WorldWideScience

Sample records for soil carbon density

  1. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  2. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  3. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000

    Science.gov (United States)

    Yu, Yanyan; Guo, Zhengtang; Wu, Haibin; Kahmann, Julia A.; Oldfield, Frank

    2009-06-01

    We address the spatial changes in organic carbon density and storage in cultivated soils in China from 1980 to 2000 on the basis of measured data from individual studies and those acquired during the second national soil survey in China. The results show a carbon gain in ˜66% of the cultivated area of China as a whole with the increase in soil organic carbon (SOC) density mostly ranging from 10% to 30%. Soil organic carbon density increased in fluvi-aquic soils (fluvisols, Food and Agriculture Organization (FAO) of the United Nations) in north China, irrigated silting soils (calcaric fluvisols) in northwest China, latosolic red earths (haplic acrisols/alisols), and paddy soils (fluvisols/cambisols) in south China. In contrast, significant decreases are observed in black soils (phaeozems) in northeast China and latosols (haplic acrisols) in southwest China. No significant changes are detected in loessial soils (calcaric regosols) and dark loessial soils (calcisols) in the loess plateau region. The total SOC storage and average density in the upper 20 cm in the late 1990s are estimated to be ˜5.37 Pg C and 2.77 kg/m2, respectively, compared with the values of ˜5.11 Pg C and 2.63 kg/m2 in the early 1980s. This reveals an increase of SOC storage of 0.26 Pg C and suggests an overall carbon sink for cultivated soils in China, which has contributed 2-3% to the global terrestrial ecosystem carbon absorption from 1980 to 2000. Statistical analyses suggest an insignificant contribution to the observed SOC increase from climate change, and we infer that it is mostly attributable to improved agricultural practices. Despite the SOC density increases over 20 years, the SOC density of the cultivated soils in China in the late 1990s is still ˜30% lower compared to their uncultivated counterparts in comparable soil types, suggesting a considerable potential for SOC restoration through improving management practices. Assuming a restoration of ˜50% of the lost SOC in the next 30

  4. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  5. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  6. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  7. Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2015-06-01

    Full Text Available Soil aggregation and the distribution of total organic carbon (TOC may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS and conventional tillage system (CTS, one plowing and two disking. This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum. An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 % than fallow plus CTS (ranging from 74.62 to 85.94 %. Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

  8. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  9. [Carbon density distribution characteristics and influencing factors in aerially seeded Pinus massoniana plantations].

    Science.gov (United States)

    Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang

    2017-12-01

    The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.

  10. Organic carbon characteristics in density fractions of soils with contrasting mineralogies

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Johnston, Cliff T.; Sparks, Donald L.

    2017-12-01

    This study was aimed to evaluate the role of minerals in the preservation of organic carbon (OC) in different soil types. Sequential density fractionation was done to isolate particulate organic matter (POM, 2.6 g cm-3) from four soils, i.e., a Ferralsol, a Luvisol, a Vertisol and a Solonetz. Organic matter (OM) in the density fractions was characterised using diffuse reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mass spectroscopy in the original states (i.e., without any chemical pre-treatment), and after 6% sodium hypochlorite (NaOCl) and 10% hydrofluoric acid (HF) treatments. The NaOCl oxidation resistant fraction was considered as a relatively stable pool of OC and the HF soluble fraction was presumed as the mineral bound OC. Phyllosilicate-dominated soils, i.e., Vertisol, Luvisol and Solonetz, contained a greater proportion of POM than Fe and Al oxide-dominated Ferralsol. Wider C:N ratio and lower δ13C and δ15N in POM suggest the dominance of labile OC in this fraction and this was also supported by a greater proportion of NaOCl oxidised OC in the same fraction that was enriched with aliphatic C. The sequential density fractionation method effectively isolated OM into three distinct groups in the soils: (i) OM associated with Fe and Al oxides (>1.8 g cm-3 in the Ferralsol); (ii) OM associated with phyllosilicates (1.8-2.6 g cm-3) and (iii) OM associated with quartz and feldspar (>2.6 g cm-3) in the other three soils. Greater oxidation resistance, and more dissolution of OC during the HF treatment in the Fe and Al oxides dominated fractions suggest a greater potential of these minerals to protect OC from oxidative degradation as compared to the phyllosilicates, and quartz and feldspar matrices. OM associated with Fe and Al oxides was predominantly aromatic and carboxylate C. Decreased C:N ratio in the NaOCl oxidation resistant OM and HF soluble OM of phyllosilicates, and quartz and feldspars dominant fractions

  11. Density-dependent microbial turnover improves soil carbon model predictions of long-term litter manipulations

    Science.gov (United States)

    Georgiou, Katerina; Abramoff, Rose; Harte, John; Riley, William; Torn, Margaret

    2017-04-01

    Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity via abiotic effects on soil or mediated by changes in plant inputs. Recently, many promising microbial models of soil organic carbon (SOC) decomposition have been proposed to advance understanding and prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs. Here we diagnose the sources of instability in four models that span the range of complexity of these recent microbial models, by sequentially adding complexity to a simple model to include microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We propose a formulation that introduces density-dependence of microbial turnover, which acts to limit population sizes and reduce oscillations. We compare these models to results from 24 long-term C-input field manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that widely used first-order models and microbial models without density-dependence cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures. The proposed formulation improves predictions of long-term C-input changes, and implies greater SOC storage associated with CO2-fertilization-driven increases in C inputs over the coming century compared to common microbial models. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in Earth System Models.

  12. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    DEFF Research Database (Denmark)

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...

  13. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  14. Soil carbon dioxide (CO 2 ) efflux of two shrubs in response to plant ...

    African Journals Online (AJOL)

    Although plant density should affect soil carbon dioxide (CO2) efflux and carbon cycling in semi-arid regions, the effects of plant density on soil CO2 efflux are not well known. This study was performed to investigate the responses of soil CO2 efflux of two dominant shrubs (Caragana korshinkii and Salix psammophila) to ...

  15. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  16. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    International Nuclear Information System (INIS)

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-01-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm"−"3 (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm"−"3; and LF2, 1.8–2.0 g cm"−"3) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C_H_W_E) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ"1"3C values. The hot water extraction and natural δ"1"3C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying soil depths in extensively

  17. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Breulmann, Marc [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); Helmholtz-Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstraße 15, 04318 Leipzig (Germany); Boettger, Tatjana [Helmholtz-Centre for Environmental Research – UFZ, Department of Isotope Hydrology, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Buscot, François [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany); Gruendling, Ralf [Helmholtz-Centre for Environmental Research – UFZ, Department, Department of Soil Physics, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Schulz, Elke [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany)

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm{sup −3} (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm{sup −3}; and LF2, 1.8–2.0 g cm{sup −3}) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C{sub HWE}) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ{sup 13}C values. The hot water extraction and natural δ{sup 13}C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying

  18. Linking Soil Physical Parameters Along a Density Gradient in a Loess-Soil Long-Term Experiment

    DEFF Research Database (Denmark)

    Eden, Marie; Møldrup, Per; Schjønning, Per

    2012-01-01

    It is important to understand the impact of texture and organic carbon (OC) on soil structure development. Only few studies investigated this for silt-dominated soils. In this study, soil physical properties were determined on samples from a controlled experiment (Static Fertilization Experiment...... hydraulic conductivity. The management resulted in a distinct gradient in OC. A bulk density gradient developed from differences in amount of clay not complexed with OC. This gradient in bulk density mainly affected content of pores larger than 3 [mu]m. The air-connected porosity measured by a pycnometer...

  19. Impact of shade and cocoa plant densities on soil organic carbon ...

    African Journals Online (AJOL)

    user

    There were no soil organic carbon sequestration in the highest cocoa plant ... It is concluded that cocoa farming could be an effective means to mitigate carbon dioxide ... growth and yield of cocoa at the CRIG substation Bunso (060 13' N,.

  20. A study of soil organic carbon distribution and storage in the Northeast Plain of China

    Directory of Open Access Journals (Sweden)

    Xiaohuan Xi

    2011-04-01

    Full Text Available Employing the Unit Soil Carbon Amount (USCA approach, soil carbon storage was calculated across the Northeast Plain of China based on the Multi-purpose Regional Geochemical Survey conducted in 2004–2006 (MRGS. The results indicated that the soil organic carbon (SOC storage in topsoil (0–0.2 m, subsoil (0–1 m and deep soil (0–1.8 m was 768.1 Mt, 2978.4 Mt and 3729.2 Mt with densities of 3327.8 t/km2, 12,904.7 t/km2 and 16,157.5 t/km2, respectively. These values were consistent with national averages, whereas the soil carbon densities showed a clear increasing trend from the southern area of the Northeast Plain (Liaoning, to the middle (Jilin and the northern Plain (Heilongjiang — particularly in terms of topsoil carbon density, which increased from 2284.2, to 3436.7 and 3861.5 t/km2, respectively. In comparison to carbon data obtained from the Second National Soil Survey in 1984–1986 (SNSS, the topsoil SOC storage values from the MRGS were found to have decreased by 320.59 Mt (29.4%, with an average annual decline of 16.0 Mt (l.73% over the 20 years. In the southern, middle and northern areas of the plain, soil carbon densities decreased by 1060.6 t/km2, 1646.4 t/km2 and 1300.2 t/km2, respectively, with an average value of 1389.0 t/km2 for the whole plain. These findings indicate that the decrease in soil carbon density varied according to the different ecosystems and land-use types. Therefore, ratios of soil carbon density were calculated in order to study the carbon dynamic balance between ecosystems, and to further explore distribution characteristics, as well as the sequestration potential of SOC.

  1. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  2. Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density

    Directory of Open Access Journals (Sweden)

    Long Guo

    2017-10-01

    Full Text Available Soil organic carbon stock plays a key role in the global carbon cycle and the precision agriculture. Visible and near-infrared reflectance spectroscopy (VNIRS can directly reflect the internal physical construction and chemical substances of soil. The partial least squares regression (PLSR is a classical and highly commonly used model in constructing soil spectral models and predicting soil properties. Nevertheless, using PLSR alone may not consider soil as characterized by strong spatial heterogeneity and dependence. However, considering the spatial characteristics of soil can offer valuable spatial information to guarantee the prediction accuracy of soil spectral models. Thus, this study aims to construct a rapid and accurate soil spectral model in predicting soil organic carbon density (SOCD with the aid of the spatial autocorrelation of soil spectral reflectance. A total of 231 topsoil samples (0–30 cm were collected from the Jianghan Plain, Wuhan, China. The spectral reflectance (350–2500 nm was used as auxiliary variable. A geographically-weighted regression (GWR model was used to evaluate the potential improvement of SOCD prediction when the spatial information of the spectral features was considered. Results showed that: (1 The principal components extracted from PLSR have a strong relationship with the regression coefficients at the average sampling distance (300 m based on the Moran’s I values. (2 The eigenvectors of the principal components exhibited strong relationships with the absorption spectral features, and the regression coefficients of GWR varied with the geographical locations. (3 GWR displayed a higher accuracy than that of PLSR in predicting the SOCD by VNIRS. This study aimed to help people realize the importance of the spatial characteristics of soil properties and their spectra. This work also introduced guidelines for the application of GWR in predicting soil properties by VNIRS.

  3. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C J; Ilvesniemi, H; Liski, J; Mecke, M [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H; Helmisaari, H S; Pietikaeinen, J; Smolander, A [Finnish Forest Research Inst., Vantaa (Finland)

    1997-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  4. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  5. Vertical Distribution of Soil Organic Carbon Density in Relation to Land Use/Cover, Altitude and Slope Aspect in the Eastern Himalayas

    Directory of Open Access Journals (Sweden)

    Tshering Dorji

    2014-10-01

    Full Text Available In-depth understanding about the vertical distribution of soil organic carbon (SOC density is crucial for carbon (C accounting, C budgeting and designing appropriate C sequestration strategies. We examined the vertical distribution of SOC density under different land use/land cover (LULC types, altitudinal zones and aspect directions in a montane ecosystem of Bhutan. Sampling sites were located using conditioned Latin hypercube sampling (cLHS scheme. Soils were sampled based on genetic horizons. An equal-area spline function was fitted to interpolate the target values to predetermined depths. Linear mixed model was fitted followed by mean separation tests. The results show some significant effects of LULC, altitudinal zone and slope aspect on the vertical distribution of SOC density in the profiles. Based on the proportion of mean SOC density in the first 20 cm relative to the cumulative mean SOC density in the top meter, the SOC density under agricultural lands (34% was more homogeneously distributed down the profiles than forests (39%, grasslands (59% and shrublands (43%. Similarly, the SOC density under 3500–4000 m zone (35% was more uniformly distributed compared to 3000–3500 m zone (43% and 1769–2500 m and 2500–3000 m zones (41% each. Under different aspect directions, the north and east-facing slopes (38% each had more uniform distribution of SOC density than south (40% and west-facing slopes (49%.

  6. A cost-efficient method to assess carbon stocks in tropical peat soil

    Directory of Open Access Journals (Sweden)

    M. W. Warren

    2012-11-01

    Full Text Available Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m−3; Cd as a function of bulk density (gC cm−3; Bd, which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151 for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm−3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  7. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  8. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  9. Digital mapping of soil organic carbon contents and stocks in Denmark.

    Science.gov (United States)

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.

  10. Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.

    Science.gov (United States)

    Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus

    2016-02-01

    The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.

  11. A global map of mangrove forest soil carbon at 30 m spatial resolution

    Science.gov (United States)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  12. Understanding on Soil Inorganic Carbon Transformation in North China

    Science.gov (United States)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    Soil total carbon balance in long-term fertilization field experiments in North China Plain. Four long-term fertilization experiments (20-30 years) were investigated on SOC in 40 cm, calcium carbonate and active carbonate (AC) in 180 or 100 cm soil profile, δ13C values of SOC and δ13C and δ18O values of carbonate in soil profile, particle distribution of SOC and SIC in main soil layers, and ratios of pedogenic carbonate (PC) in SIC and C3-SOC in SOC. The most important conclusion is that fertilization of more than 20 years can produce detectable impact on pool size, profile distribution, ratio of active component and PC of SIC, which make it clear that SIC pool must be considered in the proper evaluation of the response of soil carbon balance to human activities in arid and semi-arid region. Land use impact on soil total carbon pool in Inner Mongolia. With the data of the second survey of soils in Inner Mongolia and the 58 soil profile data from Wu-lan-cha-bu-meng and Xi-lin-hao-te, combining with the 13C and 18O techniques, SIC density and stock in Inner Mongolia is estimated. The main conclusion is that soils in inner Mongolia have the same level of SOC and SIC, with the density in 100cm pedons of 8.97 kg•m-2 and 8.61 kg•m-2, respectively. Meanwhile, the significantly positive relationship between SOC and SIC in A layer indicates co-sequestration of SOC and SIC exist. Evaluation of the methods for measuring CA enzyme activity in soil. In laboratory, method in literature to measure CA activity in soil sample was repeated, and found it was not valid indeed. The failure could not attribute to the disturbance of common ions like NO3-, SO42-, Ca2+, and Mg2+. The adsorption of CA to soil material was testified as the main reason for that failure. A series of extractants were tested but no one can extract the adsorbed CA and be used in measuring CA activity in soil sample. Carbonate transformation in field with straw returned and biochar added. In 2009, a field

  13. Topographic Metric Predictions of Soil redistribution and Organic Carbon Distribution in Croplands

    Science.gov (United States)

    Mccarty, G.; Li, X.

    2017-12-01

    Landscape topography is a key factor controlling soil redistribution and soil organic carbon (SOC) distribution in Iowa croplands (USA). In this study, we adopted a combined approach based on carbon () and cesium (137Cs) isotope tracers, and digital terrain analysis to understand patterns of SOC redistribution and carbon sequestration dynamics as influenced by landscape topography in tilled cropland under long term corn/soybean management. The fallout radionuclide 137Cs was used to estimate soil redistribution rates and a Lidar-derived DEM was used to obtain a set of topographic metrics for digital terrain analysis. Soil redistribution rates and patterns of SOC distribution were examined across 560 sampling locations at two field sites as well as at larger scale within the watershed. We used δ13C content in SOC to partition C3 and C4 plant derived C density at 127 locations in one of the two field sites with corn being the primary source of C4 C. Topography-based models were developed to simulate SOC distribution and soil redistribution using stepwise ordinary least square regression (SOLSR) and stepwise principal component regression (SPCR). All topography-based models developed through SPCR and SOLSR demonstrated good simulation performance, explaining more than 62% variability in SOC density and soil redistribution rates across two field sites with intensive samplings. However, the SOLSR models showed lower reliability than the SPCR models in predicting SOC density at the watershed scale. Spatial patterns of C3-derived SOC density were highly related to those of SOC density. Topographic metrics exerted substantial influence on C3-derived SOC density with the SPCR model accounting for 76.5% of the spatial variance. In contrast C4 derived SOC density had poor spatial structure likely reflecting the substantial contribution of corn vegetation to recently sequestered SOC density. Results of this study highlighted the utility of topographic SPCR models for scaling

  14. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.M. [College of Materials Science and Engineering, Chongqing University (China); Luo, S.X. [Department of Chemistry, Zunyi Normal College, Zunyi (China); Sun, C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wu, Y.H.

    2010-04-15

    In this study, effect of cations, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, and anions, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, NO{sub 3}{sup -} on electrochemical corrosion behavior of carbon steel in simulated soil solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicate that the Ca{sup 2+}and Mg{sup 2+} can decrease the corrosion current density of carbon steel in simulated soil solution, and K{sup +}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, and NO{sub 3}{sup -} can increase the corrosion density. All the above ions in the simulated soil solution can decrease its resistivity, but they have different effect on the charge transfer resistivity. This finding can be useful in evaluating the corrosivity of certain soil through chemical analysis, and provide data for construction engineers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  16. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    Science.gov (United States)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  17. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China

    Science.gov (United States)

    Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili

    2018-06-01

    The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.

  18. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China

    Science.gov (United States)

    Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili

    2018-04-01

    The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.

  19. How energetic and environmental constraints of microorganisms determine the carbon turnover in soils

    Science.gov (United States)

    Don, A.; Rödenbeck, C.; Gleixner, G.

    2012-04-01

    Microorganisms are the main catalysts driving carbon fluxes from soils. Traditional concepts of soil carbon stabilization failed to account for environmental and energy constraints of microorganisms. The distribution and density of organic carbon in the soil profile maybe a key factor determining the carbon stability and carbon flux. Decomposition is a two-step process following the Michaelis Menten kinetics: In a first step enzyme and substrate form a joint complex and then the decomposition reaction is catalyzed. Thus, biological decomposition relies on the encounter of substrate and the degradation catalyst, the microorganisms. Lower substrate concentration decreases the likelihood of an enzyme to hit a substrate molecule, to form an enzyme-substrate complex, and thus to catalyze the reaction. However, it was unproofen if this concept can be appliued to soils also. A long-term lab experiment revealed that the soil carbon turnover decreased with increasing carbon dilution due to mixture with soil minerals. The ability of microorganisms to move towards substrate in soils seems to be limited. To elucidate the effect of concentration-controlled carbon turnover, we devised the simple simulation model SCAMP based on the two-step kinetic with microorganism and carbon particles been simulated explicitly. The SCAMP model was able to simulate soil carbon profiles and age profiles in a realistic manner. The only carbon stabilization mechanism implemented in the model is the distribution of microorganisms and carbon particles in the soil and thus the availability of carbon for microorganism, which is especially important for subsoil carbon dynamics. The experiments and the model help to explain why large fractions of soil carbon have been stabilized for millennia and decoupled from the global carbon cycle.

  20. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States.

    Science.gov (United States)

    Hinson, Audra L; Feagin, Rusty A; Eriksson, Marian; Najjar, Raymond G; Herrmann, Maria; Bianchi, Thomas S; Kemp, Michael; Hutchings, Jack A; Crooks, Steve; Boutton, Thomas

    2017-12-01

    Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO 2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO 2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km 2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm -3 across 0-15 cm, 0.055 g cm -3 across 0-100 cm, and 0.040 g cm -3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements. © 2017 John Wiley & Sons Ltd.

  1. [Soil organic carbon sequestration rate and its influencing factors in farmland of Guanzhong Plain: a case study in Wugong County, Shannxi Province].

    Science.gov (United States)

    Zhang, Xiao-Wei; Xu, Ming-Xiang

    2013-07-01

    Take Wugong County as an example, soil carbon storage and soil carbon sequestration rate were calculated, the change law of farmland soil organic carbon was explored, and the relationship of farmland soil organic carbon and natural factors, human factors was further revealed. The results of the study showed that: (1) The soil organic carbon contents in 80% of the sampling sites were in the range of 8.0-12.0 g x kg(-1), and the organic carbon contents in 0-20 cm soils showed a normal distribution. (2) In 2011, the organic carbon density of the 0-20 cm farmland soil was 26.3 t x hm(-2), below the national average soil organic carbon density (33.45 t x hm(-2)) of the arable layer. In the last 30 years, the soil carbon sequestration rate in the 0-20 cm layer was 71.3 kg x (hm2 x a)(-1), and in the past five years, the carbon sequestration rate was 480 kg x (hm x a)(-1). The recent carbon sequestration rate was higher than the national average soil carbon sequestration rate of the arable layer [380.78 kg x (hm2 x a)(-1)]. (3) In the semi-humid plain region, soil organic carbon was mainly affected by soil types, landform types, organic fertilizer. Soil types accounted for 30.2% of the organic carbon variability; the landform types and the organic fertilizer could explain 37.7% and 32.1%, respectively. The results of the comprehensive analysis showed that the farmland soil organic carbon density of Wugong County in the past 30 years is increasing, and this probably relies on the utilization of chemical fertilizer and the returning straw. Further study should be conducted on the impact of the chemical fertilizer and returning straw.

  2. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  3. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  4. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  5. Stable and radioactive carbon in Indian soils: implications to soil carbon dynamics

    International Nuclear Information System (INIS)

    Laskar, A.H.; Yadava, M.G.; Ramesh, R.

    2011-01-01

    Radiocarbon is a very useful tool to study soil carbon dynamic. The mean residence time of SOC in Indian soils is about a century at the top 0-15 cm, increases linearly to reach values ranging from 2000 to 4000 yrs at a depth of 100 cm. It mainly depends on the clay content indicating that the clay is the main governing factor for SOC stabilization. Stable carbon and oxygen isotopes in soil carbonates and SOC are good proxies for paleoclimate and paleovegetation reconstruction. The present day sub-humid climate in the lower Narmada valley has been established prior to ∼ 3 ka. Two comparatively arid phases around 2.1 and 1.3 ka are recorded by oxygen isotopes of soil carbonates; consistent with other proxy records showing its regional significance

  6. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  7. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  8. Carbon sequestration in agricultural soils: a potential carbon trading opportunity?

    International Nuclear Information System (INIS)

    Cowie, Annette L.; Murphy, Brian; Rawson, Andrew; Wilson, Brian; Singh, Bhupinderpal; Young, Rick; Grange, Ian

    2007-01-01

    Full text: Emissions trading schemes emerging in Australia and internationally create a market mechanism by which release of greenhouse gases incurs a cost, and implementation of abatement measures generates a financial return. There is growing interest amongst Australian landholders in emissions trading based on sequestration of carbon in soil through modified land management practices. Intensively cropped soils have low carbon content, due to disturbance, erosion and regular periods of minimal organic matter input. Because cropping soils in Australia have lost a substantial amount of carbon there is significant potential to increase carbon stocks through improved land management practices. Evidence from long term trials and modelling indicates that modified cropping practices (direct drilling, stubble retention, controlled traffic) have limited impact on soil carbon (0 to +2 tC02e ha-' year1) whereas conversion from cropping to pasture gives greater increases. Small-increases in soil carbon over large areas can contribute significantly to mitigation of Australia's greenhouse gas emissions. Furthermore, increase in soil organic matter will improve soil health, fertility and resilience. However, the inclusion of soil carbon offsets in an emissions trading scheme cannot occur until several barriers are overcome. The first relates to credibility. Quantification of the extent to which specific land management practices can sequester carbon in different environments will provide the basis for promotion of the concept. Current research across Australia is addressing this need. Secondly, cost-effective and accepted methods of estimating soil carbon change must be available. Monitoring soil carbon to document change on a project scale is not viable due to the enormous variability in carbon stocks on micro and macro scales. Instead estimation of soil carbon change could be undertaken through a combination of baseline measurement to assess the vulnerability of soil carbon

  9. Evaluation of Three Field-Based Methods for Quantifying Soil Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rice, Charles W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wielopolski, Lucien [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebinger, Michael H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reeves, James B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomson, Allison M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harris, Ron [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Francis, Barry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitra, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rappaport, Aaron [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etchevers, Jorge [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sayre, Ken D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Govaerts, Bram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCarty, G. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-31

    Three advanced technologies to measure soil carbon (C) density (g C m22) are deployed in the field and the results compared against those obtained by the dry combustion (DC) method. The advanced methods are: a) Laser Induced Breakdown Spectroscopy (LIBS), b) Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS), and c) Inelastic Neutron Scattering (INS). The measurements and soil samples were acquired at Beltsville, MD, USA and at Centro International para el Mejoramiento del Maiz y el Trigo (CIMMYT) at El Bata´n, Mexico. At Beltsville, soil samples were extracted at three depth intervals (0–5, 5–15, and 15–30 cm) and processed for analysis in the field with the LIBS and DRIFTS instruments. The INS instrument determined soil C density to a depth of 30 cm via scanning and stationary measurements. Subsequently, soil core samples were analyzed in the laboratory for soil bulk density (kg m23), C concentration (g kg21) by DC, and results reported as soil C density (kg m22). Results from each technique were derived independently and contributed to a blind test against results from the reference (DC) method. A similar procedure was employed at CIMMYT in Mexico employing but only with the LIBS and DRIFTS instruments. Following conversion to common units, we found that the LIBS, DRIFTS, and INS results can be compared directly with those obtained by the DC method. The first two methods and the standard DC require soil sampling and need soil bulk density information to convert soil C concentrations to soil C densities while the INS method does not require soil sampling. We conclude that, in comparison with the DC method, the three instruments (a) showed acceptable performances although further work is needed to improve calibration techniques and (b) demonstrated their portability and their capacity to perform under field conditions.

  10. Densities of carbon foils

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.

    1991-01-01

    The densities of arc-evaporated carbon target foils have been measured by several methods. The density depends upon the method used to measure it; for the same surface density, values obtained by different measurement techniques may differ by fifty percent or more. The most reliable density measurements are by flotation, yielding a density of 2.01±0.03 g cm -3 , and interferometric step height with the surface density known from auxiliary measurements, yielding a density of 2.61±0.4 g cm -3 . The difference between these density values mayy be due in part to the compressive stresses that carbon films have while still on their substrates, uncertainties in the optical calibration of surface densities of carbon foils, and systematic errors in step-height measurements. Mechanical thickness measurements by micrometer caliper are unreliable due to nonplanarity of these foils. (orig.)

  11. Soil carbon stocks in Sarawak, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, E., E-mail: Eswaran_padmanabhan@petronas.com.my [Department of Geosciences, Faculty of Geosciences and Petroleum Engineering, Universiti Teknologi PETRONAS, Tronoh, 31750, Perak (Malaysia); Eswaran, H.; Reich, P.F. [USDA-Natural Resources Conservation Service, Washington, DC 20250 (United States)

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO{sub 2}, CH{sub 4}, and N{sub 2}O have an anthropic source and of these CO{sub 2} is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m{sup −2} m{sup −1}), while Oxisols and Ultisols rate second (about 10–15 kg m{sup −2} m{sup −1}). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m{sup −2} m{sup −1}. Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of

  12. Soil carbon stocks in Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Padmanabhan, E.; Eswaran, H.; Reich, P.F.

    2013-01-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO 2 , CH 4 , and N 2 O have an anthropic source and of these CO 2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m −2 m −1 ), while Oxisols and Ultisols rate second (about 10–15 kg m −2 m −1 ). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m −2 m −1 . Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of soil carbon pools in Histosols • Strategies

  13. Pattern and change of soil organic carbon storage in China: 1960s-1980s

    International Nuclear Information System (INIS)

    Shaoqiang Wang; Hanqin Tian; Jiyuan Liu; Shufen Pan

    2003-01-01

    Soils, an important component of the global carbon cycle, can be either net sources or net sinks of atmospheric carbon dioxide (CO 2 ). In this study, we use the first and second national soil surveys of China to investigate patterns and changes in soil organic carbon storage (SOC) during the period from the 1960s to the 1980s. Our results show that there is a large amount of variability in SOC density among different soil types and land uses in the 1980s. The SOC density in the wetlands of Southwest China was the highest (45 kg/m 2 ), followed by meadow soils in the South (26 kg/m 2 ), forest and woodlands in the Northwest (19 kg/m 2 ), steppe and grassland in the Northwest (15 kg/m 2 ), shrubs in the Northwest (12 kg/m 2 ), paddy lands in the Northwest (13 kg/m 2 ), and drylands in the Northwest (11 kg/m 2 ). The desert soils of the Western region ranked the lowest (1 kg/m 2 ). The density of SOC was generally higher in the west than other regions. Eastern China had the lowest SOC density, which was associated with a long history of extensive land use in the region. The estimation of SOC storage for the entire nation was 93 Pg C in the 1960s and 92 Pg C in the 1980s. SOC storage decreased about 1 Pg C during the 1960s-1980s. This amount of decrease in SOC for the entire nation is small and statistically insignificant. To adequately characterize spatial variations in SOC, larger sampling sizes of soil profiles will be required in the future analyses

  14. Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context

    Science.gov (United States)

    Susan E. Crow; Christopher W. Swanston; Kate Lajtha; J. Renee Brooks; Heath Keirstead

    2007-01-01

    Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). Soil density fractions are often interpreted as organic matter pools with different carbon...

  15. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  16. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    Science.gov (United States)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.

    2014-12-01

    The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.

  17. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    Energy Technology Data Exchange (ETDEWEB)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-07-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m{sup -}2 yr{sup -}1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59{+-}0.43 g kg{sup -}1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha{sup -}1 yr{sup -}1. (Author) 20 refs.

  18. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  19. Proximal sensing for soil carbon accounting

    Science.gov (United States)

    England, Jacqueline R.; Viscarra Rossel, Raphael A.

    2018-05-01

    Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires measurements of soil organic C concentration, bulk density, and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness, and their state of development. The most suitable method for measuring soil organic C concentrations appears to be visible-near-infrared (vis-NIR) spectroscopy and, for bulk density, active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardized and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. These are particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss requirements for developing new soil C accounting methods based on proximal sensing, including requirements for recording, verification, and auditing.

  20. Effect of home construction on soil carbon storage-A chronosequence case study

    International Nuclear Information System (INIS)

    Majidzadeh, Hamed; Lockaby, B. Graeme; Governo, Robin

    2017-01-01

    Urbanization results in the rapid expansion of impervious surfaces, therefore a better understanding of biogeochemical consequences of soil sealing is crucial. Previous research documents a significant reduction in soil carbon and nitrogen content, however, it is unclear if this decrease is a result of top soil removal or long-term soil sealing. In this study, soil biogeochemical properties were quantified beneath homes built on a crawl space at two depths (0–10 cm, and 10–20 cm). All homes, 11–114 years in age, were sampled in the Piedmont region of Alabama and Georgia, USA. This age range enabled the use of a chronosequence approach to estimate carbon loss or gain under the sampled homes. The difference in soil carbon content beneath homes and adjoining urban lawns showed a quadratic relation with age. Maximum C loss occurred at approximately fifty years. The same pattern was observed for MBC: C ratio suggesting that the soil carbon content was decreasing beneath the homes for first fifty years, then increased afterward. The average soil C and N content in the top 10 cm were respectively 61.86% (±4.42%), and 65.77% (±5.65%) lower underneath the homes in comparison to urban lawns. Microbial biomass carbon (MBC), and nitrogen (MBN) were significantly lower below the homes compared to the urban lawns, while bulk density and phosphorus content were higher beneath the homes. - Highlights: • The average soil carbon and nitrogen content decreased by 61.86 %, and 65.77 % underneath the homes in top 10 cm. • Soils beneath the homes are a source of carbon loss for approximately first fifty years. • After age fifty carbon sequestration becomes the dominant process underneath the homes. • Top soil removal and initial disturbance account for a major portion of carbon loss beneath the impervious surfaces. • Average microbial biomass carbon and nitrogen in top 10 cm decreased 65.14 % and 80.51 % respectively beneath the homes. - Soil carbon content in top

  1. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  2. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Science.gov (United States)

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  3. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2011-05-01

    Full Text Available Precise determination of changes in organic carbon (OC stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD, and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1 time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2 the contribution of different sources of uncertainties to OC stocks; (3 the effect of OC stock calculation on mass rather than volume base for change detection; and (4 the potential use of pedotransfer functions (PTF for estimating BD in repeated inventories.

    The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD with 100 sampling points (105 ± 28 gC m−2 for the upper 10 cm of the soil than grassland and forest sites (206 ± 64 and 246 ± 64 gC m−2 for 0–10 cm, respectively. Expected general trends in soil OC indicate that changes could be detectable after 2–15 yr with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to

  4. Ectomycorrhizal fungi slow soil carbon cycling.

    Science.gov (United States)

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.

  5. Monitoring soil carbon will prepare growers for a carbon trading system

    Directory of Open Access Journals (Sweden)

    Emma C. Suddick

    2013-07-01

    Full Text Available California growers could reap financial benefits from the low-carbon economy and cap-and-trade system envisioned by the state's AB 32 law, which seeks to lower greenhouse gas emissions statewide. Growers could gain carbon credits by reducing greenhouse gas emissions and sequestering carbon through reduced tillage and increased biomass residue incorporation. First, however, baseline stocks of soil carbon need to be assessed for various cropping systems and management practices. We designed and set up a pilot soil carbon and land-use monitoring network at several perennial cropping systems in Northern California. We compared soil carbon content in two vineyards and two orchards (walnut and almond, looking at conventional and conservation management practices, as well as in native grassland and oak woodland. We then calculated baseline estimates of the total carbon in almond, wine grape and walnut acreages statewide. The organic walnut orchard had the highest total soil carbon, and no-till vineyards had 27% more carbon in the surface soil than tilled vineyards. We estimated wine grape vineyards are storing significantly more soil carbon per acre than almond and walnut orchards. The data can be used to provide accurate information about soil carbon stocks in perennial cropping systems for a future carbon trading system.

  6. Using elevation gradients to study climate controls on soil carbon dynamics

    Science.gov (United States)

    Trumbore, S.; Marzaioli, F.; Castanha, C.; Amundson, R.

    2009-04-01

    Elevation gradients provide the opportunity to study vegetation and climate gradients in a setting where other soil forming factors such as parent material and soil age are held constant. We use the observed changes in radiocarbon content of organic matter fractionated by density and other methods to infer the dynamics of soil carbon and how it varies with elevation along transects in the Sierra Nevada mountains in California, USA. In surface litter layers, changes in the radiocarbon content from 1992 to 2006 in litter layers show that these layers are more dynamic than originally inferred from a comparison based on changes between the 1950s and the 1990s. In mineral soils, fractions often considered to be the most slowly cycling (hydrolysis residue) showed large changes in 14C in the last decade. We use incubations to determine the mean age of carbon respired by microbes along the same gradients; these data are compared to incubations from other sites and show that climate and vegetation are a major controls of the mean age of fast-cycling carbon in litter and soils.

  7. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  8. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Science.gov (United States)

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pcarbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Review of progress in soil inorganic carbon research

    Science.gov (United States)

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  10. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  11. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  12. Effect of home construction on soil carbon storage-A chronosequence case study.

    Science.gov (United States)

    Majidzadeh, Hamed; Lockaby, B Graeme; Governo, Robin

    2017-07-01

    Urbanization results in the rapid expansion of impervious surfaces, therefore a better understanding of biogeochemical consequences of soil sealing is crucial. Previous research documents a significant reduction in soil carbon and nitrogen content, however, it is unclear if this decrease is a result of top soil removal or long-term soil sealing. In this study, soil biogeochemical properties were quantified beneath homes built on a crawl space at two depths (0-10 cm, and 10-20 cm). All homes, 11-114 years in age, were sampled in the Piedmont region of Alabama and Georgia, USA. This age range enabled the use of a chronosequence approach to estimate carbon loss or gain under the sampled homes. The difference in soil carbon content beneath homes and adjoining urban lawns showed a quadratic relation with age. Maximum C loss occurred at approximately fifty years. The same pattern was observed for MBC: C ratio suggesting that the soil carbon content was decreasing beneath the homes for first fifty years, then increased afterward. The average soil C and N content in the top 10 cm were respectively 61.86% (±4.42%), and 65.77% (±5.65%) lower underneath the homes in comparison to urban lawns. Microbial biomass carbon (MBC), and nitrogen (MBN) were significantly lower below the homes compared to the urban lawns, while bulk density and phosphorus content were higher beneath the homes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    study area from 0.6 to 45%. Then we constructed a statistical mixed model for predicting bulk density (Db) of humus layer from multiple variables (SOC content, depth, moisture content, texture). Constructed model is not compatible for predicting Db values for peat soils, which was estimated through the degree of peat decomposition. For modelling Db we used a dataset compiled from soil samples collected from 1983-1994 under the framework of national monitoring of arable soils. The dataset consists of 90 different sites all over Estonia holding 17,294 unique Db values. SOC stocks were calculated (also the coarse soil fraction was subtracted from the total soil volume) and integrated to Estonian large scale soil map. Up-scaling from soil mapping units allowed assessing SOC stocks at the regional level. Also it formed a methodology and basis to develop nationwide spatial decision support system for SOC accounting and management. The integration of precise soil map and soil models enables to give more accurate estimates of many soil properties including SOC. Thus our study provides the knowledge of how much carbon is stored in the arable soils, we can take better actions to control SOC fluxes and preventing climate change, e.g. using appropriate land management. Also it helps to construct an upgraded agricultural land use suitability models in which soil organic matter and environmental aspects are more deeply involved.

  14. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    management of the EU territory by field observations of geo-referenced points. In 2009, a topsoil (0-30 cm) module was included to the survey and a subset of around 21,000 sites was sampled in 23 Member States. The second source is a soil survey monitoring pilot campaign carried in Veneto Region last year. The pilot campaign has been organized with the collaboration between JRC, University of Padova and ARPAV Veneto. The scope was to apply the LUCAS methodology to an experimental soil survey of 40 samples. The selection of the points to survey has been done on the basis of the LUCAS project related to Veneto Region, pedo-climatic and management unit conditions and the database on soils belonging to ARPAV Soil Unit, collected ante 2000. Data started to be investigated and permit to show changes in SOC content in a decade for different land use/cover and climatic areas. Through the bulk density data collected and the data already available from ARPAV library, it's possible to evaluate the Carbon stocks of Veneto region. Possible changes in Carbon can be related to land use changes and different strategies of management practices adopted over time.

  16. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  17. Exploring Soil Organic Carbon Deposits in a Bavarian Catchment

    Science.gov (United States)

    Kriegs, Stefanie; Hobley, Eleanor; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2017-04-01

    The distribution of soil organic carbon (SOC) in the landscape is not homogeneous, but shows high variability from the molecular to the landscape scale. The aims of our work are 1.) to detect hot spots of SOC storage within different positions in a landscape; 2.) to outline differences (or similarities) between SOC characteristics of erosional and accumulative landscape positions; and 3.) to determine whether localised SOC deposits are dominated by fresh and labile organic matter (OM) or old and presumably stable OM. These findings are crucial for the evaluation of the landscapés vulnerability towards SOC losses caused by management or natural disturbances such as erosional rainfall events. Sampling sites of our study are located in a catchment at the foothills of the Bavarian Forest in south-east Germany. Within this area three landform positions were chosen for sampling: a) a slope with both erosional depletion and old colluvial deposits, b) a foothill with recent colluvial deposits and c) a floodplain with alluvial deposits. In order to consider both heterogeneity within a single landform position and between landforms several soil profiles were sampled at every position. Samples were taken to a maximal depth of 150 cm, depending on the presence of rocks or ground-water level, and analysed for bulk density, total carbon (TOC), inorganic carbon (IC) and texture. SOC densities and stocks were calculated. A two-step physical density fractionation using Sodium-Polytungstate (1.8 g/cm3 and 2.4 g/cm3) was applied to determine the contribution of the different soil organic matter fractions to the detected SOC deposits. Literature assumes deep buried SOC to be particularly old and stable, so we applied Accelerator Mass Spectrometry Radiocarbon Dating (AMS 14C) to bulk soil samples in order to verify this hypothesis. The results show that the floodplain soils contain higher amounts of SOC compared with slopes and foothills. Heterogeneity within the sites was smaller

  18. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  19. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Blanchart, E.; Bernoux, M.; Sarda, X.; Feller, C. [Institut de Recherche pour le Developpement, Montpellier (France); Siqueira Neto, M.; Cerri, C.C.; Piccolo, M. [CENA-USP, Piracicaba (Brazil). Lab. Biogeoquimica Ambiental; Douzet, J.M. [CIRAD, Antsirabe (Madagascar); Scopel, E. [CIRAD-CA, Planaltina (Brazil)

    2007-07-01

    Soils represent a large carbon pool, approximately 1500 Gt, equivalent to almost three times the quantity stored in terrestrial biomass and twice the amount stored in the atmosphere. The management and maintenance of soil carbon is therefore an integral part of the global carbon cycle. Land use change, inappropriate agricultural practices and climate change can all lead to a net release of C from soils to the atmosphere, exacerbating the problems of greenhouse gas release. Any modification of land-use or land management can induce variations in soil carbon stocks, even in agricultural systems that are perceived to be in a steady state. These modifications also alter soil macrofauna that is known to affect soil carbon dynamics. Direct seeding Mulch-based Cropping (DMC) systems with two crops per year without soil tillage have widely been adopted over the last 10 to 15 years in the Cerrado (central region) of Brazil. They are replacing the traditional soybean monocropping with fallow under conventional tillage (CT). Th e objective of this study was to examine how DMC practices affect soil organic carbon (SOC) dynamics and macrofauna (Rio Verde, Goias State). The approach was to determine soil C stocks and macrofauna in five fi elds under DMC aged 1, 5, 7, 11 and 13 years. In order to compare DMC systems with the native system of the region and previous land-use, a situation under native Cerrado (tree-savanna like vegetation) and a field conducted traditionally (CT) were also studied. Soil C stocks were calculated for the 0-10 and 0-40 cm soil depth and also for the fi rst 400 kg m{sup -2} of soil to compare the same amount of soil and to suppress the potential artefact of soil compaction when sample is based on fix layer depth. Soil macrofauna was hand-sorted from soil monoliths (30 cm depth, TSBF method). In our study, the annual rate of carbon storage was equal to ca. 1.6 MgC ha{sup -1}, which is in the range of values measured for DMC in different areas of Brazil

  20. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  1. Changes of Organic Carbon Quantity and Quality in Temperate Forest Soils

    Science.gov (United States)

    Kühnel, Anna; Satwika Lestari, Annisa; Schubert, Alfred; Wiesmeier, Martin; Spörlein, Peter; Schilling, Bernd; Kögel-Knabner, Ingrid

    2017-04-01

    Climate change will have profound impacts on organic matter stocks and thus on the functionality of soils. Soil organic carbon (SOC) content in soil is mainly regulated by the fluxes of organic matter which are highly associated with the aboveground and root litter production and their decompositions into CO2 by soil microorganism. The predicted rising temperatures in Bavaria might lead to an increased decomposition and release of soil carbon into the atmosphere, which would deteriorate a number of important soil functions. Here, we present an assessment of SOC stocks in three temperate forest sites over the last 30 years. Soil to a depth of 30 cm was analysed with density fractionation to evaluate SOC stocks and distribution in different pools. Additionally, tree-aboveground organic carbon (OC) stocks were measured to assess their influence on SOC. SOC stocks decreased between 1988 and 2004 and increased between 2004 and 2016. OC changes of litter + O layer and mineral soil differed. Highest changes of SOC occurred in the light fractions, followed by the mineral fractions. Tree-aboveground biomass, stand composition, and changing climate had an influence on SOC stocks. Precipitation change was correlated with the litter + O layer OC stocks. Further studies on the changes of each SOC fraction and the influence of other edaphic factors are needed to better understand the changes in SOC stocks and quality.

  2. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  3. Soil carbon stocks in Sarawak, Malaysia.

    Science.gov (United States)

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Variations in soil carbon dioxide efflux across a thaw slump chronosequence in northwestern Alaska

    International Nuclear Information System (INIS)

    Jensen, A E; Crosby, B T; Lohse, K A; Mora, C I

    2014-01-01

    Warming of the arctic landscape results in permafrost thaw, which causes ground subsidence or thermokarst. Thermokarst formation on hillslopes leads to the formation of thermal erosion features that dramatically alter soil properties and likely affect soil carbon emissions, but such features have received little study in this regard. In order to assess the magnitude and persistence of altered emissions, we use a space-for-time substitution (thaw slump chronosequence) to quantify and compare peak growing season soil carbon dioxide (CO 2 ) fluxes from undisturbed tundra, active, and stabilized thermal erosion features over two seasons. Measurements of soil temperature and moisture, soil organic matter, and bulk density are used to evaluate the factors controlling soil CO 2 emissions from each of the three chronosequence stages. Soil CO 2 efflux from the active slump is consistently less than half that observed in the undisturbed tundra or stabilized slump (1.8 versus 5.2 g CO 2 −C m −2  d −1 in 2011; 0.9 versus 3.2 g CO 2 −C m −2  d −1 in 2012), despite soil temperatures on the floor of the active slump that are 10–15  ° C warmer than the tundra and stabilized slump. Environmental factors such as soil temperature and moisture do not exert a strong control on CO 2 efflux, rather, local soil physical and chemical properties such as soil organic matter and bulk density, are strongly and inversely related among these chronosequence stages (r 2 = 0.97), and explain ∼50% of the variation in soil CO 2 efflux. Thus, despite profound soil warming and rapid exposure of buried carbon in the active slump, the low organic matter content, lack of stable vegetation, and large increases in the bulk densities in the uppermost portion of active slump soils (up to ∼2.2 g −1  cm −3 ) appear to limit CO 2 efflux from the active slump. Future studies should assess seasonal fluxes across these features and determine whether soil CO 2 fluxes from active

  5. Reforestation Effects on Carbon Stocks in the Northeast USA: Interactions among Earthworms, Land-Use History and Soil Properties

    Science.gov (United States)

    Ross, D. S.; Görres, J. H.; Knowles, M.; Cogbill, C. V.

    2017-12-01

    Reforestation has occurred in many areas of the northeastern USA that were cleared for agriculture in the 1700s and 1800s. Net gains in carbon have occurred but these gains may be affected by earthworm invasions. All earthworm species common to New England were introduced from either Europe or, more recently, Asia. We have been monitoring 18 managed forest stands in Vermont to be able to determine long-term changes in carbon stores. In addition to measuring carbon with depth into the C horizon, we have documented land use history dating back to colonial times, determined earthworm species and density, measured tree species and site metrics, and measured a suite of soil chemical parameters. We also determined carbon distribution in soil microaggregates in a subset of sites. Prior land use in the 18 monitored plots included cultivation, pasture, farm woodlot and possibly iron mining. Higher earthworm species diversity correlated with reduced forest floor depth, higher mineral soil carbon, and greater stability (microaggregate-protected) of that carbon. Sites with the highest worm density and species richness had a history of more intense agricultural land use (although not all former agricultural sites had earthworms). There were also positive interactions between exchangeable calcium pools and earthworm density, and between elevation and carbon in the forest floor. With only 18 sites, it is difficult to establish statistically robust relationships. The effect of reforestation on present-day carbon stores appears to be a complex interaction of land-use history, site location, earthworm history and soil chemistry.

  6. ORGANIC CARBON AND CARBON STOCK: RELATIONS WITH PHYSICAL INDICATORS AND SOIL AGGREGATION IN AREAS CULTIVATED WITH SUGAR CANE

    Directory of Open Access Journals (Sweden)

    Diego Tolentino de Lima

    2017-08-01

    Full Text Available Soil organic carbon and carbon stock influence, directly or indirectly, most of soil aggregate stability indicators. The objective of this study was to quantify the production of dry biomass (DB, total organic carbon (TOC and carbon stock (CStk in soil, and to evaluate their influence on some indicators of aggregation in an Oxisol at a Cerrado biome in Uberaba-MG, Brazil. The design was completely randomized blocks, in two evaluation periods: three and six cuts, at six depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5 and 0.5-0.6 m. It was evaluated: soil density (SD, volumetric humidity (VH, aggregate stability index (AEI, weighted mean diameter (WDA, mean diameter (GDA, index of aggregates with diameter greater than 2 mm (AI and sensitivity index (SI, replicated by 4. The best AEI of the soil and the highest TOC contents were found in the most superficial layers, 0 to 0.2 m, for both cuttings. The greater values of TOC and CStk, occurred at the sixth cut area, where there was a higher amount of DB on soil surface. The higher levels of organic matter did not provide higher AEI in the area of sixth cut, when compared to that of the third cut. The TOC and CStk levels in both areas generally had a positive influence on soil aggregation indicators for both cuts.

  7. Patterning between urban soil color and carbon stocks

    Science.gov (United States)

    Schifman, L. A.; Herrmann, D.; Shuster, W.

    2017-12-01

    Urban soils are extensively modified compared to their non-urban counterparts. These modifications are expected to affect the vertical distribution of total soil carbon as well as its constituent pools - soil organic carbon, black carbon, and inorganic carbon. Assigning color to soil horizons using the Munsell color system is a standard field method employed by soil scientists that can also reveal generalizable information about various environmental metrics. A new dataset on urban soils and their reference counterparts that cover 11 regions in the United States and advances in quantitative pedology allowed us to construct a log-linear model that relates Value, the lightness of a color hue, to the concentration of total carbon throughout a soil column of up to 450 cm depth. Overall, the relationship between 671 points resulted in an r2 of 0.23 with a p<0.001. As expected, organic carbon, shifted values to the lower end of the scale (darker), whereas inorganic carbon increased soil color values (lighter). These findings allow for a simplified understanding of shifts in carbon pools throughout a soil profile.

  8. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  9. Soils apart from equilibrium – consequences for soil carbon balance modelling

    Directory of Open Access Journals (Sweden)

    T. Wutzler

    2007-01-01

    Full Text Available Many projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Para-meters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of disturbed forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a considerable

  10. Dynamics of carbon 14 in soils: a review

    International Nuclear Information System (INIS)

    Tamponnet, C.

    2004-01-01

    In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial eco-sphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. (author)

  11. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  12. Carbon and carbon-14 in lunar soil 14163

    International Nuclear Information System (INIS)

    Fireman, E.L.; Stoenner, R.W.

    1981-01-01

    Carbon is removed from the surface of lunar soil 14163 size fractions by combustions at 500 and 1000 0 C in an oxygen stream and the carbon contents and the carbon-14 activities are measured. The carbon contents are inversely correlated with grain size. A measured carbon content of 198 ppM for bulk 14163, obtained by combining the size fraction results, is modified to 109 +- 12 ppM by a carbon contamination correction. This value is in accord with a previous determination, 110 ppM, for bulk 14163. The small ( 53 μ) grains, 11.2 +- 2.0 dpm/kg. The combusted carbon and carbon-14 are attributed mainly to solar-wind implantation. Melt extractions of carbon-14 from the combusted soil samples gave essentially identical activities, 21.0 +- 1.5 and 19.2 +- 2.0 dpm/kg for the small and large grains, and are attributed to cosmic-ray spallation-produced carbon-14

  13. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  14. The Potential Of The Soil For Stabilisation Of Organic Carbon In Soil Aggregates

    Directory of Open Access Journals (Sweden)

    Tobiašová Erika

    2015-06-01

    Full Text Available Carbon stabilisation in soil is the result of interaction between the chemical and physical mechanisms of protection and the dominance of the mechanism depends not only on the long-term constant characteristics of soil but also on the properties, which can be partly influenced by human activities. In this study, the potential of the soil for stabilisation of carbon (Ps in different soil types depending on soil properties was compared. Experiment included six soils (Eutric Fluvisol, Mollic Fluvisol, Haplic Chernozem, Haplic Luvisol, Eutric Cambisol, and Rendzic Leptosol of different land uses (forest, meadow, urban, and agro-ecosystem in Slovakia. Ps was determined with dependence on the ratio of labile and stable fractions of carbon in the soil macro-aggregates. Ps was in an exponential dependence (r = 0.942; P < 0.01 with production potential of the soil, and the fractions of dry-sieved aggregates larger than 3 mm play an important role in the first stages of the carbon stabilisation. The suitable parameter, which reflects the changes in carbon stability in the soil is the ratio of the labile carbon and non-labile carbon in the soil macro-aggregates (L/NL. Lower values of L/NL that indicate a higher stability of carbon were determined at a higher pH, at the higher content of carbonates and exchangeable basic cations, and at a higherportion of humic acids free and bound with mobile sesquioxides R2O3.

  15. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    Science.gov (United States)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  16. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  17. Effect of Physicochemical Characteristics of Soil on Population Density of Arbuscular Mycorrhizal Fungi in the Roots of Grapevine in Urmia

    Directory of Open Access Journals (Sweden)

    A. Mahdavi Bileh Savar

    2015-01-01

    Full Text Available Relationship of is one of the most useful interactions in terrestrial ecosystems that its positive effects on growth, physiology and ecology of different plants has been documented. This study investigated the relationship between important physicochemical characteristics of soils such as pH, electrical conductivity (EC, soil texture, organic carbon percentage, soil potassium percentage and the amount of accessible phosphorus with population of mycorrhizal fungi. After dividing the study region into four areas, 43 samples of soil were collected. The results of statistical analysis on physico-chemical characteristics of soil and their relation with population density of spores of arbuscular mycorrhizal fungi showed that there was a negative correlation between electrical conductivity (EC, pH, clay percent, and percent of soil available phosphorus, potassium percent, and percentage of organic carbon with the mean number of fungi. There were positive correlations between silt and sand percentages and mean number of spores present in the soil. Based on the coefficien of determination and based on study conditions, the best model for the rhizosphere was found tobe the one in wich available phosphorus percent of soil was the independent variable, and mean population of fungi as the dependant variable. The correlation between available phosphorus percent in soil samples with average fungi population density negative (P<0/05, but there was not a meaningful correlation between other traits and population density of fungi

  18. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    Science.gov (United States)

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  19. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  20. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  1. Predicting soil particle density from clay and soil organic matter contents

    DEFF Research Database (Denmark)

    Schjønning, Per; McBride, R.A.; Keller, T.

    2017-01-01

    Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...

  2. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    Science.gov (United States)

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small

  3. Deep carbon storage potential of buried floodplain soils.

    Science.gov (United States)

    D'Elia, Amanda H; Liles, Garrett C; Viers, Joshua H; Smart, David R

    2017-08-15

    Soils account for the largest terrestrial pool of carbon and have the potential for even greater quantities of carbon sequestration. Typical soil carbon (C) stocks used in global carbon models only account for the upper 1 meter of soil. Previously unaccounted for deep carbon pools (>1 m) were generally considered to provide a negligible input to total C contents and represent less dynamic C pools. Here we assess deep soil C pools associated with an alluvial floodplain ecosystem transitioning from agricultural production to restoration of native vegetation. We analyzed the soil organic carbon (SOC) concentrations of 87 surface soil samples (0-15 cm) and 23 subsurface boreholes (0-3 m). We evaluated the quantitative importance of the burial process in the sequestration of subsurface C and found our subsurface soils (0-3 m) contained considerably more C than typical C stocks of 0-1 m. This deep unaccounted soil C could have considerable implications for global C accounting. We compared differences in surface soil C related to vegetation and land use history and determined that flooding restoration could promote greater C accumulation in surface soils. We conclude deep floodplain soils may store substantial quantities of C and floodplain restoration should promote active C sequestration.

  4. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  6. Soil Carbon 4 per mille

    Science.gov (United States)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  7. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  8. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application....... This study investigated the nature of the early release of CO2 and the degree to which stabilizing mechanisms protect biochar from microbial attack. Incubations of 14C-labelled biochar produced at different temperatures were performed in soils with different clay contents and in sterilized and non......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...

  9. Evaluating Soil Carbon Sequestration in Central Iowa

    Science.gov (United States)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  10. Quantifying global soil carbon losses in response to warming.

    Science.gov (United States)

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  11. Carbonate heap leach of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Turney, W.R.; Mason, C.F.V.; Longmire, P.

    1994-01-01

    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO 2 CO 32 = ) and uranyl tricarbonate (UO 2 CO 33 4- ), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions (∼0.5M) proved more effective than lower molar strength solutions (∼ 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal

  12. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  13. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  14. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  15. Gasification biochar as soil amendment for carbon sequestration and soil quality

    DEFF Research Database (Denmark)

    Hansen, Veronika

    2014-01-01

    Thermal gasification of biomass is an efficient and flexible way to generate energy. Besides the energy, avaluable by-product, biochar, is produced. Biochar contains a considerable amount of recalcitrant carbon thathas potential for soil carbon sequestration and soil quality improvement if recycled...... back to agriculture soils. To determine the effect of gasification biochar on soil processes and crop yield, a short-term incubation study was conducted and a field trial has been established....

  16. Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

    Directory of Open Access Journals (Sweden)

    C. Moni

    2012-12-01

    Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of 15N labelled litter.

    Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.

    Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.

  17. [Research methods of carbon sequestration by soil aggregates: a review].

    Science.gov (United States)

    Chen, Xiao-Xia; Liang, Ai-Zhen; Zhang, Xiao-Ping

    2012-07-01

    To increase soil organic carbon content is critical for maintaining soil fertility and agricultural sustainable development and for mitigating increased greenhouse gases and the effects of global climate change. Soil aggregates are the main components of soil, and have significant effects on soil physical and chemical properties. The physical protection of soil organic carbon by soil aggregates is the important mechanism of soil carbon sequestration. This paper reviewed the organic carbon sequestration by soil aggregates, and introduced the classic and current methods in studying the mechanisms of carbon sequestration by soil aggregates. The main problems and further research trends in this study field were also discussed.

  18. A global predictive model of carbon in mangrove soils

    Science.gov (United States)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  19. Sustainable Carbon Dioxide Sequestration as Soil Carbon to Achieve Carbon Neutral Status for DoD Lands

    Science.gov (United States)

    2017-10-01

    26 4.6.3 Fertilizer ...5 Figure 3. Soil organic carbon sensitivity to...Industries Association ERDC TR-17-13 ix SOC Soil Organic Carbon SSURGO Soil Survey Geographic Database USACE U.S. Army Corps of Engineers USDA

  20. Soil map density and a nation's wealth and income

    NARCIS (Netherlands)

    Hartemink, A.E.

    2008-01-01

    Little effort has been made to link soil mapping and soil data density to a nation’s welfare. Soil map density in 31 European countries and 44 low and middle income countries is linked to Gross Domestic Product (GDP) per capita and the number of soil scientists per country.

  1. Sensitivity analysis and calibration of a soil carbon model (SoilGen2 in two contrasting loess forest soils

    Directory of Open Access Journals (Sweden)

    Y. Y. Yu

    2013-01-01

    Full Text Available To accurately estimate past terrestrial carbon pools is the key to understanding the global carbon cycle and its relationship with the climate system. SoilGen2 is a useful tool to obtain aspects of soil properties (including carbon content by simulating soil formation processes; thus it offers an opportunity for both past soil carbon pool reconstruction and future carbon pool prediction. In order to apply it to various environmental conditions, parameters related to carbon cycle process in SoilGen2 are calibrated based on six soil pedons from two typical loess deposition regions (Belgium and China. Sensitivity analysis using the Morris method shows that decomposition rate of humus (kHUM, fraction of incoming plant material as leaf litter (frecto and decomposition rate of resistant plant material (kRPM are the three most sensitive parameters that would cause the greatest uncertainty in simulated change of soil organic carbon in both regions. According to the principle of minimizing the difference between simulated and measured organic carbon by comparing quality indices, the suited values of kHUM, (frecto and kRPM in the model are deduced step by step and validated for independent soil pedons. The difference of calibrated parameters between Belgium and China may be attributed to their different vegetation types and climate conditions. This calibrated model allows more accurate simulation of carbon change in the whole pedon and has potential for future modeling of carbon cycle over long timescales.

  2. A method to detect soil carbon degradation during soil erosion

    OpenAIRE

    F. Conen; M. Schaub; C. Alewell

    2009-01-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable c...

  3. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  4. Vertical and horizontal variation of carbon pools and fluxes in soil profile of wet southern taiga in European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Santruckova, H.; Kastovska, E.; Liveckova, M. (Univ. of South Bohemia, Faculty of science, Branisovska (CZ)); Kozlov, D. (Lomonosov Moscow State Univ., Geographical Dept., Moscow (Russian Federation)); Kurbatova, J.; Tatarinov, F. (A.N. Severtson Inst. of ecology and evolution RAS, Moscow (Russian Federation)); Shibistova, O. (V.N.Sukachev Forest Inst., Krasnoyarsk (Russian Federation)); Lloyd, J. (Earth and Biosphere Inst., Univ. of Leeds (United Kingdom))

    2010-10-22

    Vertical and horizontal distributions of soil organic carbon, potential microbial activity and basic soil properties were studied in a boreal mixed forest (Central Forest Reserve, TVER region) to elucidate whether the soil CO{sub 2}-efflux is related to basic soil properties that affect the C pool and activity. Soil cores (0-100 cm depth) were taken from two transects every 50 meters (44 points) immediately after completion of soil CO{sub 2}-efflux measurements. Soil was separated into layers and moisture, bulk density, root density and bacterial counts were determined within one day after soil was taken. Microbial respiration, biomass, CN contents and pH were measured within few months. The variability in the soil CO{sub 2}-efflux and microbial activity was mainly explained by soil bulk density. Results further indicate that laboratory measurements of microbial respiration can represent heterotrophic soil respiration of a distinctive ecosystem in natural conditions, if microbial respiration is measured after the effect of soil handling disappears. (orig.)

  5. A global predictive model of carbon in mangrove soils

    International Nuclear Information System (INIS)

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  6. Soil erosion, sedimentation and the carbon cycle

    Science.gov (United States)

    Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.

    2012-04-01

    Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.

  7. Effects of Soil Compaction on Carbon and Nitrogen Sequestration in Soil and Wheat, Soil Physical Properties and Aggregates Stability (Case study: Northern of Aq Qala

    Directory of Open Access Journals (Sweden)

    Z. Saieedifar

    2016-09-01

    Full Text Available Introduction: Soil compaction has become a widespread problem in the world and it is considered as one of the main factors affecting land degradation in arid and semi-arid agricultural land. Compaction in arable soils is a gradual phenomenon that appearing over time and most important factors that influence it include: soil properties, high clay content, low organic matter, and frequency of wet-dry in the soil, impervious layer of soil, load heavy agricultural implements and soil and water mismanagement. Compaction induced soil degradation affects about 68 million hectares of land globally. The vast majority of compaction in modern agriculture is caused by vehicular traffic. Carbon sequestration by long-term management operation of the plant and soil, not only increase the soil carbon storage but also lead to reduce the carbon exchange and greenhouse gases emissions like CO2 from the soil profile. The aim of this study was evaluating the effect of soil compaction on carbon and nitrogen sequestration of wheat and soil and some soil physical properties such as: aggregate stability, saturated soil moisture content, bulk density and soil porosity. Materials and Methods: This experiment was accomplished in which is located near Aq Qala in a randomized completely block design (with 4 treatments and 3 replications. Soil compaction was artificially created by using a 5/7 ton heavy tractor. The treatments arrangements were: 1 T1: control, 2 T2: twice passing of tractor, 3 T3: four time of passing tractor, and 4 T4: six time of passing heavy tractor. Utilize of all agricultural inputs (fertilizers, herbicides, etc. has been identical for all treatments. Since rain-fed farming is the common method to cultivation of cereals in the study area, so no complementary irrigation was carried out in this period. In this study, after the measurement of the parameters, the data were analyzed by using SPSS 16.0 Software. LSD test was used for comparison of means

  8. Digging Deep: how the convergence of national-scale and field-based soil core data shines a light on sustainability of wetland carbon sequestration

    Science.gov (United States)

    Windham-Myers, L.; Holmquist, J. R.; Sundquist, E. T.; Drexler, J. Z.; Bliss, N.

    2016-12-01

    Wetland soils have long been recognized as conditional archives of past environments, including vegetation structure, nutrient status, sediment supply and the variability in those factors. Both sedimentary processes and organic accretion processes form the soil matrix that identifies wetland soils as "hydric" while also providing archival insights. As repositories of information on net biogeochemical processes, their down-core and across-site structure can show both consistency and distinction. Through several related studies, we have been exploring the use of component-level U.S. Natural Resources Conservation Service (NRCS) Soil Survey data (SSURGO) to map carbon density to 1m depth across wetlands of the US, with an emphasis on coastal wetlands. To assess the accuracy of mapped carbon data from SSURGO, several field-generated datasets (public or compiled for the NASA-funded Blue Carbon Monitoring Project) have been extracted for key metrics such as dry bulk density (g/cc), organic carbon content (%C by combustion) and the combination, soil carbon density (g C /cc) with depth. These profiles indicate ecogeomorphic feedbacks of elevation, vegetation structure and biogeochemical processes through millennia, illustrating both resilience and shifts in behavior that constrain wetland extent as well as wetland function. National datasets such as SSURGO and validation datasets such as the EPA's National Wetland Condition Assessment (NWCA) and Louisiana's Coastwide Reference Monitoring System (CRMS) are publically available and have been underutilized for predicting and/or validating changes in wetland carbon dynamics. We have explored their use for interpretating and understanding changing carbon accretion rates, changing wetland extents through elevation gain or loss, and changing methane emissions. This talk will focus on insights for wetland carbon sequestration functions as determined by soil core structure, both for coastal settings and potentially for inland

  9. Modelling the soil carbon cycle of pine ecosystems

    International Nuclear Information System (INIS)

    Nakane, K.

    1994-01-01

    Soil carbon cycling rates and carbon budgets were calculated for stands of four pine species. Pinus sylvestris (at Jaedraaas, Sweden), P. densiflora (Hiroshima, Japan), P. elliottii (Florida, USA) and P. radiata (Canberra, Australia), using a simulation model driven by daily observations of mean air temperature and precipitation. Inputs to soil carbon through litterfall differ considerably among the four pine forests, but the accumulation of the A 0 layer and humus in mineral soil is less variable. Decomposition of the A 0 layer and humus is fastest for P. densiflora and slowest for P. sylvestris stands with P. radiata and P. elliottii intermediate. The decomposition rate is lower for the P. elliottii stand than for P. densiflora in spite of its higher temperatures and slightly higher precipitation. Seasonal changes in simulated soil carbon are observed only for the A 0 layer at the P. densiflora site. Simulated soil respiration rates vary seasonally in three stands (P. sylvestris, P. densiflora and P. radiata). In simulations for pine trees planted on bare soil, all soil organic matter fractions except the humus in mineral soil recover to half their asymptotic values within 30 to 40 years of planting for P. sylvestris and P. densiflora, compared with 10 to 20 years for P. radiata and P. elliottii. The simulated recovery of soil carbon following clear-cutting is fastest for the P. elliottii stand and slowest for P. sylvestris. Management of P. elliottii and P. radiata stands on 40-years rotations is sustainable because carbon removed through harvest is restored in the interval between successive clear-cuts. However p. densiflora and P. sylvestris stands may be unable to maintain soil carbon under such a short rotation. High growth rates of P. elliottii and p. radiata stands in spite of relatively poor soil conditions and slow carbon cycling may be related to the physiological responses of species to environmental conditions. (Abstract Truncated)

  10. Quantifying Soil Carbon Change from Wildfires in Peatland Ecosystems of the Eastern United States Using Repeat LiDAR

    Science.gov (United States)

    Reddy, A.; Hawbaker, T. J.; Zhu, Z.; Ward, S.; Wurster, F.; Newcomb, D.

    2013-12-01

    Wildfires are an increasing concern in peatland ecosystems along the coastal plains of the Eastern US. Human- and climate-induced changes to the ecosystems' hydrology can leave the soils, heavy with organic matter, susceptible to combustion in wildfires. This results in large losses of carbon that took many years to accumulate. However, accurately quantifying carbon losses in peatlands from wildfires is challenging because field data collection over extensive areas is difficult. For this study, our first objective was to evaluate the use of pre- and post-fire LiDAR data to quantify changes in surface elevations and soil carbon stocks for the 2011 Lateral West fire, which occurred in the Great Dismal Swamp National Wildlife Refuge (GDSNWR), Virginia, USA. Our second objective was to use a Monte Carlo approach to estimate how the vertical error in LiDAR points affected our calculation of soil carbon emissions. Bare-earth LiDAR points from 2010 and 2012 were obtained for GDSNWR with densities of 2 pulses/m2 and vertical elevation RMSE of 9 and 7 cm, respectively. Monte Carlo replicates were used to perturb individual bare-earth LiDAR points and generate probability distributions of elevation change within 10 m grid cells. Change in soil carbon were calculated within the Monte Carlo replicates by multiplying the LiDAR-derived volume of soil loss by depth-specific published values of soil bulk density, organic matter content, and carbon content. The 5th, 50th and 95th percentiles of the elevation and carbon change distributions were outputted as raster layers. Loss in soil volume ranged from 10,820,000 to 13,190,000 m3 based on vertical error. Carbon loss within the entire area burned by the Lateral West fire perimeter (32.1 km2), based on the 5th, 50th and 95th percentiles was 0.64, 0.96, and 1.33 Tg C, respectively. Our study demonstrated a method to use LiDAR data to quantify carbon loss following fires in peatland ecosystems and incorporate elevation errors to

  11. Forest soil carbon is threatened by intensive biomass harvesting.

    Science.gov (United States)

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  12. Effects of soil development time and litter quality on soil carbon sequestration: Assessing soil carbon saturation with a field transplant experiment along a post-mining chronosequence

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan

    2017-01-01

    Roč. 28, č. 2 (2017), s. 664-672 ISSN 1085-3278 Institutional support: RVO:60077344 Keywords : soil organic matter fractions * carbon sequestration * carbon saturation * mining * reclamation Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 9.787, year: 2016

  13. Soil moisture effects on the carbon isotopic composition of soil respiration

    Science.gov (United States)

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  14. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  15. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    International Nuclear Information System (INIS)

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  16. The Relations Between Soil Water Retention Characteristics, Particle Size Distributions, Bulk Densities and Calcium Carbonate Contents for Danish Soils

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Balstrøm, Thomas; Breuning-Madsen, Henrik

    2005-01-01

    functions developed in HYPRES (Hydraulic Properties of European Soils). Introducing bulk density as a predictor improved the equation for pressure head –1 kPa but not for lower ones. The grouping of data sets in surface and subsurface horizons or in textural classes did not improve the equations. Based...

  17. Carbon Storage in Soils: Climate vs. Geology

    International Nuclear Information System (INIS)

    Doetterl, Sebastian; Boeckx, Pascal; Stevens, Antoine; Van Oost, Kristof; Six, Johan; Merckx, Roel; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Zagal Venegas, Erick; Boudin, Mathieu

    2016-01-01

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO 2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  18. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  19. Reduced carbon sequestration potential of biochar in acidic soil.

    Science.gov (United States)

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China

    Science.gov (United States)

    Wang, Xuyang; Chen, Yinping; Lian, Jie; Luo, Yongqing; Niu, Yayi; Gong, Xiangwen

    2018-01-01

    The spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) densities plays a profound important role in estimating carbon and nitrogen budgets. Naiman Banner located in northern China was chosen as research site, a total of 332 soil samples were taken in a depth of 100 cm from the low hilly land in the southern part, sandy land in the middle part and an alluvial plain in the northern part of the county. The results showed that SOC and TN density initially decreased and then increased from the north to the south, The highest densities, were generally in the south, with the lowest generally in the middle part. The SOC and TN densities in cropland were significantly greater than those in woodland and grassland in the alluvial plains and for Naiman as a whole. The woodland SOC and TN density were higher than those of grassland in the low hilly land, and higher densities of SOC and TN in grassland than woodland in the sandy land and low hilly land. There were significant differences in SOC and TN densities among the five soil types of Cambisols, Arenosols, Gleysols, Argosols, and Kastanozems. In addition, SOC and TN contents generally decreased with increasing soil depth, but increased below a depth of 40 cm in the Cambisols and became roughly constant at this depth in the Kastanozems. There is considerable potential to sequester carbon and nitrogen in the soil via the conversion of degraded sandy land into woodland and grassland in alluvial plain, and more grassland should be established in sandy land and low hilly land. PMID:29771979

  1. Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Peltre, Clément; Bruun, Sander; Du, Changwen

    2014-01-01

    ) degradability. The objective of this study was to assess the potential of FTIR-PAS for the characterisation of the labile fraction of SOC and more classical soil parameters, such as carbon and clay content, for a range of 36 soils collected from various field experiments in Denmark. Partial least squares (PLS...... signal. This also means that it should be advantageous for soil analysis because of its highly opaque nature. However, only a limited number of studies have so far applied FTIR-PAS to soil characterization and investigation is still required into its potential to determine soil organic carbon (SOC......) regression was used to correlate the collected FTIR-PAS spectra with the proportion of soil organic carbon mineralised after 238 days of incubation at 15°C and pF 2 (C238d) taken as an indicator of the labile fraction of SOC. Results showed that it is possible to predict total organic carbon content, total...

  2. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    Science.gov (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  3. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France

    Science.gov (United States)

    Tifafi, Marwa; Guenet, Bertrand; Hatté, Christine

    2018-01-01

    Soils are the major component of the terrestrial ecosystem and the largest organic carbon reservoir on Earth. However, they are a nonrenewable natural resource and especially reactive to human disturbance and climate change. Despite its importance, soil carbon dynamics is an important source of uncertainty for future climate predictions and there is a growing need for more precise information to better understand the mechanisms controlling soil carbon dynamics and better constrain Earth system models. The aim of our work is to compare soil organic carbon stocks given by different global and regional databases that already exist. We calculated global and regional soil carbon stocks at 1 m depth given by three existing databases (SoilGrids, the Harmonized World Soil Database, and the Northern Circumpolar Soil Carbon Database). We observed that total stocks predicted by each product differ greatly: it is estimated to be around 3,400 Pg by SoilGrids and is about 2,500 Pg according to Harmonized World Soil Database. This difference is marked in particular for boreal regions where differences can be related to high disparities in soil organic carbon concentration. Differences in other regions are more limited and may be related to differences in bulk density estimates. Finally, evaluation of the three data sets versus ground truth data shows that (i) there is a significant difference in spatial patterns between ground truth data and compared data sets and that (ii) data sets underestimate by more than 40% the soil organic carbon stock compared to field data.

  4. Can Process Understanding Help Elucidate The Structure Of The Critical Zone? Comparing Process-Based Soil Formation Models With Digital Soil Mapping.

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.

    2017-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  5. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey.

    Science.gov (United States)

    Kucuker, Mehmet Ali; Guney, Mert; Oral, H Volkan; Copty, Nadim K; Onay, Turgut T

    2015-01-01

    Land use management is one of the most critical factors influencing soil carbon storage and the global carbon cycle. This study evaluates the impact of land use change on the soil carbon stock in the Karasu region of Turkey which in the last two decades has undergone substantial deforestation to expand hazelnut plantations. Analysis of seasonal soil data indicated that the carbon content decreased rapidly with depth for both land uses. Statistical analyses indicated that the difference between the surface carbon stock (defined over 0-5 cm depth) in agricultural and forested areas is statistically significant (Agricultural = 1.74 kg/m(2), Forested = 2.09 kg/m(2), p = 0.014). On the other hand, the average carbon stocks estimated over the 0-1 m depth were 12.36 and 12.12 kg/m(2) in forested and agricultural soils, respectively. The carbon stock (defined over 1 m depth) in the two land uses were not significantly different which is attributed in part to the negative correlation between carbon stock and bulk density (-0.353, p < 0.01). The soil carbon stock over the entire study area was mapped using a conditional kriging approach which jointly uses the collected soil carbon data and satellite-based land use images. Based on the kriging map, the spatially soil carbon stock (0-1 m dept) ranged about 2 kg/m(2) in highly developed areas to more than 23 kg/m(2) in intensively cultivated areas as well as the averaged soil carbon stock (0-1 m depth) was estimated as 10.4 kg/m(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Bayesian Evaluation of Dynamical Soil Carbon Models Using Soil Carbon Flux Data

    Science.gov (United States)

    Xie, H. W.; Romero-Olivares, A.; Guindani, M.; Allison, S. D.

    2017-12-01

    2016 was Earth's hottest year in the modern temperature record and the third consecutive record-breaking year. As the planet continues to warm, temperature-induced changes in respiration rates of soil microbes could reduce the amount of carbon sequestered in the soil organic carbon (SOC) pool, one of the largest terrestrial stores of carbon. This would accelerate temperature increases. In order to predict the future size of the SOC pool, mathematical soil carbon models (SCMs) describing interactions between the biosphere and atmosphere are needed. SCMs must be validated before they can be chosen for predictive use. In this study, we check two SCMs called CON and AWB for consistency with observed data using Bayesian goodness of fit testing that can be used in the future to compare other models. We compare the fit of the models to longitudinal soil respiration data from a meta-analysis of soil heating experiments using a family of Bayesian goodness of fit metrics called information criteria (IC), including the Widely Applicable Information Criterion (WAIC), the Leave-One-Out Information Criterion (LOOIC), and the Log Pseudo Marginal Likelihood (LPML). These IC's take the entire posterior distribution into account, rather than just one outputted model fit line. A lower WAIC and LOOIC and larger LPML indicate a better fit. We compare AWB and CON with fixed steady state model pool sizes. At equivalent SOC, dissolved organic carbon, and microbial pool sizes, CON always outperforms AWB quantitatively by all three IC's used. AWB monotonically improves in fit as we reduce the SOC steady state pool size while fixing all other pool sizes, and the same is almost true for CON. The AWB model with the lowest SOC is the best performing AWB model, while the CON model with the second lowest SOC is the best performing model. We observe that AWB displays more changes in slope sign and qualitatively displays more adaptive dynamics, which prevents AWB from being fully ruled out for

  7. Cropping practices, soil properties, pedotransfer functions and organic carbon storage at Kuanria canal command area in India

    OpenAIRE

    Mandal, Krishna Gopal; Kundu, Dilip Kumar; Singh, Ravender; Kumar, Ashwani; Rout, Rajalaxmi; Padhi, Jyotiprakash; Majhi, Pradipta; Sahoo, Dillip Kumar

    2013-01-01

    Effects of cropping practices on soil properties viz. particle size distribution, pH, bulk density (BD), field capacity (FC, -33 kPa), permanent wilting point (PWP, -1500 kPa), available water capacity (AWC) and soil organic carbon (SOC) were assessed. The pedotransfer functions (PTFs) were developed for saturated hydraulic conductivity (Ks), water retention at FC and PWP of soils for different sites under major cropping system in a canal irrigated area. The results revealed that the soils ar...

  8. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  9. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-07-01

    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  10. Soil moisture effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Claire L. Phillips; Nick Nickerson; David Risk; Zachary E. Kayler; Chris Andersen; Alan Mix; Barbara J. Bond

    2010-01-01

    The carbon isotopic composition (δ13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the δ13C of soil respiration, which suggests indirectly that recently fixed photosynthates...

  11. Rates of calcium carbonate removal from soils.

    NARCIS (Netherlands)

    Breemen, van N.; Protz, R.

    1988-01-01

    Mean annual rates of calcium carbonate removal from soils in a subarctic climate estimated from data on two chronosequences of calcareous storm ridges, appeared to be relatively constant through time. Concentrations of dissolved calcium carbonate in the soil solution in the study sites calculated

  12. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  13. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    DEFF Research Database (Denmark)

    Hansen, Veronika

    and pot and field experiments was used to study the effect of straw and wood biochar on carbon sequestration, soil quality and crop growth. Overall, the biochar amendment improved soil chemical and physical properties and plant growth and showed a potential for soil carbon sequestration without having any......New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...... have been raised about the potential negative impacts of incorporating bioenergy residuals (biochar) in soil and increasing the removal of crop residues such as straw, possibly reducing important soil functions and services for maintaining soil quality. Therefore, a combination of incubation studies...

  14. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  15. Uncertainties and novel prospects in the study of the soil carbon dynamics

    International Nuclear Information System (INIS)

    Yang Wang; Yuch-Ping Hsieh

    2002-01-01

    Establishment of the Kyoto Protocol has resulted in an effort to look towards living biomass and soils for carbon sequestration. In order for carbon credits to be meaningful, sustained carbon sequestration for decades or longer is required. It has been speculated that improved land management could result in sequestration of a substantial amount of carbon in soils within several decades and therefore can be an important option in reducing atmospheric CO 2 concentration. However, evaluation of soil carbon sources and sinks is difficult because the dynamics of soil carbon storage and release is complex and still not well understood. There has been rapid development of quantitative techniques over the past two decades for measuring the component fluxes of the global carbon cycle and for studying the soil carbon cycle. Most significant development in the soil carbon cycle study is the application of accelerator mass spectrometry (AMS) in radiocarbon measurements. This has made it possible to unravel rates of carbon cycling in soils, by studying natural levels of radiocarbon in soil organic matter and soil CO 2 . Despite the advances in the study of the soil carbon cycle in the recent decades, tremendous uncertainties exist in the sizes and turnover times of soil carbon pools. The uncertainties result from lack of standard methods and incomplete understanding of soil organic carbon dynamics, compounded by natural variability in soil carbon and carbon isotopic content even within the same ecosystem. Many fundamental questions concerning the dynamics of the soil carbon cycle have yet to be answered. This paper reviews and synthesizes the isotopic approaches to the study of the soil carbon cycle. We will focus on uncertainties and limitations associated with these approaches and point out areas where more research is needed to improve our understanding of this important component of the global carbon cycle. (author)

  16. Relationship between climate and vegetation and the stable carbon isotope chemistry of soils in the eastern Mojave Desert, Nevada

    International Nuclear Information System (INIS)

    Amundson, R.G.; Chadwick, O.A.; Sowers, J.M.; Doner, H.E.

    1988-01-01

    The relationship between the stable C-isotope composition of the soil environment and modern climate and vegetation was determined empirically along a present-day climatic transect in the eastern Mojave Desert. The δ 13 C of the soil CO 2 and carbonates decreased with increasing elevation and plant density, even though plant assemblages at all elevations were isotopically similar. Several factors, including differences in the ratios of pedogenic of limestone calcite and differences in past vegetation, were considered as explanations of this trend, However, it appears that in the sparsely vegetated Mojave Desert, the δ 13 C of pedogenic carbonate is controlled by differences in plant density and biological activity. This relationship may provide a tool for assessing past vegetational densities, as long as the vegetation is isotopically homogeneous. (author)

  17. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Directory of Open Access Journals (Sweden)

    C. Bastianelli

    2017-07-01

    Full Text Available At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF. The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation

  18. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  19. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  20. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, R. (Max-Planck-Institut fuer Chemie, Mainz, Germany); Meyer, O.; Seiler, W.

    1981-08-01

    The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 ..mu..l liter/sup -1/) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. At low cell densities the CO comsumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. Considering the difference of the K/sub m/, values and the observed V/sub max/ values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.

  1. Root engineering for self-irrigation that exploits soil depth dimension for carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Gatliff, E. G.; Negri, M. C.

    2002-07-16

    A comprehensive carbon management program to sequester excess CO{sub 2} includes the maximization of the carbon sink potential of the terrestrial ecosystem. The establishment of sustainable vegetation on semi-arid or damaged land is necessary to increase the carbon inventory in the terrestrial ecosystem, as it is increasing the depth of the soil carbon sink. The availability of water for sustained growth at acceptable costs, when or where precipitation is too scarce or unpredictable, may, however, significantly affect the cost and sustainability of the revegetation efforts. We tested an innovative technology that enables the establishment of 'plantations' that are independent of erratic water supplies or irrigation by developing deep root systems that tap into deeper groundwater. Applied Natural Sciences (ANS) patented technologies (TreeMediation{reg_sign} and TreeWell{reg_sign} systems) overcome soil conditions unfavorable to deep rooting and 'engineer' the growth of phreatophytic tree roots into soil to reliably reach the groundwater. Carbon sinks can then be increased by increasing rooting depths and especially by enabling vegetative growth altogether. We collected soil cores from three phytoremediation sites where these technologies have been previously deployed. From these, we developed detailed information on root density and soil conditions at increasing depths to estimate C gains. The largest C gains were found when these technologies are used to control desertification. In these cases, significant gross C gains (at least between 4 and 6 tons/ha per year) can be envisioned. Other indirect benefits include resource recycling, pollution prevention, remediation, creating agricultural diversity and innovation in fruit and other tree crop and hardwood management.

  2. Modelling carbon and nitrogen turnover in variably saturated soils

    Science.gov (United States)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  3. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  4. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  5. CRADA Carbon Sequestration in Soils and Commercial Products

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  6. Benchmarking the inelastic neutron scattering soil carbon method

    Science.gov (United States)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  7. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    DEFF Research Database (Denmark)

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...... the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977-2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new...

  8. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Directory of Open Access Journals (Sweden)

    Irene Criscuoli

    Full Text Available The addition of pyrogenic carbon (C in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2 with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2. After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  9. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Science.gov (United States)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2)) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2)). After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  10. A multi-layer box model of carbon dynamics in soil

    International Nuclear Information System (INIS)

    Kuc, T.

    2005-01-01

    A multi-layer box model (MLB) for quantification of carbon fluxes between soil and atmosphere has been developed. In the model, soil carbon reservoir is represented by two boxes: fast decomposition box (FDB) and slow decomposition box (SDB), characterised by substantially different turnover time (TT) of carbon compounds. Each box has an internal structure (sub-compartments) accounting for carbon deposited in consecutive time intervals. The rate of decomposition of carbon compounds in each sub-compartment is proportional to the carbon content. With the aid of the MLB model and the 14 C signature of carbon dioxide, the fluxes entering and leaving the boxes, turnover time of carbon in each box, and the ratio of mass of carbon in the slow and fast box (M s /M f ) were calculated. The MBL model yields the turnover time of carbon in the FDB (TT f ) ca. 14 for typical investigated soils of temperate climate ecosystems. The calculated contribution of the CO 2 flux originating from the slow box (F s ) to the total CO 2 flux into the atmosphere ranges from 12% to 22%. These values are in agreement with experimental observations at different locations. Assuming that the input flux of carbon (F i n) to the soil system is doubled within the period of 100 years, the soil buffering capacity for excess carbon predicted by the MLB model for typical soil parameters may vary in the range between 26% and 52%. The highest values are obtained for soils characterised by long TTf, and well developed old carbon pool. (author)

  11. Towards Soil and Sediment Inventories of Black Carbon

    Science.gov (United States)

    Masiello, C. A.

    2008-12-01

    A body of literature on black carbon (BC) concentrations in soils and sediments is rapidly accumulating, but as of yet, there are no global or regional inventories of BC in either reservoir. Soil and sediment BC inventories are badly needed for a range of fields. For example, in oceanography a global sediment BC inventory is crucial in understanding the role of biomass burning in the development of stable marine carbon reservoirs, including dissolved organic carbon and sedimentary organic carbon. Again in the marine environment, BC likely strongly impacts the fate and transport of anthropogenic pollutants: regional inventories of BC in sediments will help develop better environmental remediation strategies. In terrestrial systems well-constrained natural BC soil inventories would help refine ecological, agricultural, and soil biogeochemical studies. BC is highly sorptive of nutrients including nitrogen and phosphorous. The presence of BC in ecosystems almost certainly alters N and P cycling; however, without soil BC inventories, we cannot know where BC has a significant impact. BC's nutrient sorptivity and water-holding capacity make it an important component of agricultural soils, and some researchers have proposed artificially increasing soil BC inventories to improve soil fertility. Natural soil BC concentrations in some regions are quite high, but without a baseline inventory, it is challenging to predict when agricultural amendment will significantly exceed natural conditions. And finally, because BC is one of the most stable fractions of organic carbon in soils, understanding its concentration and regional distribution will help us track the dynamics of soil organic matter response to changing environmental conditions. Developing effective regional and global BC inventories is challenging both because of data sparsity and methodological intercomparison issues. In this presentation I will describe a roadmap to generating these valuable inventories.

  12. Aggregate and soil organic carbon dynamics in South Chilean Andisols

    Directory of Open Access Journals (Sweden)

    D. Huygens

    2005-01-01

    Full Text Available Extreme sensitivity of soil organic carbon (SOC to climate and land use change warrants further research in different terrestrial ecosystems. The aim of this study was to investigate the link between aggregate and SOC dynamics in a chronosequence of three different land uses of a south Chilean Andisol: a second growth Nothofagus obliqua forest (SGFOR, a grassland (GRASS and a Pinus radiata plantation (PINUS. Total carbon content of the 0-10cm soil layer was higher for GRASS (6.7 kg C m-2 than for PINUS (4.3 kg C m-2, while TC content of SGFOR (5.8 kg C m-2 was not significantly different from either one. High extractable oxalate and pyrophosphate Al concentrations (varying from 20.3-24.4 g kg-1, and 3.9-11.1 g kg-1, respectively were found in all sites. In this study, SOC and aggregate dynamics were studied using size and density fractionation experiments of the SOC, δ13C and total carbon analysis of the different SOC fractions, and C mineralization experiments. The results showed that electrostatic sorption between and among amorphous Al components and clay minerals is mainly responsible for the formation of metal-humus-clay complexes and the stabilization of soil aggregates. The process of ligand exchange between SOC and Al would be of minor importance resulting in the absence of aggregate hierarchy in this soil type. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS (respectively 0.495, 0.266 and 0.196 g CO2-Cm-2d-1 for the top soil layer. In contrast, incubation experiments of isolated macro organic matter fractions gave opposite results, showing that the recalcitrance of the SOC decreased in another order: PINUS>SGFOR>GRASS. We deduced that electrostatic sorption processes and physical protection of SOC in soil aggregates were the main processes determining SOC stabilization. As a result, high aggregate carbon concentrations, varying from 148 till 48 g kg-1, were encountered for all land use

  13. Laboratory-scale model of carbon dioxide deposition for soil stabilisation

    Directory of Open Access Journals (Sweden)

    Mohammad Hamed Fasihnikoutalab

    2016-04-01

    Full Text Available Olivine sand is a natural mineral, which, when added to soil, can improve the soil's mechanical properties while also sequester carbon dioxide (CO2 from the surrounding environment. The originality of this paper stems from the novel two-stage approach. In the first stage, natural carbonation of olivine and carbonation of olivine treated soil under different CO2 pressures and times were investigated. In this stage, the unconfined compression test was used as a tool to evaluate the strength performance. In the second stage, details of the installation and performance of carbonated olivine columns using a laboratory-scale model were investigated. In this respect, olivine was mixed with the natural soil using the auger and the columns were then carbonated with gaseous CO2. The unconfined compressive strengths of soil in the first stage increased by up to 120% compared to those of the natural untreated soil. The strength development was found to be proportional to the CO2 pressure and carbonation period. Microstructural analyses indicated the presence of magnesite on the surface of carbonated olivine-treated soil, demonstrating that modified physical properties provided a stronger and stiffer matrix. The performance of the carbonated olivine-soil columns, in terms of ultimate bearing capacity, showed that the carbonation procedure occurred rapidly and yielded a bearing capacity value of 120 kPa. Results of this study are of significance to the construction industry as the feasibility of carbonated olivine for strengthening and stabilizing soil is validated. Its applicability lies in a range of different geotechnical applications whilst also mitigates the global warming through the sequestration of CO2.

  14. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  15. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    Science.gov (United States)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  16. Mapping soil organic carbon content and composition across Australia to assess vulnerability to climate change

    Science.gov (United States)

    Viscarra Rossel, R. A.

    2015-12-01

    We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C content and composition in the soil of Australia. The composition of soil organic C may be characterized by chemical separation or physical fractionation based on either particle size or particle density (Skjemstad et al., 2004; Gregorich et al., 2006; Kelleher&Simpson, 2006; Zimmermann et al., 2007). In Australia, for example, Skjemstad et al. (2004) used physical separation of soil samples into 50-2000 and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, giving the three OC pools, particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC; charcoal or char-carbon). We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C, POC, HOC and ROC at the continental scale. In this presentation I will describe how we made the maps and how we use them to assess the vulnerability of soil organic C to for instance climate change.

  17. The role of herbaceous crops in soil carbon and nitrogen cycles in relation to soil management . methodological approaches and innovative technologies

    International Nuclear Information System (INIS)

    Mohamed, M.A.A.

    2010-01-01

    stable. In this study the isotopic signature of a series of soils collected throughout Italy was determined before and after eliminating carbonates The field experiment was conducted during the growing seasons 2007 and 2008 at the Agronomic Institute, for industrial crop (ISCI) Battipaglia Italy cooperation with International PhD Crop Systems, Forestry, and Environmental Sciences university of Basilicata - Southern Italy on a Pachic Phaeozems (PHph) (WRB-FAO) soil which was classified as Silty Clay Loam from 0 to 0.30 m depth and a Silty Clay from 0.30 to 1.20 m depth. The studied crop was sorghum Sorghum bicolor Moench x S. sudanense (Piper) Stapf.(BMR333), planted by hand in rows during the first season 2007 on 31 May with density of 20 plant/m 2 and on 14 June 2008

  18. BOREAS TGB-12 Soil Carbon Data over the NSA

    Science.gov (United States)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Harden, Jennifer; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. TGB-12 data sets include soil properties at tower and selected auxiliary sites in the BOREAS NSA and data on the seasonal variations in the radiocarbon content of CO2 in the soil atmosphere at NSA tower sites. The sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of C in areas of moss regrowth could be determined. These data are used to calculate the inventory of C and N in moss and mineral soil layers at NSA sites and to determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data). This data set includes physical parameters needed to determine carbon and nitrogen inventory in soils. The data were collected discontinuously from August 1993 to July 1996. The data are stored in tabular ASCII files.

  19. The effect of soil fauna on carbon sequestration in soil

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Pižl, Václav; Kaneda, Satoshi; Šimek, Miloslav

    2008-01-01

    Roč. 10, - (2008) ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon sequestration * soil Subject RIV: EH - Ecology, Behaviour

  20. Rapid Turnover and Minimal Accretion of Mineral Soil Carbon During 60-Years of Pine Forest Growth on Previously Cultivated Land

    Science.gov (United States)

    Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.

    2016-12-01

    At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.

  1. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    Science.gov (United States)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  2. Spatial correlation between weed species densities and soil properties

    DEFF Research Database (Denmark)

    Walter, Mette; Christensen, Svend; Simmelsgaard, Svend Erik

    2002-01-01

    The spatial cross-correlation between weed species densities and six soil properties within fields was analysed using cross-semivariograms. The survey was carried out in three successive years in two fields. The most consistent relationship between weed species density (numbers m−2) and soil...... properties was negative cross-correlation between the density of Viola arvensis Murray and clay content. This correlation was found in both fields; however, the range of spatial dependence varied between fields. In one of the fields, the density of Lamium purpureum L. was positively cross......-correlated with the phosphorus content in the soil in all years. The density of Veronica spp. and Poa annua L. was negatively cross-correlated with pH in all three years. Other spatial cross-correlations that were found in this study were inconsistent over time or field site. The densities of some of the weed species were...

  3. Soil Carbon and Nitrogen Stock as Affected by Agricultural Wastes in a Typic Haplusult of Owerri, Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Stanley Uchenna Onwudike

    2016-07-01

    Full Text Available We evaluated the effect of saw dust ash (SDA and poultry droppings (PD on soil physico-chemical properties, soil carbon and nitrogen stock and their effects on the growth and yield of okra (Abelmoshus esculentus on a typic haplusult in Owerri, Imo State Southeastern Nigeria. The experiment was a factorial experiment consisted of saw dust ash applied at the rates of 0, 5 and 10 t/ha and poultry droppings applied at the rates of 0, 5 and 10 t/ha. The treatments were laid out in a randomized complete block design and replicated four times. Results showed that plots amended with 10 t/ha PD + 10 t/ha SDA significantly reduced soil bulk density from 1.37 – 1.07 g/cm3, increased soil total porosity from 48.4 – 59.7% and the percentage of soil weight that is water (soil gravimetric moisture content was increased by 68.4%. There were significant improvements on soil chemical properties with plots amended with 10 t/ha PD + 10 t/ha SDA recording the highest values on soil organic carbon, soil total nitrogen and exchangeable bases. Plots amended with 10 t/ha PD + 10 t/ha SDA significantly increased soil carbon stock by 24% and soil nitrogen stock by 49.5% more than other treatments. There was significant increase in the growth of okra when compared to the un-amended soil with application of 10 t/ha PD + 10 t/ha SDA increasing the fresh okra pod yield by 78.5%. Significant positive correlation existed between SCS and organic carbon (r = 0.6128, exchangeable Mg (r= 0.5035, total nitrogen (r = 0.6167 and soil pH (r = 0.5221. SNS correlated positively with organic carbon (r = 0.5834, total nitrogen (r= 0.6101 and soil pH (r = 5150. Therefore applications of these agro-wastes are effective in improving soil properties, increasing soil carbon and nitrogen stock. From the results of the work, application of 10 t/ha PD + 10 t/ha SDA which was the treatment combination that improved soil properties and growth performances of okra than other treatments studied is

  4. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  5. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  6. The Accumulation and Seasonal Dynamic of the Soil Organic Carbon in Wetland of the Yellow River Estuary, China

    Directory of Open Access Journals (Sweden)

    Xianxiang Luo

    2014-01-01

    Full Text Available The wetland of the Yellow River estuary is a typical new coastal wetland in northern China. It is essential to study the carbon pool and its variations for evaluating the carbon cycle process. The study results regarding the temporal-spatial distribution and influential factors of soil organic carbon in four typical wetlands belonging to the Yellow River estuary showed that there was no significant difference in the contents of the surface soil TOC to the same season among the four types of wetlands. For each type of wetlands, the TOC content in surface soils was significantly higher in October than that in both May and August. On the whole, the obvious differences in DOC contents in surface soils were not observed in the different wetland types and seasons. The peak of TOC appeared at 0–10 cm in the soil profiles. The contents of TOC and DOC were significantly higher in salsa than those in reed, suggesting that the rhizosphere effect of organic carbon in salsa was more obvious than that in reed. The results of the principal component analysis showed that the nitrogen content, salinity, bulk density, and water content were dominant influential factors for organic carbon accumulation and seasonal variation.

  7. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    Science.gov (United States)

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  8. Studies on enhancing carbon sequestration in soils

    International Nuclear Information System (INIS)

    Marland, G.; Garten, C.T.; Post, W.M.; West, T.O.

    2004-01-01

    Studies of carbon and nitrogen dynamics in ecosystems are leading to an understanding of the factors and mechanisms that affect the inputs to and outputs from soils and how these might be manipulated to enhance C sequestration. Both the quantity and the quality of soil C inputs influence C storage and the potential for C sequestration. Changes in tillage intensity and crop rotations can also affect C sequestration by changing the soil physical and biological conditions and by changing the amounts and types of organic inputs to the soil. Analyses of changes in soil C and N balances are being supplemented with studies of the management practices needed to manage soil carbon and the implications for fossil-fuel use, emission of other greenhouse gases (such as N 2 O and CH 4 ), and impacts on agricultural productivity. The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE) was created in 1999 to perform fundamental research that will lead to methods to enhance C sequestration as one component of a C management strategy. Research to date at one member of this consortium, Oak Ridge National Laboratory, has focused on C sequestration in soils and we begin here to draw together some of the results

  9. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  10. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    Science.gov (United States)

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  11. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  12. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Science.gov (United States)

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  13. Weathering controls on mechanisms of carbon storage in grassland soils

    Science.gov (United States)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  14. Towards integrated modelling of soil organic carbon cycling at landscape scale

    Science.gov (United States)

    Viaud, V.

    2009-04-01

    Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.

  15. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    Science.gov (United States)

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  16. Pasture Management Strategies for Sequestering Soil Carbon - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Franzluebbers, Alan J.

    2006-03-15

    Pasturelands account for 51 of the 212 Mha of privately held grazing land in the USA. Tall fescue is the most important cool-season perennial forage for many beef cattle producers in the humid region of the USA. A fungal endophyte, Neotyphodium coenophialum, infects the majority of tall fescue stands with a mutualistic association. Ergot alkaloids produced by the endophyte have negative impacts on cattle performance. However, there are indications that endophyte infection of tall fescue is a necessary component of productive and persistent pasture ecology. The objectives of this research were to characterize and quantify changes in soil organic carbon and associated soil properties under tall fescue pastures with and without endophyte infection of grass. Pastures with high endophyte infection had greater concentration of soil organic carbon, but lower concentration of biologically active soil carbon than pastures with low endophyte infection. A controlled experiment suggested that endophyte-infected leaf tissue may directly inhibit the activity of soil microorganisms. Carbon forms of soil organic matter were negatively affected and nitrogen forms were positively affected by endophyte addition to soil. The chemical compounds in endophyte-infected tall fescue (ergot alkaloids) that are responsible for animal health disorders were found in soil, suggesting that these chemicals might be persistent in the environment. Future research is needed to determine whether ergot alkaloids or some other chemicals are responsible for increases in soil organic matter. Scientists will be able to use this information to better understand the ecological impacts of animals grazing tall fescue, and possibly to identify and cultivate other similar associations for improving soil organic matter storage. Another experiment suggested that both dry matter production and soil microbial activity could be affected by the endophyte. Sampling of the cumulative effects of 20 years of tall fescue

  17. Underestimation of soil carbon stocks by Yasso07, Q, and CENTURY models in boreal forest linked to overlooking site fertility

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-04-01

    The soil organic carbon stock (SOC) changes estimated by the most process based soil carbon models (e.g. Yasso07, Q and CENTURY), needed for reporting of changes in soil carbon amounts for the United Nations Framework Convention on Climate Change (UNFCCC) and for mitigation of anthropogenic CO2 emissions by soil carbon management, can be biased if in a large mosaic of environments the models are missing a key factor driving SOC sequestration. To our knowledge soil nutrient status as a missing driver of these models was not tested in previous studies. Although, it's known that models fail to reconstruct the spatial variation and that soil nutrient status drives the ecosystem carbon use efficiency and soil carbon sequestration. We evaluated SOC stock estimates of Yasso07, Q and CENTURY process based models against the field data from Swedish Forest Soil National Inventories (3230 samples) organized by recursive partitioning method (RPART) into distinct soil groups with underlying SOC stock development linked to physicochemical conditions. These models worked for most soils with approximately average SOC stocks, but could not reproduce higher measured SOC stocks in our application. The Yasso07 and Q models that used only climate and litterfall input data and ignored soil properties generally agreed with two third of measurements. However, in comparison with measurements grouped according to the gradient of soil nutrient status we found that the models underestimated for the Swedish boreal forest soils with higher site fertility. Accounting for soil texture (clay, silt, and sand content) and structure (bulk density) in CENTURY model showed no improvement on carbon stock estimates, as CENTURY deviated in similar manner. We highlighted the mechanisms why models deviate from the measurements and the ways of considering soil nutrient status in further model development. Our analysis suggested that the models indeed lack other predominat drivers of SOC stabilization

  18. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    Science.gov (United States)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil. Our findings provide

  19. Soil carbon estimation from eucalyptus grandis using canopy spectra

    African Journals Online (AJOL)

    Mapping soil fertility parameters, such as soil carbon (C), is fundamentally important for forest management and research related to forest growth and climate change. This study seeks to establish the link between Eucalyptus grandis canopy spectra and soil carbon using raw and continuum-removed spectra. Canopy-level ...

  20. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.

    2015-01-01

    Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized...... to decompose soil organic matter. Our review highlights evidence demonstrating the potential for ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity...... and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model...

  1. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  2. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  3. Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils

    DEFF Research Database (Denmark)

    Kuhn, Nikolaus J; Armstrong, Elizabeth K; Ling, Amy C

    2012-01-01

    particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion...... to conventional soil management. The enrichment of P and C in the interrill sediment was not directly related to SOC, P content of the soil and soil interrill erodibility. A comparison of soil and sediment properties indicates that crusting, P and C content as well as density and size of eroded aggregate......Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm...

  4. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

    Science.gov (United States)

    Averill, Colin; Turner, Benjamin L; Finzi, Adrien C

    2014-01-23

    Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle.

  5. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  6. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Science.gov (United States)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  7. Distribution of soil organic carbon in the conterminous United States

    Science.gov (United States)

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  8. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    Science.gov (United States)

    M.P. Waldrop; K.P. Wickland; R. White; A.A. Berhe; J.W. Harden; V.E. Romanovsky

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial...

  9. Plant functional traits and soil carbon sequestration in contrasting biomes.

    NARCIS (Netherlands)

    De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D.

    2008-01-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its

  10. PEDO-TRANSFER FUNCTIONS FOR ESTIMATING SOIL BULK DENSITY IN CENTRAL AMAZONIA

    Directory of Open Access Journals (Sweden)

    Henrique Seixas Barros

    2015-04-01

    Full Text Available Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2 and Akaike information criterion (AIC and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.

  11. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    Science.gov (United States)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  12. Old-growth forests can accumulate carbon in soils

    Science.gov (United States)

    Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.

    2006-01-01

    Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.

  13. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  14. [Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages].

    Science.gov (United States)

    Miao, Juan; Zhou, Chuan-Yan; Li, Shi-Jie; Yan, Jun-Hua

    2014-03-01

    Taking three Pinus yunnanensis forests at different ages (19, 28 and 45 a) in Panxian County of Guizhou Province as test objects, we investigated vertical distributions and accumulation rates of soil organic carbon (SOC) and total nitrogen (TN), as well as their relationships with soil bulk density. For the three forests at different age stages, SOC and TN changed consistently along the soil profile, declining with the soil depth. Both SOC and TN storage increased with the forest age. The SOC and TN storage amounts were 96.24, 121.65 and 148.13 t x hm(-2), and 10.76, 12.96 and 13.08 t x hm(-2) for the forest stands with 19 a, 28 a and 45 a, respectively. SOC had a significant positive correlation with soil TN, while both of them had a significant negative relationship with the soil bulk density. The accumulation rates of both SOC and TN storage at different growth periods were different, and the rate in the period from age 19 to 28 was higher than in the period from age 28 to 45.

  15. Does the increased air humidity affect soil respiration and carbon stocks?

    Science.gov (United States)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the

  16. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  17. Carbon stabilization mechanisms in soils in the Andes

    Science.gov (United States)

    Jansen, Boris; Cammeraat, Erik

    2015-04-01

    The volcanic ash soils of the Andes contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute significant potential sources or sinks of the greenhouse gas CO2. Climate and/or land use change potentially have a strong effect on these large SOM stocks. To clarify the role of chemical and physical stabilisation mechanisms in volcanic ash soils in the montane tropics, we investigated carbon stocks and stabilization mechanisms in the top- and subsoil along an altitudinal transect in the Ecuadorian Andes. The transect encompassed a sequence of paleosols under forest and grassland (páramo), including a site where vegetation cover changed in the last century. We applied selective extraction techniques, performed X-ray diffraction analyses of the clay fraction and estimated pore size distributions at various depths in the top- and subsoil along the transect. In addition, from several soils the molecular composition of SOM was further characterized with depth in the current soil as well as the entire first and the top of the second paleosol using GC/MS analyses of extractable lipids and Pyrolysis-GC/MS analyses of bulk organic matter. Our results show that organic carbon stocks in the mineral soil under forest a páramo vegetation were roughly twice as large as global averages for volcanic ash soils, regardless of whether the first 30cm, 100cm or 200cm were considered. We found the carbon stabilization mechanisms involved to be: i) direct stabilization of SOM in organo-metallic (Al-OM) complexes; ii) indirect protection of SOM through low soil pH and toxic levels of Al; and iii) physical protection of SOM due to a very high microporosity of the soil (Tonneijck et al., 2010; Jansen et al. 2011). When examining the organic carbon at a molecular level, interestingly we found extensive degradation of lignin in the topsoil while extractable lipids were preferentially preserved in the subsoil (Nierop and Jansen, 2009). Both vegetation

  18. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  19. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  20. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    Science.gov (United States)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-01-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon−nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  1. Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest

    Science.gov (United States)

    Hempel, L. A.; Schade, G. W.; Pfohl, A.

    2011-12-01

    A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at

  2. Carbon cycling and gas exchange in soils

    International Nuclear Information System (INIS)

    Trumbore, S.E.

    1989-01-01

    This thesis summaries three independent projects, each of which describes a method which can be used to study the role of soils in regulating the atmospheric concentrations of CO 2 and other trace gases. The first chapter uses the distribution of natural and bomb produced radiocarbon in fractionated soil organic matter to quantify the turnover of carbon in soils. A comparison of 137 Cs and 14 C in the modern soil profiles indicates that carbon is transported vertically in the soil as dissolved organic material. The remainder of the work reported is concerned with the use of inert trace gases to explore the physical factors which control the seasonal to diel variability in the fluxes of CO 2 and other trace gases from soils. Chapter 2 introduces a method for measuring soil gas exchange rates in situ using sulfur hexafluoride as a purposeful tracer. The measurement method uses standard flux box technology, and includes simultaneous determination of the fluxes and soil atmosphere concentrations of CO 2 and CH 4 . In Chapter 3, the natural tracer 222 Rn is used as an inert analog for exchange both in the soils and forest canopy of the Amazon rain forest

  3. Dynamic replacement and loss of soil carbon on eroding cropland

    Science.gov (United States)

    Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.

    1999-01-01

    Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.

  4. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.

    Science.gov (United States)

    McNally, Sam R; Beare, Mike H; Curtin, Denis; Meenken, Esther D; Kelliher, Francis M; Calvelo Pereira, Roberto; Shen, Qinhua; Baldock, Jeff

    2017-11-01

    Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non-Allophanic topsoils (0-15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non-Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long-term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g -1 ) was greater than that of non-Allophanic soils (16.3 mg C g -1 ). The saturation deficit of cropped soils was 1.14-1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha -1 (Ultic soils) to 42 t C ha -1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off-setting New Zealand's greenhouse gas emissions. As the first national-scale estimate of SOC sequestration potential that encompasses both Allophanic and non-Allophanic soils, this serves as an informative case study for the international

  5. Accounting for Organic Carbon Change in Deep Soil Altered Carbon Sequestration Efficiency

    Science.gov (United States)

    Li, J.; Liang, F.; Xu, M.; Huang, S.

    2017-12-01

    Study on soil organic carbon (SOC) sequestration under fertilization practices in croplands lacks information of soil C change at depth lower than plow layer (i.e. 20 30-cm). By synthesizing long-term datasets of fertilization experiments in four typical Chinese croplands representing black soil at Gongzhuling(GZL), aquatic Chao soil at Zhengzhou(ZZ), red soil at Qiyang(QY) and purple soil at Chongqing(CQ) city, we calculated changes in SOC storage relative to initial condition (ΔSOC) in 0-20cm and 0-60cm, organic C inputs (OC) from the stubble, roots and manure amendment, and C sequestration efficiency (CSE: the ratio of ΔSOC over OC) in 0-20cm and 0-60cm. The fertilization treatments include cropping with no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed SOC storage generally decreased with soil depth (i.e. 0-20 > 20-40, 40-60 cm) and increased with fertilizations (i.e. initial fertilizations, soil at depth (>20cm) can act as important soil carbon sinks in intrinsically high fertility soils (i.e. black soil) but less likely at poor fertility soil (i.e. aquatic Chao soil). It thus informs the need to account for C change in deep soils for estimating soil C sequestration capacity particularly with indigenously fertile cropland soils.

  6. Afforestation effects on soil carbon

    DEFF Research Database (Denmark)

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...... Protocol. Despite research efforts on the quantification of SOC stock change and soil C fluxes following this land-use change, knowledge is still scarce in regions where afforestation currently is and has been widespread, like Denmark and the rest of Northern Europe. This PhD thesis explored three main...

  7. Soil Carbon in North American, Arctic, and Boreal Regions

    Science.gov (United States)

    Lajtha, K.; Bailey, V. L.; Schuur, E.; McGuire, D.; Romanovsky, V. E.

    2017-12-01

    Globally, soils contain more than 3 times as much as C as the atmosphere and >4 times more C than the world's biota, therefore even small changes in soil C stocks could lead to large changes in the atmospheric concentration of CO2. Since SOCCR-1, improvements have been made in quantifying stocks and uncertainties in stocks of soil C to a depth of 1 m across North America. Estimates for soil carbon stocks in the US (CONUS + Alaska) range from 151 - 162 Pg C, based on extensive sampling and analysis. Estimates for Canada average about 262 Pg C, but sampling is not as extensive. Soil C for Mexico is calculated as 18 Pg C, but there is a great deal of uncertainty surrounding this value. These soil carbon stocks are sensitive to agricultural management, land use and land cover change, and development and loss of C-rich soils such as wetlands. Climate change is a significant threat although may be partially mitigated by increased plant production. Carbon stored in permafrost zone circumpolar soils is equal to 1330-1580 Pg C, almost twice that contained in the atmosphere and about order of magnitude greater than carbon contained in plant biomass, woody debris, and litter in the boreal and tundra biomes combined. Surface air temperature change is amplified in high latitude regions such that Arctic temperature rise is about 2.5 times faster than for the globe as a whole, and thus 5 - 15% of this carbon is considered vulnerable to release to the atmosphere by the year 2100 following the current trajectory of global and Arctic warming. This amount is likely to be up to an order of magnitude larger loss than the increase in carbon stored in plant biomass under the same changing conditions. Models of soil organic matter dynamics have been greatly improved in the last decade by including greater process-level understanding of factors that affect soil C stabilization and destabilization, yet structural features of many models are still limited in representing Arctic and boreal

  8. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    Science.gov (United States)

    Khomo, Lesego; Trumbore, Susan; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    Organic matter-mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40-70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9-47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had

  9. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia

    Science.gov (United States)

    Howe, A. J.; Rodríguez, J. F.; Saco, P. M.

    2009-08-01

    The aim of this work was to quantify the soil carbon storage and sequestration rates of undisturbed natural wetlands and disturbed wetlands subject to restriction of tidal flow and subsequent rehabilitation in an Australian estuary. Disturbed and undisturbed estuarine wetlands of the Hunter estuary, New South Wales, Australia were selected as the study sites for this research. Vertical accretion rates of estuarine substrates were combined with soil carbon concentrations and bulk densities to determine the carbon store and carbon sequestration rates of the substrates tested. Relationships between estuary water level, soil evolution and vertical accretion were also examined. The carbon sequestration rate of undisturbed wetlands was lower (15% for mangrove and 55% for saltmarsh) than disturbed wetlands, but the carbon store was higher (65% for mangrove and 60% for saltmarsh). The increased carbon sequestration rate of the disturbed wetlands was driven by substantially higher rates of vertical accretion (95% for mangrove and 345% for saltmarsh). Estuarine wetland carbon stores were estimated at 700-1000 Gg C for the Hunter estuary and 3900-5600 Gg C for New South Wales. Vertical accretion and carbon sequestration rates of estuarine wetlands in the Hunter are at the lower end of the range reported in the literature. The comparatively high carbon sequestration rates reported for the disturbed wetlands in this study indicate that wetland rehabilitation has positive benefits for regulation of atmospheric carbon concentrations, in addition to more broadly accepted ecosystem services.

  10. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  11. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  12. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    Science.gov (United States)

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.

  13. Distinguishing "new" from "old" carbon in post mining soils

    Science.gov (United States)

    Vindušková, Olga; Frouz, Jan

    2014-05-01

    Introduction Soils developing on heaped overburden after open pit coal mining near Sokolov, Czech Republic, provide an exceptional opportunity to study sites of different ages (0-70 years) developing on similar substrate under relatively well-known conditions. Soil organic carbon (SOC) is an useful indicator of soil quality and represents an important global carbon pool. Post-mining soils would be a perfect model for long-term study of carbon dynamics. Unfortunately, quantifying SOC in Sokolov post-mining soils is quite complicated, since conventional quantification methods cannot distinguish between SOC derived from plant residues and fossil organic carbon derived from coal and kerogen present in the overburden. Moreover, also inorganic carbon may sometimes bias SOC quantification. Up to now, the only way to directly estimate recently derived SOC in these soils is radiocarbon dating (Rumpel et al. 1999; Karu et al. 2009). However, this method is costly and thus cannot be used routinely. The aim of our study is to find an accessible method to quantify recently derived SOC. We would highly appreciate ideas of other soil scientists, organic geochemists and sedimentologists on how to solve this challenge. Methods and hypotheses A set of 14 soil samples were analysed by radiocarbon (14C-AMS) analysis, near-infrared spectroscopy (NIRS), 13C CPMAS NMR spectroscopy, Rock-Eval and XRD. For calibration of NIRS, also 125 artificial mixtures were produced by mixing different amounts of claystone, coal and partially decomposed litter. NIRS (1000-2500 nm) as well as younger mid-infrared spectroscopy has been widely applied to soils (Janik et al. 2007; Vasques et al. 2009; Michel et al. 2009). When combined with multivariate chemometric techniques, it can be used to predict concentration of different compounds. No study has yet focused on NIRS application to soils where fossil carbon is found in two chemically different forms - whereas coal is rather aromatic, kerogen in our

  14. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  15. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    Directory of Open Access Journals (Sweden)

    E. V. J. Tanner

    2016-11-01

    Full Text Available Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm; Mehlich-III extractable phosphorus and total carbon (both to 20 cm; total nitrogen (to 15 cm; Mehlich-III calcium (to 10 cm; and Mehlich-III magnesium and lower bulk density (both to 5 cm. In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m−2 of mineral soil (approximately the upper 20 cm of the profile about 0.5 kg C m−2 was “missing” from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m−2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  16. Soil fauna: key to new carbon models

    Science.gov (United States)

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  17. Soil carbon under perennial pastures; benchmarking the influence of pasture age and management

    Science.gov (United States)

    Orgill, Susan E.; Spoljaric, Nancy; Kelly, Georgina

    2015-07-01

    This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.

  18. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Directory of Open Access Journals (Sweden)

    G. Wang

    2017-10-01

    Full Text Available Changes in the soil organic carbon (SOC stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1°  ×  0.1° and over a long timescale (54 years from 1961 to 2014. A widely used soil C turnover model (RothC and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive and the edaphic variable of initial SOC content (linearly negative. Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to

  19. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  20. Effect of liming and organic and inorganic fertilization on soil carbon sequestered in macro-and microaggregates in a 17-year old Pinus radiata silvopastoral system.

    Science.gov (United States)

    Mosquera-Losada, M R; Rigueiro-Rodríguez, A; Ferreiro-Domínguez, N

    2015-03-01

    Agroforestry systems have been recognized as a potential greenhouse gas mitigation strategy under the Kyoto Protocol because of their ability to absorb carbon dioxide from the atmosphere and store carbon mainly in the soil. Soil particle size and land management practices are known to have a considerable influence on carbon storage in soils. This study evaluated changes in soil chemical and physical properties, and quantified and compared the amount of C stored in the bulk soil and in three different soil fractions (250-2000, 53-250 and silvopastoral system located on an acidic forest soil under Pinus radiata D. Don. Areas of this system were subjected ten years ago to one of nine fertilization treatments: three different doses of sewage sludge or no fertilization, all with or without the addition of lime, and mineral fertilizer with no liming. Seventeen years after reforestation and seven years after canopy closure, strong gradients with soil depth were found regarding soil bulk density, pH and carbon storage. Intense soil management (high doses of sewage sludge and liming) generally reduced soil carbon storage, mainly in coarse aggregates, but this could be compensated by the increase in tree and pasture development observed in soils subject to intermediate sewage sludge doses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  2. Measurement of water content and density of soil using photon multiplescattering

    International Nuclear Information System (INIS)

    Ertek, C.; Haselberger, N.

    1981-04-01

    A gamma-backscatter gauge for field and laboratory applications was set up for the measurement of density and water content of soil at the same time. The method works successfully between 0-40 cm depth of the soil and is superior to the neutron gauge between 0-30 cm depth. The system is extremely simple and practical and can be installed on a tractor during ploughing. The developed method also works for absolute values of densities and moisture content and is able to distinguish the bulk density changes due to vacancies in the soil or the water content taken inside the soil grains

  3. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...... solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems....

  4. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Science.gov (United States)

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  5. Distribution of ancient carbon in buried soils in an eroding loess landscape

    Science.gov (United States)

    Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.

    2017-12-01

    Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.

  6. Mapping Soil Carbon in the Yukon Kuskokwim River Delta Alaska

    Science.gov (United States)

    Natali, S.; Fiske, G.; Schade, J. D.; Mann, P. J.; Holmes, R. M.; Ludwig, S.; Melton, S.; Sae-lim, N.; Jardine, L. E.; Navarro-Perez, E.

    2017-12-01

    Arctic river deltas are hotspots for carbon storage, occupying 10% of carbon stored in arctic permafrost. The Yukon Kuskokwim (YK) Delta, Alaska is located in the lower latitudinal range of the northern permafrost region in an area of relatively warm permafrost that is particularly vulnerable to warming climate. Active layer depths range from 50 cm on peat plateaus to >100 cm in wetland and aquatic ecosystems. The size of the soil organic carbon pool and vulnerability of the carbon in the YK Delta is a major unknown and is critically important as climate warming and increasing fire frequency may make this carbon vulnerable to transport to aquatic and marine systems and the atmosphere. To characterize the size and distribution of soil carbon pools in the YK Delta, we mapped the land cover of a 1910 km2 watershed located in a region of the YK Delta that was impacted by fire in 2015. The map product was the result of an unsupervised classification using the Weka K Means clustering algorithm implemented in Google's Earth Engine. Inputs to the classification were Worldview2 resolution optical imagery (1m), Arctic DEM (5m), and Sentinel 2 level 1C multispectral imagery, including NDVI, (10 m). We collected 100 soil cores (0-30 cm) from sites of different land cover and landscape position, including moist and dry peat plateaus, high and low intensity burned plateaus, fens, and drained lakes; 13 lake sediment cores (0-50 cm); and 20 surface permafrost cores (to 100 cm) from burned and unburned peat plateaus. Active layer and permafrost soils were analyzed for organic matter content, soil moisture content, and carbon and nitrogen pools (30 and 100 cm). Soil carbon content varied across the landscape; average carbon content values for lake sediments were 12% (5- 17% range), fens 26% (9-44%), unburned peat plateaus 41% (34-44%), burned peat plateaus 19% (7-34%). These values will be used to estimate soil carbon pools, which will be applied to the spatial extent of each

  7. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Climate change affects carbon allocation to the soil in shrublands

    DEFF Research Database (Denmark)

    Gorissen, A.; Tietema, A.; Joosten, N.N.

    2004-01-01

    , resulting from imposed manipulations, on carbon dynamics in shrubland ecosystems was examined. We performed a C-14-labeling experiment to probe changes in net carbon uptake and allocation to the roots and soil compartments as affected by a higher temperature during, the year and a drought period...... than or equal to 0.10. Drought clearly reduced carbon flow from the roots to the soil compartments. The fraction of the C-14 fixed by the plants and allocated into the soluble carbon fraction in the soil and to soil microbial biomass in Denmark and the UK decreased by more than 60%. The effects......Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes...

  9. Soil-Carbon Measurement System Based on Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Orion, I.; Wielopolski, L.

    2002-01-01

    Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements

  10. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems.

  11. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  12. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    International Nuclear Information System (INIS)

    Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M.

    2010-01-01

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO 3 ) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  13. Stable isotopic constraints on global soil organic carbon turnover

    Science.gov (United States)

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  14. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Directory of Open Access Journals (Sweden)

    Anahid Salmanpour

    2017-02-01

    Full Text Available Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality. The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran. Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil

  15. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  16. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    International Nuclear Information System (INIS)

    Baldock, J.A.; Oades, J.M.

    1990-01-01

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13 C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m -3 . Solid state CP/MAS 13 C n.m.r. (cross polarization/magic angle spinning 13 C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13 C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  17. A comparison of soil organic carbon stock in ancient and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Elberling, Bo; Balstrøm, Thomas

    2009-01-01

    . A comparison of the organic matter content in these mound cores and the plough layer in modern farmland offers an opportunity to compare the soil organic carbon (SOC) stocks in ancient and modern land use systems and to evaluate the long-term trends in carbon (C) sequestration in relation to modern farmland......During the South Scandinavian Early Bronze Age about 3300 years ago, thousands of burial mounds were constructed of sods from fallow ground used for grazing in Denmark and northern Germany. In some of these mounds a wet, anaerobic core developed, preventing the decomposition of organic matter...... with varying inputs of manure and inorganic fertilizers. In the present paper we compare SOC stocks based on integrated horizon-specific densities and SOC contents in three 3300-year-old buried farmland soils, representing the land use system at that time, with results from soil surveys representing modern...

  18. Modern Timber Harvesting Practices Have Little Short-Term Effect on Soil Carbon Stores in Industrial Forests of Western Oregon and Washington, U.S.A.

    Science.gov (United States)

    Holub, S. M.; Hatten, J. A.

    2017-12-01

    Soil carbon represents a large, but slowly changing pool of carbon in forests and understanding its response to forest management, including harvesting, is critical for determining overall stand/landscape carbon balance. Past studies have observed mixed effects of harvesting on soil carbon possibly due, in part, to imprecise sampling methods and high variability within soils. Weyerhaeuser Company has led a major effort to examine the effect of conventional timber harvesting on long-term soil carbon stores in western Oregon and Washington Douglas-fir forests using a highly-replicated longitudinal study design that enables precise estimation of variability found in these systems. In 2010, we randomly selected nine harvest units from Weyerhaeuser's 2012 harvest plan. At each non-harvested unit, a uniform, non-rocky area of about 3-6 hectares was selected for the study. Pre-harvest soil samples were collected at 300 sample points from each unit on a fixed square grid, targeting an intensity that would allow detection of >5% change in soil carbon stores. We measured soil carbon concentration and soil bulk density in depth increments to 1 m to allow for the calculation of total soil carbon per hectare. Other ecosystem pools of carbon, such as trees and downed wood, also have been measured to complete the whole-site carbon budget. All units were harvested from late 2011 through mid-year 2012. In 2015, 3-3.5 years post-harvest, we resampled the same areas in an identical manner as the pre-harvest collection to evaluate changes in soil carbon following harvest. Across all sites combined, we estimated a +2% change (-2% to +6%, 95% confidence interval) in mineral soil carbon following harvest, which is consistent with small-to-no change. Individual sites varied in direction of response; only one site showed evidence of a slight decrease in soil carbon, while two sites showed slight gains. These early results indicate that Weyerhaeuser's conventional timber harvesting methods

  19. Use of Carbon Isotopic Tracers in Investigating Soil Carbon Sequestration and Stabilization in Agroecosystems

    International Nuclear Information System (INIS)

    2017-09-01

    The global surface temperatures have been reported to increase at an average rate of 0.06 C (0.11 F) per decade. This observed climate change known as the greenhouse effect is attributed to the emission of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere, resulting in trapping the heat near the earth’s surface causing global warming. World soils are the largest reservoir of terrestrial carbon and that soils are a source or sink of GHGs depending on land use management. Recognizing the urgent need to address the soil organic matter constraints for a sustainable agricultural production to ensure food security, this publication provides an integrated view on conventional and isotopic methods of measuring and modelling soil carbon dynamics, and the use nuclear and radioisotope tracer techniques in in-situ glasshouse and field labelling techniques to assess soil organic matter turnover and sequestration.

  20. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  1. Effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  2. Pyrogenic Carbon Erosion: Implications for Stock and Persistence of Pyrogenic Carbon in Soil

    Directory of Open Access Journals (Sweden)

    Rebecca B. Abney

    2018-03-01

    Full Text Available Pyrogenic carbon (PyC constitutes an important pool of soil organic matter (SOM, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time (MRT of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC MRT range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several 100 g PyC m−2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  3. Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil

    Science.gov (United States)

    Abney, Rebecca B.; Berhe, Asmeret Asefaw

    2018-03-01

    Pyrogenic carbon (PyC) constitutes an important pool of soil organic matter, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC mean residence time (MRT) range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several hundred g PyC m-2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  4. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J. [University of California Riverside, Riverside, CA (United States). Dept. of Environmental Science

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  5. Content and carbon stocks in labile and recalcitrant organic matter of the soil under crop-livestock integration in Cerrado

    Directory of Open Access Journals (Sweden)

    Itaynara Batista

    2013-12-01

    Full Text Available The study of organic matter and its compartments and their relationship with management, aims to develop strategies for increasing their levels in soils and better understanding of its dynamics. This work aimed to evaluate the fractions of soil organic matter and their carbon stocks in different soil cover system in crop-livestock integration and native Cerrado vegetation. The study was conducted at the farm Cabeceira, Maracajú – MS, sample area have the following history: soybean/corn + brachiaria/cotton/oat + pasture/soybean/formation of pasture/grazing, sampling was carried out in two seasons, dry (May/2009 and rainy (March 2010, in the dry season, crops present were: pasture, corn and cotton + brachiaria and in the rainy season were corn, cotton and soybeans, so the areas in the two evaluation periods were: pasture / maize + brachiaria / cotton, cotton / soybean area and a native of Savanna. Was performed to determine the exchangeable cations, particle size analysis, bulk density, organic carbon, particle size fractionation of organic matter of the soil with the quantification of particulate organic carbon (POC and organic carbon associated with minerals (OCam. Was also quantified the carbon stock and size fractions. The area of pasture / maize showed higher carbon stock in the particulate fraction in the topsoil. The area of cotton / soy due to its lower clay, showed the greatest loss of carbon. Because of the areas have the same history, the stock of more recalcitrant fraction was not sensitive to variations in coverage. The POC fraction appears more sensitive to different soil covers and seasonality.

  6. Soil carbon dioxide emissions from a rubber plantation on tropical peat.

    Science.gov (United States)

    Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi

    2017-03-01

    Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO 2 ) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO 2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO 2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr -1 outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr -1 . As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr -1 ) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  8. Proximal sensing for soil carbon accounting

    OpenAIRE

    England, Jacqueline R.; Viscarra Rossel, Raphael A.

    2018-01-01

    Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires...

  9. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...... were also assessed. Collembolans were found in highest densities in dry heath soil, about 130,000 individuals m-2, more than twice as high as in mesic heath soils. Enchytraeids, diptera larvae and nematodes were also more abundant in the dry heath soil than in mesic heath soils, whereas protozoan...

  10. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    DEFF Research Database (Denmark)

    Weiss, Niels; Blok, Daan; Elberling, Bo

    2016-01-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends...

  11. The Effect of Soil Warming on Decomposition of Biochar, Wood, and Bulk Soil Organic Carbon in Contrasting Temperate and Tropical Soils

    Science.gov (United States)

    Torn, Margaret; Tas, Neslihan; Reichl, Ken; Castanha, Cristina; Fischer, Marc; Abiven, Samuel; Schmidt, Michael; Brodie, Eoin; Jansson, Janet

    2013-04-01

    Biochar and wood are known to decay at different rates in soil, but the longterm effect of char versus unaltered wood inputs on soil carbon dynamics may vary by soil ecosystem and by their sensitivity to warming. We conducted an incubation experiment to explore three questions: (1) How do decomposition rates of char and wood vary with soil type and depth? (2) How vulnerable to warming are these slowly decomposing inputs? And (3) Do char or wood additions increase loss of native soil organic carbon (priming)? Soils from a Mediterranean grassland (Hopland Experimental Research Station, California) and a moist tropical forest (Tabunoco Forest, Puerto Rico) were collected from two soil depths and incubated at ambient temperature (14°C, 20°C for Hopland and Tabonuco respectively) and ambient +6°C. We added 13C-labeled wood and char (made from the wood at 450oC) to the soils and quantified CO2 and 13CO2 fluxes with continuous online carbon isotope measurements using a Cavity Ringdown Spectrometer (Picarro, Inc) for one year. As expected, in all treatments the wood decomposed much (about 50 times) more quickly than did the char amendment. With few exceptions, amendments placed in the surface soil decomposed more quickly than those in deeper soil, and in forest soil faster than that placed in grassland soil, at the same temperature. The two substrates were not very temperature sensitive. Both had Q10 less than 2 and char decomposition in particular was relatively insensitive to warming. Finally, the addition of wood caused a significant increase of roughly 30% in decomposition losses of the native soil organic carbon in the grassland and slightly less in forest. Char had only a slight positive priming effect but had a significant effect on microbial community. These results show that conversion of wood inputs to char through wildfire or intentional management will alter not only the persistence of the carbon in soil but also its temperature response and effect on

  12. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    International Nuclear Information System (INIS)

    Lal, R.

    2004-01-01

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  13. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    International Nuclear Information System (INIS)

    Oostra, Swantje; Majdi, Hooshang; Olsson, Mats

    2006-01-01

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate

  14. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    Science.gov (United States)

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  15. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Science.gov (United States)

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Improvement of clayey soil characteristics by using activated carbon

    Directory of Open Access Journals (Sweden)

    Al-Soudany Kawther

    2018-01-01

    Full Text Available The clay soil is weak and unable to carry the applied loads as a result of the weight of buildings or vehicles on the load performing on the soil. In this research, clay soil was grained and mixed with different percentages of activated carbon additives to investigate its performance. One type of clay soil from Al-Taji city was used. The percentages of activated carbon 3, 5, 7 and 9% were added to the soil and the influence of the admixture was observed by comparing the results with the untreated soil. The selected properties for this comparison were specific gravity, consistency limits, compaction, static compaction, CBR, consolidation, swelling and unconfined compressive strength. The results showed that the plasticity index, maximum dry weight and specific gravity decreased as the percentage of additives increased. The unconfined compressive strength increased as the percentage of additives and curing periods (1, 7, 14 and 28days increased. The amount of increase in soil strength was even more than 100% for the 9% activatedcarbon. The results showed that the addition of activated carbon has a positive effect to the geotechnical properties.

  17. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Science.gov (United States)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  18. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  19. The effects of forward speed and depth of conservation tillage on soil bulk density

    Directory of Open Access Journals (Sweden)

    A Mahmoudi

    2015-09-01

    Full Text Available Introduction: In recent years, production techniques and equipment have been developed for conservation of tillage systems that have been adopted by many farmers. With proper management, overall yield averages for conventional and reduced tillage systems are nearly identical. Sometimes, field operations can be combined by connecting two or more implements. Combined operations reduce both fuel consumption, and time and labor requirements by eliminating at least one individual trip over the field. Light tillage, spraying, or fertilizing operations can be combined with either primary or secondary tillage or planting operations. Tillage helps seed growth and germination through providing appropriate conditions for soil to absorb sufficient temperature and humidity. Moreover, it helps easier development of root through reducing soil penetration resistance. Tillage is a time-consuming and expensive procedure. With the application of agricultural operations, we can save substantial amounts of fuel, time and energy consumption. Conservation tillage loosens the soil without turning, but by remaining the plant left overs, stems and roots. Bulk density reflects the soil’s ability to function for structural support, water and solute movement, and soil aeration. Bulk densities above thresholds indicate impaired function. Bulk density is also used to convert between weight and volume of soil. It is used to express soil physical, chemical and biological measurements on a volumetric basis for soil quality assessment and comparisons between management systems. This increases the validity of comparisons by removing the error associated with differences in soil density at the time of sampling. The aim of conservation tillage is to fix the soil structure. This investigation was carried out considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country

  20. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    Science.gov (United States)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  1. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu Wenjie; Chen Shengyun; Qin Xiang; Zhou Zhaoye; Sun Weijun; Ren Jiawen; Qin Dahe; Baumann, Frank; Scholten, Thomas; Zhang Tongzuo

    2012-01-01

    This study tested the hypothesis that soil organic carbon (SOC) and total nitrogen (TN) spatial distributions show clear relationships with soil properties and vegetation composition as well as climatic conditions. Further, this study aimed to find the corresponding controlling parameters of SOC and TN storage in high-altitude ecosystems. The study was based on soil, vegetation and climate data from 42 soil pits taken from 14 plots. The plots were investigated during the summers of 2009 and 2010 at the northeastern margin of the Qinghai–Tibetan Plateau. Relationships of SOC density with soil moisture, soil texture, biomass and climatic variables were analyzed. Further, storage and vertical patterns of SOC and TN of seven representative vegetation types were estimated. The results show that significant relationships of SOC density with belowground biomass (BGB) and soil moisture (SM) can be observed. BGB and SM may be the dominant factors influencing SOC density in the topsoil of the study area. The average densities of SOC and TN at a depth of 1 m were about 7.72 kg C m −2 and 0.93 kg N m −2 . Both SOC and TN densities were concentrated in the topsoil (0–20 cm) and fell exponentially as soil depth increased. Additionally, the four typical vegetation types located in the northwest of the study area were selected to examine the relationship between SOC and environmental factors (temperature and precipitation). The results indicate that SOC density has a negative relationship with temperature and a positive relationship with precipitation diminishing with soil depth. It was concluded that SOC was concentrated in the topsoil, and that SOC density correlates well with BGB. SOC was predominantly influenced by SM, and to a much lower extent by temperature and precipitation. This study provided a new insight in understanding the control of SOC and TN density in the northeastern margin of the Qinghai–Tibetan Plateau. (letter)

  2. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  3. Estimating Soil Bulk Density and Total Nitrogen from Catchment ...

    African Journals Online (AJOL)

    Even though data on soil bulk density (BD) and total nitrogen (TN) are essential for planning modern farming techniques, their data availability is limited for many applications in the developing word. This study is designed to estimate BD and TN from soil properties, land-use systems, soil types and landforms in the ...

  4. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  5. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Science.gov (United States)

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty

  6. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    Science.gov (United States)

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  7. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  8. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  9. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  10. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  11. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  12. Carbon density and distribution of six Chinese temperate forests

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for > 99% of the total vegetation C pool.The foliage biomass,small root(diameter < 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability

  13. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    Science.gov (United States)

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  14. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities

    DEFF Research Database (Denmark)

    Baldocchi, D.; Falge, E.; Gu, L.

    2001-01-01

    FLUXNET is a global network of micrometeorological flux measurement site's that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes...... of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange......, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.oml.gov/FLUXNTET/.) Second...

  15. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  16. Relationship between soil oxidizable carbon and physical, chemical and mineralogical properties of umbric ferralsols

    Directory of Open Access Journals (Sweden)

    Flávio Adriano Marques

    2011-02-01

    Full Text Available The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal, contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001 of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk

  17. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    Science.gov (United States)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring will help

  18. Mineralogical Controls over Carbon Storage and Residence Times in Grassland Soils

    Science.gov (United States)

    Dwivedi, D.; Riley, W. J.; Torn, M. S.; Spycher, N.

    2014-12-01

    Globally, soil organic matter (SOM) contains approximately three times more carbon than the atmosphere and terrestrial vegetation contain combined. However, it is not well understood why some SOM persists for a long time while other SOM decomposes quickly. For future climate predictions, representing soil organic matter (SOM) dynamics accurately in Earth system models is essential. Soil minerals stabilize organic carbon in soil; however, there are gaps in our understanding of how soil mineralogy controls the quantity and turnover of long-residence-time organic carbon. To investigate the impact of soil mineralogy on SOM dynamics, we used a new model (Biotic and Abiotic Model of SOM—BAMS1 [Riley et al., 2014]) integrated with a three-dimensional, multiphase reactive transport solver (TOUGHREACT). The model represents bacterial and fungal activity, archetypal polymer and monomer carbon substrate groups, aqueous chemistry, gaseous diffusion, aqueous advection and diffusion, and adsorption and desorption processes. BAMS1 can predict bulk SOM and radiocarbon signatures without resorting to an arbitrary depth-dependent decline in SOM turnover rates. Results show a reasonable match between observed and simulated depth-resolved SOM and Δ14C in grassland ecosystems (soils formed on terraces south of Eureka, California, and the Central Chernozem Region of Russia) and were consistent with expectations of depth-resolved profiles of lignin content and fungi:aerobic bacteria ratios. Results also suggest that clay-mineral surface area and soil sorption coefficients constitute dominant controls over organic carbon stocks and residence times, respectively. Bibliography: Riley, W.J., F.M. Maggi, M. Kleber, M.S. Torn, J.Y. Tang, D. Dwivedi, and N. Guerry (2014), Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, Geoscientific Model Development, vol. 7, 1335

  19. Search for correlatable, isotopically light carbon and nitrogen components in Lunar soils and breccias

    International Nuclear Information System (INIS)

    Norris, S.J.; Swart, P.K.; Wright, I.P.; Grady, M.M.; Pillinger, C.T.

    1983-01-01

    Using stepped heating extraction techniques, determinations of carbon and nitrogen content and delta 13 C and delta 15 N values have been obtained for selected lunar soils and breccias. Only nitrogen data have been gathered for representative splits separated by size, density and magnetic properties from 12023. A plot of the total delta 13 C (after terrestrial contamination is removed) versus delta 15 N values for the bulk samples reveals little evidence for a correlation between isotopically light carbon and isotopically light nitrogen of putative ancient solar wind origin. Soil 12023 is used to examine the current interpretation for the stepped release profile of nitrogen from bulk lunar samples. Mature agglutinates, postulated by previous workers to be the host of the light nitrogen, are shown to have a very constant delta 15 N value which is heavy rather than light. The actual host of the light nitrogen in 12023 has not been identified. The lowest values encountered during the study were found associated with the finest soil, but none of these was as low as for some temperature steps of the bulk soil. Interpretations regarding the origin of light nitrogen, if it is not present in agglutinates, await the results of more definitive efforts to identify the host phase

  20. Linking the distribution of carbon isotope ratios in soil carbonates and speleothems to climate conditions in the past: A model for the dependence of respiration rate on soil moisture

    Science.gov (United States)

    Liu, Y.; Ibarra, D. E.; Winnick, M.; Caves Rugenstein, J. K.; Oster, J. L.; Druhan, J. L.

    2017-12-01

    The carbon isotope compositions (δ13C) of atmospheric CO2, C3-origin organic carbon, and limestone epikarst differ substantially, resulting in variable δ13C signatures recorded in secondary soil carbonates and speleothems which represent a mixture of these sources. Even though this signal has been widely used in paleoclimate studies, the extent to which carbonate δ13C is influenced by the dynamic response of organic carbon respiration rates to soil moisture variations has yet to be fully evaluated [1]. Soils that are rewetted after a prolonged drought commonly display a peak in respiration rate followed by relaxation to a lower steady state in both lab incubation experiments and field observations. This transient behavior, known as the Birch effect, has been extensively observed across a broad range of locations and soil types, and may generate more than 50% of the total respired CO2 in some ecosystems [2]. Here, we seek to identify the influence of the Birch effect on carbonate δ13C records based on a moisture-dependent modeling approach. We report compiled respiration rates of soils from the literature and fit these data as a function of soil moisture, before imposing exponential dampening with depth and applying the resulting function in a production-diffusion equation [3]. We then implement a mass balance calculation for the δ13C value of carbonate precipitated from a mixture of atmospheric and respired CO2, including mass-dependent fractionation associated with diffusive transport. Our results offer a novel prediction for depth-resolved carbonate δ13C as a function of soil moisture, and suggest that Birch effect signals may be recorded in soil carbonates and influence the magnitude of carbonate δ13C variations in speleothems. Thus, we illustrate a prediction for the range of carbonate δ13C recorded in terrestrial carbonates and suggest that differences in the range of carbonate δ13C may indicate changes in soil moisture variability, providing a new

  1. Field-warmed soil carbon changes imply high 21st-century modeling uncertainty

    Directory of Open Access Journals (Sweden)

    K. Todd-Brown

    2018-06-01

    Full Text Available The feedback between planetary warming and soil carbon loss has been the focus of considerable scientific attention in recent decades, due to its potential to accelerate anthropogenic climate change. The soil carbon temperature sensitivity is traditionally estimated from short-term respiration measurements – either from laboratory incubations that are artificially manipulated or from field measurements that cannot distinguish between plant and microbial respiration. To address these limitations of previous approaches, we developed a new method to estimate soil temperature sensitivity (Q10 of soil carbon directly from warming-induced changes in soil carbon stocks measured in 36 field experiments across the world. Variations in warming magnitude and control organic carbon percentage explained much of field-warmed organic carbon percentage (R2  =  0.96, revealing Q10 across sites of 2.2 [1.6, 2.7] 95 % confidence interval (CI. When these field-derived Q10 values were extrapolated over the 21st century using a post hoc correction of 20 Coupled Model Intercomparison Project Phase 5 (CMIP5 Earth system model outputs, the multi-model mean soil carbon stock changes shifted from the previous value of 88 ± 153 Pg carbon (weighted mean ± 1 SD to 19 ± 155 Pg carbon with a Q10-driven 95 % CI of 248 ± 191 to −95 ± 209 Pg carbon. On average, incorporating the field-derived Q10 values into Earth system model simulations led to reductions in the projected amount of carbon sequestered in the soil over the 21st century. However, the considerable parameter uncertainty led to extremely high variability in soil carbon stock projections within each model; intra-model uncertainty driven by the field-derived Q10 was as great as that between model variation. This study demonstrates that data integration should capture the variation of the system, as well as mean trends.

  2. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    Science.gov (United States)

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  3. Study of Soil Decontamination Method Using Supercritical Carbon Dioxide and TBP

    International Nuclear Information System (INIS)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung

    2014-01-01

    The result of this study means that we have a possible new method for cheap and less wasteful nuclear waste decontamination. When severe accidents such as the incident at the Fukushima nuclear site occur, the soil near the power plant is contaminated with fission products or the activation metal structure of the power plant. The soil pollution form depends on the environment and soil characteristics of the contaminated areas. Thus, a- single-decontamination method is not effective for site cleanup. In addition, some soil decontamination methods are expensive and large amounts of secondary waste are generated. Therefore, we need new soil decontamination methods. In this study, instead of using a conventional solvent method that generates secondary waste, supercritical carbon dioxide was used to remove metal ions from the soil. Supercritical carbon dioxide is known for good permeation characteristics. We expect that we will reduce the cost of soil pollution management. Supercritical carbon dioxide can decontaminate soil easily, as it has the ability to penetrate even narrow gaps with very good moisture permeability. We used TBP, which is a known for extractant of actinium metal. TBP is usually used for uranium and strontium extraction. Using TBP-HNO 3 complex and supercritical carbon dioxide, we did extraction experiments for several heavy metals in contaminated soil

  4. Study of Soil Decontamination Method Using Supercritical Carbon Dioxide and TBP

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-05-15

    The result of this study means that we have a possible new method for cheap and less wasteful nuclear waste decontamination. When severe accidents such as the incident at the Fukushima nuclear site occur, the soil near the power plant is contaminated with fission products or the activation metal structure of the power plant. The soil pollution form depends on the environment and soil characteristics of the contaminated areas. Thus, a- single-decontamination method is not effective for site cleanup. In addition, some soil decontamination methods are expensive and large amounts of secondary waste are generated. Therefore, we need new soil decontamination methods. In this study, instead of using a conventional solvent method that generates secondary waste, supercritical carbon dioxide was used to remove metal ions from the soil. Supercritical carbon dioxide is known for good permeation characteristics. We expect that we will reduce the cost of soil pollution management. Supercritical carbon dioxide can decontaminate soil easily, as it has the ability to penetrate even narrow gaps with very good moisture permeability. We used TBP, which is a known for extractant of actinium metal. TBP is usually used for uranium and strontium extraction. Using TBP-HNO{sub 3} complex and supercritical carbon dioxide, we did extraction experiments for several heavy metals in contaminated soil.

  5. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  6. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  7. Experimental Evidence that Hemlock Mortality Enhances Carbon Stabilization in Southern Appalachian Forest Soils

    Science.gov (United States)

    Fraterrigo, J.; Ream, K.; Knoepp, J.

    2017-12-01

    Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.

  8. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette; Munkholm, Lars Juhl

    2016-01-01

    Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil degradat......Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil......, the addition of straw resulted in a high soil respiration rate, and about 80% of the added carbonwas respired at the end of the incubation. However, the addition of straw increased aggregate stability and decreased clay dispersibility. Results from Fourier transformed infrared photoacoustic spectroscopy...

  9. One strategy for estimating the potential soil carbon storage due to CO2 fertilization

    International Nuclear Information System (INIS)

    Harrison, K.G.; Bonani, G.

    1994-01-01

    Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO 2 fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO 2 levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO 2 fertilization

  10. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Choppala, G.K.; Thangarajan, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Chung, J.W. [Department of Environmental Engineering, Gyeongnam National University of Science and Technology, Dongjin-ro 33, Jinju, Gyeongnam, 660-758 (Korea, Republic of)

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t{sub 1/2}) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: Black

  11. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W.

    2012-01-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t 1/2 ) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: ► Comparison of decomposition rate

  12. Carbon tetrachloride ERA soil-gas baseline monitoring

    International Nuclear Information System (INIS)

    Fancher, J.D.

    1994-01-01

    From December 1991 through December 1993, Westinghouse Hanford Company performed routine baseline monitoring of selected wells ad soil-gas points twice weekly in the 200 West Area of the Hanford Site. This work supported the carbon Tetrachloride Expedited Response Action (ERA) and provided a solid baseline of volatile organic compound (VOC) concentrations in wells and in the subsurface at the ERA site. As site remediation continues, comparisons to this baseline can be one means of measuring the success of carbon tetrachloride vapor extraction. This report contains observations of the patterns and trends associated with data obtained during soil-gas monitoring at the 200 West Area: Monitoring performed since late 1991 includes monitoring soil-gas probes ad wellheads for volatile organic compounds (VOCs). This report reflects monitoring data collected from December 1991 through December 1993

  13. Soil Organic Carbon (SOC) distribution in two differents soil types (Podzol and Andosol) under natural forest cover.

    Science.gov (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Cools, Nathalie; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2017-04-01

    Andosols are young soils that shall know a successive evolution towards pedological types where the dominant pedogenetic processes are more evident. Vegetation and climate influence Andosols evolution to other order of soils. In cold and wet climates or on acid vulcanite under heavy leaching young Andosols could change into Podzols (Van Breemn and Buurman, 1998). Were investigated a Podzol soil (World References Base, 2014) at Zoniën (Belgium), were and an Andosol soil (World References Base, 2014) at Lago Laceno (Avellino, Italy). This study shows the data on the SOC (Soil Organic Carbon) fractionation in two profiles from two natural pine forest soils. Together with the conventional activities of sampling and analysis of soil profile were examined surveys meant to fractionation and characterization of SOC, in particular: Total Organic Carbon (TOC) and Total Extractable Carbon (TEC) soil contents were determined by Italian official method of soil analysis (Mi.P.A.F. (2000)). Different soil C fractions were also determined: Humic Acid Carbon (HAC), Fulvic Acid Carbon (FAC), Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. In the whole profile, therefore, were also assayed cellulose and lignin contents. The aim of this work was to compare the distribution of different soil organic components in a podzol and a soil with andic properties. The data show great similarity, among the selected profiles, in the organic components distribution estudied. References: - Mi.P.A.F. - Ministero per le Politiche Agricole e Forestali - Osservatorio Nazionale Pedologico e per la Qualità del Suolo (2000): Metodi Ufficiali di Analisi Chimica del Suolo. In: Franco Angeli (Editor), Collana di metodi analitici per l'agricoltura diretta da Paolo Sequi, n. 1124.2, Milano, Italy. - Van Breemn N. and Buurman P. (1998) Chapter 12 Formation of Andisols. In: Soil formation. Kluwer Ed., Wageningen, The Netherlands, 271-289. -Ussiri D.A.N., Johnson C

  14. Payback time for soil carbon and sugar-cane ethanol

    Science.gov (United States)

    Mello, Francisco F. C.; Cerri, Carlos E. P.; Davies, Christian A.; Holbrook, N. Michele; Paustian, Keith; Maia, Stoécio M. F.; Galdos, Marcelo V.; Bernoux, Martial; Cerri, Carlos C.

    2014-07-01

    The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO2 savings attributed to bioenergy crops. There have been few direct field measurements that quantify the effects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world's largest producer . We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1 m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.

  15. Carbon leaching from tropical peat soils and consequences for carbon balances

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2016-07-01

    Full Text Available Drainage and deforestation turned Southeast (SE Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ~200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38% and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia.

  16. Biodegradation of low-density polyethylene (LDPE by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Directory of Open Access Journals (Sweden)

    Atefeh Esmaeili

    Full Text Available In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR, x-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  17. Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil

    Science.gov (United States)

    Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh

    2013-01-01

    In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source. PMID:24086254

  18. [Storages and distributed patterns of soil organic carbon and total nitrogen during the succession of artificial sand-binding vegetation in arid desert ecosystem].

    Science.gov (United States)

    Jia, Xiao-Hong; Li, Xin-Rong; Zhou, Yu-Yan; Li, Yuan-Shou

    2012-03-01

    Soil carbon pool acts as the largest one of carbon pools in the terrestrial ecosystem. The storages and distributed patterns of soil organic carbon (SOC) and total nitrogen (TN) evaluated accurately are helpful to predict the feedback between the terrestrial ecosystem and climate changes. Based on the data about bulk density, content of SOC and TN at 0-100 cm soil profile, the density of SOC and TN at the temporal (chronosequence of artificial vegetation) and spatial (vertical) distributed patterns have been estimated. The results indicated that storages of SOC and TN at 0-100 cm depth increased with the chronosequence of artificial vegetation. The storages of SOC and TN showed the same tendency with the succession time of artificial vegetation. Storages of SOC and TN significantly increased at the early stage of banding sand by artificially vegetation ( 25 a). The variation of storages mainly occurred in the 0-20 cm depth. The storages decreased with the soil vertical depth. At the early stage of banding sand, increase in storage included every depth (0-100 cm). Whereas, at the later stage, increase in storage at 0-20 cm depth was main, and increase in the 20-100 cm was inconspicuous. The accumulation of storage at the shallow soil depth was more notability with the succession of artificial vegetation. The distributed pattern of storage in SOC and TN has been confirmed in arid desert regions below 200 mm annual precipitation. This was beneficial to understand the carbon cycle and to predict the feedback relationship between desert ecosystem and climate changes.

  19. Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China

    Science.gov (United States)

    Wang, Zhi-Gang; Bi, Yin-Li; Jiang, Bin; Zhakypbek, Yryszhan; Peng, Su-Ping; Liu, Wen-Wen; Liu, Hao

    2016-10-01

    Carbon storage is affected by photosynthesis (Pn) and soil respiration (Rs), which have been studied extensively in natural and agricultural systems. However, the effects of Pn and Rs on carbon storages in the presence of arbuscular mycorrhizal fungi (AMF) in coalfields remain unclear. A field experiment was established in 2014 in Shendong coal mining subsidence area. The treatments comprised two inoculation levels (inoculated with or without 100 g AMF inoculums per seedlings) and four plant species [wild cherry (Prunus discadenia Koebne L.), cerasus humilis (Prunus dictyneura Diels L.), shiny leaf Yellow horn (Xanthoceras sorbifolium Bunge L.) and apricot (Armeniaca sibirica L.)]. AMF increased Pn of four species ranging from 15.3% to 33.1% and carbon storage, averaged by 17.2% compared to controls. Soil organic carbon (OC), easily extractable glomalin-relation soil protein (EE-GRSP), and total glomalin-relation soil protein (T-GRSP) were significantly increased by AMF treatment. The effect of AMF on the sensitivity of Rs depended on soil temperature. The results highlighted the exponential models to explain the responses of Rs to soil temperature, and for the first time quantified AMF caused carbon sequestration and Rs. Thus, to our knowledge, AMF is beneficial to ecosystems through facilitating carbon conservation in coalfield soils.

  20. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  1. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  2. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  3. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    Science.gov (United States)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future

  4. Assessment of soil sample quality used for density evaluations through computed tomography

    International Nuclear Information System (INIS)

    Pires, Luiz F.; Arthur, Robson C.J.; Bacchi, Osny O.S.

    2005-01-01

    There are several methods to measure soil bulk density (ρ s ) like the paraffin sealed clod (PS), the volumetric ring (VR), the computed tomography (CT), and the neutron-gamma surface gauge (SG). In order to evaluate by a non-destructive way the possible modifications in soil structure caused by sampling for the PS and VR methods of ρ s evaluation we proposed to use the gamma ray CT method. A first generation tomograph was used having a 241 Am source and a 3 in x 3 in NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube. Results confirm the effect of soil sampler devices on the structure of soil samples, and that the compaction caused during sampling causes significant alterations of soil bulk density. Through the use of CT it was possible to determine the level of compaction and to make a detailed analysis of the soil bulk density distribution within the soil sample. (author)

  5. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    Science.gov (United States)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  6. How can soil organic carbon stocks in agriculture be maintained or increased?

    Science.gov (United States)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  7. Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations

    Science.gov (United States)

    Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

    2008-12-01

    Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was

  8. Origin, distribution and transformation of authigenic carbonates in loessic soils

    Directory of Open Access Journals (Sweden)

    Martin Kolesár

    2015-01-01

    Full Text Available Processes of authigenic carbonates formation are component part of terrestrial biogeochemical cycle of carbon, which starts with co-accumulation of oxalic acid and Ca in Ca- oxalates. After plant decay are these biominerals slowly transformed under the influence of microbial processes into authigenic carbonates (calcites, depending on soil condition. The formation of authigenic calcites runs over in soil system where is rather high Ca and Mg concentration, presence of oxalomorphic plants and sufficient oxalotrophic stability of microorganisms. In addition to Ca-oxalates, Ca and Mg ions necessary for carbonate formation comes also from air (precipitation, dust, mineral weathering, subsurface water flow and decaying organic matter. The distribution pattern of authigenic calcites with depth, the size and shape of individual forms of calcites on loessic soils of SW Slovakia, as it is resulted from micromorphological study indicate that through the historical development of that soils as landscape units, soil water regime has played decisive role at vertical redistribution of forms (size, shape of authigenic calcites. To this witness the depth of variation of needle calcite zones and horizons of micritic calcites occurrence depending on soil types (leaching. Needle shape calcite zones which approach closest to the soil surface, gradually coalescence to the horizons of micritic calcites with the depth. Micritic calcites are without, or with microsparitic domains. Our study concurrently support the ideas of their inorganic origin depending on evaporitic soil regime. This formations have its own historic dynamics on which depends also the preservation of calcaric nature of soils.

  9. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  10. Understanding the driving forces behind the losses of soil carbon across England and Wales

    Science.gov (United States)

    Bellamy, Patricia

    2010-05-01

    More than twice as much carbon is held in soils as in vegetation or the atmosphere, and changes in soil carbon content can have a large effect on the global carbon budget. The possibility that climate change is being reinforced by increased carbon dioxide emissions from soils owing to rising temperature is the subject of a continuing debate. But evidence for the suggested feedback mechanism has to date come solely from small-scale laboratory and field experiments and modelling studies. Here we use data from the National Soil Inventory of England and Wales obtained between 1978 and 2003 to show that carbon was lost from soils across England and Wales over the survey period at a mean rate of 0.6% yr-1 (relative to the existing soil carbon content). We find that the relative rate of carbon loss increased with soil carbon content and was more than 2% yr-1 in soils with carbon contents greater than 100 g kg-1. The relationship between rate of carbon loss and carbon content is irrespective of land use, suggesting a link to climate change. Our findings indicate that losses of soil carbon in England and Wales—and by inference in other temperate regions—are likely to have been offsetting absorption of carbon by terrestrial sinks. To investigate the possible driving forces of the measured losses of soil carbon we applied a simple model of soil carbon turnover to evaluate alternative explanations for the observed trends. We find that neither changes in decomposition resulting from the effects of climate change on soil temperature and moisture, nor changes in carbon input from vegetation, could account on their own for the overall trends. Of other explanations, results indicate that past changes in land use and management were probably dominant. The climate change signal, such as it is, is masked by these other changes. A more sophisticated model of carbon change (DAYCENT) has now been applied across the whole range of soils in England and Wales. This model has been

  11. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  12. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  13. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  14. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    Science.gov (United States)

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  15. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  16. Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China

    Directory of Open Access Journals (Sweden)

    Hailiang Lv

    2016-09-01

    Full Text Available Society has placed greater focus on the ecological service of urban forests; however, more information is required on the variation of carbon (C in trees and soils in different functional forest types, administrative districts, and urban-rural gradients. To address this issue, we measured various tree and soil parameters by sampling 219 plots in the urban forest of the Harbin city region. Averaged tree and soil C stock density (C stocks per unit tree cover for Harbin city were 7.71 (±7.69 kg C·m−2 and 5.48 (±2.86 kg C·m−2, respectively. They were higher than those of other Chinese cities (Shenyang and Changchun, but were much lower than local natural forests. The tree C stock densities varied 2.3- to 3.2-fold among forest types, administrative districts, and ring road-based urban-rural gradients. In comparison, soil organic C (SOC densities varied by much less (1.4–1.5-fold. We found these to be urbanization-dependent processes, which were closely related to the urban-rural gradient data based on ring-roads and settlement history patterns. We estimated that SOC accumulation during the 100-year urbanization of Harbin was very large (5 to 14 thousand tons, accounting for over one quarter of the stored C in trees. Our results provide new insights into the dynamics of above- and below-ground C (especially in soil during the urbanization process, and that a city’s ability to provide C-related ecosystem services increases as it ages. Our findings highlight that urbanization effects should be incorporated into calculations of soil C budgets in regions subject to rapid urban expansion, such as China.

  17. Influence of pore structure on carbon retention/loss in soil macro-aggregates

    Science.gov (United States)

    Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark

    2017-04-01

    Carbon protection within soil macro-aggregates is an important component of soil carbon sequestration. Pores, as the transportation network for microorganisms, water, air and nutrients within macro-aggregates, are among the factors controlling carbon protection through restricting physical accessibility of carbon to microorganisms. The understanding of how the intra-aggregate pore structure relates to the degree of carbon physical protection, however, is currently lacking. This knowledge gap can lead to potentially inaccurate models and predictions of soil carbon's fate and storage in future changing climates. This study utilized the natural isotopic difference between C3 and C4 plants to trace the location of newly added carbon within macro-aggregates before and after decomposition and explored how location of this carbon relates to characteristics of intra-aggregate pores. To mimic the effect of decomposition, aggregates were incubated at 23˚ C for 28 days. Computed micro-tomographic images were used to determine pore characteristics at 6 μm resolution before and after incubation. Soil (0-10 cm depth) from a 20 year continuous corn (C4 plant) experiment was used. Two soil treatments were considered: 1) "destroyed-structure", where 1 mm sieved soil was used and 2) "intact-structure", where intact blocks of soil were used. Cereal rye (Secale cereale L.) (C3 plant) was grown in the planting boxes (2 intact, 3 destroyed, and one control) for three months in a greenhouse. From each box, ˜5 macro-aggregates of ˜5 mm size were collected for a total of 27 macro-aggregates. Half of the aggregates were cut into 5-11 sections, with relative positions of the sections within the aggregate recorded, and analyzed for δ13C. The remaining aggregates were incubated and then subjected to cutting and δ13C analysis. While there were no significant differences between the aggregate pore size distributions of the two treatments, the roles that specific pores sizes played in

  18. Interrelationships between soil biota and soil physical properties in forest areas of the Pieniny National Park (Poland)

    Science.gov (United States)

    Józefowska, Agnieszka; Zaleski, Tomasz; Sokołowska, Justyna; Dzierwa, Agata

    2017-04-01

    The study area was located in the Pieniny National Park (PNP) in the Carpathian Mountain (Southern Poland). Investigated soil belonged to Eutric Cambisols and had silt or silt loam texture. The purpose of this research was to investigated relationship between soil biota, such as microbial activity, soil Oligochaeta (Lumbricidae and Enchytraeidae) and soil physical properties, such as water retention or aggregates stability. This research was conducted at six forest monitoring areas of the PNP. Sampling was collected in the September 2016. For each of the 6 places, undisturbed and disturbed soil samples were taken from the 0-15-cm and 15-30-cm layer in 3 to 5 replicates. Undisturbed soil was taken: i) into Kopecky cylinders to determined soil physical properties; ii) a soil cores to determined enchytraeids and fine roots biomass (RB). Disturbed soil was collected in 3 reps and homogenized. Next such soil samples were divided into three parts: i) fresh one to determined dehydrogenase activity (ADh), microbial carbon biomass (MC) and labile carbon (LC); ii) air-dried, passed through a sieve (2-mm mesh size) and used for analysis: pH, organic carbon and bulk density; iii) last part air dried was used to determined stability of different size aggregates. In field, earthworms were collected in 3 reps using hand sorting method. Investigated soils were strongly acidic to neutral (pH 4.8-6.8). Organic carbon (Corg) content was varied from 0.8% to 4.5% and was higher in 0-15-cm layers than in 15-30-cm layers. Higher Corgcontent was connected with lower bulk density. Enchytraeids density was ranged from 1807 ind. m-2 to 88855 ind. m-2 and was correlated with microbial activity (ADh and MB) and RB. Earthworms density (ED) was ranged from 7 ind. m-2to 507 ind. m-2. In investigated soil was 6 genus and 7 species (Octolasion lacteum, Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea jassyensis, Lumbricus rubellus, Eisenia lucens, and Fitzingeria platyura depressa). ED was

  19. Nexus Thinking on Soil Carbon Dynamics and Soil Health

    Science.gov (United States)

    Lal, R.

    2016-12-01

    Anthropocene is driven by global population of 7.5 billion in 2016, increasing annually by 80 million and projected to be 9.7 billion by 2050. The ecological impact (I=PAT, where P is population, A is affluence, and T is technology) of the population is similar to that of a geological force. Thus, humanity's impact is driven by demands for food, water, energy, and services derived from soil. Soil health, its capacity to function as a vital living system, is determined by quantity and quality of soil organic carbon (SOC) in the root zone ( 50cm). Maintenance of SOC at above the threshold level (1.5 to 2.0% by weight in the root zone) is critical to performing numerous ecosystem services for human wellbeing and nature conservancy. These services and functions strongly depend on nexus or inter-connectivity of biological processes within the pedosphere. The nexus is strongly governed by coupled biogeochemical cycling of water (H2O), carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). Further, it is the nexus between pedological and biological processes that renews and purifies water by denaturing and filtering pollutants; circulates C among biotic and abiotic pools in close association with other elements (N, P, S); provides habitat and energy source for soil biota (macro, meso, and micro flora and fauna), facilitates exchanges of gases between soil and the atmosphere and moderates climate, and creates favorable rhizospheric processes that promote plant growth and enhance net primary productivity. Soil health, governed by SOC quality and quantity, determines the provisioning of numerous ecosystem services and the importance of nexus thinking is highlighted by the truism that "health of soil, plants, animals, human and ecosystem is one and indivisible." The sequestration of SOC depends on land use and soil management strategies which create a positive C budget. Thus, input of biomass-C into the soil must exceed the losses by erosion, mineralization and leaching

  20. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Science.gov (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  1. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  2. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  3. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, de R.W.

    2008-01-01

    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many

  4. Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil.

    Science.gov (United States)

    Lamb, Dane T; Kader, Mohammed; Wang, Liang; Choppala, Girish; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Naidu, Ravi

    2016-12-06

    Phytotoxicity of inorganic contaminants is influenced by the presence of competing ions at the site of uptake. In this study, interaction of soil pore-water constituents with arsenate toxicity was investigated in cucumber (Cucumis sativa L) using 10 contrasting soils. Arsenate phytotoxicity was shown to be related to soluble carbonate and phosphate. The data indicated that dissolved phosphate and carbonate had an antagonistic impact on arsenate toxicity to cucumber. To predict arsenate phytotoxicity in soils with a diverse range of soil solution properties, both carbonate and phosphate were required. The relationship between arsenic and pore-water toxicity parameters was established initially using multiple regression. In addition, based on the relationship with carbonate and phosphate we successively applied a terrestrial biotic ligand-like model (BLM) including carbonate and phosphate. Estimated effective concentrations from the BLM-like parametrization were strongly correlated to measured arsenate values in pore-water (R 2 = 0.76, P soils.

  5. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  6. An incubation system to trace carbon fluxes in soil - First experimental

    Science.gov (United States)

    Thiessen*, Stefany; Gleixner, Gerd; Reichstein, Markus

    2010-05-01

    Soils contain the largest carbon pool in terrestrial ecosystems and it is widely assumed that a considerable fraction of this pool might be mobilized by global warming. Numerous investigations have proven that soil respiration is a mixture of several source, like root rhizosphere and soil organic matter (SOM) degradation. However, little is still known about soil carbon dynamics and the influence of microbes on this process. We developed an incubation system to perform multitracer experiments to quantify the contribution of microorganisms to carbon turnover from different carbon sources. A natural 13C label was used to mark carbon sources. The old carbon in the SOM held a depleted 13C3 signal and newly added C was enriched in 13C4. Accordingly, in the experiment we quantified the relative respiration of carbon from added sugars and soil organic matter by microbial groups, with additional application of fungicide (cycloheximide). A root free arable soil was divided into three sets, all with depleted C3 soil, but varied in terms of the added material: one with C4 glucose, a second with C4 glucose combined with fungicide and the last one with water application only, as control. To characterize microbial communities and estimate microbial biomass we extract phospholipid fatty acids (PLFA). Furthermore, by measuring the isotopic ratio of the PLFA it was also possible to identify microorganisms that metabolised the traced material. Preliminary results showed that the glucose application stimulated microbial growth in the beginning, but afterwards the microbial biomass decreased again over time. However, a change in the microbial community composition could not be observed, regardless to the kind of added material. Nevertheless, the respiration response slowed down after the fungicide application, and a second respiration pulse was induced by this application. This was probably due to reactivation of the fungi, after the effect of the fungicide expired.

  7. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  8. Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast

    Science.gov (United States)

    Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.

    2017-12-01

    Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.

  9. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    OpenAIRE

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover change), Namibia also regards bush encroachment as an important form of land degradation. We collected 219 soil profiles and used Random Forest modelling to develop the soil organic carbon stock ba...

  10. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  11. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  12. Soil carbon storage in silvopasture and related land-use systems in the brazilian cerrado.

    Science.gov (United States)

    Tonucci, Rafael G; Nair, P K Ramachandran; Nair, Vimala D; Garcia, Rasmo; Bernardino, Fernando S

    2011-01-01

    Silvopastoral management of fast-growing tree plantations is becoming popular in the Brazilian Cerrado (savanna). To understand the influence of such systems on soil carbon (C) storage, we studied C content in three aggregate size classes in six land-use systems (LUS) on Oxisols in Minas Gerais, Brazil. The systems were a native forest, a treeless pasture, 24- and 4-yr-old eucalyptus ( sp.) plantations, and 15- and 4-yr-old silvopastures of fodder grass plus animals under eucalyptus. From each system, replicated soil samples were collected from four depths (0-10, 10-20, 20-50, and 50-100 cm), fractionated into 2000- to 250-, 250- to 53-, and <53-μm size classes representing macroaggregates, microaggregates, and silt + clay, respectively, and their C contents determined. Macroaggregate was the predominant size fraction under all LUS, especially in the surface soil layers of tree-based systems. In general, C concentrations (g kg soil) in the different aggregate size fractions did not vary within the same depth. The soil organic carbon (SOC) stock (Mg C ha) to 1-m depth was highest under pasture compared with other LUS owing to its higher soil bulk density. The soils under all LUS had higher C stock compared with other reported values for managed tropical ecosystems: down to 1 m, total SOC stock values ranged from 461 Mg ha under pasture to 393 Mg ha under old eucalyptus. Considering the possibility for formation and retention of microaggregates within macroggregates in low management-intensive systems such as silvopasture, the macroaggregate dynamics in the soil seem to be a good indicator of its C storage potential. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  13. Changes in soil carbon cycling accompanying conversion of row-crop fields to grazing dairy pastures

    Science.gov (United States)

    Thompson, A.; Kramer, M. G.; Hill, N.; Machmuller, M. B.; Cyle, K.

    2011-12-01

    Increasingly, the dairy industry in the eastern US is transitioning from total confinement dairy systems (TCD) toward pasture-based, management intensive grazing dairy (MiGD) systems. This transition is driven by the fact that MiGDs require substantially less operating capital and are more economically efficient than TCD systems. Consequently, the impact of this transition and shift in land-use practice on carbon dynamics may be considerable. Land-use in a Management intensive Grazing Dairy (MiGD) system is fundamentally different than conventional confinement dairies and conventional no-till pastures. The forage system involves rotational grazing at optimal digestibility, when the plants are immature (~20-days) and consequently protein-rich. MiGD cows spend >90% of their time in the field and deposit > 90% of their waste directly to the soil surface. Thus, little above ground plant residues are directly returned to the soil, but rather substantial C inputs derive from bovine manure. We sampled a MiGD-chronosequence of row-crop to MiGD conversion established in 2007 in eastern Georgia. All soils across the MiGD-chronosequence, all occur in relative (40 km) close proximity to one another, are deep, well-drained, fine and fine sandy loam Ultisols formed on Coastal Plain sediments. Prior to MiGD established, the soils were farmed for > 50 yrs using conventional tillage techniques. Our current sampling to 1m depths captures fields at 0, 2, 3, and 5 yrs since conversion. Total soil carbon (C) and the carbon concentration of the clay fraction increased following conversion, with the greatest increases occurring between 3 and 5 yrs since conversion. These C increases were limited to the upper 40cm of the soil, with minimal change occurring at depth. Characterization of the protein and ligand content of these soils via 13C NMR and chemolytic techniques as a function of soil particle density and size is in progress and will be presented along with estimates of carbon

  14. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  15. Centennial black carbon turnover observed in a Russia steppe soil

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  16. The impact of afforestation on soil organic carbon sequestration on the Qinghai Plateau, China.

    Science.gov (United States)

    Shi, Sheng-wei; Han, Peng-fei; Zhang, Ping; Ding, Fan; Ma, Cheng-lin

    2015-01-01

    Afforestation, the conversion of non-forested land into forest, is widespread in China. However, the dynamics of soil organic carbon (SOC) after afforestation are not well understood, especially in plateau climate zones. For a total of 48 shrub- and/or tree-dominated afforestation sites on the Qinghai Plateau, Northwestern China, post-afforestation changes in SOC, total nitrogen (TN), the carbon-to-nitrogen ratio (C/N) and soil bulk density (BD) were investigated to a soil depth of 60 cm using the paired-plots method. SOC and TN accumulated at rates of 138.2 g C m(-2) yr(-1) and 4.6 g N m(-2) yr(-1), respectively, in shrub-dominated afforestation sites and at rates of 113.3 g C m(-2) yr(-1) and 6.7 g N m(-2) yr(-1), respectively, in tree-dominated afforestation sites. Soil BD was slightly reduced in all layers in the shrub-dominated afforestation plots, and significantly reduced in soil layers from 0-40cm in the tree-dominated afforestation plots. The C/N ratio was higher in afforested sites relative to the reference sites. SOC accumulation was closely related to TN accumulation following afforestation, and the inclusion of N-fixing species in tree-dominated afforestation sites additionally increased the soil accumulation capacity for SOC (p sequestration. This study improves our understanding of the mechanisms underlying SOC and TN accumulation in a plateau climate, and provides evidence on the C sequestration potentials associated with forestry projects in China.

  17. Variation in carbon stocks on different slope aspects in seven major ...

    Indian Academy of Sciences (India)

    forest types of temperate region of Garhwal Himalaya, India ... density, tree density, biomass and soil organic carbon (SOC) on four aspects, ..... soil by metal cylinder of 30 cm length and 3 cm internal .... high inflammability of igniting material due to a low water .... carbon emission to the atmosphere by forest management.

  18. does earthworms density really modify soil's hydrodynamic ...

    African Journals Online (AJOL)

    N. Ababsa,, M. Kribaa, D. Addad, L. Tamrabet and M. Baha

    1 mai 2016 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. DOES EARTHWORMS DENSITY REALLY MODIFY SOIL'S HYDRODYNAMIC.

  19. Global assessment of soil organic carbon stocks and spatial distribution of histosols: the Machine Learning approach

    Science.gov (United States)

    Hengl, Tomislav

    2016-04-01

    tools. Results of model fitting using the R packages nnet, randomForest and the h2o software (machine learning functions) show that significant models can be fitted for soil classes, bulk density (R-square 0.76), soil organic carbon (R-square 0.62) and coarse fragments (R-square 0.59). Consequently, we were able to estimate soil organic carbon stock for majority of the land mask (excluding permanent ice) and detect patches of landscape containing mainly organic soils (peat and similar). Our results confirm that hotspots of soil organic carbon in Tropics are peatlands in Indonesia, north of Peru, west Amazon and Congo river basin. Majority of world soil organic carbon stock is likely in the Northern latitudes (tundra and taiga of the north). Distribution of histosols seems to be mainly controlled by climatic conditions (especially temperature regime and water vapor) and hydrologic position in the landscape. Predicted distributions of organic soils (probability of occurrence) and total soil organic carbon stock at resolutions of 1 km and 250 m are available via the SoilGrids.org project homepage.

  20. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  1. Effect of Three Types of Exogenous Organic Carbon on Soil Organic Matter and Physical Properties of a Sandy Technosol

    Directory of Open Access Journals (Sweden)

    Paul Robin

    2018-04-01

    Full Text Available Technosols made by covering agricultural soils with coastal sediments need additional organic matter (OM to be suitable for agricultural use. Climate change will likely increase the frequency and intensity of droughts in several areas. The choice of the nature and quantity of OM to add depends on dose-response curves for soil quality. This study quantifies the influence of three contrasting organic materials (vermicompost (VF, green waste compost (GWC and dairy manure (DM on four soil properties: soil organic carbon, evaporation rate, bulk density and structural stability. Soil was sampled in April and May 2014 in an artificial crop field of the vegetable production basin of Mont Saint-Michel (France made with sediments from the bay of Mont Saint-Michel in 2013. Increasing the dose of OM increased soil organic carbon from 10 to 45 g C kg−1 dry soil and increased the porosity and the structural stability, thus decreasing compaction. Increasing the dose of OM also decreased the evaporation rate. VF and DM had similar effects, while those of GWC were weaker. Compared to DM, VF had greater biological stability. Therefore, high OM inputs along with soil decompaction can increase drought resistance by increasing rooting depth and water retention.

  2. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  3. Pressure pumping of carbon dioxide from soil

    Science.gov (United States)

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  4. Soil carbon and soil physical properties response to incorporating mulched forest slash

    Science.gov (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac

    2000-01-01

    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  5. Soil carbon storages and erosional exports along a forested denudation gradient in the Sierra Nevada, California

    Science.gov (United States)

    Yoo, K.; Wang, X.; Mudd, S. M.; Weinman, B.; Gutknecht, J.; Gabet, E. J.

    2017-12-01

    Eroding uplands not only provide physically mixed soil zones where OC and minerals actively interact but also are the significant sources of suspended sediments and organic carbon (OC) to rivers. Here our goal is to quantify the extents that erosion affects soils' capacities to store OC in different degrees of mineral-association and to facilitate the exports of minerals that might capture OC on their reactive surfaces. We examined a tributary basin to the Middle Folk Feather River in California, where knickpoint migration has created a series of hillslopes with erosion rates varying from 35 to 250 mm kyr-1. Other than erosion rates, the studied hillslopes within the tributary basin shared similar environmental factors. Soil samples were collected from select hillslopes that differ in their relative positions to knikpoints and were subject to size and density fractionation. Despite the substantial difference in erosion rates, concentrations of particulate OC (POC) and mineral-associated OC (MOC) and soil thickness varied little. Instead, considerable increase in coarse rock contents positively associated with erosion rate was responsible for the reduction of soil OC inventories by 37% with increasing erosion rate. In contrast to consistent MOC concentrations across the erosion gradient, clay contents in soils are negatively correlated with erosion rates. This seemingly contradictory result, however, is consistent with BET mineral specific surface area that remains insensitive to erosion rates. OC coverage on mineral surface was found to be less than affects the soil carbon cycle.

  6. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  7. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  8. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  9. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  10. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  11. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  12. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  13. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data.

    Science.gov (United States)

    Villa, Paolo; Malucelli, Francesco; Scalenghe, Riccardo

    2018-01-15

    Peri-urbanisation is the expansion of compact urban areas towards low-density settlements. This phenomenon directly challenges the agricultural landscape multifunctionality, including its carbon (C) storage capacity. Using satellite data, we mapped peri-urban C stocks in soil and built-up surfaces over three areas from 1993 to 2014 in the Emilia-Romagna region, Italy: a thinly populated area around Piacenza, an intermediate-density area covering the Reggio Emilia-Modena conurbation and a densely anthropized area developing along the coast of Rimini. Satellite-derived maps enabled the quantitative analysis of spatial and temporal features of urban growth and soil sealing, expressed as the ratio between C in built-up land and organic C in soils (Cc/Co). The three areas show substantial differences in C stock balance and soil sealing evolution. In Piacenza (Cc/Co=0.07 in 1993), although questioned by late industrial expansion and connected residential sprawl (Cc/Co growth by 38%), most of the new urbanisation spared the best rural soils. The Reggio Emilia-Modena conurbation, driven by the polycentricism of the area and the heterogeneity of economic sectors (Cc/Co rising from 0.08 to 0.14 from 1993 to 2014), balances sprawl and densification. Rimini, severely sealed since the 1960s (Cc/Co=0.23 in 1993), densifies its existing settlements and develops an industrial expansion of the hinterland, with Cc/Co growth accelerating from +15% before 2003 to +36% for the last decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Density evaluation by computerized tomography in plain soils over different manipulation systems

    International Nuclear Information System (INIS)

    Pedrotti, Alceu

    1996-08-01

    The objective of this paper is the evaluation of a plain soil density in different culture systems determined by X ray computerized tomography.It was observed a larger variation in densities in soils profiles analysed. The identification of layers is better utilising computerized tomography than others technic

  15. Value of Soil Organic Carbon in Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)

    2004-10-01

    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  16. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001

    Science.gov (United States)

    L. S. Heath; R. A. Birdsey; D. W. Williams

    2002-01-01

    The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...

  17. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures

    International Nuclear Information System (INIS)

    Chen, K.Y.; Liu, J.C.; Chiang, P.N.; Wang, S.L.; Kuan, W.H.; Tzou, Y.M.; Deng, Y.; Tseng, K.J.; Chen, C.C.; Wang, M.K.

    2012-01-01

    Surface fire could induce heat transferring into the soil, creating a carbonized environment, which may alter the chemical compositions of soil organic matters (SOM). In the study, a surface soil was carbonized at up to 600 °C with limited air to simulate soils experiencing a surface fire, and Cr(VI) removal on the carbonized soils was investigated. NMR and FTIR analyses demonstrated a remarkable change of SOM structures at 300–400 °C. TGA-MS spectra indicated that (e.g. C 2 H 4 , CH 3 OH and C 3 H 8 ) were the major components in the evolved gases from the pyrolyzed soil. A maximum amount of Cr(VI) removal (ca. 4 mg g −1 soil) occurred for the 200 °C-carbonized soils, attributed mainly to a significant increase of Cr(VI) reduction by 0.1 M KCl extractable organic carbon (EOC) with abundant carboxylic groups. Nonetheless, the formation of aromatic C upon carbonization of the soil at >400 °C may be responsible for Cr(VI) reduction. - Highlights: ► A maximum amount of Cr(VI) removal occurred for the 200 °C-carbonized soil. ► Extractable organic carbon (EOC) was increased upon carbonization of soil. ► EOC, enriched with carboxylic groups, enhances Cr(VI) reduction by the soil. ► The formation of aromatic C on a carbonized soil may be responsible for Cr(VI) reduction. ► Reductive product of Cr(III) tends to bond on high-temperature-modified soil. - This study first addresses the importance of surface fire-induced heat transferring into the soil to the transformations of environmental pollutants, i.e. chromium.

  18. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  19. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  20. [Estimation of soil carbon sequestration potential in typical steppe of Inner Mongolia and associated uncertainty].

    Science.gov (United States)

    Wang, Wei; Wu, Jian-Guo; Han, Xing-Guo

    2012-01-01

    Based on the measurements in the enclosure and uncontrolled grazing plots in the typical steppe of Xilinguole, Inner Mongolia, this paper studied the soil carbon storage and carbon sequestration in the grasslands dominated by Leymus chinensis, Stipa grandis, and Stipa krylovii, respectively, and estimated the regional scale soil carbon sequestration potential in the heavily degraded grassland after restoration. At local scale, the annual soil carbon sequestration in the three grasslands all decreased with increasing year of enclosure. The soil organic carbon storage was significantly higher in the grasslands dominated by L. chinensis and Stipa grandis than in that dominated by Stipa krylovii, but the latter had much higher soil carbon sequestration potential, because of the greater loss of soil organic carbon during the degradation process due to overgrazing. At regional scale, the soil carbon sequestration potential at the depth of 0-20 cm varied from -0.03 x 10(4) to 3.71 x 10(4) kg C x a(-1), and the total carbon sequestration potential was 12.1 x 10(8) kg C x a(-1). Uncertainty analysis indicated that soil gravel content had less effect on the estimated carbon sequestration potential, but the estimation errors resulted from the spatial interpolation of climate data could be about +/- 4.7 x 10(9) kg C x a(-1). In the future, if the growth season precipitation in this region had an average variation of -3.2 mm x (10 a)(-1), the soil carbon sequestration potential would be de- creased by 1.07 x 10(8) kg C x (10 a)(-1).

  1. Abundant and stable char residues in soils: Implications for soil fertility and carbon sequestration

    Science.gov (United States)

    Large-scale soil application of biochar might enhance soil fertility and increase crop production, while also sequestering atmospheric carbon. Reaching these outcomes requires an undertanding of the chemical structure of biochar. Using advanced solid-state 13C nuclear magnetic resonance spectroscopy...

  2. Centennial black carbon turnover observed in a Russian steppe soil

    Directory of Open Access Journals (Sweden)

    K. Hammes

    2008-09-01

    Full Text Available Black carbon (BC, from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m−2, or about 7–10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182–541 years, much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene polycarboxylic acids (BPCA as molecular markers. The proportions of less-condensed (and thus more easily degradable BC structures decreased, whereas the highly condensed (and more recalcitrant BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  3. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  4. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  5. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  6. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  7. Accounting for Carbon Stocks in Soils and Measuring GHGs Emission Fluxes from Soils: Do We Have the Necessary Standards?

    Directory of Open Access Journals (Sweden)

    Antonio Bispo

    2017-07-01

    Full Text Available Soil is a key compartment for climate regulation as a source of greenhouse gases (GHGs emissions and as a sink of carbon. Thus, soil carbon sequestration strategies should be considered alongside reduction strategies for other greenhouse gas emissions. Taking this into account, several international and European policies on climate change are now acknowledging the importance of soils, which means that proper, comparable and reliable information is needed to report on carbon stocks and GHGs emissions from soil. It also implies a need for consensus on the adoption and verification of mitigation options that soil can provide. Where consensus is a key aspect, formal standards and guidelines come into play. This paper describes the existing ISO soil quality standards that can be used in this context, and calls for new ones to be developed through (international collaboration. Available standards cover the relevant basic soil parameters including carbon and nitrogen content but do not yet consider the dynamics of those elements. Such methods have to be developed together with guidelines consistent with the scale to be investigated and the specific use of the collected data. We argue that this standardization strategy will improve the reliability of the reporting procedures and results of the different climate models that rely on soil quality data.

  8. Communicating soil carbon science to farmers: Incorporating credibility, salience and legitimacy

    DEFF Research Database (Denmark)

    Ingram, Julie; Mills, Jane; Dibari, Camilla

    2016-01-01

    A key narrative within climate change science is that conserving and improving soil carbon through agricultural practices can contribute to agricultural productivity and is a promising option for mitigating carbon loss through sequestration. This paper examines the potential disconnect between...... science and practice in the context of communicating information about soil carbon management. It focuses on the information producing process and on stakeholder (adviser, farmer representative, policy maker etc) assessment of the attributes credibility, salience and legitimacy. In doing this it draws...... on results from consultations with stakeholders in the SmartSOIL project which aimed to provide decision support guidelines about practices that optimise carbon mitigation and crop productivity. An iterative methodology, used to engage stakeholders in developing, testing and validating a range of decision...

  9. Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan.

    Science.gov (United States)

    Chen, Chiou-Pin; Juang, Kai-Wei; Cheng, Chih-Hsin; Pai, Chuang-Wen

    2016-12-01

    Soil organic carbon (SOC) stocks can be altered through reforestation and cropping. We estimated the effects of land use on SOC stocks after natural deciduous forests replaced by crops and coniferous plantations by examining the vertical distribution of SOC stocks at different depth intervals in an adjacent Oolong tea (Camellia sinensis L.) plantation, Moso bamboo (Phyllostachys pubescens) forest, Japanese cedar (Cryptomeria japonica) forest, and Taiwania (Taiwania cryptomerioides) forest in central Taiwan. The main soil characteristics, soil nitrogen (N) content, and soil carbon to nitrogen (C/N) ratio were also determined. Different land uses resulted in significantly higher bulk density, lower cation exchange capacity, SOC, soil N, soil C/N ratio, and SOC stocks in croplands compared to forestlands. Due to the long-term application of chemical fertilizers, a significantly lower soil pH was found in the tea plantation. Croplands had a lower soil C/N ratio because of less C input into the soil and a higher mineralization rate of organic carbon during cultivation. Similar SOC stocks were found in Taiwania and Japanese cedar forests (148.5 and 151.8 Mg C ha -1 , respectively), while the tea plantation had comparable SOC stocks to the bamboo forest (101.8 and 100.5 Mg C ha -1 , respectively). Over 40% of SOC stocks was stored in croplands and over 56% was stored in forestland within the upper 10 cm of soil. Coniferous plantations can contribute to a higher SOC stock than croplands, and a significant difference can be found in the top 0-5 cm of soil.

  10. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...... systems. Within the measurement range for the GMP343 sensors (0-20,000 ppm), mean results from the two systems were similar within the plough layer at the upslope (P = 0.060) and footslope (P = 0.139) position, and also below the plough layer at the upslope position (P = 0.795). However, results from...

  11. C and N Content in Density Fractions of Whole Soil and Soil Size Fraction Under Cacao Agroforestry Systems and Natural Forest in Bahia, Brazil

    Science.gov (United States)

    Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical

  12. Soil carbon pools in different pasture systems

    Directory of Open Access Journals (Sweden)

    Francisco M. Cardozo, Jr.

    2016-03-01

    Full Text Available The aim of this study was to assess the carbon pools of a tropical soil where the native forest was replaced with different pasture systems. We studied five pasture production systems, including four monoculture systems with forage grasses such as Andropogon, Brachiaria, Panicum, and Cynodon, and an agroforestry system as well as a native vegetation plot. Greater availability of fulvic acid was detected in the agroforestry system as compared with that in the other systems. Higher lability of C was detected in the Andropogon system during the dry and rainy seasons and during the dry season in Cynodon. During the dry season, all pastures systems showed deficits in the net removal of atmospheric CO2. The structure and practices of the agroforestry system enables more carbon to be sequestered in the soil as compared with the monoculture pasture, suggesting that it is an important practice to mitigate climatic change and to improve soil quality.

  13. Soil carbon sequestration and the CDM. Opportunities and challenges for Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ringius, Lasse

    1999-12-17

    The agriculture sector dominates the economies of most sub-Saharan countries, contributing about one-third of the region's GDP, accounting for forty percent of the export, and employing about two-thirds of the economically active population. Moreover, some soils in sub-Saharan Africa could, by providing sinks for carbon sequestration, play an important role in managing global climate change. Improvements in agricultural techniques and land use practices could lead to higher agricultural productivity and accumulate soil carbon. Hence, soil carbon sequestration could produce local economic income as well as social and other benefits in Africa. The Clean Development Mechanism (CDM) established in the 1997 Kyoto Protocol is designed to give developed countries with high domestic abatement cost access to low-cost greenhouse gas abatement projects in developing countries, and to benefit developing countries selling projects to investors in developed countries. It is presently unclear whether the CDM will provide credit for sink enhancement and permit broader sink activities. Unfortunately, few cost estimates of soil carbon sequestration strategies presently exist. While these costs are uncertain and all input costs have not been estimated, manure-based projects in small-holdings in Kenya could increase maize yield significantly and sequester one ton of soil carbon for a net cost of -US$806. Clearly, such projects would be very attractive economically. There is presently an urgent need to launch useful long-term (>10 years) field experiments and demonstration projects in Africa. Existing data are not readily comparable, it is uncertain how large amount of carbon could be sequestered, findings are site-specific, and it is unclear how well the sites represent wider areas. To develop CDM projects, it is important that experimental trials generate reliable and comparable data. Finally, it will be important to estimate local environmental effects and economic benefits

  14. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  15. An approach to include soil carbon changes in life cycle assessments

    DEFF Research Database (Denmark)

    Petersen, Bjorn Molt; Knudsen, Marie Trydeman; Hermansen, John Erik

    2013-01-01

    to estimate carbon sequestration to be included in LCA is suggested and applied to two examples where the inclusion of carbon sequestration is especially relevant: 1) Bioenergy: removal of straw from a Danish soil for energy purposes and 2) Organic versus conventional farming: comparative study of soybean...... comparable to the IPCC 2006 tier I approach in a time perspective of 20 year, where after the suggested methodology showed a continued soil carbon change toward a new steady state. The suggested method estimated a carbon sequestration for the first example when storing straw in the soil instead of using...... it for bioenergy of 54, 97 and 213 kg C t(-1) straw C in a 200, 100 and 20 years perspective, respectively. For the conversion from conventional to organic soybean production, a difference of 32, 60 or 143 kg soil C ha(-1) yr(-1) in a 200,100 or 20 years perspective, respectively was found. The study indicated...

  16. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  17. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Soil biogeochemistry properties vary between two boreal forest ecosystems in Quebec: significant differences in soil carbon, available nutrients and iron and aluminium crystallinity

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-04-01

    At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental

  19. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  20. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    Science.gov (United States)

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  1. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  2. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems