WorldWideScience

Sample records for soil carbon mapping

  1. Mapping Soil Carbon in the Yukon Kuskokwim River Delta Alaska

    Science.gov (United States)

    Natali, S.; Fiske, G.; Schade, J. D.; Mann, P. J.; Holmes, R. M.; Ludwig, S.; Melton, S.; Sae-lim, N.; Jardine, L. E.; Navarro-Perez, E.

    2017-12-01

    Arctic river deltas are hotspots for carbon storage, occupying 10% of carbon stored in arctic permafrost. The Yukon Kuskokwim (YK) Delta, Alaska is located in the lower latitudinal range of the northern permafrost region in an area of relatively warm permafrost that is particularly vulnerable to warming climate. Active layer depths range from 50 cm on peat plateaus to >100 cm in wetland and aquatic ecosystems. The size of the soil organic carbon pool and vulnerability of the carbon in the YK Delta is a major unknown and is critically important as climate warming and increasing fire frequency may make this carbon vulnerable to transport to aquatic and marine systems and the atmosphere. To characterize the size and distribution of soil carbon pools in the YK Delta, we mapped the land cover of a 1910 km2 watershed located in a region of the YK Delta that was impacted by fire in 2015. The map product was the result of an unsupervised classification using the Weka K Means clustering algorithm implemented in Google's Earth Engine. Inputs to the classification were Worldview2 resolution optical imagery (1m), Arctic DEM (5m), and Sentinel 2 level 1C multispectral imagery, including NDVI, (10 m). We collected 100 soil cores (0-30 cm) from sites of different land cover and landscape position, including moist and dry peat plateaus, high and low intensity burned plateaus, fens, and drained lakes; 13 lake sediment cores (0-50 cm); and 20 surface permafrost cores (to 100 cm) from burned and unburned peat plateaus. Active layer and permafrost soils were analyzed for organic matter content, soil moisture content, and carbon and nitrogen pools (30 and 100 cm). Soil carbon content varied across the landscape; average carbon content values for lake sediments were 12% (5- 17% range), fens 26% (9-44%), unburned peat plateaus 41% (34-44%), burned peat plateaus 19% (7-34%). These values will be used to estimate soil carbon pools, which will be applied to the spatial extent of each

  2. Digital mapping of soil organic carbon contents and stocks in Denmark.

    Science.gov (United States)

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.

  3. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy

    NARCIS (Netherlands)

    Bartholomeus, H.; Kooistra, L.; Stevens, A.; Leeuwen, van M.; Wesemael, van B.; Ben-Dor, E.; Tychon, B.

    2011-01-01

    Soil Organic Carbon (SOC) is one of the key soil properties, but the large spatial variation makes continuous mapping a complex task. Imaging spectroscopy has proven to be an useful technique for mapping of soil properties, but the applicability decreases rapidly when fields are partially covered

  4. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  5. GlobalSoilMap and Global Carbon Predictions

    DEFF Research Database (Denmark)

    Hempel, Jonathan; McBratney, Alex B.; Arrouays, Dominique

    consistently produced soil property information at 100 m resolution across the world. This information will aid in solving some of the key environment and societal issues of the day, including food security, global climate change land degradation and carbon sequestration. Data would be produced using mostly...... the storehouse of existing legacy soils data along with geographic information and a range of covariates. A range of modeling techniques is used dependant on the complexity of the background soil survey information. The key soil properties that would be most useful to the modeling community and other users are...... of soil property values throughout the depth of each profile. Maps have been produced at the country level in the Australia, Canada, Denmark, Nigeria, South Korea and the US and work is on-going in many other parts of the world....

  6. Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling

    Science.gov (United States)

    Lawrence, C. R.

    2017-12-01

    Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.

  7. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    Science.gov (United States)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.

    2014-12-01

    The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.

  8. Mapping soil organic carbon content and composition across Australia to assess vulnerability to climate change

    Science.gov (United States)

    Viscarra Rossel, R. A.

    2015-12-01

    We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C content and composition in the soil of Australia. The composition of soil organic C may be characterized by chemical separation or physical fractionation based on either particle size or particle density (Skjemstad et al., 2004; Gregorich et al., 2006; Kelleher&Simpson, 2006; Zimmermann et al., 2007). In Australia, for example, Skjemstad et al. (2004) used physical separation of soil samples into 50-2000 and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, giving the three OC pools, particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC; charcoal or char-carbon). We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C, POC, HOC and ROC at the continental scale. In this presentation I will describe how we made the maps and how we use them to assess the vulnerability of soil organic C to for instance climate change.

  9. A global map of mangrove forest soil carbon at 30 m spatial resolution

    Science.gov (United States)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  10. Soil Carbon Mapping in Low Relief Areas with Combined Land Use Types and Percentages

    Science.gov (United States)

    Liu, Y. L.; Wu, Z. H.; Chen, Y. Y.; Wang, B. Z.

    2018-05-01

    Accurate mapping of soil carbon in low relief areas is of great challenge because of the defect of conventional "soil-landscape" model. Efforts have been made to integrate the land use information in the modelling and mapping of soil organic carbon (SOC), in which the spatial context was ignored. With 256 topsoil samples collected from Jianghan Plain, we aim to (i) explore the land-use dependency of SOC via one-way ANOVA; (ii) investigate the "spillover effect" of land use on SOC content; (iii) examine the feasibility of land use types and percentages (obtained with a 200-meter buffer) for soil mapping via regression Kriging (RK) models. Results showed that the SOC of paddy fields was higher than that of woodlands and irrigated lands. The land use type could explain 20.5 % variation of the SOC, and the value increased to 24.7 % when the land use percentages were considered. SOC was positively correlated with the percentage of water area and irrigation canals. Further research indicated that SOC of irrigated lands was significantly correlated with the percentage of water area and irrigation canals, while paddy fields and woodlands did not show similar trends. RK model that combined land use types and percentages outperformed the other models with the lowest values of RMSEC (5.644 g/kg) and RMSEP (6.229 g/kg), and the highest R2C (0.193) and R2P (0.197). In conclusions, land use types and percentages serve as efficient indicators for the SOC mapping in plain areas. Additionally, irrigation facilities contributed to the farmland SOC sequestration especially in irrigated lands.

  11. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  12. Distribution of soil organic carbon in the conterminous United States

    Science.gov (United States)

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  13. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change.

    Science.gov (United States)

    Viscarra Rossel, Raphael A; Webster, Richard; Bui, Elisabeth N; Baldock, Jeff A

    2014-09-01

    We can effectively monitor soil condition-and develop sound policies to offset the emissions of greenhouse gases-only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C in the soil of Australia. We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C at the continental scale. We describe how we made it by combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical modelling of residuals. Values of stock were predicted at the nodes of a 3-arc-sec (approximately 90 m) grid and mapped together with their uncertainties. We then calculated baselines of soil organic C storage over the whole of Australia, its states and territories, and regions that define bioclimatic zones, vegetation classes and land use. The average amount of organic C in Australian topsoil is estimated to be 29.7 t ha(-1) with 95% confidence limits of 22.6 and 37.9 t ha(-1) . The total stock of organic C in the 0-30 cm layer of soil for the continent is 24.97 Gt with 95% confidence limits of 19.04 and 31.83 Gt. This represents approximately 3.5% of the total stock in the upper 30 cm of soil worldwide. Australia occupies 5.2% of the global land area, so the total organic C stock of Australian soil makes an important contribution to the global carbon cycle, and it provides a significant potential for sequestration. As the most reliable approximation of the stock of organic C in Australian soil in 2010, our estimates have important applications. They could support

  14. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential

    International Nuclear Information System (INIS)

    Vågen, Tor-Gunnar; Winowiecki, Leigh A

    2013-01-01

    Current methods for assessing soil organic carbon (SOC) stocks are generally not well suited for understanding variations in SOC stocks in landscapes. This is due to the tedious and time-consuming nature of the sampling methods most commonly used to collect bulk density cores, which limits repeatability across large areas, particularly where information is needed on the spatial dynamics of SOC stocks at scales relevant to management and for spatially explicit targeting of climate change mitigation options. In the current study, approaches were explored for (i) field-based estimates of SOC stocks and (ii) mapping of SOC stocks at moderate to high resolution on the basis of data from four widely contrasting ecosystems in East Africa. Estimated SOC stocks for 0–30 cm depth varied both within and between sites, with site averages ranging from 2 to 8 kg m −2 . The differences in SOC stocks were determined in part by rainfall, but more importantly by sand content. Results also indicate that managing soil erosion is a key strategy for reducing SOC loss and hence in mitigation of climate change in these landscapes. Further, maps were developed on the basis of satellite image reflectance data with multiple R-squared values of 0.65 for the independent validation data set, showing variations in SOC stocks across these landscapes. These maps allow for spatially explicit targeting of potential climate change mitigation efforts through soil carbon sequestration, which is one option for climate change mitigation and adaptation. Further, the maps can be used to monitor the impacts of such mitigation efforts over time. (letter)

  15. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

    Science.gov (United States)

    Wang, Bin; Waters, Cathy; Orgill, Susan; Gray, Jonathan; Cowie, Annette; Clark, Anthony; Liu, De Li

    2018-07-15

    Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R 2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha -1 at 0-5cm and 9.16MgCha -1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Modelling and mapping the topsoil organic carbon content for Tanzania

    Science.gov (United States)

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  17. Soil carbon estimation from eucalyptus grandis using canopy spectra

    African Journals Online (AJOL)

    Mapping soil fertility parameters, such as soil carbon (C), is fundamentally important for forest management and research related to forest growth and climate change. This study seeks to establish the link between Eucalyptus grandis canopy spectra and soil carbon using raw and continuum-removed spectra. Canopy-level ...

  18. Decoding implicit information from the soil map of Belgium and implications for spatial modelling and soil classification

    Science.gov (United States)

    Dondeyne, Stefaan; Legrain, Xavier; Colinet, Gilles; Van Ranst, Eric; Deckers, Jozef

    2014-05-01

    A systematic soil survey of Belgium was conducted from 1948 to 1991. Field surveys were done at the detailed scale of 1:5000 with the final maps published at a 1:20,000 scale. Soil surveyors were classifying soils in the field according to physical and morphogenetic characteristics such as texture, drainage class and profile development. Mapping units are defined as a combination of these characteristics but to which modifiers can be added such as parent material, stoniness or depth to substrata. Interpretation of the map towards predicting soil properties seems straight forward. Consequently, since the soil map has been digitized, it has been used for e.g. hydrological modelling or for estimating soil organic carbon content at sub-national and national level. Besides the explicit information provided by the legend, a wealth of implicit information is embedded in the map. Based on three cases, we illustrate that by decoding this information, properties pertaining to soil drainage or soil organic carbon content can be assessed more accurately. First, the presence/absence of fragipans affects the soil hydraulic conductivity. Although a dedicated symbol exits for fragipans (suffix "...m"), it is only used explicitly in areas where fragipans are not all that common. In the Belgian Ardennes, where fragipans are common, their occurrence is implicitly implied for various soil types mentioned in explanatory booklets. Second, whenever seasonal or permanent perched water tables were observed, these were indicated by drainage class ".h." or ".i.", respectively. Stagnic properties have been under reported as typical stagnic mottling - i.e. when the surface of soil peds are lighter and/or paler than the more reddish interior - were not distinguished from mottling due to groundwater gley. Still, by combining information on topography and the occurrence of substratum layers, stagnic properties can be inferred. Thirdly, soils with deep anthropogenic enriched organic matter

  19. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Science.gov (United States)

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  20. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data.

    Science.gov (United States)

    Villa, Paolo; Malucelli, Francesco; Scalenghe, Riccardo

    2018-01-15

    Peri-urbanisation is the expansion of compact urban areas towards low-density settlements. This phenomenon directly challenges the agricultural landscape multifunctionality, including its carbon (C) storage capacity. Using satellite data, we mapped peri-urban C stocks in soil and built-up surfaces over three areas from 1993 to 2014 in the Emilia-Romagna region, Italy: a thinly populated area around Piacenza, an intermediate-density area covering the Reggio Emilia-Modena conurbation and a densely anthropized area developing along the coast of Rimini. Satellite-derived maps enabled the quantitative analysis of spatial and temporal features of urban growth and soil sealing, expressed as the ratio between C in built-up land and organic C in soils (Cc/Co). The three areas show substantial differences in C stock balance and soil sealing evolution. In Piacenza (Cc/Co=0.07 in 1993), although questioned by late industrial expansion and connected residential sprawl (Cc/Co growth by 38%), most of the new urbanisation spared the best rural soils. The Reggio Emilia-Modena conurbation, driven by the polycentricism of the area and the heterogeneity of economic sectors (Cc/Co rising from 0.08 to 0.14 from 1993 to 2014), balances sprawl and densification. Rimini, severely sealed since the 1960s (Cc/Co=0.23 in 1993), densifies its existing settlements and develops an industrial expansion of the hinterland, with Cc/Co growth accelerating from +15% before 2003 to +36% for the last decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hungarian contribution to the Global Soil Organic Carbon Map (GSOC17) using advanced machine learning algorithms and geostatistics

    Science.gov (United States)

    Szatmári, Gábor; Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2017-04-01

    The knowledge about soil organic carbon (SOC) baselines and changes, and the detection of vulnerable hot spots for SOC losses and gains under climate change and changed land management is still fairly limited. Thus Global Soil Partnership (GSP) has been requested to develop a global SOC mapping campaign by 2017. GSPs concept builds on official national data sets, therefore, a bottom-up (country-driven) approach is pursued. The elaborated Hungarian methodology suits the general specifications of GSOC17 provided by GSP. The input data for GSOC17@HU mapping approach has involved legacy soil data bases, as well as proper environmental covariates related to the main soil forming factors, such as climate, organisms, relief and parent material. Nowadays, digital soil mapping (DSM) highly relies on the assumption that soil properties of interest can be modelled as a sum of a deterministic and stochastic component, which can be treated and modelled separately. We also adopted this assumption in our methodology. In practice, multiple regression techniques are commonly used to model the deterministic part. However, this global (and usually linear) models commonly oversimplify the often complex and non-linear relationship, which has a crucial effect on the resulted soil maps. Thus, we integrated machine learning algorithms (namely random forest and quantile regression forest) in the elaborated methodology, supposing then to be more suitable for the problem in hand. This approach has enable us to model the GSOC17 soil properties in that complex and non-linear forms as the soil itself. Furthermore, it has enable us to model and assess the uncertainty of the results, which is highly relevant in decision making. The applied methodology has used geostatistical approach to model the stochastic part of the spatial variability of the soil properties of interest. We created GSOC17@HU map with 1 km grid resolution according to the GSPs specifications. The map contributes to the GSPs

  2. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    Science.gov (United States)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  3. Exploring the potential offered by legacy soil databases for ecosystem services mapping of Central African soils

    Science.gov (United States)

    Verdoodt, Ann; Baert, Geert; Van Ranst, Eric

    2014-05-01

    Central African soil resources are characterised by a large variability, ranging from stony, shallow or sandy soils with poor life-sustaining capabilities to highly weathered soils that recycle and support large amounts of biomass. Socio-economic drivers within this largely rural region foster inappropriate land use and management, threaten soil quality and finally culminate into a declining soil productivity and increasing food insecurity. For the development of sustainable land use strategies targeting development planning and natural hazard mitigation, decision makers often rely on legacy soil maps and soil profile databases. Recent development cooperation financed projects led to the design of soil information systems for Rwanda, D.R. Congo, and (ongoing) Burundi. A major challenge is to exploit these existing soil databases and convert them into soil inference systems through an optimal combination of digital soil mapping techniques, land evaluation tools, and biogeochemical models. This presentation aims at (1) highlighting some key characteristics of typical Central African soils, (2) assessing the positional, geographic and semantic quality of the soil information systems, and (3) revealing its potential impacts on the use of these datasets for thematic mapping of soil ecosystem services (e.g. organic carbon storage, pH buffering capacity). Soil map quality is assessed considering positional and semantic quality, as well as geographic completeness. Descriptive statistics, decision tree classification and linear regression techniques are used to mine the soil profile databases. Geo-matching as well as class-matching approaches are considered when developing thematic maps. Variability in inherent as well as dynamic soil properties within the soil taxonomic units is highlighted. It is hypothesized that within-unit variation in soil properties highly affects the use and interpretation of thematic maps for ecosystem services mapping. Results will mainly be based

  4. Using proximal soil sensors and fuzzy classification for mapping Amazonian Dark Earths

    Directory of Open Access Journals (Sweden)

    Mats Söderström

    2013-12-01

    Full Text Available We tested if hand-carried field proximal soil sensing (PSS can be used to map the distribution of anthropogenic Amazonian Dark Earths (ADE. ADE soils are rich in archaeological artefacts, nutrients, organic matter and carbon in the very stable form of pyrogenic carbon, also referred to as black carbon or biochar. To test the capacity of PSS to detect signature ADE properties we measured electrical conductivity (ECa, magnetic susceptibility (MSa and gamma ray data by transect sampling and compared these readings, using fuzzy classification, with datasets on chemical soil properties from a 28 ha large study area located on the Belterra Plateau of the Lower Amazon in northern Brazil. Results indicate that ECa and MSa measurements were good indicators of ADE signatures, but that the gamma radiation sensor was less useful in the deeply weathered soils. PSS and fuzzy classification can be used for rapid field mapping of ADE for both agricultural and archaeological purposes.

  5. Evaluating Soil Carbon Sequestration in Central Iowa

    Science.gov (United States)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  6. Increasing Efficiency of Soil Fertility Map for Rice Cultivation Using Fuzzy Logic, AHP and GIS

    Directory of Open Access Journals (Sweden)

    javad seyedmohammadi

    2017-02-01

    Full Text Available Introduction: With regard to increasing population of country, need to high agricultural production is essential. The most suitable method for this issue is high production per area unit. Preparation much food and other environmental resources with conservation of biotic resources for futures will be possible only with optimum exploitation of soil. Among effective factors for the most production balanced addition of fertilizers increases production of crops higher than the others. With attention to this topic, determination of soil fertility degree is essential tobetter use of fertilizers and right exploitation of soils. Using fuzzy logic and Analytic Hierarchy Process (AHP could be useful in accurate determination of soil fertility degree. Materials and Methods: The study area (at the east of Rasht city is located between 49° 31' to 49° 45' E longitude and 37° 7' to 37° 27' N latitude in north of Guilan Province, northern Iran, in the southern coast of the Caspian sea. 117 soil samples were derived from0-30 cm depth in the study area. Air-dried soil samples were crushed and passed through a 2mm sieve. Available phosphorus, potassium and organic carbon were determined by sodium bicarbonate, normal ammonium acetate and corrected walkly-black method, respectively. In the first stage, the interpolation of data was done by kriging method in GIS context. Then S-shape membership function was defined for each parameter and prepared fuzzy map. After determination of membership function weight parameters maps were determined using AHP technique and finally soil fertility map was prepared with overlaying of weighted fuzzy maps. Relative variance and correlation coefficient criteria used tocontrol groups separation accuracy in fuzzy fertility map. Results and Discussion: With regard to minimum amounts of parameters looks some lands of study area had fertility difficulty. Therefore, soil fertility map of study area distinct these lands and present soil

  7. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  8. Mapping specific soil functions based on digital soil property maps

    Science.gov (United States)

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor

    2016-04-01

    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" (DOSoReMI.hu) numerous soil property maps have been compiled so far with proper DSM techniques partly according to GSM.net specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even DOSoReMI.hu was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in

  9. Soil organic carbon content assessment in a heterogeneous landscape: comparison of digital soil mapping and visible and near Infrared spectroscopy approaches

    Science.gov (United States)

    Michot, Didier; Fouad, Youssef; Pascal, Pichelin; Viaud, Valérie; Soltani, Inès; Walter, Christian

    2017-04-01

    This study aims are: i) to assess SOC content distribution according to the global soil map (GSM) project recommendations in a heterogeneous landscape ; ii) to compare the prediction performance of digital soil mapping (DSM) and visible-near infrared (Vis-NIR) spectroscopy approaches. The study area of 140 ha, located at Plancoët, surrounds the unique mineral spring water of Brittany (Western France). It's a hillock characterized by a heterogeneous landscape mosaic with different types of forest, permanent pastures and wetlands along a small coastal river. We acquired two independent datasets: j) 50 points selected using a conditioned Latin hypercube sampling (cLHS); jj) 254 points corresponding to the GSM grid. Soil samples were collected in three layers (0-5, 20-25 and 40-50cm) for both sampling strategies. SOC content was only measured in cLHS soil samples, while Vis-NIR spectra were measured on all the collected samples. For the DSM approach, a machine-learning algorithm (Cubist) was applied on the cLHS calibration data to build rule-based models linking soil carbon content in the different layers with environmental covariates, derived from digital elevation model, geological variables, land use data and existing large scale soil maps. For the spectroscopy approach, we used two calibration datasets: k) the local cLHS ; kk) a subset selected from the regional spectral database of Brittany after a PCA with a hierarchical clustering analysis and spiked by local cLHS spectra. The PLS regression algorithm with "leave-one-out" cross validation was performed for both calibration datasets. SOC contents for the 3 layers of the GSM grid were predicted using the different approaches and were compared with each other. Their prediction performance was evaluated by the following parameters: R2, RMSE and RPD. Both approaches led to satisfactory predictions for SOC content with an advantage for the spectral approach, particularly as regards the pertinence of the variation

  10. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    Science.gov (United States)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2015-03-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  11. Predictive spatial modelling for mapping soil salinity at continental scale

    Science.gov (United States)

    Bui, Elisabeth; Wilford, John; de Caritat, Patrice

    2017-04-01

    Soil salinity is a serious limitation to agriculture and one of the main causes of land degradation. Soil is considered saline if its electrical conductivity (EC) is > 4 dS/m. Maps of saline soil distribution are essential for appropriate land development. Previous attempts to map soil salinity over extensive areas have relied on satellite imagery, aerial electromagnetic (EM) and/or proximally sensed EM data; other environmental (climate, topographic, geologic or soil) datasets are generally not used. Having successfully modelled and mapped calcium carbonate distribution over the 0-80 cm depth in Australian soils using machine learning with point samples from the National Geochemical Survey of Australia (NGSA), we took a similar approach to map soil salinity at 90-m resolution over the continent. The input data were the EC1:5 measurements on the randomly sampled trees were built using the training data. The results were good with an average internal correlation (r) of 0.88 between predicted and measured logEC1:5 (training data), an average external correlation of 0.48 (test subset), and a Lin's concordance correlation coefficient (which evaluates the 1:1 fit) of 0.61. Therefore, the rules derived were mapped and the mean prediction for each 90-m pixel was used for the final logEC1:5 map. This is the most detailed picture of soil salinity over Australia since the 2001 National Land and Water Resources Audit and is generally consistent with it. Our map will be useful as a baseline salinity map circa 2008, when the NGSA samples were collected, for future State of the Environment reports.

  12. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  13. Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields

    International Nuclear Information System (INIS)

    Hively, W.D; McCarty, G.W; Reeves, J.B; Lang, M.W; Oesterling, R.A; Delwiche, S.R

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400-2450 nm, -10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R 2 >0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 x 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  14. Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the k-Nearest-Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Leonhard Suchenwirth

    2014-07-01

    Full Text Available Among the machine learning tools being used in recent years for environmental applications such as forestry, self-organizing maps (SOM and the k-nearest neighbor (kNN algorithm have been used successfully. We applied both methods for the mapping of organic carbon (Corg in riparian forests due to their considerably high carbon storage capacity. Despite the importance of floodplains for carbon sequestration, a sufficient scientific foundation for creating large-scale maps showing the spatial Corg distribution is still missing. We estimated organic carbon in a test site in the Danube Floodplain based on RapidEye remote sensing data and additional geodata. Accordingly, carbon distribution maps of vegetation, soil, and total Corg stocks were derived. Results were compared and statistically evaluated with terrestrial survey data for outcomes with pure remote sensing data and for the combination with additional geodata using bias and the Root Mean Square Error (RMSE. Results show that SOM and kNN approaches enable us to reproduce spatial patterns of riparian forest Corg stocks. While vegetation Corg has very high RMSEs, outcomes for soil and total Corg stocks are less biased with a lower RMSE, especially when remote sensing and additional geodata are conjointly applied. SOMs show similar percentages of RMSE to kNN estimations.

  15. Soil property maps of Africa at 250 m resolution

    Science.gov (United States)

    Kempen, Bas; Hengl, Tomislav; Heuvelink, Gerard B. M.; Leenaars, Johan G. B.; Walsh, Markus G.; MacMillan, Robert A.; Mendes de Jesus, Jorge S.; Shepherd, Keith; Sila, Andrew; Desta, Lulseged T.; Tondoh, Jérôme E.

    2015-04-01

    Vast areas of arable land in sub-Saharan Africa suffer from low soil fertility and physical soil constraints, and significant amounts of nutrients are lost yearly due to unsustainable soil management practices. At the same time it is expected that agriculture in Africa must intensify to meet the growing demand for food and fiber the next decades. Protection and sustainable management of Africa's soil resources is crucial to achieve this. In this context, comprehensive, accurate and up-to-date soil information is an essential input to any agricultural or environmental management or policy and decision-making model. In Africa, detailed soil information has been fragmented and limited to specific zones of interest for decades. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. AfSIS builds on recent advances in digital soil mapping, infrared spectroscopy, remote sensing, (geo)statistics, and integrated soil fertility management to improve the way soils are evaluated, mapped, and monitored. Over the period 2008-2014, the AfSIS project has compiled two soil profile data sets (about 28,000 unique locations): the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site (new soil samples) database -- the two data sets represent the most comprehensive soil sample database of the African continent to date. In addition a large set of high-resolution environmental data layers (covariates) was assembled. The point data were used in the AfSIS project to generate a set of maps of key soil properties for the African continent at 250 m spatial resolution: sand, silt and clay fractions, bulk density, organic carbon, total nitrogen, pH, cation-exchange capacity, exchangeable bases (Ca, K, Mg, Na), exchangeable acidity, and Al content. These properties were mapped for six depth intervals up to 2 m: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm. Random forests modelling was used to

  16. Comparing the performance of various digital soil mapping approaches to map physical soil properties

    Science.gov (United States)

    Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2015-04-01

    Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different

  17. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Science.gov (United States)

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  18. Case studies: Soil mapping using multiple methods

    Science.gov (United States)

    Petersen, Hauke; Wunderlich, Tina; Hagrey, Said A. Al; Rabbel, Wolfgang; Stümpel, Harald

    2010-05-01

    Soil is a non-renewable resource with fundamental functions like filtering (e.g. water), storing (e.g. carbon), transforming (e.g. nutrients) and buffering (e.g. contamination). Degradation of soils is meanwhile not only to scientists a well known fact, also decision makers in politics have accepted this as a serious problem for several environmental aspects. National and international authorities have already worked out preservation and restoration strategies for soil degradation, though it is still work of active research how to put these strategies into real practice. But common to all strategies the description of soil state and dynamics is required as a base step. This includes collecting information from soils with methods ranging from direct soil sampling to remote applications. In an intermediate scale mobile geophysical methods are applied with the advantage of fast working progress but disadvantage of site specific calibration and interpretation issues. In the framework of the iSOIL project we present here some case studies for soil mapping performed using multiple geophysical methods. We will present examples of combined field measurements with EMI-, GPR-, magnetic and gammaspectrometric techniques carried out with the mobile multi-sensor-system of Kiel University (GER). Depending on soil type and actual environmental conditions, different methods show a different quality of information. With application of diverse methods we want to figure out, which methods or combination of methods will give the most reliable information concerning soil state and properties. To investigate the influence of varying material we performed mapping campaigns on field sites with sandy, loamy and loessy soils. Classification of measured or derived attributes show not only the lateral variability but also gives hints to a variation in the vertical distribution of soil material. For all soils of course soil water content can be a critical factor concerning a succesful

  19. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  20. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  1. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    Science.gov (United States)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  2. Can Process Understanding Help Elucidate The Structure Of The Critical Zone? Comparing Process-Based Soil Formation Models With Digital Soil Mapping.

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.

    2017-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  3. Effects of mapped variation in soil conditions on estimates of soil carbon and nitrogen stocks for South America

    NARCIS (Netherlands)

    Batjes, N.H.

    2000-01-01

    Organic carbon and total nitrogen stocks for South America are computed using four 1:5,000,000 scale soil data sets of different spatial resolution. These are the 60' by 60' resolution Zobler soil data file, the 30' by 30' resolution World Inventory of Soil Emission Potentials (WISE) database, a 5'

  4. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    Science.gov (United States)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  5. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  6. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth.

    Science.gov (United States)

    Mulder, V L; Lacoste, M; Richer-de-Forges, A C; Arrouays, D

    2016-12-15

    This work presents the first GlobalSoilMap (GSM) products for France. We developed an automatic procedure for mapping the primary soil properties (clay, silt, sand, coarse elements, pH, soil organic carbon (SOC), cation exchange capacity (CEC) and soil depth). The procedure employed a data-mining technique and a straightforward method for estimating the 90% confidence intervals (CIs). The most accurate models were obtained for pH, sand and silt. Next, CEC, clay and SOC were found reasonably accurate predicted. Coarse elements and soil depth were the least accurate of all models. Overall, all models were considered robust; important indicators for this were 1) the small difference in model diagnostics between the calibration and cross-validation set, 2) the unbiased mean predictions, 3) the smaller spatial structure of the prediction residuals in comparison to the observations and 4) the similar performance compared to other developed GlobalSoilMap products. Nevertheless, the confidence intervals (CIs) were rather wide for all soil properties. The median predictions became less reliable with increasing depth, as indicated by the increase of CIs with depth. In addition, model accuracy and the corresponding CIs varied depending on the soil variable of interest, soil depth and geographic location. These findings indicated that the CIs are as informative as the model diagnostics. In conclusion, the presented method resulted in reasonably accurate predictions for the majority of the soil properties. End users can employ the products for different purposes, as was demonstrated with some practical examples. The mapping routine is flexible for cloud-computing and provides ample opportunity to be further developed when desired by its users. This allows regional and international GSM partners with fewer resources to develop their own products or, otherwise, to improve the current routine and work together towards a robust high-resolution digital soil map of the world

  7. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  8. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  9. Stable and radioactive carbon in Indian soils: implications to soil carbon dynamics

    International Nuclear Information System (INIS)

    Laskar, A.H.; Yadava, M.G.; Ramesh, R.

    2011-01-01

    Radiocarbon is a very useful tool to study soil carbon dynamic. The mean residence time of SOC in Indian soils is about a century at the top 0-15 cm, increases linearly to reach values ranging from 2000 to 4000 yrs at a depth of 100 cm. It mainly depends on the clay content indicating that the clay is the main governing factor for SOC stabilization. Stable carbon and oxygen isotopes in soil carbonates and SOC are good proxies for paleoclimate and paleovegetation reconstruction. The present day sub-humid climate in the lower Narmada valley has been established prior to ∼ 3 ka. Two comparatively arid phases around 2.1 and 1.3 ka are recorded by oxygen isotopes of soil carbonates; consistent with other proxy records showing its regional significance

  10. Global assessment of soil organic carbon stocks and spatial distribution of histosols: the Machine Learning approach

    Science.gov (United States)

    Hengl, Tomislav

    2016-04-01

    Preliminary results of predicting distribution of soil organic soils (Histosols) and soil organic carbon stock (in tonnes per ha) using global compilations of soil profiles (about 150,000 points) and covariates at 250 m spatial resolution (about 150 covariates; mainly MODIS seasonal land products, SRTM DEM derivatives, climatic images, lithological and land cover and landform maps) are presented. We focus on using a data-driven approach i.e. Machine Learning techniques that often require no knowledge about the distribution of the target variable or knowledge about the possible relationships. Other advantages of using machine learning are (DOI: 10.1371/journal.pone.0125814): All rules required to produce outputs are formalized. The whole procedure is documented (the statistical model and associated computer script), enabling reproducible research. Predicted surfaces can make use of various information sources and can be optimized relative to all available quantitative point and covariate data. There is more flexibility in terms of the spatial extent, resolution and support of requested maps. Automated mapping is also more cost-effective: once the system is operational, maintenance and production of updates are an order of magnitude faster and cheaper. Consequently, prediction maps can be updated and improved at shorter and shorter time intervals. Some disadvantages of automated soil mapping based on Machine Learning are: Models are data-driven and any serious blunders or artifacts in the input data can propagate to order-of-magnitude larger errors than in the case of expert-based systems. Fitting machine learning models is at the order of magnitude computationally more demanding. Computing effort can be even tens of thousands higher than if e.g. linear geostatistics is used. Many machine learning models are fairly complex often abstract and any interpretation of such models is not trivial and require special multidimensional / multivariable plotting and data mining

  11. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    Science.gov (United States)

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  12. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Science.gov (United States)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  13. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  14. Topsoil organic carbon content of Europe, a new map based on a generalised additive model

    Science.gov (United States)

    de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas

    2014-05-01

    There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average

  15. Carbon sequestration in agricultural soils: a potential carbon trading opportunity?

    International Nuclear Information System (INIS)

    Cowie, Annette L.; Murphy, Brian; Rawson, Andrew; Wilson, Brian; Singh, Bhupinderpal; Young, Rick; Grange, Ian

    2007-01-01

    Full text: Emissions trading schemes emerging in Australia and internationally create a market mechanism by which release of greenhouse gases incurs a cost, and implementation of abatement measures generates a financial return. There is growing interest amongst Australian landholders in emissions trading based on sequestration of carbon in soil through modified land management practices. Intensively cropped soils have low carbon content, due to disturbance, erosion and regular periods of minimal organic matter input. Because cropping soils in Australia have lost a substantial amount of carbon there is significant potential to increase carbon stocks through improved land management practices. Evidence from long term trials and modelling indicates that modified cropping practices (direct drilling, stubble retention, controlled traffic) have limited impact on soil carbon (0 to +2 tC02e ha-' year1) whereas conversion from cropping to pasture gives greater increases. Small-increases in soil carbon over large areas can contribute significantly to mitigation of Australia's greenhouse gas emissions. Furthermore, increase in soil organic matter will improve soil health, fertility and resilience. However, the inclusion of soil carbon offsets in an emissions trading scheme cannot occur until several barriers are overcome. The first relates to credibility. Quantification of the extent to which specific land management practices can sequester carbon in different environments will provide the basis for promotion of the concept. Current research across Australia is addressing this need. Secondly, cost-effective and accepted methods of estimating soil carbon change must be available. Monitoring soil carbon to document change on a project scale is not viable due to the enormous variability in carbon stocks on micro and macro scales. Instead estimation of soil carbon change could be undertaken through a combination of baseline measurement to assess the vulnerability of soil carbon

  16. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey.

    Science.gov (United States)

    Kucuker, Mehmet Ali; Guney, Mert; Oral, H Volkan; Copty, Nadim K; Onay, Turgut T

    2015-01-01

    Land use management is one of the most critical factors influencing soil carbon storage and the global carbon cycle. This study evaluates the impact of land use change on the soil carbon stock in the Karasu region of Turkey which in the last two decades has undergone substantial deforestation to expand hazelnut plantations. Analysis of seasonal soil data indicated that the carbon content decreased rapidly with depth for both land uses. Statistical analyses indicated that the difference between the surface carbon stock (defined over 0-5 cm depth) in agricultural and forested areas is statistically significant (Agricultural = 1.74 kg/m(2), Forested = 2.09 kg/m(2), p = 0.014). On the other hand, the average carbon stocks estimated over the 0-1 m depth were 12.36 and 12.12 kg/m(2) in forested and agricultural soils, respectively. The carbon stock (defined over 1 m depth) in the two land uses were not significantly different which is attributed in part to the negative correlation between carbon stock and bulk density (-0.353, p < 0.01). The soil carbon stock over the entire study area was mapped using a conditional kriging approach which jointly uses the collected soil carbon data and satellite-based land use images. Based on the kriging map, the spatially soil carbon stock (0-1 m dept) ranged about 2 kg/m(2) in highly developed areas to more than 23 kg/m(2) in intensively cultivated areas as well as the averaged soil carbon stock (0-1 m depth) was estimated as 10.4 kg/m(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    accuracy in modeled predictions. The current database is being used to develop soil carbon model parameters linked to soil taxonomy and leading tree species and, by various governmental and nongovernmental organizations, to improve digital mapping of ecosite types and soil properties regionally, nationally, and internationally. © Her Majesty the Queen in Right of Canada, 2018. Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: exercise due diligence in ensuring the accuracy of the materials reproduced; indicate the complete title of the materials reproduced, and the name of the author organization; indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan. Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at copyright.droitdauteur@nrcan-rncan.gc.ca. © 2018 by the Ecological Society of America.

  18. Soil-geographical regionalization as a basis for digital soil mapping: Karelia case study

    Science.gov (United States)

    Krasilnikov, P.; Sidorova, V.; Dubrovina, I.

    2010-12-01

    Recent development of digital soil mapping (DSM) allowed improving significantly the quality of soil maps. We tried to make a set of empirical models for the territory of Karelia, a republic at the North-East of the European territory of Russian Federation. This territory was selected for the pilot study for DSM for two reasons. First, the soils of the region are mainly monogenetic; thus, the effect of paleogeographic environment on recent soils is reduced. Second, the territory was poorly mapped because of low agricultural development: only 1.8% of the total area of the republic is used for agriculture and has large-scale soil maps. The rest of the territory has only small-scale soil maps, compiled basing on the general geographic concepts rather than on field surveys. Thus, the only solution for soil inventory was the predictive digital mapping. The absence of large-scaled soil maps did not allow data mining from previous soil surveys, and only empirical models could be applied. For regionalization purposes, we accepted the division into Northern and Southern Karelia, proposed in the general scheme of soil regionalization of Russia; boundaries between the regions were somewhat modified. Within each region, we specified from 15 (Northern Karelia) to 32 (Southern Karelia) individual soilscapes and proposed soil-topographic and soil-lithological relationships for every soilscape. Further field verification is needed to adjust the models.

  19. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  20. Using Vegetation Maps to Provide Information on Soil Distribution

    Science.gov (United States)

    José Ibáñez, Juan; Pérez-Gómez, Rufino; Brevik, Eric C.; Cerdà, Artemi

    2016-04-01

    Many different types of maps (geology, hydrology, soil, vegetation, etc.) are created to inventory natural resources. Each of these resources is mapped using a unique set of criteria, including scales and taxonomies. Past research has indicated that comparing the results of different but related maps (e.g., soil and geology maps) may aid in identifying deficiencies in those maps. Therefore, this study was undertaken in the Almería Province (Andalusia, Spain) to (i) compare the underlying map structures of soil and vegetation maps and (ii) to investigate if a vegetation map can provide useful soil information that was not shown on a soil map. To accomplish this soil and vegetation maps were imported into ArcGIS 10.1 for spatial analysis. Results of the spatial analysis were exported to Microsoft Excel worksheets for statistical analyses to evaluate fits to linear and power law regression models. Vegetative units were grouped according to the driving forces that determined their presence or absence (P/A): (i) climatophilous (climate is the only determinant of P/A) (ii); lithologic-climate (climate and parent material determine PNV P/A); and (iii) edaphophylous (soil features determine PNV P/A). The rank abundance plots for both the soil and vegetation maps conformed to Willis or Hollow Curves, meaning the underlying structures of both maps were the same. Edaphophylous map units, which represent 58.5% of the vegetation units in the study area, did not show a good correlation with the soil map. Further investigation revealed that 87% of the edaphohygrophylous units (which demand more soil water than is supplied by other soil types in the surrounding landscape) were found in ramblas, ephemeral riverbeds that are not typically classified and mapped as soils in modern systems, even though they meet the definition of soil given by the most commonly used and most modern soil taxonomic systems. Furthermore, these edaphophylous map units tend to be islands of biodiversity

  1. Creating a conceptual hydrological soil response map for the ...

    African Journals Online (AJOL)

    2014-03-03

    Mar 3, 2014 ... a digital soil mapping (DSM) approach to soil mapping can speed up the mapping process and thereby extend soil map use in the field of ... This research uses an expert-knowledge DSM approach to create a soil map for Stevenson Hamilton .... the different bands of the Landsat and SPOT 5 images.

  2. Creating a conceptual hydrological soil response map for the ...

    African Journals Online (AJOL)

    The use of a digital soil mapping (DSM) approach to soil mapping can speed up the mapping process and thereby extend soil map use in the field of hydrology. This research uses an expert-knowledge DSM approach to create a soil map for Stevenson Hamilton Research Supersite within the Kruger National Park, South ...

  3. Soil carbon stocks in Sarawak, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, E., E-mail: Eswaran_padmanabhan@petronas.com.my [Department of Geosciences, Faculty of Geosciences and Petroleum Engineering, Universiti Teknologi PETRONAS, Tronoh, 31750, Perak (Malaysia); Eswaran, H.; Reich, P.F. [USDA-Natural Resources Conservation Service, Washington, DC 20250 (United States)

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO{sub 2}, CH{sub 4}, and N{sub 2}O have an anthropic source and of these CO{sub 2} is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m{sup −2} m{sup −1}), while Oxisols and Ultisols rate second (about 10–15 kg m{sup −2} m{sup −1}). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m{sup −2} m{sup −1}. Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of

  4. Soil carbon stocks in Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Padmanabhan, E.; Eswaran, H.; Reich, P.F.

    2013-01-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO 2 , CH 4 , and N 2 O have an anthropic source and of these CO 2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m −2 m −1 ), while Oxisols and Ultisols rate second (about 10–15 kg m −2 m −1 ). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m −2 m −1 . Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of soil carbon pools in Histosols • Strategies

  5. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  6. Soil mapping and processes models to support climate change mitigation and adaptation strategies: a review

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio

    2017-04-01

    As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here

  7. Spatial Patterns of Soil Organic Carbon in the United States

    Science.gov (United States)

    Bliss, N. B.

    2005-12-01

    The Department of the Interior (DOI) has jurisdiction influencing approximately 22 percent of the land area of the United States. The poster presents estimates of the current stocks of soil organic carbon (SOC) on all lands and Federal lands. The DOI lands have about 22 percent of the nation's SOC, so the average carbon intensity (8.66 kg C m-2) about matches the average for all lands (8.81 kg C m-2). However the carbon on DOI lands is not evenly distributed. Of the 17.76 Petagrams (1 Pg = 1015 grams) of SOC on DOI lands, 13.07 Pg (74 percent) are in Alaska, and 4.69 Pg (26 percent) are in the Conterminous U.S. The Alaska soils are wetter and colder than the national average, and the DOI lands in the conterminous U.S. are warmer and drier than the average. A set of SOC maps is shown, developed by intersecting the State Soil Geographic (STATSGO) database with data on federal lands from the National Atlas. With 22 percent of the nation's soil carbon, the DOI lands are important in a national accounting of greenhouse gas emission and sequestration. Future behavior of these lands is uncertain, but in scenarios of warming or drying, carbon released by respiration may exceed carbon captured by photosynthesis, resulting in a net release of carbon to the atmosphere. If warming stimulates a net release of greenhouse gases, this represents a positive feedback contributing to future global warming, a very unstable condition for the global climate system.

  8. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    Energy Technology Data Exchange (ETDEWEB)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-07-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m{sup -}2 yr{sup -}1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59{+-}0.43 g kg{sup -}1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha{sup -}1 yr{sup -}1. (Author) 20 refs.

  9. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  10. Agroclimatic mapping of maize crop based on soil physical properties

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Sparovek, G.; Reichardt, K.; Timm, Luiz Carlos; Nielsen, D.R.

    2004-01-01

    With the purpose of estimating water deficit to forecast yield knowing productivity (potential yield), the water balance is useful tool to recommend maize exploration and to define the sowing date. The computation can be done for each region with the objective of mapping maize grain yield based on agro-climatic data and soil physical properties. Based on agro-climatic data, air temperature and solar radiation, a model was built to estimate the corn grain productivity (the energy conversion results in dry mass production). The carbon dioxide (CO 2 ) fixation by plants is related to gross carbohydrate (CH 2 O) production and solar radiation. The CO 2 assimilation by C4 plants depends on the photosynthetic active radiation and temperature. From agro-climatic data and soil physical properties, a map with region identification can be built for solar radiation, air temperature, rainfall, maize grain productivity and yield, potential and real evapo-transpiration and water deficit. The map allows to identify the agro-climatic and the soil physical restrictions. This procedure can be used in different spatial (farm to State) and temporal (daily to monthly data) scales. The statistical analysis allows to compare estimated and observed values in different situations to validate the model and to verify which scale is more appropriate

  11. Ectomycorrhizal fungi slow soil carbon cycling.

    Science.gov (United States)

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Monitoring soil carbon will prepare growers for a carbon trading system

    Directory of Open Access Journals (Sweden)

    Emma C. Suddick

    2013-07-01

    Full Text Available California growers could reap financial benefits from the low-carbon economy and cap-and-trade system envisioned by the state's AB 32 law, which seeks to lower greenhouse gas emissions statewide. Growers could gain carbon credits by reducing greenhouse gas emissions and sequestering carbon through reduced tillage and increased biomass residue incorporation. First, however, baseline stocks of soil carbon need to be assessed for various cropping systems and management practices. We designed and set up a pilot soil carbon and land-use monitoring network at several perennial cropping systems in Northern California. We compared soil carbon content in two vineyards and two orchards (walnut and almond, looking at conventional and conservation management practices, as well as in native grassland and oak woodland. We then calculated baseline estimates of the total carbon in almond, wine grape and walnut acreages statewide. The organic walnut orchard had the highest total soil carbon, and no-till vineyards had 27% more carbon in the surface soil than tilled vineyards. We estimated wine grape vineyards are storing significantly more soil carbon per acre than almond and walnut orchards. The data can be used to provide accurate information about soil carbon stocks in perennial cropping systems for a future carbon trading system.

  13. The status of soil mapping for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    1995-01-01

    This report discusses the production of a revised version of the general soil map of the 2304-km 2 (890-mi 2 ) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presented on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information

  14. Digital soil mapping: strategy for data pre-processing

    Directory of Open Access Journals (Sweden)

    Alexandre ten Caten

    2012-08-01

    Full Text Available The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM. Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.

  15. Concepts of soil mapping as a basis for the assessment of soil functions

    Science.gov (United States)

    Baumgarten, Andreas

    2014-05-01

    Soil mapping systems in Europe have been designed mainly as a tool for the description of soil characteristics from a morphogenetic viewpoint. Contrasting to the American or FAO system, the soil development has been in the main focus of European systems. Nevertheless , recent developments in soil science stress the importance of the functions of soils with respect to the ecosystems. As soil mapping systems usually offer a sound and extensive database, the deduction of soil functions from "classic" mapping parameters can be used for local and regional assessments. According to the used pedo-transfer functions and mapping systems, tailored approaches can be chosen for different applications. In Austria, a system mainly for spatial planning purposes has been developed that will be presented and illustrated by means of best practice examples.

  16. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  17. Review of progress in soil inorganic carbon research

    Science.gov (United States)

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  18. Soil and biomass carbon re-accumulation after landslide disturbances

    Science.gov (United States)

    Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz

    2017-07-01

    In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.

  19. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  20. Digital soil mapping with limited data

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; Lourdes Mendonça-Santos, de M.

    2008-01-01

    There has been considerable expansion in the use of digital soil mapping technologies and development of methodologies that improve digital soil mapping at all scales and levels of resolution. These developments have occurred in all parts of the world in the past few years and also in countries

  1. Impact of land use change on soil carbon loss of the Sikkim Himalayan piedmont

    Science.gov (United States)

    Prokop, Pawel; Ploskonka, Dominik

    2014-05-01

    Natural and human causes of change in land use on soil carbon were studied at the outlet of the Tista River from the Sikkim Himalayas over the last 150 years. Analysis of topographic maps and satellite images indicates that the land reforms related to location of tea gardens in the piedmont caused rapid deforestation of terraces in the late 19th century. Continuous population growth after 1930 initiated the replacement of floodplain forest by rice cultivation. Both processes changed soil carbon content and intensified fluvial activity expressed through terrace erosion. The replacement of natural forest by tea cultivation reduced the soil carbon content within terraces from 1.95 kg to 1.77 kg (in 1 m of topsoil) respectively. The replacement of natural forest by rice reduced the soil carbon content within floodplains from 0.42 kg to 0.23 kg (in 1 m topsoil) respectively. Much more dangerous, was terrace erosion leading to permanent removal of sediment including soil. The total loss of soil carbon in a 1 m thick soil layer due to conversion of 5 km2 forest to tea cultivation was about 900 t between 1930 and 2010. While the total soil carbon removed due to 1.8 km2 terrace erosion reached 3510 t in the same period. Result is the outcome of research project 2012/05/B/ST10/00309 of the National Science Centre (Poland).

  2. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  3. Physico-empirical approach for mapping soil hydraulic behaviour

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  4. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  6. A Brief History of Soil Mapping and Classification in the USA

    Science.gov (United States)

    Brevik, Eric C.; Hartemink, Alfred E.

    2014-05-01

    Soil maps show the distribution of soils across an area but also depict soil science theory and ideas on soil formation and classification at the time the maps were created. The national soil mapping program in the USA was established in 1899. The first nation-wide soil map was published by M. Whitney in 1909 and showed soil provinces that were largely based on geology. In 1912, G.N. Coffey published the first country-wide map based on soil properties. The map showed 5 broad soil units that used parent material, color and drainage as diagnostic criteria. The 1913 national map was produced by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham and showed broad physiographic units that were further subdivided into soil series, soil classes and soil types. In 1935, Marbut drafted a series of maps based on soil properties, but these maps were replaced as official U.S. soil maps in 1938 with the work of M. Baldwin, C.E. Kellogg, and J. Thorp. A series of soil maps similar to modern USA maps appeared in the 1960s with the 7th Approximation followed by revisions with the 1975 and 1999 editions of Soil Taxonomy. This review has shown that soil maps in the United States produced since the early 1900s moved initially from a geologic-based concept to a pedologic concept of soils. Later changes were from property-based systems to process-based, and then back to property-based. The information in this presentation is based on Brevik and Hartemink (2013). Brevik, E.C., and A.E. Hartemink. 2013. Soil Maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390.

  7. Contribution of soil respiration to the global carbon equation.

    Science.gov (United States)

    Xu, Ming; Shang, Hua

    2016-09-20

    Soil respiration (Rs) is the second largest carbon flux next to GPP between the terrestrial ecosystem (the largest organic carbon pool) and the atmosphere at a global scale. Given their critical role in the global carbon cycle, Rs measurement and modeling issues have been well reviewed in previous studies. In this paper, we briefly review advances in soil organic carbon (SOC) decomposition processes and the factors affecting Rs. We examine the spatial and temporal distribution of Rs measurements available in the literature and found that most of the measurements were conducted in North America, Europe, and East Asia, with major gaps in Africa, East Europe, North Asia, Southeast Asia, and Australia, especially in dry ecosystems. We discuss the potential problems of measuring Rs on slope soils and propose using obliquely-cut soil collars to solve the existing problems. We synthesize previous estimates of global Rs flux and find that the estimates ranged from 50 PgC/yr to 98 PgC/yr and the error associated with each estimation was also high (4 PgC/yr to 33.2 PgC/yr). Using a newly integrated database of Rs measurements and the MODIS vegetation map, we estimate that the global annual Rs flux is 94.3 PgC/yr with an estimation error of 17.9 PgC/yr at a 95% confidence level. The uneven distribution of Rs measurements limits our ability to improve the accuracy of estimation. Based on the global estimation of Rs flux, we found that Rs is highly correlated with GPP and NPP at the biome level, highlighting the role of Rs in global carbon budgets. Copyright © 2016. Published by Elsevier GmbH.

  8. Preliminary soil-slip susceptibility maps, southwestern California

    Science.gov (United States)

    Morton, Douglas M.; Alvarez, Rachel M.; Campbell, Russell H.; Digital preparation by Bovard, Kelly R.; Brown, D.T.; Corriea, K.M.; Lesser, J.N.

    2003-01-01

    This group of maps shows relative susceptibility of hill slopes to the initiation sites of rainfall-triggered soil slip-debris flows in southwestern California. As such, the maps offer a partial answer to one part of the three parts necessary to predict the soil-slip/debris-flow process. A complete prediction of the process would include assessments of “where”, “when”, and “how big”. These maps empirically show part of the “where” of prediction (i.e., relative susceptibility to sites of initiation of the soil slips) but do not attempt to show the extent of run out of the resultant debris flows. Some information pertinent to “when” the process might begin is developed. “When” is determined mostly by dynamic factors such as rainfall rate and duration, for which local variations are not amenable to long-term prediction. “When” information is not provided on the maps but is described later in this narrative. The prediction of “how big” is addressed indirectly by restricting the maps to a single type of landslide process—soil slip-debris flows. The susceptibility maps were created through an iterative process from two kinds of information. First, locations of sites of past soil slips were obtained from inventory maps of past events. Aerial photographs, taken during six rainy seasons that produced abundant soil slips, were used as the basis for soil slip-debris flow inventory. Second, digital elevation models (DEM) of the areas that were inventoried were used to analyze the spatial characteristics of soil slip locations. These data were supplemented by observations made on the ground. Certain physical attributes of the locations of the soil-slip debris flows were found to be important and others were not. The most important attribute was the mapped bedrock formation at the site of initiation of the soil slip. However, because the soil slips occur in surficial materials overlying the bedrocks units, the bedrock formation can only serve as

  9. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  10. LARGE-SCALE INDICATIVE MAPPING OF SOIL RUNOFF

    Directory of Open Access Journals (Sweden)

    E. Panidi

    2017-11-01

    Full Text Available In our study we estimate relationships between quantitative parameters of relief, soil runoff regime, and spatial distribution of radioactive pollutants in the soil. The study is conducted on the test arable area located in basin of the upper Oka River (Orel region, Russia. Previously we collected rich amount of soil samples, which make it possible to investigate redistribution of the Chernobyl-origin cesium-137 in soil material and as a consequence the soil runoff magnitude at sampling points. Currently we are describing and discussing the technique applied to large-scale mapping of the soil runoff. The technique is based upon the cesium-137 radioactivity measurement in the different relief structures. Key stages are the allocation of the places for soil sampling points (we used very high resolution space imagery as a supporting data; soil samples collection and analysis; calibration of the mathematical model (using the estimated background value of the cesium-137 radioactivity; and automated compilation of the map (predictive map of the studied territory (digital elevation model is used for this purpose, and cesium-137 radioactivity can be predicted using quantitative parameters of the relief. The maps can be used as a support data for precision agriculture and for recultivation or melioration purposes.

  11. Comparing the Ability of Conventional and Digital Soil Maps to Explain Soil Variability using Diversity Indices

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-06-01

    Full Text Available Introduction: Effective and sustainable soil management requires knowledge about the spatial patterns of soil variation and soil surveys are important and useful sources of data that can be used. Prior knowledge about the spatial distribution of the soils is the first essential step for this aim but this requires the collection of large amounts of soil information. However, the conventional soil surveys are usually not useful for providing quantitative information about the spatial distribution of soil properties that are used in many environmental studies. Recently, by the rapid development of the computers and technology together with the availability of new types of remote sensing data and digital elevation models (DEMs, digital and quantitative approaches have been developed. These new techniques relies on finding the relationships between soil properties or classes and the auxiliary information that explain the soil forming factors or processes and finally predict soil patterns on the landscape. Different types of the machine learning approaches have been applied for digital soil mapping of soil classes, such as the logistic and multinomial logistic regressions, neural networks and classification trees. In reality, soils are physical outcomes of the interactions happening among the geology, climate, hydrology and geomorphic processes. Diversity is a way of measuring soil variation. Ibanez (9 first introduced ecological diversity indices as measures of diversity. Application of the diversity indices in soil science have considerably increased in recent years. Taxonomic diversity has been evaluated in the most previous researches whereas comparing the ability of different soil mapping approaches based on these indices was rarely considered. Therefore, the main objective of this study was to compare the ability of the conventional and digital soil maps to explain the soil variability using diversity indices in the Shahrekord plain of

  12. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  13. Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions

    Directory of Open Access Journals (Sweden)

    Waldir de Carvalho Junior

    2014-06-01

    Full Text Available Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR and geostatistical (ordinary kriging and co-kriging. The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap. Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI, soil wetness index (SWI, normalized difference vegetation index (NDVI, and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.

  14. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  15. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States.

    Science.gov (United States)

    Hinson, Audra L; Feagin, Rusty A; Eriksson, Marian; Najjar, Raymond G; Herrmann, Maria; Bianchi, Thomas S; Kemp, Michael; Hutchings, Jack A; Crooks, Steve; Boutton, Thomas

    2017-12-01

    Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO 2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO 2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km 2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm -3 across 0-15 cm, 0.055 g cm -3 across 0-100 cm, and 0.040 g cm -3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements. © 2017 John Wiley & Sons Ltd.

  16. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  18. Soil carbon stocks in Sarawak, Malaysia.

    Science.gov (United States)

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Patterning between urban soil color and carbon stocks

    Science.gov (United States)

    Schifman, L. A.; Herrmann, D.; Shuster, W.

    2017-12-01

    Urban soils are extensively modified compared to their non-urban counterparts. These modifications are expected to affect the vertical distribution of total soil carbon as well as its constituent pools - soil organic carbon, black carbon, and inorganic carbon. Assigning color to soil horizons using the Munsell color system is a standard field method employed by soil scientists that can also reveal generalizable information about various environmental metrics. A new dataset on urban soils and their reference counterparts that cover 11 regions in the United States and advances in quantitative pedology allowed us to construct a log-linear model that relates Value, the lightness of a color hue, to the concentration of total carbon throughout a soil column of up to 450 cm depth. Overall, the relationship between 671 points resulted in an r2 of 0.23 with a p<0.001. As expected, organic carbon, shifted values to the lower end of the scale (darker), whereas inorganic carbon increased soil color values (lighter). These findings allow for a simplified understanding of shifts in carbon pools throughout a soil profile.

  1. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  2. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  3. Mapping Soil Organic Matter with Hyperspectral Imaging

    Science.gov (United States)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  4. The influence of land-use and land-management on Soil Organic Carbon concentrations: Limitations of making predictions using only soil order data

    Science.gov (United States)

    Bell, M. J.; Worrall, F.

    2009-04-01

    In light of recent concern over the extent of global warming and the role of soil carbon as a potential store of atmospheric carbon, there is increasing demand for regions to estimate their current soil organic carbon (SOC) stocks with the greatest possible accuracy. Several previous attempts at calculating SOC baselines at global, national or regional scale have used mean values for soil orders and multiplied these values by the mapped areas of the soils they represent. Other methods have approached the task from a land cover point of view, making estimates using only land-use, or soil order/land-use combinations and others have included variables such as altitude, climate and soil texture. This study aimed to assess the major controls on SOC concentrations (%SOC) at the National Trust Wallington estate in Northumberland, NE England (area = 55km2) where an extensive soil sampling campaign was used to test what level of accuracy could be achieved in modelling the %SOC values on the Estate. Mapped %SOC values were compared to the values predicted from The National Soils Resources Institute (NSRI) representative soil profile data for major soil group, soil series and land-use corrected soil series values, as well as land-use/major soil group combinations from the Countryside Survey database. The results of this study can be summarised as follows: When only soil series or land-use were used as predictors only 48% and 44% of the variation in the dataset were explained. When soil series/land-use combinations were used explanatory power increased to 57% both altitude and soil pH are major controls on %SOC and including these variables gave an improvement to 59% A further improvement from 59% to 66% in the ability to predict %SOC levels at point locations when farm tenancy was included indicates that differences in land-management practices between farm tenancies explained more of the variation than either soil series or land-use in %SOC. Further work will involve a

  5. Soils apart from equilibrium – consequences for soil carbon balance modelling

    Directory of Open Access Journals (Sweden)

    T. Wutzler

    2007-01-01

    Full Text Available Many projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Para-meters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of disturbed forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a considerable

  6. Sampling for validation of digital soil maps

    NARCIS (Netherlands)

    Brus, D.J.; Kempen, B.; Heuvelink, G.B.M.

    2011-01-01

    The increase in digital soil mapping around the world means that appropriate and efficient sampling strategies are needed for validation. Data used for calibrating a digital soil mapping model typically are non-random samples. In such a case we recommend collection of additional independent data and

  7. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.

    Science.gov (United States)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0-30 and the 0-100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km(2) and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m(-2), respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dynamics of carbon 14 in soils: a review

    International Nuclear Information System (INIS)

    Tamponnet, C.

    2004-01-01

    In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial eco-sphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. (author)

  9. Are catenas relevant to soil maps and pedology in Iowa in the twenty-first century?

    Science.gov (United States)

    Richter, Jennifer; Burras, C. Lee

    2014-05-01

    The modern intensity of agriculture brings to question whether anthropogenic impacts on soil profiles and catenas in agricultural areas are minor or dominant pedogenic influences. Answering this question is crucial to evaluating the modern relevance of historic soil maps, which use the traditional catena model as their foundation. This study quantifies the magnitude of change within the soil profile and across the landscape that result from decadal scale agriculture. Four benchmark catenas located on the Des Moines Lobe in Iowa, USA, were re-examined to determine the changes that occurred in the soils over the intervening years. The first site was initially studied by Walker and Ruhe in the mid 1960's. Burras and Scholtes initially examined the second catena in the early 1980's, while the remaining two catenas were first studied in the early 1990's by Steinwand and Fenton, and the late 1990's by Konen. Thus, the catenas were re-sampled for this study roughly 50, 30, 20, and 15 years, respectively, after the initial study. In this part of Iowa, continuous row crop agriculture (primarily Zea mays and Glycine max) and extensive subsurface drainage are very common. All study sites are closed-basin catenas located within 40 km of each other with a parent material of Late Wisconsinan glacial till. Soil cores to a depth of approximately two meters were taken with a truck mounted Giddings hydraulic soil sampler at 27 to 30 meter intervals along one transect for each of the four catenas, resulting in a total of forty-eight cores. The soil cores were then brought to the laboratory where soil descriptions and laboratory analyses are being completed. Soil descriptions include information about horizon type and depth, Munsell color, texture, rock fragments, structure, consistence, clay films, roots, pores, presence of carbonates, and redoximorphic features. Laboratory analyses include bulk density, particle size, total carbon and nitrogen content, cation exchange capacity

  10. Insights into soil carbon dynamics across climatic and geologic gradients from temporally-resolved radiocarbon measurements

    Science.gov (United States)

    van der Voort, T. S.; Hagedorn, F.; Mannu, U.; Walthert, L.; McIntyre, C.; Eglinton, T. I.

    2016-12-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore quantifying soil organic matter dynamics (carbon turnover, stocks and fluxes) across spatial gradients is essential for an understanding of the carbon cycle and the impacts of global change. In particular, links between soil carbon dynamics and different climatic and compositional factors remains poorly understood. Radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics. Temporally-resolved radiocarbon measurements, which take advantage of "bomb-radiocarbon"-driven changes in atmospheric 14C, enable further constraints to be placed on C turnover times. These in turn can yield more precise flux estimates for both upper and deeper soil horizons. This project combines bulk radiocarbon measurements on a suite of soil profiles spanning strong climatic (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1) and geologic gradients with a more in-depth approach for a subset of locations. For this subset, temporal and carbon-fraction specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Resulting temporally-resolved turnover estimates are coupled to carbon stocks, fluxes across this wide range of forest ecosystems and are examined in the context of environmental drivers (temperature, precipitation, primary production and soil moisture) as well as composition (sand, silt and clay content). Statistical analysis on the region-scale - correlating radiocarbon signature with climatic variables such as temperature, precipitation, primary production and elevation - indicates that composition rather than climate is a key driver of ­­Δ14C signatures. Estimates of carbon turnover, stocks and fluxes derived from temporally-resolved measurements highlight the pivotal role of soil moisture as a

  11. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    International Nuclear Information System (INIS)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-01-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km 2 and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m −2 , respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m −2 , respectively. • SOC stocks were 34 and 16%, respectively

  12. Carbon and carbon-14 in lunar soil 14163

    International Nuclear Information System (INIS)

    Fireman, E.L.; Stoenner, R.W.

    1981-01-01

    Carbon is removed from the surface of lunar soil 14163 size fractions by combustions at 500 and 1000 0 C in an oxygen stream and the carbon contents and the carbon-14 activities are measured. The carbon contents are inversely correlated with grain size. A measured carbon content of 198 ppM for bulk 14163, obtained by combining the size fraction results, is modified to 109 +- 12 ppM by a carbon contamination correction. This value is in accord with a previous determination, 110 ppM, for bulk 14163. The small ( 53 μ) grains, 11.2 +- 2.0 dpm/kg. The combusted carbon and carbon-14 are attributed mainly to solar-wind implantation. Melt extractions of carbon-14 from the combusted soil samples gave essentially identical activities, 21.0 +- 1.5 and 19.2 +- 2.0 dpm/kg for the small and large grains, and are attributed to cosmic-ray spallation-produced carbon-14

  13. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  14. The Potential Of The Soil For Stabilisation Of Organic Carbon In Soil Aggregates

    Directory of Open Access Journals (Sweden)

    Tobiašová Erika

    2015-06-01

    Full Text Available Carbon stabilisation in soil is the result of interaction between the chemical and physical mechanisms of protection and the dominance of the mechanism depends not only on the long-term constant characteristics of soil but also on the properties, which can be partly influenced by human activities. In this study, the potential of the soil for stabilisation of carbon (Ps in different soil types depending on soil properties was compared. Experiment included six soils (Eutric Fluvisol, Mollic Fluvisol, Haplic Chernozem, Haplic Luvisol, Eutric Cambisol, and Rendzic Leptosol of different land uses (forest, meadow, urban, and agro-ecosystem in Slovakia. Ps was determined with dependence on the ratio of labile and stable fractions of carbon in the soil macro-aggregates. Ps was in an exponential dependence (r = 0.942; P < 0.01 with production potential of the soil, and the fractions of dry-sieved aggregates larger than 3 mm play an important role in the first stages of the carbon stabilisation. The suitable parameter, which reflects the changes in carbon stability in the soil is the ratio of the labile carbon and non-labile carbon in the soil macro-aggregates (L/NL. Lower values of L/NL that indicate a higher stability of carbon were determined at a higher pH, at the higher content of carbonates and exchangeable basic cations, and at a higherportion of humic acids free and bound with mobile sesquioxides R2O3.

  15. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    Science.gov (United States)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  16. Soil map density and a nation's wealth and income

    NARCIS (Netherlands)

    Hartemink, A.E.

    2008-01-01

    Little effort has been made to link soil mapping and soil data density to a nation’s welfare. Soil map density in 31 European countries and 44 low and middle income countries is linked to Gross Domestic Product (GDP) per capita and the number of soil scientists per country.

  17. Soil Infrastructure, Interfaces & Translocation Processes in Inner Space ("Soil-it-is": towards a road map for the constraints and crossroads of soil architecture and biophysical processes

    Directory of Open Access Journals (Sweden)

    L. W. de Jonge

    2009-08-01

    , we show the Dexter et al. (2008 threshold may also apply to hydrological and physical-chemical interface phenomena including soil-water repellency and sorption of volatile organic vapors (gas-water-solids interfaces as well as polycyclic aromatic hydrocarbons (water-solids interfaces. However, data for differently-managed soils imply that energy input, soil-moisture status, and vegetation (quality of eluded organic matter may be equally important constraints together with the complexation and degradation of organic carbon in deciding functional soil architecture and interface processes. Finally, we envision a road map to soil inner space where we search for the main controls of particle and pore network changes and structure build-up and resilience at each crossroad of biophysical parameters, where, for example, complexation between organic matter and clay, and moisture-induced changes from hydrophilic to hydrophobic surface conditions can play a role. We hypothesize that each crossroad (e.g. between organic carbon/clay ratio and matric potential may control how soil self-organization will manifest itself at a given time as affected by gradients in energy and moisture from soil use and climate. The road map may serve as inspiration for renewed and multi-disciplinary focus on functional soil architecture.

  18. Soil properties mapping with the DIGISOIL multi-sensor system

    Science.gov (United States)

    Grandjean, G.

    2012-04-01

    The multidisciplinary DIGISOIL project aimed to integrate and improve in situ and proximal measurement technologies for the assessment of soil properties and soil degradation indicators, going from the sensing technologies to their integration and their application in (digital) soil mapping (DSM). In order to assess and prevent soil degradation and to benefit from the different ecological, economical and historical functions of the soil in a sustainable way, high resolution and quantitative maps of soil properties are needed. The core objective of the project is to explore and exploit new capabilities of advanced geophysical technologies for answering this societal demand. To this aim, DIGISOIL addresses four issues covering technological, soil science and economic aspects: (i) the validation of geophysical (in situ, proximal and airborne) technologies and integrated pedo-geophysical inversion techniques (mechanistic data fusion) (ii) the relation between the geophysical parameters and the soil properties, (iii) the integration of the derived soil properties for mapping soil functions and soil threats, (iv) the pre-evaluation, standardisation and sub-industrialization of the proposed methodologies, including technical and economical studies related to the societal demand. With respect to these issues, the DIGISOIL project allows to develop, test and validate the most relevant geophysical technologies for mapping soil properties. The system was tested on different field tests, and validated the proposed technologies and solutions for each of the identified methods: geoelectric, GPR, EMI, seismics, magnetic and hyperspectral. After data acquisition systems, sensor geometry, and advanced data processing techniques have been developed and validated, we present now the solutions for going from geophysical data to soil properties maps. For two test sites, located respectively in Luxembourg (LU) and Mugello (IT) a set of soil properties maps have been produced. They give

  19. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  20. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran.

    Science.gov (United States)

    Mahmoudabadi, Ebrahim; Karimi, Alireza; Haghnia, Gholam Hosain; Sepehr, Adel

    2017-09-11

    Digital soil mapping has been introduced as a viable alternative to the traditional mapping methods due to being fast and cost-effective. The objective of the present study was to investigate the capability of the vegetation features and spectral indices as auxiliary variables in digital soil mapping models to predict soil properties. A region with an area of 1225 ha located in Bajgiran rangelands, Khorasan Razavi province, northeastern Iran, was chosen. A total of 137 sampling sites, each containing 3-5 plots with 10-m interval distance along a transect established based on randomized-systematic method, were investigated. In each plot, plant species names and numbers as well as vegetation cover percentage (VCP) were recorded, and finally one composite soil sample was taken from each transect at each site (137 soil samples in total). Terrain attributes were derived from a digital elevation model, different bands and spectral indices were obtained from the Landsat7 ETM+ images, and vegetation features were calculated in the plots, all of which were used as auxiliary variables to predict soil properties using artificial neural network, gene expression programming, and multivariate linear regression models. According to R 2 RMSE and MBE values, artificial neutral network was obtained as the most accurate soil properties prediction function used in scorpan model. Vegetation features and indices were more effective than remotely sensed data and terrain attributes in predicting soil properties including calcium carbonate equivalent, clay, bulk density, total nitrogen, carbon, sand, silt, and saturated moisture capacity. It was also shown that vegetation indices including NDVI, SAVI, MSAVI, SARVI, RDVI, and DVI were more effective in estimating the majority of soil properties compared to separate bands and even some soil spectral indices.

  1. Predicting and mapping soil available water capacity in Korea.

    Science.gov (United States)

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  2. Predicting and mapping soil available water capacity in Korea

    Directory of Open Access Journals (Sweden)

    Suk Young Hong

    2013-04-01

    Full Text Available The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively. Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  3. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  4. `VIS/NIR mapping of TOC and extent of organic soils in the Nørre Å valley

    Science.gov (United States)

    Knadel, M.; Greve, M. H.; Thomsen, A.

    2009-04-01

    Organic soils represent a substantial pool of carbon in Denmark. The need for carbon stock assessment calls for more rapid and effective mapping methods to be developed. The aim of this study was to compare traditional soil mapping with maps produced from the results of a mobile VIS/NIR system and to evaluate the ability to estimate TOC and map the area of organic soils. The Veris mobile VIS/NIR spectroscopy system was compared to traditional manual sampling. The system is developed for in-situ near surface measurements of soil carbon content. It measures diffuse reflectance in the 350 nm-2200 nm region. The system consists of two spectrophotometers mounted on a toolbar and pulled by a tractor. Optical measurements are made through a sapphire window at the bottom of the shank. The shank was pulled at a depth of 5-7 cm at a speed of 4-5 km/hr. 20-25 spectra per second with 8 nm resolution were acquired by the spectrometers. Measurements were made on 10-12 m spaced transects. The system also acquired soil electrical conductivity (EC) for two soil depths: shallow EC-SH (0- 31 cm) and deep conductivity EC-DP (0- 91 cm). The conductivity was recorded together with GPS coordinates and spectral data for further construction of the calibration models. Two maps of organic soils in the Nørre Å valley (Central Jutland) were generated: (i) based on a conventional 25 m grid with 162 sampling points and laboratory analysis of TOC, (ii) based on in-situ VIS/NIR measurements supported by chemometrics. Before regression analysis, spectral information was compressed by calculating principal components. The outliers were determined by a mahalanobis distance equation and removed. Clustering using a fuzzy c- means algorithm was conducted. Within each cluster a location with the minimal spatial variability was selected. A map of 15 representative sample locations was proposed. The interpolation of the spectra into a single spectrum was performed using a Gaussian kernel weighting

  5. Deep carbon storage potential of buried floodplain soils.

    Science.gov (United States)

    D'Elia, Amanda H; Liles, Garrett C; Viers, Joshua H; Smart, David R

    2017-08-15

    Soils account for the largest terrestrial pool of carbon and have the potential for even greater quantities of carbon sequestration. Typical soil carbon (C) stocks used in global carbon models only account for the upper 1 meter of soil. Previously unaccounted for deep carbon pools (>1 m) were generally considered to provide a negligible input to total C contents and represent less dynamic C pools. Here we assess deep soil C pools associated with an alluvial floodplain ecosystem transitioning from agricultural production to restoration of native vegetation. We analyzed the soil organic carbon (SOC) concentrations of 87 surface soil samples (0-15 cm) and 23 subsurface boreholes (0-3 m). We evaluated the quantitative importance of the burial process in the sequestration of subsurface C and found our subsurface soils (0-3 m) contained considerably more C than typical C stocks of 0-1 m. This deep unaccounted soil C could have considerable implications for global C accounting. We compared differences in surface soil C related to vegetation and land use history and determined that flooding restoration could promote greater C accumulation in surface soils. We conclude deep floodplain soils may store substantial quantities of C and floodplain restoration should promote active C sequestration.

  6. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluating the new soil erosion map of Hungary

    Science.gov (United States)

    Waltner, István; Centeri, Csaba; Takács, Katalin; Pirkó, Béla; Koós, Sándor; László, Péter; Pásztor, László

    2017-04-01

    With growing concerns on the effects of climate change and land use practices on our soil resources, soil erosion by water is becoming a significant issue internationally. Since the 1964 publication of the first soil erosion map of Hungary, there have been several attempts to provide a countrywide assessment of erosion susceptibility. However, there has been no up-to-date map produced in the last decade. In 2016, a new, 1:100 000 scale soil erosion map was published, based on available soil, elevation, land use and meteorological data for the extremely wet year of 2010. The map utilized combined outputs for two spatially explicit methods: the widely used empirical Universal Soil Loss Equation (USLE) and the process-based Pan-European Soil Erosion Risk Assessment (PESERA) models. The present study aims to provide a detailed analysis of the model results. In lieu of available national monitoring data, information from other sources were used. The Soil Degradation Subsystem (TDR) of the National Environmental Information System (OKIR) is a digital database based on a soil survey and farm dairy data collected from representative farms in Hungary. During the survey all kind of degradation forms - including soil erosion - were considered. Agricultural and demographic data was obtained from the Hungarian Central Statistical Office (KSH). Data from an interview-based survey was also used in an attempt to assess public awareness of soil erosion risks. Point-based evaluation of the model results was complemented with cross-regional assessment of soil erosion estimates. This, combined with available demographic information provides us with an opportunity to address soil erosion on a community level, with the identification of regions with the highest risk of being affected by soil erosion.

  8. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  9. Soil Carbon 4 per mille

    Science.gov (United States)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  10. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  11. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application....... This study investigated the nature of the early release of CO2 and the degree to which stabilizing mechanisms protect biochar from microbial attack. Incubations of 14C-labelled biochar produced at different temperatures were performed in soils with different clay contents and in sterilized and non......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...

  12. Neighborhood size of training data influences soil map disaggregation

    Science.gov (United States)

    Soil class mapping relies on the ability of sample locations to represent portions of the landscape with similar soil types; however, most digital soil mapping (DSM) approaches intersect sample locations with one raster pixel per covariate layer regardless of pixel size. This approach does not take ...

  13. Multisensor on-the-go mapping of readily dispersible clay, particle size and soil organic matter

    Science.gov (United States)

    Debaene, Guillaume; Niedźwiecki, Jacek; Papierowska, Ewa

    2016-04-01

    Particle size fractions affect strongly the physical and chemical properties of soil. Readily dispersible clay (RDC) is the part of the clay fraction in soils that is easily or potentially dispersible in water when small amounts of mechanical energy are applied to soil. The amount of RDC in the soil is of significant importance for agriculture and environment because clay dispersion is a cause of poor soil stability in water which in turn contributes to soil erodibility, mud flows, and cementation. To obtain a detailed map of soil texture, many samples are needed. Moreover, RDC determination is time consuming. The use of a mobile visible and near-infrared (VIS-NIR) platform is proposed here to map those soil properties and obtain the first detailed map of RDC at field level. Soil properties prediction was based on calibration model developed with 10 representative samples selected by a fuzzy logic algorithm. Calibration samples were analysed for soil texture (clay, silt and sand), RDC and soil organic carbon (SOC) using conventional wet chemistry analysis. Moreover, the Veris mobile sensor platform is also collecting electrical conductivity (EC) data (deep and shallow), and soil temperature. These auxiliary data were combined with VIS-NIR measurement (data fusion) to improve prediction results. EC maps were also produced to help understanding RDC data. The resulting maps were visually compared with an orthophotography of the field taken at the beginning of the plant growing season. Models were developed with partial least square regression (PLSR) and support vector machine regression (SVMR). There were no significant differences between calibration using PLSR or SVMR. Nevertheless, the best models were obtained with PLSR and standard normal variate (SNV) pretreatment and the fusion with deep EC data (e.g. for RDC and clay content: RMSECV = 0,35% and R2 = 0,71; RMSECV = 0,32% and R2 = 0,73 respectively). The best models were used to predict soil properties from the

  14. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    Science.gov (United States)

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  15. Quantifying global soil carbon losses in response to warming.

    Science.gov (United States)

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  16. Carbonate heap leach of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Turney, W.R.; Mason, C.F.V.; Longmire, P.

    1994-01-01

    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO 2 CO 32 = ) and uranyl tricarbonate (UO 2 CO 33 4- ), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions (∼0.5M) proved more effective than lower molar strength solutions (∼ 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal

  17. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceddia, Marcos Bacis, E-mail: marcosceddia@gmail.com [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Villela, André Luis Oliveira [Colégio Técnico da UFRRJ, RJ, Seropédica 23890-000 (Brazil); Pinheiro, Érika Flávia Machado [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Wendroth, Ole [Department of Plant & Soil Sciences, University of Kentucky, College of Agriculture, Lexington, KY (United States)

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km{sup 2} and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m{sup −2}, respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m{sup −2}, respectively. • SOC stocks were 34 and 16

  18. Soil map disaggregation improved by soil-landscape relationships, area-proportional sampling and random forest implementation

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Malone, Brendan P.; Odgers, Nathan

    implementation generally improved the algorithm’s ability to predict the correct soil class. The implementation of soil-landscape relationships and area-proportional sampling generally increased the calculation time, while the random forest implementation reduced the calculation time. In the most successful......Detailed soil information is often needed to support agricultural practices, environmental protection and policy decisions. Several digital approaches can be used to map soil properties based on field observations. When soil observations are sparse or missing, an alternative approach...... is to disaggregate existing conventional soil maps. At present, the DSMART algorithm represents the most sophisticated approach for disaggregating conventional soil maps (Odgers et al., 2014). The algorithm relies on classification trees trained from resampled points, which are assigned classes according...

  19. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  20. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  1. Accounting for access costs in validation of soil maps

    NARCIS (Netherlands)

    Yang, Lin; Brus, Dick J.; Zhu, A.X.; Li, Xinming; Shi, Jingjing

    2018-01-01

    The quality of soil maps can best be estimated by collecting additional data at locations selected by probability sampling. These data can be used in design-based estimation of map quality measures such as the population mean of the squared prediction errors (MSE) for continuous soil maps and

  2. Seeing the soil through the net: an eye-opener on the soil map of the Flemish region (Belgium)

    Science.gov (United States)

    Dondeyne, Stefaan; Vanierschot, Laura; Langohr, Roger; Van Ranst, Eric; Deckers, Jozef; Oorts, Katrien

    2017-04-01

    A systematic soil survey of Belgium was conducted from 1948 to 1991. Field surveys were done at the detailed scale of 1:5000 with the final maps published at a 1:20,000 scale. The legend of these detailed soil maps (scale 1:20,000) has been converted to the 3rd edition of the international soil classification system 'World Reference Base for Soil Resources' (WRB). Over the last years, the government of the Flemish region made great efforts to make these maps, along with other environmental data, available to the general audience through the internet. The soil maps are widely used and consulted by researchers, teachers, land-use planners, environmental consultancy agencies and archaeologists. The maps can be downloaded and consulted in the viewer 'Visual Soil Explorer' ('Bodemverkenner'). To increase the legibility of the maps, we assembled a collection of photographs from soil profiles representing 923 soil types and 413 photos of related landscape settings. By clicking on a specific location in the 'Visual Soil Explorer', pictures of the corresponding soil type and landscape appear in a pop-up window, with a brief explanation about the soil properties. The collection of photographs of soil profiles cover almost 80% of the total area of the Flemish region, and include the 100 most common soil types. Our own teaching experience shows that these information layers are particular valuable for teaching soil geography and earth sciences in general. Overall, such visual information layers should contribute to a better interpretation of the soil maps and legacy soil data by serving as an eye-opener on the soil map to the wider community.

  3. Spectral signature selection for mapping unvegetated soils

    Science.gov (United States)

    May, G. A.; Petersen, G. W.

    1975-01-01

    Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.

  4. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi

    2017-08-13

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications have dominated the SOC stock mapping at regional scale so far. However, the community has hardly ever attempted to implement Quantile Regression (QR) to spatially predict the SOC distribution. In this contribution, we test QR to estimate SOC stock (0-30 $cm$ depth) in the agricultural areas of a highly variable semi-arid region (Sicily, Italy, around 25,000 $km2$) by using topographic and remotely sensed predictors. We also compare the results with those from available SOC stock measurement. The QR models produced robust performances and allowed to recognize dominant effects among the predictors with respect to the considered quantile. This information, currently lacking, suggests that QR can discern predictor influences on SOC stock at specific sub-domains of each predictors. In this work, the predictive map generated at the median shows lower errors than those of the Joint Research Centre and International Soil Reference, and Information Centre benchmarks. The results suggest the use of QR as a comprehensive and effective method to map SOC using legacy data in agro-ecosystems. The R code scripted in this study for QR is included.

  5. Gasification biochar as soil amendment for carbon sequestration and soil quality

    DEFF Research Database (Denmark)

    Hansen, Veronika

    2014-01-01

    Thermal gasification of biomass is an efficient and flexible way to generate energy. Besides the energy, avaluable by-product, biochar, is produced. Biochar contains a considerable amount of recalcitrant carbon thathas potential for soil carbon sequestration and soil quality improvement if recycled...... back to agriculture soils. To determine the effect of gasification biochar on soil processes and crop yield, a short-term incubation study was conducted and a field trial has been established....

  6. Small scale digital soil mapping in Southeastern Kenya

    NARCIS (Netherlands)

    Mora Vallejo, A.P.; Claessens, L.; Stoorvogel, J.J.; Heuvelink, G.B.M.

    2008-01-01

    Digital soil mapping techniques appear to be an interesting alternative for traditional soil survey techniques. However, most applications deal with (semi-)detailed soil surveys where soil variability is determined by a limited number of soil forming factors. The question that remains is whether

  7. [Research methods of carbon sequestration by soil aggregates: a review].

    Science.gov (United States)

    Chen, Xiao-Xia; Liang, Ai-Zhen; Zhang, Xiao-Ping

    2012-07-01

    To increase soil organic carbon content is critical for maintaining soil fertility and agricultural sustainable development and for mitigating increased greenhouse gases and the effects of global climate change. Soil aggregates are the main components of soil, and have significant effects on soil physical and chemical properties. The physical protection of soil organic carbon by soil aggregates is the important mechanism of soil carbon sequestration. This paper reviewed the organic carbon sequestration by soil aggregates, and introduced the classic and current methods in studying the mechanisms of carbon sequestration by soil aggregates. The main problems and further research trends in this study field were also discussed.

  8. A global predictive model of carbon in mangrove soils

    Science.gov (United States)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  9. Sustainable Carbon Dioxide Sequestration as Soil Carbon to Achieve Carbon Neutral Status for DoD Lands

    Science.gov (United States)

    2017-10-01

    26 4.6.3 Fertilizer ...5 Figure 3. Soil organic carbon sensitivity to...Industries Association ERDC TR-17-13 ix SOC Soil Organic Carbon SSURGO Soil Survey Geographic Database USACE U.S. Army Corps of Engineers USDA

  10. SoilGrids1km— global soil information based on automated mapping

    NARCIS (Netherlands)

    Hengl, T.; Mendes de Jesus, J.S.; Macmillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Carvalho Ribeiro, E.D.; Samuel Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Ruiperez Gonzalez, M.

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited

  11. Beyond clay - using selective extractions to improve predictions of soil carbon content

    Science.gov (United States)

    Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.

    2016-12-01

    A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.

  12. Sensitivity analysis and calibration of a soil carbon model (SoilGen2 in two contrasting loess forest soils

    Directory of Open Access Journals (Sweden)

    Y. Y. Yu

    2013-01-01

    Full Text Available To accurately estimate past terrestrial carbon pools is the key to understanding the global carbon cycle and its relationship with the climate system. SoilGen2 is a useful tool to obtain aspects of soil properties (including carbon content by simulating soil formation processes; thus it offers an opportunity for both past soil carbon pool reconstruction and future carbon pool prediction. In order to apply it to various environmental conditions, parameters related to carbon cycle process in SoilGen2 are calibrated based on six soil pedons from two typical loess deposition regions (Belgium and China. Sensitivity analysis using the Morris method shows that decomposition rate of humus (kHUM, fraction of incoming plant material as leaf litter (frecto and decomposition rate of resistant plant material (kRPM are the three most sensitive parameters that would cause the greatest uncertainty in simulated change of soil organic carbon in both regions. According to the principle of minimizing the difference between simulated and measured organic carbon by comparing quality indices, the suited values of kHUM, (frecto and kRPM in the model are deduced step by step and validated for independent soil pedons. The difference of calibrated parameters between Belgium and China may be attributed to their different vegetation types and climate conditions. This calibrated model allows more accurate simulation of carbon change in the whole pedon and has potential for future modeling of carbon cycle over long timescales.

  13. A method to detect soil carbon degradation during soil erosion

    OpenAIRE

    F. Conen; M. Schaub; C. Alewell

    2009-01-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable c...

  14. Introduction of digital soil mapping techniques for the nationwide regionalization of soil condition in Hungary; the first results of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Szatmári, Gábor; Takács, Katalin; Bakacsi, Zsófia; Szabó, József; Dobos, Endre

    2014-05-01

    Due to the former soil surveys and mapping activities significant amount of soil information has accumulated in Hungary. Present soil data requirements are mainly fulfilled with these available datasets either by their direct usage or after certain specific and generally fortuitous, thematic and/or spatial inference. Due to the more and more frequently emerging discrepancies between the available and the expected data, there might be notable imperfection as for the accuracy and reliability of the delivered products. With a recently started project (DOSoReMI.hu; Digital, Optimized, Soil Related Maps and Information in Hungary) we would like to significantly extend the potential, how countrywide soil information requirements could be satisfied in Hungary. We started to compile digital soil related maps which fulfil optimally the national and international demands from points of view of thematic, spatial and temporal accuracy. The spatial resolution of the targeted countrywide, digital, thematic maps is at least 1:50.000 (approx. 50-100 meter raster resolution). DOSoReMI.hu results are also planned to contribute to the European part of GSM.net products. In addition to the auxiliary, spatial data themes related to soil forming factors and/or to indicative environmental elements we heavily lean on the various national soil databases. The set of the applied digital soil mapping techniques is gradually broadened incorporating and eventually integrating geostatistical, data mining and GIS tools. In our paper we will present the first results. - Regression kriging (RK) has been used for the spatial inference of certain quantitative data, like particle size distribution components, rootable depth and organic matter content. In the course of RK-based mapping spatially segmented categorical information provided by the SMUs of Digital Kreybig Soil Information System (DKSIS) has been also used in the form of indicator variables. - Classification and regression trees (CART) were

  15. A global predictive model of carbon in mangrove soils

    International Nuclear Information System (INIS)

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  16. Soil erosion, sedimentation and the carbon cycle

    Science.gov (United States)

    Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.

    2012-04-01

    Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.

  17. A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use.

    Science.gov (United States)

    Assimakopoulos, J H; Kalivas, D P; Kollias, V J

    2003-06-20

    Special attention should be paid to the choice of the proper N-fertilizer, in order to avoid a further acidification and degradation of acid soils and at the same time to improve nitrogen use efficiency and to limit the nitrate pollution of the ground waters. Therefore, the risk of leaching of the fertilizer and of the acidification of the soils must be considered prior to any N-fertilizer application. The application of N-fertilizers to the soil requires a good knowledge of the soil-fertilizer relationship, which those who are planning the fertilization policy and/or applying it might not have. In this study, a fuzzy classification methodology is presented for mapping the agricultural soils according to the kind and the rate of application of N-fertilizer that should be used. The values of pH, clay, sand and carbonates soil variables are estimated at each point of an area by applying geostatistical techniques. Using the pH values three fuzzy sets: "no-risk-acidification"; "low-risk-acidification"; and "high-risk-acidification" are produced and the memberships of each point to the three sets are estimated. Additionally, from the clay and sand values the membership grade to the fuzzy set "risk-of-leaching" is calculated. The parameters and their values, which are used for the construction of the fuzzy sets, are based on the literature, the existing knowledge and the experimentation, of the soil-fertilizer relationships and provide a consistent mechanism for mapping the soils according to the type of N-fertilizers that should be applied and the rate of applications. The maps produced can easily be interpreted and used by non-experts in the application of the fertilization policy at national, local and farm level. The methodology is presented through a case study using data from the Amfilochia area, west Greece.

  18. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  19. Cropland versus Gariga schrubland on soil organic carbon storage under Mediterranen climatic condition of Sicily

    Science.gov (United States)

    Novara, A.; Gristina, L.; Santoro, A.; Poma, I.

    2009-04-01

    Soil organic carbon (SOC) pool is the largest among the terrestrial pool and it plays a key role to mitigate climate change. The restoration of SOC pool represents a potential sink for atmospheric CO2. Land use is one of the most important factors controlling organic carbon content. The main land uses throughout the Mediterranean are croplands (olive, wheat and vineyards) and scrublands. The land abandonment or the reclamation of land is changing the cover of scrubland and cropland. This will change the carbon cycle. The aim of this work is determining the direction and magnitude of soil organic change associated with land use change under Mediterranean Climatic Conditions. Using both historic record and land cover crop maps we estimated the effect of land cover change on the stock carbon from 1972 to 2008 in Sicily. A system of paired plots was established on Mollic Gypsiric cambisol and Gypsiric cambisol on agriculture and rangeland land uses. The study sites were selected at the natural reserve "Grotta di S. Ninfa", in the West of Sicily. Soil samples (24) were taken at 20 and 40 cm depth, air dried and sieved at 2 mm. Dry aggregate size fractions selected were >1000 µm, 1000-500 µm, 500-250 µm, 250-63 µm, 63-25 µm and <25 µm. The results show that gariga increase the organic matter in soil, mainly on the organic horizon. Key worlds: Land use change, Soil organic Carbon , Mediterranean, aggregates, gariga, cropland.

  20. Uncertainty indication in soil function maps - transparent and easy-to-use information to support sustainable use of soil resources

    Science.gov (United States)

    Greiner, Lucie; Nussbaum, Madlene; Papritz, Andreas; Zimmermann, Stephan; Gubler, Andreas; Grêt-Regamey, Adrienne; Keller, Armin

    2018-05-01

    Spatial information on soil function fulfillment (SFF) is increasingly being used to inform decision-making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting biomass production based on soil properties. Such information must be reliable for informed and transparent decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by (1) indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM) that are used for soil function assessment (SFA) and (2) showing the response of different SFA methods to the propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20 × 20 m together with their uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable uncertainty indications in soil function maps are relevant to enable informed and transparent decisions on the sustainable use of soil resources.

  1. Compilation of functional soil maps for the support of spatial planning and land management in Hungary

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor; Fodor, Nándor; Illés, Gábor; Bakacsi, Zsófia; Szabó, József

    2015-04-01

    The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized DSM products heavily based on legacy soil data. Delineation of Areas with Excellent Productivity in the framework of the National Regional Development Plan or delimitation of Areas with Natural Constraints in Hungary according to the common European biophysical criteria are primary issues in national level spatial planning. Impact assessment of the forecasted climate change and the analysis of the possibilities of the adaptation in the agriculture and forestry can be supported by scenario based land management modelling, whose results can be also incorporated in spatial planning. All these challenges require adequate, preferably timely and spatially detailed knowledge of the soil cover. For the satisfaction of these demands the soil conditions of Hungary have been digitally mapped based on the most detailed, available recent and legacy soil data, applying proper DSM techniques. Various soil related information were mapped in three distinct approaches: (i) basic soil properties determining agri-environmental conditions (e.g.: soil type according to the Hungarian genetic classification, rootable depth, sand, silt and clay content by soil layers, pH, OM and carbonate content for the plough layer); (ii) biophysical criteria of natural handicaps (e.g.: poor drainage, unfavourable texture and stoniness, shallow rooting depth, poor chemical properties and soil moisture balance) defined by common European system and (iii) agro-meteorologically modelled yield values for different crops, meteorological

  2. Modelling the soil carbon cycle of pine ecosystems

    International Nuclear Information System (INIS)

    Nakane, K.

    1994-01-01

    Soil carbon cycling rates and carbon budgets were calculated for stands of four pine species. Pinus sylvestris (at Jaedraaas, Sweden), P. densiflora (Hiroshima, Japan), P. elliottii (Florida, USA) and P. radiata (Canberra, Australia), using a simulation model driven by daily observations of mean air temperature and precipitation. Inputs to soil carbon through litterfall differ considerably among the four pine forests, but the accumulation of the A 0 layer and humus in mineral soil is less variable. Decomposition of the A 0 layer and humus is fastest for P. densiflora and slowest for P. sylvestris stands with P. radiata and P. elliottii intermediate. The decomposition rate is lower for the P. elliottii stand than for P. densiflora in spite of its higher temperatures and slightly higher precipitation. Seasonal changes in simulated soil carbon are observed only for the A 0 layer at the P. densiflora site. Simulated soil respiration rates vary seasonally in three stands (P. sylvestris, P. densiflora and P. radiata). In simulations for pine trees planted on bare soil, all soil organic matter fractions except the humus in mineral soil recover to half their asymptotic values within 30 to 40 years of planting for P. sylvestris and P. densiflora, compared with 10 to 20 years for P. radiata and P. elliottii. The simulated recovery of soil carbon following clear-cutting is fastest for the P. elliottii stand and slowest for P. sylvestris. Management of P. elliottii and P. radiata stands on 40-years rotations is sustainable because carbon removed through harvest is restored in the interval between successive clear-cuts. However p. densiflora and P. sylvestris stands may be unable to maintain soil carbon under such a short rotation. High growth rates of P. elliottii and p. radiata stands in spite of relatively poor soil conditions and slow carbon cycling may be related to the physiological responses of species to environmental conditions. (Abstract Truncated)

  3. Forest soil carbon is threatened by intensive biomass harvesting.

    Science.gov (United States)

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  4. Effects of soil development time and litter quality on soil carbon sequestration: Assessing soil carbon saturation with a field transplant experiment along a post-mining chronosequence

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan

    2017-01-01

    Roč. 28, č. 2 (2017), s. 664-672 ISSN 1085-3278 Institutional support: RVO:60077344 Keywords : soil organic matter fractions * carbon sequestration * carbon saturation * mining * reclamation Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 9.787, year: 2016

  5. Soil moisture effects on the carbon isotopic composition of soil respiration

    Science.gov (United States)

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  6. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  7. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    International Nuclear Information System (INIS)

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  8. Modeling soil organic carbon stocks and changes in Spain using the GEFSOC system

    Science.gov (United States)

    Álvaro-Fuentes, Jorge; Easter, Mark; Cantero-Martínez, Carlos; Paustian, Keith

    2010-05-01

    Currently, there is little information about soil organic carbon (SOC) stocks in Spain. To date the effects of land-use and soil management on SOC stocks in Spain have been evaluated in experimental fields under certain soil and climate conditions. However, these field experiments do not account for the spatial variability in management, cropping systems and soil and climate characteristics that exist in the whole territory. More realistic approaches like ecosystem-level dynamic simulation systems linked to geographic information systems (GIS) allow better assessments of SOC stocks at a regional or national level. The Global Environmental Facility Soil Organic Carbon (GEFSOC) system was recently built for this purpose (Milne et al., 2007) and it incorporates three widely used models for estimating SOC dynamics: (a) the Century ecosystem model; (b) the RothC soil C decomposition model; and (c) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. We modeled 9.5 Mha in northeast Spain using the GEFSOC system to predict SOC stocks and changes comprising: pasture, forest, cereal-fallow, cereal monoculture, orchards, rice, irrigated land and grapes and olives. The spatial distribution of the different land use categories and their change over time was obtained from the European Corine database and from Spanish census data on land use from 1926 to 2007. At the same time, current and historical management information was collected from different sources in order to have a fairly well picture of changes in land use and management for this area. Soil parameters needed by the system were obtained from the European soil map (1 km x 1 km) and climate data was produced by the Meteorology State Agency (Ministry of the Environment and Rural and Marine Environs of Spain). The SOC stocks simulated were validated with SOC values from the European SOC map and from other national studies. Modeled SOC results suggested that spatial

  9. Comparison between detailed digital and conventional soil maps of an area with complex geology

    Directory of Open Access Journals (Sweden)

    Osmar Bazaglia Filho

    2013-10-01

    Full Text Available Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000 of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs. For the Digital Soil Map (DSM, spectral data were extracted from Landsat 5 Thematic Mapper (TM imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS. To compare the conventional and digital (DSM soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.

  10. Carbon Storage in Soils: Climate vs. Geology

    International Nuclear Information System (INIS)

    Doetterl, Sebastian; Boeckx, Pascal; Stevens, Antoine; Van Oost, Kristof; Six, Johan; Merckx, Roel; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Zagal Venegas, Erick; Boudin, Mathieu

    2016-01-01

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO 2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  11. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  12. Reduced carbon sequestration potential of biochar in acidic soil.

    Science.gov (United States)

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Digital Mapping of Soil Drainage Classes Using Multitemporal RADARSAT-1 and ASTER Images and Soil Survey Data

    Directory of Open Access Journals (Sweden)

    Mohamed Abou Niang

    2012-01-01

    Full Text Available Discriminant analysis classification (DAC and decision tree classifiers (DTC were used for digital mapping of soil drainage in the Bras-d’Henri watershed (QC, Canada using earth observation data (RADARSAT-1 and ASTER and soil survey dataset. Firstly, a forward stepwise selection was applied to each land use type identified by ASTER image in order to derive an optimal subset of soil drainage class predictors. The classification models were then applied to these subsets for each land use and merged to obtain a digital soil drainage map for the whole watershed. The DTC method provided better classification accuracies (29 to 92% than the DAC method (33 to 79% according to the land use type. A similarity measure (S was used to compare the best digital soil drainage map (DTC to the conventional soil drainage map. Medium to high similarities (0.6≤S<0.9 were observed for 83% (187 km2 of the study area while 3% of the study area showed very good agreement (S≥0.9. Few soil polygons showed very weak similarities (S<0.3. This study demonstrates the efficiency of combining radar and optical remote sensing data with a representative soil dataset for producing digital maps of soil drainage.

  14. Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Peltre, Clément; Bruun, Sander; Du, Changwen

    2014-01-01

    ) degradability. The objective of this study was to assess the potential of FTIR-PAS for the characterisation of the labile fraction of SOC and more classical soil parameters, such as carbon and clay content, for a range of 36 soils collected from various field experiments in Denmark. Partial least squares (PLS...... signal. This also means that it should be advantageous for soil analysis because of its highly opaque nature. However, only a limited number of studies have so far applied FTIR-PAS to soil characterization and investigation is still required into its potential to determine soil organic carbon (SOC......) regression was used to correlate the collected FTIR-PAS spectra with the proportion of soil organic carbon mineralised after 238 days of incubation at 15°C and pF 2 (C238d) taken as an indicator of the labile fraction of SOC. Results showed that it is possible to predict total organic carbon content, total...

  15. Turning soil survey data into digital soil maps in the Energy Region Eger Research Model Area

    Science.gov (United States)

    Pásztor, László; Dobos, Anna; Kürti, Lívia; Takács, Katalin; Laborczi, Annamária

    2015-04-01

    Agria-Innoregion Knowledge Centre of the Eszterházy Károly College has carried out targeted basic researches in the field of renewable energy sources and climate change in the framework of TÁMOP-4.2.2.A-11/1/KONV project. The project has covered certain issues, which require the specific knowledge of the soil cover; for example: (i) investigation of quantitative and qualitative characteristics of natural and landscape resources; (ii) determination of local amount and characteristics of renewable energy sources; (iii) natural/environmental risk analysis by surveying the risk factors. The Energy Region Eger Research Model Area consists of 23 villages and is located in North-Hungary, at the Western part of Bükkalja. Bükkalja is a pediment surface with erosional valleys and dense river network. The diverse morphology of this area results diversity in soil types and soil properties as well. There was large-scale (1:10,000 and 1:25,000 scale) soil mappings in this area in the 1960's and 1970's which provided soil maps, but with reduced spatial coverage and not with fully functional thematics. To achive the recent tasks (like planning suitable/optimal land-use system, estimating biomass production and development of agricultural and ecomonic systems in terms of sustainable regional development) new survey was planned and carried out by the staff of the College. To map the soils in the study area 10 to 22 soil profiles were uncovered per settlement in 2013 and 2014. Field work was carried out according to the FAO Guidelines for Soil Description and WRB soil classification system was used for naming soils. According to the general goal of soil mapping the survey data had to be spatially extended to regionalize the collected thematic local knowledge related to soil cover. Firstly three thematic maps were compiled by digital soil mapping methods: thickness of topsoil, genetic soil type and rate of surface erosion. High resolution digital elevation model, Earth

  16. Digging Deep: how the convergence of national-scale and field-based soil core data shines a light on sustainability of wetland carbon sequestration

    Science.gov (United States)

    Windham-Myers, L.; Holmquist, J. R.; Sundquist, E. T.; Drexler, J. Z.; Bliss, N.

    2016-12-01

    Wetland soils have long been recognized as conditional archives of past environments, including vegetation structure, nutrient status, sediment supply and the variability in those factors. Both sedimentary processes and organic accretion processes form the soil matrix that identifies wetland soils as "hydric" while also providing archival insights. As repositories of information on net biogeochemical processes, their down-core and across-site structure can show both consistency and distinction. Through several related studies, we have been exploring the use of component-level U.S. Natural Resources Conservation Service (NRCS) Soil Survey data (SSURGO) to map carbon density to 1m depth across wetlands of the US, with an emphasis on coastal wetlands. To assess the accuracy of mapped carbon data from SSURGO, several field-generated datasets (public or compiled for the NASA-funded Blue Carbon Monitoring Project) have been extracted for key metrics such as dry bulk density (g/cc), organic carbon content (%C by combustion) and the combination, soil carbon density (g C /cc) with depth. These profiles indicate ecogeomorphic feedbacks of elevation, vegetation structure and biogeochemical processes through millennia, illustrating both resilience and shifts in behavior that constrain wetland extent as well as wetland function. National datasets such as SSURGO and validation datasets such as the EPA's National Wetland Condition Assessment (NWCA) and Louisiana's Coastwide Reference Monitoring System (CRMS) are publically available and have been underutilized for predicting and/or validating changes in wetland carbon dynamics. We have explored their use for interpretating and understanding changing carbon accretion rates, changing wetland extents through elevation gain or loss, and changing methane emissions. This talk will focus on insights for wetland carbon sequestration functions as determined by soil core structure, both for coastal settings and potentially for inland

  17. Bayesian Evaluation of Dynamical Soil Carbon Models Using Soil Carbon Flux Data

    Science.gov (United States)

    Xie, H. W.; Romero-Olivares, A.; Guindani, M.; Allison, S. D.

    2017-12-01

    2016 was Earth's hottest year in the modern temperature record and the third consecutive record-breaking year. As the planet continues to warm, temperature-induced changes in respiration rates of soil microbes could reduce the amount of carbon sequestered in the soil organic carbon (SOC) pool, one of the largest terrestrial stores of carbon. This would accelerate temperature increases. In order to predict the future size of the SOC pool, mathematical soil carbon models (SCMs) describing interactions between the biosphere and atmosphere are needed. SCMs must be validated before they can be chosen for predictive use. In this study, we check two SCMs called CON and AWB for consistency with observed data using Bayesian goodness of fit testing that can be used in the future to compare other models. We compare the fit of the models to longitudinal soil respiration data from a meta-analysis of soil heating experiments using a family of Bayesian goodness of fit metrics called information criteria (IC), including the Widely Applicable Information Criterion (WAIC), the Leave-One-Out Information Criterion (LOOIC), and the Log Pseudo Marginal Likelihood (LPML). These IC's take the entire posterior distribution into account, rather than just one outputted model fit line. A lower WAIC and LOOIC and larger LPML indicate a better fit. We compare AWB and CON with fixed steady state model pool sizes. At equivalent SOC, dissolved organic carbon, and microbial pool sizes, CON always outperforms AWB quantitatively by all three IC's used. AWB monotonically improves in fit as we reduce the SOC steady state pool size while fixing all other pool sizes, and the same is almost true for CON. The AWB model with the lowest SOC is the best performing AWB model, while the CON model with the second lowest SOC is the best performing model. We observe that AWB displays more changes in slope sign and qualitatively displays more adaptive dynamics, which prevents AWB from being fully ruled out for

  18. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the

  19. Uncertainty indication in soil function maps – transparent and easy-to-use information to support sustainable use of soil resources

    Directory of Open Access Journals (Sweden)

    L. Greiner

    2018-05-01

    Full Text Available Spatial information on soil function fulfillment (SFF is increasingly being used to inform decision-making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting biomass production based on soil properties. Such information must be reliable for informed and transparent decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by (1 indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM that are used for soil function assessment (SFA and (2 showing the response of different SFA methods to the propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20 × 20 m together with their uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable uncertainty indications in soil function maps are relevant to enable informed and transparent decisions on the sustainable use of soil

  20. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  1. Soil moisture effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Claire L. Phillips; Nick Nickerson; David Risk; Zachary E. Kayler; Chris Andersen; Alan Mix; Barbara J. Bond

    2010-01-01

    The carbon isotopic composition (δ13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the δ13C of soil respiration, which suggests indirectly that recently fixed photosynthates...

  2. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C J; Ilvesniemi, H; Liski, J; Mecke, M [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H; Helmisaari, H S; Pietikaeinen, J; Smolander, A [Finnish Forest Research Inst., Vantaa (Finland)

    1997-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  3. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  4. Constructing a Soil Class Map of Denmark based on the FAO Legend Using Digital Techniques

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Minasny, Budiman; Greve, Mette Balslev

    2014-01-01

    Soil mapping in Denmark has a long history and a series of soil maps based on conventional mapping approaches have been produced. In this study, a national soil map of Denmark was constructed based on the FAO–Unesco Revised Legend 1990 using digital soil mapping techniques, existing soil profile......) confirmed that the output is reliable and can be used in various soil and environmental studies without major difficulties. This study also verified the importance of GlobalSoilMap products and a priori pedological information that improved prediction performance and quality of the new FAO soil map...

  5. Rates of calcium carbonate removal from soils.

    NARCIS (Netherlands)

    Breemen, van N.; Protz, R.

    1988-01-01

    Mean annual rates of calcium carbonate removal from soils in a subarctic climate estimated from data on two chronosequences of calcareous storm ridges, appeared to be relatively constant through time. Concentrations of dissolved calcium carbonate in the soil solution in the study sites calculated

  6. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  7. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    DEFF Research Database (Denmark)

    Hansen, Veronika

    and pot and field experiments was used to study the effect of straw and wood biochar on carbon sequestration, soil quality and crop growth. Overall, the biochar amendment improved soil chemical and physical properties and plant growth and showed a potential for soil carbon sequestration without having any......New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...... have been raised about the potential negative impacts of incorporating bioenergy residuals (biochar) in soil and increasing the removal of crop residues such as straw, possibly reducing important soil functions and services for maintaining soil quality. Therefore, a combination of incubation studies...

  8. Towards integrated modelling of soil organic carbon cycling at landscape scale

    Science.gov (United States)

    Viaud, V.

    2009-04-01

    Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.

  9. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  10. Uncertainties and novel prospects in the study of the soil carbon dynamics

    International Nuclear Information System (INIS)

    Yang Wang; Yuch-Ping Hsieh

    2002-01-01

    Establishment of the Kyoto Protocol has resulted in an effort to look towards living biomass and soils for carbon sequestration. In order for carbon credits to be meaningful, sustained carbon sequestration for decades or longer is required. It has been speculated that improved land management could result in sequestration of a substantial amount of carbon in soils within several decades and therefore can be an important option in reducing atmospheric CO 2 concentration. However, evaluation of soil carbon sources and sinks is difficult because the dynamics of soil carbon storage and release is complex and still not well understood. There has been rapid development of quantitative techniques over the past two decades for measuring the component fluxes of the global carbon cycle and for studying the soil carbon cycle. Most significant development in the soil carbon cycle study is the application of accelerator mass spectrometry (AMS) in radiocarbon measurements. This has made it possible to unravel rates of carbon cycling in soils, by studying natural levels of radiocarbon in soil organic matter and soil CO 2 . Despite the advances in the study of the soil carbon cycle in the recent decades, tremendous uncertainties exist in the sizes and turnover times of soil carbon pools. The uncertainties result from lack of standard methods and incomplete understanding of soil organic carbon dynamics, compounded by natural variability in soil carbon and carbon isotopic content even within the same ecosystem. Many fundamental questions concerning the dynamics of the soil carbon cycle have yet to be answered. This paper reviews and synthesizes the isotopic approaches to the study of the soil carbon cycle. We will focus on uncertainties and limitations associated with these approaches and point out areas where more research is needed to improve our understanding of this important component of the global carbon cycle. (author)

  11. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta

    DEFF Research Database (Denmark)

    Siewert, Matthias Benjamin; Hugelius, Gustaf; Heim, Birgit

    2016-01-01

    To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50...... in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2 ± 2.0 kg C m− 2. Our...... results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m2 followed by the Holocene river terrace. The Pleistocene terrace affected...

  12. Spatial interpolation of soil organic carbon using apparent electrical conductivity as secondary information

    Science.gov (United States)

    Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.

    2009-04-01

    Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between

  13. An overview on the history of pedology and soil mapping in Italy

    Science.gov (United States)

    Calzolari, C.

    2012-04-01

    In Italy, the word pedology (pedologia) was introduced in a text book as synonym of soil science for the first time in 1904 by Vinassa de Regny. In the literature, the term cohabitates with the words agrology (agrologia), agro-geology (agro-geologia), agricultural geognostic (geognostica agraria), geopedology (geo-pedologia) used in different historical moments by differently rooted soil scientists. When early pedologists started with systematic studies of soils, their characteristics and geography, they were strongly influenced by their cultural background, mainly geology and agro-chemistry. Along the time, the soil concept evolved, as did the concept of pedology, and this is somehow witnessed by the use of different Italian words with reference to soil: suolo, terreno, terra. Differently from agro-chemists, early pedologists based the soil study on the field description of soil profile. This was firstly based on the vertical differentiation between humus rich layers and "inactive" layers and later on, as long as the discipline evolved, on the presence of genetic horizons. The first complete soil map of Italy is dated 1928. Its Author, the geologist De Angelis d'Ossat, was the president of the organising committee of the 1924 International Soil Conference of Rome, where the International Society of Soil Science was founded. The map was based on the geological map of Italy, drafted in scale 1:1,000,000 after the creation of the Kingdom of Italy in 1861. The internal disputes within the Geological Society, together with the scarce interest of most of geologists for soil, did not facilitate the birth of a central soil survey. Soil mapping was mainly conducted by universities and research institutes, and we had to wait until 1953 for a new soil map (scale 1:3,125,000) at national level to be realised by Paolo Principi, based on literature data. In 1966 a new 1:1,000,000 soil map of Italy was eventually published by a national committee, led by Fiorenzo Mancini. This

  14. Potential and limitations of using soil mapping information to understand landscape hydrology

    Directory of Open Access Journals (Sweden)

    F. Terribile

    2011-12-01

    Full Text Available This paper addresses the following points: how can whole soil data from normally available soil mapping databases (both conventional and those integrated by digital soil mapping procedures be usefully employed in hydrology? Answering this question requires a detailed knowledge of the quality and quantity of information embedded in and behind a soil map.

    To this end a description of the process of drafting soil maps was prepared (which is included in Appendix A of this paper. Then a detailed screening of content and availability of soil maps and database was performed, with the objective of an analytical evaluation of the potential and the limitations of soil data obtained through soil surveys and soil mapping. Then we reclassified the soil features according to their direct, indirect or low hydrologic relevance. During this phase, we also included information regarding whether this data was obtained by qualitative, semi-quantitative or quantitative methods. The analysis was performed according to two main points of concern: (i the hydrological interpretation of the soil data and (ii the quality of the estimate or measurement of the soil feature.

    The interaction between pedology and hydrology processes representation was developed through the following Italian case studies with different hydropedological inputs: (i comparative land evaluation models, by means of an exhaustive itinerary from simple to complex modelling applications depending on soil data availability, (ii mapping of soil hydrological behaviour for irrigation management at the district scale, where the main hydropedological input was the application of calibrated pedo-transfer functions and the Hydrological Function Unit concept, and (iii flood event simulation in an ungauged basin, with the functional aggregation of different soil units for a simplified soil pattern.

    In conclusion, we show that special care is required in handling data from soil

  15. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  16. Potential of EnMAP spaceborne imaging spectroscopy for the prediction of common surface soil properties and expected accuracy

    Science.gov (United States)

    Chabrillat, Sabine; Foerster, Saskia; Steinberg, Andreas; Stevens, Antoine; Segl, Karl

    2016-04-01

    algorithms are examined based on the analyses of chemical-physical features from the soil spectral reflectance and/or multivariate established techniques such as Partial-Least Squares PLS, Support-Vector Machine SVM, to determine common surface soil properties, in particular soil organic carbon (SOC), clay and iron oxide content. Results show that EnMAP is able to predict clay, free iron oxide, and SOC with an RV2 between 0.53 and 0.67 compared to airborne imagery with RV2 between 0.64 and 0.74. The correlation between EnMAP and airborne imagery prediction results is high (Pearson coefficients between 0.84 and 0.91). Furthermore, spatial distribution is coherent between the airborne mapping and simulated EnMAP mapping as shown with a spatial structure analysis. In general, this paper demonstrates the high potential of upcoming spaceborne hyperspectral missions for soil science studies but also shows the need for future adapted strategies to fulfill the entire potential of soil spectroscopy for orbital utilization.

  17. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  18. A semester-long soil mapping project for an undergraduate pedology course

    Science.gov (United States)

    Brown, David J.

    2015-04-01

    Most students taking a pedology course will never work as soil mappers. But many will use soil maps at some point in their careers. At Montana State University, students spent 3 "lab" hours a week, complementing two lectures a week, in the field learning how to study soils literally from the ground up. The only prerequisites for enrollment were completion of an introductory soil science class and 3rd year standing at the university. The area to be mapped, just a km from campus, included a steep mountain backslope, and a complex footslope-toeslope area with diverse soils. Students were divided into teams of 3-4, with approximately 40 students altogether split over two sections that overlapped in the field by one hour. In the first lab session, groups completed a very basic description of just one soil profile. In subsequent weeks, they rotated through multiple pits excavated in a small area, and expanded their soil profile descriptions and interpretations. As students developed proficiency, they were assigned more dispersed locations to study, working for the most part independently as I hiked between pits. Throughout this process, every pit was geolocated using a GPS unit, and every profile description was copied and retained in a designated class file. Student groups delineated map units using stereo air photography, then used these delineations to guide the selection of their final locations to describe. At the end of the course, groups used all of the combined and georeferenced profile descriptions to construct a soil map of the study area complete with map unit descriptions. Most students struggled to make sense of the substantial variability within their map units, but through this struggle -- and their semester of field work -- they gained an appreciation for the value and limitations of a soil map that could not be obtained from even the most entertaining lecture. Both the class and particularly the field sessions received consistently high student reviews

  19. Soil mapping and processes modelling for sustainable land management: a review

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B

  20. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  1. Harmonisation of the soil map of Africa at the continental scale

    DEFF Research Database (Denmark)

    Dewitte, Olivier; Jones, Arwyn; Spaargaren, Otto

    2013-01-01

    In the context of major global environmental challenges such as food security, climate change, fresh water scarcity and biodiversity loss, the protection and the sustainable management of soil resources in Africa are of paramount importance. To raise the awareness of the general public...... with no information, soil patterns, river and drainage networks, and dynamic features such as sand dunes, water bodies and coastlines. In comparison to the initial map derived from HWSD, the new map represents a correction of 13% of the soil data for the continent. The map is available for downloading. (C) 2013......, stakeholders, policy makers and the science community to the importance of soil in Africa, the Joint Research Centre of the European Commission has produced the Soil Atlas of Africa. To that end, a new harmonised soil map at the continental scale has been produced. The steps of the construction of the new area...

  2. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  3. CRADA Carbon Sequestration in Soils and Commercial Products

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  4. Benchmarking the inelastic neutron scattering soil carbon method

    Science.gov (United States)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  5. The interaction between land use change, sediment fluxes and carbon dynamics: evaluating an integrated soil-landscape model at the millennial time-scale.

    Science.gov (United States)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle

    2015-04-01

    erosion and export rates, both modern and averaged over the last millennium, fall into the published range. Mean erosion rate over the last 1000 years equals 4.6 t/ha over the entire catchment while the export rate is 1.2 t/ha. (ii) Carbon content in the erosion areas is well predicted for lower soil layers (from 20 to 80 cm) where no significant differences were found between observational and modeled C content. There is though a significant difference for the top soil where modeled mean is 0.92% compared to the 0.8% in observations. (iii) erosion and deposition's spatial patterns are relatively well represented: correspondence between erosion areas as extracted from the digital soil map and modeled erosion maps higher for slightly truncated areas than in high truncation areas (55% of the modeled erosions pixels correspond to a non-depositional area compared to 37%). Correspondence between the model and the soil map increases with the total deposition ranging from 19% to 30% Yet, the model overestimated the carbon content in depositional areas, where statistical differences between observed and modeled carbon amount were found for each soil layers. This indicates that other factors, not accounted for by the model, influence carbon turnover for these sites. They may have a different dynamic than eroding places, cycling carbon faster or transferring it quicker to higher depth. Overall, the results indicates that the model performs relatively well in predicting sediment fluxes and carbon amount on long time scale during transient simulation. They underline the importance of developing an integrated approach to understand the dynamic and interactions at the landscape scale.

  6. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    DEFF Research Database (Denmark)

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...... the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977-2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new...

  7. Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum

    Science.gov (United States)

    Metzger, C. A.

    2013-12-01

    Paleosols, which record past climatic, biologic, and atmospheric conditions, can be used as a proxy to understand ancient terrestrial landscapes, paleoclimate, and paleoenvironment. In addition, the middle Miocene thermal maximum (~16 Ma) provides an ancient analog for understanding the effects of current and future climate change on soil and ecosystem regimes, as it contains records of shifts similar in magnitude to expected global climate change. The Miocene Soil Database (MSDB) combines new paleosol data from Australia and Argentina with existing and previously uncollated paleosol data from the literature and the Paleobiology Database. These data (n = 507) were then used to derive a paleogeographic map of climatically significant soil types zones during the Middle Miocene. The location of each diagnostic paleosol type (Aridisol, Alfisol, Mollisol, Histosol, Oxisol, and Ultisol) was plotted and compared with the extent of these soil types in the modern environment. The middle Miocene soil map highlights the extension of tropical soils (Oxisols, Ultisols), accompanied by thermophilic flora and fauna, into northern and southern mid-latitudes. Peats, lignites, and Histosols of wetlands were also more abundant at higher latitudes, especially in the northern hemisphere, during the middle Miocene. The paleosol changes reflect that the Middle Miocene was a peak of global soil productivity and carbon sequestration, with replacement of unproductive Aridisols and Gelisols with more productive Oxisols, Alfisols, Mollisols and Histosols. With expansion to include additional data such as soil texture, moisture, or vegetation type, the MSDB has the potential to provide an important dataset for computer models of Miocene climate shifts as well as future land use considerations of soils in times of global change.

  8. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced

  9. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Brinza, Loredana [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom); Schofield, Paul F. [Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Hodson, Mark E. [University of York, York YO10 5DD (United Kingdom); Weller, Sophie [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W., E-mail: fred.mosselmans@diamond.ac.uk [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom)

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  10. NACP MsTMIP: Unified North American Soil Map

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides soil maps for the United States (US) (including Alaska), Canada, Mexico, and a part of Guatemala. The map information content...

  11. A multi-layer box model of carbon dynamics in soil

    International Nuclear Information System (INIS)

    Kuc, T.

    2005-01-01

    A multi-layer box model (MLB) for quantification of carbon fluxes between soil and atmosphere has been developed. In the model, soil carbon reservoir is represented by two boxes: fast decomposition box (FDB) and slow decomposition box (SDB), characterised by substantially different turnover time (TT) of carbon compounds. Each box has an internal structure (sub-compartments) accounting for carbon deposited in consecutive time intervals. The rate of decomposition of carbon compounds in each sub-compartment is proportional to the carbon content. With the aid of the MLB model and the 14 C signature of carbon dioxide, the fluxes entering and leaving the boxes, turnover time of carbon in each box, and the ratio of mass of carbon in the slow and fast box (M s /M f ) were calculated. The MBL model yields the turnover time of carbon in the FDB (TT f ) ca. 14 for typical investigated soils of temperate climate ecosystems. The calculated contribution of the CO 2 flux originating from the slow box (F s ) to the total CO 2 flux into the atmosphere ranges from 12% to 22%. These values are in agreement with experimental observations at different locations. Assuming that the input flux of carbon (F i n) to the soil system is doubled within the period of 100 years, the soil buffering capacity for excess carbon predicted by the MLB model for typical soil parameters may vary in the range between 26% and 52%. The highest values are obtained for soils characterised by long TTf, and well developed old carbon pool. (author)

  12. Towards Soil and Sediment Inventories of Black Carbon

    Science.gov (United States)

    Masiello, C. A.

    2008-12-01

    A body of literature on black carbon (BC) concentrations in soils and sediments is rapidly accumulating, but as of yet, there are no global or regional inventories of BC in either reservoir. Soil and sediment BC inventories are badly needed for a range of fields. For example, in oceanography a global sediment BC inventory is crucial in understanding the role of biomass burning in the development of stable marine carbon reservoirs, including dissolved organic carbon and sedimentary organic carbon. Again in the marine environment, BC likely strongly impacts the fate and transport of anthropogenic pollutants: regional inventories of BC in sediments will help develop better environmental remediation strategies. In terrestrial systems well-constrained natural BC soil inventories would help refine ecological, agricultural, and soil biogeochemical studies. BC is highly sorptive of nutrients including nitrogen and phosphorous. The presence of BC in ecosystems almost certainly alters N and P cycling; however, without soil BC inventories, we cannot know where BC has a significant impact. BC's nutrient sorptivity and water-holding capacity make it an important component of agricultural soils, and some researchers have proposed artificially increasing soil BC inventories to improve soil fertility. Natural soil BC concentrations in some regions are quite high, but without a baseline inventory, it is challenging to predict when agricultural amendment will significantly exceed natural conditions. And finally, because BC is one of the most stable fractions of organic carbon in soils, understanding its concentration and regional distribution will help us track the dynamics of soil organic matter response to changing environmental conditions. Developing effective regional and global BC inventories is challenging both because of data sparsity and methodological intercomparison issues. In this presentation I will describe a roadmap to generating these valuable inventories.

  13. Laboratory-scale model of carbon dioxide deposition for soil stabilisation

    Directory of Open Access Journals (Sweden)

    Mohammad Hamed Fasihnikoutalab

    2016-04-01

    Full Text Available Olivine sand is a natural mineral, which, when added to soil, can improve the soil's mechanical properties while also sequester carbon dioxide (CO2 from the surrounding environment. The originality of this paper stems from the novel two-stage approach. In the first stage, natural carbonation of olivine and carbonation of olivine treated soil under different CO2 pressures and times were investigated. In this stage, the unconfined compression test was used as a tool to evaluate the strength performance. In the second stage, details of the installation and performance of carbonated olivine columns using a laboratory-scale model were investigated. In this respect, olivine was mixed with the natural soil using the auger and the columns were then carbonated with gaseous CO2. The unconfined compressive strengths of soil in the first stage increased by up to 120% compared to those of the natural untreated soil. The strength development was found to be proportional to the CO2 pressure and carbonation period. Microstructural analyses indicated the presence of magnesite on the surface of carbonated olivine-treated soil, demonstrating that modified physical properties provided a stronger and stiffer matrix. The performance of the carbonated olivine-soil columns, in terms of ultimate bearing capacity, showed that the carbonation procedure occurred rapidly and yielded a bearing capacity value of 120 kPa. Results of this study are of significance to the construction industry as the feasibility of carbonated olivine for strengthening and stabilizing soil is validated. Its applicability lies in a range of different geotechnical applications whilst also mitigates the global warming through the sequestration of CO2.

  14. NACP MsTMIP: Unified North American Soil Map

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides soil maps for the United States (US) (including Alaska), Canada, Mexico, and a part of Guatemala. The map information content includes maximum...

  15. A comparison between probability and information measures of uncertainty in a simulated soil map and the economic value of imperfect soil information.

    Science.gov (United States)

    Lark, R. Murray

    2014-05-01

    Conventionally the uncertainty of a conventional soil map has been expressed in terms of the mean purity of its map units: the probability that the soil profile class examined at a site would be found to correspond to the eponymous class of the simple map unit that is delineated there (Burrough et al, 1971). This measure of uncertainty has an intuitive meaning and is used for quality control in soil survey contracts (Western, 1978). However, it may be of limited value to the manager or policy maker who wants to decide whether the map provides a basis for decision making, and whether the cost of producing a better map would be justified. In this study I extend a published analysis of the economic implications of uncertainty in a soil map (Giasson et al., 2000). A decision analysis was developed to assess the economic value of imperfect soil map information for agricultural land use planning. Random error matrices for the soil map units were then generated, subject to constraints which ensure consistency with fixed frequencies of the different soil classes. For each error matrix the mean map unit purity was computed, and the value of the implied imperfect soil information was computed by the decision analysis. An alternative measure of the uncertainty in a soil map was considered. This is the mean soil map information which is the difference between the information content of a soil observation, at a random location in the region, and the information content of a soil observation given that the map unit is known. I examined the relationship between the value of imperfect soil information and the purity and information measures of map uncertainty. In both cases there was considerable variation in the economic value of possible maps with fixed values of the uncertainty measure. However, the correlation was somewhat stronger with the information measure, and there was a clear upper bound on the value of an imperfect soil map when the mean information takes some

  16. The role of soil quality maps in the reuse of lightly contaminated soil

    OpenAIRE

    Lamé, F.P.J.; Leenaers, H.; Zegwaard, J.

    2000-01-01

    In 1999 the Dutch government agreed on a new policy regarding the reuse of lightly contaminated soil. From now on, lightly contaminated soil may be reused under conditions of soil-quality management. The municipal authorities supervise the reuse under this new regime. Two basic criteria need to be met before reuse of lightly contaminated soil is allowed. Firstly, the quality of the soil has to be characterised on a soil quality map. Secondly, the soil that will be reused has to be of the same...

  17. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  18. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    Science.gov (United States)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  19. BOREAS TGB-12 Soil Carbon Data over the NSA

    Science.gov (United States)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Harden, Jennifer; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. TGB-12 data sets include soil properties at tower and selected auxiliary sites in the BOREAS NSA and data on the seasonal variations in the radiocarbon content of CO2 in the soil atmosphere at NSA tower sites. The sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of C in areas of moss regrowth could be determined. These data are used to calculate the inventory of C and N in moss and mineral soil layers at NSA sites and to determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data). This data set includes physical parameters needed to determine carbon and nitrogen inventory in soils. The data were collected discontinuously from August 1993 to July 1996. The data are stored in tabular ASCII files.

  20. The effect of soil fauna on carbon sequestration in soil

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Pižl, Václav; Kaneda, Satoshi; Šimek, Miloslav

    2008-01-01

    Roč. 10, - (2008) ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon sequestration * soil Subject RIV: EH - Ecology, Behaviour

  1. Combining hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia)

    Science.gov (United States)

    Lagacherie, Philippe; Sneep, Anne-Ruth; Gomez, Cécile

    2013-04-01

    Previous studies have demonstrated that Visible Near InfraRed (Vis-NIR) Hyperspectral imagery is a cost-efficient way for mapping soil properties at fine resolutions (~5m) over large areas. However, such mapping is only feasible for soil surface since the effective penetration depths of optical sensors do not exceed several millimetres. This study aimed to extend the use of Vis-NIR hyperspectral imagery to the mapping of subsurface properties at three intervals of depth (15-30 cm, 30-60 cm and 60-100 cm) as specified by the GlobalSoilMap project. To avoid additional data collection, our basic idea was to develop an original Digital Soil Mapping approach that combines the digital maps of surface soil properties obtained from Vis-NIR hyperspectral imagery with legacy soil profiles of the region and with easily available images of DEM-derived parameters. The study was conducted in a pedologically-contrasted 300km² cultivated area located in the Cap Bon region (Northern Tunisia). AISA-Dual Vis-NIR hyperspectral airborne data were acquired over the studied area with a fine spatial resolution (5 m) and fine spectral resolution (260 spectral bands from 450 to 2500nm). Vegetated surfaces were masked to conserve only bare soil surface which represented around 50% of the study area. Three soil surface properties (clay and sand contents, Cation Exchange Capacity) were successfully mapped over the bare soils, from these data using Partial Least Square Regression models (R2 > 0.7). We used as additional data a set of images of landscape covariates derived from a 30 meter DEM and a local database of 152 legacy soil profiles from which soil properties values at the required intervals of depths were computed using an equal-area-spline algorithm. Our Digital Soil Mapping approach followed two steps: i) the development of surface-subsurface functions - linear models and random forests - that estimates subsurface property values from surface ones and landscape covariates and that

  2. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    Science.gov (United States)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  3. Evaluation of urban soils. Subproject 4: Bonding of heavy metals in technological soils - mapping of urban soils for the city of Rostock. Final report

    International Nuclear Information System (INIS)

    Kretschmer, H.; Coburger, E.; Kahle, P.; Neumann, A.; Surkus, A.

    1995-01-01

    Within the framework of the project a conceptional soil map for the urban area of Rostock was drawn up. The starting point was formed by the collection and analysis of available information. The following maps were digitised with the help of the geographical information system Arc/Info: Soil estimation, middle scaled map of agricultural sites, geology, maps of bogs and forest sites, map of the bog-depth sourrounding the river Warnow by Geinitz from 1887. To characterise the influence by man information about impermeable covered areas, actual land use, thrown up areas and disposal sites as well as war-destroyed sites were digitally used. Till the beginning of this project no information about impermeable covered areas and about the actual land use were available. That's why these two maps were created within the framework of the project on the base of topographical maps, aerial photographs and results of on-site-captures. Afterwards the thematic layers were overlapped. The general conceptional map for the urban area of Rostock was created out of the three separate conceptional maps about groundwater-influence, natural soil inventory and man-influence. Soil societies were assigned to the units of this general conceptional map. At the end 35 units were given for Rostock. Detailed mappings were taken on areas of the following kinds of use: Living areas, city centre, gardens, parks, graveyards, industrial and military sites. 26 main profiles were described and soil-physically and soil-chemically examined. The total contents of the heavy metals Zn, Cu, Pb and Cd were determined for the horizons of the main profiles. The subproject of Rostock is also concerned with investigations on the heavy metals (hM) Cu, Pb, Cd, Zn and Ni in technological substrates (tS) from Kiel, Eckernfoerde, Halle and Rostock (11 main soil profiles). (orig./SR) [de

  4. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  5. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  6. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    Science.gov (United States)

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  7. Understanding on Soil Inorganic Carbon Transformation in North China

    Science.gov (United States)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    Soil total carbon balance in long-term fertilization field experiments in North China Plain. Four long-term fertilization experiments (20-30 years) were investigated on SOC in 40 cm, calcium carbonate and active carbonate (AC) in 180 or 100 cm soil profile, δ13C values of SOC and δ13C and δ18O values of carbonate in soil profile, particle distribution of SOC and SIC in main soil layers, and ratios of pedogenic carbonate (PC) in SIC and C3-SOC in SOC. The most important conclusion is that fertilization of more than 20 years can produce detectable impact on pool size, profile distribution, ratio of active component and PC of SIC, which make it clear that SIC pool must be considered in the proper evaluation of the response of soil carbon balance to human activities in arid and semi-arid region. Land use impact on soil total carbon pool in Inner Mongolia. With the data of the second survey of soils in Inner Mongolia and the 58 soil profile data from Wu-lan-cha-bu-meng and Xi-lin-hao-te, combining with the 13C and 18O techniques, SIC density and stock in Inner Mongolia is estimated. The main conclusion is that soils in inner Mongolia have the same level of SOC and SIC, with the density in 100cm pedons of 8.97 kg•m-2 and 8.61 kg•m-2, respectively. Meanwhile, the significantly positive relationship between SOC and SIC in A layer indicates co-sequestration of SOC and SIC exist. Evaluation of the methods for measuring CA enzyme activity in soil. In laboratory, method in literature to measure CA activity in soil sample was repeated, and found it was not valid indeed. The failure could not attribute to the disturbance of common ions like NO3-, SO42-, Ca2+, and Mg2+. The adsorption of CA to soil material was testified as the main reason for that failure. A series of extractants were tested but no one can extract the adsorbed CA and be used in measuring CA activity in soil sample. Carbonate transformation in field with straw returned and biochar added. In 2009, a field

  8. Studies on enhancing carbon sequestration in soils

    International Nuclear Information System (INIS)

    Marland, G.; Garten, C.T.; Post, W.M.; West, T.O.

    2004-01-01

    Studies of carbon and nitrogen dynamics in ecosystems are leading to an understanding of the factors and mechanisms that affect the inputs to and outputs from soils and how these might be manipulated to enhance C sequestration. Both the quantity and the quality of soil C inputs influence C storage and the potential for C sequestration. Changes in tillage intensity and crop rotations can also affect C sequestration by changing the soil physical and biological conditions and by changing the amounts and types of organic inputs to the soil. Analyses of changes in soil C and N balances are being supplemented with studies of the management practices needed to manage soil carbon and the implications for fossil-fuel use, emission of other greenhouse gases (such as N 2 O and CH 4 ), and impacts on agricultural productivity. The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE) was created in 1999 to perform fundamental research that will lead to methods to enhance C sequestration as one component of a C management strategy. Research to date at one member of this consortium, Oak Ridge National Laboratory, has focused on C sequestration in soils and we begin here to draw together some of the results

  9. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  10. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  11. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    Science.gov (United States)

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  12. The potential of UAS imagery for soil mapping at the agricultural plot scale

    Science.gov (United States)

    Gilliot, Jean-Marc; Michelin, Joël; Becu, Maxime; Cissé, Moustapha; Hadjar, Dalila; Vaudour, Emmanuelle

    2017-04-01

    Soil mapping is expensive and time consuming. Airborne and satellite remote sensing data have already been used to predict some soil properties but now Unmanned Aerial Systems (UAS) allow to do many images acquisitions in various field conditions in favour of developing methods for better prediction models construction. This study propose an operational method for spatial prediction of soil properties (organic carbon, clay) at the scale of the agricultural plot by using UAS imagery. An agricultural plot of 28 ha, located in the western region of Paris France, was studied from March to May 2016. An area of 3.6 ha was delimited within the plot and a total of 16 flights were completed. The UAS platforms used were the eBee fixed wing provided by Sensefly® flying at an altitude from 60m to 130m and the iris+ 3DR® Quadcopter (from 30m to 100m). Two multispectral visible near-infrared cameras were used: the AirInov® MultiSPEC 4C® and the Micasense® RedEdge®. 42 ground control points (GCP) were sampled within the 3.6 ha plot. A centimetric Trimble Geo 7x DGPS was used to determine precise GCP positions. On each GCP the soil horizons were described and the top soil were sampled for standard physico-chemical analysis. Ground spectral measurements with a Spectral Evolution® SR-3500 spectroradiometer were made synchronously with the drone flights. 22 additional GCP were placed around the 3.6 ha area in order to realize a precise georeferencing. The multispectral mosaics were calculated using the Agisoft Photoscan® software and all mapping processings were done with the ESRI ArcGIS® 10.3 software. The soil properties were estimated by partial least squares regression (PLSR) between the laboratory analyses and the multispectral information of the UAS images, with the PLS package of the R software. The objective was to establish a model that would achieve an acceptable prediction quality using minimum number of points. For this, we tested 5 models with a decreasing

  13. Weathering controls on mechanisms of carbon storage in grassland soils

    Science.gov (United States)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  14. Northern Circumpolar Soils Map, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of a circumpolar map of dominant soil characteristics, with a scale of 1:10,000,000, covering the United States, Canada, Greenland, Iceland,...

  15. Combining land use data acquired from Landsat with soil map data

    Science.gov (United States)

    Westin, F. C.; Brandner, T. M.

    1981-01-01

    A method currently used to derive agrophysical units (APUs), i.e., geographical areas having definable/comparable agronomic and physical parameters which reflect a range in agricultural use and management, is discussed with reference to results obtained for South Dakota and an area in China. The method consists of combining agricultural land use data acquired from Landsat with soil map data. The resulting map units are soil associations characterized by cropland use intensity, and they can be used to identify major cropland areas and to develop a rating reflecting the relative potential of the soils in the delineated area for crop production, as well as to update small-scale soil maps.

  16. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    Science.gov (United States)

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  17. Pasture Management Strategies for Sequestering Soil Carbon - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Franzluebbers, Alan J.

    2006-03-15

    Pasturelands account for 51 of the 212 Mha of privately held grazing land in the USA. Tall fescue is the most important cool-season perennial forage for many beef cattle producers in the humid region of the USA. A fungal endophyte, Neotyphodium coenophialum, infects the majority of tall fescue stands with a mutualistic association. Ergot alkaloids produced by the endophyte have negative impacts on cattle performance. However, there are indications that endophyte infection of tall fescue is a necessary component of productive and persistent pasture ecology. The objectives of this research were to characterize and quantify changes in soil organic carbon and associated soil properties under tall fescue pastures with and without endophyte infection of grass. Pastures with high endophyte infection had greater concentration of soil organic carbon, but lower concentration of biologically active soil carbon than pastures with low endophyte infection. A controlled experiment suggested that endophyte-infected leaf tissue may directly inhibit the activity of soil microorganisms. Carbon forms of soil organic matter were negatively affected and nitrogen forms were positively affected by endophyte addition to soil. The chemical compounds in endophyte-infected tall fescue (ergot alkaloids) that are responsible for animal health disorders were found in soil, suggesting that these chemicals might be persistent in the environment. Future research is needed to determine whether ergot alkaloids or some other chemicals are responsible for increases in soil organic matter. Scientists will be able to use this information to better understand the ecological impacts of animals grazing tall fescue, and possibly to identify and cultivate other similar associations for improving soil organic matter storage. Another experiment suggested that both dry matter production and soil microbial activity could be affected by the endophyte. Sampling of the cumulative effects of 20 years of tall fescue

  18. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    Science.gov (United States)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil. Our findings provide

  19. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.

    2015-01-01

    Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized...... to decompose soil organic matter. Our review highlights evidence demonstrating the potential for ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity...... and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model...

  20. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  1. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  2. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

    Science.gov (United States)

    Averill, Colin; Turner, Benjamin L; Finzi, Adrien C

    2014-01-23

    Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle.

  3. Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform

    DEFF Research Database (Denmark)

    Knadel, Maria; Thomsen, Anton Gårde; Schelde, Kirsten

    2015-01-01

    Soil organic carbon (SOC) is an important parameter in the climate change mitigation strategies and it is crucial for the function of ecosystems and agriculture. Particle size fractions affect strongly the physical and chemical properties of soil and thus also SOC. Conventional analyses of SOC...... predictive ability for SOC was obtained using a fusion of sensor data. The calibration models based on vis–NIR spectra and temperature resulted in RMSECV = 0.14% and R2 = 0.94 in Voulund1. In Voulund2, the combination of EC, temperature and spectral data generated a SOC model with RMSECV = 0.17% and R2 = 0...

  4. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Science.gov (United States)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  5. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    Science.gov (United States)

    M.P. Waldrop; K.P. Wickland; R. White; A.A. Berhe; J.W. Harden; V.E. Romanovsky

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial...

  6. Plant functional traits and soil carbon sequestration in contrasting biomes.

    NARCIS (Netherlands)

    De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D.

    2008-01-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its

  7. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    Science.gov (United States)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  8. Quantitative Estimation of Soil Carbon Sequestration in Three Land Use Types (Orchard, Paddy Rice and Forest in a Part of Ramsar Lands, Northern Iran

    Directory of Open Access Journals (Sweden)

    zakieh pahlavan yali

    2017-02-01

    Full Text Available Introduction: The increasing Greenhouse Gases in atmosphere is the main cause of climate and ecosystems changes. The most important greenhouse gas is CO2 that causes global warming or the greenhouse effect. One of the known solutions that reduces atmospheric carbon and helps to improve the situation, is carbon sequestration in vegetation cover and soil. Carbon sequestration refers to the change in atmospheric CO2 into organic carbon compounds by plants and capture it for a certain time . However, the ecosystems with different vegetation have Impressive Influence on soil carbon sequestration (SCS. Soil as the main component of these ecosystems is a world-wide indicator which has been known to play an important role in global balance of carbon sequestration. Furthermore, carbon sequestration can be a standard world trade and becomes guaranteed. Costs of transfer of CO2 (carbon transfer From the atmosphere into the soil based on the negative effects of increased CO2 on Weather is always increasing, This issue can be faced by developing countries to create a new industry, especially when conservation and restoration of rangeland to follow. This research was regarded due to estimation of SCS in three land use types (orchard, paddy rice and forest in a Part of Ramsar Lands, Northern Iran. Materials and Methods: Ramsar city with an area of about 729/7 km2 is located in the western part of Mazandaran province. Its height above sea level is 20 meters. Ramsar city is situated in a temperate and humid climate. Land area covered by forest, orchard and paddy rice. After field inspection of the area, detailed topographic maps of the specified zone on the study were also tested. In each of the three land types, 500 hectares in the every growing and totally 1,500 hectares as study area were selected .For evaluation the sequestration of carbon in different vegetation systems,15 soil profile selected and sampling from depth of 0 to 100 centimetres of each profile

  9. Soil mapping and modelling for evaluation of the effects of historical and present-day soil erosion

    Science.gov (United States)

    Smetanova, Anna; Szwarczewski, Piotr

    2016-04-01

    The loess hilly lands in Danube Lowland are characterized by patchy soil-scape. The soil erosion processes uncover the subsurface, bright loess horizon, while non-eroded and colluvial soils are of the dark colour, in the chernozem area. With the modernisation of agriculture since the 1950's and in the process of collectivization, when small fields were merged into bigger, the soil degradation progressed. However, the analysis of historical sources and sediment archives showed the proofs of historical soil erosion. The objective of this study is to map the soil erosion patterns in connection of both pre- and post-collectivization landscape and to understand the accordingly developed soil erosion patterns. The combined methods of soil mapping and soil erosion modelling were applied in the part of the Trnavska pahorkatina Hilly Land in Danube Lowland. The detailed soil mapping in a zero-order catchment (0.28 km²) uncovered the removal of surface soil horizon of 0.6m or more, while the colluvial soils were about 1.1m deep. The soil properties and dating helped to describe the original soil profile in the valley bottom, and reconstruct the history of soil erosion in the catchment. The soil erosion model was applied using the reconstructed land use patterns in order to understand the effect of recent and historical soil erosion in the lowland landscape. This work was supported by the Slovak Research and Development Agency under the contract ESF-EC-0006-07 and APVV-0625-11; Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196).

  10. Old-growth forests can accumulate carbon in soils

    Science.gov (United States)

    Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.

    2006-01-01

    Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.

  11. Detailed predictive mapping of acid sulfate soil occurrence using electromagnetic induction data

    DEFF Research Database (Denmark)

    Beucher, Amélie; Boman, A; Mattbäck, S

    impact through the resulting corrosion of concrete and steel infrastructures, or their poor geotechnical qualities. Therefore, mapping acid sulfate soil occurrence constitutes a key step to target the strategic areas for subsequent environmental risk management and mitigation. Conventional mapping (i...... obtained from a EM38 proximal sensor enabled the refined mapping of acid sulfate soils over a field (Huang et al. 2014). The present study aims at developing an efficient and reliable method for the detailed predictive mapping of acid sulfate soil occurrence in a field located in western Finland. Different...

  12. Soil erodibility mapping using three approaches in the Tangiers province –Northern Morocco

    Directory of Open Access Journals (Sweden)

    Hamza Iaaich

    2016-09-01

    Full Text Available Soil erodibility is a key factor in assessing soil loss rates. In fact, soil loss is the most occurring land degradation form in Morocco, affecting rural and urban vulnerable areas. This work deals with large scale mapping of soil erodibility using three mapping approaches: (i the CORINE approach developed for Europe by the JRC; (ii the UNEP/FAO approach developed within the frame of the United Nations Environmental Program for the Mediterranean area; (iii the Universal Soil Loss Equation (USLE K factor. Our study zone is the province of Tangiers, North-West of Morocco. For each approach, we mapped and analyzed different erodibility factors in terms of parent material, topography and soil attributes. The thematic maps were then integrated using a Geographic Information System to elaborate a soil erodibility map for each of the three approaches. Finally, the validity of each approach was checked in the field, focusing on highly eroded areas, by confronting the estimated soil erodibility and the erosion state as observed in the field. We used three statistical indicators for validation: overall accuracy, weighted Kappa factor and omission/commission errors. We found that the UNEP/FAO approach, based principally on lithofacies and topography as mapping inputs, is the most adapted for the case of our study zone, followed by the CORINE approach. The USLE K factor underestimated the soil erodibility, especially for highly eroded areas.

  13. Predictive mapping of the acidifying potential for acid sulfate soils

    DEFF Research Database (Denmark)

    Boman, A; Beucher, Amélie; Mattbäck, S

    Developing methods for the predictive mapping of the potential environmental impact from acid sulfate soils is important because recent studies (e.g. Mattbäck et al., under revision) have shown that the environmental hazards (e.g. leaching of acidity) related to acid sulfate soils vary depending...... on their texture (clay, silt, sand etc.). Moreover, acidity correlates, not only with the sulfur content, but also with the electrical conductivity (EC) measured after incubation. Electromagnetic induction (EMI) data collected from an EM38 proximal sensor also enabled the detailed mapping of acid sulfate soils...... over a field (Huang et al., 2014).This study aims at assessing the use of EMI data for the predictive mapping of the acidifying potential in an acid sulfate soil area in western Finland. Different supervised classification modelling techniques, such as Artificial Neural Networks (Beucher et al., 2015...

  14. Principles of soil mapping of a megalopolis with St. Petersburg as an example

    Science.gov (United States)

    Aparin, B. F.; Sukhacheva, E. Yu.

    2014-07-01

    For the first time, a soil map of St. Petersburg has been developed on a scale of 1 : 50000 using MicroStation V8i software. The legend to this map contains more than 60 mapping units. The classification of urban soils and information on the soil cover patterns are principally new elements of this legend. New concepts of the urbanized soil space and urbopedocombinations have been suggested for soil mapping of urban territories. The typification of urbopedocombinations in St. Petersburg has been performed on the basis of data on the geometry and composition of the polygons of soils and nonsoil formations. The ratio between the areas of soils and nonsoil formations and their spatial distribution patterns have been used to distinguish between six types of the urbanized soil space. The principles of classification of the soils of urban territories have been specified, and a separate order of pedo-allochthonous soils has been suggested for inclusion into the Classification and Diagnostic System of Russian Soils (2004). Six types of pedo-allochthonous soils have been distinguished on the basis of data on their humus and organic horizons and the character of the underlying mineral substrate.

  15. The Use of Electromagnetic Induction Techniques for Soil Mapping

    Science.gov (United States)

    Brevik, Eric C.; Doolittle, Jim

    2015-04-01

    Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.

  16. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  17. Soil Carbon Stock and Particle Size Fractions in the Central Amazon Predicted from Remotely Sensed Relief, Multispectral and Radar Data

    Directory of Open Access Journals (Sweden)

    Marcos B. Ceddia

    2017-02-01

    Full Text Available Soils from the remote areas of the Amazon Rainforest in Brazil are poorly mapped due to the presence of dense forest and lack of access routes. The use of covariates derived from multispectral and radar remote sensors allows mapping large areas and has the potential to improve the accuracy of soil attribute maps. The objectives of this study were to: (a evaluate the addition of relief, and vegetation covariates derived from multispectral images with distinct spatial and spectral resolutions (Landsat 8 and RapidEye and L-band radar (ALOS PALSAR for the prediction of soil organic carbon stock (CS and particle size fractions; and (b evaluate the performance of four geostatistical methods to map these soil properties. Overall, the results show that, even under forest coverage, the Normalized Difference Vegetation Index (NDVI and ALOS PALSAR backscattering coefficient improved the accuracy of CS and subsurface clay content predictions. The NDVI derived from RapidEye sensor improved the prediction of CS using isotopic cokriging, while the NDVI derived from Landsat 8 and backscattering coefficient were selected to predict clay content at the subsurface using regression kriging (RK. The relative improvement of applying cokriging and RK over ordinary kriging were lower than 10%, indicating that further analyses are necessary to connect soil proxies (vegetation and relief types with soil attributes.

  18. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  19. Carbon stabilization mechanisms in soils in the Andes

    Science.gov (United States)

    Jansen, Boris; Cammeraat, Erik

    2015-04-01

    The volcanic ash soils of the Andes contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute significant potential sources or sinks of the greenhouse gas CO2. Climate and/or land use change potentially have a strong effect on these large SOM stocks. To clarify the role of chemical and physical stabilisation mechanisms in volcanic ash soils in the montane tropics, we investigated carbon stocks and stabilization mechanisms in the top- and subsoil along an altitudinal transect in the Ecuadorian Andes. The transect encompassed a sequence of paleosols under forest and grassland (páramo), including a site where vegetation cover changed in the last century. We applied selective extraction techniques, performed X-ray diffraction analyses of the clay fraction and estimated pore size distributions at various depths in the top- and subsoil along the transect. In addition, from several soils the molecular composition of SOM was further characterized with depth in the current soil as well as the entire first and the top of the second paleosol using GC/MS analyses of extractable lipids and Pyrolysis-GC/MS analyses of bulk organic matter. Our results show that organic carbon stocks in the mineral soil under forest a páramo vegetation were roughly twice as large as global averages for volcanic ash soils, regardless of whether the first 30cm, 100cm or 200cm were considered. We found the carbon stabilization mechanisms involved to be: i) direct stabilization of SOM in organo-metallic (Al-OM) complexes; ii) indirect protection of SOM through low soil pH and toxic levels of Al; and iii) physical protection of SOM due to a very high microporosity of the soil (Tonneijck et al., 2010; Jansen et al. 2011). When examining the organic carbon at a molecular level, interestingly we found extensive degradation of lignin in the topsoil while extractable lipids were preferentially preserved in the subsoil (Nierop and Jansen, 2009). Both vegetation

  20. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  1. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  2. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na. We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring

  3. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  4. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    Science.gov (United States)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-01-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon−nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  5. Carbon cycling and gas exchange in soils

    International Nuclear Information System (INIS)

    Trumbore, S.E.

    1989-01-01

    This thesis summaries three independent projects, each of which describes a method which can be used to study the role of soils in regulating the atmospheric concentrations of CO 2 and other trace gases. The first chapter uses the distribution of natural and bomb produced radiocarbon in fractionated soil organic matter to quantify the turnover of carbon in soils. A comparison of 137 Cs and 14 C in the modern soil profiles indicates that carbon is transported vertically in the soil as dissolved organic material. The remainder of the work reported is concerned with the use of inert trace gases to explore the physical factors which control the seasonal to diel variability in the fluxes of CO 2 and other trace gases from soils. Chapter 2 introduces a method for measuring soil gas exchange rates in situ using sulfur hexafluoride as a purposeful tracer. The measurement method uses standard flux box technology, and includes simultaneous determination of the fluxes and soil atmosphere concentrations of CO 2 and CH 4 . In Chapter 3, the natural tracer 222 Rn is used as an inert analog for exchange both in the soils and forest canopy of the Amazon rain forest

  6. Dynamic replacement and loss of soil carbon on eroding cropland

    Science.gov (United States)

    Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.

    1999-01-01

    Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.

  7. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.

    Science.gov (United States)

    McNally, Sam R; Beare, Mike H; Curtin, Denis; Meenken, Esther D; Kelliher, Francis M; Calvelo Pereira, Roberto; Shen, Qinhua; Baldock, Jeff

    2017-11-01

    Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non-Allophanic topsoils (0-15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non-Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long-term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g -1 ) was greater than that of non-Allophanic soils (16.3 mg C g -1 ). The saturation deficit of cropped soils was 1.14-1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha -1 (Ultic soils) to 42 t C ha -1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off-setting New Zealand's greenhouse gas emissions. As the first national-scale estimate of SOC sequestration potential that encompasses both Allophanic and non-Allophanic soils, this serves as an informative case study for the international

  8. Digital mapping of soil properties in Zala County, Hungary for the support of county-level spatial planning and land management

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Szatmári, Gábor; Fodor, Nándor; Bakacsi, Zsófia; Szabó, József; Illés, Gábor

    2014-05-01

    :100.000 Geological Map of Hungary and the map of groundwater depth were used as auxiliary environmental covariables. Various soil related information were mapped in three distinct sets: (i) basic soil properties determining agri-environmental conditions (soil type according to the Hungarian genetic classification, rootable depth, sand and clay content for the 1st and 2nd soil layers, pH, OM and carbonate content for the plough layer); (ii) biophysical criteria of natural handicaps defined by common European system and (iii) agro-meteorologically modelled yield values for different crops, meteorological and management scenarios. The applied method(s) for the spatial inference of specific themes was/were suitably selected: regression and classification trees for categorical data, indicator kriging for probabilistic management of criterion information; and typically regression kriging for quantitative data. Our paper will present the mapping processes themselves, the resulted maps and some conclusions drawn from the experiences. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and by the European Union with the co-financing of the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0013.).

  9. Accounting for Organic Carbon Change in Deep Soil Altered Carbon Sequestration Efficiency

    Science.gov (United States)

    Li, J.; Liang, F.; Xu, M.; Huang, S.

    2017-12-01

    Study on soil organic carbon (SOC) sequestration under fertilization practices in croplands lacks information of soil C change at depth lower than plow layer (i.e. 20 30-cm). By synthesizing long-term datasets of fertilization experiments in four typical Chinese croplands representing black soil at Gongzhuling(GZL), aquatic Chao soil at Zhengzhou(ZZ), red soil at Qiyang(QY) and purple soil at Chongqing(CQ) city, we calculated changes in SOC storage relative to initial condition (ΔSOC) in 0-20cm and 0-60cm, organic C inputs (OC) from the stubble, roots and manure amendment, and C sequestration efficiency (CSE: the ratio of ΔSOC over OC) in 0-20cm and 0-60cm. The fertilization treatments include cropping with no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed SOC storage generally decreased with soil depth (i.e. 0-20 > 20-40, 40-60 cm) and increased with fertilizations (i.e. initial fertilizations, soil at depth (>20cm) can act as important soil carbon sinks in intrinsically high fertility soils (i.e. black soil) but less likely at poor fertility soil (i.e. aquatic Chao soil). It thus informs the need to account for C change in deep soils for estimating soil C sequestration capacity particularly with indigenously fertile cropland soils.

  10. Afforestation effects on soil carbon

    DEFF Research Database (Denmark)

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...... Protocol. Despite research efforts on the quantification of SOC stock change and soil C fluxes following this land-use change, knowledge is still scarce in regions where afforestation currently is and has been widespread, like Denmark and the rest of Northern Europe. This PhD thesis explored three main...

  11. Soil Carbon in North American, Arctic, and Boreal Regions

    Science.gov (United States)

    Lajtha, K.; Bailey, V. L.; Schuur, E.; McGuire, D.; Romanovsky, V. E.

    2017-12-01

    Globally, soils contain more than 3 times as much as C as the atmosphere and >4 times more C than the world's biota, therefore even small changes in soil C stocks could lead to large changes in the atmospheric concentration of CO2. Since SOCCR-1, improvements have been made in quantifying stocks and uncertainties in stocks of soil C to a depth of 1 m across North America. Estimates for soil carbon stocks in the US (CONUS + Alaska) range from 151 - 162 Pg C, based on extensive sampling and analysis. Estimates for Canada average about 262 Pg C, but sampling is not as extensive. Soil C for Mexico is calculated as 18 Pg C, but there is a great deal of uncertainty surrounding this value. These soil carbon stocks are sensitive to agricultural management, land use and land cover change, and development and loss of C-rich soils such as wetlands. Climate change is a significant threat although may be partially mitigated by increased plant production. Carbon stored in permafrost zone circumpolar soils is equal to 1330-1580 Pg C, almost twice that contained in the atmosphere and about order of magnitude greater than carbon contained in plant biomass, woody debris, and litter in the boreal and tundra biomes combined. Surface air temperature change is amplified in high latitude regions such that Arctic temperature rise is about 2.5 times faster than for the globe as a whole, and thus 5 - 15% of this carbon is considered vulnerable to release to the atmosphere by the year 2100 following the current trajectory of global and Arctic warming. This amount is likely to be up to an order of magnitude larger loss than the increase in carbon stored in plant biomass under the same changing conditions. Models of soil organic matter dynamics have been greatly improved in the last decade by including greater process-level understanding of factors that affect soil C stabilization and destabilization, yet structural features of many models are still limited in representing Arctic and boreal

  12. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  13. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  14. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    Science.gov (United States)

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.

  15. Distinguishing "new" from "old" carbon in post mining soils

    Science.gov (United States)

    Vindušková, Olga; Frouz, Jan

    2014-05-01

    Introduction Soils developing on heaped overburden after open pit coal mining near Sokolov, Czech Republic, provide an exceptional opportunity to study sites of different ages (0-70 years) developing on similar substrate under relatively well-known conditions. Soil organic carbon (SOC) is an useful indicator of soil quality and represents an important global carbon pool. Post-mining soils would be a perfect model for long-term study of carbon dynamics. Unfortunately, quantifying SOC in Sokolov post-mining soils is quite complicated, since conventional quantification methods cannot distinguish between SOC derived from plant residues and fossil organic carbon derived from coal and kerogen present in the overburden. Moreover, also inorganic carbon may sometimes bias SOC quantification. Up to now, the only way to directly estimate recently derived SOC in these soils is radiocarbon dating (Rumpel et al. 1999; Karu et al. 2009). However, this method is costly and thus cannot be used routinely. The aim of our study is to find an accessible method to quantify recently derived SOC. We would highly appreciate ideas of other soil scientists, organic geochemists and sedimentologists on how to solve this challenge. Methods and hypotheses A set of 14 soil samples were analysed by radiocarbon (14C-AMS) analysis, near-infrared spectroscopy (NIRS), 13C CPMAS NMR spectroscopy, Rock-Eval and XRD. For calibration of NIRS, also 125 artificial mixtures were produced by mixing different amounts of claystone, coal and partially decomposed litter. NIRS (1000-2500 nm) as well as younger mid-infrared spectroscopy has been widely applied to soils (Janik et al. 2007; Vasques et al. 2009; Michel et al. 2009). When combined with multivariate chemometric techniques, it can be used to predict concentration of different compounds. No study has yet focused on NIRS application to soils where fossil carbon is found in two chemically different forms - whereas coal is rather aromatic, kerogen in our

  16. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  17. Evolvement rules of basin flood risk under low-carbon mode. Part I: response of soil organic carbon to land use change and its influence on land use planning in the Haihe basin.

    Science.gov (United States)

    Li, Fawen; Wang, Liping; Zhao, Yong

    2017-08-01

    Soil organic carbon (SOC) plays an important role in the global carbon cycle. The aim of this study was to evaluate the response of SOC to land use change and its influence on land use planning in the Haihe basin, and provide planning land use pattern for basin flood risk assessment. Firstly, the areas of different land use types in 1980, 2008, and the planning year (2020) were counted by area statistics function of ArcGIS. Then, the transfer matrixes of land use were produced by spatial overlay analysis function. Lastly, based on the land use maps, soil type map and soil profile database, SOC storage of different land use types in three different periods were calculated. The results showed the patterns of land use have changed a lot from 1980 to 2008, among the 19,835 km 2 of grassland was transformed into forestland, which was the largest conversion landscape. And land use conversion brought the SOC storage changes. Total carbon source was 88.83 Tg, and total carbon sink was 85.49 Tg. So, the Haihe basin presented as a carbon source from 1980 to 2008. From 2008 to 2020, the changes of forestland and grassland are the biggest in Haihe basin, which cause the SOC pool change from a carbon source to a carbon sink. SOC storage will increase from 2420.5 Tg in 2008 to 2495.5 Tg in 2020. The changing trend is conducive to reducing atmospheric concentrations. Therefore, land use planning in Haihe basin is reasonable and can provide the underlying surface condition for flood risk assessment.

  18. How energetic and environmental constraints of microorganisms determine the carbon turnover in soils

    Science.gov (United States)

    Don, A.; Rödenbeck, C.; Gleixner, G.

    2012-04-01

    Microorganisms are the main catalysts driving carbon fluxes from soils. Traditional concepts of soil carbon stabilization failed to account for environmental and energy constraints of microorganisms. The distribution and density of organic carbon in the soil profile maybe a key factor determining the carbon stability and carbon flux. Decomposition is a two-step process following the Michaelis Menten kinetics: In a first step enzyme and substrate form a joint complex and then the decomposition reaction is catalyzed. Thus, biological decomposition relies on the encounter of substrate and the degradation catalyst, the microorganisms. Lower substrate concentration decreases the likelihood of an enzyme to hit a substrate molecule, to form an enzyme-substrate complex, and thus to catalyze the reaction. However, it was unproofen if this concept can be appliued to soils also. A long-term lab experiment revealed that the soil carbon turnover decreased with increasing carbon dilution due to mixture with soil minerals. The ability of microorganisms to move towards substrate in soils seems to be limited. To elucidate the effect of concentration-controlled carbon turnover, we devised the simple simulation model SCAMP based on the two-step kinetic with microorganism and carbon particles been simulated explicitly. The SCAMP model was able to simulate soil carbon profiles and age profiles in a realistic manner. The only carbon stabilization mechanism implemented in the model is the distribution of microorganisms and carbon particles in the soil and thus the availability of carbon for microorganism, which is especially important for subsoil carbon dynamics. The experiments and the model help to explain why large fractions of soil carbon have been stabilized for millennia and decoupled from the global carbon cycle.

  19. Soil fauna: key to new carbon models

    Science.gov (United States)

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  20. Soil carbon under perennial pastures; benchmarking the influence of pasture age and management

    Science.gov (United States)

    Orgill, Susan E.; Spoljaric, Nancy; Kelly, Georgina

    2015-07-01

    This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.

  1. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  2. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  3. Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion

    Directory of Open Access Journals (Sweden)

    Ling Lu

    2017-07-01

    Full Text Available Mapping soil texture in a river basin is critically important for eco-hydrological studies and water resource management at the watershed scale. However, due to the scarcity of in situ observation of soil texture, it is very difficult to map the soil texture in high resolution using traditional methods. Here, we used an integrated method based on fuzzy logic theory and data fusion to map the soil texture in the Heihe River basin in an arid region of Northwest China, by combining in situ soil texture measurement data, environmental factors, a previous soil texture map, and other thematic maps. Considering the different landscape characteristics over the whole Heihe River basin, different mapping schemes have been used to extract the soil texture in the upstream, middle, and downstream areas of the Heihe River basin, respectively. The validation results indicate that the soil texture map achieved an accuracy of 69% for test data from the midstream area of the Heihe River basin, which represents a much higher accuracy than that of another existing soil map in the Heihe River basin. In addition, compared with the time-consuming and expensive traditional soil mapping method, this new method could ensure greater efficiency and a better representation of the explicitly spatial distribution of soil texture and can, therefore, satisfy the requirements of regional modeling.

  4. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...... solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems....

  5. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  6. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  7. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  8. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Science.gov (United States)

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  9. Distribution of ancient carbon in buried soils in an eroding loess landscape

    Science.gov (United States)

    Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.

    2017-12-01

    Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.

  10. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Climate change affects carbon allocation to the soil in shrublands

    DEFF Research Database (Denmark)

    Gorissen, A.; Tietema, A.; Joosten, N.N.

    2004-01-01

    , resulting from imposed manipulations, on carbon dynamics in shrubland ecosystems was examined. We performed a C-14-labeling experiment to probe changes in net carbon uptake and allocation to the roots and soil compartments as affected by a higher temperature during, the year and a drought period...... than or equal to 0.10. Drought clearly reduced carbon flow from the roots to the soil compartments. The fraction of the C-14 fixed by the plants and allocated into the soluble carbon fraction in the soil and to soil microbial biomass in Denmark and the UK decreased by more than 60%. The effects......Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes...

  12. Soil-Carbon Measurement System Based on Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Orion, I.; Wielopolski, L.

    2002-01-01

    Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements

  13. Soil mapping and process modeling for sustainable land use management: a brief historical review

    Science.gov (United States)

    Brevik, Eric C.; Pereira, Paulo; Muñoz-Rojas, Miriam; Miller, Bradley A.; Cerdà, Artemi; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2017-04-01

    Basic soil management goes back to the earliest days of agricultural practices, approximately 9,000 BCE. Through time humans developed soil management techniques of ever increasing complexity, including plows, contour tillage, terracing, and irrigation. Spatial soil patterns were being recognized as early as 3,000 BCE, but the first soil maps didn't appear until the 1700s and the first soil models finally arrived in the 1880s (Brevik et al., in press). The beginning of the 20th century saw an increase in standardization in many soil science methods and wide-spread soil mapping in many parts of the world, particularly in developed countries. However, the classification systems used, mapping scale, and national coverage varied considerably from country to country. Major advances were made in pedologic modeling starting in the 1940s, and in erosion modeling starting in the 1950s. In the 1970s and 1980s advances in computing power, remote and proximal sensing, geographic information systems (GIS), global positioning systems (GPS), and statistics and spatial statistics among other numerical techniques significantly enhanced our ability to map and model soils (Brevik et al., 2016). These types of advances positioned soil science to make meaningful contributions to sustainable land use management as we moved into the 21st century. References Brevik, E., Pereira, P., Muñoz-Rojas, M., Miller, B., Cerda, A., Parras-Alcantara, L., Lozano-Garcia, B. Historical perspectives on soil mapping and process modelling for sustainable land use management. In: Pereira, P., Brevik, E., Muñoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (In press). Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. 2016. Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274.

  14. Semi-automated landform classification for hazard mapping of soil liquefaction by earthquake

    Science.gov (United States)

    Nakano, Takayuki

    2018-05-01

    Soil liquefaction damages were caused by huge earthquake in Japan, and the similar damages are concerned in near future huge earthquake. On the other hand, a preparation of soil liquefaction risk map (soil liquefaction hazard map) is impeded by the difficulty of evaluation of soil liquefaction risk. Generally, relative soil liquefaction risk should be able to be evaluated from landform classification data by using experimental rule based on the relationship between extent of soil liquefaction damage and landform classification items associated with past earthquake. Therefore, I rearranged the relationship between landform classification items and soil liquefaction risk intelligibly in order to enable the evaluation of soil liquefaction risk based on landform classification data appropriately and efficiently. And I developed a new method of generating landform classification data of 50-m grid size from existing landform classification data of 250-m grid size by using digital elevation model (DEM) data and multi-band satellite image data in order to evaluate soil liquefaction risk in detail spatially. It is expected that the products of this study contribute to efficient producing of soil liquefaction hazard map by local government.

  15. Binational digital soils map of the Ambos Nogales watershed, southern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Norman, Laura

    2004-01-01

    We have prepared a digital map of soil parameters for the international Ambos Nogales watershed to use as input for selected soils-erosion models. The Ambos Nogales watershed in southern Arizona and northern Sonora, Mexico, contains the Nogales wash, a tributary of the Upper Santa Cruz River. The watershed covers an area of 235 km2, just under half of which is in Mexico. Preliminary investigations of potential erosion revealed a discrepancy in soils data and mapping across the United States-Mexican border due to issues including different mapping resolutions, incompatible formatting, and varying nomenclature and classification systems. To prepare a digital soils map appropriate for input to a soils-erosion model, the historical analog soils maps for Nogales, Ariz., were scanned and merged with the larger-scale digital soils data available for Nogales, Sonora, Mexico using a geographic information system.

  16. Digital Soil Mapping – A platform for enhancing soil learning.

    Science.gov (United States)

    The expansion of digital infrastructure and tools has generated massive data and information as well as a need for reliable processing and accurate interpretations. Digital Soil Mapping is no exception in that it has provided opportunities for professionals and the public to interact at field and tr...

  17. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  18. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    International Nuclear Information System (INIS)

    Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M.

    2010-01-01

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO 3 ) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  19. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches

    International Nuclear Information System (INIS)

    Asner, Gregory P

    2009-01-01

    Large-scale carbon mapping is needed to support the UNFCCC program to reduce deforestation and forest degradation (REDD). Managers of forested land can potentially increase their carbon credits via detailed monitoring of forest cover, loss and gain (hectares), and periodic estimates of changes in forest carbon density (tons ha -1 ). Satellites provide an opportunity to monitor changes in forest carbon caused by deforestation and degradation, but only after initial carbon densities have been assessed. New airborne approaches, especially light detection and ranging (LiDAR), provide a means to estimate forest carbon density over large areas, which greatly assists in the development of practical baselines. Here I present an integrated satellite-airborne mapping approach that supports high-resolution carbon stock assessment and monitoring in tropical forest regions. The approach yields a spatially resolved, regional state-of-the-forest carbon baseline, followed by high-resolution monitoring of forest cover and disturbance to estimate carbon emissions. Rapid advances and decreasing costs in the satellite and airborne mapping sectors are already making high-resolution carbon stock and emissions assessments viable anywhere in the world.

  20. MAPPING OF SOIL DEGRADATION POTENCY IN PADDY FIELD WONOGIRI, INDONESIA

    Directory of Open Access Journals (Sweden)

    Mujiyo

    2016-06-01

    Full Text Available Sustainability of paddy field becomes the main concern as the media of biomass production, thus it is needed a datum and information about land characteristics to find out its degradation. Mapping of soil degradation potency in paddy field is an identification of initial soil condition to discover the land degradation potency. Mapping was done by overlaying map of soil, slope, rainfall and land use with standard procedures to obtain its value and status of soil degradation potency. Area mapping is an effective land for biomass production (natural forest, mixed farm, savanna, paddy field, shrub and dry field with approximately 43,291.00 hectares (ha in Sidoharjo, Girimarto, Jatipurno, Jatisrono, Jatiroto, Tirtomoyo, Nguntoronadi and Ngadirojo District. The result shows that soil degradation potency (SDP in Districts of Sidoharjo, Girimarto, Jatipurno, Jatisrono, Jatiroto, Tirtomoyo, Nguntoronadi and Ngadirojo are very low, low (DP II 20,702.47 ha (47.82%, moderate (DP III 15,823.80 ha (36,55% and high (DP IV 6,764.73 ha (15.63%. Paddy field covered 22,036.26 ha or about 50.90% of all area as effective biomass production, its SDP considers as low (DP II 16,021.04 ha (37.01% and moderate (DP III 6,015.22 ha (13,89%. Paddy field has a low SDP because it is commonly lies on flat area and conservation method by the farmer is maintaining the paddy bund and terrace. This study needs an advanced study to identify actual SDP through detail verification in the field, and also support by soil sample analysis in the laboratory.

  1. Effect of home construction on soil carbon storage-A chronosequence case study

    International Nuclear Information System (INIS)

    Majidzadeh, Hamed; Lockaby, B. Graeme; Governo, Robin

    2017-01-01

    Urbanization results in the rapid expansion of impervious surfaces, therefore a better understanding of biogeochemical consequences of soil sealing is crucial. Previous research documents a significant reduction in soil carbon and nitrogen content, however, it is unclear if this decrease is a result of top soil removal or long-term soil sealing. In this study, soil biogeochemical properties were quantified beneath homes built on a crawl space at two depths (0–10 cm, and 10–20 cm). All homes, 11–114 years in age, were sampled in the Piedmont region of Alabama and Georgia, USA. This age range enabled the use of a chronosequence approach to estimate carbon loss or gain under the sampled homes. The difference in soil carbon content beneath homes and adjoining urban lawns showed a quadratic relation with age. Maximum C loss occurred at approximately fifty years. The same pattern was observed for MBC: C ratio suggesting that the soil carbon content was decreasing beneath the homes for first fifty years, then increased afterward. The average soil C and N content in the top 10 cm were respectively 61.86% (±4.42%), and 65.77% (±5.65%) lower underneath the homes in comparison to urban lawns. Microbial biomass carbon (MBC), and nitrogen (MBN) were significantly lower below the homes compared to the urban lawns, while bulk density and phosphorus content were higher beneath the homes. - Highlights: • The average soil carbon and nitrogen content decreased by 61.86 %, and 65.77 % underneath the homes in top 10 cm. • Soils beneath the homes are a source of carbon loss for approximately first fifty years. • After age fifty carbon sequestration becomes the dominant process underneath the homes. • Top soil removal and initial disturbance account for a major portion of carbon loss beneath the impervious surfaces. • Average microbial biomass carbon and nitrogen in top 10 cm decreased 65.14 % and 80.51 % respectively beneath the homes. - Soil carbon content in top

  2. Stable isotopic constraints on global soil organic carbon turnover

    Science.gov (United States)

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  3. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Directory of Open Access Journals (Sweden)

    Anahid Salmanpour

    2017-02-01

    Full Text Available Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality. The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran. Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil

  4. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  5. Use of Carbon Isotopic Tracers in Investigating Soil Carbon Sequestration and Stabilization in Agroecosystems

    International Nuclear Information System (INIS)

    2017-09-01

    The global surface temperatures have been reported to increase at an average rate of 0.06 C (0.11 F) per decade. This observed climate change known as the greenhouse effect is attributed to the emission of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere, resulting in trapping the heat near the earth’s surface causing global warming. World soils are the largest reservoir of terrestrial carbon and that soils are a source or sink of GHGs depending on land use management. Recognizing the urgent need to address the soil organic matter constraints for a sustainable agricultural production to ensure food security, this publication provides an integrated view on conventional and isotopic methods of measuring and modelling soil carbon dynamics, and the use nuclear and radioisotope tracer techniques in in-situ glasshouse and field labelling techniques to assess soil organic matter turnover and sequestration.

  6. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  7. Effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  8. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J. [University of California Riverside, Riverside, CA (United States). Dept. of Environmental Science

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  9. Variability of apparently homogeneous soilscapes in São Paulo state, Brazil: II. quality of soil maps

    Directory of Open Access Journals (Sweden)

    M. van Den Berg

    2000-06-01

    Full Text Available The quality of semi-detailed (scale 1:100.000 soil maps and the utility of a taxonomically based legend were assessed by studying 33 apparently homogeneous fields with strongly weathered soils in two regions in São Paulo State: Araras and Assis. An independent data set of 395 auger sites was used to determine purity of soil mapping units and analysis of variance within and between mapping units and soil classification units. Twenty three soil profiles were studied in detail. The studied soil maps have a high purity for some legend criteria, such as B horizon type (> 90% and soil texture class (> 80%. The purity for the "trophic character" (eutrophic, dystrophic, allic was only 55% in Assis. It was 88% in Araras, where many soil units had been mapped as associations. In both regions, the base status of clay-textured soils was generally better than suggested by the maps. Analysis of variance showed that mapping was successful for "durable" soil characteristics such as clay content (> 80% of variance explained and cation exchange capacity (≥ 50% of variance explained of 0-20 and 60-80 cm layers. For soil characteristics that are easily modified by management, such as base saturation of the 0-20 cm layer, the maps had explained very little ( 100 m; (b taking advantage of correlations between easily measured soil characteristics and chemical soil properties and, (c unbending the link between legend criteria and a taxonomic system. The maps are well suited to obtain an impression of land suitability for high-input farming. Additional field work and data on former land use/management are necessary for the evaluation of chemical properties of surface horizons.

  10. Detailed predictive mapping of acid sulfate soil occurrence using electromagnetic induction data

    DEFF Research Database (Denmark)

    Beucher, Amélie; Boman, A; Mattbäck, S

    impact through the resulting corrosion of concrete and steel infrastructures, or their poor geotechnical qualities.Mapping acid sulfate soil occurrence thus constitutes a key step to target the strategic areas for subsequent environmental risk management and mitigation. Conventional mapping (i.e. soil...

  11. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  12. A new look at soil phenoforms – Definition, identification, mapping

    NARCIS (Netherlands)

    Rossiter, David; Bouma, J.

    2018-01-01

    The soil genoform vs. soil phenoform distinction was suggested twenty years ago by Droogers and Bouma to recognize management-induced differences among pedons with the same long-term pedogenesis and included in the same soil map unit, these changes being sufficient to cause

  13. Proximal sensing for soil carbon accounting

    OpenAIRE

    England, Jacqueline R.; Viscarra Rossel, Raphael A.

    2018-01-01

    Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires...

  14. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    DEFF Research Database (Denmark)

    Weiss, Niels; Blok, Daan; Elberling, Bo

    2016-01-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends...

  15. Towards quantitative usage of EMI-data for Digital Soil Mapping

    Science.gov (United States)

    Nüsch, A.-K.; Wunderlich, T.; Kathage, S.; Werban, U.; Dietrich, P.

    2009-04-01

    As formulated in the Thematic Strategy for Soil Protection prepared by the European Commission soil degradation is a serious problem in Europe. The degradation is driven or exacerbated by human activity and has a direct impact on water and air quality, biodiversity, climate and human life-quality. High-resolution soil property maps are one major prerequisite for the specific protection of soil function and restoration of degraded soils as well as sustainable land use, water and environmental management. However, the currently available techniques for (digital) soil mapping still have deficiencies in terms of reliability and precision, the feasibility of investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats at this scale. The focus of the iSOIL (Interactions between soil related science - Linking geophysics, soil science and digital soil mapping) project is on improving fast and reliable mapping of soil properties, soil functions and soil degradation threats. This requires the improvement as well as integration of geophysical and spectroscopic measurement techniques in combination with advanced soil sampling approaches, pedometrical and pedophysical approaches. Many commercially available geophysical sensors and equipment (EMI, DC, gamma-spectroscopy, magnetics) are ready to use for measurements of different parameters. Data collection with individual sensors is well developed and numerously described. However comparability of data of different sensor types as well as reproducibility of data is not self-evident. In particular handling of sensors has to be carried out accurately, e.g. consistent calibration. Soil parameters will be derived from geophysical properties to create comprehensive soil maps. Therefore one prerequisite is the comparison of different geophysical properties not only qualitative but also quantitative. At least reproducibility is one of the most important conditions for monitoring tasks. The

  16. The Effect of Soil Warming on Decomposition of Biochar, Wood, and Bulk Soil Organic Carbon in Contrasting Temperate and Tropical Soils

    Science.gov (United States)

    Torn, Margaret; Tas, Neslihan; Reichl, Ken; Castanha, Cristina; Fischer, Marc; Abiven, Samuel; Schmidt, Michael; Brodie, Eoin; Jansson, Janet

    2013-04-01

    Biochar and wood are known to decay at different rates in soil, but the longterm effect of char versus unaltered wood inputs on soil carbon dynamics may vary by soil ecosystem and by their sensitivity to warming. We conducted an incubation experiment to explore three questions: (1) How do decomposition rates of char and wood vary with soil type and depth? (2) How vulnerable to warming are these slowly decomposing inputs? And (3) Do char or wood additions increase loss of native soil organic carbon (priming)? Soils from a Mediterranean grassland (Hopland Experimental Research Station, California) and a moist tropical forest (Tabunoco Forest, Puerto Rico) were collected from two soil depths and incubated at ambient temperature (14°C, 20°C for Hopland and Tabonuco respectively) and ambient +6°C. We added 13C-labeled wood and char (made from the wood at 450oC) to the soils and quantified CO2 and 13CO2 fluxes with continuous online carbon isotope measurements using a Cavity Ringdown Spectrometer (Picarro, Inc) for one year. As expected, in all treatments the wood decomposed much (about 50 times) more quickly than did the char amendment. With few exceptions, amendments placed in the surface soil decomposed more quickly than those in deeper soil, and in forest soil faster than that placed in grassland soil, at the same temperature. The two substrates were not very temperature sensitive. Both had Q10 less than 2 and char decomposition in particular was relatively insensitive to warming. Finally, the addition of wood caused a significant increase of roughly 30% in decomposition losses of the native soil organic carbon in the grassland and slightly less in forest. Char had only a slight positive priming effect but had a significant effect on microbial community. These results show that conversion of wood inputs to char through wildfire or intentional management will alter not only the persistence of the carbon in soil but also its temperature response and effect on

  17. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    International Nuclear Information System (INIS)

    Lal, R.

    2004-01-01

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  18. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    International Nuclear Information System (INIS)

    Oostra, Swantje; Majdi, Hooshang; Olsson, Mats

    2006-01-01

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate

  19. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    Science.gov (United States)

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  20. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Science.gov (United States)

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Uncertainties in mapping forest carbon in urban ecosystems.

    Science.gov (United States)

    Chen, Gang; Ozelkan, Emre; Singh, Kunwar K; Zhou, Jun; Brown, Marilyn R; Meentemeyer, Ross K

    2017-02-01

    Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation in forest vertical structure, informing sustainable forest management and urban planning. While high-resolution remote sensing has proven promising for carbon mapping in highly fragmented urban landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of forest carbon estimation in response to the combined impacts of remote sensing data resolution and neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping were resampled to a range of resolutions, i.e., LiDAR point cloud density - 5.8, 4.6, 2.3, and 1.2 pt s/m 2 , aerial optical NAIP (National Agricultural Imagery Program) imagery - 1, 5, 10, and 20 m. Urban spatial patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and connectivity of landscape patches across the residential neighborhoods with built-up densities from low, medium-low, medium-high, to high. Through statistical analyses, we found that changing remote sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7-11.0% of variation) than changing NAIP image resolution (causing 6.2-8.6% of variation). For both LiDAR and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by the complexity of patch shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spatial variability of soil carbon across Mexico and the United States

    Science.gov (United States)

    Vargas, R.; Guevara, M.; Cruz Gaistardo, C.; Paz, F.; de Jong, B.; Etchevers, J.

    2015-12-01

    Soil organic carbon (SOC) is directly linked to soil quality, food security, and land use/global environmental change. We use publicly available information on SOC and couple it with digital elevation models and derived terrain attributes using a machine learning approach. We found a strong spatial dependency of SOC across the United States, but less spatial dependency of SOC across Mexico. Using High Performance Computing (HPC) we derived a 1 km resolution map of SOC across Mexico and the United States. We tested different machine learning methods (e.g., kernel based, tree based and/or Geo-statistics approaches) for computational efficiency and statistical accuracy. Using random forest combined with geo-statistics we were able to explain >70% of SOC variance for Mexico and >40% in the case of the United States via cross validation. These results compare with other published estimates of SOC at 1km resolution that only explain <30% of SOC variance across the world. Topographic attributes derived from digital elevation models are freely available globally at fine spatial resolution (<100 m), and this information allowed us to make predictions of SOC at fine scales. We further tested this approach using SOC information from the International Soil Carbon Network to predict SOC in other regions of the world. We conclude that this approach (using public information and open source platforms for data analysis) could be implemented to predict detailed explicit information of SOC across different spatial scales.

  3. The History of Soil Mapping and Classification in Europe: The role of the European Commission

    Science.gov (United States)

    Montanarella, Luca

    2014-05-01

    Early systematic soil mapping in Europe dates back to the early times of soil science in the 19th Century and was developed at National scales mostly for taxation purposes. National soil classification systems emerged out of the various scientific communities active at that time in leading countries like Germany, Austria, France, Belgium, United Kingdom and many others. Different scientific communities were leading in the various countries, in some cases stemming from geological sciences, in others as a branch of agricultural sciences. Soil classification for the purpose of ranking soils for their capacity to be agriculturally productive emerged as the main priority, allowing in some countries for very detailed and accurate soil maps at 1:5,000 scale and larger. Detailed mapping was mainly driven by taxation purposes in the early times but evolved in several countries also as a planning and management tool for farms and local administrations. The need for pan-European soil mapping and classification efforts emerged only after World War II in the early 1950's under the auspices of FAO with the aim to compile a common European soil map as a contribution to the global soil mapping efforts of FAO at that time. These efforts evolved over the next decades, with the support of the European Commission, towards the establishment of a permanent network of National soil survey institutions (the European Soil Bureau Network). With the introduction of digital soil mapping technologies, the new European Soil Information System (EUSIS) was established, incorporating data at multiple scales for the EU member states and bordering countries. In more recent years, the formal establishment of the European Soil Data Centre (ESDAC) hosted by the European Commission, together with a formal legal framework for soil mapping and soil classification provided by the INSPIRE directive and the related standardization and harmonization efforts, has led to the operational development of advanced

  4. Mapping SOC (Soil Organic Carbon) using LiDAR-derived vegetation indices in a random forest regression model

    Science.gov (United States)

    Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.

    2015-12-01

    Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.

  5. Spatial variability of soil carbon, pH, available phosphorous and potassium in organic farm located in Mediterranean Croatia

    Science.gov (United States)

    Bogunović, Igor; Pereira, Paulo; Šeput, Miranda

    2016-04-01

    Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the

  6. Improvement of clayey soil characteristics by using activated carbon

    Directory of Open Access Journals (Sweden)

    Al-Soudany Kawther

    2018-01-01

    Full Text Available The clay soil is weak and unable to carry the applied loads as a result of the weight of buildings or vehicles on the load performing on the soil. In this research, clay soil was grained and mixed with different percentages of activated carbon additives to investigate its performance. One type of clay soil from Al-Taji city was used. The percentages of activated carbon 3, 5, 7 and 9% were added to the soil and the influence of the admixture was observed by comparing the results with the untreated soil. The selected properties for this comparison were specific gravity, consistency limits, compaction, static compaction, CBR, consolidation, swelling and unconfined compressive strength. The results showed that the plasticity index, maximum dry weight and specific gravity decreased as the percentage of additives increased. The unconfined compressive strength increased as the percentage of additives and curing periods (1, 7, 14 and 28days increased. The amount of increase in soil strength was even more than 100% for the 9% activatedcarbon. The results showed that the addition of activated carbon has a positive effect to the geotechnical properties.

  7. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Science.gov (United States)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  8. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  9. Geospatial approach in mapping soil erodibility using CartoDEM – A ...

    Indian Academy of Sciences (India)

    unscientific management practices followed in the hilly regions. .... country. In the absence of large scale or detail map, researcher use the small scale of soil map prepared ..... tural development. .... mapping: An introductory perspective; Dev.

  10. 3D-Digital soil property mapping by geoadditive models

    Science.gov (United States)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  11. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  12. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Science.gov (United States)

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty

  13. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    Science.gov (United States)

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  14. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  15. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  16. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  17. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  18. GIS-based production of digital soil map for Nigeria | Nkwunonwo ...

    African Journals Online (AJOL)

    Soil, a valuable natural resource can be said to play a part across the range of human existence and its knowledge is fundamental to its utilization and management. Soil maps provide a means of gaining understanding about the soil, but limitations in accuracy, revision and mode of presentation– relating to graphics or ...

  19. ERTS-1 MSS imagery: Its use in delineating soil associations and as a base map for publishing soils information. [South Dakota

    Science.gov (United States)

    Westin, F. C.

    1974-01-01

    ERTS 1 imagery is a useful tool in the identification and refinement of soil association areas and an excellent base map upon which soil association information can be published. Prints of bands 5 and 7 were found to be most useful to help delineate major soil and vegetation areas. After delineating major soil areas, over 4800 land sale prices covering a period of 1967-72 were located in the soil areas and averaged. The soil association then were described as soil association value areas and published on a 1:1,000,000 scale ERTS mosaic of South Dakota constructed using negative prints of band 7. The map is intended for use by state and county revenue officers, by individual buyers and sellers of land and lending institutions, and as a reference map by those planning road routes and cable lines and pipelines.

  20. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    Science.gov (United States)

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  1. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

    Science.gov (United States)

    Siewert, Matthias B.

    2018-03-01

    Soil organic carbon (SOC) stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m). A high-resolution (1 m) land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0-150 cm) is estimated to be 8.3 ± 8.0 kg C m-2 and the SOC stored in the top meter (0-100 cm) to be 7.7 ± 6.2 kg C m-2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions > 30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in post-permafrost landscapes.

  2. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-05-01

    Full Text Available Soil loss tolerance (T value is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a, and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  3. A soil map of a large watershed in China: applying digital soil mapping in a data sparse region

    Science.gov (United States)

    Barthold, F.; Blank, B.; Wiesmeier, M.; Breuer, L.; Frede, H.-G.

    2009-04-01

    Prediction of soil classes in data sparse regions is a major research challenge. With the advent of machine learning the possibilities to spatially predict soil classes have increased tremendously and given birth to new possibilities in soil mapping. Digital soil mapping is a research field that has been established during the last decades and has been accepted widely. We now need to develop tools to reduce the uncertainty in soil predictions. This is especially challenging in data sparse regions. One approach to do this is to implement soil taxonomic distance as a classification error criterion in classification and regression trees (CART) as suggested by Minasny et al. (Geoderma 142 (2007) 285-293). This approach assumes that the classification error should be larger between soils that are more dissimilar, i.e. differ in a larger number of soil properties, and smaller between more similar soils. Our study area is the Xilin River Basin, which is located in central Inner Mongolia in China. It is characterized by semi arid climate conditions and is representative for the natural occurring steppe ecosystem. The study area comprises 3600 km2. We applied a random, stratified sampling design after McKenzie and Ryan (Geoderma 89 (1999) 67-94) with landuse and topography as stratifying variables. We defined 10 sampling classes, from each class 14 replicates were randomly drawn and sampled. The dataset was split into 100 soil profiles for training and 40 soil profiles for validation. We then applied classification and regression trees (CART) to quantify the relationships between soil classes and environmental covariates. The classification tree explained 75.5% of the variance with land use and geology as most important predictor variables. Among the 8 soil classes that we predicted, the Kastanozems cover most of the area. They are predominantly found in steppe areas. However, even some of the soils at sand dune sites, which were thought to show only little soil formation

  4. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    Science.gov (United States)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  5. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  6. Remote sensing mapping of carbon and energy fluxes over forests

    NARCIS (Netherlands)

    Roerink, G.J.; Wit, de A.J.W.; Pelgrum, H.; Mücher, C.A.

    2001-01-01

    This report presents the results of the EU project "Carbon and water fluxes of Mediterranean forests and impacts of land use/cover changes". The objectives of the project can be summarized as follows: (I) surface energy balance mapping using remote sensing, (ii) carbon uptake mapping using remote

  7. Mineralogical Controls over Carbon Storage and Residence Times in Grassland Soils

    Science.gov (United States)

    Dwivedi, D.; Riley, W. J.; Torn, M. S.; Spycher, N.

    2014-12-01

    Globally, soil organic matter (SOM) contains approximately three times more carbon than the atmosphere and terrestrial vegetation contain combined. However, it is not well understood why some SOM persists for a long time while other SOM decomposes quickly. For future climate predictions, representing soil organic matter (SOM) dynamics accurately in Earth system models is essential. Soil minerals stabilize organic carbon in soil; however, there are gaps in our understanding of how soil mineralogy controls the quantity and turnover of long-residence-time organic carbon. To investigate the impact of soil mineralogy on SOM dynamics, we used a new model (Biotic and Abiotic Model of SOM—BAMS1 [Riley et al., 2014]) integrated with a three-dimensional, multiphase reactive transport solver (TOUGHREACT). The model represents bacterial and fungal activity, archetypal polymer and monomer carbon substrate groups, aqueous chemistry, gaseous diffusion, aqueous advection and diffusion, and adsorption and desorption processes. BAMS1 can predict bulk SOM and radiocarbon signatures without resorting to an arbitrary depth-dependent decline in SOM turnover rates. Results show a reasonable match between observed and simulated depth-resolved SOM and Δ14C in grassland ecosystems (soils formed on terraces south of Eureka, California, and the Central Chernozem Region of Russia) and were consistent with expectations of depth-resolved profiles of lignin content and fungi:aerobic bacteria ratios. Results also suggest that clay-mineral surface area and soil sorption coefficients constitute dominant controls over organic carbon stocks and residence times, respectively. Bibliography: Riley, W.J., F.M. Maggi, M. Kleber, M.S. Torn, J.Y. Tang, D. Dwivedi, and N. Guerry (2014), Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, Geoscientific Model Development, vol. 7, 1335

  8. Linking the distribution of carbon isotope ratios in soil carbonates and speleothems to climate conditions in the past: A model for the dependence of respiration rate on soil moisture

    Science.gov (United States)

    Liu, Y.; Ibarra, D. E.; Winnick, M.; Caves Rugenstein, J. K.; Oster, J. L.; Druhan, J. L.

    2017-12-01

    The carbon isotope compositions (δ13C) of atmospheric CO2, C3-origin organic carbon, and limestone epikarst differ substantially, resulting in variable δ13C signatures recorded in secondary soil carbonates and speleothems which represent a mixture of these sources. Even though this signal has been widely used in paleoclimate studies, the extent to which carbonate δ13C is influenced by the dynamic response of organic carbon respiration rates to soil moisture variations has yet to be fully evaluated [1]. Soils that are rewetted after a prolonged drought commonly display a peak in respiration rate followed by relaxation to a lower steady state in both lab incubation experiments and field observations. This transient behavior, known as the Birch effect, has been extensively observed across a broad range of locations and soil types, and may generate more than 50% of the total respired CO2 in some ecosystems [2]. Here, we seek to identify the influence of the Birch effect on carbonate δ13C records based on a moisture-dependent modeling approach. We report compiled respiration rates of soils from the literature and fit these data as a function of soil moisture, before imposing exponential dampening with depth and applying the resulting function in a production-diffusion equation [3]. We then implement a mass balance calculation for the δ13C value of carbonate precipitated from a mixture of atmospheric and respired CO2, including mass-dependent fractionation associated with diffusive transport. Our results offer a novel prediction for depth-resolved carbonate δ13C as a function of soil moisture, and suggest that Birch effect signals may be recorded in soil carbonates and influence the magnitude of carbonate δ13C variations in speleothems. Thus, we illustrate a prediction for the range of carbonate δ13C recorded in terrestrial carbonates and suggest that differences in the range of carbonate δ13C may indicate changes in soil moisture variability, providing a new

  9. Field-warmed soil carbon changes imply high 21st-century modeling uncertainty

    Directory of Open Access Journals (Sweden)

    K. Todd-Brown

    2018-06-01

    Full Text Available The feedback between planetary warming and soil carbon loss has been the focus of considerable scientific attention in recent decades, due to its potential to accelerate anthropogenic climate change. The soil carbon temperature sensitivity is traditionally estimated from short-term respiration measurements – either from laboratory incubations that are artificially manipulated or from field measurements that cannot distinguish between plant and microbial respiration. To address these limitations of previous approaches, we developed a new method to estimate soil temperature sensitivity (Q10 of soil carbon directly from warming-induced changes in soil carbon stocks measured in 36 field experiments across the world. Variations in warming magnitude and control organic carbon percentage explained much of field-warmed organic carbon percentage (R2  =  0.96, revealing Q10 across sites of 2.2 [1.6, 2.7] 95 % confidence interval (CI. When these field-derived Q10 values were extrapolated over the 21st century using a post hoc correction of 20 Coupled Model Intercomparison Project Phase 5 (CMIP5 Earth system model outputs, the multi-model mean soil carbon stock changes shifted from the previous value of 88 ± 153 Pg carbon (weighted mean ± 1 SD to 19 ± 155 Pg carbon with a Q10-driven 95 % CI of 248 ± 191 to −95 ± 209 Pg carbon. On average, incorporating the field-derived Q10 values into Earth system model simulations led to reductions in the projected amount of carbon sequestered in the soil over the 21st century. However, the considerable parameter uncertainty led to extremely high variability in soil carbon stock projections within each model; intra-model uncertainty driven by the field-derived Q10 was as great as that between model variation. This study demonstrates that data integration should capture the variation of the system, as well as mean trends.

  10. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    Science.gov (United States)

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  11. Study of Soil Decontamination Method Using Supercritical Carbon Dioxide and TBP

    International Nuclear Information System (INIS)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung

    2014-01-01

    The result of this study means that we have a possible new method for cheap and less wasteful nuclear waste decontamination. When severe accidents such as the incident at the Fukushima nuclear site occur, the soil near the power plant is contaminated with fission products or the activation metal structure of the power plant. The soil pollution form depends on the environment and soil characteristics of the contaminated areas. Thus, a- single-decontamination method is not effective for site cleanup. In addition, some soil decontamination methods are expensive and large amounts of secondary waste are generated. Therefore, we need new soil decontamination methods. In this study, instead of using a conventional solvent method that generates secondary waste, supercritical carbon dioxide was used to remove metal ions from the soil. Supercritical carbon dioxide is known for good permeation characteristics. We expect that we will reduce the cost of soil pollution management. Supercritical carbon dioxide can decontaminate soil easily, as it has the ability to penetrate even narrow gaps with very good moisture permeability. We used TBP, which is a known for extractant of actinium metal. TBP is usually used for uranium and strontium extraction. Using TBP-HNO 3 complex and supercritical carbon dioxide, we did extraction experiments for several heavy metals in contaminated soil

  12. Study of Soil Decontamination Method Using Supercritical Carbon Dioxide and TBP

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-05-15

    The result of this study means that we have a possible new method for cheap and less wasteful nuclear waste decontamination. When severe accidents such as the incident at the Fukushima nuclear site occur, the soil near the power plant is contaminated with fission products or the activation metal structure of the power plant. The soil pollution form depends on the environment and soil characteristics of the contaminated areas. Thus, a- single-decontamination method is not effective for site cleanup. In addition, some soil decontamination methods are expensive and large amounts of secondary waste are generated. Therefore, we need new soil decontamination methods. In this study, instead of using a conventional solvent method that generates secondary waste, supercritical carbon dioxide was used to remove metal ions from the soil. Supercritical carbon dioxide is known for good permeation characteristics. We expect that we will reduce the cost of soil pollution management. Supercritical carbon dioxide can decontaminate soil easily, as it has the ability to penetrate even narrow gaps with very good moisture permeability. We used TBP, which is a known for extractant of actinium metal. TBP is usually used for uranium and strontium extraction. Using TBP-HNO{sub 3} complex and supercritical carbon dioxide, we did extraction experiments for several heavy metals in contaminated soil.

  13. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris.

    Science.gov (United States)

    Brinza, Loredana; Schofield, Paul F; Hodson, Mark E; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D; Mosselmans, J Frederick W

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  14. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  15. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  16. Experimental Evidence that Hemlock Mortality Enhances Carbon Stabilization in Southern Appalachian Forest Soils

    Science.gov (United States)

    Fraterrigo, J.; Ream, K.; Knoepp, J.

    2017-12-01

    Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.

  17. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette; Munkholm, Lars Juhl

    2016-01-01

    Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil degradat......Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil......, the addition of straw resulted in a high soil respiration rate, and about 80% of the added carbonwas respired at the end of the incubation. However, the addition of straw increased aggregate stability and decreased clay dispersibility. Results from Fourier transformed infrared photoacoustic spectroscopy...

  18. One strategy for estimating the potential soil carbon storage due to CO2 fertilization

    International Nuclear Information System (INIS)

    Harrison, K.G.; Bonani, G.

    1994-01-01

    Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO 2 fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO 2 levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO 2 fertilization

  19. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Choppala, G.K.; Thangarajan, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Chung, J.W. [Department of Environmental Engineering, Gyeongnam National University of Science and Technology, Dongjin-ro 33, Jinju, Gyeongnam, 660-758 (Korea, Republic of)

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t{sub 1/2}) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: Black

  20. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W.

    2012-01-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t 1/2 ) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: ► Comparison of decomposition rate

  1. Carbon tetrachloride ERA soil-gas baseline monitoring

    International Nuclear Information System (INIS)

    Fancher, J.D.

    1994-01-01

    From December 1991 through December 1993, Westinghouse Hanford Company performed routine baseline monitoring of selected wells ad soil-gas points twice weekly in the 200 West Area of the Hanford Site. This work supported the carbon Tetrachloride Expedited Response Action (ERA) and provided a solid baseline of volatile organic compound (VOC) concentrations in wells and in the subsurface at the ERA site. As site remediation continues, comparisons to this baseline can be one means of measuring the success of carbon tetrachloride vapor extraction. This report contains observations of the patterns and trends associated with data obtained during soil-gas monitoring at the 200 West Area: Monitoring performed since late 1991 includes monitoring soil-gas probes ad wellheads for volatile organic compounds (VOCs). This report reflects monitoring data collected from December 1991 through December 1993

  2. Soil Organic Carbon (SOC) distribution in two differents soil types (Podzol and Andosol) under natural forest cover.

    Science.gov (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Cools, Nathalie; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2017-04-01

    Andosols are young soils that shall know a successive evolution towards pedological types where the dominant pedogenetic processes are more evident. Vegetation and climate influence Andosols evolution to other order of soils. In cold and wet climates or on acid vulcanite under heavy leaching young Andosols could change into Podzols (Van Breemn and Buurman, 1998). Were investigated a Podzol soil (World References Base, 2014) at Zoniën (Belgium), were and an Andosol soil (World References Base, 2014) at Lago Laceno (Avellino, Italy). This study shows the data on the SOC (Soil Organic Carbon) fractionation in two profiles from two natural pine forest soils. Together with the conventional activities of sampling and analysis of soil profile were examined surveys meant to fractionation and characterization of SOC, in particular: Total Organic Carbon (TOC) and Total Extractable Carbon (TEC) soil contents were determined by Italian official method of soil analysis (Mi.P.A.F. (2000)). Different soil C fractions were also determined: Humic Acid Carbon (HAC), Fulvic Acid Carbon (FAC), Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. In the whole profile, therefore, were also assayed cellulose and lignin contents. The aim of this work was to compare the distribution of different soil organic components in a podzol and a soil with andic properties. The data show great similarity, among the selected profiles, in the organic components distribution estudied. References: - Mi.P.A.F. - Ministero per le Politiche Agricole e Forestali - Osservatorio Nazionale Pedologico e per la Qualità del Suolo (2000): Metodi Ufficiali di Analisi Chimica del Suolo. In: Franco Angeli (Editor), Collana di metodi analitici per l'agricoltura diretta da Paolo Sequi, n. 1124.2, Milano, Italy. - Van Breemn N. and Buurman P. (1998) Chapter 12 Formation of Andisols. In: Soil formation. Kluwer Ed., Wageningen, The Netherlands, 271-289. -Ussiri D.A.N., Johnson C

  3. Payback time for soil carbon and sugar-cane ethanol

    Science.gov (United States)

    Mello, Francisco F. C.; Cerri, Carlos E. P.; Davies, Christian A.; Holbrook, N. Michele; Paustian, Keith; Maia, Stoécio M. F.; Galdos, Marcelo V.; Bernoux, Martial; Cerri, Carlos C.

    2014-07-01

    The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO2 savings attributed to bioenergy crops. There have been few direct field measurements that quantify the effects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world's largest producer . We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1 m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.

  4. Carbon leaching from tropical peat soils and consequences for carbon balances

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2016-07-01

    Full Text Available Drainage and deforestation turned Southeast (SE Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ~200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38% and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia.

  5. A blue carbon soil database: Tidal wetland stocks for the US National Greenhouse Gas Inventory

    Science.gov (United States)

    Feagin, R. A.; Eriksson, M.; Hinson, A.; Najjar, R. G.; Kroeger, K. D.; Herrmann, M.; Holmquist, J. R.; Windham-Myers, L.; MacDonald, G. M.; Brown, L. N.; Bianchi, T. S.

    2015-12-01

    Coastal wetlands contain large reservoirs of carbon, and in 2015 the US National Greenhouse Gas Inventory began the work of placing blue carbon within the national regulatory context. The potential value of a wetland carbon stock, in relation to its location, soon could be influential in determining governmental policy and management activities, or in stimulating market-based CO2 sequestration projects. To meet the national need for high-resolution maps, a blue carbon stock database was developed linking National Wetlands Inventory datasets with the USDA Soil Survey Geographic Database. Users of the database can identify the economic potential for carbon conservation or restoration projects within specific estuarine basins, states, wetland types, physical parameters, and land management activities. The database is geared towards both national-level assessments and local-level inquiries. Spatial analysis of the stocks show high variance within individual estuarine basins, largely dependent on geomorphic position on the landscape, though there are continental scale trends to the carbon distribution as well. Future plans including linking this database with a sedimentary accretion database to predict carbon flux in US tidal wetlands.

  6. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing

    Science.gov (United States)

    Grinand, C.; Maire, G. Le; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M.

    2017-02-01

    Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.

  7. Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China

    Science.gov (United States)

    Wang, Zhi-Gang; Bi, Yin-Li; Jiang, Bin; Zhakypbek, Yryszhan; Peng, Su-Ping; Liu, Wen-Wen; Liu, Hao

    2016-10-01

    Carbon storage is affected by photosynthesis (Pn) and soil respiration (Rs), which have been studied extensively in natural and agricultural systems. However, the effects of Pn and Rs on carbon storages in the presence of arbuscular mycorrhizal fungi (AMF) in coalfields remain unclear. A field experiment was established in 2014 in Shendong coal mining subsidence area. The treatments comprised two inoculation levels (inoculated with or without 100 g AMF inoculums per seedlings) and four plant species [wild cherry (Prunus discadenia Koebne L.), cerasus humilis (Prunus dictyneura Diels L.), shiny leaf Yellow horn (Xanthoceras sorbifolium Bunge L.) and apricot (Armeniaca sibirica L.)]. AMF increased Pn of four species ranging from 15.3% to 33.1% and carbon storage, averaged by 17.2% compared to controls. Soil organic carbon (OC), easily extractable glomalin-relation soil protein (EE-GRSP), and total glomalin-relation soil protein (T-GRSP) were significantly increased by AMF treatment. The effect of AMF on the sensitivity of Rs depended on soil temperature. The results highlighted the exponential models to explain the responses of Rs to soil temperature, and for the first time quantified AMF caused carbon sequestration and Rs. Thus, to our knowledge, AMF is beneficial to ecosystems through facilitating carbon conservation in coalfield soils.

  8. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  9. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  10. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  11. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    Science.gov (United States)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future

  12. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    Science.gov (United States)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  13. How can soil organic carbon stocks in agriculture be maintained or increased?

    Science.gov (United States)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  14. Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions

    Science.gov (United States)

    Reynolds, C. A.; Jackson, T. J.; Rawls, W. J.

    2000-12-01

    Spatial soil water-holding capacities were estimated for the Food and Agriculture Organization (FAO) digital Soil Map of the World (SMW) by employing continuous pedotransfer functions (PTF) within global pedon databases and linking these results to the SMW. The procedure first estimated representative soil properties for the FAO soil units by statistical analyses and taxotransfer depth algorithms [Food and Agriculture Organization (FAO), 1996]. The representative soil properties estimated for two layers of depths (0-30 and 30-100 cm) included particle-size distribution, dominant soil texture, organic carbon content, coarse fragments, bulk density, and porosity. After representative soil properties for the FAO soil units were estimated, these values were substituted into three different pedotransfer functions (PTF) models by Rawls et al. [1982], Saxton et al. [1986], and Batjes [1996a]. The Saxton PTF model was finally selected to calculate available water content because it only required particle-size distribution data and results closely agreed with the Rawls and Batjes PTF models that used both particle-size distribution and organic matter data. Soil water-holding capacities were then estimated by multiplying the available water content by the soil layer thickness and integrating over an effective crop root depth of 1 m or less (i.e., encountered shallow impermeable layers) and another soil depth data layer of 2.5 m or less.

  15. Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations

    Science.gov (United States)

    Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

    2008-12-01

    Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was

  16. Origin, distribution and transformation of authigenic carbonates in loessic soils

    Directory of Open Access Journals (Sweden)

    Martin Kolesár

    2015-01-01

    Full Text Available Processes of authigenic carbonates formation are component part of terrestrial biogeochemical cycle of carbon, which starts with co-accumulation of oxalic acid and Ca in Ca- oxalates. After plant decay are these biominerals slowly transformed under the influence of microbial processes into authigenic carbonates (calcites, depending on soil condition. The formation of authigenic calcites runs over in soil system where is rather high Ca and Mg concentration, presence of oxalomorphic plants and sufficient oxalotrophic stability of microorganisms. In addition to Ca-oxalates, Ca and Mg ions necessary for carbonate formation comes also from air (precipitation, dust, mineral weathering, subsurface water flow and decaying organic matter. The distribution pattern of authigenic calcites with depth, the size and shape of individual forms of calcites on loessic soils of SW Slovakia, as it is resulted from micromorphological study indicate that through the historical development of that soils as landscape units, soil water regime has played decisive role at vertical redistribution of forms (size, shape of authigenic calcites. To this witness the depth of variation of needle calcite zones and horizons of micritic calcites occurrence depending on soil types (leaching. Needle shape calcite zones which approach closest to the soil surface, gradually coalescence to the horizons of micritic calcites with the depth. Micritic calcites are without, or with microsparitic domains. Our study concurrently support the ideas of their inorganic origin depending on evaporitic soil regime. This formations have its own historic dynamics on which depends also the preservation of calcaric nature of soils.

  17. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  18. Understanding the driving forces behind the losses of soil carbon across England and Wales

    Science.gov (United States)

    Bellamy, Patricia

    2010-05-01

    More than twice as much carbon is held in soils as in vegetation or the atmosphere, and changes in soil carbon content can have a large effect on the global carbon budget. The possibility that climate change is being reinforced by increased carbon dioxide emissions from soils owing to rising temperature is the subject of a continuing debate. But evidence for the suggested feedback mechanism has to date come solely from small-scale laboratory and field experiments and modelling studies. Here we use data from the National Soil Inventory of England and Wales obtained between 1978 and 2003 to show that carbon was lost from soils across England and Wales over the survey period at a mean rate of 0.6% yr-1 (relative to the existing soil carbon content). We find that the relative rate of carbon loss increased with soil carbon content and was more than 2% yr-1 in soils with carbon contents greater than 100 g kg-1. The relationship between rate of carbon loss and carbon content is irrespective of land use, suggesting a link to climate change. Our findings indicate that losses of soil carbon in England and Wales—and by inference in other temperate regions—are likely to have been offsetting absorption of carbon by terrestrial sinks. To investigate the possible driving forces of the measured losses of soil carbon we applied a simple model of soil carbon turnover to evaluate alternative explanations for the observed trends. We find that neither changes in decomposition resulting from the effects of climate change on soil temperature and moisture, nor changes in carbon input from vegetation, could account on their own for the overall trends. Of other explanations, results indicate that past changes in land use and management were probably dominant. The climate change signal, such as it is, is masked by these other changes. A more sophisticated model of carbon change (DAYCENT) has now been applied across the whole range of soils in England and Wales. This model has been

  19. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  20. Bayesian Maximum Entropy prediction of soil categories using a traditional soil map as soft information.

    NARCIS (Netherlands)

    Brus, D.J.; Bogaert, P.; Heuvelink, G.B.M.

    2008-01-01

    Bayesian Maximum Entropy was used to estimate the probabilities of occurrence of soil categories in the Netherlands, and to simulate realizations from the associated multi-point pdf. Besides the hard observations (H) of the categories at 8369 locations, the soil map of the Netherlands 1:50 000 was

  1. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  2. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  3. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    Science.gov (United States)

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  4. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000

    Science.gov (United States)

    Yu, Yanyan; Guo, Zhengtang; Wu, Haibin; Kahmann, Julia A.; Oldfield, Frank

    2009-06-01

    We address the spatial changes in organic carbon density and storage in cultivated soils in China from 1980 to 2000 on the basis of measured data from individual studies and those acquired during the second national soil survey in China. The results show a carbon gain in ˜66% of the cultivated area of China as a whole with the increase in soil organic carbon (SOC) density mostly ranging from 10% to 30%. Soil organic carbon density increased in fluvi-aquic soils (fluvisols, Food and Agriculture Organization (FAO) of the United Nations) in north China, irrigated silting soils (calcaric fluvisols) in northwest China, latosolic red earths (haplic acrisols/alisols), and paddy soils (fluvisols/cambisols) in south China. In contrast, significant decreases are observed in black soils (phaeozems) in northeast China and latosols (haplic acrisols) in southwest China. No significant changes are detected in loessial soils (calcaric regosols) and dark loessial soils (calcisols) in the loess plateau region. The total SOC storage and average density in the upper 20 cm in the late 1990s are estimated to be ˜5.37 Pg C and 2.77 kg/m2, respectively, compared with the values of ˜5.11 Pg C and 2.63 kg/m2 in the early 1980s. This reveals an increase of SOC storage of 0.26 Pg C and suggests an overall carbon sink for cultivated soils in China, which has contributed 2-3% to the global terrestrial ecosystem carbon absorption from 1980 to 2000. Statistical analyses suggest an insignificant contribution to the observed SOC increase from climate change, and we infer that it is mostly attributable to improved agricultural practices. Despite the SOC density increases over 20 years, the SOC density of the cultivated soils in China in the late 1990s is still ˜30% lower compared to their uncultivated counterparts in comparable soil types, suggesting a considerable potential for SOC restoration through improving management practices. Assuming a restoration of ˜50% of the lost SOC in the next 30

  5. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  6. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  7. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  8. Mapping of soil erosion and redistribution on two agricultural areas in Czech Republic by using of magnetic parameters.

    Science.gov (United States)

    Kapicka, Ales; Stejskalova, Sarka; Grison, Hana; Petrovsky, Eduard; Jaksik, Ondrej; Kodesova, Radka

    2015-04-01

    Soil erosion is one of the major concerns in sustainability of agricultural systems in different areas. Therefore there is a need to develop suitable innovative indirect methods of soil survey. One of this methods is based on well established differentiation in magnetic signature with depth in soil profile. Magnetic method can be applied in the field as well as in the laboratory on collected soil samples. The aim of this study is to evaluate suitability of magnetic method to assess soil degradation and construct maps of cumulative soil loss due to erosion at two morphologically diverse areas with different soil types. Dominant soil unit in the first locality (Brumovice) is chernozem, which is gradually degraded on slopes to regosols. In the second site (Vidim), the dominant soil unit is luvisol, gradualy transformed to regosol due to erosion. Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points in Brumovice and 65 in Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in top soil horizons. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass- specific magnetic susceptibility measured in the laboratory (Kapicka et al 2013). Values of magnetic susceptibility are spatially distributed depending on terrain position. Higher values were measured at the flat parts (where the original topsoil horizon remained). The lowest values magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Positive correlation between the organic carbon content and volume magnetic susceptibility (R2= 0.89) was found for chernozem area. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing of the

  9. Influence of pore structure on carbon retention/loss in soil macro-aggregates

    Science.gov (United States)

    Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark

    2017-04-01

    Carbon protection within soil macro-aggregates is an important component of soil carbon sequestration. Pores, as the transportation network for microorganisms, water, air and nutrients within macro-aggregates, are among the factors controlling carbon protection through restricting physical accessibility of carbon to microorganisms. The understanding of how the intra-aggregate pore structure relates to the degree of carbon physical protection, however, is currently lacking. This knowledge gap can lead to potentially inaccurate models and predictions of soil carbon's fate and storage in future changing climates. This study utilized the natural isotopic difference between C3 and C4 plants to trace the location of newly added carbon within macro-aggregates before and after decomposition and explored how location of this carbon relates to characteristics of intra-aggregate pores. To mimic the effect of decomposition, aggregates were incubated at 23˚ C for 28 days. Computed micro-tomographic images were used to determine pore characteristics at 6 μm resolution before and after incubation. Soil (0-10 cm depth) from a 20 year continuous corn (C4 plant) experiment was used. Two soil treatments were considered: 1) "destroyed-structure", where 1 mm sieved soil was used and 2) "intact-structure", where intact blocks of soil were used. Cereal rye (Secale cereale L.) (C3 plant) was grown in the planting boxes (2 intact, 3 destroyed, and one control) for three months in a greenhouse. From each box, ˜5 macro-aggregates of ˜5 mm size were collected for a total of 27 macro-aggregates. Half of the aggregates were cut into 5-11 sections, with relative positions of the sections within the aggregate recorded, and analyzed for δ13C. The remaining aggregates were incubated and then subjected to cutting and δ13C analysis. While there were no significant differences between the aggregate pore size distributions of the two treatments, the roles that specific pores sizes played in

  10. Nexus Thinking on Soil Carbon Dynamics and Soil Health

    Science.gov (United States)

    Lal, R.

    2016-12-01

    Anthropocene is driven by global population of 7.5 billion in 2016, increasing annually by 80 million and projected to be 9.7 billion by 2050. The ecological impact (I=PAT, where P is population, A is affluence, and T is technology) of the population is similar to that of a geological force. Thus, humanity's impact is driven by demands for food, water, energy, and services derived from soil. Soil health, its capacity to function as a vital living system, is determined by quantity and quality of soil organic carbon (SOC) in the root zone ( 50cm). Maintenance of SOC at above the threshold level (1.5 to 2.0% by weight in the root zone) is critical to performing numerous ecosystem services for human wellbeing and nature conservancy. These services and functions strongly depend on nexus or inter-connectivity of biological processes within the pedosphere. The nexus is strongly governed by coupled biogeochemical cycling of water (H2O), carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). Further, it is the nexus between pedological and biological processes that renews and purifies water by denaturing and filtering pollutants; circulates C among biotic and abiotic pools in close association with other elements (N, P, S); provides habitat and energy source for soil biota (macro, meso, and micro flora and fauna), facilitates exchanges of gases between soil and the atmosphere and moderates climate, and creates favorable rhizospheric processes that promote plant growth and enhance net primary productivity. Soil health, governed by SOC quality and quantity, determines the provisioning of numerous ecosystem services and the importance of nexus thinking is highlighted by the truism that "health of soil, plants, animals, human and ecosystem is one and indivisible." The sequestration of SOC depends on land use and soil management strategies which create a positive C budget. Thus, input of biomass-C into the soil must exceed the losses by erosion, mineralization and leaching

  11. Global soil-climate-biome diagram: linking soil properties to climate and biota

    Science.gov (United States)

    Zhao, X.; Yang, Y.; Fang, J.

    2017-12-01

    As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.

  12. Comparing Kriging and Regression Approaches for Mapping Soil Clay Content in a diverse Danish Landscape

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mette Balslev

    2013-01-01

    Information on the spatial variability of soil texture including soil clay content in a landscape is very important for agricultural and environmental use. Different prediction techniques are available to assess and map spatial variability of soil properties, but selecting the most suitable techn...... the prediction in OKst compared with that in OK, whereas RT showed the lowest performance of all (R2 = 0.52; RMSE = 0.52; and RPD = 1.17). We found RKrr to be an effective prediction method and recommend this method for any future soil mapping activities in Denmark....... technique at a given site has always been a major issue in all soil mapping applications. We studied the prediction performance of ordinary kriging (OK), stratified OK (OKst), regression trees (RT), and rule-based regression kriging (RKrr) for digital mapping of soil clay content at 30.4-m grid size using 6...

  13. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Science.gov (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  14. Mapping tillage operations over peri-urban croplands using a synchronous SPOT4/ASAR ENVISAT pair and soil roughness measurements

    Science.gov (United States)

    Vaudour, Emmanuelle; Baghdadi, Nicolas; Gilliot, Jean-Marc

    2014-05-01

    Tillage operations (TOs) affect nutrient uptake, carbon sequestration, water and CO2 exchanges in soil, and therefore impact soil ecology together with biophysical processes such as soil erosion, leaching, run-off and infiltration. They are critical for parameterizing complex dynamic models of carbon and nitrogen. This study done in the framework of the Prostock-Gessol3 project presents an approach for mapping TOs of bare agricultural fields over a peri-urban area characterized by conventional tillage system in the western suburbs of Paris (France), combining synchronous SPOT4 and ENVISAT/ASAR images (HH and HV polarizations). Spatial modeling relied on 57 reference within-field areas named 'reference zones' (RZs) homogeneous for their soil properties, constructed in the vicinity of 57 roughness measurement locations and spread across 20 agricultural fields for which TOs were known. Soil roughness expressed as the standard deviation of surface height (Hrms) was estimated on the ground with a fully automatic photogrammetric method based on the processing of a set of overlapping pictures taken from different viewpoints from a simple digital camera all around a rectangular frame. The relationship was studied between the mean backscattering coefficient of the ASAR image and Hrms choosing a limited set of 28 RZs, on which successive random selections of training/validating RZs were then performed; the remaining 29 RZs were kept for validating the final map results. Six supervised per-pixel classifiers were used in order to map 2 TOs classes (seedbed&harrowed and late winter plough) in addition to 4 landuse classes (forest, urban,crops and grass, water bodies): support vector machine with polynomial kernel (pSVM), SVM with radial basis kernel (rSVM), artificial neural network (ANN), Maximum Likelihood (ML), regression tree (RT), and random forests (RF). All 6 classifiers were implemented in a bootstrapping approach in order to assess the uncertainty of map results. The

  15. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  16. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, de R.W.

    2008-01-01

    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many

  17. Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil.

    Science.gov (United States)

    Lamb, Dane T; Kader, Mohammed; Wang, Liang; Choppala, Girish; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Naidu, Ravi

    2016-12-06

    Phytotoxicity of inorganic contaminants is influenced by the presence of competing ions at the site of uptake. In this study, interaction of soil pore-water constituents with arsenate toxicity was investigated in cucumber (Cucumis sativa L) using 10 contrasting soils. Arsenate phytotoxicity was shown to be related to soluble carbonate and phosphate. The data indicated that dissolved phosphate and carbonate had an antagonistic impact on arsenate toxicity to cucumber. To predict arsenate phytotoxicity in soils with a diverse range of soil solution properties, both carbonate and phosphate were required. The relationship between arsenic and pore-water toxicity parameters was established initially using multiple regression. In addition, based on the relationship with carbonate and phosphate we successively applied a terrestrial biotic ligand-like model (BLM) including carbonate and phosphate. Estimated effective concentrations from the BLM-like parametrization were strongly correlated to measured arsenate values in pore-water (R 2 = 0.76, P soils.

  18. Accounting for the measurement error of spectroscopically inferred soil carbon data for improved precision of spatial predictions.

    Science.gov (United States)

    Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B

    2018-08-01

    Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  20. An incubation system to trace carbon fluxes in soil - First experimental

    Science.gov (United States)

    Thiessen*, Stefany; Gleixner, Gerd; Reichstein, Markus

    2010-05-01

    Soils contain the largest carbon pool in terrestrial ecosystems and it is widely assumed that a considerable fraction of this pool might be mobilized by global warming. Numerous investigations have proven that soil respiration is a mixture of several source, like root rhizosphere and soil organic matter (SOM) degradation. However, little is still known about soil carbon dynamics and the influence of microbes on this process. We developed an incubation system to perform multitracer experiments to quantify the contribution of microorganisms to carbon turnover from different carbon sources. A natural 13C label was used to mark carbon sources. The old carbon in the SOM held a depleted 13C3 signal and newly added C was enriched in 13C4. Accordingly, in the experiment we quantified the relative respiration of carbon from added sugars and soil organic matter by microbial groups, with additional application of fungicide (cycloheximide). A root free arable soil was divided into three sets, all with depleted C3 soil, but varied in terms of the added material: one with C4 glucose, a second with C4 glucose combined with fungicide and the last one with water application only, as control. To characterize microbial communities and estimate microbial biomass we extract phospholipid fatty acids (PLFA). Furthermore, by measuring the isotopic ratio of the PLFA it was also possible to identify microorganisms that metabolised the traced material. Preliminary results showed that the glucose application stimulated microbial growth in the beginning, but afterwards the microbial biomass decreased again over time. However, a change in the microbial community composition could not be observed, regardless to the kind of added material. Nevertheless, the respiration response slowed down after the fungicide application, and a second respiration pulse was induced by this application. This was probably due to reactivation of the fungi, after the effect of the fungicide expired.

  1. Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast

    Science.gov (United States)

    Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.

    2017-12-01

    Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.

  2. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  3. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    OpenAIRE

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover change), Namibia also regards bush encroachment as an important form of land degradation. We collected 219 soil profiles and used Random Forest modelling to develop the soil organic carbon stock ba...

  4. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  5. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  6. Ultrahigh Dimensional Variable Selection for Interpolation of Point Referenced Spatial Data: A Digital Soil Mapping Case Study

    Science.gov (United States)

    Lamb, David W.; Mengersen, Kerrie

    2016-01-01

    Modern soil mapping is characterised by the need to interpolate point referenced (geostatistical) observations and the availability of large numbers of environmental characteristics for consideration as covariates to aid this interpolation. Modelling tasks of this nature also occur in other fields such as biogeography and environmental science. This analysis employs the Least Angle Regression (LAR) algorithm for fitting Least Absolute Shrinkage and Selection Operator (LASSO) penalized Multiple Linear Regressions models. This analysis demonstrates the efficiency of the LAR algorithm at selecting covariates to aid the interpolation of geostatistical soil carbon observations. Where an exhaustive search of the models that could be constructed from 800 potential covariate terms and 60 observations would be prohibitively demanding, LASSO variable selection is accomplished with trivial computational investment. PMID:27603135

  7. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    Science.gov (United States)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  8. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  9. Centennial black carbon turnover observed in a Russia steppe soil

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  10. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  11. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  12. Pressure pumping of carbon dioxide from soil

    Science.gov (United States)

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  13. Soil carbon and soil physical properties response to incorporating mulched forest slash

    Science.gov (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac

    2000-01-01

    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  14. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  15. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  16. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  17. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  18. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  19. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  20. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Science.gov (United States)

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  1. Value of Soil Organic Carbon in Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)

    2004-10-01

    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  2. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001

    Science.gov (United States)

    L. S. Heath; R. A. Birdsey; D. W. Williams

    2002-01-01

    The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...

  3. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures

    International Nuclear Information System (INIS)

    Chen, K.Y.; Liu, J.C.; Chiang, P.N.; Wang, S.L.; Kuan, W.H.; Tzou, Y.M.; Deng, Y.; Tseng, K.J.; Chen, C.C.; Wang, M.K.

    2012-01-01

    Surface fire could induce heat transferring into the soil, creating a carbonized environment, which may alter the chemical compositions of soil organic matters (SOM). In the study, a surface soil was carbonized at up to 600 °C with limited air to simulate soils experiencing a surface fire, and Cr(VI) removal on the carbonized soils was investigated. NMR and FTIR analyses demonstrated a remarkable change of SOM structures at 300–400 °C. TGA-MS spectra indicated that (e.g. C 2 H 4 , CH 3 OH and C 3 H 8 ) were the major components in the evolved gases from the pyrolyzed soil. A maximum amount of Cr(VI) removal (ca. 4 mg g −1 soil) occurred for the 200 °C-carbonized soils, attributed mainly to a significant increase of Cr(VI) reduction by 0.1 M KCl extractable organic carbon (EOC) with abundant carboxylic groups. Nonetheless, the formation of aromatic C upon carbonization of the soil at >400 °C may be responsible for Cr(VI) reduction. - Highlights: ► A maximum amount of Cr(VI) removal occurred for the 200 °C-carbonized soil. ► Extractable organic carbon (EOC) was increased upon carbonization of soil. ► EOC, enriched with carboxylic groups, enhances Cr(VI) reduction by the soil. ► The formation of aromatic C on a carbonized soil may be responsible for Cr(VI) reduction. ► Reductive product of Cr(III) tends to bond on high-temperature-modified soil. - This study first addresses the importance of surface fire-induced heat transferring into the soil to the transformations of environmental pollutants, i.e. chromium.

  4. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  5. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  6. Functional digital soil mapping for the prediction of available water capacity in Nigeria using legacy data

    NARCIS (Netherlands)

    Ugbaje, S.U.; Reuter, H.I.

    2013-01-01

    Soil information, particularly water storage capacity, is of utmost importance for assessing and managing land resources for sustainable land management. We investigated using digital soil mapping (DSM) and digital soil functional mapping (DSFM) procedures to predict available water capacity (AWC)

  7. [Estimation of soil carbon sequestration potential in typical steppe of Inner Mongolia and associated uncertainty].

    Science.gov (United States)

    Wang, Wei; Wu, Jian-Guo; Han, Xing-Guo

    2012-01-01

    Based on the measurements in the enclosure and uncontrolled grazing plots in the typical steppe of Xilinguole, Inner Mongolia, this paper studied the soil carbon storage and carbon sequestration in the grasslands dominated by Leymus chinensis, Stipa grandis, and Stipa krylovii, respectively, and estimated the regional scale soil carbon sequestration potential in the heavily degraded grassland after restoration. At local scale, the annual soil carbon sequestration in the three grasslands all decreased with increasing year of enclosure. The soil organic carbon storage was significantly higher in the grasslands dominated by L. chinensis and Stipa grandis than in that dominated by Stipa krylovii, but the latter had much higher soil carbon sequestration potential, because of the greater loss of soil organic carbon during the degradation process due to overgrazing. At regional scale, the soil carbon sequestration potential at the depth of 0-20 cm varied from -0.03 x 10(4) to 3.71 x 10(4) kg C x a(-1), and the total carbon sequestration potential was 12.1 x 10(8) kg C x a(-1). Uncertainty analysis indicated that soil gravel content had less effect on the estimated carbon sequestration potential, but the estimation errors resulted from the spatial interpolation of climate data could be about +/- 4.7 x 10(9) kg C x a(-1). In the future, if the growth season precipitation in this region had an average variation of -3.2 mm x (10 a)(-1), the soil carbon sequestration potential would be de- creased by 1.07 x 10(8) kg C x (10 a)(-1).

  8. Abundant and stable char residues in soils: Implications for soil fertility and carbon sequestration

    Science.gov (United States)

    Large-scale soil application of biochar might enhance soil fertility and increase crop production, while also sequestering atmospheric carbon. Reaching these outcomes requires an undertanding of the chemical structure of biochar. Using advanced solid-state 13C nuclear magnetic resonance spectroscopy...

  9. Centennial black carbon turnover observed in a Russian steppe soil

    Directory of Open Access Journals (Sweden)

    K. Hammes

    2008-09-01

    Full Text Available Black carbon (BC, from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m−2, or about 7–10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182–541 years, much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene polycarboxylic acids (BPCA as molecular markers. The proportions of less-condensed (and thus more easily degradable BC structures decreased, whereas the highly condensed (and more recalcitrant BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  10. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Science.gov (United States)

    Forkuor, Gerald; Hounkpatin, Ozias K L; Welp, Gerhard; Thiel, Michael

    2017-01-01

    Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness

  11. Accounting for Carbon Stocks in Soils and Measuring GHGs Emission Fluxes from Soils: Do We Have the Necessary Standards?

    Directory of Open Access Journals (Sweden)

    Antonio Bispo

    2017-07-01

    Full Text Available Soil is a key compartment for climate regulation as a source of greenhouse gases (GHGs emissions and as a sink of carbon. Thus, soil carbon sequestration strategies should be considered alongside reduction strategies for other greenhouse gas emissions. Taking this into account, several international and European policies on climate change are now acknowledging the importance of soils, which means that proper, comparable and reliable information is needed to report on carbon stocks and GHGs emissions from soil. It also implies a need for consensus on the adoption and verification of mitigation options that soil can provide. Where consensus is a key aspect, formal standards and guidelines come into play. This paper describes the existing ISO soil quality standards that can be used in this context, and calls for new ones to be developed through (international collaboration. Available standards cover the relevant basic soil parameters including carbon and nitrogen content but do not yet consider the dynamics of those elements. Such methods have to be developed together with guidelines consistent with the scale to be investigated and the specific use of the collected data. We argue that this standardization strategy will improve the reliability of the reporting procedures and results of the different climate models that rely on soil quality data.

  12. Communicating soil carbon science to farmers: Incorporating credibility, salience and legitimacy

    DEFF Research Database (Denmark)

    Ingram, Julie; Mills, Jane; Dibari, Camilla

    2016-01-01

    A key narrative within climate change science is that conserving and improving soil carbon through agricultural practices can contribute to agricultural productivity and is a promising option for mitigating carbon loss through sequestration. This paper examines the potential disconnect between...... science and practice in the context of communicating information about soil carbon management. It focuses on the information producing process and on stakeholder (adviser, farmer representative, policy maker etc) assessment of the attributes credibility, salience and legitimacy. In doing this it draws...... on results from consultations with stakeholders in the SmartSOIL project which aimed to provide decision support guidelines about practices that optimise carbon mitigation and crop productivity. An iterative methodology, used to engage stakeholders in developing, testing and validating a range of decision...

  13. Effect of home construction on soil carbon storage-A chronosequence case study.

    Science.gov (United States)

    Majidzadeh, Hamed; Lockaby, B Graeme; Governo, Robin

    2017-07-01

    Urbanization results in the rapid expansion of impervious surfaces, therefore a better understanding of biogeochemical consequences of soil sealing is crucial. Previous research documents a significant reduction in soil carbon and nitrogen content, however, it is unclear if this decrease is a result of top soil removal or long-term soil sealing. In this study, soil biogeochemical properties were quantified beneath homes built on a crawl space at two depths (0-10 cm, and 10-20 cm). All homes, 11-114 years in age, were sampled in the Piedmont region of Alabama and Georgia, USA. This age range enabled the use of a chronosequence approach to estimate carbon loss or gain under the sampled homes. The difference in soil carbon content beneath homes and adjoining urban lawns showed a quadratic relation with age. Maximum C loss occurred at approximately fifty years. The same pattern was observed for MBC: C ratio suggesting that the soil carbon content was decreasing beneath the homes for first fifty years, then increased afterward. The average soil C and N content in the top 10 cm were respectively 61.86% (±4.42%), and 65.77% (±5.65%) lower underneath the homes in comparison to urban lawns. Microbial biomass carbon (MBC), and nitrogen (MBN) were significantly lower below the homes compared to the urban lawns, while bulk density and phosphorus content were higher beneath the homes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...... systems. Within the measurement range for the GMP343 sensors (0-20,000 ppm), mean results from the two systems were similar within the plough layer at the upslope (P = 0.060) and footslope (P = 0.139) position, and also below the plough layer at the upslope position (P = 0.795). However, results from...

  15. Soil carbon pools in different pasture systems

    Directory of Open Access Journals (Sweden)

    Francisco M. Cardozo, Jr.

    2016-03-01

    Full Text Available The aim of this study was to assess the carbon pools of a tropical soil where the native forest was replaced with different pasture systems. We studied five pasture production systems, including four monoculture systems with forage grasses such as Andropogon, Brachiaria, Panicum, and Cynodon, and an agroforestry system as well as a native vegetation plot. Greater availability of fulvic acid was detected in the agroforestry system as compared with that in the other systems. Higher lability of C was detected in the Andropogon system during the dry and rainy seasons and during the dry season in Cynodon. During the dry season, all pastures systems showed deficits in the net removal of atmospheric CO2. The structure and practices of the agroforestry system enables more carbon to be sequestered in the soil as compared with the monoculture pasture, suggesting that it is an important practice to mitigate climatic change and to improve soil quality.

  16. Soil carbon sequestration and the CDM. Opportunities and challenges for Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ringius, Lasse

    1999-12-17

    The agriculture sector dominates the economies of most sub-Saharan countries, contributing about one-third of the region's GDP, accounting for forty percent of the export, and employing about two-thirds of the economically active population. Moreover, some soils in sub-Saharan Africa could, by providing sinks for carbon sequestration, play an important role in managing global climate change. Improvements in agricultural techniques and land use practices could lead to higher agricultural productivity and accumulate soil carbon. Hence, soil carbon sequestration could produce local economic income as well as social and other benefits in Africa. The Clean Development Mechanism (CDM) established in the 1997 Kyoto Protocol is designed to give developed countries with high domestic abatement cost access to low-cost greenhouse gas abatement projects in developing countries, and to benefit developing countries selling projects to investors in developed countries. It is presently unclear whether the CDM will provide credit for sink enhancement and permit broader sink activities. Unfortunately, few cost estimates of soil carbon sequestration strategies presently exist. While these costs are uncertain and all input costs have not been estimated, manure-based projects in small-holdings in Kenya could increase maize yield significantly and sequester one ton of soil carbon for a net cost of -US$806. Clearly, such projects would be very attractive economically. There is presently an urgent need to launch useful long-term (>10 years) field experiments and demonstration projects in Africa. Existing data are not readily comparable, it is uncertain how large amount of carbon could be sequestered, findings are site-specific, and it is unclear how well the sites represent wider areas. To develop CDM projects, it is important that experimental trials generate reliable and comparable data. Finally, it will be important to estimate local environmental effects and economic benefits

  17. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

    Directory of Open Access Journals (Sweden)

    M. B. Siewert

    2018-03-01

    Full Text Available Soil organic carbon (SOC stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m. A high-resolution (1 m land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0–150 cm is estimated to be 8.3 ± 8.0 kg C m−2 and the SOC stored in the top meter (0–100 cm to be 7.7 ± 6.2 kg C m−2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions  >  30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of

  18. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  19. Mapping soil erosion risk in Serra de Grândola (Portugal)

    Science.gov (United States)

    Neto Paixão, H. M.; Granja Martins, F. M.; Zavala, L. M.; Jordán, A.; Bellinfante, N.

    2012-04-01

    Geomorphological processes can pose environmental risks to people and economical activities. Information and a better knowledge of the genesis of these processes is important for environmental planning, since it allows to model, quantify and classify risks, what can mitigate the threats. The objective of this research is to assess the soil erosion risk in Serra de Grândola, which is a north-south oriented mountain ridge with an altitude of 383 m, located in southwest of Alentejo (southern Portugal). The study area is 675 km2, including the councils of Grândola, Santiago do Cacém and Sines. The process for mapping of erosive status was based on the guidelines for measuring and mapping the processes of erosion of coastal areas of the Mediterranean proposed by PAP/RAC (1997), developed and later modified by other authors in different areas. This method is based on the application of a geographic information system that integrates different types of spatial information inserted into a digital terrain model and in their derivative models. Erosive status are classified using information from soil erodibility, slope, land use and vegetation cover. The rainfall erosivity map was obtained using the modified Fournier index, calculated from the mean monthly rainfall, as recorded in 30 meteorological stations with influence in the study area. Finally, the soil erosion risk map was designed by ovelaying the erosive status map and the rainfall erosivity map.

  20. Spatiotemporal models of global soil organic carbon stock to support land degradation assessments at regional and global scales: limitations, challenges and opportunities

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard; Sanderman, Jonathan; MacMillan, Robert

    2017-04-01

    There is an increasing interest in fitting and applying spatiotemporal models that can be used to assess and monitor soil organic carbon stocks (SOCS), for example, in support of the '4 pourmille' initiative aiming at soil carbon sequestration towards climate change adaptation and mitigation and UN's Land Degradation Neutrality indicators and similar degradation assessment projects at regional and global scales. The land cover mapping community has already produced several spatiotemporal data sets with global coverage and at relatively fine resolution e.g. USGS MODIS land cover annual maps for period 2000-2014; European Space Agency land cover maps at 300 m resolution for the year 2000, 2005 and 2010; Chinese GlobeLand30 dataset available for years 2000 and 2010; Columbia University's WRI GlobalForestWatch with deforestation maps at 30 m resolution for the period 2000-2016 (Hansen et al. 2013). These data sets can be used for land degradation assessment and scenario testing at global and regional scales (Wei et al 2014). Currently, however, no compatible global spatiotemporal data sets exist on status of soil quality and/or soil health (Powlson et al. 2013). This paper describes an initial effort to devise and evaluate a procedure for mapping spatio-temporal changes in SOC stocks using a complete stack of soil forming factors (climate, relief, land cover, land use, lithology and living organisms) represented mainly through remote sensing based time series of Earth images. For model building we used some 75,000 geo-referenced soil profiles and a stacks space-time covariates (land cover, land use, biomass, climate) at two standard resolutions: (1) 10 km resolution with data available for period 1920-2014 and (2) 1000 m resolution with data available for period 2000-2014. The initial results show that, although it is technically feasible to produce space time estimates of SOCS that demonstrate the procedure, the estimates are relatively uncertain (<45% of variation

  1. An approach to include soil carbon changes in life cycle assessments

    DEFF Research Database (Denmark)

    Petersen, Bjorn Molt; Knudsen, Marie Trydeman; Hermansen, John Erik

    2013-01-01

    to estimate carbon sequestration to be included in LCA is suggested and applied to two examples where the inclusion of carbon sequestration is especially relevant: 1) Bioenergy: removal of straw from a Danish soil for energy purposes and 2) Organic versus conventional farming: comparative study of soybean...... comparable to the IPCC 2006 tier I approach in a time perspective of 20 year, where after the suggested methodology showed a continued soil carbon change toward a new steady state. The suggested method estimated a carbon sequestration for the first example when storing straw in the soil instead of using...... it for bioenergy of 54, 97 and 213 kg C t(-1) straw C in a 200, 100 and 20 years perspective, respectively. For the conversion from conventional to organic soybean production, a difference of 32, 60 or 143 kg soil C ha(-1) yr(-1) in a 200,100 or 20 years perspective, respectively was found. The study indicated...

  2. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  3. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Suitability aero-geophysical methods for generating conceptual soil maps and their use in the modeling of process-related susceptibility maps

    Science.gov (United States)

    Tilch, Nils; Römer, Alexander; Jochum, Birgit; Schattauer, Ingrid

    2014-05-01

    In the past years, several times large-scale disasters occurred in Austria, which were characterized not only by flooding, but also by numerous shallow landslides and debris flows. Therefore, for the purpose of risk prevention, national and regional authorities also require more objective and realistic maps with information about spatially variable susceptibility of the geosphere for hazard-relevant gravitational mass movements. There are many and various proven methods and models (e.g. neural networks, logistic regression, heuristic methods) available to create such process-related (e.g. flat gravitational mass movements in soil) suszeptibility maps. But numerous national and international studies show a dependence of the suitability of a method on the quality of process data and parameter maps (f.e. Tilch & Schwarz 2011, Schwarz & Tilch 2011). In this case, it is important that also maps with detailed and process-oriented information on the process-relevant geosphere will be considered. One major disadvantage is that only occasionally area-wide process-relevant information exists. Similarly, in Austria often only soil maps for treeless areas are available. However, in almost all previous studies, randomly existing geological and geotechnical maps were used, which often have been specially adapted to the issues and objectives. This is one reason why very often conceptual soil maps must be derived from geological maps with only hard rock information, which often have a rather low quality. Based on these maps, for example, adjacent areas of different geological composition and process-relevant physical properties are razor sharp delineated, which in nature appears quite rarly. In order to obtain more realistic information about the spatial variability of the process-relevant geosphere (soil cover) and its physical properties, aerogeophysical measurements (electromagnetic, radiometric), carried out by helicopter, from different regions of Austria were interpreted

  5. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  6. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  7. Distributions of carbon in calcareous soils under different land uses in western Iran

    Directory of Open Access Journals (Sweden)

    H. Sepahvand

    2016-10-01

    Full Text Available Concentrations of Natural stable and unstable carbon in ecosystems have been used extensively to help to understand a wide range of soil processes and functions. This study was conducted to explore the effects of land use changes on different carbon fractions (F1, F2, F3 and F4, permanganate oxidizable carbon (POXC, soil organic carbon (SOC and total organic carbon (TOC associated with soils in calcareous soils of western Iran. Four popular land uses in the selected site including natural forest, range land, dryland farming and irrigated farming systems were employed as the basis of soil sampling. The results showed a strong relationship between land use conversion and SOC stocks changes. The greatest mean values for carbon content and the least mean values of CaCO3 in bulk topsoil (0–15 cm in the forest land were observed. Dryland farming had the least both active and passive pools of C in comparison with the other land uses. The positive and significant correlations was observed between SOC, Total C and POXC contents and different C fractions. Taking C and POXC pools into account, a more definitive picture of the soil C is obtained than when only total C is measured. The influence of land use changes on overall soil carbon stocks could be helpful for making management decision for farmers and policy makers in the future, for enhancing the potential of C sequestration in western Iran.

  8. Soil pH Mapping with an On-The-Go Sensor

    OpenAIRE

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH ManagerTM, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH ManagerTM under ...

  9. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  10. Nitrogen Cycling Considerations for Low-Disturbance, High-Carbon Soil Management in Climate-Adaptive Agriculture

    Science.gov (United States)

    Bruns, M. A.; Dell, C. J.; Karsten, H.; Bhowmik, A.; Regan, J. M.

    2016-12-01

    Agriculturists are responding to climate change concerns by reducing tillage and increasing organic carbon inputs to soils. Although these management practices are intended to enhance soil carbon sequestration and improve water retention, resulting soil conditions (moister, lower redox, higher carbon) are likely to alter nitrogen cycling and net greenhouse gas (GHG) emissions. Soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical that higher N2O emissions may occur when farmers apply practices intended to make soils more resilient to climate change. As an example, the application of animal manures to increase soil organic matter and replace fossil fuel-based fertilizers could either increase or decrease GHGs. The challenges involved with incorporating manures in reduced-tillage soils often result in N2O emission spikes immediately following manure application. On the other hand, manures enrich soils with bacteria capable of dissimilatory nitrate reduction to ammonium (DNRA), a process that could counter N2O production by denitrification. Since bacterial DNRA activity is enhanced by labile forms of carbon, the forms of carbon in soils may play a role in determining the predominant N cycling processes and the extent and duration of DNRA activity. A key question is how management can address the tradeoff of higher N2O emissions from systems employing climate-adaptive practices. Management factors such as timing and quality of carbon inputs therefore may be critical considerations in minimizing GHG emissions from low-disturbance, high-carbon cropping systems.

  11. Mapping the variation of soil organic carbon (SOC) stock in time and space in Sicily, an extremely variable semi-arid Mediterranean region, highlighted that C was lost in area rich in organic C and gained in poor-C areas

    Science.gov (United States)

    Schillaci, Calogero; Acutis, Marco; Lombardo, Luigi; Lipani, Aldo; Fantappiè, Maria; Märker, Michael; Saia, Sergio

    2017-04-01

    The stock of organic carbon in the soil (SOC) is an indicator of soil ability to support agro-ecosystems productivity and resilience to environmental changes (Schillaci et al. 2016; 2017). In addition, SOC stock change through space and especially time is a valuable indicator of the soil ability to sequester CO2 from the atmosphere and thus its potential to reduce the greenhouse gas effect. In the present work, we mapped (1-km resolution) the space-time variation of the SOC stock after 15 years (1993 to 2008) in a semi-arid Mediterranean area (25,286 km2) after modelling SOC concentration (0-0.4 m depth) with boosted regression trees (BRT) and computing the SOC stock after the application of the bulk density maps of ISRIC (soilgrid.com, Hengl et al., 2014). The area under study (Sicily, south of Italy) has a plenty of contrasting environments, with changing ecosystems, soils, and microclimatic regions. The BRT procedure was run with a set of 25 predictors per year, including land use, soil traits, morphometric indicators and remote sensing covariates (derived from Landsat5 data). The BRT output consisted of a high pseudo-R2(=0.71 for 1993 and 0.63 for 2008) of the SOC concentration, low uncertainty (standard deviation doi:10.1016/j.geoderma.2016.10.

  12. The Global Turnover Time Distribution of Soil Carbon Derived from a Meta-analysis of Radiocarbon Profiles

    Science.gov (United States)

    He, Y.; Randerson, J. T.; Allison, S. D.; Torn, M. S.; Harden, J. W.; Smith, L. J.; van der Voort, T.; Trumbore, S.

    2015-12-01

    Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle feedbacks under climate change. Soil carbon turnover times provide information about the sensitivity of carbon pools to changes in inputs and warming. The spatial and vertical distribution of soil carbon turnover times emerges from the interplay between climate, vegetation, and soil properties. Radiocarbon levels of soil organic matter can be used to estimate soil carbon turnover using models that take into account radioactive decay over centuries to millennia and inputs of 14C from atmospheric weapons testing ("bomb carbon") during the second half of the 20th century. By synthesizing more than 200 soil radiocarbon profiles from all major biomes and soil orders, we 1) explored the major controlling factors for soil carbon turnover times of surface and deeper soil layers; 2) developed predictive models (tree-based regression, support vector regression and linear regression models) of Δ14C that depends on depth, climate, vegetation, and soil types; and 3) extrapolated the predictive model to produce the first global distribution of soil carbon turnover times to the depth of 1m. Preliminary results indicated that climate and depth were primary controls of the vertical distribution of Δ14C, contributing to about 70% of the variability in our model. Vegetation and soil order exerted similar level of controls (about 15% each). The predictive model performed reasonably well with an R2 of 0.81 and RMSE (root-mean-squared error) of about 50‰ for topsoil and 100‰ for subsoil, as estimated using cross-validation. Extrapolation of the predictive model to the globe in combination with existing soil carbon information (e.g., Harmonized World Soil Database) indicated that more than half of the global total soil carbon in the top 1m had a turnover time of less than 500 years. Subsoils (30-100cm) had millennium-scale turnover times, with the majority (70%) turning over

  13. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    Science.gov (United States)

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Brevik, Eric. C.; Cerdá, Artemi

    2015-04-01

    Soil organic carbon (SOC) is extremely important in the global carbon (C) cycle; also, SOC is a soil property subject to changes, inasmuch as SOC is highly variable in space and time. The scientific community is researching the fate of the organic carbon in the ecosystems and this is why there is a blooming interest on this topic (Oliveira et al., 2014; Kukal et al., 2015). Soil organic matter play a key role in the Soil System (Fernández-Romero et al., 2014; Parras-Alcántara and Lozano García, 2014; Lozano-García and Parras-Alcántara; Parras-Alcántara et al., 2015).Globally it is known that soil C sequestration is a strategy to mitigate climate change. Over time, some researchers have analyzed entire soil profiles (ESP) by pedogenetic horizons and other researchers have analyzed soil control sections (SCS) (edaphic controls to different thickness), and in each case the benefits of the methodology established was justified. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km2 forested area in southern Spain. The park is in a Mediterranean environment and is a natural area (free of human disturbance). Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C to 0.6353 Tg C respectively (1 Tg = 10E12 g). However, when the top soil (surface horizon and superficial section control) was analyzed, this difference increased to

  15. Mapping Agricultural Frozen Soil on the Watershed Scale Using Remote Sensing Data

    International Nuclear Information System (INIS)

    Khaldoune, J; Bernier, M; Van Bochove, E; Nolin, M.C

    2011-01-01

    This paper presents an empirical model for classifying frozen/unfrozen soils in the entire Bras d Henri River watershed (167 km 2 ) near Quebec City (Quebec, Canada). It was developed to produce frozen soil maps under snow cover using RADARSAT-1 fine mode images and in situ data during three winters. Twelve RADARSAT-1 images were analyzed from fall 2003 to spring 2006 to discern the intra- and inter annual variability of frozen soil characteristics. Regression models were developed for each soil group (parent material-drainage-soil type) and land cover to establish a threshold for frozen soil from the backscattering coefficients (HH polarization). Tilled fields showed higher backscattering signal (+3 db) than the untilled fields. The overall classification accuracy was 87% for frozen soils and 94% for unfrozen soils. With respect to land use, that is, tilled versus untilled fields, an overall accuracy of 89% was obtained for the tilled fields and 92% for the untilled fields. Results show that this new mapping approach using RADARSAT-1 images can provide estimates of surface soil status (frozen/unfrozen) at the watershed scale in agricultural areas.

  16. Mapping soil heterogeneity using RapidEye satellite images

    Science.gov (United States)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  17. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    Science.gov (United States)

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  18. Organic carbon stocks in the soils of Brazil

    NARCIS (Netherlands)

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial

  19. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  20. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    Energy Technology Data Exchange (ETDEWEB)

    He, Yujie [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Yang, Jinyan [Univ. of Georgia, Athens, GA (United States). Warnell School of Forestry and Natural Resources; Northeast Forestry Univ., Harbin (China). Center for Ecological Research; Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy; Harden, Jennifer W. [U.S. Geological Survey, Menlo Park, CA (United States); McGuire, Anthony D. [Alaska Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Univ. of Alaska, Fairbanks, AK (United States). U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit; Liu, Yaling [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Wang, Gangsheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst. and Environmental Sciences Division; Gu, Lianhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2015-11-20

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 PgCyr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  1. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-08-01

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  2. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2006-08-15

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  3. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models

    NARCIS (Netherlands)

    Gruijter, de J.J.; Walvoort, D.J.J.; Gaans, van P.F.M.

    1997-01-01

    Soil maps as multi-purpose models of spatial soil distribution have a much higher level of aggregation (map units) than the models of soil processes and land-use effects that need input from soil maps. This mismatch between aggregation levels is particularly detrimental in the context of precision

  4. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  5. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

    Science.gov (United States)

    Schädel, Christina; Bader, Martin K.-F.; Schuur, Edward A.G.; Biasi, Christina; Bracho, Rosvel; Čapek, Petr; De Baets, Sarah; Diáková, Kateřina; Ernakovich, Jessica; Estop-Aragones, Cristian; Graham, David E.; Hartley, Iain P.; Iversen, Colleen M.; Kane, Evan S.; Knoblauch, Christian; Lupascu, Massimo; Martikainen, Pertti J.; Natali, Susan M.; Norby, Richard J.; O'Donnell, Jonathan A.; Roy Chowdhury, Taniya; Šantrůčková, Hana; Shaver, Gaius; Sloan, Victoria L.; Treat, Claire C.; Turetsky, Merritt R.; Waldrop, Mark P.; Wickland, Kimberly P.

    2016-01-01

    Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.

  6. Spatial prediction of Soil Organic Carbon contents in croplands, grasslands and forests using environmental covariates and Generalized Additive Models (Southern Belgium)

    Science.gov (United States)

    Chartin, Caroline; Stevens, Antoine; van Wesemael, Bas

    2015-04-01

    Providing spatially continuous Soil Organic Carbon data (SOC) is needed to support decisions regarding soil management, and inform the political debate with quantified estimates of the status and change of the soil resource. Digital Soil Mapping techniques are based on relations existing between a soil parameter (measured at different locations in space at a defined period) and relevant covariates (spatially continuous data) that are factors controlling soil formation and explaining the spatial variability of the target variable. This study aimed at apply DSM techniques to recent SOC content measurements (2005-2013) in three different landuses, i.e. cropland, grassland, and forest, in the Walloon region (Southern Belgium). For this purpose, SOC databases of two regional Soil Monitoring Networks (CARBOSOL for croplands and grasslands, and IPRFW for forests) were first harmonized, totalising about 1,220 observations. Median values of SOC content for croplands, grasslands, and forests, are respectively of 12.8, 29.0, and 43.1 g C kg-1. Then, a set of spatial layers were prepared with a resolution of 40 meters and with the same grid topology, containing environmental covariates such as, landuses, Digital Elevation Model and its derivatives, soil texture, C factor, carbon inputs by manure, and climate. Here, in addition to the three classical texture classes (clays, silt, and sand), we tested the use of clays + fine silt content (particles < 20 µm and related to stable carbon fraction) as soil covariate explaining SOC variations. For each of the three land uses (cropland, grassland and forest), a Generalized Additive Model (GAM) was calibrated on two thirds of respective dataset. The remaining samples were assigned to a test set to assess model performance. A backward stepwise procedure was followed to select the relevant environmental covariates using their approximate p-values (the level of significance was set at p < 0.05). Standard errors were estimated for each of

  7. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management

    Science.gov (United States)

    Permanganate oxidizable C (POXC; i.e., active C) is a relatively new method that can quantify labile soil C rapidly and inexpensively. Despite limited reports of positive correlations with particulate organic carbon (POC), microbial biomass carbon (MBC) and other soil carbon (C) fractions, little i...

  8. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  9. CARBON FIXING CAPACITY OF AMAZONIAN SOILS IN RELATION TO ITS DEGRADATION CONDITIONS

    OpenAIRE

    Clara Patricia Peña Venegas; Edmundo Rafael Mendoza Olmos; Carlos Hernando Rodríguez León; Gladys Inés Cardona Vanegas; Bernardo Eusebio Betancurt Parra; Maolenmarx Tatiana Garzón Gómez

    2015-01-01

    Amazonian deforestation and transformation alert about their effects worldwide. One concern is the increase of the Carbon (C) levels emitted. Previous works have estimated the fixed C in Amazon forests without including the C stored in soils. Within soil, the organic carbon molecules are highly sensitive to degradation, affecting the natural capacity of soils to fix and store C. The present study evaluates the impact of degradation in the natural capacity of Amazon soils to fix C. Thirty five...

  10. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    Science.gov (United States)

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  11. Multisensor On-The-Go Mapping of Soil Organic Carbon Content

    DEFF Research Database (Denmark)

    Knadel, Maria; Thomsen, Anton Gårde; Greve, Mogens Humlekrog

    2011-01-01

    resulted in values as follows: root mean square error of prediction = 5.94; R2 = 0.84; and ratio of standard error of prediction to SD [RPD] = 2.3. This study showed that the quality of those maps can be improved and spatial sampling intensities can be reduced by incorporating auxiliary data as a source...... mapping SOC using a mobile sensor platform (MSP) and conventional grid sampling on a highly variable agricultural field in Denmark. Sixty-four samples collected on a 25-m grid were used to generate a reference map of SOC distribution using kriging. Mobile sensory data (visible–near infrared spectra...

  12. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  13. Radiocarbon Evidence That Millennial and Fast-Cycling Soil Carbon are Equally Sensitive to Warming

    Science.gov (United States)

    Vaughn, L. S.; Torn, M. S.; Porras, R. C.

    2017-12-01

    Within the century, the Arctic is expected to shift from a sink to a source of atmospheric CO2 due to climate-induced increases in soil carbon mineralization. The magnitude of this effect remains uncertain, due in large part to unknown temperature sensitivities of organic matter decomposition. In particular, the distribution of temperature sensitivities across soil carbon pools remains unknown. New experimental approaches are needed, because studies that fit multi-pool models to CO2 flux measurements may be sensitive to model assumptions, statistical effects, and non-steady-state changes in substrate availability or microbial activity. In this study, we developed a new methodology using natural abundance radiocarbon to evaluate temperature sensitivities across soil carbon pools. In two incubation experiments with soils from Barrow, AK, we (1) evaluated soil carbon age and decomposability, (2) disentangled the effects of temperature and substrate depletion on carbon mineralization, and (3) compared the temperature sensitivities of fast- and slow-cycling soil carbon pools. From a long-term incubation, both respired CO2 and the remaining soil organic matter were highly depleted in radiocarbon. At 20 cm depth, median Δ14C values were -167‰ in respired CO2 and -377‰ in soil organic matter, corresponding to turnover times of 1800 and 4800 years, respectively. Such negative Δ14C values indicate both storage and decomposition of old, stabilized carbon, while radiocarbon differences between the mineralized and non-mineralized fractions suggest that decomposability varies along a turnover time gradient. Applying a new analytical method combining CO2 flux and Δ14C, we found that fast- and slow-cycling carbon pools were equally sensitive to temperature, with a Q10 of 2 irrespective of turnover time. We conclude that in these Arctic soils, ancient soil carbon is vulnerable to warming under thawed, aerobic conditions. In contrast to many previous studies, we found no

  14. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  15. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  16. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  17. Quantification and mapping of the supply of and demand for carbon storage and sequestration service in woody biomass and soil to mitigate climate change in the socio-ecological environment.

    Science.gov (United States)

    Sahle, Mesfin; Saito, Osamu; Fürst, Christine; Yeshitela, Kumelachew

    2018-05-15

    In this study, the supply of and demand for carbon storage and sequestration of woody biomass in the socio-ecological environment of the Wabe River catchment in Gurage Mountains, Ethiopia, were estimated. This information was subsequently integrated into a map that showed the balance between supply capacities and demand in a spatially explicit manner to inform planners and decision makers on methods used to manage local climate change. Field data for wood biomass and soil were collected, satellite images for land use and land cover (LULC) were classified, and secondary data from statistics and studies for estimation were obtained. Carbon storage, the rate of carbon sequestration and the rate of greenhouse gas (GHG) emissions from diverse sources at different LULCs, was estimated accordingly by several methods. Even though a large amount of carbon was stored in the catchment, the current yearly sequestration was less than the CO 2 -eq. GHG emissions. Forest and Enset-based agroforestry emissions exhibited the highest amount of woody biomass, and cereal crop and wetland exhibited the highest decrease in soil carbon sequestration. CO 2 -eq. GHG emissions are mainly caused by livestock, nitrogenous fertilizer consumption, and urban activities. The net negative emissions were estimated for the LULC classes of cereal crop, grazing land, and urban areas. In conclusion, without any high-emission industries, GHG emissions can be greater than the regulatory capacity of ecosystems in the socio-ecological environment. This quantification approach can provide information to policy and decision makers to enable them to tackle climate change at the root level. Thus, measures to decrease emission levels and enhance the sequestration capacity are crucial to mitigate the globally delivered service in a specific area. Further studies on the effects of land use alternatives on net emissions are recommended to obtain in-depth knowledge on sustainable land use planning. Copyright

  18. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  19. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Science.gov (United States)

    Liu, Ting; Wang, Liang; Feng, Xiaojuan; Zhang, Jinbo; Ma, Tian; Wang, Xin; Liu, Zongguang

    2018-03-01

    Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  20. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-03-01

    Full Text Available Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP in the temperate grasslands (Xilinhot and Keqi and 7 % of NEP in the alpine grasslands (Gangcha. By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C. These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  1. Towards a model-based inventory of soil organic carbon in agricultural soils for the Swiss greenhouse gas reporting

    Science.gov (United States)

    Staudt, K.; Leifeld, J.; Bretscher, D.; Fuhrer, J.

    2012-04-01

    The Swiss inventory submission under the United Nations Framework Convention on Climate Change (UNFCCC) reports on changes in soil organic carbon stocks under different land-uses and land-use changes. The approach currently employed for cropland and grassland soils combines Tier 1 and Tier 2 methods and is considered overly simplistic. As the UNFCC encourages countries to develop Tier 3 methods for national greenhouse gas reporting, we aim to build up a model-based inventory of soil organic carbon in agricultural soils in Switzerland. We conducted a literature research on currently employed higher-tier methods using process-based models in four countries: Denmark, Sweden, Finland and the USA. The applied models stem from two major groups differing in complexity - those belonging to the group of general ecosystem models that include a plant-growth submodel, e.g. Century, and those that simulate soil organic matter turnover but not plant-growth, e.g. ICBM. For the latter group, carbon inputs to the soil from plant residues and roots have to be determined separately. We will present some aspects of the development of a model-based inventory of soil organic carbon in agricultural soils in Switzerland. Criteria for model evaluation are, among others, modeled land-use classes and land-use changes, spatial and temporal resolution, and coverage of relevant processes. For model parameterization and model evaluation at the field scale, data from several long-term agricultural experiments and monitoring sites in Switzerland is available. A subsequent regional application of a model requires the preparation of regional input data for the whole country - among others spatio-temporal meteorological data, agricultural and soil data. Following the evaluation of possible models and of available data, preference for application in the Swiss inventory will be given to simpler model structures, i.e. models without a plant-growth module. Thus, we compared different allometric relations

  2. GEOSTATISTICAL BASED SUSCEPTIBILITY MAPPING OF SOIL EROSION AND OPTIMIZATION OF ITS CAUSATIVE FACTORS: A CONCEPTUAL FRAMEWORK

    Directory of Open Access Journals (Sweden)

    ABDULKADIR T. SHOLAGBERU

    2017-11-01

    Full Text Available Soil erosion hazard is the second biggest environmental challenges after population growth causing land degradation, desertification and water deterioration. Its impacts on watersheds include loss of soil nutrients, reduced reservoir capacity through siltation which may lead to flood risk, landslide, high water turbidity, etc. These problems become more pronounced in human altered mountainous areas through intensive agricultural activities, deforestation and increased urbanization among others. However, due to challenging nature of soil erosion management, there is great interest in assessing its spatial distribution and susceptibility levels. This study is thus intend to review the recent literatures and develop a novel framework for soil erosion susceptibility mapping using geostatistical based support vector machine (SVM, remote sensing and GIS techniques. The conceptual framework is to bridge the identified knowledge gaps in the area of causative factors’ (CFs selection. In this research, RUSLE model, field studies and the existing soil erosion maps for the study area will be integrated for the development of inventory map. Spatial data such as Landsat 8, digital soil and geological maps, digital elevation model and hydrological data shall be processed for the extraction of erosion CFs. GISbased SVM techniques will be adopted for the establishment of spatial relationships between soil erosion and its CFs, and subsequently for the development of erosion susceptibility maps. The results of this study include evaluation of predictive capability of GIS-based SVM in soil erosion mapping and identification of the most influential CFs for erosion susceptibility assessment. This study will serve as a guide to watershed planners and to alleviate soil erosion challenges and its related hazards.

  3. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    Science.gov (United States)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  4. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    International Nuclear Information System (INIS)

    Hansen, Veronika; Müller-Stöver, Dorette; Ahrenfeldt, Jesper; Holm, Jens Kai; Henriksen, Ulrik Birk; Hauggaard-Nielsen, Henrik

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was assessed in a short-term soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon was respired as CO 2 , compared to 80% of the straw carbon added. The stability of GB was also confirmed by low H/C and O/C atomic ratios with lowest values for WGB (H/C 0.12 and O/C 0.10). The soil application of GBs exhibited a liming effect increasing the soil pH from ca 8 to 9. Results from scanning electron microscopy and BET analyses showed high porosity and specific surface area of both GBs, indicating a high potential to increase important soil quality parameters such as soil structure, nutrient and water retention, especially for WGB. These results seem promising regarding the possibility to combine an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements. - Highlights: • Biomass gasification can combine efficient bioenergy production with valuable biochar residuals for soil improvements. • The two investigated gasification biochars are recalcitrant indicating soil carbon sequestration potential. • Gasification biochars are potential soil improvers due to high specific surface area, liming effect

  5. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    Science.gov (United States)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and

  6. Mississippi Basin Carbon Project: upland soil database for sites in Nishnabotna River basin, Iowa

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Haughy, R.; Kramer, L.; Zheng, Shuhui

    2001-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton and others, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or "decomposition enhancement". Global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney and others, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor and others, 1969; Rhoton, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth (Harden et al, 1999), it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well. As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal and others (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs. If true, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil.

  7. Mississippi Basin Carbon Project; upland soil database for sites in Yazoo Basin, northern Mississippi

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Huntington, T.G.

    1999-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton et al, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or 'decomposition enhancement', and global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal et al (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that if eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil. Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney et al, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor et al, 1993; Rhoton and Tyler, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth, it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well.

  8. Soil, environmental, and watershed measurements in support of carbon cycling studies in northwestern Mississippi

    Science.gov (United States)

    Huntington, T.G.; Harden, J.W.; Dabney, S.M.; Marion, D.A.; Alonso, C.; Sharpe, J.M.; Fries, T.L.

    1998-01-01

    Measurements including soil respiration, soil moisture, soil temperature, and carbon export in suspended sediments from small watersheds were recorded at several field sites in northwestern Mississippi in support of hillslope process studies associated with the U.S. Geological Survey's Mississippi Basin Carbon Project (MBCP). These measurements were made to provide information about carbon cycling in agricultural and forest ecosystems to understand the potential role of erosion and deposition in the sequestration of soil organic carbon in upland soils. The question of whether soil erosion and burial constitutes an important net sink of atmospheric carbon dioxide is one hypothesis that the MBCP is evaluating to better understand carbon cycling and climate change. This report contains discussion of methods used and presents data for the period December 1996 through March 1998. Included in the report are ancillary data provided by the U.S. Department of Agriculture (USDA) ARS National Sedimentation Laboratory and U.S. Forest Service (USFS) Center for Bottomland Hardwoods Research on rainfall, runoff, sediment yield, forest biomass and grain yield. Together with the data collected by the USGS these data permit the construction of carbon budgets and the calibration of models of soil organic matter dynamics and sediment transport and deposition. The U.S. Geological Survey (USGS) has established cooperative agreements with the USDA and USFS to facilitate collaborative research at research sites in northwestern Mississippi.

  9. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    Science.gov (United States)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  10. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  11. Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.

    Science.gov (United States)

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2017-08-24

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.

  12. Mechanisms of Soil Carbon Sequestration

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  13. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks

    NARCIS (Netherlands)

    Manning, P.; de Vries, F.T.; Tallowin, J.R.B.; Smith, R.; Mortimer, S.R.; Pilgrim, E.S.; Harrison, K.A.; Wright, D.G.; Quirk, H.; Benson, J.; Shipley, B.; Cornelissen, J.H.C.; Kattge, J.; Bönisch, G.; Wirth, C.; Bardgett, R.D.

    2015-01-01

    Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their

  14. Mapping Soil hydrologic features in a semi-arid irrigated area in Spain

    Science.gov (United States)

    Jiménez-Aguirre, M.° Teresa; Isidoro, Daniel; Usón, Asunción

    2016-04-01

    The lack of soil information is a managerial problem in irrigated areas in Spain. The Violada Irrigation District (VID; 5234 ha) is a gypsic, semi-arid region in the Middle Ebro River Basin, northeast Spain. VID is under irrigation since the 1940's. The implementation of the flood irrigation system gave rise to waterlogging problems, solved along the years with the installation of an artificial drainage network. Aggregated water balances have been performed in VID since the early 1980's considering average soil properties and aggregated irrigation data for the calculations (crop evapotranspiration, canal seepage, and soil drainage). In 2008-2009, 91% of the VID was modernized to sprinkler irrigation. This new system provides detailed irrigation management information that together with detailed soil information would allow for disaggregated water balances for a better understanding of the system. Our goal was to draw a semi-detailed soil map of VID presenting the main soil characteristics related to irrigation management. A second step of the work was to set up pedotransfer functions (PTF) to estimate the water content and saturated hydraulic conductivity (Ks) from easily measurable parameters. Thirty four pits were opened, described and sampled for chemical and physical properties. Thirty three additional auger holes were sampled for water holding capacity (WHC; down to 60 cm), helping to draw the soil units boundaries. And 15 Ks tests (inverse auger hole method) were made. The WHC was determined as the difference between the field capacity (FC) and wilting point (WP) measured in samples dried at 40°C during 5 days. The comparison with old values dried at 105°C for 2 days highlighted the importance of the method when gypsum is present in order to avoid water removal from gypsum molecules. The soil map was drawn down to family level. Thirteen soil units were defined by the combination of five subgroups [Typic Calcixerept (A), Petrocalcic Calcixerept (B), Gypsic

  15. How do soil properties and soil carbon stocks change after land abandonment in Mediterranean mountain areas?

    Science.gov (United States)

    Nadal Romero, Estela; Cammeraat, Erik; Pérez Cardiel, Estela; Lasanta, Teodoro

    2016-04-01

    Land abandonment and subsequent revegetation processes (due to secondary succession and afforestation practices) are global issues with important implications in Mediterranean mountain areas. Moreover, the effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions, and afforestation practices are increasingly viewed as an environmental restorative land use change prescription and are considered one of the most efficient carbon sequestration strategies currently available. The MED-AFFOREST project aims to gain more insight into the discussion by exploring the following central research questions: (i) what is the impact of land abandonment on soil properties? and (ii) how do soil organic carbon change after land abandonment? The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil properties and soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, meadows, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees were analysed. Results showed that changes in soil properties after land abandonment were limited, even if afforestation practices were carried out and no differences were observed between natural succession and afforestation. The results on SOC dynamics showed that: (i) SOC contents were higher in the PN sites in the topsoil (10 cm), (ii) when all the profile was considered no significant differences were observed between meadows and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) meadows should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration

  16. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  17. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    International Nuclear Information System (INIS)

    Zhang Na; Yang Yu; Tao Shu; Liu Yan; Shi Kelu

    2011-01-01

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for α-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: → Soil organic carbon content determines the OCP sequestration fraction in soil. → Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. → The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. → DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  18. Manganese Driven Carbon Oxidation along Oxic-Anoxic Interfaces in Forest Soils

    Science.gov (United States)

    Jones, M. E.; Keiluweit, M.

    2017-12-01

    Soils are the largest and most dynamic terrestrial carbon pool, storing a total of 3000 Pg of C - more than the atmosphere and biosphere combined. Because microbial oxidation determines the proportion of carbon that is either stored in the soil or emitted as climate active CO2, its rate directly impacts the global carbon cycle. Recently, a strong correlation between oxidation rates and manganese (Mn) content has been observed in forest soils globally, leading researchers conclude that Mn "is the single main factor governing" the oxidation of plant-derived particulate organic carbon (POC). Many soils are characterized by steep oxygen gradients, forming oxic-anoxic transitions that enable rapid redox cycling of Mn. Oxic-anoxic interfaces have been shown to promote fungal Mn oxidation and the formation of ligand-stabilized Mn(III), which ranks second only to superoxide as the most powerful oxidizing agent in the environment. Here we examined fungal Mn(III) formation along redox gradients in forest soils and their impact on POC oxidation rates. In both field and laboratory settings, oxic-anoxic transition zones showed the greatest Mn(III) concentrations, along with enhanced fungal growth, oxidative potential, production of soluble oxidation products, and CO2 production. Additional electrochemical and X-ray (micro)spectroscopic analyses indicated that oxic-anoxic interfaces represent ideal niches for fungal Mn(III) formation, owing to the ready supply of Mn(II), ligands and O2. Combined, our results suggest that POC oxidation relies on fungal Mn cycling across oxic-anoxic interfaces to produce Mn(III) based oxidants. Because predicted changes in the frequency and timing of precipitation dramatically alter soil moisture regimes in forest soils, understanding the mechanistic link between Mn cycling and carbon oxidation along oxic-anoxic interfaces is becoming increasingly important.

  19. Using Environmental Variables for Studying of the Quality of Sampling in Soil Mapping

    OpenAIRE

    A. Jafari; Norair Toomanian; R. Taghizadeh Mehrjerdi

    2016-01-01

    Introduction: Methods of soil survey are generally empirical and based on the mental development of the surveyor, correlating soil with underlying geology, landforms, vegetation and air-photo interpretation. Since there are no statistical criteria for traditional soil sampling; this may lead to bias in the areas being sampled. In digital soil mapping, soil samples may be used to elaborate quantitative relationships or models between soil attributes and soil covariates. Because the relationshi...

  20. Evaluation of digital soil mapping approaches with large sets of environmental covariates

    Science.gov (United States)

    Nussbaum, Madlene; Spiess, Kay; Baltensweiler, Andri; Grob, Urs; Keller, Armin; Greiner, Lucie; Schaepman, Michael E.; Papritz, Andreas

    2018-01-01

    The spatial assessment of soil functions requires maps of basic soil properties. Unfortunately, these are either missing for many regions or are not available at the desired spatial resolution or down to the required soil depth. The field-based generation of large soil datasets and conventional soil maps remains costly. Meanwhile, legacy soil data and comprehensive sets of spatial environmental data are available for many regions. Digital soil mapping (DSM) approaches relating soil data (responses) to environmental data (covariates) face the challenge of building statistical models from large sets of covariates originating, for example, from airborne imaging spectroscopy or multi-scale terrain analysis. We evaluated six approaches for DSM in three study regions in Switzerland (Berne, Greifensee, ZH forest) by mapping the effective soil depth available to plants (SD), pH, soil organic matter (SOM), effective cation exchange capacity (ECEC), clay, silt, gravel content and fine fraction bulk density for four soil depths (totalling 48 responses). Models were built from 300-500 environmental covariates by selecting linear models through (1) grouped lasso and (2) an ad hoc stepwise procedure for robust external-drift kriging (georob). For (3) geoadditive models we selected penalized smoothing spline terms by component-wise gradient boosting (geoGAM). We further used two tree-based methods: (4) boosted regression trees (BRTs) and (5) random forest (RF). Lastly, we computed (6) weighted model averages (MAs) from the predictions obtained from methods 1-5. Lasso, georob and geoGAM successfully selected strongly reduced sets of covariates (subsets of 3-6 % of all covariates). Differences in predictive performance, tested on independent validation data, were mostly small and did not reveal a single best method for 48 responses. Nevertheless, RF was often the best among methods 1-5 (28 of 48 responses), but was outcompeted by MA for 14 of these 28 responses. RF tended to over