere of the chamber with calibrated {sup 222}Rn activity concentration. The use of secondary standards guarantees the traceability of the radon chamber reference atmosphere. Besides the principal secondary standard, a radon gas standard (secondary standard I), a {sup 226}Ra standard solution (secondary standard II) and a {sup 222}Rn emanation standard (secondary standard III) are used. The {sup 222}Rn activity delivered by one of these standards is quantitatively transferred into a reference volume and hence converted to an activity concentration serving for the calibration of a measuring instrument transfer standard consisting of scintillation cell and counter. By this way, the transfer standard calibration is related and traceable to the internationally acknowledged primary standard laboratories National Institute of Standards and Technology, Gaithersburg, Maryland (U.S.A.) or National Physical Laboratory, Teddington, Middlesex (UK). The calibrated transfer standard is then used to calibrate the radon gas activity concentration in the radon chamber. For a single grab sampling determination of the {sup 222}Rn activity concentration in the radon chamber with the transfer standard, the estimation of Type A and Type B uncertainties yields a relative expanded uncertainty (95% confidence level) of minimum 3% for high concentration levels (10 kBqm{sup -3}) and maximum 30% for low concentration levels (0.2 kBqm{sup -3}). Extended evaluations of the reproducibility of calibration factor measurements obtained by calibration of the transfer standard with the secondary standards I, II and III show a very good reproducibility quality

  8. Distribution of Airborne Radon-222 Concentrations in U.S. Homes

    Science.gov (United States)

    Nero, A. V.; Schwehr, M. B.; Nazaroff, W. W.; Revzan, K. L.

    1986-11-01

    Apparently large exposures of the general public to the radioactive decay products of radon-222 present in indoor air have led to systematical appraisal of monitoring data from U.S. single-family homes; several ways of aggregating data were used that take into account differences in sample selection and season of measurements. The resulting distribution of annual-average radon-222 concentrations can be characterized by an arithmetic mean of 1.5 picocurie per liter (55 becquerels per cubic meter) and a long tail with 1 to 3% of homes exceeding 8 picocuries per liter, or by a geometric mean of 0.9 picocurie per liter and a geometric standard deviation of about 2.8. The standard deviation in the means is 15%, estimated from the number and variability of the available data sets, but the total uncertainty is larger because these data may not be representative. Available dose-response data suggest that an average of 1.5 picocuries per liter contributes about 0.3% lifetime risk of lung cancer and that, in the million homes with the highest concentrations, where annual exposures approximate or exceed those received by under-ground uranium miners, long-term occupants suffer an added lifetime risk of at least 2%, reaching extraordinary values at the highest concentrations observed.

  9. Measurement of radon concentration in old metalliferous mines in San Luis, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Roberto M.; Lacerda, Tiago; Rosas, Juan P. de [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-346, Niteroi, RJ (Brazil); Da Silva, Almy A.R. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-346, Niteroi, RJ (Brazil); Instituto de Fisica, Universidade de Sao Paulo, P. O. Box 66318, 05314-970, Sao Paulo, SP (Brazil); Rizzotto, Marcos; Valladares, Diego L.; Velasco, Hugo [GEA, Instituto de Matematica Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Ej. de los Andes 950, D5700HHW San Luis (Argentina); Yoshimura, Elisabeth M. [Instituto de Fisica, Universidade de Sao Paulo, P. O. Box 66318, 05314-970, Sao Paulo, SP (Brazil)

    2014-07-01

    Radon levels in two old mines in San Luis, Argentina, were measured and analyzed. La Carolina gold mine and Los Condores tungsten mine are today used as tourism mines. CR-39 nuclear track detectors were used for this purpose. Measurements were performed during both winter and summer seasons. The findings show that in these environments, significant radon concentrations are subject to large seasonal fluctuations, due to the strong dependence on natural ventilation with the outside temperature variations. For both mines, high concentration values of {sup 222}Rn were observed in summer and low values in winter; with an extreme ratio of 2.5 times between summer and winter seasons for Los Condores mine. The radiation dose and environmental health risk of {sup 222}Rn concentrations to both guides and visitors were estimated for both seasons and compared with dose and action level values recommended by the International Commission on Radiological Protection (ICRP). The radon contribution to the effective dose rate for visitors has been previously assessed for the warm season. The values are 0.38±0.07 mSv y{sup -1} and 0.05±0.02 mSv y{sup -1} for La Carolina and Los Condores, respectively. These values were obtained assuming an accumulated annual time underground of 20 h. For the guides these values are 11±2 mSv y{sup -1} and 1.45±0.5 mSv y{sup -1} for La Carolina and Los Condores, respectively, assuming an accumulated annual time underground of 600 h. The occupational dose rate limit suggested by the ICRP is 20 mSv y{sup -1}. As these values indicate the dose is an order of magnitude lower in Los Condores than La Carolina mine. This is because this mine, due to its characteristics, is more ventilated than La Carolina mine. This is important because actions can be taken to lower the radon accumulation in La Carolina gold mine, for example by opening new ducts to increase air circulation. Finally, in this work, seasonal variations of the dose rate are assessed and

  10. Application of nuclear track detectors for radon related measurments

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.A. (King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Energy Resources Div.)

    1988-01-01

    The application of nuclear track detectors for radon related measurements is discussed. The ''Can Technique'', used for measuring radon emanation from building materials, walls and soil; the ''Working Level Monitor'', used for measuring short period working levels of radon daughters in houses; and ''Passive Radon Dosimeters'', used to measure radon levels in houses for long term (few months) periods are described. Application of nuclear track detectors for measuring the radon daughters plate-out on the surface of mixing fan blades and walls are discussed. The uranium content of some wall papers was found to be 6 ppm. The variation of radon progeny concentration in the same room was measured and supported by another study through Gas Chromatograph measurements. The independence of radon concentration on room level in high-rise buildings was established. The effect of sub-floor radon emanation on radon concentration in houses is dependent on whether there is sub-floor ventilation or not. (author).

  11. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    to be 60 Bq/m{sup 3}. Using the detriment factor given by ICRP, annually about 90 Estonians are expected to develop lung cancer due to exposure to radon in their homes. Most of them, about 75, are smokers, which are affected by the synergetic effect of the two carcinogens, smoking and radon. In Estonia the source of indoor radon is radon-containing soil air that is transported into the buildings from the ground. Building materials with enhanced radium concentrations are not known in Estonia. In this survey, the highest indoor radon concentrations have been found in the northern part of Estonia where uranium rich Dictyonema shale and uranium containing phosphorous Glauconite sandstone exist in the bedrock and as fragments in the soils. Radon concentrations higher than 400 Bq/m{sup 3} have also been measured in buildings situated in areas with karst formations. Areas with Dictyonema shale, Glauconite sandstone and karst are areas with a special risk for radon.

  12. Assesment of the response of the meteorological/hydrological parameters on the soil gas radon emission at Hsinchu, northern Taiwan: A prerequisite to identify earthquake precursors

    Science.gov (United States)

    Arora, Baldev R.; Kumar, Arvind; Walia, Vivek; Yang, Tsanyao Frank; Fu, Ching-Chou; Liu, Tsung-Kwei; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-11-01

    The present study is an attempt to assess and quantify the influence of the meteorological (atmospheric temperature and pressure) and hydrological (rainfall and ground water head-GWH) parameters on the soil gas radon emission at Hsinchu, northern Taiwan. The quasi-periodic variations corresponding to diurnal and semi diurnal periods were estimated and eliminated by decomposing the time series for the period of September 16, 2009 to March 5, 2010 to singular spectrum analysis. The reconstructed non-periodic variations, which reproduce the salient feature of recorded time series, were searched for meteorological/hydrological influences in radon emission. The combined response of barometric pressure and atmosphere temperature are found to be small when compared to the total variability in radon. The influence of rainfall on radon is found to be strongest. At the onset of rainfall, radon shows a step-jump that attains peak with a time lag of 12-15 h. This enhancement is attributed to entrapment of soil gas in the top soil cover as increased soil moisture prevents escape of radon into the atmosphere (capping effect). The decay of radon after the recession of rainfall is approximated by double exponential decay terms, one corresponding to the natural decay of radon with half life of 3.84 days and second representing slow weakening of capping effect. The third effect related to internal loading due to rise and fall of groundwater modulates the propagation of radon in overlying strata, accounting for the long term variations in radon. The rainfall inflicted changes in radon look strikingly similar to earthquake related precursory or co-seismic perturbations, inferred by long term synotopic observations. It is surmised that unless radon variations are corrected for meteorological/hydrological contamination, some precursory signals are masked on one hand while on the other hand some anomalies are falsely viewed as earthquake precursors.

  13. Modelling of radon concentration peaks in thermal spas: application to Polichnitos and Eftalou spas (Lesvos Island--Greece).

    Science.gov (United States)

    Vogiannis, Efstratios; Nikolopoulos, Dimitrios

    2008-11-01

    A mathematical model was developed for the description of radon concentration peaks observed in thermal spas. Modelling was based on a pragmatic mix of estimation and measurement of involved physical parameters. The model utilised non-linear first order derivative mass balance differential equations. The equations were described and solved numerically by the use of specially developed computer codes. To apply and check the model, measurements were performed in two thermal spas in Greece (Polichnitos and Eftalou-Lesvos Island). Forty different measurement sets were collected to estimate the concentration variations of indoor-outdoor radon, radon in the entering thermal water, the ventilation rate, the bathtub surface and the bath volume. Turbulence and diffusive phenomena involved in radon concentration variations were attributed to a time varying contact interfacial area (equivalent area). This area was approximated with the use of a mathematical function. Other model parameters were estimated from the literature. Through numerical solving and use of non-linear statistics, the time variations of the equivalent area were estimated for every measurement set. Computationally applied non-linear uncertainty analysis showed less sensitive variations of the coefficients of the equivalent area compared to parameters of the model. Modelled and measured radon concentration peaks were compared by the use of three statistical criteria for the goodness-of-fit. All the investigated peaks exhibited low error probability (***p<0.001) for all criteria. It was concluded that the present modelling achieved to predict the measured radon concentration peaks. Through adequate selection of model parameters the model may be applied to other thermal spas.

  14. Annual average and seasonal variations of indoor radon concentrations in Piedmont (Italy) using three different detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gervino, G. [Dipartimento di Fisica Sperimentale, Universita di Torino, via Giuria 1, 10125 Turin (Italy)]. E-mail: gervino@to.infn.it; Barca, D. [Liceo Scientifico Tecnologico ' J.C. Maxwell' di Nichelino (Italy); Bruno, S. [Liceo Scientifico Tecnologico ' J.C. Maxwell' di Nichelino (Italy); Bonetti, R. [Istituto di Fisica Generale Applicata, IFGA, Universita di Milan (Italy); Manzoni, A. [Istituto di Fisica Generale Applicata, IFGA, Universita di Milan (Italy)

    2007-03-01

    One year survey of indoor radon concentrations was carried out in public buildings, schools and dwellings of the neighbouring small towns of Nichelino and Castagnole Piemonte, nearby Turin, Piedmont (Italy), as part of a long term assessment of local radon levels. Three kinds of detectors have been deployed for nearly 500 exposures: electrects, solid state nuclear track detectors and a continuous on-line monitor. A log-normal model was applied to estimate the fraction of dwellings with high radon concentration. The resulting effective dose-equivalent for the inhabitants of Castagnole Piemonte and Nichelino, calculated from the geometric means, is 0.7 and 0.5mSvy{sup -1}, respectively.

  15. Radon exhalation rates and effective radium contents of the soil samples in Adapazarı, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kuş, Adem, E-mail: adem.kus@ogr.sakarya.edu.tr [Sakarya University, Physics Department, Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr; Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Sakarya University, Physics Department, Sakarya (Turkey); Sakarya University,Biyomed. Manyet.& Yarıiletken Malz. Araş. ve Uyg. Merkezi, Sakarya (Turkey)

    2016-03-25

    In this study effective radium content and radon exhalation rates in soil samples collected from Adapazarı district of Sakarya, Turkey have been measured using LR-115 type-II plastic track detectors by closed-can technique for the first time. The obtained effective radium contents are found to vary from 6.66 to 34.32 Bqkg{sup −1} with a mean value of 18.01 Bqkg{sup −1}. The radon exhalation rates measured in terms of mass and area of soil samples are found to vary from 50.35-259.41 mBqkg{sup −1}h{sup −1} with a mean value of 136.12 mBqkg{sup −1}h{sup −1} and 1035.18-5333.39 mBqm{sup −2}h{sup −1} with a mean value of mBqm{sup −2}h{sup −1}. All the measurements show that the values of radium content are under the safe limit recommended by Organization for Cooperation and Development.

  16. Application of a radon model to explain indoor radon levels in a Swedish house

    CERN Document Server

    Font, L; Jönsson, G; Enge, W; Ghose, R

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75+-30 and 200+-80 Bq m sup - sup 3...

  17. Radon Emanation from NORM-Contaminated Pipe Scale, Soil, and Sediment at Petroleum Industry Sites

    Energy Technology Data Exchange (ETDEWEB)

    Rood, A.S.; White, G.J.

    1999-10-07

    This report describes a study of radon (Rn) emanation from pipe scale and soil samples contaminated with naturally occurring radioactive material (NORM). Samples were collected at petroleum production sites in Oklahoma, Michigan, Kentucky, and Illinois. For comparison, data are also presented from preliminary studies conducted at sites in Texas and Wyoming. All samples collected were analyzed for their Rn emanation fraction, defined as the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. This measure represents one of the important parameters that determine the overall Rn activity flux from any solid medium. The goal of this project was to determine whether Rn emanation from pipe scale and soil is similar to emanation from uranium mill tailings.

  18. Strategy for the reduction of radon exposure in Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    Elevated indoor radon concentrations are a more extensive problem in Norway than in many other countries. It has been estimated that indoor radon causes approximately 300 deaths from lung cancer each year in Norway. On average, avoiding lung cancer increases life expectancy by 14 to 18 years. Radon is a radioactive noble gas formed continually is a decay product from uranium. Uranium is a natural constituent existing in varying concentrations in bedrock, minerals and soils. For this reason, both the soil air and groundwater contain radon. Radon in buildings normally originates from the soil air in the underlying ground. Indoor air pressure is often low, so that radon-containing air from the surrounding ground gets sucked in through cracks in the building foundations. Elevated indoor radon concentrations can be due to household water drawn from groundwater wells, and radon gas can also be emitted from building materials such as certain types of stone or concrete containing high levels of natural radioactivity. Norway, Sweden and Finland are among the the countries in the world with the highest average indoor radon concentrations. Geological conditions and the cool climate pose a big challenge, but the radon problem can be solved in a cost-effective way. Radon is the most common cause of lung cancer after active smoking. At a radon concentration of 100 Bq/m3, which is not far from the estimated average for Norwegian housing, the risks of dying of radon-induced lung cancer before the age of 75 are 0.1 % for non-smokers and 2 % for smokers, respectively. Many buildings in Norway have radon levels that exceed this. The most important health impact of radon exposure is the increased risk of lung cancer. This increase in risk is assumed to be linear in relation to radon concentration (i.e., the risk is 10 times higher at 1000 Bq/m3 compared to 100 Bq/m3). The risk also increases linearly with exposure time, i.e. there is a tenfold greater risk of contracting lung cancer

  19. Determination of radon concentration in water using RAD7 with RAD H{sub 2}O accessories

    Energy Technology Data Exchange (ETDEWEB)

    Malik, M. F. I. [Science and Engineering Research Centre (SERC), Universiti Sains Malaysia, Seri Ampangan Nibong Tebal 14300 Penang (Malaysia); Rabaiee, N. A.; Jaafar, M. S. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-24

    In the last decade, the radon issue has become one of the major problems of radiation protection. Radon exposure occurs when using water for showering, washing dishes, cooking and drinking water. RAD7 and Rad H20 accessories were used in order to measure radon concentration in water sample. In this study, four types of water were concerns which are reverse osmosis (drinking water), mineral water, tap water and well water. Reverse osmosis (drinking water) and mineral water were bought from the nearest supermarket while tap water and well water were taken from selected areas of Pulau Pinang and Kedah. Total 20 samples were taken with 5 samples for each type of water. The measured radon concentration ranged from 2.9±2.9 to 79.5±17 pCi/L, 2.9±2.9 to 67.8±16 pCi/L, 15.97±7 to 144.25±24 pCi/L and 374.89±37 to 6409.03±130 pCi/L in reverse osmosis (drinking water), mineral water, tap water and well water. Well water has the highest radon compared to others. It was due to their geological element such as granite. Results for all types of water are presented and compared with maximum contamination limit (MCL) recommended by United State Environmental Protection Agency (USEPA) which is 300pCi/L. Reverse osmosis water, mineral water and tap water were fall below MCL. However, well water was exceeded maximum level that was recommended. Thus, these findings were suggested that an action should be taken to reduce radon concentration level in well water as well as reduce a health risk towards the public.

  20. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    Science.gov (United States)

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Methods of radon remediation in Finnish dwellings; Asuntojen radonkorjauksen menetelmaet

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-12-01

    A study was made of remedial measures taken in dwellings with high indoor radon concentrations and the results obtained. The data regarding the remedial measures taken in 400 dwellings was obtained from a questionnaire study. The mean annual average indoor radon concentration before the remedies was 1.500 Bq/m{sup 3}, the concentration exceeding in nearly every house the action level of 400 Bq/m{sup 3}. After the measures were taken the mean indoor radon concentration was 500 Bq/m{sup 3}. The resulting indoor radon concentration was less than 400 Bq/m{sup 3} in 60 percent of the dwellings. The best results were achieved using sub-slab-suction and radon well. These methods effectively decrease both the flow of radon bearing air from soil into dwellings and the radon concentration of leakage air. Typical reduction rates in radon concentration were 70-95 percent. The action level was achieved in more than 70 percent of the houses. Sealing the entry routes and improvement of the ventilation resulted typically in reduction rates of 10-50 percent. The goal of the report is to give useful information for the house owners, the do-it-yourself-mitigators, the mitigation firms and the local authorities. The report includes practical guidance, price information and examples of remedial measures. (13 refs., 10 figs., 2 tabs.).

  2. Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Marco, E-mail: marco.neri@ct.ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma, 2 - 95123 Catania (Italy); Giammanco, Salvatore [Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma, 2 - 95123 Catania (Italy); Ferrera, Elisabetta; Patane, Giuseppe [Universita degli Studi di Catania, Dip. Scienze della Terra, Corso Italia, 52 - 95129 Catania (Italy); Zanon, Vittorio [Centro de Vulcanologia e Avaliacao de Riscos Geologicos - Universidade dos Acores, Rua Mae de Deus, 9501-801 Ponta Delgada (Portugal)

    2011-09-15

    This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. Both radon and thoron anomalies were located in areas affected by relatively deep (5-10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquakes depth and intensity can give some hints on the source of gas and/or on fault dynamics. - Highlights: > We performed measurements of radon from soil carried out on Mt. Etna. > The sampled zone is characterized by the presence of numerous active faults. > Radon mapping reveal dangerous hidden faults buried by recent soil cover. > Our study gives some hints on the source of gas and on fault dynamics. > We recognized areas where radon activity represents a hazard to the population.

  3. Comparison of radon levels in building basements and above- ground floors

    Energy Technology Data Exchange (ETDEWEB)

    Cazula, C.; Campos, M.; Mazzilli, B. [IPEN/CNEN-SP, Sao Paulo (Brazil)

    2014-07-01

    Radon-222, a decay product of Ra-226, is a natural radioactive noble gas that can be found in soil, water and air. Radon and its short-lived decay products in the atmosphere are the most important contributors to human exposure from natural sources. Radon is recognized as the second most significant risk for lung cancer after tobacco smoking. The World Health Organization established a concentration of 100 Bq m{sup -3} for radon in air, in order to limit its hazards. The main source of radon exposition indoors comes from Ra-226, a decay product of the U-238 natural series, present in rocks and soils underneath the building and, to a lesser extent, in the building materials. The dynamics of radon production in rocks and soil and its subsequent indoors emanation is quite complex. It is controlled by factors such as soil permeability and water content, meteorological variability, building foundation characteristics and the usual positive differential pressure between the soil and the indoor environment. This is normally sufficient to bring soil gas from the ground into the building. Radon gas can enter a building by several mechanisms, but the most significant ones are diffusion and pressure-driven flow from the ground. Usually, cracks and holes in the floor and walls and gaps around service pipes are the main entrance for the radon gas. Studies indicated that indoor radon concentration present significant variation on the basement, ground floor and upper floors. The aim of this study is to determine the radon levels in building basements and above- ground floors in the city of Sao Paulo. Radon measurements were carried out through the passive method with solid-state nuclear- track detectors (CR-39), because of their simplicity and long-term integrated read-out. The exposure period was, at least, three months, covering one year minimum, in order to determine the seasonal variation of indoor radon concentration. Document available in abstract form only. (authors)

  4. Fractal Theory and Field Cover Experiments: Implications for the Fractal Characteristics and Radon Diffusion Behavior of Soils and Rocks.

    Science.gov (United States)

    Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua

    2016-12-01

    Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.

  5. The Influence of Aerosol Concentration on Changes in the Volumetric Activities of Indoor Radon Short-Term Decay Products

    Directory of Open Access Journals (Sweden)

    Diana Politova

    2011-02-01

    Full Text Available The article describes the influence of aerosol concentration on changes in the volumetric activities of indoor radon short-term decay products. The concentration of aerosol in the air, equilibrium factors and unattached fraction were measured under normal living conditions when the concentration of aerosol increases, i.e. burning a candle or frankincense in accommodations, smoke-filled accommodations, a steamy kitchen etc. It has been established that when the concentration of aerosol in the air rises, the number of free atoms of radon short-term decay products attached to aerosol particles also increases, and therefore higher volumetric activity of alpha particles is fixed. A tight positive connection of the correlation between equilibrium factor (F and aerosol particle concentration in the air of accommodations as well as a negative correlation between unattached fraction and an equilibrium factor have been determined.Article in Lithuanian

  6. Radon measurements in well and spring water of the Tuzla area, Bosnia and Herzegovina.

    Science.gov (United States)

    Kasić, Amela; Kasumović, Amira; Adrović, Feriz; Hodžić, Muhamed

    2016-12-01

    Investigations of natural radioactivity in water, air, and soil are conducted frequently and routinely. Exposure to high concentrations of natural radioactive radon gas can cause irradiation of respiratory organs, which can lead to lung cancer. This paper presents measurements of radon activity concentrations in dug wells and natural springs of the Tuzla area (Bosnia and Herzegovina), which ranged from 214 to 3702 mBq L-1. Our results have shown that the radon activity concentration did not exceed the EU reference level for radon in drinking water (100 Bq L-1).

  7. Radon concentration in drinking water and supplementary exposure in Baita-Stei mining area, Bihor county (Romania).

    Science.gov (United States)

    Moldovan, Mircea; Nita, Dan Constantin; Cucos-Dinu, Alexandra; Dicu, Tiberius; Bican-Brisan, Nicoleta; Cosma, Constantin

    2014-03-01

    The radon concentration was measured in the drinking water of public water supply and private wells located in the mining area of BăiŢa-Ştei, Bihor County, Romania. The measurements were performed using the LUK-VR system based on radon gas measurement with Lucas cell. The results show that the radon concentrations are within the range of 1.9-134.3 kBq m(-3) with an average value of 35.5 kBq m(-3) for well water, 18.5 kBq m(-3) for spring water and 6.9 kBq m(-3) for tap water. Comparing with previous data from the whole of Transylvania, the average value is two times higher, proving this zone to be a radon-prone area. From the results of this study the effective dose to the population is between 4.78 and 338.43 µSv y(-1). These doses are within the recommended limits of the world organisations.

  8. Radon control systems in existing and new construction: a review.

    Science.gov (United States)

    Rahman, Naureen Mahbub; Tracy, Bliss L

    2009-08-01

    In support of the implementation of the new Canadian radon guideline, a comprehensive review of radon mitigation techniques used in countries around the world was undertaken, with particular emphasis on North America and Europe that have climates and construction techniques similar to Canada. The results of this review are presented here as an aid to administrators of radon control programmes, companies offering radon testing and mitigation services and other concerned parties, both in Canada and elsewhere, who are facing issues of implementing a radon control strategy. A wide variety of radon mitigation strategies have been employed worldwide and all have achieved some success in reducing radon concentrations. Generally, active mitigation techniques involving physical alterations to a house (e.g. sub-slab depressurisation) are more effective in achieving a sustained and substantial radon reduction than passive techniques (e.g. improved ventilation or sealing of cracks). To a large extent, the choice of an optimal mitigation strategy will depend on the building type, soil conditions and climate. Radon levels should be measured at periodic intervals after remediation, perhaps once every 5 y, to ensure that concentrations continue to remain at acceptable levels.

  9. A national survey on radon concentration in underground inspection rooms and in buildings of a telephone company: methods and first results

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, V., E-mail: vinicio.carelli@telecomitalia.i [Safety and Environment Dept., Telecom-Italia S.p.A., Via di Valcannuta 182, I-00168 Roma (Italy); Bianco, V.; Cordedda, C. [Safety and Environment Dept., Telecom-Italia S.p.A., Via di Valcannuta 182, I-00168 Roma (Italy); Ferrigno, G.; Carpentieri, C.; Bochicchio, F. [Istituto Superiore di Sanita (Italian National Institute of Health), Viale Regina Elena 299, I-00161 Roma (Italy)

    2009-10-15

    A national survey has been carried out to measure radon concentration in a large sample of Telecom-Italia small underground inspection rooms, which form a particularly dense net in urban areas. Measuring radon in such underground places is interesting both for a possible contribution to radon mapping activities and to evaluate workers exposures. Radon concentration was also measured in Telecom buildings (i.e. buildings housing plant equipment, including telephone switches, often also offices, etc.) close and partially connected to the selected inspection rooms. The methodology and the first results of the survey related to the first year of measurements, for a total of 1438 inspection rooms and 1414 Telecom buildings, are reported. Radon concentration was measured with passive devices containing CR-39 detectors for about 12 consecutive months, in order to average seasonal variations. In underground inspection rooms, measured radon concentration reached values up to about 44,000 Bq/m{sup 3}, with a regional median ranging from about 90 Bq/m{sup 3} up to about 1600 Bq/m{sup 3}. In Telecom buildings, the regional median concentration ranged from 13 Bq/m{sup 3} to 174 Bq/m{sup 3}. These results show that radon concentration in underground inspection rooms can reach very high values, whereas medians in monitored buildings are generally lower than those measured in dwellings in a representative national survey.

  10. Measurements of radon gas concentrations in dwellings of Al-Madinah Al-Munawarah province in Saudi Arabia.

    Science.gov (United States)

    Mohamed, R I; Alfull, Z Z; Dawood, N D

    2014-01-01

    Indoor radon concentration levels in a large number of dwellings in Al-Madinah Al-Munawarah Province have been measured. Al-Madinah Al-Munawarah is in the western region of Saudi Arabia. It is the second holiest city in Islam after Mecca, because it is the burial place of the Islamic Prophet Muhammad. The city was divided into four regions: western (contains nine sites), eastern (contains six sites), northern (contains nine sites) and southern (contains five sites). Radon gas concentration was measured using the closed chamber technique employing 2×2 cm(2) sheets of CR-39 solid-state nuclear track detectors. The detectors were kept for a period of 5 to 6 months from September 2010 to February 2011 in order to expose to radon gas. The results of the survey in the western and eastern sites showed that the overall minimum, maximum and average radon concentration levels were 20±1.6, 27±3.2 and 21±2.5 Bq m(-3), respectively. The lowest average radon concentration (20±1.6 Bq m(-3)) was found in Al Anabes and Al Suqya in the western region and Bani Dhafar in the eastern region, while the highest average concentration (27±3.2 Bq m(-3)) was found in Teeyba in the western region and Al 'Aridh in the eastern region, with an average of 21±2.5 Bq m(-3) in the western and eastern sites of Al-Madinah Al-Munawarah. Also in the northern region, the minimum radon concentration was 20±1.6 Bq m(-3) in Oyun, while the maximum was 42±1.6 Bq m(-3) in Sayyed al Shuhadd and Hai Nasr. In the southern region, the minimum radon concentration was 25±2.6 Bq m(-3) at Hai Al Hejrah, while the maximum value was 37±2.6 Bq m(-3) at Al Awali and Dawadia. The average radon concentration was 26±2.5 Bq m(-3) for Al-Madinah Al-Munawarah (western, eastern, northern and southern regions). The corresponding annual effective dose E (mSv y(-1)) to public from (222)Rn and its progeny was estimated to be 0.66 mSv y(-1) as an average value for Al-Madinah Al-Munawarah. The authors concluded that all

  11. Results of the first 5 years of a study on year-to-year variations of radon concentration in Italian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, F., E-mail: francesco.bochicchio@iss.i [Istituto Superiore di Sanita (Italian National Institute of Health), Viale Regina Elena, 299, I-00161, Roma (Italy); Ampollini, M.; Antignani, S.; Bruni, B.; Quarto, M.; Venoso, G. [Istituto Superiore di Sanita (Italian National Institute of Health), Viale Regina Elena, 299, I-00161, Roma (Italy)

    2009-10-15

    Radon concentration in air is subject to significant variations at different time scales, owing to several factors. In general, the shorter the time period considered, the larger the variations in radon concentration, e.g., day-to-day variations are usually higher than month-to-month variations. An average over 12 consecutive months is generally considered the best estimate of the long-term average radon concentration. Due to practical reasons, however, very few data are available on year-to-year variations. Year-to-year variations can have quite a relevant impact on radon policies and on the assessment of health risks from exposures to radon. Therefore, a project was started in 1996 aimed to evaluate year-to-year variations in a sample of dwellings. Systematic radon measurements have been made with LR 115 based radon detectors (closed type) in the living room and one bedroom of a sample of dwellings in Rome (Italy). The analysis of the results of the first five consecutive years of measurements, regarding the 76 dwellings included in the final analysis, showed relatively low year-to-year variations, with a median coefficient of variation of 14% (range 3%-42%), smaller than that observed in studies from other European countries. Therefore, in the analyzed sample, 12-month measurements can be considered a good estimate of the average radon concentration, at least within a 5-year period. This is quite important for radon regulations and policies, e.g. annual measurements could be recommended and repetition of radon measurements could not be necessary within periods of 5 years. Moreover, the impact of the observed year-to-year variations on the lung cancer risk estimated in the Italian epidemiological study is expected to be not high, if variations on periods up to about 30 years can be assumed similar to those observed in this study.

  12. Evaluation of the open vial method in the radon measurement; Evaluacion del metodo del vial abierto en la medicion de radon

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  13. Indoor radon in a Spanish region with different gamma exposure levels.

    Science.gov (United States)

    Quindós, L S; Fernández, P L; Sainz, C; Fuente, I; Nicolás, J; Quindós, L; Arteche, J

    2008-10-01

    In the beginning of 1990s within the framework of a national radon survey of more than 1500 points, radon measurements were performed in more than 100 houses located in Galicia region, in the Northwest area of Spain. The houses were randomly selected only bearing in mind general geological aspects of the region. Subsequently, a nationwide project called MARNA dealt with external gamma radiation measurements in order to draw a Spanish natural radiation map. The comparison in Galicia between these estimations and the indoor radon levels previously obtained showed good agreement. With the purpose of getting a confirmation of this relationship and also of creating a radon map of the zone, a new set of measurements were carried out in 2005. A total of 300 external gamma radiation measurements were carried out as well as 300 measurements of 226Ra, 232Th and 40K content in soil. Concerning radon, 300 1-m-depth radon measurements in soil were performed, and indoor radon concentration was determined in a total of 600 dwellings. Radon content in soil gave more accurate indoor radon predictions than external gamma radiation or 226Ra concentration in soil.

  14. The use of radon as tracer in environmental sciences

    Science.gov (United States)

    Quindos Poncela, Luis; Sainz Fernandez, Carlos; Fuente Merino, Ismael; Gutierrez Villanueva, Jose; Gonzalez Diez, Alberto

    2013-08-01

    Radon can be used as a naturally occurring tracer for environmental processes. By means of grab-sampling or continuous monitoring of radon concentration, it is possible to assess several types of dynamic phenomena in air and water. We present a review of the use of radon and its progeny at the University of Cantabria. Radon can be an atmospheric dynamics indicator related with air mass interchange near land-sea discontinuities as well as for the study of vertical variations of air parameters (average values of different types of stability: 131-580 Bq m-3). Concerning indoor gas, we present some results obtained at Altamira Cave (Spain): from 222 to 6549 Bq m-3 (Hall) and from 999 to 6697 Bq m-3 (Paintings Room). Finally, variations of radon concentration in soil (0.3 to 9.1 kBq m-3) and underground water (values up to 500 Bq l-1) provide relevant information about different geophysical phenomena.

  15. AlphaGUARD, the new reference for continuous radon monitoring in air, soil, gas, water and material; AlphaGUARD, die neue Referenz fuer die kontinuierliche Messung der Radonkonzentration in Luft, Boden, Wasser und Baumaterial

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, F.; Buerkin, W. [Saphymo GmbH, Frankfurt am Main (Germany); Villert, J. [Bertin Technologies, Montigny (France)

    2016-07-01

    The company Saphymo GmbH has more than 25 years of experience in the field of radon measurement. More than 20 years ago Saphymo developed the professional and robust radon monitor AlphaGUARD, quickly recognized as a standard for reliable and continuous measurements of the radon concentration. Today AlphaGUARD is internationally established as the reference in radon measurement. Following up on this success story the new generation of AlphaGUARD can now be presented. Based on the excellent measurement characteristics of its predecessor the new AlphaGUARD combines the well-proven principle of the pulse ionisation chamber with new and additional features. The robust housing is oriented on the well-proven design of the predecessor and includes now an integrated flow controlled and powerful pump. The instrument can be operated in flow as well as in diffusion mode (without pump). Via the new large display and the intuitive menu navigation all measurement data can be retrieved. The presentation of time series in charts is possible as well as the parametrisation of the instrument. A wide range of accessories, developed in cooperation with various radon experts of universities and laboratories, enables the user a varied and flexible application of the AlphaGUARD: Measurement of the radon concentration in air (radon, thoron, radon progenies), in water (sampling and time resolved measurements) and in soil (soil gas measurements, exhalation measurements), emanation measurements from material, multi spot measurement, online measurement with remote data transmission via Ethernet/DSL, Bluetooth, Wi-Fi, GPRS/3G or satellite. Due to its high sensitivity and its fast and linear response over a large measuring range the AlphaGUARD is excellently suited for calibration laboratories. Furthermore the AlphaGUARD enables ideal prerequisites for field applications: robust housing for operations under harsh conditions, long battery life for the measurement at any location, low

  16. 30 CFR 57.5046 - Protection against radon gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  17. SOME RESULTS FROM THE DEMONSTRATION OF INDOOR RADON REDUCTION MEASURES IN BLOCK BASEMENT HOUSES

    Science.gov (United States)

    Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the...

  18. Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia

    OpenAIRE

    Ahmad, Nisar; Jaafar, Mohamad Suhaimi; Alsaffar, Mohammed Saad

    2015-01-01

    The radon activity concentration and toxic elements have been assessed in drinking and irrigated water samples collected from different locations of Sungai Petani, Kedah, Malaysia. The water samples were collected from wells, streams and taps. A calibrated alpha spectrometer RAD-7 (Model 2890) and Atomic Absorption Spectrometers (Perkin–Elmer, Model AAnalyst 200, Shimadzu, Model AA-700) were used to estimate radon activity concentration and toxic elements, respectively. Maximum average value ...

  19. Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad

    2015-07-01

    Full Text Available The radon activity concentration and toxic elements have been assessed in drinking and irrigated water samples collected from different locations of Sungai Petani, Kedah, Malaysia. The water samples were collected from wells, streams and taps. A calibrated alpha spectrometer RAD-7 (Model 2890 and Atomic Absorption Spectrometers (Perkin–Elmer, Model AAnalyst 200, Shimadzu, Model AA-700 were used to estimate radon activity concentration and toxic elements, respectively. Maximum average value of radon concentration among the various types of water sources was found 14.7 ± 1.44 Bq/l in well water used for drinking and irrigation and minimum was found 5.37 ± 0.58 Bq/l in tap water used for drinking. Contribution of radon in drinking water to indoor air and age dependent associated annual effective doses were calculated from the measured radon concentration and were found less than lower limit of recommended action level. The activity concentrations of Ni > Pb > Cd > As > Cr were found higher for streams water as compared to wells and tap water. Values of radon concentration in well water were found higher than EPA recommended level and lower than WHO action level while the annual effective doses and level of toxic elements in water reported in this study were found lower than recommended level.

  20. Radon survey in the high natural radiation region of Niska Banja, Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11000 Belgrade (Serbia); Yarmoshenko, I.V. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences Ekaterinburg (Russian Federation)]. E-mail: ivy@ecko.uran.ru; Birovljev, A. [Radonlab Ltd., Akersveien 24C, 0177 Oslo (Norway); Bochicchio, F. [Istituto Superiore di Sanita - Italian National Institute of Health, Department of Technology and Health, Rome (Italy); Quarto, M. [Istituto Superiore di Sanita - Italian National Institute of Health, Department of Technology and Health, Rome (Italy); Obryk, B. [Institute of Nuclear Physics (IFJ), Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Paszkowski, M. [Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-342 Cracow (Poland); Celikovic, I. [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11000 Belgrade (Serbia); Demajo, A. [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11000 Belgrade (Serbia); Ujic, P. [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11000 Belgrade (Serbia); Budzanowski, M. [Institute of Nuclear Physics (IFJ), Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Olko, P. [Institute of Nuclear Physics (IFJ), Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); McLaughlin, J.P. [University College Dublin, Belfield, Dublin 4 (Ireland); Waligorski, M.P.R. [Institute of Nuclear Physics (IFJ), Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Maria Sklodowska-Curie Memorial Centre of Oncology, Cracow (Poland)

    2007-07-01

    A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m{sup 3} and at about 650 Bq/m{sup 3} in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m{sup 3}. The average value of outdoor annual radon concentration was 57 Bq/m{sup 3}, with a maximum value of 168 Bq/m{sup 3}. The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics.

  1. ANALYSIS OF RADON MITIGATION TECHNIQUES USED IN EXISTING U.S. HOUSES

    Science.gov (United States)

    This paper reviews the full range of techniques that have been installed in existing US houses for the purpose of reducing indoor radon concentrations resulting from soil gas entry. The review addresses the performance, installation and operating costs, applicability, mechanisms,...

  2. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    NARCIS (Netherlands)

    Manohar, S.N.; Meijer, H.A.J.; Herber, M.A.

    2013-01-01

    Naturally occurring radioactive noble gas, radon (Rn-222) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution

  3. Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota.

    Science.gov (United States)

    Kearfott, Kimberlee J; Whetstone, Zachary D; Rafique Mir, Khwaja M

    2016-01-01

    Because (222)Rn is a progeny of (238)U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick

    2010-04-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. [Patients' exposure to electromagnetic fields and radon in radon spas].

    Science.gov (United States)

    Politański, Piotr; Olszewski, Jerzy; Mamrot, Paweł; Mariańska, Mlagda; Zmyślony, Marek

    2014-01-01

    Many patients of physiotherapeutic facilities using therapeutic radon are also referred to other treatments involving the use of electromagnetic field (EMF). However, in the light of the theory of EMF influence on free radicals, it is still an open question whether, application of EMF shortly after the radon treatment may alter the biological effects of radon or EMF. The aim of the study was to determine how large is the group of patients exposed to radon and EMF in Poland, and how high is the exposure of these patients to analyzed factors. The results of the study are to be used in the future assessment of the combined effects of radon and EMF in radon spas. Based on the statistical data and interviews held in the major Polish radon spas, the analysis of treatment structure was performed and exposure to radon and EMF was assessed by measuring radon concentrations and characteristic values of exposure to EMF. More than 8000 people per year are subjected to combined exposure to radon and EMF. Significant differences were found between measured radon concentrations (they ranged from approximately 61 kBq/m3 for inhalations with inhaler to only 290 Bq/m3 for graduation towers, p = 0.049) and EMF intensities corresponded to those observed in hazardous and dangerous zones for occupational exposure. The results of the study showed significant differences between radon concentrations during various radon treatments. There is a need to develop clear and universal procedures for the application of radon or radon combined with EMF in radon spas. The effects of patients' exposure to radon, especially combined with EMF need to be further studied.

  6. Atmospheric radon: origin and transfer

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Pena, P.; Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mireles, F.; Davila, I.; Quirino, L. [Universidad Autonoma de Zacatecas (Mexico). Centro Regional de Estudios Nucleares

    1994-12-31

    Atmospheric indoor and outdoor radon surveys have been performed in several locations of Mexico. In order to estimate the radon transfer from different origins to the atmosphere, soil and ground water, together with the exhalation rate from bare and coated building materials have also been studied. The radon detection was performed with SSNTD, an automatic silicon-based radon monitor and the liquid scintillation technique. The results from several years of monitoring indicate that the atmospheric radon behaviour is different for the countryside as compared with more complex inhabited regions; transfer from soil being inhibited by the specific structures of the cities. The effect of wall coatings reduced from 50% to 90% the radon exhalation from bare building materials. A low radon content was observed in the ground water samples studied. (Author).

  7. Long term performance of different radon remedial methods in Sweden

    CERN Document Server

    Clavensjoe, B

    2002-01-01

    The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m sup 3 in 54 (54) sin...

  8. Environmental Radon Gas and Degenerative Conditions An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Groves-Kirkby, C.J. [Medical Physics Department, Northampton General Hospital, Northampton NN1 5BD (United Kingdom)]|[School of Health, University of Northampton, Northampton NN2 7AL (United Kingdom); Denman, A.R. [Medical Physics Department, Northampton General Hospital, Northampton NN1 5BD (United Kingdom); Woolridge, A.C. [School of Health, University of Northampton, Northampton NN2 7AL (United Kingdom)]|[School of Applied Sciences, University of Northampton, Northampton NN2 7AL (United Kingdom); Phillips, P.S. [School of Applied Sciences, University of Northampton, Northampton NN2 7AL (United Kingdom); Phillips, C. [School of Health, University of Northampton, Northampton NN2 7AL (United Kingdom)

    2006-07-01

    Radon, a naturally occurring radioactive gas, has variable distribution in the environment as a decay product of uranium occurring in a wide range of rocks, soils and building materials. Although radon dissipates rapidly in outdoor air, it concentrates in the built environment, and inhalation of {sup 222}Rn and its progeny {sup 218}Po and {sup 214}Po is believed to provide the majority of the radioactive dose to the respiratory system. While the connection between radon and lung cancer has long been recognised and investigated, recent studies have highlighted potential links between radon and other conditions, among them Multiple Sclerosis, Alzheimer and Parkinson Diseases, and Paget Disease of Bone. A strong case exists for clarifying the relationship between radon and these other conditions, not least since radon remediation to reduce lung cancer may conceivably have additional benefits hitherto unrecognized. The present status of the postulated links between environmental radon gas and degenerative conditions is reviewed, and recommendations for further research into levering current anti-radon campaigns are made. (authors)

  9. Radon exhalation measurements for environmental and geophysics study

    Science.gov (United States)

    Immé, G.; Catalano, R.; Mangano, G.; Morelli, D.

    2014-02-01

    Transport of radon through materials is a process strongly influenced by several parameters characterizing the materials themselves, such as porosity, permeability, grain size, content of radionuclides and diffusion coefficient of this gas through the interstitial pores and/or fractures of material. In order to enlighten more on the radon transport mechanisms, we are carrying out a systematic study on both in-soil radon measurements and laboratory analysis. Laboratory measurements are carried out on different types of samples from geologically different sites in the East Sicily (Italy), to measure the exhalation rate of radon at different controlled physical conditions, varying the parameters of porosity and grain size, content of radio, in order to characterize the dependence of the process of radon transport by these parameters.We report in particular preliminary results of our study on radionuclide content and on the radon exhalation rate from building materials used in Mt. Etna and in the Hyblean Plateau villages.This study is important from the radioprotection point of view and could represent a contribution to better define the transport process of radon through fractured media to clarify on correlation between radon concentration and geodynamical, volcanic and tectonic, events.

  10. Indoor radon measurements and radon prognosis for eastern Uusimaa. Askola, Lapinjaervi, Liljendal, Loviisa, Myrskylae, Maentsaelae, Maentsaelae, Pernaja, Pornainen, Porvoo, Porvoon mlk, Pukkila, Ruotsinpyhtaeae and Sipoo; Huoneilman radonmittaukset Itae-Uudenmaan alueella: Tilannekatsaus ja radonennuste. Askola, Lapinjaervi, Liljendal, Loviisa, Myrskylae, Maentsaelae, Pernaja, Pornainen, Porvoo, Porvoon mlk, Pukkila, Ruotsinpyhtaeae ja Sipoo

    Energy Technology Data Exchange (ETDEWEB)

    Voutilainen, A.; Maekelaeinen, I.

    1995-02-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m{sup 3}. It is assumed that no protection against the entry of radon is used in construction. In the study about 2400 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined form maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurement and geological data were used to assess the radon risk form soil and bedrock in different areas. (15 refs., 19 figs., 9 tabs.).

  11. Analytical study of radionuclide concentration and radon exhalation rate in market available building materials of Ramsar

    Science.gov (United States)

    Bavarnegin, Elham; Vahabi-moghaddam, Masoud; Babakhani, Asad; Fathabadi, Nasrin

    2012-07-01

    Samples of structural and covering market available building materials from Ramsar, a northern city of Iran, were analyzed for their radon exhalation rate using an active radon gas analyzer with an emanation container. The radon exhalation rate varied from below the minimum detection limit of 0.01 to 0.31 Bq·m-2·h-1 with an average of 0.08 Bq·m-2·h-1. The 226Ra, 232Th, and 40K contents were also measured using a high resolution HPGe gamma-ray spectrometer system. The radionuclides contents varied from below the minimum detectable activity up to 73.5, 169, and 1,350 Bq.kg-1, with the average value of 16 ± 6, 25 ± 11, and 280 ± 101 Bq.kg-1, respectively. It was concluded from the results that some granite samples along with the block sample were the main source of radon exhalation rate, and the mean values of 226Ra, 232Th, and 40K in building material samples are below the world average values. Therefore, the use of these market available building materials in construction of Ramsar dwellings is considered to be safe for human habitation.

  12. Indoor radon; Le radon dans les batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies.

  13. Development of an underground radon detector using an optical fiber

    Science.gov (United States)

    Yamamoto, S.; Yoshida, Y.; Iida, T.

    2003-08-01

    We developed and tested a new underground radon detector using an optical fiber. Previous underground radon detectors used a small-diameter photo-multiplier tube (PMT) behind the chamber, thus, the diameter of the underground radon detector was determined by the size of the PMT. The larger diameter of the detector resulted in considerable labor for drilling holes into soil. The new underground radon detector consists of a small chamber, an optical fiber, and a PMT. The small chamber is a scintillation detector using a ZnS(Ag) film. The optical fiber transfers the scintillated light produced in the chamber to the PMT that is positioned above the soil. In this configuration, the size of the detector was not determined by the size of the PMT. The diameter of the optical fiber used was 5 mm and the outside diameter of the detector was reduced to be 12 mm. Although the light lost from the optical fiber was about 90%, the level of the scintillation signal was much higher than the noise level produced by the PMT and electronics. Measuring the performance of the underground radon detector, we found that the energy response had a clear distribution due to alpha particles emitted by radon and its decay products. The temporal response of the detector was approximately 2 h. Sensitivity was approximately 0.01 counts/h/Bq/m/sup 3/, one third of the previous underground radon detector. These results indicate the developed radon detector can be used for continuous measurements of radon concentration in underground soil with easy handling.

  14. Indoor radon exposure and lung cancer: a review of ecological studies.

    Science.gov (United States)

    Yoon, Ji Young; Lee, Jung-Dong; Joo, So Won; Kang, Dae Ryong

    2016-01-01

    Lung cancer has high mortality and incidence rates. The leading causes of lung cancer are smoking and radon exposure. Indeed, the World Health Organization (WHO) has categorized radon as a carcinogenic substance causing lung cancer. Radon is a natural, radioactive substance; it is an inert gas that mainly exists in soil or rock. The gas decays into radioactive particles called radon progeny that can enter the human body through breathing. Upon entering the body, these radioactive elements release α-rays that affect lung tissue, causing lung cancer upon long-term exposure thereto. Epidemiological studies first outlined a high correlation between the incidence rate of lung cancer and exposure to radon progeny among miners in Europe. Thereafter, data and research on radon exposure and lung cancer incidence in homes have continued to accumulate. Many international studies have reported increases in the risk ratio of lung cancer when indoor radon concentrations inside the home are high. Although research into indoor radon concentrations and lung cancer incidence is actively conducted throughout North America and Europe, similar research is lacking in Korea. Recently, however, studies have begun to accumulate and report important data on indoor radon concentrations across the nation. In this study, we aimed to review domestic and foreign research into indoor radon concentrations and to outline correlations between indoor radon concentrations in homes and lung cancer incidence, as reported in ecological studies thereof. Herein, we noted large differences in radon concentrations between and within individual countries. For Korea, we observed tremendous differences in indoor radon concentrations according to region and year of study, even within the same region. In correlation analysis, lung cancer incidence was not found to be higher in areas with high indoor radon concentrations in Korea. Through our review, we identified a need to implement a greater variety of

  15. High natural radiation exposure in radon spa areas: a detailed field investigation in Niska Banja (Balkan region)

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Vinca Institute of Nuclear Sciences, Belgrade (Serbia and Montenegro); Kobal, I. [Jozef Stefan Institute, Ljubljana (Slovenia); Vaupotic, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Kozak, K. [Henryk Niewodniczanski Institute of Nuclear Physics, PAN Krakow, Environmental and Radiation Transport Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow (Poland)]. E-mail: krzysztof.kozak@ifj.edu.pl; Mazur, J. [Henryk Niewodniczanski Institute of Nuclear Physics, PAN Krakow, Environmental and Radiation Transport Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow (Poland); Birovljev, A. [Radonlab Ltd., Oslo (Norway); Janik, M. [Henryk Niewodniczanski Institute of Nuclear Physics, PAN Krakow, Environmental and Radiation Transport Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow (Poland); Celikovic, I. [Vinca Institute of Nuclear Sciences, Belgrade (Serbia and Montenegro); Ujic, P. [Vinca Institute of Nuclear Sciences, Belgrade (Serbia and Montenegro); Demajo, A. [Vinca Institute of Nuclear Sciences, Belgrade (Serbia and Montenegro); Krstic, G. [Faculty of Natural Sciences, University of Pristina, Kosovska Mitrovica (Serbia and Montenegro); Jakupi, B. [Faculty of Natural Sciences, University of Pristina, Kosovska Mitrovica (Serbia and Montenegro); Quarto, M. [Italian National Institute of Health, Rome (Italy); Bochicchio, F. [Italian National Institute of Health, Rome (Italy)

    2006-07-01

    The measurement campaigns have been done in the rural community of Niska Banja, a spa town located in southern Serbia, to evaluate population exposure to natural radioactivity. After a screening survey in 200 houses, annual radon and thoron concentrations were measured in 34 houses, and in 2004 a detailed investigation was carried out at six houses with elevated indoor radon concentrations. The paper presents the results of these detailed measurements. The complementary techniques were applied to determine radon and thoron concentrations in indoor air, in soil gas, radon exhalation from soil, soil permeability, and indoor and outdoor gamma doses. Soil and water samples were collected and analysed in the laboratory. Indoor radon and thoron concentrations were found to be more than 1 kBq m{sup -3} and 200 Bq m{sup -3}, respectively. Extremely high concentrations of soil-gas radon (>2000 kBq m{sup -3}) and radon exhalation rates (1.5 mBq m{sup -2} s{sup -1}) were observed. These results will be utilised to set up the methodology for a more systematic investigation.

  16. Comparison of four types of passive and integrated and sensitive radon monitors

    CERN Document Server

    Zhao Gui Zhi

    2002-01-01

    In order to improve the sensitivity of radon measurement method, Fast and Multi-functional Radon Monitor with Electret, Sensitive Miner Radon Monitor, fast and Multifunctional Radon Monitor with High Voltage and PCMR-1 Passive and Continuous Radon Monitor were developed. Except Sensitive Miner Radon Monitor suits for radon concentration measurement only, the others can be used to measure both radon concentration and radon flux rate. Their measurement principles. specifications, quality assurance system, advantages and disadvantages are introduced. The simultaneous measurement results indicate that the errors among them are less than 5% and 10%, respectively, for the average radon concentration measurement and for the average radon flux rate measurement

  17. Geographical Correlations between Indoor Radon Concentration and Risks of Lung Cancer, Non-Hodgkin's Lymphoma, and Leukemia during 1999-2008 in Korea.

    Science.gov (United States)

    Ha, Mina; Hwang, Seung-Sik; Kang, Sungchan; Park, No-Wook; Chang, Byung-Uck; Kim, Yongjae

    2017-03-24

    Indoor radon is the second most important risk factor for lung cancer and may also be a risk factor for hematopoietic cancers, particularly in children and adolescents. The present study measured indoor radon concentration nationwide at 5553 points during 1989-2009 and spatially interpolated using lognormal kriging. The incidences of lung cancer, non-Hodgkin's lymphoma (NHL), and leukemia, stratified by sex and five-year age groups in each of the 234 administrative regions in the country during 1999-2008, were obtained from the National Cancer Registry and used to calculate the standardized incidence ratios. After considering regional deprivation index values and smoking rates by sex in each region as confounding variables, the cancer risks were estimated based on Bayesian hierarchical modeling. We found that a 10 Bq/m³ increase in indoor radon concentration was associated with a 1% increase in the incidence of lung cancer in male and a 7% increase in NHL in female children and adolescents in Korea aged less than 20 years. Leukemia was not associated with indoor radon concentration. The increase in NHL risk among young women requires confirmation in future studies, and the radon control program should consider children and adolescents.

  18. Lorenz Curve and Gini coefficient: novel tools for analysing seasonal variation of environmental radon gas.

    Science.gov (United States)

    Groves-Kirkby, C J; Denman, A R; Phillips, P S

    2009-06-01

    Using a methodology derived from Economics, the Lorenz Curve and Gini Coefficient are introduced as tools for investigating and quantifying seasonal variability in environmental radon gas concentration. While the Lorenz Curve presents a graphical view of the cumulative exposure during the course of the time-frame of interest, typically one year, the Gini Coefficient distils this data still further, to provide a single-parameter measure of temporal clustering. Using the assumption that domestic indoor radon concentrations show annual cyclic behaviour, generally higher in the winter months than in summer, published data on seasonal variability of domestic radon concentration levels, in various areas of the UK, Europe, Asia and North America, are analysed. The results demonstrate significantly different annual variation profiles between domestic radon concentrations in different countries and between regions within a country, highlighting the need for caution in ascribing seasonal correction factors to extended geographical areas. The underlying geography, geology and meteorology of a region have defining influences on the seasonal variability of domestic radon concentration, and some examples of potential associations between the Gini Coefficient and regional geological and geographical characteristics are proposed. Similar differences in annual variation profiles are found for soil-gas radon measured as a function of depth at a common site, and among the activity levels of certain radon progeny species, specifically (214)Bi deposited preferentially in human body-fat by decay of inhaled radon gas. Conclusions on the association between these observed measures of variation and potential underlying defining parameters are presented.

  19. Continuous measurements of equilibrium equivalent radon concentration and passive radon measurements in dwellings of the Upper Palatinate; Kontinuierliche Messungen der gleichgewichtsaequivalenten Radonkonzentration und passive Radonmessungen in Wohnungen der Oberpfalz

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, M.; Kreienbrock, L. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Epidemiologie; Peter, J. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Inst. fuer Strahlenhygiene

    1997-10-01

    To investigate the influence of various factors on indoor concentration of radon and progeny a joint project was carried out by the Institute for Radiation Protection and the Institute for Epidemiology of the GSF - National Research Center for Environment and Health. By means of an active measurement device the concentrations of radon decay products in several Bavarian houses were measured continuously from 1993 to 1995. The measurements took place under everyday life conditions and are compared to radon concentrations measured by passive dosimeters. Informations on house characteristics and airing habits were collected from the inhabitants. Controlled ventilation experiments were conducted in some of the dwellings. This report describes the results of 38 series of measurements in 31 houses with a minimum duration of three months. A detailed description for every series is given on: - house and room characteristics - temporal course of equilibrium equivalent radon concentration - mean activity concentration and variance - comparison with radon concentration delivered by passive measurement devices, graphical presentation of - day to day variation - seasonal variation - diurnal variation for a part of the houses - results of controlled ventilation experiments. (orig./GL) [Deutsch] Zur Bestimmung von Einflussfaktoren fuer die Innenraumkonzentration von Radon und seinen Zerfallprodukten wurden in einem gemeinsamen Projekt des Institutes fuer Strahlenschutz und des Institutes fuer Epidemiologie der GSF Forschungszentrum fuer Umwelt und Gesundheit Messreihen durchgefuehrt. Mit einem kontinuierlichen Messsystem wurden hierbei in den Jahren 1992 bis 1995 die zeitlichen Verlaeufe der Konzentration der Radonzerfallsprodukte in verschiedenen bayerischen Wohnungen unter Alltagsbedingungen aufgezeichnet und den in diesen Wohnungen vermittels Passivdosimetern gemessenen Radongaskonzentrationen gegenuebergestellt. Zusaetzlich wurden Angaben zu Wohnbedingungen und

  20. Radon activity measurements around Bakreswar thermal springs

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Hirok [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700 064 (India); Das, Nisith K., E-mail: nkdas@veccal.ernet.i [Variable Energy Cyclotron Centre, Atomic Energy, 1/AF Bidhannagar, Kolkata, West Bengal 700 064 (India); Bhandari, Rakesh K. [Variable Energy Cyclotron Centre, Atomic Energy, 1/AF Bidhannagar, Kolkata, West Bengal 700 064 (India); Sen, Prasanta [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700 064 (India); Sinha, Bikash [Variable Energy Cyclotron Centre, Atomic Energy, 1/AF Bidhannagar, Kolkata, West Bengal 700 064 (India)

    2010-01-15

    {sup 222}Rn concentrations were measured in the bubble gases, spring waters, soil gases and in ambient air around the thermal springs at Bakreswar in West Bengal, India. This group of springs lies within a geothermal zone having exceptionally high heat flow about 230 mW/m{sup 2}, resembling young oceanic ridges. The spring gas has a high radon activity (approx885 kBq/m{sup 3}) and is rich in helium (approx1.4 vol. %) with appreciably large flow rate. The measured radon exhalation rates in the soils of the spring area show extensive variations from 831 to 4550/mBqm{sup 2} h while {sup 222}Rn concentrations in the different spring waters vary from 3.18 to 46.9 kBq/m{sup 3}. Surface air at a radius of 40 m around the springs, within which is situated the Bakreswar temple complex and a group of dwellings, has radon concentration between 450 and 500 Bq/m{sup 3}. In the present paper we assess the radon activity background in and around the spring area due to the different contributing sources and its possible effect on visiting pilgrims and the people who reside close to the springs.

  1. Search for radon sources in buildings--kindergartens.

    Science.gov (United States)

    Vaupotic, J

    2002-01-01

    In ten high radon level kindergartens, radon sources were sought by applying a combination of several radon measuring techniques: etched track detectors to obtain average indoor air radon concentration, continuous devices to record radon concentration and see its diurnal variation, and alpha scintillation cells to determine radon concentration in the air entering a room from cracks, holes and sinks in the floor and from under-floor channels. In three cases, a strong local radon source was identified while, in the others, the bad quality of the basic concrete slab was responsible for the high indoor radon concentration.

  2. The use of volunteer radon measurements for radon mapping purposes: an examination of sampling bias issues.

    Science.gov (United States)

    Burke, Orlaith; Murphy, Patrick

    2011-09-01

    National and regional radon surveys are used in many nations to produce maps detailing the spatial variation of indoor radon concentrations. National surveys which are designed to be representative use either a geographically-weighted or a population-weighted sampling scheme. Additionally, many countries collect a large number of data on indoor radon concentrations from volunteers who have chosen to have the indoor radon concentration measured in their own dwellings. This work examines the representativeness of volunteer-based samples in radon measurement and explores the effect of potential volunteer bias on radon mapping results. We also investigate the influence that media attention has on volunteer sampling of indoor radon concentrations. The result of our work indicates that volunteer measurements are biased due to over-sampling of high radon areas. Consequently such volunteer radon measurements should not be used for radon mapping purposes.

  3. Quaternary deposits and weathered bedrock material as a source of dangerous radon emissions in Estonia

    Directory of Open Access Journals (Sweden)

    Petersell Valter

    2015-06-01

    Full Text Available The risk of dangerous radon emissions in Estonia is high, being among the highest in Europe. In almost 33 per cent of Estonian land area, the content of radon in soil-contained air exceeds the safe limit for unrestricted construction (50 kBq/m3. In such high radon-risk areas the concentration of radon in soil-contained air ranges from 50 to 400 kBq/m3, in a few cases reaching up to 2,100 kBq/m3 exceeding the permitted level for residential areas. The situation is particularly serious in the northernmost part of the country, where uranium-rich graptolite argillite (Dictyonema shale and the Obolus phosphorite are close to ground surface and their particles are constituent parts of Quaternary deposits. Radon emissions from bedrock have been investigated in detail, but to date Quaternary strata as a source of radon emissions are poorly studied. According to our measurements the highest concentrations of radon are related to tills containing clasts and fines of graptolite argillite and phosphorite. Glacial deposits include also granitoidal material, containing U, Th and K, which have been transported by glaciers from the outcrop areas of crystalline basement rocks in Finland and the Gulf of Finland. Due to weathering, outwash and repeated redeposition other genetic types are poorer in radioactive elements and they are weaker sources of radon.

  4. Natural radioactivity and radon specific exhalation rate of zircon sands

    Energy Technology Data Exchange (ETDEWEB)

    Righi, S.; Verita, S.; Bruzzi, L. [Bologna Univ., Centro Interdipartimentale di Ricerca per le Scienze Ambientali and Dipt. di Fisica, Ravenna (Italy); Albertazzi, A. [Italian Ceramic Center, Bologna (Italy)

    2006-07-01

    The study focuses on the radon emanation from zircon sands and their derivatives, which are widely used in many sectors of industry. In particular, the results obtained by experimental measurements on samples of zircon sands and zircon flours commonly used in Italian ceramic industries are reported. Zircon sands contain a significant concentration of natural radioactivity because Th and U may substitute zirconium in the zircon crystal lattice. The relevant routes of exposure of workers to T.E.N.O.R.M. from zircon materials are external radiation and internal exposure, either by inhalation of aerosols in dusty working conditions or by inhalation of radon in workplaces. The main objective of this investigation is to provide experimental data able to better calculate the internal exposure of workers due to radon inhalation. Zircon samples were surveyed for natural radioactivity, radon specific exhalation rate and emanation fraction. Measurements of radioactivity concentration were carried out using {gamma}-spectrometry. Methods used for determining radon consisted in determining the {sup 222}Rn activity accumulated in a vessel after a given accumulation build-up time. The average activity concentrations of {sup 238}U and {sup 232}Th in samples result about 2600 and 550 Bq kg-1, respectively; these concentrations are significantly higher than the world average noticed in soils, rocks and Earth crust. The {sup 222}Rn specific exhalation rates result very low probably due to the low porosity of the material and the consequent difficulty for radon to be released from the zircon crystal lattice. (author)

  5. The Correlation of Radon Concentration with Various Building Attributes at U.S. Air Force Bases

    Science.gov (United States)

    1992-08-01

    these daughter products that continue to decay giving off radiation which can then lead to the development of lung cancer . The United States Air Force...USAF) is concerned about the increased risk of developing lung cancer by persons exposed to elevated levels of radon in their domiciles and in their...CONOM 0 S * 0 0 a N&NO.)C Nowfum - a w em C mec0- C Mama - 00 4.4 .Q0 0 40 VO O 02ýCt > a MW 0 5 O 0 500 0 ’-ONM > Co S- -W N 00l 0 N 0 O--0 CPe go - Na Wm

  6. Measuring Radon in Air, Soil and Water: An Introduction to Nuclear Physics for Schools

    Science.gov (United States)

    Johansson, K. E.; Nilsson, Ch.; Wachtmeister, S.

    2007-01-01

    With the radon measurement activities at Stockholm House of Science, nuclear and experimental physics is introduced in a way that attracts the attention and interest of the students. These projects give the students the opportunity to use mobile detectors, either in their school, in the House of Science or in their homes. During 2006, 34 radon…

  7. Anomalous radon emission as precursor of medium to strong earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria [National Institute of R& D for Optoelectronics, MG5 Bucharest -Magurele, 077125 Romania (Romania)

    2016-03-25

    Anomalous radon (Rn{sup 222}) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth’s crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.

  8. Radon in Schools

    Science.gov (United States)

    ... that the problem can be solved. EPA's national survey of schools produced some alarming results about concentrations in our children's classrooms. Public awareness must be raised about the hazards of radon ...

  9. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  10. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.

    1999-01-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to morefundamental studies of radon transport. To ascertain ......, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  11. Estimation of Indoor Radon from Concrete Blocks Used In ...

    African Journals Online (AJOL)

    Radon gas is the most important source of natural radiation. Indoor radon concentration is the main path of human exposure to high radon concentration. Radon contribution from concrete block walls of typical Nigerian dwellings has been estimated from gamma ray spectroscopy measurements of radium concentration ...

  12. Radon origin in the metropolitan region of Belo Horizonte, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Talita de O.; Oliveira, H. de [Departamento de Engenharia Nuclear (PCTN/DEN), Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil); Rocha, Zildete; Dias, Antonio F., E-mail: rochaz@cdtn.br, E-mail: antdias@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Malta, Ricardo S.V. [Engenharia e Consultoria - SEMC, Belo Horizonte, MG (Brazil)

    2011-07-01

    The main sources of radon concentration in buildings are the underground surrounding soil and bedrock, construction materials and underground water supply. However, the contribution from these sources to the indoor radon level depends on many factors, such as type of the building, geology and pedology of the site and also the floor level. Focusing on this concern, the present work outlines on the characterization of the radon concentration in two different kinds of buildings - slab-on-grade dwellings and apartments on the second floor and above - in the Metropolitan Region of Belo Horizonte, Brazil, which is located in a large part on granite embasement area, the Granitic Gnaissic Complex. The radon concentration in dwellings and apartments, measured by using E-PERM Electrets Ion Chamber, ranged from 18.5 to 1591.0 Bqm{sup -3} (mean value 114.7 {+-} 5.5 Bqm{sup -3}) and 3.7 to 185.0 Bqm{sup -3} (mean value 70.3 {+-} 6.7 Bqm{sup -3}), respectively. Thus, the highest radon concentration is present in dwellings not in apartments, suggesting that the enhanced radon concentration maybe was originated mainly from local geological settings instead of other sources. In order to confirm this hypothesis, the measurements of the soil gas radon concentration were carried out by using AlphaGUARD PQ2000PRO detector and {sup 226}Ra ({sup 214}Bi) and {sup 224}Ra ({sup 212}Pb) specific activity in construction materials were determined by using gamma-ray spectrometry HPGe detector. These results confirmed the local geological setting as the main radon source. Moreover, radon concentration much higher than United States Environmental Protection Agency USEPA action level 148Bq.m{sup -3} occurred only in slab-on-grade dwellings. (author)

  13. Mapping uranium concentration in soil: Belgian experience towards a European map.

    Science.gov (United States)

    Cinelli, Giorgia; Tondeur, Francois; Dehandschutter, Boris; Bossew, Peter; Tollefsen, Tore; De Cort, Marc

    2017-01-01

    A map of uranium concentration in soil has been planned for the European Atlas of Natural Radiation. This Atlas is being developed by the Radioactivity Environmental Monitoring (REM) group of the Joint Research Centre (JRC) of the European Commission. The great interest in uranium compared to other terrestrial radionuclides stems from the fact that radon (222Rn) is in the decay chain of uranium (238U) and that public exposure to natural ionizing radiation is largely due to indoor radon. With several different databases available, including data (albeit not calibrated) from an airborne survey, Belgium is a favourable case for exploring the methodology of uranium mapping. A harmonized database of uranium in soil was built by merging radiological (not airborne) and geochemical data. Using this harmonized database it was possible to calibrate the data from the airborne survey. Several methods were used to perform spatial interpolation and to smooth the data: moving average without constraint, by soil class and by geological unit. When using the harmonized database, it is first necessary to evaluate the uranium concentration in areas without data or with an insufficient number of data points. Overall, there is a reasonable agreement between the maps on a 1 km × 1 km grid obtained with the two datasets (airborne U and harmonized soil U) with all the methods. The agreement is better when the maps are reduced to a 10 km × 10 km grid; the latter could be used for the European map of uranium concentration in soil. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Estimating soil zinc concentrations using reflectance spectroscopy

    Science.gov (United States)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  15. The distribution of indoor radon in Transylvania (Romania) - influence of the natural and anthropogenic factors

    Science.gov (United States)

    Cucos Dinu, Alexandra; Baciu, Calin; Dicu, Tiberius; Papp, Botond; Moldovan, Mircea; Bety Burghele, Denissa; Tenter, Ancuta; Szacsvai, Kinga

    2017-04-01

    Exposure to radon in homes and workplaces is now recognized as the most important natural factor in causing lung cancer. Radon activity is usually higher in buildings than in the outside atmosphere, as it may be released from building materials and soil beneath the constructions, and the concentration builds-up indoor, due to the low air renewal rates. Indoor radon levels can vary from one to multiple orders of magnitude over time and space, as it depends on several natural and anthropogenic factors, such us the radon concentration in soil under the construction, the weather conditions, the degree of containment in the areas where individuals are exposed, building materials, outside air, tap water and even city gas, the architecture, equipment (chimney, mechanical ventilation systems, etc.), the environmental parameters of the building (temperature, pressure, etc.), and on the occupants' lifestyle. The study presents the distribution of indoor radon in Transylvania, Romania, together with the measurements of radon in soil and soil water. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurement Protocol. Radon concentrations in soil and water were measured using the LUK3C device. A complete map was plotted at the date, based on 3300 indoor radon measurements, covering an area of about 42% of the Romanian territory. The indoor radon concentrations ranged from 5 to 3287 Bq m-3, with an updated preliminary arithmetic mean of 179 Bq m-3, and a geometric mean of 122 Bq m-3. In about 11% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq m-3. The soil gas radon concentration varies from 0.8 to 169 kBq m-3, with a geometric mean of 26 kBq m-3. For water samples, the results show radon concentrations within the range of 0.3 - 352.2 kBq m-3, with a geometric mean of 7.7 Bq L-1. A weak correlation between the three sets of values

  16. Application of pulse decay discrimination liquid scintillation counting for indoor radon measurement

    Science.gov (United States)

    Bem, H.; Ostrowska, M.; Bem, E. M.

    1999-01-01

    The pulse decay discrimination (PDD) liquid scintillation technique has been applied to optimise radon counting by the Pico-Rad method. A dermination limit (with 10% relative error) of 4.8 Bqm-3 for indoor radon measurement has been achieved for optimal PDD setting with a radon elution cocktail containing 20% (v/v) of Ultima Gold AB in Instafluor. From a practical point of view this procedure allows a shortening of the counting time to 1 hour after 48 hours exposure to detectors. This method has been applied to indoor radon determinations in 626 places (municipal offices and private dwellings) in the Lódz region. These measureents resulted in an average concentration of 21.4 Bqm-3 and a median value of 15.1 Bqm-3. Analysis of the data indicates that most indoor radon comes from the underlying soil, which contains relatively little226Ra (10-20 Bqkg-1).

  17. Comparative Study of Radon Concentration with Two Techniques and Elemental Analysis in Drinking Water Samples of the Jammu District, Jammu and Kashmir, India.

    Science.gov (United States)

    Kumar, Ajay; Kaur, Manpreet; Mehra, Rohit; Sharma, Dinesh Kumar; Mishra, Rosaline

    2017-10-01

    The level of radon concentration has been assessed using the Advanced SMART RnDuo technique in 30 drinking water samples from Jammu district, Jammu and Kashmir, India. The water samples were collected from wells, hand pumps, submersible pumps, and stored waters. The randomly obtained 14 values of radon concentration in water sources using the SMART RnDuo technique have been compared and cross checked by a RAD7 device. A good positive correlation (R = 0.88) has been observed between the two techniques. The overall value of radon concentration in various water sources has ranged from 2.45 to 18.43 Bq L, with a mean value of 8.24 ± 4.04 Bq L, and it agreed well with the recommended limit suggested by the European Commission and UNSCEAR. However, the higher activity of mean radon concentration was found in groundwater drawn from well, hand and submersible pumps as compared to stored water. The total annual effective dose due to radon inhalation and ingestion ranged from 6.69 to 50.31 μSv y with a mean value of 22.48 ± 11.03 μSv y. The total annual effective dose was found to lie within the safe limit (100 μSv y) suggested by WHO. Heavy metal analysis was also carried out in various water sources by using an atomic absorption spectrophotometer (AAS), and the highest value of heavy metals was found mostly in groundwater samples. The obtained results were compared with Indian and International organizations like WHO and the EU Council. Among all the samples, the elemental analysis is not on the exceeding side of the permissible limit.

  18. Indoor radon measurements in Kosovo and Metohija over the period 1995-2007

    Energy Technology Data Exchange (ETDEWEB)

    Milic, Gordana [Faculty of Natural Sciences, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Yarmoshenko, Ilia V., E-mail: ivy@ecko.uran.r [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation); Jakupi, Bajram [Faculty of Natural Sciences, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Kovacevic, Milojko; Zunic, Zora S. [VINCA Institute of Nuclear Science, Mike Alasa St., 12-14, 11000 Belgrade (Serbia)

    2011-01-15

    The paper deals with the results of the investigations of indoor radon measurements in more than 300 rural and urban dwellings in Kosovo and Metohija. All measurements were carried out using CR-39 solid state nuclear track detectors by similar protocols and within two series in 1990-s and in 2000-s, in 34 settlements divided by 9 regions, thus covering significant part of Kosovo. For most of measured points the adjustment for seasonal variation was necessary and had been conducted. Highest average values of indoor radon concentrations were found in rural settlements of Lipljan and Vitina regions, 512 and 452 Bq/m{sup 3}, respectively. Combined analysis allows indoor radon concentration of 220 Bq/m{sup 3} to be suggested as representative estimate for Kosovo, while additional data appear. Observed pattern of indoor radon seasonal variation and difference of radon levels between ground and upper floors suggest soil radon as primary source of indoor radon and significance of convection type radon entry.

  19. Development of a radon standard source

    Science.gov (United States)

    Sakamoto, Shigeyasu; Ishimori, Yuu; Maruo, Yoshihiro

    2005-06-01

    The present paper describes the development of a radon standard source for use in establishing the traceability of radon concentration measurements in air. Previously, radon generated by bubbling air through a radium salt solution was widely used for calibration of radon measurement equipment; however, the handling of a solid-phase radon source is easier. In the present study, the radioactivity of radon released in a vapor phase was determined from the difference between the radioactivity of the radium and the residual radon progenies in the source. A germanium detector, calibrated using gamma reference sources, was used for these radioactivity measurements. Under equilibrium conditions the radioactivity of the radon released from the radium source was found to be 988 Bq. The source was sealed in a stainless-steel container having a nominal capacity of 6 l to produce a radon standard source of density of 167.5 [Bq/l].

  20. Radon estimation in water resources of Mandi - Dharamshala region of Himachal Pradesh, India for health risk assessments

    Science.gov (United States)

    Kumar, Gulshan; Kumari, Punam; Kumar, Mukesh; Kumar, Arvind; Prasher, Sangeeta; Dhar, Sunil

    2017-07-01

    The present study deals with the radon estimation in 40 water samples collected from different natural resources and radium content in the soils of Mandi-Dharamshala Region. Radon concentration is determined by using RAD-7 detector and radium contents of the soil in vicinity of water resources is as well measured by using LR-115 type - II detector, which is further correlated with radon concentration in water samples. The potential health risks related with 222Rn have also been estimated. The results show that the radon concentrations within the range of 1.51 to 22.7Bq/l with an average value of 5.93 Bq/l for all type of water samples taken from study area. The radon concentration in water samples is found lower than 100Bq/l, the exposure limit of radon in water recommended by the World Health Organization. The calculated average effective dose of radon received by the people of study area is 0.022 mSv/y with maximum of 0.083 mSv/y and minimum 0.0056 mSv/y. The total effective dose in all sites of the studied area is found to be within the safe limit (0.1 mSv/year) recommended by World Health Organization. The average value of radium content in the soil of study area is 6.326 Bq/kg.

  1. Environmental radon with RAD7 detector; Radon ambiental con detector RAD7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Balcazar, M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Fernandez G, I. M.; Capote F, E., E-mail: arturo.lopez@inin.gob.mx [Centro de Proteccion e Higiene de las Radiaciones, Carretera La Victoria II Km 2.5 e/ Monumental y Final, Guanabacoa, La Habana (Cuba)

    2016-09-15

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m{sup -3}, is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m{sup -3}, counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m{sup -3}, and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m{sup -3} ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  2. Levels of radon gas concentration and progeny in homes of Potosi City, Bolivia to 4000 m; Niveles de concentracion de gas radon y progenie en viviendas de la Ciudad de Potosi, Bolivia a 4000 msnm

    Energy Technology Data Exchange (ETDEWEB)

    Mamani M, R. [Universidad Autonoma Tomas Frias, Carrera de Fisica, Av. del maestro s/n, Edif. Central Potosi, Villa Imperial de Potosi (Bolivia, Plurinational State of); Claros J, J. [Universidad Autonoma Tomas Frias, Facultad de Minas Potosi, Centro de Investigacion, Av. Serrudo y Arce s/n, Villa Imperial de Potosi (Bolivia, Plurinational State of); Vasquez A, R., E-mail: raulm2k13@hotmail.com [Instituto Boliviano de Biologia de Altura, Calle Hoyos 953, La Paz (Bolivia, Plurinational State of)

    2015-10-15

    Full text: In this work the presence of radon gas was determined, which is a radioactive contaminant that comes from underground, able to penetrate the houses. The danger is that when mixed air and when inhaled can cause serious damage to the lungs, for the short life time that has radon and progeny for decay, damaging the pulmonary alveoli and reducing breathing capacity of the habitants, then causing polycythemia in some cases. The study was carried out in homes in the city of Potosi, Bolivia located at 4000 m. The quantification of radon gas and progeny was performed with the equipment Alpha-Zaeller-2 (Az-2), quantification was realized in 6 zones of the city of Potosi, chosen randomly. In each zone were carried out measurements in 40 homes (2 rooms more permanent), both day and night, for a period of 3 days in two different seasons and with concentrations of average humidity of 20, 50 and 80%. The values obtained for each period vary depending on the season and 30 to 50% of the allowable values given by the EPA and Who for housing. (Author)

  3. Radon measurements in schools: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    1989-03-01

    The report provides school officials, groups such as Parent-Teacher Associations, and other interested person with interim information on how to measure radon in schools and what to do if elevated levels are found. The first sections of the document contain facts about radon and the health risks associated with radon exposure. The next sections summarize what is known about radon in schools and provide guidance for conducting radon measurements. The last sections describe how to interpret the measurement results and suggest techniques that can be used to reduce radon concentrations if elevated levels are found.

  4. Measurements of radon-daughter concentrations in and around dwellings in the northern part of the Netherlands; a search for the influences of building materials, construction and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfs, F.; Hofstede, H.; De Meijer, R.J.; Put, L.W.

    1984-08-01

    The concentration of radon daughters has been determined in and around 80 dwellings located in the northern part of the Netherlands by using a one-filter method. Median values of 2.0 and 0.4 mWL were measured for the indoor and outdoor concentrations, respectively. On the average, dwellings with double-pain windows and/or concrete floors were to have significantly higher radon concentrations than those with single-pane windows and/or wooden floors. For the living room of a particular dwelling 18 measurements were carrried out. The data for this dwelling indicate a linear relation between the concentration indoors and outdoors with a slope of 3.8 +/- 2.0. This unexpected behaviour is thought to be related to ventilation via the crawl space.

  5. Results from time integrated measurements of indoor radon, thoron and their decay product concentrations in schools in the Republic of Macedonia.

    Science.gov (United States)

    Stojanovska, Zdenka; Zunic, Zora S; Bossew, Peter; Bochicchio, Francesco; Carpentieri, Carmela; Venoso, Gennaro; Mishra, Rosaline; Rout, R P; Sapra, B K; Burghele, Bety D; Cucoş-Dinu, A; Boev, Blazo; Cosma, C

    2014-11-01

    As part of a survey on concentrations of radon, thoron and their decay products in different indoor environments of the Balkan region involving international collaboration, measurements were performed in 43 schools from 5 municipalities of the Republic of Macedonia. The time-integrated radon and thoron gas concentrations (CRn and CTn) were measured by CR-39 (placed in chambers with different diffusion barriers), whereas the equilibrium equivalent radon and thoron concentrations (EERC and EETC) were measured using direct radon-thoron progeny sensors consisting of LR-115 nuclear track detectors. The detectors were deployed at a distance of at least 0.5 m from the walls as well as far away from the windows and doors in order to obtain more representative samples of air from the breathing zone; detectors were exposed over a 3-month period (March-May 2012). The geometric mean (GM) values [and geometric standard deviations (GSDs)] of CRn, CTn, EERC and EETC were 76 (1.7), 12 (2.3), 27 (1.4) and 0.75 Bq m(-3) (2.5), respectively. The equilibrium factors between radon and its decay products (FRn) and thoron and its decay products (FTn (>0.5 m)) were evaluated: FRn ranged between 0.10 and 0.84 and FTn (>0.5 m) ranged between 0.003 and 0.998 with GMs (and GSDs) equal to 0.36 (1.7) and 0.07 (3.4), respectively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Impact of fluoride and other aquatic parameters on radon concentration in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Salih, Isam; Baeckstroem, Mattias; Karlsson, Stefan; Lund, Eva; Pettersson, H.B.L. E-mail: hakan.pettersson@lio.se

    2004-01-01

    Radon ({sup 222}Rn) accumulation in water in relation to stable elements was studied for the purpose of determining factors influencing the transfer of {sup 222}Rn to and from water. In 72 groundwater samples, {sup 222}Rn and about 70 analytical parameters were analysed using radiometric and ICP-MS techniques. Using multivariate statistics (partial least squares), it was observed that {sup 222}Rn has a positive correlation with fluoride and uranium. The correlation with fluoride was further investigated by a laboratory time-scale experiment to measure the emanation of {sup 222}Rn from water as a function of fluoride, pH and carbonate. The transfer of {sup 222}Rn from water was measured by continuous monitoring in air in a closed loop set-up. It was observed that fluoride in water adhere or trap {sup 222}Rn preferably in acidic water (pH 3). It is suspected that natural physical processes (such as diffusion and microbubble phenomenon) are less effective to transport {sup 222}Rn in the presence of fluoride.

  7. Fluctuation of Indoor Radon and VOC Concentrations Due to Seasonal Variations

    Science.gov (United States)

    This research was conducted to better characterize the spatial and temporal variability of vapor intrusion by collecting a full year’s dataset of weekly measurements of subslab soil gas, external soil gas, and indoor air, on a single house that is impacted by vapor intrusion of r...

  8. Measure of exposure of short-lived radon products using an alpha spectrometer for measuring indoor aerosol activity concentration and dose evaluation; Misure di esposizione ai prodotti di decadimento del radon a breve vita tramite uno spettrometro alfa per la misura dell'attivita' del particolato atmosferico indoor e valutazioni dosimetriche

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Castellani, C.M.; Formignani, M. [ENEA, Divisione Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche Ezio Clementel, Bologna (Italy); Mariotti, F. [Bologna Univ., Bologna (Italy). Dipt. di Fisica

    2001-07-01

    A new italian law introduces the regulation of occupational exposure to radon. To evaluate the inhalation of radon daughters by the workers a sampling device has been assembled with the aim of evaluation of unattached and aerosol attached radon daughters' fractions. The instrument, based on selection of the aerosuspended particles by means of a wire screen type battery and subsequent collection on a total filter, allows to describe the behaviour of both fractions using defined temporal pattern of collecting particles and counting them by alpha spectroscopy. A measurement campaign to test the radon daughter dichotomous spectrometer in comparison with a commercial Radon Working Level meter, has been performed in a research laboratory of central Italy affected by high radon concentrations. The radon concentration during the measurement campaign has been also measured. The equilibrium factor F{sub e}q ad the attachment factor fp have been evaluated during 3 days campaign. Using the measured mean parameters (radon concentration, F{sub e}q, f{sub p}) the dose evaluation for workers using dosimetric approach has been performed. A comparison between the epidemiologic approach, based on the radon concentration, and dosimetric approach is also presented. [Italian] L'esposizione a radon in ambiente lavorativo e la conseguente inalazione dei suoi prodotti di decadimento in forma particolata e' oggetto di una recente normativa italiana in materia di protezione dalle radiazioni ionizzanti. Per rispondere a questa necessita', presso l'Istituto per la Radioprotezione dell'ENEA di Bologna e' stato progettato e realizzato uno spettrometro alfa per la misura della progenie del radon con la finalita' di valutare, su brevi periodi di tempo, la concentrazione individuale dei suoi prodotti di decadimento e, con l'impiego di batterie a diffusione a reti, consentire inoltre la discriminazione della concentrazione della frazione attaccata e non

  9. Mapping geogenic radon potential by regression kriging

    Energy Technology Data Exchange (ETDEWEB)

    Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)

    2016-02-15

    Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method

  10. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    -horizon. Three soil properties were used in all of the developed models: soil type, physical clay content (particle size ... is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  11. Spanish experience on the design of radon surveys based on the use of geogenic information.

    Science.gov (United States)

    Sainz Fernández, C; Quindós Poncela, L S; Fernández Villar, A; Fuente Merino, I; Gutierrez-Villanueva, J L; Celaya González, S; Quindós López, L; Quindós López, J; Fernández, E; Remondo Tejerina, J; Martín Matarranz, J L; García Talavera, M

    2017-01-01

    One of the requirements of the recently approved EU-BSS (European Basic Safety Standards Directive, EURATOM, 2013) is the design and implementation of national radon action plans in the member states (Annex XVIII). Such plans require radon surveys. The analysis of indoor radon data is supported by the existing knowledge about geogenic radiation. With this aim, we used the terrestrial gamma dose rate data from the MARNA project. In addition, we considered other criterion regarding the surface of Spain, population, permeability of rocks, uranium and radium contain in soils because currently no data are available related to soil radon gas concentration and permeability in Spain. Given that, a Spanish radon map was produced which will be part of the European Indoor Radon Map and a component of the European Atlas of Natural Radiation. The map indicates geographical areas with high probability of finding high indoor radon concentrations. This information will support legislation regarding prevention of radon entry both in dwellings and workplaces. In addition, the map will serve as a tool for the development of strategies at all levels: individual dwellings, local, regional and national administration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  13. Measurement of radon exhalation rate in various building materials ...

    Indian Academy of Sciences (India)

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpurdistricts of ...

  14. Residential radon in Galicia: a cross-sectional study in a radon-prone area.

    Science.gov (United States)

    Lorenzo-González, María; Ruano-Ravina, Alberto; Peón, Joaquín; Piñeiro, María; Barros-Dios, Juan Miguel

    2017-09-01

    Residential radon exposure is a major public health problem. It is the second greatest cause of lung cancer, after smoking, and the greatest in never-smokers. This study shows the indoor radon exposure distribution in Galicia and estimates the percentage of dwellings exceeding reference levels. It is based on 3245 residential radon measurements obtained from the Galician Radon Map project and from controls of two previous case-control studies on residential radon and lung cancer. Results show a high median residential radon concentration in Galicia (99 Bq m -3 ), with 49.3% of dwellings having a radon concentration above 100 Bq m -3 and 11.1% having a concentration above 300 Bq m -3 . Ourense and Pontevedra, located in South Galicia, are the provinces with the highest median indoor radon concentrations (137 Bq m -3 and 123.5 Bq m -3 , respectively). Results also show lower radon levels in progressively higher building storeys. These high residential radon concentrations confirm Galicia as a radon-prone area. A policy on radon should be developed and implemented in Galicia to minimize the residential radon exposure of the population.

  15. Predictive analysis and mapping of indoor radon concentrations in a complex environment using kernel estimation: An application to Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Kropat, Georg, E-mail: georg.kropat@chuv.ch [Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, 1007 Lausanne (Switzerland); Bochud, Francois [Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, 1007 Lausanne (Switzerland); Jaboyedoff, Michel [Faculty of Geosciences and Environment, University of Lausanne, GEOPOLIS — 3793, 1015 Lausanne (Switzerland); Laedermann, Jean-Pascal [Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, 1007 Lausanne (Switzerland); Murith, Christophe; Palacios, Martha [Swiss Federal Office of Public Health, Schwarzenburgstrasse 165, 3003 Berne (Switzerland); Baechler, Sébastien [Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, 1007 Lausanne (Switzerland); Swiss Federal Office of Public Health, Schwarzenburgstrasse 165, 3003 Berne (Switzerland)

    2015-02-01

    . - Highlights: • Kernel regression was used to map indoor radon concentration in Switzerland. • Our model explains 28% of the variations of radon concentration data. • Maps were generated considering different architectural elements and geology. • Maps showing the local probability to exceed 300 Bq/m3 were proposed. • We developed a confidence index to assess the reliability of the probability map.

  16. In-field evaluation of the impact of ageing and fading effects on annual radon concentration measurements for two different techniques.

    Science.gov (United States)

    Venoso, G; Ampollini, M; Antignani, S; Carpentieri, C; Bochicchio, F

    2016-12-01

    Measurements covering a 1 year period are often used and required by legislation to assess the average radon concentration within a house or a workplace. This kind of long-term measurement-generally carried out with techniques based on nuclear track detectors-can be affected by a reduction in sensitivity due to ageing and fading of latent tracks during the exposure period, thus resulting in an underestimation of the actual average concentration. In order to evaluate in field conditions the ageing and fading effects on annual radon concentration measurements, two different studies in a large sample of rooms in dwellings (162) and in workplaces (432) were conducted using two different techniques (detector and track read-out system): (i) CR-39 plastics readout with a fully automated image analysis system, and (ii) LR 115 films with a spark-counter for track counting. Study design and data analysis aimed to evaluate both the average and the variability of ageing and fading effects in real conditions, and to reduce and separate the contribution of measurement uncertainty to the observed variability. For the CR-39 based technique, the results show that radon concentration measurements over a 12month period are on average about 16% lower than those evaluated with measurements of two consecutive 6 month periods, implying the need for a correction factor to avoid measurement bias (i.e. underestimation) due to ageing and fading effects. The observed variability of ageing and fading effects among the sampled rooms is not negligible (coefficient of variation about 18%), although a considerable fraction is attributable to measurement uncertainty, which is presumably not related to ageing and fading. For the technique based on LR 115 spark counting, ageing and fading do not significantly affect the results of radon concentration measurement.

  17. Characterization of blowholes as radon and thoron sources in the volcanic region of La Garrotxa, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, V., E-mail: victoria.moreno@uab.ca [Grup de Fisica de les Radiacions, Departament de Fisica, Edifici Cc, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Bach, J. [Unitat de Geodinamica Externa i d' Hidrogeologia, Departament de Geologia, Edifici Cs, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Baixeras, C.; Font, Ll. [Grup de Fisica de les Radiacions, Departament de Fisica, Edifici Cc, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2009-10-15

    In the volcanic region of La Garrotxa there are natural holes in the soil from which a flow of air can reach the outdoor/indoor environment. In a previous study, these holes (called blowholes) have been found to have a big influence on indoor radon levels in a couple of houses. This finding triggered the interest to characterize these blowholes as radon/thoron sources. In this work, a total of 26 holes have been identified and characterized by geological field observations and by measuring their dimensions, air speed, temperature, humidity, and radon and thoron concentrations. Radon has been measured with passive (Makrofol) and active detectors (monitors PRASSI and RAD 7, being the latter used also to measure thoron). One of the indoor blowholes has been studied in detail and important temporal variations have been found, showing that radon levels are clearly correlated with the soil-outdoor temperature difference. There is not a significant radiological risk for the inhabitants and workers of the studied homes and workplaces with indoor blowholes. However, taking into account that in warm seasons buildings with blowholes in pyroclastic materials from volcanoes or in volcanic scoria under a compact lava flow may have high indoor radon levels (up to 1.5 kBq m{sup -3}) we conclude that volcanic regions with similar geological features and with presence of blowholes should be considered as areas with a potential radon/thoron radiological risk.

  18. Comparison of techniques active and passive in measurement of radon concentration ({sup 222}Ra) in the air; Comparacao de tecnicas ativa e passiva na medicao de concentracao de radonio ({sup 222}Rn) no ar

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Evaldo Paulo de

    2017-11-01

    The purpose of this work was to perform a study comparing radon concentration measurements between two techniques used to measure radon gas in the air: one using LEXAN polycarbonate plastic detectors and the other the continuous monitor in AlphaGUARD passive mode. The concentrations of radon gas within radon emanation chambers were measured using calibrated / traceable sources generating {sup 222}Rn through {sup 226}Ra. In calibration the 'calibration factor' or 'sensitivity' was determined for the LEXAN plastic detector. The calibration work of the dosimeters was carried out at the Radon Laboratory of the Environmental Analysis Division - DIRAD IRD/CNEN and at the Natural Radioactivity Laboratory (LRN) of the Center for the Development of Nuclear Technology (CDTN/CNEN). The 'calibration factor' or 'sensitivity' was found to be 32.34 (traits.cm{sup -2})/(kBq.d.m{sup -3}). This factor was used to determine the radon concentration measured by the LEXAN plastic detectors. Also in the calibration, the efficiencies for LEXAN (94.1% ± 9.7%) and AlphaGUARD (92.5% ± 7.2%) were determined. The statistical analysis used showed good parity in the results of the measurements. It was concluded that the results were satisfactory and will serve as a good reference for studies related to the radon air meters used in this work. (author)

  19. Radon - The management of the risk related to radon; Le radon la gestion du risque lie au radon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This leaflet briefly explains what radon is, where it comes from, and what it becomes. It indicates and briefly comments its concentrations in French departments, describes how radon can affect our health (lung cancer), describes how the risk can be reduced in buildings, and indicates the existing regulatory provisions

  20. CONSEQUENCES OF USING HOME-MADE RADON SOURCES FOR MEASURING THE RADON DIFFUSION COEFFICIENT.

    Science.gov (United States)

    Dobrovolný, T; Jiránek, M

    2017-11-01

    The applicability of home-made radon sources for determining the radon diffusion coefficient of waterproofing materials was studied for three representatives of materials with a high radium content: uraninite, slag concrete and filter sand. The results of our investigation confirmed that the radon production rate of home-made radon sources is significantly lower than the radon production rate of artificial sources. Consequently, home-made sources are usually unable to generate concentrations higher than 100 kBq/m3 in the source container. Therefore, they cannot be used for determining radon diffusion coefficients lower than 1 × 10-12 m2/s. In addition, when home-made radon sources are used, only time-dependent mathematical solutions of the non-stationary radon diffusion can be used for determining the radon diffusion coefficient from the measured data. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Evaluation of radon levels in indoor gymnasia of Palermo (Sicily and Sassari (Sardinia

    Directory of Open Access Journals (Sweden)

    Alberto Firenze

    2009-12-01

    Full Text Available

    Background: In the last decades, there has been increased worldwide interest in the management of health risks from indoor radon.

    Methods: From 2006 to 2008, a survey on air radon levels was carried out in a total of 57 indoor gymnasia respectively located in the urban area of Palermo (Sicily and Sassari (Sardinia.

    Results: The indoor radon levels were generally low with different geometric means in the two geographic areas (14.3 Bq/m3 in Palermo and 36 Bq/m3 in Sassari, respectively. Overall, in both groups increasing values of radon were found during the night and the early morning, with radon concentrations significantly lower during working time than at other times. The analysis of structural parameters showed that direct contact with the soil significantly correlated with increased levels of radon in gymnasia located in Palermo’s area (p<0.05. Furthermore, higher radon levels in Sicilian structures were also associated, although not significantly, with lack of sumps (19.3 vs 12.9 Bq/m3, location below the ground level (18.8 vs 8.7 Bq/m3, lack of windows (25 vs 13.2 Bq/m3, presence of forced ventilation (15.5 vs 7.3 Bq/m3 and with cracks or moisture tracks (15.7 vs 13.2 Bq/m3.

    Conclusions: Radon tends to accumulate in indoor sites and it’s monitoring, especially in buildings with potentially overcrowded conditions, could be of public health interest. Mitigation measures and minimization of the number of structural and functional risk parameters should be strongly encouraged in order to limit radon accumulation especially in countries with higher radium concentration in the soil.

  2. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de

  3. Caves, mines and subterranean spaces: hazard and risk from exposure to radon.

    Science.gov (United States)

    Crockett, R. G. M.; Gillmore, G. K.

    2009-04-01

    Radon is a naturally occurring radioactive gas. It is colourless, odourless and chemically inert. The most hazardous isotope is 222Rn. Radon is formed in the natural environment by the radioactive decay of the element uranium (238U) and is a daughter product of daughter product of radium (226Ra). Uranium and radium are found, in differing degrees, in a wide range of rocks, soils (and building materials that are made from these). Radon concentrations in caves, e.g. limestone caves such as the Great Cave of Niah, Borneo, and caves in the Mendips and Peak District in the UK, has been documented and reveal that both (prehistoric) cave-dwellers and other users such as archaeologists are at risk from exposure to radon a naturally occurring radioactive gas. In general, but dependent on cave geometry and ventilation, radon concentration increases with increasing distance from the entrance, implying that the hazard also increases with distance from the entrance. With regard to mines and mining operations, as well as modern extraction of uranium and radium ores, both ores commonly occur alongside other metallic ores, e.g. silver at Schneeberg and Joachimsthal, and tin in Cornwall, and in some instances, waste from earlier metalliferious mining activity has itself been ‘mined' for uranium and/or radium ores. It is not solely the miners and other subterranean workers which are at risk, other workers and local inhabitants are also at risk. Also, that risk is not eliminated by protection against dust/airborne particulates: the risk from inhalation of radon is only reduced by reducing the inhalation of radon, i.e. use of breathing apparatus. Amongst the general population, radon is the second most significant cause of lung cancer behind tobacco smoking. Estimates vary but 6-9% of lung-cancers are attributable to radon and approximately 2% all cancer deaths are attributable to radon. These proportions will increase in higher-radon environments such as caves, mines and mining

  4. Long term performance of different radon remedial methods in Sweden; Radonaatgaerders bestaendighet

    Energy Technology Data Exchange (ETDEWEB)

    Clavensjoe, Bertil [Bjerking AB, Uppsala (Sweden)

    2002-06-01

    The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local authorities measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m{sup 3} in 54 (54) single-family houses and 7 (7) flats, between 210 Bq/m{sup 3} and 400 Bq/m{sup 3} in 23 (18) single-family houses and 5 (6) flats, and higher than 400 Bq/m{sup 3} in 12 (18) single-family houses and 2 (1) flats. The study 1991 showed also that in about 40 % of the cases the radon concentration had increased by more than 30 % only a few years after reduction actions had been taken. In 19 dwellings the radon concentration was at least doubled. In no fewer than 38 dwellings the radon level has been over 400 Bq/m{sup 3} in at least one of the four measuring occasions. The change in radon concentrations was not specific to any given method but seemed to be evenly distributed over all of them. The investigation results showed the necessity for repeated measuring where counter measures have been taken. The causes for increasing radon levels have been made clear in all except 2-3 cases.

  5. Development of a quality assured calibration method for the PSI radon chamber reference atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, C.; Butterweck-Dempewolf, G.; Vezzu, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-08-01

    Radon detectors and measuring instruments are calibrated at the PSI Reference Laboratory for Radon Gas Concentration Measurements by exposing them to a calibrated radon reference atmosphere in the PSI radon chamber. A sophisticated and quality assured calibration technique was developed which guarantees the traceability of this radon chamber reference atmosphere to standards of internationally acknowledged primary laboratories. (author) 2 figs., 2 refs.

  6. Use of simulink to address key factors for radon mitigation in a Fairbanks home.

    Science.gov (United States)

    Marsik, Tom; Johnson, Ron

    2008-05-01

    Hilly areas around Fairbanks, Alaska, are known to have elevated soil radon concentrations. Due to geological conditions, cold winters, and the resulting stack effect, houses in these areas are prone to higher indoor radon concentrations. Key variables with respect to radon mitigation were addressed in this paper by using a dynamic model implemented in MATLAB Simulink. These variables included the ventilation rate; the foundation flow resistance, which can be affected by sealing the foundation during the construction of a house; and the differential pressure between the subslab and the house interior, which can be affected by using a subslab depressurization system. The model was used for the scenario of a varying differential pressure and then for the scenario of a varying ventilation rate at a Fairbanks home where real-time radon concentrations were measured. The correlation coefficients between the model-predicted and measured radon concentrations were 0.96 and 0.94, for both scenarios respectively, which verified the feasibility of the model for predicting indoor radon concentrations.

  7. Effects of Using Light-Weight Concrete on Indoor Radon Concentration in High-Rise Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.N.; Cheung, T.; Koo, S.Y

    1999-07-01

    Light-weight concrete (LWC) (or drywall construction) has been used for partition walls in public housing in Hong Kong for about 10 years. A previous laboratory investigation showed that all types of LWC had considerably smaller Rn exhalation rates than those from normal concrete (NC), and could thus theoretically reduce the indoor Rn concentrations and the corresponding radiation dose from Rn. In the present investigation, a survey of Rn exhalation rates and indoor Rn concentrations at 39 dwelling sites built using LWC were carried out using charcoal canisters and {gamma}-spectroscopy. The mean Rn exhalation rate and the mean Rn concentration were around 1.6 mBq.s{sup -1}.m{sup -2} and 19 Bq.m{sup -3}, respectively, which were significantly smaller thanthe corresponding values of 12 mBq.s{sup -1}.m{sup -2} and 33 Bq.m{sup -3} for NC sites. The statistical t-test showed that both the mean Rn exhalation rate and the mean Rn concentration for NC and LWC sites walls were different at the 100% confidence level. The Rn exhalation rate from an LWC surface was, on average, only about 14% of that from an NC surface, while the Rn concentration in an LWC site was, on average, about 58% of that in an NC site, which were significant. A person living at an LWC site receives an average annual equivalent dose smaller than one living at an NC site by an amount as large as 1 mSv. Therefore, the use of LWC for partition walls can be a simple and economical way to reduce the indoor Rn concentrations and the corresponding radiation dose from Rn. Furthermore, the mean Rn concentration theoretically predicted from the mean Rn exhalation rate agreed excellently with that from measurements. (author)

  8. Radon measures in the campus University of Alicante; Medidas de radon en el Campus de la Universidad de Alicante

    Energy Technology Data Exchange (ETDEWEB)

    Piedecausa Garcia, B.

    2013-07-01

    The aim of this work is the analysis and measurement the concentration of radon in underground spaces inside various buildings of the Campus of the University of Alicante, in order to determine the concentration of radon in existing facilities. (Author)

  9. Measurements of indoor gamma radiation and radon concentrations in dwellings of Riyadh city, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, Ferdoas S. [Physics Department, Girls College of Education in Riyadh, P.O. Box 27329, Riyadh 11417 (Saudi Arabia)]. E-mail: ferdoasalsaleh@hotmail.com

    2007-07-15

    Indoor gamma radiation measurement at dwellings of Riyadh city in Saudi Arabia using TLD has been performed. Measurements were carried out from October 2004 to June 2005. The city was divided into five sectors, for four categories of bed rooms, living rooms, bathrooms and kitchens. The indoor gamma annual absorbed dose of Riyadh city is in the range from 303{+-}57 to 700{+-}38 {mu}Gy y{sup -1} with an average value of 455.1{+-}45 {mu}Gy y{sup -1}. The calculated corresponding annual effective dose to the adult population of the locations will vary from 212{+-}40 to 490{+-}27 {mu}Sv y{sup -1} with an average value of 318.57{+-}31 {mu}Sv y{sup -1}.{sup 222}Rn concentration was measured at dwellings of Riyadh city in Saudi Arabia to estimate effective annual dose to the public from {sup 222}Rn and its progeny. The {sup 222}Rn concentrations were measured using CR-39 detector. The range of annual mean {sup 222}Rn concentrations for all sites was 2-69 Bq m{sup -3} with an average of 18.4 Bq m{sup -3}. The effective annual dose was estimated to be 0.46 mSv y{sup -1}.

  10. Dependency of soil activity concentration on soil -biota concentration ratio of radionuclides for earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Kim, Byeong Ho; Jun, In; Lim, Kwang Muk; Choi, Yong Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The transfer of radionuclides to wildlife (non-human biota) is normally quantified using an equilibrium concentration ratio (CR{sub eq}), defined as the radionuclide activity concentration in the whole organism (fresh weight) divided by that in the media (dry weight for soil). The present study describes the effect of soil radionuclide activity concentration on the transfer of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn to a functionally important wildlife group, annelids, using a commonly studied experimental worm (E.andrei). Time-dependent whole body concentration ratios of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn for the earthworm were experimentally measured for artificially contaminated soils with three different activity concentrations for each radionuclide which were considerably higher than normal background levels. Two parameters of a first order kinetic model, the equilibrium concentration ratio (CR{sub eq}) and the effective loss rate constant (k), were estimated by comparison of experimental CR results with the model prediction

  11. Novel method of measurement of radon exhalation from building materials.

    Science.gov (United States)

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  13. Measurements of radon and chemical elements: Popocatepetl volcano; Mediciones de radon y elementos quimicos: Volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Valdes, C.; Mena, M. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L.; Monnin, M. [UMR 5569 CNRS Hydrosciences, Montpellier (France)

    2002-07-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  14. Ingredients for a Dutch radon action plan, based on a national survey in more than 2500 dwellings.

    Science.gov (United States)

    Smetsers, R C G M Ronald; Blaauboer, R O Roelf; Dekkers, S A J Fieke

    2016-12-01

    A new Euratom directive demands that Member States establish a national action plan for indoor radon. Important requirements are a national reference level for the radon concentration in dwellings, actions to identify dwellings with radon concentrations that might exceed this reference level and the encouragement of appropriate measures to reduce the radon concentrations in dwellings where these are high. This paper provides ingredients and recommendations for a national action plan for radon in dwellings, applicable to the Netherlands. The approach presented here, which may serve as a model for other countries or regions with a comparatively favourable indoor radon situation, is based on the analysis of radon data from a national survey in more than 2500 Dutch dwellings, built since 1930. The annual average activity concentration of radon in dwellings in the Netherlands equals 15.6 ± 0.3 Bq m(-3). The 50th and 95th percentiles were found to be 12.2 and 38.0 Bq m(-3), respectively. In 0.4 per cent of the dwellings we found values above 100 Bq m(-3). Radon concentrations showed correlations with type of dwelling, year of construction, ventilation system, soil type and smoking behaviour of inhabitants. The survey data suggest that it is feasible for the Netherlands to adopt a national reference level for radon in dwellings of 100 Bq m(-3), in line with recommendations by WHO and ICRP. We were able to predict dwellings with a moderate probability for radon concentrations above 100 Bq m(-3) by applying a combination of three selection criteria: location, type of dwelling and manner of ventilation. Of the existing 6.2 million dwellings in the Netherlands (built since 1930), approximately 23-24 thousand are suspected to exceed this level. Some 80% of these are found in the group of naturally ventilated single-family dwellings in either the southern part of Limburg (approx. 13 thousand) or the Meuse-Rhine-Waal river delta (approx. six thousand). This selected

  15. Innovative radon detecting technique for locating underground heating areas

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Xue; Jianming Wu; Rao Balusu; Rhys Worrall [CSIRO Exploration & Mining (Australia)

    2003-09-01

    In Australia there is currently no remote sensing technique to locate underground spontaneous combustion of coal remotely from the surface. The main objectives of the project were to investigate and demonstrate a surface-based radon technique developed by Taiyuan University of Technology and used in Chinese coal mines to detect the location of underground spontaneous combustion (sponcom). Radon-222 gas occurs naturally as a decay product of the long-lived uranium-238 that is a common rare element in rock/coal/soil strata. In the event that spontaneous combustion of coal occurs underground, the radon emanation ratio from coal, and its migration through the overlying coal/rock strata increase significantly. The elevated radon concentrations are detected and used to locate the underground area of spontaneous combustion of coal. Field demonstration of the radon technique was carried out in two separate areas at Dartbrook mine to locate the suspected sponcom of coal in these areas. Test results in the LW7 area indicated that there existed four zones of coal heating. Results also indicated that the area of heatings might have been quite extensive prior to the treatments of the sponcom. This implied that the treatments of sponcom in the LW7 goaf were effective. These results are consistent with those based on analysis of gas monitoring data. Test results in the CDH003 area indicated that there existed one zone of coal heating. Results indicated that the heating in this zone was of fairly low intensity. It appears that the identified zone is about 50m off the likely heating location in the area. This discrepancy poses a challenge to the radon technique, however it also provides an opportunity to undertake further study on the radon technique.

  16. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  17. Development of a highly sensitive radon-222 amplifier (HiSRA) for low-level atmospheric measurements.

    Science.gov (United States)

    Topin, Sylvain; Richon, Patrick; Thomas, Vincent; Gréau, Claire; Pujos, Julie; Moulin, Julien; Hovesepian, Alexandre; Deliere, Ludovic

    2017-05-01

    Radon ((222)Rn), a radioactive gas with a half-life of 3.82 days, is continuously emanated from soil, rocks, and water by the radioactive decay of (226)Ra. Radon-222 is released from the ground into the atmosphere, where it is transported mainly by turbulent diffusion or convection. For precise measurement of radon-222 atoms in the atmosphere, the detectors typically used present a small volume or surface area and are therefore not very sensitive, especially for online measurements and short sample intervals (Radon Amplifier (HiSRA) consisting in an enrichment system placed prior to a classic radon-222 analyzer. This system uses permeation membranes that make it possible to treat large quantities of air online (30 m(3) h(-1)). The radon-222 concentration is increased instantaneously by at least a factor of 30 across the HiSRA system. Therefore, in this study, when coupling to an ionization chamber (AlphaGUARDTM) at the outlet of the HiSRA system, the detection limit of the overall system is multiplied by factor of 30 and induces a new LD for a radon 222 gas analyzer lower than 1 Bq m(-3) for an integrating time of 10 min and 0.1 Bq m(-3) for 1 h. We constructed one radon amplifier prototype that provided the preliminary results for amplification efficiency and the initial measurements presented herein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radon Measurements in Ghana: Health Risk Assessment at the ...

    African Journals Online (AJOL)

    The need to assess the risk of exposure to radon and its daughters stems from the reality that radon is a potential carcinogenic. We report Radon-222 risk assessment, from measurements on soil and sediments taken from six towns along the Lake Bosomtwi basin at two levels of 10cm and 20 cm. The current and future ...

  19. Measurement of radon diffusion length in thin membranes.

    Science.gov (United States)

    Malki, A; Lavi, N; Moinester, M; Nassar, H; Neeman, E; Piasetzky, E; Steiner, V

    2012-07-01

    Building regulations in Israel require the insulating of buildings against radon (222)Rn penetration from soil. In radon-prone areas membranes stretched between the soil and the building foundation are used, together with sealing other possible penetration routes. Designing the radon mitigation procedure requires checking that all sealing materials are practically, radon tight, having a thickness of at least three times the radon diffusion length. In this work, a very simple technique to evaluate the radon diffusion length in thin membranes, using a radon source of known activity and an activated charcoal canister as radon detector is presented. The theoretical formalism and measurement results for polyethylene membranes of different densities obtained in a recent comparison exercise are presented.

  20. Preliminary results of NAPL contamination in a disused industry in the city of Sao Paulo, Brazil, by radon evaluation with CR-39 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Crislene; Pecequilo, Brigitte Roxana Soreanu, E-mail: crislene@ipen.br, E-mail: brigitte@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Contaminated sites by NAPL (Non-Aqueous Phase-Liquids) may lead to safety risks to human health and to ecosystems, restrictions to urban development and decrease of real estate value. This work used the radon gas as an indicator for the analysis of subsurface soil gas, once this noble gas presents good solubility in a wide range of NAPL, being partially retained in the NAPL contamination. Therefore, a decrease of the activity of radon in the contaminated soil gas can be expected, due to the high capacity of partitioning of radon in NAPL, which allows that the NAPL retain part of the radon previously available in the soil pores. The survey was carried out at a disused industry, contaminated by low volatile NAPL, located at east of Sao Paulo city, in March/2015. Radon was evaluated by passive detection methodology with CR-39 solid state nuclear track detectors (SSNTD). Radon concentrations for the eight monitoring stations at non-contaminated locations in March/2015 varied from 16.4 ± 1.2 kBq.m{sup -3} to 55 ± 4 kBq.m{sup -3}. For the two monitoring stations assumed as contaminated locations in March/2015, radon concentrations were 1.17 ± 0.08 kBq.m{sup -3} and 4.2 ± 0.3 kBq.m{sup -3}, diminished in a range from 92% to 98% when compared with the results for the non-contaminated areas. (author)

  1. Removal of Radon from Household Water.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    By far, the greatest risk to health from radon occurs when the gas enters the house from underlying soil and is inhaled. The U.S. Environmental Protection Agency (EPA) is studying ways to reduce radon in houses, including methods to remove the gas from water to prevent its release in houses when the water is used. While this research has not…

  2. Radon Measurements in Schools: An Interim Report.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation Programs.

    Radon-222 is a colorless, odorless, tasteless, radioactive gas that occurs naturally in soil, rocks, underground water, and air. The United States Environmental Protection Agency (EPA) and other scientific organizations have identified an increased risk of lung cancer associated with exposure to elevated levels of radon in homes. Schools in many…

  3. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno (Sudety Mts., SW Poland).

    Science.gov (United States)

    Fijałkowska-Lichwa, Lidia

    2014-09-01

    Short-term (222)Rn activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno were studied, based on continuous measurements conducted between 16 May 2008 and 15 May 2010. The results were analysed in the context of numbers of visitors arriving at the facility in particular seasons and the time per day spent inside by staff and visitors. This choice was based on partially published earlier findings (Fijałkowska-Lichwa and Przylibski, 2011). Results for the year 2009 were analysed in depth, because it is the only period of observation covering a full calendar year. The year 2009 was also chosen for detailed analysis of short-term radon concentration changes, because in each period of this year (hour, month, season) fluctuations of noted values were the most visible. Attention has been paid to three crucial issues linked to the occurrence and behaviour of radon and to the radiological protection of workers and visitors at the tourist route in Kletno. The object of study is a complex of workings in a former uranium mine situated within a metamorphic rock complex in the most radon-prone area in Poland. The facility has been equipped with a mechanical ventilation system, which is turned on after the closing time and at the end of the working day for the visitor service staff, i.e. after 6 p.m. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno are related to the activity of the facility's mechanical ventilation. Its inactivity in the daytime results in the fact that the highest values of (222)Rn activity concentration are observed at the time when the facility is open to visitors, i.e. between 10 a.m. and 6 p.m. The improper usage of the mechanical ventilation system is responsible for the extremely unfavourable working conditions, which persist in the facility for practically all year. The absence of appropriate radiological protection

  4. Radon-safe new buildings, documentation and technology development. Main report; Radonsikring i nybyggeri, dokumentation og teknologiudvikling. Hovedrapport

    Energy Technology Data Exchange (ETDEWEB)

    Breddam Overgaard, L.; Bruun Petersen, J.; Neerup Jeppesen, M.

    2011-07-01

    penetrations with silicone sealant is also the most effective method. In the study it is furthermore concluded that there is no immediate difference in the two radon cavity barrier solutions (above and below the slab). Subproject 3 (radon potential in soil). At an introductory level it has been attempted to survey the radon potential (the amount of radon released from the soil) at the location of the construction of the subproject 1 residential development. The main part of the study consisted of developing and testing a method of ''passive sampling'' by immersion of measuring equipment in 1 m deep drillings. In the study significant radon levels were demonstrated in soil containing tertiary clay (black, micaceous). In comparing the aforementioned passive approach with previous ''active measurements'', it is estimated that passive measurements obtain an approximate expression (average) of the radon level of the entire borehole profile, while soil gas extraction sampling merely expresses a concentration at a level specific point (x m below the surface). The evaluation of the study concluded that satisfactory results had been achieved. It would however be relevant to improve the setup for future follow-up studies (as with subproject 2), and conduct repeated measurements prior to final conclusions. (LN)

  5. Consideration of tidal influences in determining measurement periods when monitoring built-environment radon levels

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, R.G.M.; Phillips, P.S. [Northampton Univ., School of Applied Sciences (United Kingdom); Gillmore, G.K. [Bradford Univ., School of Archaeological, Geographical and Environmental Sciences (United Kingdom); Denman, A.R.; Groves-Kirkby, C.J. [Northampton General Hospital, Medical Physics Dept. (United Kingdom)

    2006-07-01

    Using three hourly-sampling continuous radon monitors, deployed at separate locations in and around the town of Northampton, UK, during the period May 2002 to September 2005, evidence has been identified of tidal influences on built environment radon levels. The data-sets from these deployments, together with additional data-sets collected from a house in Devon, UK, over the period May 1994 to October 1996, and made available by the UK Building Research Establishment, have been analysed using a number of analytical techniques, including a novel cortion technique developed during the investigation. Radon concentration levels in all of the investigated sites exhibit cyclic variation with a period of approximately 14-15 days, equivalent to the spring-tide interval, and lag the corresponding new and full moons by varying periods. The tide/radon lag interval for the two public-sector buildings changes abruptly in September/October, indicating that a significant characteristic of these buildings changes at this time. For domestic properties, the lag is relatively unchanged during the year, but is greater in Devon, in the South-West of England, than in Northampton, in the English East Midlands. These differences are attributed to location relative to coastlines (the South-West experiences greater tidal-loading than the Midlands), underlying geology and rock/soil hydration. Depending on its position within the local 14 to 15-day tidally-induced radon cycle, an individual 7-day radon measurement may yield an erroneous estimate of longer term average levels, up to 46% higher or lower than the average level for one of the reported data-sets. Thus a building with a mean radon concentration below the local Action Level could appear to be unsafe if measured around a tidal-cyclic radon maximum: conversely, a building with a mean radon concentration above the Action Level could appear to be safe when measured around a tidal-cyclic radon minimum. A minimum radon-measurement period

  6. Rare Earth Element Concentrations in Brazilian Benchmark Soils

    Directory of Open Access Journals (Sweden)

    Ygor Jacques Agra Bezerra da Silva

    Full Text Available ABSTRACT: Studies regarding background concentrations of rare earth elements (REEs are scarce and have mainly focused on a limited number of soil types from the northern hemisphere. The aim of this study was to determine REE concentrations in thirty-five benchmark soils of Brazil. Composite soil samples were taken from areas under native vegetation or with minimal anthropogenic influence. Concentrations of La, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Lu, Dy, Er, Ho, Tb, Tm, Y, Sc, and Fe were determined by ICP-OES using a cyclonic spray chamber/nebulizer system after microwave acid digestion. Results were assessed by descriptive statistics, Pearson correlation, and principal component analysis (PCA. Regression analyses among Fe, organic carbon, and REEs were performed to provide a tool for estimating REE concentrations in soils. The REE concentrations in the Brazilian benchmark soils were in the following order: Ce > La > Nd > Pr > Y > Sm > Gd > Sc > Dy > Yb > Eu > Er > Tb > Ho > Lu > Tm. The clear decoupling between light and heavy rare earth elements in soils, indicated by multivariate analysis, is mainly related to differences in parent material. The lowest REE concentrations were found in sandy sediments, whereas the highest REE concentrations were observed in basalt, biotite gneiss, and clayey sediments. The organic carbon and Fe concentrations can properly predict REE concentrations in soils; such a finding can assist in estimating REE concentrations in soils not only in Brazil but also in similar soils developed under tropical conditions.

  7. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).

    Science.gov (United States)

    Fijałkowska-Lichwa, Lidia

    2016-12-01

    Measurements of radon activity concentration were conducted for a period of 6 months, from April to September 2011, in the air of two adits constituting part of the disused uranium mine 'Podgórze' in Kowary. Adits no. 19 and 19a in Kowary had been chosen owing to the occurrence within them of the highest documented radon concentrations in Poland, With levels higher than a million Bq m-3. The main goal of this study was to characterize the level of 222Rn activity concentration registered in selected workings of this underground space, investigate 222Rn changes and their characteristics over selected periods of time (an hour, a day, a month, six months) and determine the effective doses, which provided the basis for estimating the risk of exposure to increased ionizing radiation for employees and visitors to the mine. The highest values of 222Rn activity concentration inside the adits occurred at the time when visitors, guides and other members of the staff were present there. The recorded values of radon activity concentration, regardless of the time and the month when the measurement was performed, remained at an average level of 350-400 kBq m-3. These values were far above the limit of 1.5 kBq·m-3 recommended by international guidelines. The maximum values ranged from 800 to more than 1000 kBq·m-3. Radon activity concentration changes occurred only in periods determined by 7-h cycles of connecting and disconnecting the mechanical ventilation. For about 7 h after activating the ventilation system, between 7 a. m. and 2 p. m., and after closing the adit, between 7 p. m. and 2 a. m., 222Rn activity concentrations decreased to levels even as low as 100 kBq·m-3. However, as early as 3-4 h after disconnecting the ventilation system, there was a sharp rise in the values of 222Rn activity concentration, to the level higher than 800 kBq·m-3. The risk of receiving a radiation dose higher than the national standard of 1 mSv/year by members of the public

  8. Indoor radon levels in buildings in the Autonomous Community of Extremadura (Spain).

    Science.gov (United States)

    Baeza, A; Navarro, E; Roldán, C; Ferrero, J L; Juanes, D; Corbacho, J A; Guillén, F J

    2003-01-01

    Indoor air samples taken in buildings throughout the provinces of Cáceres and Badajoz in the Autonomous Community of Extremadura, Spain, were analysed for airborne radon concentrations using charcoal canisters. Measurements were made during the years 1998-2000. The geometrical mean indoor concentration was 90 Bq m(-3). An estimated annual effective dose of 1.6 mSv y(-1) was calculated for residents, assuming an equilibrium factor of 0.4 and an occupancy factor of 0.8. The relative importance of the principal variables that condition radon concentrations inside buildings was also delimited experimentally. These were: soil type, construction materials used, the height of the room above ground level, and the degree of ventilation. The temporal evolution of the radon concentration was analysed, as this aspect could be particularly important in a Continental-Mediterranean climate such as that of the two provinces of the study.

  9. Associations of DNA-repair gene polymorphisms with a genetic susceptibility to ionizing radiation in residents of areas with high radon (222Rn) concentration.

    Science.gov (United States)

    Sinitsky, Maxim Y; Larionov, Aleksey V; Asanov, Maxim A; Druzhinin, Vladimir G

    2015-06-01

    To investigate the individual radiosensitivity of the human genome in long-term residents of areas with high radon concentration. The materials used for this investigation were venous blood samples extracted from children living in the boarding school of Tashtagol (Kemerovo Region, Russia). Cytogenetic damage assessment was performed using the cytokinesis-block micronucleus assay (CBMN) on peripheral blood lymphocytes. PCR, gel electrophoresis and product detection using a transilluminator were used to determine polymorphisms in the genes ADPRT (rs 1136410), hOGG1 (rs 1052133), NBS1 (rs 1805794), XRCC1 (rs 25487), XpC (rs 2228001), XpD (rs 13181), and XpG (rs 17655). Statistical analysis was performed using nonparametric methods. To ensure accurate results, FDR-correction for multiple comparisons was performed. We discovered a significant increase in the frequency of binucleated lymphocytes with micronuclei (MN) in carriers of the His/His genotype of the XpG gene Asp1104His polymorphism in comparison to heterozygous and homozygous carriers of the Asp allele. In addition, the Ala/Ala genotype for the ADPRT gene Val762Ala polymorphism and the Glu/Gln genotype for the NBS1 gene Glu185Gln polymorphism were associated with the elevated frequency of binucleated lymphocytes with nucleoplasmic bridges (NPB). As a result of this study, the elevated frequency of cytogenetic damage in people with particular DNA-repair gene polymorphisms in response to chronic exposure to radon was demonstrated. It was shown that the genes and corresponding polymorphisms (the XpG gene Asp1104His polymorphism, the ADPRT gene Val762Ala polymorphism and the NBS1 gene Glu185Gln polymorphism) can be used as molecular genetic markers of increased individual radiosensitivity in long-term residents of areas with high concentrations of radon.

  10. Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: A case study in Central Portugal.

    Science.gov (United States)

    Pereira, A; Lamas, R; Miranda, M; Domingos, F; Neves, L; Ferreira, N; Costa, L

    2017-01-01

    The goal of this study was to estimate radon gas production rate in granitic rocks and identify the factors responsible for the observed variability. For this purpose, 180 samples were collected from pre-Hercynian and Hercynian rocks in north and central Portugal and analysed for a) (226)Ra activity, b) radon ((222)Rn) per unit mass activity, and c) radon gas emanation coefficient. On a subset of representative samples from the same rock types were also measured d) apparent porosity and e) apparent density. For each of these variables, the values ranged as follows: a) 15 to 587 Bq kg(-1), b) 2 to 73 Bq kg(-1), c) 0.01 to 0.80, d) 0.3 to 11.4 % and e) 2530 to 2850 kg m(-3). Radon production rate varied between 40 to 1386 Bq m(-3) h(-1). The variability observed was associated with geologically late processes of low and high temperature which led to the alteration of the granitic rock with mobilization of U and increase in radon (222)Rn gas emanation. It is suggested that, when developing geogenic radon potential maps, data on uranium concentration in soils/altered rock should be used, rather than data obtained from unaltered rock. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Contribution to the characterization of 222-radon concentrations variability in water to the understanding of an aquifer behaviour in fractured medium: example of the Ploemeur site, Morbihan; Apport de la caracterisation de la variabilite des concentrations en radon-222 dans l'eau a la comprehension du fonctionnement d'un aquifere en milieu fracture de socle: exemple du site de Ploemeur, Morbihan

    Energy Technology Data Exchange (ETDEWEB)

    Le Druillennec, Th

    2007-06-15

    Heterogeneous fractured aquifers which developed in crystalline rocks, such as schist or granite, supply 20% of tap water production of Brittany. These fractured media present a large range of permeability. In these aquifers, fluid flow and transport of elements dissolved in water are strongly related on the geometry of the fractured network. Increasing the knowledge of the hydrogeological behaviour of the aquifer is fundamental for the management and the protection of the groundwater resources. Radon-222 is a radioactive noble gas produced from radium-226 further to the radioactive decay of uranium-238; it occurs naturally in ground waters and derives primarily from U-rich rocks and minerals that have been in contact with water. Radon-222 concentrations in waters are liable to provide significant and relevant information on both the geometry of a fracture network and the flow distribution. Furthermore, radon may also be used as a tracer in the aquifer of water exchanges between zones of variable permeability. Three main results were obtained in this study: 1. An accurate characterisation of the radon concentrations in water was carried out in the Ploemeur aquifer (Brittany, France). These results highlight the variability in the spatial and vertical distributions of {sup 222}Rn activity in groundwater together with a wide range of concentrations extending from 0 to 1 500 Bq.L{sup -1}. 2. The influence of fracture aperture on radon content in groundwater has been demonstrated with the modelling of radon concentration. Indeed, the satisfactory results obtained with a simple crack model highlight that the geometry of the fracture network controls the radon activity in groundwater. 3. Thus, the results of pumping tests performed in the boreholes improved our understanding of the system. After the pumping test, an increase of the radon content in groundwater occurred and evidenced a contribution of a radon-rich water to supply the flow rate that seems to come from the

  12. The nexus of soil radon and hydrogen dynamics and seismicity of the northern flank of the Kuril-Kamchatka subduction zone

    Directory of Open Access Journals (Sweden)

    O. P. Malysheva

    2007-06-01

    Full Text Available The comparison of kinematics and dynamic parameters of radon and molecular hydrogen concentration in subsoil air on the stations network at the Petropavlovsk-Kamchatsky geodynamic proving ground with seismicity of the northern flank of the Kuril-Kamchatka subduction zone was fulfilled in the period from July till August 2004. On the basis of correlation analysis of the regional seismicity and variations of radon flux density calculated using the data of gas-discharge counters of STS-6 type and SSNTDs it was shown that the radon mass transfer abnormal variations are conditioned by both regional seismicity in total and the subduction zone of proving ground. The azimuths of «geodeformation waves» coming to the registration points are calculated during clearly expressed anomaly beginnings, which coincide with directions to earthquake epicenters taking place at the same time. The geochemical anomalies recorded are presumptively deformative by nature and can be conditioned by processes of «quasi-viscous» flow of the lithosphere during rearrangement of tectonic stress fields of the subduction zone. The short-term (predicted time ? <14 days precursor of the earthquakes swarm was revealed in hydrogen dynamics on August, 4-5 (four earthquakes had M?5.3 and epicentral distance about 130 km from the Paratunka base station.

  13. Low-Cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Francisco, Paul W. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Merrin, Zachary [Partnership for Advanced Residential Retrofit, Champaign, IL (United States)

    2015-09-01

    The aim of the research was to conduct a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation-living space floor assembly. Fifteen homes in the Champaign, Illinois area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity the foundation was improved. However, this improved isolation did not lead to significant reductions in radon concentration in the living space. Other factors such as outdoor temperature were shown to have an impact on radon concentration.

  14. Radon surveys and monitoring at active volcanoes: an open window on deep hydrothermal systems and their dynamics

    Science.gov (United States)

    Cigolini, Corrado; Laiolo, Marco; Coppola, Diego

    2017-04-01

    The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.

  15. Report on correlation between radon outgassing and aftershocks activity along the Bam Fault in Kerman province of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Nabipour, Jamshid Soltani [Bio-Nuclear and Medical Radiation Engineering Department, Parand Branch, Islamic Azad University, Parand (Iran, Islamic Republic of); Khorshidi, Abdollah, E-mail: abkhorshidi@yahoo.com [Cellular and Molecular Gerash Research Center, Gerash University of Medical Sciences (Iran, Islamic Republic of)

    2017-09-01

    After the Earthquake in Bam in December 26, 2003, a team was dispatched to this area to monitor the relationship between Variation in the Radon ({sup 222}Rn) concentration and the magnitude of aftershocks. Meteorological parameters such as air pressure, temperature and humidity were measured. Radon concentration at depth of 90 cm of soil was also measured using AlphaGuard (Model 2000PRO) in 10 minutes periods. The measurement site was near the fault location and the radon concentration was systemically measured for a period of three months. A correlation between radon concentration and the available aftershocks data is discussed. More than 150 small to moderate aftershocks with a magnitude ranging from M=2.1 to 6.5 in scale of Richter occurred in the region during the period of this study at the various distances (below 20 km of epicenter) from the radon monitoring sites. When the magnitude of aftershocks increased, variations of radon concentration could be observed more clearly. (author)

  16. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine

    Science.gov (United States)

    2012-01-01

    Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended. PMID:22243625

  17. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine

    Directory of Open Access Journals (Sweden)

    Al Zabadi Hamzeh

    2012-01-01

    Full Text Available Abstract Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range concentration of radon in the main sources were 6.9 (1.5-23.4 Becquerel/liter (Bq/L. Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range concentration values were found to be 1.0 (0.9-1.3 Bq/L. For the old city, the mean (range concentration values were 2.3 (0.9-3.9 Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL. The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended.

  18. Radon monitoring in sites of economical importance in Jamaica.

    Science.gov (United States)

    Grant, C N; Lalor, G C; Balcázar, M

    2012-12-01

    The main task was to evaluate possible radon risk to the public and workers in four caves of economical importance. Green Grotto Cave is a large labyrinthine limestone cave, open to the tourism; kept Rn concentration in the range 30-40 Bq m(-3). Xtabil a coral limestone sea cave is part of a beach resort resulted in very low radon concentration of 10 Bq m(-3). Windsor is an intricate limestone cave system showed Rn concentration in the range 250-350 Bq m(-3). Whereas the Oxford caves, is situated in a region of high radioactivity in soil due to the bauxite mines, reached a maximum of 2592 Bq m(-3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Radon in indoor environments - a cost-benefit analysis of adoption of the new recommendations of WHO for radon limits; Radon i inomhusmiljoen - en konsekvensanalys av att infoera WHO:s nya rekommendationer paa radonvaerden

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    concentrations below 100 Bq/m3 in all homes. Therefore a stricter guideline of 100 Bq/m3 to be an empty gesture. It is also proposed: Create a joint investigation authority regarding public information campaigns on radon, in order to effectively achieve guidelines and limits. The following areas are considered as interesting objects for further research or investigations: A more thorough calculation of the number of lung cancer cases avoided, with a reduction in the target- and threshold; A better estimate of the breakdown between radon sources of land, building materials and water; Development of methods for decontamination of blue concrete buildings to values below 100 Bq/m3; The relation between soil radon and radon levels in homes

  20. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased

  1. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  2. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  3. Dose conversion factor for radon concentration in indoor environments using a new equation for the F-fP correlation.

    Science.gov (United States)

    Vargas, A; Ortega, X; Porta, M

    2000-01-01

    Since 1994 the radon studies group at the Institut de Tècniques Energètiques (INTE) of the Universitat Politècnica de Catalunya in Barcelona, Spain, has carried out a campaign of continuous measurements of the equilibrium factor (F) and the unattached fraction (f(p)) of radon decay products at four sites which are representative of different environmental characteristics on the Mediterranean littoral of Catalonia, Spain. It has been established that these parameters vary widely, F(0.03-0.87) and f(p) (0-0.72), from one site to another and with time, according to the characteristics of the site and climate. In spite of this variation, the F and f(p) parameters are log-normally or normally distributed. The measurements of F and f(p) show that f(p) is negatively correlated to F by a log-power equation, Ln(1/f(p))=1.90[Ln(1/F)](-0.68), which can be used in all the F range, instead of the commonly used power equation f(p)=aFb suggested by Stranden and Strand and other authors, which fits well for a reduced range of F. Power and log-power equations have been introduced into a simplified dosimetric model in order to estimate the effective dose per unit radon exposure as a function of F. From the log-power equation this value is quite constant and ranged from 9 nSv per Bq m(-3) h to 12 nSv per Bq m(-3) h when F is higher than 0.15. In the case of a lower F factor, a linear function that passes through 0 fits quite well. A value of 12 nSv per Bq m(-3) h is proposed for the Mediterranean littoral of Catalonia as the best estimation.

  4. Radon as an Anthropogenic Indoor Air Pollutant

    Science.gov (United States)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally

  5. Residential radon exposure and brain cancer: an ecological study in a radon prone area (Galicia, Spain)

    OpenAIRE

    Ruano-Ravina, Alberto; Aragon?s, Nuria; Kelsey, Karl T.; P?rez-R?os, M?nica; Pi?eiro-Lamas, Mar?a; L?pez-Abente, Gonzalo; Juan M. Barros-Dios

    2017-01-01

    We aimed to know if radon concentration is associated with municipal mortality due to brain cancer in Galicia, Spain. We designed an ecological study taking as study unit Galician municipalities. To be included, municipalities had to have at least three radon measurements. We correlated radon concentrations with municipal mortality due to these malignant tumors during the period 1999?2008. We calculated the relative risk of dying of brain cancers for each municipality and correlated this valu...

  6. Indoor radon measurements in a Greek city located in the vicinity of lignite-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Manousakas, M.; Fouskas, A.; Papaefthymiou, H.; Koukouliou, V.; Siavalas, G.; Kritidis, P. [University of Patras, Patras (Greece). Dept. of Chemistry

    2010-10-15

    This work presents indoor radon measurements in 42 dwellings in the city of Megalopolis, Southern Greece, located in the vicinity of 2 lignite-fired power plants and examines the effect of season, floor level and age of the dwellings on indoor radon concentration. The radon measurements have been carried out using the LR-115, type II and CR-39 alpha track detectors in 'closed-can' geometry. The average annual indoor radon concentration (GM) was found to be 52 Bq m{sup -3}, which is well below the recommended action level of the European Union. This value corresponds to an annual effective dose to the population of 1.3 {+-} 0.4 mSv. Season and age of the examined dwellings represent factors that affected significantly the indoor radon in Megalopolis, while the effect of floor level appeared to be not significant. Radium activity concentration values, measured by gamma-ray spectrometry in 20 sub-samples of six soil cores (60-135 cm depth), collected from the surrounding area of the city, were found to be consistent with the Greek and world average values. Based on the results of this study, it is concluded that the effect of the lignite-fired power plants on indoor radon concentration in Megalopolis' dwellings was not significant.

  7. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.

    Science.gov (United States)

    Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Radon in water of Shu river valley

    Directory of Open Access Journals (Sweden)

    Yelena Kuyanova

    2012-03-01

    Full Text Available The values of radon and its daughter products in water of Shu River valley have been received, using liquid scintillation spectrometry. The radon concentration naturally increases in investigated water samples downstream the Shu River, reaching the maximum value in the Tashutkolsky basin. The radon and its daughter products in a human body of 15 % are in soft tissues have been calculated by a mathematical modeling method. The annual dose from radon and its daughter products calculated by a mathematical modeling method received by the residents living in Shu river valley is 0,03 mSv/year.

  9. RESOLVING THE RADON PROBLEM IN CLINTON, NEW JERSEY HOUSES

    Science.gov (United States)

    The paper discusses the resolution of a radon problem in Clinton, New Jersey, where significantly elevated radon concentrations were found in several adjacent houses. The U.S. EPA screened 56 of the houses and selected 10 for demonstration of radon reduction techniques. Each of t...

  10. Inhalation dose due to radon, thoron, and progenies in dwellings of a hill station.

    Science.gov (United States)

    Sivakumar, R

    2017-02-01

    The general public spends a major portion of their time in an indoor environment and hence receives a considerable amount of radiation. Knowledge about indoor radiation is important in order to arrive at the actual effective dose received by residents. The indoor radon, thoron, and progeny concentrations observed in the present study were found to vary with seasons of a given year. The highest and lowest indoor average radon, thoron, and progeny levels were observed during winter and summer seasons, respectively. The concentrations of indoor radon, thoron, and progenies were found to vary with the type of houses. The highest (222)Rn, (220)Rn, and progeny concentrations were observed in mud houses and the lowest values were recorded in wooden houses. The indoor (222)Rn concentration correlated well with concentration of its grandparent (238)U in underlying soil with a correlation coefficient of 0.87. The correlation between indoor (220)Rn and (232)Th in the underlying soil was found to be 0.64. The estimated effective doses received by the general public in the present study due to indoor radon and thoron were 1.49 ± 0.49 and 1.30 ± 0.53 mSv/year, respectively. The annual effective doses due to radon and thoron progenies were estimated as 0.76 ± 0.27 and 0.47 ± 0.23 mSv/year, respectively. The contributions from (222)Rn, (220)Rn, and corresponding progenies to the annual effective doses received were 37, 32, 19, and 12%, respectively. The general public living in the study area receives an inhalation dose of 4.02 mSv/year due to indoor radon, thoron, and progenies, which were found to be less than the action limit of ICRP 2009.

  11. Radon legislation and national guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Aakerblom, G

    1999-07-01

    The International Commission on Radiological Protection (ICRP) and The Council of the European Union have recommended the Member States to take action against radon in homes and at workplaces. Within the EU project European Research into Radon in Construction Concerted Action, ERRICCA, the Topic Group on Legal and Building Code Impact was designated to study the current radon legislation and give advice regarding future enactment of laws and recommendations. On behalf of the Group, a questionnaire on radon legislation was sent out to nearly all European states and a selection of non-European states. Questions were asked regarding reference levels for dwellings, workplaces and drinking water, and about regulations or recommendations for building materials and city planning. All 15 EU Member States, 17 non-EU European countries and 10 non-European countries responded to the questionnaire. Their answers are considered current as of the end of 1998. Most European States and many non-European countries have recommended reference levels for dwellings and workplaces, and some have guidelines for measures against radon incorporated in their building codes and guidelines for construction techniques. However, only a few countries have enforced reference levels or regulations for planning and construction. The reference levels for indoor radon concentration in existing and new dwellings or workplaces are within the range 150-1000 Bq/m{sup 3}. Sweden is the only country (Out of 15 EU member states) which has enforced limits for existing dwellings. Sweden and the UK have both enforced levels for new dwellings. 7 non-European countries (Out of 17 responding countries) have enforced levels for existing dwellings and 9 have them for new dwellings. At the end of 1998, only Finland, Sweden, the Czech Republic, Romania, Russia and the Slovak Republic had limits for radon in water, although 8 countries were planning to introduce such limits. The present limits are within the range for

  12. Radon activity in Saudi houses

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I. (University of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Physics)

    1984-01-01

    Long term measurements of radon's concentrations inside Saudi houses being studied using CR-39 Plastic Track Detectors fixed inside sealed plastic cups. The cups were left for about 7 months in the houses. The measurements were done in different cities of different provinces in the country. The analysis of 636 cups showed that the radon concentration in different cities was ranging from 0.27 pCi/l (in Khobar) to 0.98 pCi/l (in Taif). In exceptional places in Eastern Province, it is found that the lowest concentration was in the University offices (0.13 pCi/l) and the highest was in the University unoccupied houses (0.81 pCi/l). It is found that the ventilation is the main factor affecting the radon concentration in houses.

  13. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  14. Environmental gamma and radon dosimetry in Venezuela

    CERN Document Server

    Sajo-Bohus, L; Urbani, F; Castro, D D; Greaves, E D; Liendo, J A

    1999-01-01

    Environmental gamma exposure and radon concentration levels measured in Venezuelan regions are presented. A new generation image analyser was used for alpha particle track counting in CR-39 detectors. Mineral water wells from where water is supplied for massive consumption have an alpha activity around 0.450 Bq L sup - sup 1 and few of them have concentrations above 50 Bq L sup - sup 1. Coastal potable water activity is on the average around 5.3 +- 12% Bq L sup - sup 1. Indoor radon national average is 36 +- 5% Bq m sup - sup 3; in two of the 36 monitored sites, the measured average is above 400 +- 5% Bq m sup - sup 3. In air gamma dose values are between 100 and 144 nGy h sup - sup 1. In soil, sup 1 sup 3 sup 7 Cs concentration is around 0.5 and 10 Bq kg sup - sup 1 at the depth of down to 20 cm. Building materials were included in this study. sup 7 Be and sup 1 sup 3 sup 7 Cs were measured in low concentration in tropical plants on Tepuy-s (sacred mountains in the Amazonas State). Geological active faults w...

  15. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Abstract Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database. PMID:24170970

  16. Radon Reduction Methods: A Homeowner's Guide.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is studying the effectiveness of various ways to reduce high concentrations of radon in houses. This booklet was produced to share what has been learned with those whose radon problems demand immediate action. The booklet describes nine methods that have been tested successfully--by EPA and/or other…

  17. Indoor radon measurements in the dwellings of Kangra District of Himachal Pradesh, India, using LR-115 nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dhiman, M. [Punjab Technical University (India); Mehra, R. [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology (India); Tyagi, A.K. [Department of Applied Sciences, Shaheed Bhagat Singh College of Engineering and Technology (India)

    2014-07-01

    Study of indoor radon was carried out in the domestic environment of 15 villages of Kangra district of Himachal Pradesh, India. Time integrated track etch technique has been used for the measurement of indoor radon levels. Bare cellulose nitrate LR-115 type II films have been used as detectors in the survey of indoor radon for four seasons of three months each covering a period of one year from March 2012 to March 2013. The houses were chosen randomly in such a way that the dwellings constructed with different types of building materials such as soil, bricks, cement, marble, concrete, wood in different localities of the village are covered. It has been found that indoor radon concentration depends upon the type of house, ventilation condition etc. The calibration constant of 1 track cm{sup -2} day{sup -1} which is equal to 50 Bqm{sup -3} has been used to express radon concentration in Bqm{sup -3}. The conversion factors have been used to calculate the exposure (an exposure of an individual to radon progeny of 1 WLM is equivalent to 3.54 mJ h m{sup -3}), the annual effective dose (1 WLM=3.88 mSv) and the lifetime fatality risk (3 x 10{sup -4} WLM). Indoor radon concentrations were found to vary from 132.25 Bqm{sup -3} to 449.75 Bqm{sup -3} with an average value of 261.40 Bqm{sup -3}. Annual effective dose in these dwellings were found to vary form 2.78 mSv to 7.68 mSv with an average value of 4.5 mSv. The average radon concentration in dwellings in most of the villages falls in the action level (200-600 Bqm{sup -3}) recommended by International Commission on Radiological Protection. Document available in abstract form only. (authors)

  18. Indoor radon survey in dwellings of some regions in Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, A.H. E-mail: akhayrat@yahoo.com; Al-Jarallah, M.I.; Fazal-ur-Rehman, X.; Abu-Jarad, F

    2003-06-01

    Indoor radon survey in a total of 241 dwellings, distributed in some regions of Yemen was performed, using CR-39 based radon monitors. The objective of this radon survey is to get representative indoor radon data of three regions, namely Dhamar, Taiz and Hodeidah, situated at different altitudes above sea level. The radon concentrations varied from 3 to 270 Bq m{sup -3} with an average of 42 Bq m{sup -3}. It was found that the average radon concentration in the surveyed areas increases with altitudes. The highest average radon concentration of 59 Bq m{sup -3} was found in Dhamar city while the lowest average concentration of 8 Bq m{sup -3} was found in Hodeidah city.

  19. Recent topics on radon. Radiation dose estimation using radon

    Energy Technology Data Exchange (ETDEWEB)

    Shimo, Michikuni [National Inst. of Radiological Sciences, Chiba (Japan)

    1998-05-01

    Today, as exposure of radon was collected a large interest in resident environment, it was brought by a fact that yearly radiation dose of radon was determined 1.0 mSv in the report of UN science committee in 1982. Since then, as this value was received generally and widely, this value was found some differences due to thereafter UN science committee reports and to some countings. As not only concentration of radon but also some factors relate to its cause, it is important to know its cause and variation width. In this paper, by using the newest data in Japan on radon concentration, balance factor, presence time, respiration volume, and so forth as much as possible, an effective radiation dose of an adult per year was estimated. As a result, it was found to be about 0.45 mSv, which was more than a half less than the value of the UN science committee and so on. And, this was nearly equal to that of workers at 3 prefectures of that Tokai District and counted by using radon concentration, respiration volume and presence coefficient for variants. On counting the whole variation width under considering width of each coefficient, it can be estimated to be ranged from -70 to +80%. (G.K.)

  20. Evaluation of gravel concentration and soil strength in upland rice ...

    African Journals Online (AJOL)

    Evaluation of gravel concentration and soil strength in upland rice cultivation in Abeokuta, Southwestern Nigeria. FK Salako, O Osiname. Abstract. No Abstract. Nigerian Journal of Soil Sciences Vol. 16 (1) 2006: pp. 67-76. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  1. Radon exhalation rates of some granites used in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available In order to address concern about radon exhalation in building material, radon exhalation rate was determined for different granites available on Serbian market. Radon exhalation rate, along with mass exhalation rate and effective radium content were determined by closed chamber method and active continuous radon measurement technique. For this research, special chambers were made and tested for back diffusion and leakage, and the radon concentrations measured were included in the calculation of radon exhalation. The radon exhalation rate ranged from 0.161 Bq/m2h to 0.576 Bq/m2h, the mass exhalation rate from 0.167 Bq/kgh to 0.678 Bq/kgh, while the effective radium content was found to be from 12.37 Bq/kg to 50.23 Bq/kg. The results indicate that the granites used in Serbia have a low level of radon exhalation.

  2. Radon and aerosol release from open-pit uranium mining

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.W.; Nielson, K.K.; Mauch, M.L.

    1982-08-01

    The quantity of /sup 222/Rn (hereafter called radon) released per unit of uranium produced from open pit mining has been determined. A secondary objective was to determine the nature and quantity of airborne particles resulting from mine operations. To accomplish these objectives, a comprehensive study of the release rates of radon and aerosol material to the atmosphere was made over a one-year period from April 1979 to May 1980 at the Morton Ranch Mine which was operated by United Nuclear Corporation (UNC) in partnership with Tennessee Valley Authority (TVA). The mine is now operated for TVA by Silver King Mines. Morton Ranch Mine was one of five open pit uranium mines studied in central Wyoming. Corroborative measurements were made of radon flux and /sup 226/Ra (hereafter called radium) concentrations of various surfaces at three of the other mines in October 1980 and again at these three mines plus a fourth in April of 1981. Three of these mines are located in the Powder River Basin, about 80 kilometers east by northeast of Casper. One is located in the Shirley Basin, about 60 km south of Casper, and the remaining one is located in the Gas Hills, approximately 100 km west of Casper. The one-year intensive study included simultaneous measurement of several parameters: continuous measurement of atmospheric radon concentration near the ground at three locations, monthly 24-hour radon flux measurements from various surfaces, radium analyses of soil samples collected under each of the flux monitoring devices, monthly integrations of aerosols on dichotomous aerosol samplers, analysis of aerosol samplers for total dust loading, aerosol elemental and radiochemical composition, aerosol elemental composition by particle size, wind speed, wind direction, temperature, barometric pressure, and rainfall.

  3. Measurment of radon, thoron and their progeny in indoor environment of Mohali, Punjab, Northern India, using pinhole dosimeters

    Directory of Open Access Journals (Sweden)

    Mehta Vimal

    2016-01-01

    Full Text Available The health hazards of radon and its decay products above certain levels are well known. However, for any preventive measures to be taken, we have to be aware of radon levels of that particular area. Measurement of radon and its decay products in indoor environments is an important aspect of assessing indoor air quality and health conditions associated with it. Keeping this in mind, measurements of radon, thoron and their progeny concentrations were carried out in Mohali, Northern India, using pinhole-based twin cup dosimeters. Radon exhalation rates of soil samples in the dwellings/areas were measured via an active technique of a continuous radon monitor. The indoor radon concentration in Mohali varied from 15.03 ± 0.61 Bq/m3 to 39.21 ± 1.46 Bq/m3 with an average of 26.95 Bq/m3 ,while thoron concentration in the same dwellings varied from 9.62 ± 0.54 Bq/m3 to 52.84 ± 2.77 Bq/m3 with an average of 31.09 Bq/m3. Radon progeny levels in dwellings under study varied from 1.63 to 4.24 mWL, with an average of 2.94 mWL, while thoron progeny levels varied from 0.26 to 1.43 mWL , with an average of 0.84 mWL. The annual dose received by the inhabitants of dwellings under study varied from 0.78 to 2.36 mSv, with an average of 1.61 mSv. The in situ gamma dose rate varied from 0.12 to 0.32 mSv/h.

  4. Natural air ventilation in underground galleries as a tool to increase radon sampling volumes for geologic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eff-Darwich, Antonio [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Instituto de Astrofisica de Canarias, c/Via Lactea s/n, 38205 La Laguna, Tenerife (Spain)], E-mail: adarwich@ull.es; Vinas, Ronaldo [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Soler, Vicente [Estacion Volcanologica de Canarias, IPNA-CSIC, Av. Astrofisico Francisco Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Nuez, Julio de la; Quesada, Maria L. [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain)

    2008-09-15

    A simple numerical model was implemented to infer airflow (natural ventilation) in underground tunnels from the differences in the temporal patterns of radon, {sup 222}Rn, concentration time-series that were measured at two distant points in the interior of the tunnels. The main purpose of this work was to demonstrate that the installation of radon monitoring stations closer to the entrance of the tunnels was sufficient to remotely analyse the distribution of radon concentration in their interiors. This could ease the monitoring of radon, since the effective sampling volume of a single monitoring station located closer to the entrance of a tunnel is approximately 30,000 times larger than the sampling volume of a sub-soil radon sensor. This methodology was applied to an underground gallery located in the volcanic island of Tenerife, Canary Islands. This island constitutes an ideal laboratory to study the geo-dynamical behaviour of radon because of the existence of a vast network of galleries that conforms the main water supply of the island.

  5. Residential radon exposure and brain cancer: an ecological study in a radon prone area (Galicia, Spain).

    Science.gov (United States)

    Ruano-Ravina, Alberto; Aragonés, Nuria; Kelsey, Karl T; Pérez-Ríos, Mónica; Piñeiro-Lamas, María; López-Abente, Gonzalo; Barros-Dios, Juan M

    2017-06-15

    We aimed to know if radon concentration is associated with municipal mortality due to brain cancer in Galicia, Spain. We designed an ecological study taking as study unit Galician municipalities. To be included, municipalities had to have at least three radon measurements. We correlated radon concentrations with municipal mortality due to these malignant tumors during the period 1999-2008. We calculated the relative risk of dying of brain cancers for each municipality and correlated this value with municipal radon concentration using Spearman's Rho. 251 municipalities were included, with close to 3,500 radon measurements and an average of 14 radon measurements at each municipality. We observed a significant correlation between residential radon with brain cancer mortality for males and females and the intensity of the correlation was higher for females. These results were reinforced when the analysis was restricted to municipalities with more than 5 radon measurements: Spearman's Rho 0.286 (p-value < 0.001) and Spearman's Rho 0.509 (p-value < 0.001) for males and females, respectively. These results suggest an association between residential radon and brain cancer mortality. More research using more robust epidemiological designs is needed to confirm these findings.

  6. Cadmium content of plants as affected by soil cadmium concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoczky, E. [Pannon Univ. of Agricultural Sciences, Keszthely (Hungary); Szabados, I.; Marth, P. [Plant Health and Soil Conservation Station, Higany (Hungary)

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  7. Investigation of radon entry and effectiveness of mitigation measures in seven houses in New Jersey: Midproject report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, T.G.; Dudney, C.S.; Monar, K.P.; Landguth, D.C.; Wilson, D.L.; Hawthorne, A.R.; Hubbard, L.M.; Gadsby, K.J.; Bohac, D.L.; Decker, C.A.

    1987-12-01

    A detailed radon mitigation study is in progress in 14 homes in the New Jersey Piedmont area. The principal goals are the refinement of diagnostic measurements for selection and implementation of mitigation systems, and the reduction of radon concentrations to acceptable levels inside the study houses. Monitoring stations were installed in each home in October, 1986. Instrumented measurements included: basement and upstairs radon; differential pressures across the basement/subslag, basement/upstairs and basement/outdoor interfaces; temperatures at basement, upstairs and outdoor locations; and central air handler usage. A weather station was located at one house, monitoring wind speed and direction; barometric pressure; precipitation; soil temperature; and outdoor temperature and relative humidity. A time-averaged value of all of the above parameters was recorded every 30 min. Several additional parameters were monitored on an intermittent basis in all or selected homes. These include multizone air infiltration rates which have been measured in all homes using passive perfluorocarbon tracers (PFT) and in two homes using a constant concentration tracer gas system (CCTG). Total radon progeny, soil gas radon concentration and permeability characteristics, and gamma radiation levels were also monitored periodically in all study homes. 10 refs., 53 figs.

  8. Radiochlorine concentration ratios for agricultural plants in various soil conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kashparov, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Colle, C. [Institute for Radioprotection and Nuclear Safety (IRSN/DEI/SECRE), Cadarache bat 159, BP 3, 13115 Saint Paul-Lez-Durance (France)]. E-mail: claude.colle@irsn.fr; Levchuk, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Yoschenko, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Zvarich, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine)

    2007-06-15

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ({sup 36}Cl) transfer to plants from four types of soil, namely, Podzoluvisol, Greyzem, Phaeozem and Chernozem. Radiochlorine concentration ratios (CR = concentration of {sup 36}Cl in the fresh plant material divided by its concentration in the dried soil in the upper 20 cm layer) were obtained in green peas (2.6 {+-} 0.4), onions (1.5 {+-} 0.5), potatoes (8 {+-} 1), clover (90 {+-} 26) and ryegrass (158 {+-} 88) hay, oat seeds (36 {+-} 23) and straw (305 {+-} 159), wheat seeds (35 {+-} 10) and straw (222 {+-} 82). These values correlate with the stable chlorine values for the same plants. It was shown that {sup 36}Cl plant/soil CR in radish roots (CR = 9.7 {+-} 1.4) does not depend on the stable chlorine content in the soil (up to 150 mg kg{sup -1}), soil type and thus, that stable chlorine CR values (9.4 {+-} 1.2) can also be used for {sup 36}Cl. Injection of additional quantities of stable chlorine into the soil (100 mg kg{sup -1} of dry soil) with fertilizer does not change the soil-to-plant transfer of {sup 36}Cl. The results from a batch experiment showed that chlorine is retained in the investigated soils only by live biota and transfers quickly (in just a few hours) into the soil solution from dry vegetation even without decomposition of dead plants and is integrated in the migration processes in soil.

  9. Radon dosimetry occupational safety in working area of Sanpaolo IMI organization; Individuazione e dosimetria del radon presso i presidi operativi del gruppo Sanpaolo IMI: parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Giuseppe; Bresciani, Sara [ASO Ordine Mauriziano, Torino (Italy); Coggiola, Maurizio [Torino Univ., Torino (Italy). DTP Traumatologia, ortopedia e medicina del lavoro; Magnone, Maurizio; Chiaberto, Enrico [Arpa Piemonte, Torino (Italy)

    2005-05-15

    The Radon 222 is a natural radioactive gas present inside rocks, soil and building materials. Its decay produce ionizing Alpha radiation. The OMS Organization classified the Radon as cancerogenic substance of group 1 at most high cancerogenicity. In Italy the Radon risk is regulated in law 230 and its modifications.

  10. Development of a novel fiber-optic sensor to measure radon in the deep ocean

    Science.gov (United States)

    Monteiro, Catarina; Guimarães, Diana; Jorge, Pedro; Barbosa, Susana

    2017-04-01

    The radon concentration in the deep ocean has gained increasing interest in the last decades. The underwater monitoring of this natural radioactive gas can give important information about submarine groundwater discharges, groundwater migration and contamination. Radon concentration has also been studied as a possible indicator of earthquake events which can have devastating consequences when the epicenter is located at the sea. In contrast with radon monitoring studies in caves, mines, and underground soil, there is an utter lack of information about radon in deep-sea. These measurements are particularly difficult to attain due to the challenges that marine-like environments post to electronic sensing devices and their maintenance over time. Gamma rays emitted by radon's progeny can be easily detected when interacting with a scintillator material. Recently, optical fiber doped with scintillating material has emerged has an alternative for gamma ray detection. The lightweight, low transmission loss, immunity to electromagnetic interference and the cost effectiveness makes optical fiber a compelling solution for radiation detection when compared to conventional sensors. In this work a compact all-fiber optical sensor is developed for continuous gamma ray detection in the deep sea. This sensor is composed by a scintillating optical fiber coupled to a polymeric optical fiber that allows the detection of low levels of radiation.

  11. Additional contamination when radon is in excess.

    Science.gov (United States)

    Martín Sánchez, A; de la Torre Pérez, J; Ruano Sánchez, A B; Naranjo Correa, F L

    2013-11-01

    A study of the behavior of the (222)Rn progeny on clothes, skin and hair has been performed in a place with very high radon concentration. In the past, radon concentration was established to be about 32 kBq/m(3) in a very high humidity environment inside a tourist cave in Extremadura (Spain). The results show that (222)Rn daughters are adhered on clothes, skin and hair, adding some radioactive concentration to that due to radon and its progeny existing in the breathable air. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Gamma ray spectrometry and radon emissions in soils from the Piquiri Syenite Massif region (Encruzilhada do Sul e Cachoeira do Sul, RS); Espectrometria de raios gama e emissao de radonio em solos da regiao do Macico Sienitico Piquiri (Cachoeira do Sul e Encruzilhada do Sul, RS)

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Mujalli, Gibran, E-mail: gibran.romero.mujalli@uni-hamburg.de [Institute for Geology, University of Hamburg (Germany); Roisenberg, Ari, E-mail: ari.roisenberg@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Geociencias. Departamento de Mineralogia e Petrologia

    2016-05-15

    This study was focused in performing a gamma radiation survey and measurements of radon concentration in soils from the Piquiri Syenite Massif, an intrusion located at central area of the Rio Grande do Sul State. This intrusion has alkaline affiliation with high concentrations of uranium in accessory minerals as zircon, sphene, apatite, and others. The gamma radiation measurements were made considering a grid with squares about 2 km side each, using the gamma spectrometer RS-125, obtaining counts per second (cps), dose rate (DR) and concentrations of K, eU and eTh. Moreover, measurements of {sup 220}Rn and {sup 222}Rn in soil were made using the AlphaGUARD equipment. The counts per second values obtained in this study range from 130 to 1045, the dose rate from 28.9 nSv/h to 424.6 nSv/h, the K concentration from 0.5 % to 8.3 %, the eU concentration from 0.8 ppm to 25.8 ppm, and the eTh concentration from 3.0 ppm to 99.2 ppm. The distribution of K defines with relatively precision the lithological contacts of the Piquiri Syenite Massif and between the two main facies of the intrusion (Main and Marginal Facies). The Main Facies of the syenite contains the highest concentrations of eTh, while the highest concentrations of eU were measured in the north area of this facies. The {sup 220}Rn and {sup 222}Rn concentrations range from 10 kBq/m{sup 3} to 550 kBq/m{sup 3} and from 5 kBq/m{sup 3} to 400 kBq/m{sup 3}, respectively, in the Main and Marginal Facies. The high values of radon measured in Main Facies of the Piquiri Syenite Intrusion may indicate high potential risk to the health of inhabitants in the area. (author)

  13. Decadal radon cycles in a hot spring.

    Science.gov (United States)

    Yan, Rui; Woith, Heiko; Wang, Rongjiang; Wang, Guangcai

    2017-09-21

    A high-fidelity record covering nearly 40 years of water-dissolved radon from the hot spring site of BangLazhang (BLZ), Southwestern China is presented to study multi-year periodicities of radon. Ancillary observational data, i.e., water temperature, spring discharge rate, barometric pressure, combined with regional rainfall, galactic cosmic rays (GCR flux is modulated by solar wind and thus a proxy for solar activity) and regional seismicity from the same period are considered to identify potentially influencing factors controlling the changes in radon. Variations in radon concentration and ancillary observational data are studied using continuous Wavelet Power Spectrum (WPS), Wavelet Coherence (WTC), and Partial Wavelet Coherence (PWC). The results show that the long-period radon concentration is characterized by a quasi-decadal (8-11 years) cycle, matching well with the concurrent periodicity in water temperature, spring discharge rates and GCR. PWCs of radon, discharge rate and water temperature suggest that water temperature variations explain most of the coherent variability of radon and the discharge rate. We tentatively conclude that radon variations are mainly explained by variations in water temperature and spring discharge, which are modified and modulated by earthquakes and quasi-decadal variations of an unidentified process. The influence of solar activity on the decadal periodicity is discussed.

  14. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Yarmoshenko, I.V. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation)], E-mail: ivy@ecko.uran.ru; Kelleher, K. [Radiological Protection Institute of Ireland, Dublin (Ireland); Paridaens, J. [SCK.CEN Mol (Belgium); Mc Laughlin, J.P. [School of Physics, University College Dublin (Ireland); Celikovic, I.; Ujic, P. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Onischenko, A.D. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation); Jovanovic, S.; Demajo, A. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Birovljev, A. [Radonlab Ltd., Oslo (Norway); Bochicchio, F. [Italian National Institute of Health, Rome (Italy)

    2007-11-15

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped {sup 210}Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted {sup 210}Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test > 0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m{sup -3}, whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods.

  15. Nutrient concentration in wheat and soil under allelopathy treatments.

    Science.gov (United States)

    Mohammadkhani, Nayer; Servati, Moslem

    2017-10-29

    Allelopathy is related to soil nutrient availability and allelochemicals can change the soil and therefore the plant nutrient status. Wheat is one of the most important crops for the production of human food in the world. Alhagi maurorum and Cardaria draba are the most important weeds in wheat fields. We performed experiments to assess the allelopathic effect of A. maurorum and C. draba shoots on mineral nutrient concentrations in pot-grown wheat plants and soil. The presence of dry powder of A. maurorum and C. draba shoots reduced concentrations of macronutrients (NO3(-), K(+), Ca(2+) and P) and micronutrients (Fe(2+) and Cu(2+)) in roots and shoots of wheat plants, whereas it did not affect concentrations of Mg(2+), Mn(2+) and Zn(2+). Allelopathic effect of A. maurorum was significantly greater than that of C. draba. There was a significantly positive correlation between wheat growth and ion concentration. There was a significantly negative correlation between the soil nutrient concentration and plant nutrient concentration across the treatments. These results suggest that allelopathy increases the nutrient availability in the soil because of the decrease in absorption by plants.

  16. Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data

    Directory of Open Access Journals (Sweden)

    Chi Xu

    2016-01-01

    Full Text Available This research examines the simultaneous retrieval of surface soil moisture and salt concentrations using hyperspectral reflectance data in an arid environment. We conducted laboratory and outdoor field experiments in which we examined three key soil variables: soil moisture, salt and texture (silty loam, clay and silty clay. The soil moisture content models for multiple textures (M_SMC models were based on selected hyperspectral reflectance data located around 1460, 1900 and 2010 nm and resulted in R2 values higher than 0.933. Meanwhile, the soil salt concentrations were also accurately (R2 > 0.748 modeled (M_SSC models based on wavebands located at 540, 1740, 2010 and 2350 nm. When the different texture samples were mixed (SL + C + SC models, soil moisture was still accurately retrieved (R2 = 0.937 but the soil salt not as well (R2 = 0.47. After stratifying the samples by retrieved soil moisture levels, the R2 of calibrated M_SSCSMC models for soil salt concentrations improved to 0.951. This two-step method also showed applicability for analyzing soil-salt samples in the field. The M_SSCSMC models resulted in R2 values equal to 0.912 when moisture is lower than 0.15, and R2 values equal to 0.481 when soil moisture is between 0.15 and 0.2.

  17. Deconvolution of alpha spectra from air filters applied for measurements of the short-lived radon progeny concentration

    Directory of Open Access Journals (Sweden)

    Skubacz Krystian

    2017-09-01

    Full Text Available The paper contains a description of a method for the analysis of the complex alpha spectra generated during the measurement of the activity of filters outside of a vacuum chamber under environmental conditions. The peaks corresponding to the energies of alpha particles emitted by the specific isotopes are particularly large on the low-energy side of the peak maximum, and the energy resolution strongly depended on the applied filters. The analysis was based on the non-linear regression to a function designed for four, six and eight parameters. Satisfactory results were obtained for each of these functions, and the best-fitting results were achieved for the eight-parameter function. In addition, the uncertainties related to the estimated parameters, as well as the signals corresponding to functions that describe the shape of the energy peak, have been evaluated. There are also examples of the implementation of the method with respect to short-lived radon progeny and thoron decay products.

  18. The role of confounding factors in a radon epidemiological study

    Directory of Open Access Journals (Sweden)

    A. D. Onishchenko

    2017-01-01

    Full Text Available Objective: A simulation of a large-scale epidemiological case-control study to identify the relationship between exposure to radon and lung cancer in the presence of factors that distort the results of the assessment of exposure to radon in homes. Materials and Methods: Analysis of sources of uncertainties arising during radon epidemiologic case-control studies. Evaluation of the uncertainties caused by the errors of the measurements of the long-term variations in the radon concentration, exposure to radon in other places of the human habitat, except dwellings, etc. Simulation by Monte Carlo technique of radon epidemiologic study, comparable to the combined European radon study, and assessment of uncertainties, which affect the evaluation of dose-effect dependence. Results: The multiplicative error in the assessment of individual exposure based on the radon concentration is shown generally caused by the combined effect of long-term variations of the radon concentration and the differences in the levels of the radon concentration in living houses and other places of the human habitat. The logarithmic standard deviation of this errors σerr is from 0,70 to 0,90. The estimated value of this error is 2,0 times higher than the value used for correction of the results of the combined European radon study. It is shown that for the σerr <0,9 regression calibration technique, there is a possibility to make a full correction of uncertainty. Conclusion: Errors in the assessment of uncertainties of the radon exposure based on the radon concentration in the combine European radon case-control study has led to an underestimation of the relative risk of lung cancer incidence at least with a factor of 1,5.

  19. Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time

    Science.gov (United States)

    M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz

    2016-05-01

    Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).

  20. Concentrated biogas slurry enhanced soil fertility and tomato quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang-Bo Yu; Xi-Ping Luo; Fang-Bo Yu; Xi-Ping Luo; Cheng-Fang Song; Miao-Xian Zhang; Sheng-Dao Shan (Dept. of Environmental Sciences, Inst. of Environmental Technology, Zhejiang Forestry University, Linan (China))

    2010-05-15

    Biogas slurry is a cheap source of plant nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its further development. In this paper, a one-growing-season field study was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of microflora in both nonrhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could bring significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, beta-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It was concluded that the application is a practicable means in tomato production and will better service the area of sustainable agriculture

  1. Seasonal variation of radon level and radon effective doses in the ...

    Indian Academy of Sciences (India)

    Inhalation of radon has been recognized as a health hazard. In the present work radon concentration was measured, in the atmosphere of the archaeological place, namely Catacomb of Kom El-Shuqafa, in Alexandria, Egypt, which is open to the public, using time-integrated passiveradon dosimeters containing LR-115 ...

  2. Protocol proposal for radon concentration mensuration from granitic rocks in marble factory; Proposta de protocolo para medicao de concentracoes de radonio proveniente de rochas graniticas em marmorarias

    Energy Technology Data Exchange (ETDEWEB)

    Del Claro, Flavia

    2016-11-01

    Naturally occurring radionuclides such as radon ({sup 222}Rn), its decay products and other elements from the radioactive series of uranium ({sup 238}U and {sup 235}U) and thorium ({sup 232}Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. Radionuclides such as radon ({sup 222}Rn), the thoron ({sup 220}Rn), radio ({sup 2}'2'6Ra), thorium ({sup 23}'2Th) and potassium ({sup 40}K) may occur in materials commonly used in construction of dwellings and buildings. Thus, the radioactivity from marbles and granites is of importance, so that under certain conditions these materials radioactivity levels can be hazardous requiring the implementation of mitigation measurements. This research presents a technical protocol marble factories for the control human exposure to natural radioactivity exhaled from granitic rocks. The protocol was based on measurements of the {sup 222}Rn and {sup 220}Rn concentration in Brazilian granite rocks commonly nationally and exported. The {sup 222}Rn and {sup 220}Rn measurements were done using the AlphaGUARD (Saphymo GmbH) and RAD7 (Durridge Company) apparatus, respectively. The samples of granite were sealed in glass jars for 40 days in to achieve secular equilibrium between {sup 226}Ra and {sup 222}Rn radionuclides. The measurements were performed on Applied Nuclear Physics Laboratory at the Federal Technological University of Parana. Also, solid-state nuclear track detectors CR-39 were installed in a marble factory environments located in Curitiba - Parana for the evaluation of {sup 222}Rn concentrations in workplaces. The CR-39 detectors were exposed for about 90 days and submitted to etching process. The alpha particle tracks were observed using an optical microscope. Some granite samples analyzed presented {sup 222}Rn concentrations of attention, since the average

  3. Radon entry into a simple test structure

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1992-01-01

    in the cylinder and in selected locations in the soil. In this paper, the test structure is described, and initial results concerning the transport of soil gas and radon under steady-state conditions are reported. It is found that the soil in the vicinity of the structure is partially depleted with respect......A simple test structure for studies of radon entry into houses has been constructed at a field site at Riso National Laboratory. It consists of a 40 1, stainless-steel cylinder placed in a 0.52 m deep quadratic excavation with a side length of 2.4 m. The excavation is lined with an airtight...

  4. Toward resolving model-measurement discrepancies of radon entry into houses

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, Karina [Univ. of California, Berkeley, CA (United States). Energy and Resources Group

    1994-10-01

    Analysis of the literature indicated that radon transport models significantly and consistently underpredict the advective entry into houses of soil-gas borne radon. Advective entry is the dominant mechanism resulting in high concentrations of radon indoors. The author investigated the source of the model-measurement discrepancy via carefully controlled field experiments conducted at an experimental basement located in natural soil in Ben Lomond, California. Early experiments at the structure confirmed the existence and magnitude of the model-measurement discrepancy, ensuring that it was not merely an artifact of inherently complex and poorly understood field sites. The measured soil-gas entry rate during structure depressurization was found to be an order of magnitude larger than predicted by a current three-dimensional numerical model of radon transport. The exact magnitude of the discrepancy depends on whether the arithmetic or geometric mean of the small-scale measurements of permeability is used to estimate the effective permeability of the soil. This factor is a critical empirical input to the model and was determined for the Ben Lomond site in the typical fashion using single-probe static depressurization measurements at multiple locations. The remainder of the dissertation research tests a hypothesis to explain the observed discrepancy: that soil permeability assessed using relatively small-scale probe measurements does not reflect bulk soil permeability for flows that is likely to occur at larger scales of several meters or more in real houses and in the test structure. The idea is that soil heterogeneity is of a nature that, as flows occur over larger scales, larger scales of heterogeneity are encountered that facilitate larger flux rates, resulting in a scale dependence of effective soil permeability.

  5. Radon in Saudi houses

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.

    1986-01-01

    A total of 637 passive radon dosemeters (CR-39 nuclear track detectors in a closed chamber) were used in a survey in 400 houses in Saudi Arabia. The radon concentration was found to vary from 5 to 36 Bq.m/sup -3/ (0.13 to 0.98 pCi.l/sup -1/) with a mean of 16 Bq.m/sup -3/ (0.43 pCi.l/sup -1/). The unoccupied houses showed a concentration of 29+-7 Bq.m/sup -3/ (0.78+-0.19 pCi.l/sup -1/) double that of the occupied houses, 14+-1 Bq.m/sup -3/ (0.39+-0.02 pCi.l/sup -1/), in the same area. The radon daughter concentration measured with a Working Level monitor in 17 unoccupied houses was found to vary from 1.35x10/sup -3/ to 24x10/sup -3/ WL with an average of 6.9+-1.4x10/sup -3/ WL. The average exhalation rate measured in 37 houses by 95 passive detectors in cans sealed to the walls ranged from 0.013 to 0.044 Bq.m/sup -2/.h/sup -1/(0.35 to 1.2 pCi.m/sup -2/.h/sup -1/) with an average of 0.021+-0.003 Bq.m/sup -2/.h/sup -1/(0.56+-0.09 pCi.m/sup -2/.h/sup -1/). This survey is the first in Saudi Arabia (a hot climate) and can usefully be compared with similar surveys in countries with cold climates.

  6. The effects of high metal concentrations in soil-compost mixtures on soil enzymes.

    Science.gov (United States)

    Warman, P R; Munroe, M D

    2010-10-01

    The study was undertaken to determine the impact of high-metal composts on the activities of four soil enzymes. High concentrations of metal salts (Cr, Cu, Ni or a Co-Mo-Pb combination) were added to feedstocks during the thermophilic stage of composting. These four metal-enriched composts and an unamended control compost were then mixed with soil collected from long-term agriculture plots under organic management or conventional management. The compost-soil mixtures were prepared at two rates (1:1 or 1:3 compost:soil, v/v) and incubated at 20 degrees C for three weeks. These 20 combinations plus the five composts and the two soils were added to pots and incubated for three weeks. Following incubation, soil enzyme activities (acid phosphatase, arysulfatase, dehydrogenase, phosphodiesterase) were measured using traditional assay procedures. Compared to the control, none of the high-metal composts inhibited soil enzyme activity. Notably, the Cu compost treatment produced significantly higher activity of all four enzymes in the soil compared to the control. Previous soil management influenced the activity of three enzymes, arysulfatase and dehydrogenase had greater activity in the organic soil while phosphatase activity was greater in the conventional soil. Increasing the proportion of compost in the pot had a positive effect on phosphodiesterase activity only. In conclusion, the high-metal compost treatments either enhanced or caused no adverse effects on soil enzyme activity.

  7. Radiological risk assessment of environmental radon

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the

  8. Soil air CO2 concentration as an integrative parameter of soil structure

    Science.gov (United States)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  9. Occupational doses from radon in Spanish spas.

    Science.gov (United States)

    Soto, J; Gómez, J

    1999-04-01

    Recent international recommendations have included exposure to natural radiation as one of the sources to monitor in certain occupationally exposed groups. Among those mentioned are workers in thermal spas, who may be exposed to high radiation doses due to the high concentration of radon in the indoor air of the spa. This paper presents the methodology and the results of an evaluation of radiation doses to the staff in different thermal spas in Spain. Different series of samples were collected and measurements made for the radon concentrations in water in 54 spas and in air in 20 spas. In six of the latter group, the air radon concentration was studied in different working areas occupied by the employees. The radon concentrations in water were between radon concentrations in air were between radon concentration in their main working area. By means of an exposure-dose conversion factor of 1.43 Sv per J h m(-3), the estimated effective doses were found to lie between 1 and 44 mSv y(-1). This upper limit is higher than the recommended annual limit of 20 mSv y(-1) for an occupational dose.

  10. The Evaluation on the Cadmium Net Concentration for Soil Ecosystems

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2017-03-01

    Full Text Available Yixing, known as the “City of Ceramics”, is facing a new dilemma: a raw material crisis. Cadmium (Cd exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT, the ex situ static equilibrium approach (HAc, EDTA and CaCl2, and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops—paddy and zizania aquatica—were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved

  11. Indoor radon exposure and lung cancer: a review of ecological studies

    OpenAIRE

    Yoon, Ji Young; Lee, Jung-Dong; Joo, So Won; Kang, Dae Ryong

    2016-01-01

    Lung cancer has high mortality and incidence rates. The leading causes of lung cancer are smoking and radon exposure. Indeed, the World Health Organization (WHO) has categorized radon as a carcinogenic substance causing lung cancer. Radon is a natural, radioactive substance; it is an inert gas that mainly exists in soil or rock. The gas decays into radioactive particles called radon progeny that can enter the human body through breathing. Upon entering the body, these radioactive elements rel...

  12. Assessment of radioactivity concentration in soil of some mining ...

    African Journals Online (AJOL)

    A study was conducted to determine 226Ra, 232Th, and 40K natural activity concentrations in surface soils/sediments of some mining areas in Central Nasarawa State Nigeria, using Sodium Iodide-Thallium Gamma Spectroscopy. Seven major sites were identified from the highly mining areas of the zone and a total of ...

  13. Experimental studies of anomalous radon activity in the Tlamacas Mountain, Popocatepetl Volcano area, México: new tools to study lithosphere-atmosphere coupling for forecasting volcanic and seismic events

    Directory of Open Access Journals (Sweden)

    Jose Antonio Lopez Cruz Abeyro

    2012-04-01

    Full Text Available

    This study presents and discusses the results of soil radon monitoring at three different volcano sites and one reference site, from December 2007 to January 2009. This relates to the activity of the Popocatepetl Volcano and a radon survey and gamma-ray spectrometry in the area between Paso de Cortes and Tlamacas Mountain, and in the adjacent regions. The results are applied to the aspects of atmosphere electricity and lithosphere-atmosphere coupling in relation to the forecasting of volcano and earthquake activity. The monitoring of radon release reveals a decrease in radon concentration (down to total suppression with approaching moderate volcanic eruptions. The behavior of the radon activity at the Tlamacas site is more apparent, compared to other observational sites. The average level of radon release observed at the Tlamacas site is much higher, with some characteristic variations. Both the radon survey and gamma-ray spectrometry indicate intensive diffusion radon emission localized in the area of Tlamacas Mountain. The average radon concentration in the area of Tlamacas is about 10-20-fold greater than the background volcano values. The new concept of lithosphere-atmosphere coupling is presented: intensive radon release in high elevated areas shortens and modifies the Earth-to-thunderclouds electric circuit, which provokes microdischarges into the air close to the ground, attracting lightning discharges. This concept attempts to explain in a new way the noise-like geomagnetic emissions registered before major earthquakes, and it promotes interest for the study of thunderstorm activity in seismo-active zones, as a promising instrument for earthquake forecasting.

  14. Concentration effects of 1,2-dichlorobenzene on soil microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, I.P.; Bailey, M.J.; Boyd, E.M.; Maguire, N.; Meharg, A.A.; Ellis, R.J.

    1999-09-01

    The effect of increasing concentrations of 1,2-dichlorobenzene (1,2-DCB) on the microbial biomass, metabolic potential, and diversity of culturable bacteria was investigated using soil microcosms. All doses caused a significant decrease in viable hyphal fungal length. Bacteria were more tolerant, only direct total counts in soils exposed to 3,250 {micro}g/g were significantly lower than untreated controls, and estimates of culturable bacteria showed no response. Pseudomonads counts were stimulated by 1,2-DCB concentration of up to 325 {micro}g/g; above this level counts were similar to controls. Fatty acid methyl ester analysis of taxonomic bacterial composition reflected the differential response of specific genera to increasing 1,2-DCB concentrations, especially the tolerance of Bacillus to the highest concentrations. The shifts in community composition were reflected in estimates of metabolic potential assessed by carbon assimilation (Biolog) ability. Significantly fewer carbon sources were utilized by communities exposed to 1,2-DCB concentrations greater than 130 {micro}g/g than control soils; the ability to assimilate individual carbohydrates sources was especially compromised. The results of this study demonstrate that community diversity and metabolic potential can be used as effective bioindicators of pollution stress and concentration effects.

  15. Radon Guide for Tenants

    Science.gov (United States)

    This guide is for people who rent their apartments or houses. The guide explains what radon is, and how to find out if there is a radon problem in your home. The guide also talks about what you can do if there are high radon levels in your home.

  16. Identification of sources of high radon levels in Slovenian schools.

    Science.gov (United States)

    Vaupotic, J

    2002-01-01

    The sources of radon were investigated in twenty selected schools with high room levels of radiation. A combination of radon measuring techniques was applied: etched track and electret detectors to obtain average indoor air radon concentration. devices to record radon concentration continuously and thus characterise its diurnal variation, and alpha scintillation cells to analyse air from potential sources of radon entry. In some cases, a single strong source was identified (e.g. sinks, sub-floor channels), while in others the poor quality of the basic concrete slab was responsible for high indoor radon concentrations. The combination of etched track and electret detectors and alpha scintillation cells was essential for locating these sources.

  17. MODELNG RADON ENTRY INTO FLORIDA HOUSES WITH CONCRETE SLABS AND CONCRETE-BLOCK STEM WALLS, FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report discusses results of modeling radon entry into a typical Florida house whose interior is slightly depressurized. he model predicts that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. ost of the factors c...

  18. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    Science.gov (United States)

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  19. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils.

    Science.gov (United States)

    Six, L; Smolders, E

    2014-07-01

    The gradual increase of soil cadmium concentrations in European soils during the 20th century has prompted environmental legislation to limit soil cadmium (Cd) accumulation. Mass balances (input-output) reflecting the period 1980-1995 predicted larger Cd inputs via phosphate (P) fertilizers and atmospheric deposition than outputs via crop uptake and leaching. This study updates the Cd mass balance for the agricultural top soils of EU-27+Norway (EU-27+1). Over the past 15 years, the use of P fertilizers in the EU-27+1 has decreased by 40%. The current mean atmospheric deposition of Cd in EU is 0.35 g Cd ha(-1) yr(-1), this is strikingly smaller than values used in the previous EU mass balances (~3 g Cd ha(-1) yr(-1)). Leaching of Cd was estimated with most recent data of soil solution Cd concentrations in 151 soils, which cover the range of European soil properties. No significant time trends were found in the data of net applications of Cd via manure, compost, sludge and lime, all being small sources of Cd at a large scale. Modelling of the future long-term changes in soil Cd concentrations in agricultural top soils under cereal or potato culture predicts soil Cd concentrations to decrease by 15% over the next 100 years in an average scenario, with decreasing trends in some scenarios being more prevalent than increasing trends in other scenarios. These Cd balances have reverted from the general positive balances estimated 10 or more years ago. Uncertainty analysis suggests that leaching is the most uncertain relative to other fluxes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  1. Use of passive sampling devices to determine soil contaminant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.A. [Clemson Univ., Pendleton, SC (United States)]|[Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  2. Effect of high soil copper concentration on mycorrhizal grapevines

    Science.gov (United States)

    Nogales, Amaia; Santos, Erika S.; Viegas, Wanda; Aran, Diego; Pereira, Sofia H.; Vidigal, Patricia; Lopes, Carlos M.; Abreu, M. Manuela

    2017-04-01

    Repeated application of Copper (Cu) based fungicides in vineyards since the end of the 19th century has led to a significant increase in the concentration of this chemical element in many viticultural soils. Although Cu is an essential micronutrient for most organisms, it can be toxic for the development and survival of plants and soil (micro)organisms at high concentrations and eventually lead to yield loses in viticulture, as it negatively affects key physiological and biogeochemical processes. However, some soil microorganisms, including arbuscular mycorrhizal fungi (AMF), have developed adaptive mechanisms for persistence in environments with supra-optimal levels of essential elements or in the presence of harmful ones, as well as for increasing plant tolerance to such abiotic stress conditions. The objective of this work was to evaluate the effect of a high total soil concentration of Cu on microbial soil activity as well as on the development of mycorrhizal and non-mycorrhizal grapevines. A microcosm assay was set up under greenhouse and controlled conditions. Touriga Nacional grapevine variety plants grafted onto 1103P rootstocks were inoculated either with the AMF Rhizophagus irregularis or Funneliformis mosseae, or were left as non-inoculated controls. After three months, they were transplanted to containers filled with 4 kg of a sandy soil (pH: 7.0; electrical conductivity: 0.08 mS/cm; [organic C]: 5.6 g/kg; [N-NO3]: 1.1 mg/kg; [N-NH4]: 2.5 mg/kg; [extractable K]: 45.1 mg/kg; [extractable P]: 52.3 mg/kg), collected near to a vineyard in Pegões (Portugal). Two treatments were carried out: with and without Cu application. The soil with high Cu concentration was prepared by adding 300 mg Cu/kg (in the form of an aqueous solution of CuSO4·5H2O) followed by an incubation during four weeks in plastic bags at room temperature in dark. Physico-chemical soil characteristics (pH, electrical conductivity and nutrients concentration in available fraction), soil

  3. Radon generation and transport in and around a gold mine tailings dam in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Speelman, W.J.; Lindsay, R. [Western Cape Univ., Dept. of Physics (South Africa); Newman, R.T. [IThemba LABS, Somerset West (South Africa); Meijer, R.J. de [Nuclear Geophysics Division (NGD), KVI, Rijksuniversiteit Groningen (Netherlands)

    2006-07-01

    Naturally Occurring Radioactive Material (N.O.R.M.) occurs in most soil and rock, and by mining and mineral processing, some of the radionuclides are significantly enhanced. An in-situ gamma-ray detector called M.E.D.U.S.A., has been used to produce a map of relative activity concentrations in a gold mine tailings dam on the Witwatersrand in South Africa. A CsI(Na) scintillation detector is used in this system. M.E.D.U.S.A. spectra obtained from the survey were analyzed using the Full-Spectrum Analysis (F.S.A.) procedure to compute the {sup 40}K, {sup 238}U and {sup 232}Th activity concentrations. The activity concentrations are used with global positioning data (G.P.S.) to produce the concentration maps. A hyper-pure germanium gamma-ray detector (Hp Ge) was used to measure gamma-rays from the naturally occurring nuclides for soil samples taken at different points on the site to calibrate the M.E.D.U.S.A. system. Radon soil gas measurements were performed at certain points on the mine tailings with a continuous radon monitor; R.A.D.7, and emanation coefficients were measured with electret technology. These parameters have been combined with the activity concentrations to obtain an average radon exhalation rate of about 0.1 Bq.m{sup -2}.s{sup -1} (with an uncertainty of about 20%) from the tailings dam. The purpose of the study is to also review and develop a mathematical model for radon activity concentration predictions in gold mine dumps. (authors)

  4. Canadian population risk of radon induced lung cancer: a re-assessment based on the recent cross-Canada radon survey

    Science.gov (United States)

    Chen, J.; Moir, D.; Whyte, J.

    2012-01-01

    Exposure to indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. Canadian population risk of radon induced lung cancer was assessed in 2005 with the radon distribution characteristics determined from a radon survey carried out in the late 1970s in 19 cities. In that survey, a grab sampling method was used to measure radon levels. The observed radon concentration in 14 000 Canadian homes surveyed followed a log–normal distribution with a geometric mean (GM) of 11.2 Bq m–3 and a geometric standard deviation (GSD) of 3.9. Based on the information from that survey, it was estimated that ∼10 % of lung cancers in Canada resulted from indoor radon exposure. To gain a better understanding of radon concentrations in homes across the country, a national residential radon survey was launched in April 2009. In the recent survey, long-term (3 month or longer) indoor radon measurements were made in roughly 14 000 homes in 121 health regions across Canada. The observed radon concentrations follow, as expected, a log–normal distribution with a GM of 41.9 Bq m–3 and a GSD of 2.8. Based on the more accurate radon distribution characteristics obtained from the recent cross-Canada radon survey, a re-assessment of Canadian population risk for radon induced lung cancer was undertaken. The theoretical estimates show that 16 % of lung cancer deaths among Canadians are attributable to indoor radon exposure. These results strongly suggest the ongoing need for the Canadian National Radon Program. In particular, there is a need for a focus on education and awareness by all levels of government, and in partnership with key stakeholders, to encourage Canadians to take action to reduce the risk from indoor radon exposure. PMID:22874897

  5. Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation.

    Science.gov (United States)

    Ciotoli, G; Voltaggio, M; Tuccimei, P; Soligo, M; Pasculli, A; Beaubien, S E; Bigi, S

    2017-01-01

    In many countries, assessment programmes are carried out to identify areas where people may be exposed to high radon levels. These programmes often involve detailed mapping, followed by spatial interpolation and extrapolation of the results based on the correlation of indoor radon values with other parameters (e.g., lithology, permeability and airborne total gamma radiation) to optimise the radon hazard maps at the municipal and/or regional scale. In the present work, Geographical Weighted Regression and geostatistics are used to estimate the Geogenic Radon Potential (GRP) of the Lazio Region, assuming that the radon risk only depends on the geological and environmental characteristics of the study area. A wide geodatabase has been organised including about 8000 samples of soil-gas radon, as well as other proxy variables, such as radium and uranium content of homogeneous geological units, rock permeability, and faults and topography often associated with radon production/migration in the shallow environment. All these data have been processed in a Geographic Information System (GIS) using geospatial analysis and geostatistics to produce base thematic maps in a 1000 m × 1000 m grid format. Global Ordinary Least Squared (OLS) regression and local Geographical Weighted Regression (GWR) have been applied and compared assuming that the relationships between radon activities and the environmental variables are not spatially stationary, but vary locally according to the GRP. The spatial regression model has been elaborated considering soil-gas radon concentrations as the response variable and developing proxy variables as predictors through the use of a training dataset. Then a validation procedure was used to predict soil-gas radon values using a test dataset. Finally, the predicted values were interpolated using the kriging algorithm to obtain the GRP map of the Lazio region. The map shows some high GRP areas corresponding to the volcanic terrains (central

  6. Radon hazard in shallow groundwaters: Amplification and long term variability induced by rainfall

    Energy Technology Data Exchange (ETDEWEB)

    De Francesco, S., E-mail: stefano.defrancesco@unina2.it [Department of Environmental Sciences, Second University of Naples, Via Vivaldi, 43, 81100 Caserta (Italy); Tommasone, F. Pascale [Office of Civil Protection, Meteorology, Climatology and Natural Hazards, Piazza Municipio, 81051 Pietramelara, Caserta (Italy); Cuoco, E.; Verrengia, G. [Department of Environmental Sciences, Second University of Naples, Via Vivaldi, 43, 81100 Caserta (Italy); Tedesco, D. [Department of Environmental Sciences, Second University of Naples, Via Vivaldi, 43, 81100 Caserta (Italy); C.N.R. (Italian Council for Research), Institute of Environmental Geology and Geological Engineering, Piazzale Aldo Moro, 00100 Roma (Italy)

    2010-01-15

    {sup 222}Rn concentrations have been determined with a RAD7 radon detector in shallow groundwaters of the Pietramelara Plain, north-western Campania, southern Italy, where pyroclastic deposits, along with recent stream alluvial sediments, come in contact with Mesozoic carbonate reservoirs. The aim of this study has been to study the annual variation of {sup 222}Rn concentration in the shallow groundwaters, scarcely considered in the literature and of obvious relevance for radon hazard evaluation. Our results definitely show that {sup 222}Rn levels are characterized by a clear annual periodicity, strictly related to rainfall and water table levels, with a pronounced difference between the dry and the wet season. In this last case with concentrations increasing up to two orders of magnitude (up to two times the lower threshold given in the Recommendation 2001/928/EURATOM for public waters). In relation to this, experimental field data will be presented to demonstrate that this variability is due to purely hydrological mechanisms, mainly rinse out and discharge that control leaching efficiency. The detected cycle (Radon Hydrological Amplification Cycle, RHAC) has been generalized for the Mediterranean Tyrrhenian climate. The marked and seasonally persistent amplification in {sup 222}Rn levels poses the problem of evaluating the epidemiological risk brought up by this previously not yet reported mechanism. This mechanism, occurring in shallow groundwaters, very likely should strongly influence indoor radon levels via groundwater-soil-building exchange.

  7. What happens to in-soil Radon activity during a long-lasting eruption? Insights from Etna by multidisciplinary data analysis

    Science.gov (United States)

    Falsaperla, S.; Neri, M.; Di Grazia, G.; Langer, H.; Spampinato, S.

    2017-06-01

    We analyze short- to long-term changes (from days to months) in Radon (Rn) activity measured nearby (barometric pressure and soil temperature), and seismic data (earthquakes and volcanic tremor) recorded from January 2008 to July 2009. The analysis highlights repeated episodes of rock-fracturing related to seismic swarms, and vigorous gas pulses and peak values in Rn emissions (maximum ˜4.1×105 Bq/m3 on 16 November 2008), which we interpreted in a conceptual model as the response to inputs from the magmatic system during the eruption. This multidisciplinary study: (i) provides evidence of a close relationship between Rn emission at a fumarole near the summit active craters and local earthquakes, and (ii) enables exploring the important role of the volcanic source on the temporal development of the Rn flux, which may account for the much higher (≫94 m/d) ascent speed of the Rn carrier (vapor) than diffusion. The close location of Rn probes to the active conduits, along with the application of our multidisciplinary approach, may shed new light on the internal dynamics of other active volcanoes worldwide.

  8. Simulation of the Steady-State Transport of Radon from Oil intoHouses with Basements under Constant Negative Pressure

    Energy Technology Data Exchange (ETDEWEB)

    de Oliveira Loureiro, Celso [Univ. of California, Berkeley, CA (United States)

    1987-05-01

    Normal conditions in a house can produce negative pressures as high as 20 Pa relative to the outside. This underpressure, which is a maximum at the base of the house (the basement, for instance), can induce a flow of soil gas into the house, through cracks or any other openings in the understructure of the building. Radon (Rn-222), which is produced in the soil and mixed in the soil gas, can then be transported into the house through a complex combination of molecular diffusion and forced convection. In many of the cases where high levels of indoor radon concentrations have been observed in houses, the soil gas has been concluded to be the main source.

  9. Distribution of indoor radon levels in Mexico

    CERN Document Server

    Espinosa, G; Rickards, J; Gammage, R B

    1999-01-01

    Our laboratory has carried out a systematic monitoring and evaluation of indoor radon concentration levels in Mexico for ten years. The results of the distribution of indoor radon levels for practically the entire country are presented, together with information on geological characteristics, population density, socioeconomic levels of the population, and architectural styles of housing. The measurements of the radon levels were made using the passive method of nuclear tracks in solids with the end-cup system. CR-39 was used as the detector material in combination with a one-step chemical etching procedure and an automatic digital- image counting system. Wherever a high level was measured, a confirming measurement was made using a dynamic method. The results are important for future health studies, including the eventual establishment of patterns for indoor radon concentration, as it has been done in the USA and Europe.

  10. Results of the second Dutch national survey on radon in dwellings

    NARCIS (Netherlands)

    Stoop P; Glastra P; Hiemstra Y; de Vries L; Lembrechts J; LSO

    1998-01-01

    In 1995 and 1996, radon concentrations and effective air flows were measured in about 1500 Dutch dwellings built between 1985 and 1993. The goal of this investigation was to describe the trend in the average radon concentration and quantify the relative importance of the different sources of radon.

  11. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    Science.gov (United States)

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  12. A study on heavy radioactive pollution: Radon and Radium in streams and drinking water of Ramsar region by measured Prassi system

    Directory of Open Access Journals (Sweden)

    S Mohammadi

    2012-03-01

    Full Text Available  Inhalation of radon gas 222Rn, which is a decay product of 226Ra, and its decay products accounts for typically about half of the effective doses received by public from all natural sources of ionizing radiation. Radon alpha particles can initiate a series of molecular and cellular events that culminates in the development of lung and other cancers. Also, 226Ra in the environment is widely distributed, being present in various concentrations in waters, soils and rocks. When radium is ingested, the majority of material is rapidly excreted. However, since radium is chemically similar to calcium, a significant fraction is absorbed into the bloodstream and deposited mainly in the skeleton. So, presence of these radioactive contaminants in water is dangerous and many studies especially about radon have been done in this area. For these reasons and becauses some areas of Ramsar, a city in northern Iran in mazandaran province, have been among the highest known background radiation levels in the world we measured radon and radium concentrations in water sources of Ramsar region. In this study, Radon and radium concentrations of the 22 streams and 20 drinking water samples were measured by PRASSI system. According to the data, the arithmetic mean of radon concentration for all samples was 3.030 ± 1.122 Bq/l. Similarly, arithmetic mean of radium for all samples was 0.185 ± 0.055 Bq/l. Also 1 sample of streams and 1 sample of drinking water showed radon concentration higher than 10Bq/l as normal level. Radium-226 alone, in 11 samples of streams and 8 samples of drinking water had concentrations higher than 0.185Bq/l as normal level for the combined Radium-226 and Radium-228.

  13. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per

    1999-01-01

    Nitrate in the soil water below the root zone is a pre-condition for nitrate leaching, and it indicates loss of nutrients from the forest ecosystem. Nitrate leaching may potentially cause eutrophication of surface water and contamination of ground water. In order to evaluate the extent of nitrate...... leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... determined by means of a 1 M KCl extraction. The influence of forest size, forest-type, soil-type, tree species and sampling time on the nitrate concentrations was analysed in a statistical model. The analysis focused on data from depth 75-100 cm, as nitrate is considered potentially lost from the ecosystem...

  14. Radon isotope measurements as a monitoring tool for CO2 leakage in geological storage

    Science.gov (United States)

    Grandia, F.; Mazadiego, L. F.; de Elío, J.; Ortega, M.; Bruno, J.

    2011-12-01

    Early detection of the failure of the seal integrity is fundamental in the monitoring plan of a deep geological CO2 storage. A number of methods of leakage control are based on changes in fluid geochemistry (shallow water, soil gases) providing valuable indicators. Among them, the measurement of CO2 fluxes in the soil-atmosphere interface is commonly used since it can be easily done using portable infra-red analyzers (i.e., accumulation chambers). However, initial emission of CO2 from storage horizon could be masked by fluxes from biological activity, limiting its applicability as an early alarm system. The measurement of fluxes of trace gas (Rn, He, VOC) that are virtually absent in the pre-injection baseline turns out a promising complementary method. The measurement of radon isotopes has been long used for the observation of mass transport from deep reservoirs to surface despite the flux of 222Rn and 220Rn is usually very limited in sedimentary basins due to the short half-life of these isotopes. The enhanced transport of radon in CO2 fluxes has been reported from natural systems, resulting in concentration in air up to several thousands of Bq/m3. In the frame of the Compostilla pilot plant project in Spain, a number of methodologies to measure radon emission are being tested in natural systems to select of the most reliable and cost-effective method to be used in leakage control. These methods are (1) Scintillation detector EDA RD-200, (2) Track Etch °, (3) Ionization Chamber and (4) alpha spectroscopy SARAD RTM 200. Some of them are capable of measuring the isotopes separately (SARAD) whereas others just detect the bulk radon concentration. Also, these methods follow distinct procedures and acquisition times. The studied natural sites are located in central and NE Spain (Campo de Calatrava and La Selva basins), and in central Italy (Arezzo basin). Apparently, radon isotopes (up 200000 Bq/m3) are measured far from parent isotopes, and they are coupled to

  15. Radon Assessment of Occupational Facilities, Homestead ARB, FL

    Science.gov (United States)

    2013-11-21

    Consultative Letter 3. DATES COVERED (From – To) May 2013 – August 2013 4. TITLE AND SUBTITLE Radon Assessment of Occupational Facilities...unlimited. Case Number: 88ABW-2013-4919, 21 Nov 2013 13. SUPPLEMENTARY NOTES 14. ABSTRACT An assessment of indoor radon concentrations was...established in AFI 48-148 for long-term monitoring. Historical results indicate a radon risk characterization category of “medium,” requiring all

  16. Radon as an indicator of environmental contamination by hydrocarbons in free-phase; Radonio como indicador de contaminacao ambiental por hidrocarbonetos em fase livre

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Crislene

    2016-10-01

    Contaminated sites by NAPL (Non-Aqueous Phase-Liquids) may lead to safety risks to human health and to ecosystems, restrictions to urban development and decrease of real estate value. This work used the radon gas as an indicator for the analysis of subsurface soil gas, once this noble gas presents good solubility in a wide range of NAPL, being partially retained in the NAPL contamination. Therefore, a decrease of the activity of radon in the contaminated soil gas can be expected, due to the high capacity of partitioning of radon in NAPL, which allows that the NAPL retain part of the radon previously available in the soil pores. The survey was carried out at a disused industry, contaminated by low volatile NAPL, located at southeast of Sao Paulo city, from June/14 to May/15. Radon was evaluated by passive detection methodology with CR-39 solid state nuclear track detectors (SSNTD) in ten monitoring stations installed in the contaminated area investigated and named 'A' to 'J'. Radon concentrations average for the eight monitoring stations at non-contaminated locations varied from (22 ± 4) kBq.m{sup -3} to (39 ± 4) kBq.m{sup -3} . For the two monitoring stations assumed as contaminated locations, radon concentrations average were (1.4 ± 0.4) kBq.m{sup -3} and (13 ± 9) kBq.m{sup -3}. The results have shown good agreement between the used method and the conventional environmental investigation techniques, for the majority of the monitoring stations in different seasons. Results obtained with CR-39 detectors varied over the exposure time due to the different seasons. No relation was observed between radon activity concentrations and rain volume accumulated over the different CR-39 exposure times. The lowest {sup 222}Rn activity concentrations occurred in 'G' and 'H' monitoring stations, also verifying by gamma-ray spectrometry, that the low activities are not related to the activity concentration of its father {sup 226}Ra from

  17. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    This study investigated lead concentrations in < 250 μm and < 75 μm of deposited dust and< 2000 μm, < 250 μm, and < 75 μm of surface soils at undeveloped residential lands leased to auto-mechanic artisans for a minimum of ten years and estimated exposure risk for children that will reside on the polluted lands after the ...

  18. Assessment of Lead Concentration in the Surface and Profile Soil

    OpenAIRE

    Alushllari, Mirela; Civici, Nikolla

    2016-01-01

    There is a lead in the earth of the crust, among other. Lead is widely used in industry for building construction, lead-acid batteries, bullets, shot, etc. Lead poisoning is an important environmental pollutant that can have life-long adverse health effects. Lead causes symptoms ranging from the loss of neurological function to death depending upon the extent and duration of exposure. The current study reports the determination of lead concentration in soil samples, distribution of lead on th...

  19. Measurement Limits to 134Cs Concentration in Soil

    OpenAIRE

    Ahn, J K; Kim, J.S.; Lee, H. M.; Kim, T H; Park, J. N.; Kang, Y. S.; Lee, H. S.; Kim, S.J.; Park, J Y; Ryu, S.Y.; Kim, H. Ch.; Kang, W. G.; Kim, S. K.

    2009-01-01

    We investigate the caesium concentrations in soils in mountain areas near Gori nuclear power plant in Korea, focusing on the measurement limits to the 134Cs. In order to lower the minimum detectable amount (MDA) of activity for the 134Cs, we have used the ammonium molybdophosphase (AMP) precipitation method to get rid of the 40K existing in natural radioactivity, which reduces the MDA activity about ten times smaller than those without the AMP precipitation method. The MDA results for the 134...

  20. Radon in the groundwater of Muehlviertel (Upper Austria); Radon im Grundwasser des Muehlviertels (Oberoesterreich)

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Gerhard [Geologische Bundesanstalt, Wien (Austria). Abteilung Hydrogeologie; Alletsgruber, Irene [Triassic Geological Services, Northgate, Qld (Australia); Finger, Friedrich; Lettner, Herbert [Universitaet Salzburg (Austria). Fachbereich Materialforschung und Physik; Gasser, Veronika [Hydrogeologie Bohrwesen GmbH, Ferlach (Austria); Hobiger, Gerhard [Geologische Bundesanstalt, Wien (Austria). Abteilung Geochemie

    2010-03-15

    In the occurrence areas of selected crystalline rocks - mainly granites - the Radon-222 content of groundwater has been investigated. The results show a significant correlation with the Uranium concentrations in the rocks. The Uranium concentrations were between 1 and 15 ppm, while the Radon-222 concentrations were between 0.2 and 719.5 Bq/l. To identify Radon-decreasing effects like degasification and admixture of surface water, CO{sub 2} partial pressures and Oxygen-18 in water samples were determined and the local hydrological situation has been taken under consideration. Samples which showed clear evidence of Radon-decreasing effects were excluded from further evaluation because they would not represent the full empiric potential of Radon emanation in the aquifer. In combination with geological maps, petrologic information and airborne radiometry, Radon-222 analyses in groundwater can provide important data for Radon potential mapping. The significance of the groundwater Radon analyses can be improved by supplementary hydrochemical and hydrological isotope investigations. (orig.) [German] Im Muehlviertel wurde im Verbreitungsgebiet ausgewaehlter, gut definierter kristalliner Gesteine - vorwiegend Granite - das lokale Grundwasser gezielt auf Radon-222 beprobt. Das Ergebnis zeigt einen signifikanten Zusammenhang zwischen dem Urangehalt der Gesteine und dem Radongehalt der Grundwaesser auf. Die Messwerte lagen zwischen 1 und 15 ppm Uran im Gestein und zwischen 0,2 und 719,5 Bq/l Radon-222 im Grundwasser. Um im beprobten Grundwasser einen moeglichen Oberflaecheneinfluss, der den Radon-222-Gehalt herabsetzen wuerde, weitgehend ausschliessen zu koennen, wurde auch der CO{sub 2}-Partialdruck und der Sauerstoff-18-Gehalt bestimmt und die waehrend der Beprobung herrschende hydrologische Situation beruecksichtigt. Jene Proben, bei denen sich ein deutlicher Oberflaecheneinfluss abzeichnete, wurden nicht in die Auswertung mit einbezogen, da sie nicht das volle empirische

  1. The effect of laterite density on radon diffusion behavior.

    Science.gov (United States)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Fang, Qi; Lv, Junwen; Duan, Xianzhe; Liu, Zhenzhong; Guo, Yueyue

    2018-02-01

    Radon generated in porous media such as soils and rocks migrates into indoor and outdoor air mainly by diffusion, possessing significant hazards to human health. In order to reduce these hazards of radon, it is of great importance to study the diffusion behavior of radon. In this study, we systematically measured the radon diffusion coefficient of laterite with the density ranging from 0.917gcm -3 to 2.238gcm -3 , and studied the effect of laterite density on the radon diffusion. The results show that the radon diffusion coefficient of the laterite generally decreases with the increasing laterite density. In addition, three possible relationships between the radon diffusion coefficient and the laterite density are found out as follows: (1) the linear correlation with a slope of -4.48 × 10 -6 for laterite with density ranging from 0.917 to 1.095gcm -3 , (2) the exponential correlation for laterite with density from 1.095 to 1.63gcm -3 , (3) linear correlation with a slope of -3.1 × 10 -7 for laterite with density from 1.63 to 2.238gcm -3 . The complex relationship between the radon diffusion coefficient and density is caused by the change of porosity and tortuosity of the laterite. Therefore, we suggest that a suitable density should be adopted while using the laterite to effectively cover uranium tailings or economically produce building materials that can curb the radon exhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... Protection Agency Search Search Radon Contact Us Share Consumer's Guide to Radon Reduction: How to Fix Your ... See EPA’s About PDF page to learn more. Consumer's Guide to Radon Reduction: How to Fix Your ...

  3. Regressionanalysis of radon measurements; Regressionsanalysen von Radonmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Buermeyer, J.; Neugebauer, T.; Hingmann, H.; Grimm, V.; Breckow, J. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS); Gundlach, M. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Fachbereich fuer Mathematik, Naturwissenschaften und Informatik

    2016-07-01

    In the course of the renewal of the Radiation Protection Guidelines for Germany, radon becomes a more prominent concern. Thus, it is important to gain more information on the temporal behaviour of radon and its measureable parameters. This work focuses on the determination on possible influencing factors using regression-analysis methods. So far the radon concentration has been analysed and it was revealed, that the most important impact comes from the gradient of the temperature and pressure as the difference of the values in and outside the building. The carbon dioxide, which was logged as an indicator for the influences of the inhabitant does not show the high influence on the Radon levels as expected.

  4. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... the zone below the ground-floor construction. For this purpose a new system of prefabricated lightweight elements is introduced. The effectiveness of the system is demonstrated for the case of a ground-floor reinforced concrete slab situated on top of a rigid insulation layer (consisting of a thermal...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses...

  5. Radon measurements with CR-39 track detectors at specific locations in Turkey

    Directory of Open Access Journals (Sweden)

    Ulug Asiye

    2004-01-01

    Full Text Available Indoor radon concentration levels at three sites in Turkey were measured using CR-39 solid state nuclear track detectors. The annual mean of radon concentration was estimated on the basis of four quarter measurements at specific locations in Turkey. The measuring sites are on the active faults. The results of radon measurements are based on 280 measurements in doors. The annual arithmetic means of radon concentrations at three sites (Isparta Egirdir, and Yalvac were found to be 164 Bqm–3, 124 Bqm–3, and 112 Bqm–3 respectively, ranging from 78 Bqm–3 to 279 Bqm–3. The in door radon concentrations were investigated with respect to the ventilation conditions and the age of buildings. The ventilation conditions were determined to be the main factor affecting the in door radon concentrations. The in door radon concentrations in the new buildings were higher than ones found in the old buildings.

  6. A search profile for dwellings with elevated radon levels

    DEFF Research Database (Denmark)

    Damkjær, A.; Andersen, C.E.; Majborn, B.

    1996-01-01

    A search profile for dwellings with elevated radon levels has been employed to investigate possibly radon-prone areas in Denmark and to find houses suitable for radon mitigation studies. The profile is defined as dwellings which are single-family houses with slab-on-grade foundation or partly...... basement/slab-on-grade foundation built on either fractured granitic basement rocks, or fractured limestone. Clayey till areas were also included in the profile in order to confirm earlier findings. Three areas representing these surface geologies were selected for indoor radon measurements with CR-39...... track detectors, and a total of 200 houses matching the profile underwent radon measurements during the winter 1994-95. The distribution of the measured radon concentrations were found in most cases to comply with log-normal distributions. Measurements in the living rooms of houses in each of the three...

  7. The transfer of radon from potable water into house air

    Energy Technology Data Exchange (ETDEWEB)

    Hess, C.T.; Vietti, M.A.; Lachapelle, E.B.; Guillemette, J.F. (Univ. of Maine, Orono (USA))

    1988-09-01

    There have been very few comparisons of the radon in air due to use of potable water containing radon. To better determine the health risk due to radon in water in homes, 40 houses in southern and central Maine were measured for house characteristics such as building materials, volume and air exchange rate and for radon in water and air. The houses were all wood with basements and have wood, oil and solar heat. To increase the radon due to water use, a two hour water burst was used to simulate 24 hours of water use for the occupants. The water use was monitored along with the radon concentration in air for ten minute intervals.

  8. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  9. Current international intercomparison measurement on radon and its progeny

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Keizo [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1996-12-01

    The international intercomparison measurement on radon and its progeny was held between the EML of USDOE and several Japanese organisations, using the radon test chamber installed in EML. Japanese results of radon concentration by the active method using the ionization chamber or scintillation cell and the passive method using the solid track detector were about 5% small compared to that of EML. On the results of radon progeny, there were not any large systematic differences between EML and Japanese participants in spite of wide range of deviation except for the results at the condition of low aerosol density. (author)

  10. Effect of internal wall covers on radon emanation inside houses

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fremlin, J.H.

    1983-03-01

    Most types of paint for the internal walls of houses will reduce radon emanation from building materials. At the same time, the effect of paint will increase the concentration of radon inside the material itself and will increase the radon emanation from unpainted areas. One type of wall paper contains 6 and 0.3 ppm of uranium in its decorated and undecorated surfaces, respectively, the colouring being the main source of uranium. Other wallpapers appear to be free from uranium. Wallpaper, gypsum and plaster may increase the radon activity inside houses depending on their radium contents.

  11. Indoor radon measurements in dwellings of four Saudi Arabian cities

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman; Abu-Jarad, F.; Al-Shukri, A

    2003-06-01

    An indoor radon survey of a total of 269 dwellings, with one dosimeter per house, distributed in four Saudi Arabian cities was carried out. The objective of this survey was to carry out indoor radon measurements of two cities in the Eastern Province, Khafji and Hafr Al-Batin and to compare this with two cities in the Western Province, Al-Madina and Taif. The survey provides additional information about indoor radon concentrations in Saudi Arabia. The results of the survey in these cities showed that the overall minimum, maximum and average radon concentration were 7,137 and 30 Bq m{sup -3}, respectively. The lowest average radon concentration (20 Bq m{sup -3}) was found in Hafr Al-Batin, while the highest average concentration was found in Khafji (40 Bq m{sup -3})

  12. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  13. Radon Optical Processing in Radon Space.

    Science.gov (United States)

    1986-06-15

    and have been considered at length elsewhere (Rowland, 1979) (3arrett and Swindell , 1981) . Rather, we wish to investigate the use of the Radon... Swindell :1977, 1981) or Larrett (1984). We can also express the inverse Radon transform in operator notation (Barrett, 1984), expanding the operator PR...similar signal processing capability over a wide range of input frequencies ( Roberts , 1977). fe Linear FM, or chirp, SAW filters are easily made and have

  14. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  15. RADON REDUCTION IN A CRAWL SPACE HOUSE

    Science.gov (United States)

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing ...