WorldWideScience

Sample records for sofc hotbox design

  1. Manufacturing of cells and stacks for SOFC development, test and demonstration projects and SOFC hotbox design development

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The purpose of this project is to support the continued SOFC development through manufacturing process optimization and manufacturing of SOFC cells and stacks. These cells and stacks will serve as a necessary base for the development activities and for the establishment of a number of test and demonstration activities. The manufacture will also help provide operating experience and reduce manufacturing cost. Another main focus of the manufacturing is to assure technical improvements and reliability. It is imperative to the eventual success of the technology that test and demonstration is carried out in the pre-market conditions that will exist for the next years in the three market segments targeted by TOFC (Distributed generation, micro CHP and APU incl. marine APU). Finally, the project also includes development activities focusing on the stack-system interface (hotbox design development) and on dealing with transients and start up and shut down times, which is of particular importance for APU and micro CHP applications. Three topics are addressed:1) Cell manufacture, including production development, capacity lift and manuf. of cells for test and demonstration; 2) Stack manufacture and test, including a test facility, stack manuf. and test of stacks in a system at HCV; 3) Hotbox design development, including design, prototype construction and testing. The progress of this project is documented. Major achievements are successful manufacture of adequate amounts of cells and stacks according to the application. Furthermore significant over-performance in design, construction and test of a methanol based hotbox prototype as well as publication of this. (au)

  2. Progress in the planar CPn SOFC system design verification

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.; Hartvigsen, J.; Khandkar, A. [SOFCo, Salt Lake City, UT (United States)

    1996-04-01

    SOFCo is developing a high efficiency, modular and scaleable planar SOFC module termed the CPn design. This design has been verified in a 1.4 kW module test operated directly on pipeline natural gas. The design features multistage oxidation of fuel wherein the fuel is consumed incrementally over several stages. High efficiency is achieved by uniform current density distribution per stage, which lowers the stack resistance. Additional benefits include thermal regulation and compactness. Test results from stack modules operating in pipeline natural gas are presented.

  3. Planar SOFC technology: stack design and development for lower cost and manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Pyke, S.H.; Howard, P.J.; Leah, R.T.

    2002-07-01

    This report summarises the results of a project to examine the performance of an externally manifolded solid oxide fuel cell (SOFC) stack based on a planar, anode-supported cells geometry, and to develop sealing materials and a design for a SOFC stack for potential low cost manufacture. The testing of short stacks, the development of innovative glass-ceramic sealing materials, and the development of an SOFC model to assess cell performance are described along with the development of a new stack geometry based on an internally manifolded geometry.

  4. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    Science.gov (United States)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  5. Production and Reliability Oriented SOFC Cell and Stack Design

    DEFF Research Database (Denmark)

    Hauth, Martin; Lawlor, Vincent; Cartellieri, Peter

    2017-01-01

    established. The probabilistic models were related to the experimentally obtained properties of base materials to establish a statistical relationship between the material properties and the most relevant load effects. Software algorithms for meta models that allow the detection of relationships between input...... in production, material and operating parameters for the optimization phase. A methodology for 3D description of spatial distribution of material properties based on a random field models was developed and validated by experiments. Homogenized material models on multiple levels of the SOFC stack were...

  6. Design of a SOFC/GT/SCs hybrid power system to supply a rural isolated microgrid

    International Nuclear Information System (INIS)

    Camblong, Haritza; Baudoin, Sylvain; Vechiu, Ionel; Etxeberria, Aitor

    2016-01-01

    Highlights: • A novel SOFC/GT/SCs HPS is connected to a rural microgrid through a 3LNPC inverter. • An operating strategy that maintains the SOFC power at its rated value is defined. • A robust digital controller that damps current oscillations is designed. • The efficiency, power quality, lifetime, and robustness of the HPS are considered. • An experimental test on an original HPS emulator validates the proposed solutions. - Abstract: The aim of this research study has been to design a Hybrid Power System (HPS) which works with biogas and whose main components are a Solid Oxide Fuel Cell (SOFC), a Gas microTurbine (GT), and a module of SuperCapacities (SCs). The HPS is the only power source of a rural isolated microgrid. Its structure, operating strategy, and controller have been designed considering the following criteria: efficiency, power quality, SOFC lifetime and robustness in stability and performance. The HPS structure includes a unique power converter, a 3-Level Neutral Point Clamped (3LNPC) inverter that connects the HPS to the AC microgrid. Regarding the selected operating strategy, it consists in regulating the SOFC power output to its rated value. Thus, the SCs and the GT must respond to the power demand variations. On the other hand, a study of the HPS shows that its dynamic behavior is not linear. Therefore, a special attention is put on designing a robust HPS controller. The control model is identified and the robust digital controller is designed using the “Tracking and Regulation with Independent Objectives” method. Simulation and experimental results show how the proposed structure, operating strategy, and controller allow ensuring a good behavior of the HPS from the point of view of the abovementioned four criteria.

  7. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  8. SOFC INTERCONNECT DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  9. A symmetrical, planar SOFC design for NASA's high specific power density requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cable, Thomas L. [University of Toledo, 21000 Brookpark Road, MS106-1, Cleveland, OH 44135 (United States); Sofie, Stephen W. [QSS at NASA Glenn Research Center, 21000 Brookpark Road, MS106-1, Cleveland, OH 44135 (United States)

    2007-11-22

    Solid oxide fuel cell (SOFC) systems for aircraft applications require an order of magnitude increase in specific power density (1.0 kW kg{sup -1}) and long life. While significant research is underway to develop anode supported cells which operate at temperatures in the range of 650-800 C, concerns about Cr-contamination from the metal interconnect may drive the operating temperature down further, to 750 C and lower. Higher temperatures, 850-1000 C, are more favorable in order to achieve specific power densities of 1.0 kW kg{sup -1}. Since metal interconnects are not practical at these high temperatures and can account for up to 75% of the weight of the stack, NASA is pursuing a design that uses a thin, LaCrO{sub 3}-based ceramic interconnect that incorporates gas channels into the electrodes. The bi-electrode supported cell (BSC) uses porous YSZ scaffolds, on either side of a 10-20 {mu}m electrolyte. The porous support regions are fabricated with graded porosity using the freeze-tape casting process which can be tailored for fuel and air flow. Removing gas channels from the interconnect simplifies the stack design and allows the ceramic interconnect to be kept thin, on the order of 50-100 {mu}m. The YSZ electrode scaffolds are infiltrated with active electrode materials following the high-temperature sintering step. The NASA-BSC is symmetrical and CTE matched, providing balanced stresses and favorable mechanical properties for vibration and thermal cycling. (author)

  10. Danish solid oxide fuel cell DK-SOFC 1997 - 1999. Flat plate design

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, F.W. [ed.

    2001-04-01

    The four main goals for DK-SOFC in the three year period were: 1. Lowering of the operation temperature from about 1000 deg. C to 800 - 850 deg. C keeping the cell area specific internal resistance (ASR) below 0.4{omega}cm{sup 2}; 2. Development of a mechanically strong anode supported cell with a gas tight 20 - 40 {mu}m YSZ electrolyte; 3. Achieve a improvement of cell materials and contacting to metallic interconnects in order to make a basis for further improvements in a following programme, e.g. development of a zirconia based electrolyte with improved conductivity; 4. Obtain know-how and patents as a basis for a commercialisation of SOFC in cooperation with Danish industry and electricity utilities. All four main goals have been achieved. The DK-SOFC programme is continued with the main goal of preparing the SOFC scale-up and commercialisation through demonstration of a Danish cell production technology. This activity started by the beginning of year 2000. (EHS)

  11. The Development of Low-Cost Integrated Composite Seal for SOFC: Materials and Design Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Xinyu Huang; Kristoffer Ridgeway; Srivatsan Narasimhan; Serg Timin; Wei Huang; Didem Ozevin; Ken Reifsnider

    2006-07-31

    This report summarizes the work conducted by UConn SOFC seal development team during the Phase I program and no cost extension. The work included composite seal sample fabrication, materials characterizations, leak testing, mechanical strength testing, chemical stability study and acoustic-based diagnostic methods. Materials characterization work revealed a set of attractive material properties including low bulk permeability, high electrical resistivity, good mechanical robustness. Composite seal samples made of a number of glasses and metallic fillers were tested for sealing performance under steady state and thermal cycling conditions. Mechanical testing included static strength (pull out) and interfacial fracture toughness measurements. Chemically stability study evaluated composite seal material stability after aging at 800 C for 168 hrs. Acoustic based diagnostic test was conducted to help detect and understand the micro-cracking processes during thermal cycling test. The composite seal concept was successfully demonstrated and a set of material (coating composition & fillers) were identified to have excellent thermal cycling performance.

  12. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  13. The ways of SOFC systems efficiency increasing

    Energy Technology Data Exchange (ETDEWEB)

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  14. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  15. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  16. Towards Multi Fuel SOFC Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Clausen, Lasse Røngaard; Bang-Møller, Christian

    2011-01-01

    Complete Solid Oxide Fuel Cell (SOFC) plants fed by several different fuels are suggested and analyzed. The plants sizes are about 10 kW which is suitable for single family house with needs for both electricity and heat. Alternative fuels such as, methanol, DME (Di-Methyl Ether) and ethanol...... are also considered and the results will be compared with the base plant fed by Natural Gas (NG). A single plant design will be suggested that can be fed with methanol, DME and ethanol whenever these fuels are available. It will be shown that the plant fed by ethanol will have slightly higher electrical...... efficiency compared with other fuels. A methanator will be suggested to be included into the plants design in order to produce methane from the fuel before entering the anode side of the SOFC stacks. Increasing methane content will decrease the needed compressor effect and thereby increase the plant power....

  17. Anodic Concentration Polarization in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Williford, Rick E.; Chick, Lawrence A.; Maupin, Gary D.; Simner, Steve P.; Stevenson, Jeffry W.; Khaleel, Mohammad A.; Wachsman, ED, et al

    2003-08-01

    Concentration polarization is important because it determines the maximum power output of a solid oxide fuel cell (SOFC) at high fuel utilization. Anodic concentration polarization occurs when the demand for reactants exceeds the capacity of the porous ceramic anode to supply them by gas diffusion mechanisms. High tortuosities (bulk diffusion resistances) are often assumed to explain this behavior. However, recent experiments show that anodic concentration polarization originates in the immediate vicinity of the reactive triple phase boundary (TPB) sites near the anode/electrolyte interface. A model is proposed to describe how concentration polarization is controlled by two localized phenomena: competitive adsorption of reactants in areas adjacent to the reactive TPB sites, followed by relatively slow surface diffusion to the reactive sites. Results suggest that future SOFC design improvements should focus on optimization of the reactive area, adsorption, and surface diffusion at the anode/electrolyte interface.

  18. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed......Fuel cell based micro-CHP systems are expected to be one of the most promising technologies for implementation in the residential sector. Since the design and operation of such CHP systems are greatly dependent upon the seasonal atmospheric conditions, it is important to evaluate their performance...... under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...

  19. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    Energy consumption in residential sector can be considerably reduced by enhancing the efficiency of energy supply. Fuel cell-based residential micro-CHP systems are expected to be one of the most promising technologies because of their high efficiency and low environmental impact. Since the design...... heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...... single-family household with an average number of occupants of 3 is evaluated. Detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. A transient model of the hot water storage tank is used to take into account the effect of peak residential heat...

  20. Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design

    Science.gov (United States)

    Calì, M.; Santarelli, M. G. L.; Leone, P.

    Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.

  1. Diesel reforming for SOFC auxiliary power units

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R. L. (Rodney L.); Parkinson, W. J. (William Jerry),; Inbody, M. A. (Michael A.); Tafoya, J. I. (Jose I.); Guidry, D. R. (Dennis Ray)

    2004-01-01

    The use of a solid-oxide fuel cell (SOFC) to provide auxiliary power for heavy duty trucks can increase fuel efficiency and reduce emissions by reducing engine idling time. The logical fuel of choice for a truck SOFC APU is diesel fuel, as diesel is the fuel of choice for these vehicles. SOFC's that directly oxidize hydrocarbon fuels have lower power densities than do SOFC's that operate from hydrocarbon reformate, and since the SOFC is a costly component, maximizing the fuel cell power density provides benefits in reducing the overall APU system cost. Thus current SOFC APU systems require the reformation of higher hydrocarbons for the most efficient and cost effect fuel cell system. The objective of this research is to develop the technology to enable diesel reforming for SOFC truck APU applications. Diesel fuel can be reformed into a H{sub 2} and CO-rich fuel feed stream for a SOFC by autothermal reforming (ATR), a combination of catalytic partial oxidation (CPOx), and steam reforming (SR). The typical autothermal reformer is an adiabatic, heterogeneous catalytic reactor and the challenges in its design, operation and durability on diesel fuel are manifold. These challenges begin with the vaporization and mixing of diesel fuel with air and steam where fuel pyrolysis can occur and improper mixing leads to hot and cold spots, which contribute to carbon formation and incomplete fuel conversion. The exotherm of the partial oxidation reaction can generate temperatures in excess of 800 C, a temperature at which catalysts rapidly sinter, thus reducing their lifetime. The temperature rise can be reduced by the steam reforming endotherm, but this requires the addition of water along with proper design to balance the kinetic rates. Carbon formation during operation and startup can lead to catalyst deactivation and fouling of downstream components, thus reducing durability of the fuel processor. Water addition helps to reduce carbon formation, but a key issue is

  2. Status of the TMI SOFC system

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, R.C.; Petrik, M.A.; Cable, T.L. [Technology Management, Inc., Cleveland, OH (United States)

    1996-12-31

    TMI has completed preliminary engineering designs for complete 20kW SOFC systems modules for stationary distributed generation applications using pipeline natural gas [sponsored by Rochester Gas and Electric (Rochester, New York) and EPRI (Palo Alto, California)]. Subsystem concepts are currently being tested.

  3. Status of SOFC development at Siemens

    Energy Technology Data Exchange (ETDEWEB)

    Drenckhahn, W.; Blum, L.; Greiner, H. [Siemens AG, Erlangen (Germany)

    1996-12-31

    The Siemens SOFC development programme reached an important milestone in June 1995. A stack operating with hydrogen and oxygen produced a peak power of 10.7 kW at a current density of 0.7 A/cm{sup 2} and was running for more than 1400 hours. The SOFC configuration is based on a flat metal separator plate using the multiple cell array design. Improved PENs, functional layer and joining technique were implemented. Based on this concept, a 100 kW plant was designed The SOFC development at Siemens has been started in 1990 after a two years preparation phase. The first period with the goal of the demonstration of a 1 kW SOFC stack operation ended in 1993. This important milestone was finally reached in the begin of 1994. The second project phase with the final milestone of a 20 kW module operation will terminate at the end of 1996. This result will form a basis for the next phase in which a 50 to 100 kW pilot plant will be built and tested.

  4. SOFC Systems with Improved Reliability and Endurance

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ayagh, Hossein [Fuelcell Energy, Incorporated, Danbury, CT (United States)

    2015-12-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project was the development of Solid Oxide Fuel Cell (SOFC) technology suitable for ultra-efficient central power generation systems utilizing coal and natural gas fuels and featuring greater than 90% carbon dioxide capture. The specific technical objective of this project was to demonstrate, via analyses and testing, progress towards adequate stack life (≥ 4 years) and stack performance stability (degradation rate ≤ 0.2% per 1000 hours) in a low-cost SOFC stack design. This final technical report summarizes the progress made during the project period of 27 months. Significant progress was made in the areas of cell and stack technology development, stack module development, sub-scale module tests, and Proof-of-Concept Module unit design, fabrication and testing. The work focused on cell and stack materials and designs, balance-of-plant improvements, and performance evaluation covering operating conditions and fuel compositions anticipated for commercially-deployed systems. In support of performance evaluation under commercial conditions, this work included the design, fabrication, siting, commissioning, and operation of a ≥ 50 kWe proof-of-concept module (PCM) power plant, based upon SOFC cell and stack technology developed to date by FuelCell Energy, Inc. (FCE) under the Office of Fossil Energy’s Solid Oxide Fuel Cells program. The PCM system was operated for at least 1000 hours on natural gas fuel at FCE’s facility. The factory cost of the SOFC stack was estimated to be at or below the DOE’s high-volume production cost target (2011 $).

  5. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    Science.gov (United States)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  6. Thermodynamic model and parametric analysis of a tubular SOFC module

    Science.gov (United States)

    Campanari, Stefano

    Solid oxide fuel cells (SOFCs) have been considered in the last years as one of the most promising technologies for very high-efficiency electric energy generation from natural gas, both with simple fuel cell plants and with integrated gas turbine-fuel cell systems. Among the SOFC technologies, tubular SOFC stacks with internal reforming have emerged as one of the most mature technology, with a serious potential for a future commercialization. In this paper, a thermodynamic model of a tubular SOFC stack, with natural gas feeding, internal reforming of hydrocarbons and internal air preheating is proposed. In the first section of the paper, the model is discussed in detail, analyzing its calculating equations and tracing its logical steps; the model is then calibrated on the available data for a recently demonstrated tubular SOFC prototype plant. In the second section of the paper, it is carried out a detailed parametric analysis of the stack working conditions, as a function of the main operating parameters. The discussion of the results of the thermodynamic and parametric analysis yields interesting considerations about partial load SOFC operation and load regulation, and about system design and integration with gas turbine cycles.

  7. Status of SOFCo SOFC technology development

    Energy Technology Data Exchange (ETDEWEB)

    Privette, R.; Perna, M.A.; Kneidel, K. [SOFCo, Alliance, OH (United States)] [and others

    1996-12-31

    SOFCo, a Babcock & Wilcox/Ceramatec Research & Development Limited Partnership, is a collaborative research and development venture to develop technologies related to planar, solid-oxide fuel cells (SOFCs). SOFCo has successfully demonstrated a kW-class, solid-oxide fuel cell module operating on pipeline natural gas. The SOFC system design integrates the air preheater and the fuel processor with the fuel cell stacks into a compact test unit; this is the platform for multi-kW modules. The cells, made of tape-cast zirconia electrolyte and conventional electrode materials, exhibit excel lent stability in single-cell tests approaching 40,000 hours of operation. Stack tests using 10-cm and 15-cm cells with ceramic interconnects also show good performance and stability in tests for many thousands of hours.

  8. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2009-01-01

    , into which electrocatalytically active materials are infiltrated after sintering. The paper presents the recent results on the electrochemical performance and durability of the novel planar metal-supported SOFC design. The results presented in the paper show that the novel cell and anode design has...... a promising performance and durability at a broad range of temperatures and is especially suitable for intermediate temperature operation....

  9. SOFC Operation with Real Biogas

    DEFF Research Database (Denmark)

    Hagen, Anke; Winiwarter, Anna; Langnickel, Hendrik

    2017-01-01

    , state‐of‐the‐art SOFCs were studied regarding performance and durability in relation to biogas as fuel and considering important contaminants, specifically sulfur. First, the catalytic behavior in relevant synthetic biogas mixtures was studied and the potential of dry reforming was demonstrated....... Successful long term operation of an SOFC under both, conditions of steam and dry reforming, i.e., addition of steam or CO2 to avoid carbon formation was shown. For the steam reforming case a remarkable period of 3,500 h, hereof 3,000 h in the presence of H2S was achieved. Finally, a real biogas from...... a landfill gas unit was used as fuel. The concept of dry reforming was realized. The SOFC was successfully operated with and in one case even without a specific gas cleaning unit....

  10. SOFC and Gas Separation Membranes

    DEFF Research Database (Denmark)

    Hagen, Anke; Hendriksen, Peter Vang; Søgaard, Martin

    2009-01-01

    from air. Subsequent separation and sequestration of CO2 is therefore easier on a SOFC plant than on conventional power plants based on combustion. Oxide ion conducting materials may be used for gas separation purposes with close to 100 % selectivity. They typically work in the same temperature range...... as SOFCs. Such membranes can potentially be used in Oxyfuel processes as well as in IGCC (Integrated Gasification Combined Cycle) power plants for supply of process oxygen, which may reduce cost of carbon capture and storage as dilution of the flue gas with nitrogen is avoided. Both technologies are very...

  11. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  12. In-Operando Raman Characterization of Carbon Deposition on SOFC Anodes

    KAUST Repository

    Maher, R. C.

    2013-10-06

    Carbon formation within nickel-based solid oxide fuel cell (SOFC) anodes exposed to carbonaceous fuels typically leads to reduced operational lifetimes and performance, and can eventually lead to catastrophic failure through cracking and delamination. In-situ Raman spectroscopy has been shown to be a powerful characterization tool for the investigation of the dynamics of physical processes occurring within operational SOFCs in real time. Here we investigate the dynamics of carbon formation on a variety of nickel-based SOFC anodes as a function of temperature, fuel and electrical loading using Raman spectroscopy. We show that the rate of carbon formation throughout the SOFC anode can be significantly reduced through a careful consideration of the SOFC anode material, design and operational conditions. © The Electrochemical Society.

  13. Analysis of SOFCs Using Reference Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  14. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  15. Physically based dynamic modeling of planar anode-supported sofc cogeneration systems

    Science.gov (United States)

    Albrecht, Kevin J.

    Abstract Solid oxide fuel cells (SOFC) have been a key area of academic research interest over the past decade due to their high electrical efficiency, fuel flexibility, and high quality waste heat. These benefits suggest that SOFCs could play a significant role as a future distributed generation, combined heat and power source if life cycle cost can be reduced or significant incentives such as a carbon tax are implemented. At the current point in SOFC development, degradation effects limit the operational lifetime of SOFCs. Other research efforts have suggested that the dynamic operation of SOFCs could improve the economics in addition to reducing degradation. Thus the development of high fidelity modeling tools for the assessment of dynamic SOFC system operation is important to determine the potential load-following ability of SOFC systems. One of the goals of this research is to identify the required level of fidelity necessary for a dynamic SOFC system-level simulation tool. The channel-level steady-state simulation and dynamic response to step changes in current density are presented for a one-dimensional and `quasi' two-dimensional model. The results indicate the predicted temperature gradient is less severe when implementing a higher fidelity `quasi' two-dimensional model. Additionally, the modeling and sizing of the balance of plant components to simulate off-design and system dynamics are presented. The effects of dynamic balance of plant components are compared to the typically accepted steady-state models. The incorporation of the dynamic balance of plant components are shown to have a significant effect on the dynamics of the waste heat recovery, where the power dynamics are only minimally affected. Finally, the steady-state performance at off-design conditions and dynamic response to step changes in the net system power are presented to assess the potential load-following ability of a combined heat and power SOFC system.

  16. Thermo-mechanical properties of SOFC components investigated by a combined method

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ramousse, Severine

    Co-firing process of different ceramic materials can lead to significant stress and deformation at the multilayer. This is the net effect of a complex set of phenomena such as the removal of organic additives from the green tapes (de-binding), solid state diffusive phenomena during the sintering...... of firing strategy and SOFC design, fundamental to avoid shape instability. Work sponsored by EUDP (Danish energy agency) project 64012-0225 “SOFC accelerated”....

  17. Fundamental researches of SOFC in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Demin, A.K.; Neuimin, A.D.; Perfiliev, M.V. [Institute of High Temperatures Electrochemistry, Ekaterinburg (Russian Federation)

    1996-04-01

    The main results of research on ZrO{sub 2}-based solid electrolytes, electrodes and interconnects are reviewed. The mathematical models of the processes in SOFC are considered. Two types of SOFC stacks composed of tubular and block cells, as well the results of their tests are described.

  18. Feasibility study for SOFC-GT hybrid locomotive power part II. System packaging and operating route simulation

    Science.gov (United States)

    Martinez, Andrew S.; Brouwer, Jacob; Samuelsen, G. Scott

    2012-09-01

    This work assesses the feasibility of Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrid power systems for use as the prime mover in freight locomotives. The available space in a diesel engine-powered locomotive is compared to that required for an SOFC-GT system, inclusive of fuel processing systems necessary for the SOFC-GT. The SOFC-GT space requirement is found to be similar to current diesel engines, without consideration of the electrical balance of plant. Preliminary design of the system layout within the locomotive is carried out for illustration. Recent advances in SOFC technology and implications of future improvements are discussed as well. A previously-developed FORTRAN model of an SOFC-GT system is then augmented to simulate the kinematics and power notching of a train and its locomotives. The operation of the SOFC-GT-powered train is investigated along a representative route in Southern California, with simulations presented for diesel reformate as well as natural gas reformate and hydrogen as fuels. Operational parameters and difficulties are explored as are comparisons of expected system performance to modern diesel engines. It is found that even in the diesel case, the SOFC-GT system provides significant savings in fuel and CO2 emissions, making it an attractive option for the rail industry.

  19. Modified strontium titanates: From defect chemistry to SOFC anodes

    DEFF Research Database (Denmark)

    Verbraeken, M.C.; Ramos, Tania; Agersted, Karsten

    2015-01-01

    Modified strontium titanates have received much attention recently for their potential as anode material in solid oxide fuel cells (SOFC). Their inherent redox stability and superior tolerance to sulphur poisoning and coking as compared to Ni based cermet anodes could improve durability of SOFC...... systems dramatically. Various substitution strategies can be deployed to optimise materials properties in these strontium titanates, such as electronic conductivity, electrocatalytic activity, chemical stability and sinterability, and thus mechanical strength. Substitution strategies not only cover choice...... of modified strontium titanates, this paper reviews three different A-site deficient donor (La, Y, Nb) substituted strontium titanates for their electrical behaviour and fuel cell performance. Promising performances in both electrolyte as well as anode supported cell designs have been obtained, when using...

  20. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......-supported SOFC. The cathodes are obtained by infiltrating LSM into a sintered either thick (300 μm) yttria stabilized zirconia (YSZ) backbone or a thin YSZ backbone (10-15 μm) integrated onto a thick (300 μm) porous strontium substituted lanthanum manganite (LSM) and YSZ composite. Fabrication challenges...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...

  1. Formulating liquid ethers for microtubular SOFCs

    Science.gov (United States)

    Kendall, Kevin; Slinn, Matthew; Preece, John

    One of the key problems of applying solid oxide fuel cells (SOFCs) in transportation is that conventional fuels like kerosene and diesel do not operate directly in SOFCs without prereforming to hydrogen and carbon monoxide which can be handled by the nickel cermet anode. SOFCs can internally reform certain hydrocarbon molecules such as methanol and methane. However, other liquid fuels usable in petrol or diesel internal combustion engines (ICEs) have not easily been reformable directly on the anode. This paper describes a search for liquid fuels which can be mixed with petrol or diesel and also injected directly into an SOFC without destroying the nickel anode. When fuel molecules such as octane are injected onto the conventional nickel/yttria stabilised zirconia (Ni/YSZ) SOFC fuel electrode, the anode rapidly becomes blocked by carbon deposition and the cell power drops to near zero in minutes. This degeneration of the anode can be inhibited by injection of air or water into the anode or by some upstream reforming just before entry to the SOFC. Some smaller molecules such as methane, methanol and methanoic acid produce a slight tendency to carbon deposition but not sufficient to prevent long term operation. In this project we have investigated a large number of molecules and now found that some liquid ethers do not significantly damage the anode when directly injected. These molecules and formulations with other components have been evaluated in this study. The theory put forward in this paper is that carbon-carbon bonds in the fuel are the main reason for anode damage. By testing a number of fuels without such bonds, particularly liquid ethers such as methyl formate and dimethoxy methane, it has been shown that SOFCs can run without substantial carbon formation. The proposal is that conventional fuels can be doped with these molecules to allow hybrid operation of an ICE/SOFC device.

  2. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  3. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    DeMinco, C.; Mukerjee, S.; Grieve, J.; Faville, M.; Noetzel, J.; Perry, M.; Horvath, A.; Prediger, D.; Pastula, M.; Boersma, R.; Ghosh, D.

    2000-01-01

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700 o C. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  4. Dynamic temperature modeling of an SOFC using least squares support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ying-Wei; Li, Jun; Cao, Guang-Yi; Tu, Heng-Yong [Institute of Fuel Cell, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Jian; Yang, Jie [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-05-01

    Cell temperature control plays a crucial role in SOFC operation. In order to design effective temperature control strategies by model-based control methods, a dynamic temperature model of an SOFC is presented in this paper using least squares support vector machines (LS-SVMs). The nonlinear temperature dynamics of the SOFC is represented by a nonlinear autoregressive with exogenous inputs (NARXs) model that is implemented using an LS-SVM regression model. Issues concerning the development of the LS-SVM temperature model are discussed in detail, including variable selection, training set construction and tuning of the LS-SVM parameters (usually referred to as hyperparameters). Comprehensive validation tests demonstrate that the developed LS-SVM model is sufficiently accurate to be used independently from the SOFC process, emulating its temperature response from the only process input information over a relatively wide operating range. The powerful ability of the LS-SVM temperature model benefits from the approaches of constructing the training set and tuning hyperparameters automatically by the genetic algorithm (GA), besides the modeling method itself. The proposed LS-SVM temperature model can be conveniently employed to design temperature control strategies of the SOFC. (author)

  5. Analysis and optimization of a tubular SOFC, using nuclear hydrogen as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Daniel G.; Parra, Lazaro R.G.; Fernandez, Carlos R.G., E-mail: dgr@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas, Habana (Cuba). Dept. de Ingenieria Nuclear; Lira, Carlos A.B.O., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2013-07-01

    One of the main areas of hydrogen uses as an energy carrier is in fuel cells of high standards as solid oxide fuel cells (SOFC). The SOFCs are fuel cells operate at high temperatures making them ideal for use in large power systems, suitable for distributed generation of electricity. Optimization and analysis of these electrochemical devices is an area of great current study. The computational fluid dynamics software (CFD) have unique advantages for analyzing the influence of design parameters on the efficiency of fuel cells. This paper presents a SOFC design cell which employ as fuel hydrogen produced by thermochemical water splitting cycle (I-S). There will be done the optimization of the main parameters thermodynamic and electrochemical cell operating to achieve top performance. Also will be estimate the cell efficiency and a production-consumption hydrogen system. (author)

  6. Analysis and optimization of a tubular SOFC, using nuclear hydrogen as fuel

    International Nuclear Information System (INIS)

    Rodriguez, Daniel G.; Parra, Lazaro R.G.; Fernandez, Carlos R.G.; Lira, Carlos A.B.O.

    2013-01-01

    One of the main areas of hydrogen uses as an energy carrier is in fuel cells of high standards as solid oxide fuel cells (SOFC). The SOFCs are fuel cells operate at high temperatures making them ideal for use in large power systems, suitable for distributed generation of electricity. Optimization and analysis of these electrochemical devices is an area of great current study. The computational fluid dynamics software (CFD) have unique advantages for analyzing the influence of design parameters on the efficiency of fuel cells. This paper presents a SOFC design cell which employ as fuel hydrogen produced by thermochemical water splitting cycle (I-S). There will be done the optimization of the main parameters thermodynamic and electrochemical cell operating to achieve top performance. Also will be estimate the cell efficiency and a production-consumption hydrogen system. (author)

  7. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  8. Study on dynamic performance of SOFC

    Science.gov (United States)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  9. Recent Development of SOFC Metallic Interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  10. Development of Osaka gas type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Iha, M.; Shiratori, A.; Chikagawa, O. [Murata Mfg. Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  11. Ceramic materials for SOFCs: Current status

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V.

    2002-10-01

    Full Text Available It is well known that the main parts of Solid Oxide Fuel Cells (SOFCs are build from ceramic materials. Namely the ceramic materials and composites, used for SOFCs manufacturing, are objects of the overview in the present work. The analysis carried out covers the last current publications in the field discussed. Special attention and examination in details have been done on patents state-of-the-art. After a background and short classification of the ceramic SOFCs materials the attention is focused on cathode, electrolyte, anode, interconnection and sealing materials. Their requirements, structure, thermal stability, composition control and behavior, processing and performance are the object of overview. A correlation has been made between the phase diagrams oxygen incorporation and transport, and SOFC advantages, generally for materials of lanthanum- base perovskite family. In order to analyze the innovative investigations regarding the patent branch of the SOFCs development and application, an object of review was patents from Japan, USA, Germany and European Union. Some examples of the inventions with accent on the ceramic materials are shown. In addition the tendency regarding R & D activities of SOFCs development materials from the leading companies in the world is analyzed. On the base of the most important technological and economical parameters of cell cathode/electrolyte/anode materials an attempt for evaluation and correlation has been made and innovative conceptions are shown.

    Es bien sabido que los componentes principales de las celdas de combustible de óxido sólido (SOFCs estan constituidos por materiales cerámicos. Dichos materiales cerámicos y materiales compuestos que se utilizan en la fabricación de SOFCs son objeto de estudio en el presente trabajo. El análisis llevado a cabo incluye la revisión de las últimas publicaciones en la materia, con una especial atención y examen minucioso sobre las patentes m

  12. Preparation and characterization of SOFC cathode films

    International Nuclear Information System (INIS)

    Baque, L; Serquis, A; Grunbaum, N; Prado, F; Caneiro, A

    2005-01-01

    Solid Oxide Fuel Cells (SOFC) are being widely studied due to their possible utilization to produce electrical energy in a wide power range (from 1 kW up to few hundreds of kW).The principle of operation of this kind of fuel cells involves reduction of O 2 in the cathode oxygen ions (O 2- ) diffusion of oxygen through the electrolyte and fuel oxidation in the anode.Commercial SOFC must work at temperature higher than to 1000 degree C to enable the O 2- diffusion.Therefore, it is necessary to investigate new materials that enable to decrease the operation temperature, improving SOFC performance and cost. La 1 -xSr x Co 1 -yFe y O 3 -δ (LSCF) perovskites are good candidates for SOFC cathodes because these materials present high ionic and electronic conductivity. LSCF cathodes are adequate to fabricate Ce 1 -xGd x O 2 -δ electrolyte SOFC due to its low chemical reactivity with this material and its similar thermal expansion coefficient. In this work we present a study of microstructural and electrochemical characteristics of films for SOFC cathodes. La 0 .4Sr 0 .6Co 0 .8Fe 0 .2O 3 -δ compounds were prepared by the acetate reaction method.Then, cathodes were deposited onto a Ce 0 .9Gd 0 .1O 2 -δ electrolyte disk by dip coating and spray techniques.Structural characterization is made by X-ray diffraction XRD and scanning electron microscopy (SEM).Electrochemical properties are characterized by complex impedance measurements.Finally, the relation between structural characteristics and electrical properties is discussed

  13. Solid oxide fuel cell (SOFC) systems with integrated reforming or gasification of hydrocarbons; Solid Oxide Fuel Cell (SOFC)-Systeme mit integrierter Reformierung bzw. Vergasung von Kohlenwasserstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Schlitzberger, Christian

    2012-07-01

    In this thesis, innovative concepts for structurally, thermally and materially integrated SOFC-systems with optional CO{sub 2}-capture are developed and analyzed. Initially, options to increase the electrical system-efficiency as coupling of fuel reforming and fuel cell based on the principle of the chemical heat pump and a electrically cascaded stack structure are developed and evaluated regarding e.g. theoretically achievable efficiencies. Based on this evaluation and the state of the art, a new planar stack- and system-design with direct internal reforming and without bipolar plates is systematically constructed. This basic unit can be adopted to different fuel-, operation- and application-requirements and represents a compact system with only few balance-of-plant-components. Due to the thermal and material couplings, the SOFC-waste heat can be directly used to supply the necessary heat for the endothermic reforming process. Additionally, a part of the hot anode off-gas, consisting mainly of water vapor, is recycled as a reforming agent. Therefore, based on the principle of the chemical heat pump, depending on the fuel used, system efficiencies of more than 60% can be achieved, even though the SOFC itself reached only an electrical efficiency of approximately 50%. Because of the cascaded SOFC structure resulting in high fuel utilization, postcombustion of the waste gases is no longer necessary. Due to the fact that SOFC membrane allows only an oxygen-ion flow and thus represents an air separation unit and the SOFC design without the mixing of anode and cathode flows, a simple CO{sub 2}-separation can be realized by condensing the water vapor out of the anode off-gas. In the second part of the thesis mathematical models of the SOFC-system-components are developed and implemented in the C++ based cycle simulation software ENBIPRO (Energie-Bilanz-Programm) owned by the institute. Applying the mathematical models different stack- and system-concepts for several

  14. Solid oxide fuel cell (sofc) materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Developing materials for SOFC applications is one of the key topics in energy research. The book focuses on manganite structured materials, such as doped lanthanum chromites and lanthanum manganites, which have interesting properties: thermal and chemical stability, mixed ionic and electrical conductivity, electrocatalytic activity, magnetocaloric property and colossal magnetoresistance (CMR).

  15. Solid oxide fuel cell (SOFC) materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Developing materials for SOFC applications is one of the key topics in energy research. The book focuses on manganite structured materials, such as doped lanthanum chromites and lanthanum manganites, which have interesting properties: thermal and chemical stability, mixed ionic and electrical conductivity, electrocatalytic activity, magnetocaloric property and colossal magnetoresistance (CMR).

  16. Diffusion Limitations in the Porous Anodes of SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Williford, Rick E.; Chick, Lawrence A.; Maupin, Gary D.; Simner, Steve P.; Stevenson, Jeffry W.

    2003-08-01

    Concentration polarization is important because it determines the maximum power output of a solid oxide fuel cell (SOFC) at high fuel utilization. Anodic concentration polarization occurs when the demand for reactants exceeds the capacity of the porous ceramic anode to supply them by gas diffusion mechanisms. Many models simulate this behavior by assuming an anomolous high value for the tortuosity (eg, t=17), a measure of the bulk diffusional resistance for a porous ceramic. However, recent experiments at several laboratories, including results reported herein, have provided strong evidence that typical sintered powder ceramics (30-50% porosity) have much lower tortuosities (t=2.5-3), indicating that the bulk diffusional resistance is too small to be responsible for concentration polarization. We find evidence that concentration polarization originates in the immediate vicinity of the reactive sites near the anode/electrolyte interface, at the triple phase boundaries (TPBs) between the Ni catalyst particles, the gas, and the oxygen conducting YSZ ceramic. A model is proposed to describe how concentration polarization is controlled by two localized phenomena: competitive adsorption of reactants in areas adjacent to the reactive TPB sites, followed by relatively slow surface diffusion to the reactive sites. The model parameters (adsorption activation energy and surface diffusion coefficients) were determined by fitting to well-characterized SOFC voltage-current performance data, and are in good agreement with data from the literature. Results suggest that future SOFC design improvements should focus on optimization of the reactive area, adsorption, and surface diffusion at the anode/electrolyte interface, rather than on anode thicknesses or bulk porosities.

  17. Liquid-fueled SOFC power sources for transportation

    Science.gov (United States)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  18. Investigation of new materials for SOFC applications; Untersuchungen zum Einsatz neuer Werkstoffe fuer SOFC-Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Wackerl, J.

    2007-05-04

    Fuel cells based on solid oxides ('SOFC') are excellent alternative devices for power generation, when they are operated at high temperature, e.g. above 600 C. Having only fixed parts for the power generating part of the device is only one advantage of the fuel cell. Due to their unique design, these devices offer a maximum of efficiency for energy conversion compared to conventional power generating systems, which are mainly based on turbines. One aim of this thesis is the examination of alternative electrolyte and cathode materials for the SOFC applications at reduced temperatures, which means in the temperature range between 600 C and 750 C. For the first main task, several materials from the oxygen ion conducting electrolytes were selected. Different strontium and magnesium doped lanthanum gallate (LSGM) materials with additional transition metal doping were selected and prepared via two different preparation methods. The optimum calcining conditions were determined using thermal analysis methods. The results of the structural analysis of the sintered electrolyte materials were used to select the most suitable electrolyte materials. As a result, LSGM and iron doped LSGM (LSGMF) were the most promising materials. Further investigations were carried out on LSGMF materials with different strontium content. The influence of chemical cation non-stoichiometry on the perovskite material was investigated. Therefore, measurements to gather information about the crystallographic structure, morphology, electrochemistry and electrical conductivity were carried out. For a selected sample, the correlations between single effects, such as the crystallographic structure, and the electrical properties are shown by combining the different analysis methods. It could be shown that both the electrochemistry and the crystallographic structure have a significant influence on the electrical conductivity of the LSGMF materials. The second aim of the thesis was the selection

  19. Development and durability of SOFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Beeaff, D.; Dinesen, A.R.; Mikkelsen, Lars; Nielsen, Karsten A.; Solvang, M.; Hendriksen, Peter V.

    2004-12-01

    The present project is a part of the Danish SOFC programme, which has the overall aim of establishing a Danish production of SOFC - cells, stacks and systems for economical and environmentally friendly power production. The aim of the present project was to develop and demonstrate (on a small scale, few cells, few thousand hours) a durable, thermally cyclable stack with high performance at 750 deg. C. Good progress towards this target has been made and demonstrated at the level of stack-elements (one cell between two interconnects) or small stacks (3 5 cells). Three different stacks or stack-elements have been operated for periods exceeding 3000 hr. The work has covered development of stack-components (seals, interconnects, coatings, contact layers), establishment of procedures for stack assembly and initiation, and detailed electrical characterisation with the aims of identifying performance limiting factors as well as long term durability. Further, post test investigations have been carried out to identify possible degradation mechanisms. (BA)

  20. Possible Future SOFC - ST Based Power Plants

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    Hybrid systems consisting Solid Oxide Fuel Cell (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas. A desulfurization reactor removes the sulfur content in the NG while a pre-reformer break down the heavier hydrocarbons. The pre-treated fuel enters the...... is considerably more than the conventional combined cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel reformer reactors are considered in this study.......Hybrid systems consisting Solid Oxide Fuel Cell (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas. A desulfurization reactor removes the sulfur content in the NG while a pre-reformer break down the heavier hydrocarbons. The pre-treated fuel enters...

  1. Sonochemistry in the service of SOFC research.

    Science.gov (United States)

    Sakkas, Petros M; Schneider, Oliver; Sourkouni, Georgia; Argirusis, Christos

    2014-11-01

    Decoration of SOFC anode cermets with metal nanoparticles (NPs) enchance their ability and stability in natural gas to hydrogen reform. A novel sonoelectrochemical approach of Au-NPs synthesis (mean 12.31±2.69nm) is suggested, according to which the sonication is held constant while the electrochemical activity is either pulsed or continuous. The gold colloidal solution is cosonicated with state of the art cermet powder to yield particles decorated with Au-NPs. Nevertheless sonochemical routes of mixed molybdenum, rhenium or tungsten mixed oxides synthesis are utilized in order to decorate SOFC anode cermets. The decoration loading achieved spanned from 0.1 to 10.0wt.%. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  3. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  4. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jifeng Zhang; Jean Yamanis

    2007-09-30

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  5. Formulating liquid hydrocarbon fuels for SOFCs

    Science.gov (United States)

    Saunders, G. J.; Preece, J.; Kendall, K.

    The injection of liquid hydrocarbons directly into an SOFC system is considered for application to hybrid vehicles. The main problem is carbon deposition on the nickel anode when molecules such as ethanol or iso-octane are injected directly. Such carbon deposition has been studied using a microtubular SOFC with a mass spectrometer analysing the product gases to investigate the reaction sequence and also to investigate the deposited carbon by temperature programmed oxidation (TPO). The results show that only two liquids could be injected directly onto nickel cermet anodes without serious carbon blockage, methanol and methanoic acid. Even then, TPO experiments revealed deposition of small amounts of carbon which could be prevented by small additions of air or water to the fuel. Gasoline type molecules like iso-octane killed the SOFC in about 30 min operation, with about 90% of the molecular carbon being deposited on the nickel cermet anode. However, certain mixtures of iso-octane, water, alcohol and surfactant were found to produce beneficial results with remarkably low carbon deposition, less than 1% of the molecular carbon appearing on the anode. Such formulations had octane numbers appropriate to internal combustion engine operation.

  6. High-Power Density SOFCs for Aviation Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As solid oxide fuel cells (SOFCs) approach commercialization, interest in broader applications of this technology is mounting. While the first commercialized systems...

  7. Study of Operating Parameters for Accelerated Anode Degradation in SOFCs

    DEFF Research Database (Denmark)

    Ploner, Alexandra; Hagen, Anke; Hauch, Anne

    2017-01-01

    Solid oxide fuel cell (SOFC) applications require lifetimes of several years on the system level. A big challenge is to demonstrate such exceptionally long lifetimes in ongoing R&D projects. Accelerated or compressed testing are alternative methods to obtain this. Activities in this area have been...... SOFC components as function of operating conditions. Electrochemical impedance data were collected on the fresh and long-term tested SOFCs and used to de-convolute the individual losses of single SOFC cell components – electrolyte, cathode and anode. The main findings include a time-dependent effect...

  8. Solid Oxide Fuel Cell (SOFC) Development in Denmark

    DEFF Research Database (Denmark)

    Linderoth, Søren; Larsen, Peter Halvor; Mogensen, Mogens Bjerg

    2007-01-01

    on larger anode-supported cells as well as a new generation of SOFCs based on porous metal supports and new electrode and electrolyte materials. The SOFC program comprises development of next generation of cells and multi stack modules for operation at lower temperature with increased durability...

  9. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...

  10. Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hjelm, Johan; Menon, Mohan

    2010-01-01

    Electron microscopy characterization across the cathode–electrolyte interface of two different types of intermediate temperature solid oxide fuel cells (IT-SOFC) is performed to understand the origin of the cell performance disparity. One IT-SOFC cell had a sprayed-cosintered Ce0.90Gd0.01O1.95 (CGO...

  11. Technology watch of stationary solid oxide fuel cells (SOFC) 2012; Teknikbevakning av stationaera fastoxidbraensleceller (SOFC) 2012

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Martin; Sunden, Bengt

    2013-03-15

    The first solid oxide fuel cell (SOFC) was developed in 1937. However, the commercialization has waited. In 2012, 20MW of SOFC-systems are expected to be delivered to customers, compared to 1.3 MW in 2008. It is mainly in specific niche markets, such as on-site power generation for data centers, small-scale CHP for individual households and as military applications, where SOFC systems are available today. The future potential is enormous in the just mentioned areas as well as for APUs in trucks and other vehicles as well as for MW-scale distributed power generation. There are public research program, support for demonstration projects and investment support to private households as well as companies in various terms around the world. EU invests SEK 666 million (distributed at hydrogen, fuel cells for transportation, stationary systems and cogeneration) in the FCH-JU program only in 2012, compared with SEK 1.59 billion in the Japanese program (of which 125 million is directed to SOFC research and 740 million to the ENE-FARM project to be distributed between PEMFC and SOFC). The German hydrogen and fuel cell program is SEK 12 billion during 2006-2016 (of which 54% to transportation applications, 36% to stationary applications and 10% to special applications), compared with the Finnish program that invest SEK 1.3 billion in 2007-2013. The federal SECA program directs SEK 160 million to SOFC research. Denmark goes slightly over SEK 115 million annually in public funds for fuel cell research. The trend is that the proportion of public funding for demonstration projects and support to customers for purchasing pre-commercial products is increasing at the expense of basic research funding. Note that the listed research programs involve different types of fuel cells, and information regarding the percentage that goes to SOFCs is not specified for each case. Research continues to deliver new advances. Researchers at Harvard have shown that a SOFC, with vanadium oxide in the

  12. SOFC mini-tubulares basadas en YSZ

    Directory of Open Access Journals (Sweden)

    Campana, R.

    2008-08-01

    Full Text Available Tubular SOFC have the advantage over planar SOFC of the low temperature sealing and more resistance to thermal shock. On the other hand the volumetric power density of tubular Fuel Cells goes with the inverse of the tube diameter which added to the faster warm-up kinetics makes low diameter tubular SOFC favorable for low power applications. Anode supported tubular SOFC of 3mm diameter and 150 mm length with YSZ electrolyte were fabricated and tested by V-I measurements using H2-Ar (5, 10, 100 vol% as fuel and air for the cathode. The NiO-YSZ tubes of about 400 μm thickness were produced by hydrostatic pressure and then coated with an YSZ film of 15-20 μm. The electrolyte was deposited using a manual aerograph. After sintering either Pt paste or LSF (with YSZ or SDC coatings of about 20-50 μm thickness were deposited for the cathode. The OCV of the cells were excellent, very close to the expected Nernst law prediction indicating that there were not gas leaks. The maximun electrical power of the cell was near to 500mW/cm2 at 850ºC operation temperature. Complex impedance measurements of the cells were performed in order to determine the resistance of the different cell components.

    La principal ventaja de las SOFC tubulares frente a las planares es el sellado de la cámara anódica y catódica a bajas temperaturas. Además la densidad de energía volumétrica de las pilas tubulares es inversamente proporcional al diámetro del tubo, que añadido a los tiempos cortos de encendido y apagado hacen que las mini-tubulares sean interesantes para usos de baja potencia. Se han fabricado y caracterizado SOFC tubulares soportadas en ánodo de 3mm de diámetro y de 150 mm de longitud, 400μm de espesor, con electrolito de YSZ depositado por spray de 15-20 μm. Los tubos de NiO-YSZ son producidos por prensado isostático. La caracterización eléctrica se ha realizado empleando H2-Ar como combustible an

  13. Development of Robust Metal-Supported SOFCs and Stack Components in EU METSAPP Consortium

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Nielsen, Jimmi; Persson, Åsa Helen

    2017-01-01

    -SOFCs to enhance their robustness. In addition, the manufacturing of metal-supported cells with different geometries, scalability of the manufacturing process was demonstrated and more than 200 cells with an area of ∼150 cm2 were produced. The electrochemical performance of different cell generations was evaluated...... in 90% reduction in Cr evaporation, three times lower Cr2O3 scale thickness and increased lifetime. The possibility of assembling these cells into two radically different stack designs was demonstrated....

  14. Performance comparison of two combined SOFC-gas turbine systems

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    A necessary step in the use of natural gas (methane) in solid oxide fuel cells (SOFCs) is its preliminary conversion to hydrogen and carbon monoxide. To perform methane conversion within fuel cells and avoid catalyst carbonization the molar ratio between methane and steam (or steam with carbon dioxide) should be 1:2 or higher at the SOFC inlet. In this article two possible technological approaches to provide this desirable ratio in a combined SOFC-gas turbine system are compared. The first approach involves generation of the required steam in the coupled gas turbine cycle. The second (which is more traditional) involves recycling some part of the exhaust gases around the anodes of the SOFC stack. Exergy and energy analyses for the two SOFC-gas turbine systems are conducted to determine their efficiencies and capabilities to generate power at different rates of oxygen conductivity through the SOFC electrolyte (ion conductive membrane), as well as various efficiencies for natural gas conversion to electricity in the SOFC stack. It is determined that with a fixed SOFC stack the scheme with recycling has higher exergy and energy efficiencies (requiring less natural gas for a fixed electricity output) and the scheme with steam generation is associated with a higher capability for power generation. The question of which scheme permits a higher reduction in natural gas consumption (per unit of time), in the case of its implementation instead of a contemporary combined gas turbine-steam power cycle is considered. The greater capability of power generation while retaining high efficiency of fuel consumption in the scheme with steam generation makes its implementation more favorable. This scheme provides a better relative reduction in natural gas consumption (relative to the scheme with exhaust gas recycling) calculated per unit of time which reaches values of about 20%. At higher values of oxygen conductivity and efficiency of natural gas conversion to electricity in the

  15. Infiltrated SrTiO3:FeCr‐based Anodes for Metal‐Supported SOFC

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Reddy Sudireddy, Bhaskar; Persson, Åsa Helen

    2013-01-01

    The concept of using electronically conducting anode backbones with subsequent infiltration of electrocatalytic active materials has been used to develop an alternative solid oxide fuel cell (SOFC) design based on a ferritic stainless steel support. The anode backbone consists of a composite made...

  16. Infiltrated SrTiO3:FeCr-based anodes for metalsupported SOFC

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Persson, Åsa Helen; Nielsen, Jimmi

    2012-01-01

    The concept of using highly electronically conducting backbones with subsequent infiltration of electrocatalytic active materials, has recently been used to develop an alternative SOFC design based on a ferritic stainless steel support. The metal-supported SOFC is comprised of porous and highly e...... changes occurring in the anode layer during testing. The results indicate that the STN component in the anode seems to have a positive effect on the corrosion stability of the FeCr-particles in the anode layer.......) and FeCr. Electrochemical characterization and post test SEM analysis have been used to get an insight into the possible degradation mechanisms of this novel electrode infiltrated with Gd-doped CeO2 and Ni. Accelerated oxidation/corrosion experiments have been conducted to evaluate the microstructural...

  17. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    Science.gov (United States)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  18. SOFC anode reduction studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    for studying these nanoscale structures, but only few SOFC studies have applied in situ TEM to observe the ceramic nanostructures in a reactive gas environment at elevated temperatures. The present contribution focuses on the reduction of an SOFC anode which is a necessary process to form the catalytically......The Solid Oxide Fuel Cell (SOFC) is a promising part of future energy approaches due to a relatively high energy conversion efficiency and low environmental pollution. SOFCs are typically composed of ceramic materials which are highly complex at the nanoscale. TEM is routinely applied ex situ...... active Ni surface before operating the fuel cells. The reduction process was followed in the TEM while exposing a NiO/YSZ (YSZ = Y2O3-stabilized ZrO2) model anode to H2 at T = 250-1000⁰C. Pure NiO was used in reference experiments. Previous studies have shown that the reduction of pure Ni...

  19. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...... cycles (IGCC). Plants characteristics are discussed while the plants sizes are defined form the available steam turbine as well as cultivation area.......A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...

  20. Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs

    National Research Council Canada - National Science Library

    Cochran, Joe

    2004-01-01

    The program objective is to develop SOFCs, operating in the 500-700 degrees C range, based on Metal/Electrolyte square cell honeycomb formed by simultaneous powder extrusion of electrolyte and metal...

  1. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    2017-12-04

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, prevent Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be

  2. Conceptual study of a 250 kW planar SOFC system for CHP application

    Science.gov (United States)

    Fontell, E.; Kivisaari, T.; Christiansen, N.; Hansen, J.-B.; Pålsson, J.

    In August 2002, Wärtsilä Corporation and Haldor Topsøe A/S entered into a co-operation agreement to start joint development program within the planar SOFC technology. The development program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with power outputs above 200 kW for distributed power generation with CHP and for marine applications. In this study, the product concept for a 250 kW natural gas-fuelled atmospheric SOFC plant has been studied. The process has been calculated and optimised for high electrical efficiency. In the calculations, system efficiencies more than 55-85% (electrical co-generation) have been reached. The necessary balance of plant (BoP) components have been identified and the concept for grid connection has been defined. The BoP includes fuel and air supply, anode re-circulation, start-up steam, purge gas, exhaust gas heat recovery, back-up power, power electronics and control system. Based on the analysed system and component information, a conceptual design and cost break down structure for the product have been made. The cost breakdown shows that the stack, system control and power electronics are the major cost factors, while the remaining BoP equipment stands for a minor share of the manufacturing cost. Finally, the feasibility of the SOFC plants has been compared to gas engines.

  3. Analysis of cathode materials of perovskite structure for solid oxide fuel cells, sofc s; Analisis de materiales catodicos de estructura perovskita para celdas de combustible de oxido solido, sofcs

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado F, J.; Espino V, J.; Avalos R, L. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Quimica, Santiago Tapia 403, Morelia, Michoacan (Mexico)

    2015-07-01

    Fuel cells directly and efficiently convert the chemical energy of a fuel into electrical energy. Of the various types of fuel cells, the solid oxide (Sofc), combine the advantages in environmentally benign energy generation with fuel flexibility. However, the need for high operating temperatures (800 - 1000 grades C) has resulted in high costs and major challenges in relation to the compatibility the cathode materials. As a result, there have been significant efforts in the development of intermediate temperature Sofc (500 - 700 grades C). A key obstacle for operation in this temperature range is the limited activity of traditional cathode materials for electrochemical reduction oxygen. In this article, the progress of recent years is discussed in cathodes for Sofc perovskite structure (ABO{sub 3}), more efficient than the traditionally used La{sub 1-x}Sr{sub x}MnO{sub 3-δ} (LSM) or (La, Sr) CoO{sub 3}. Such is the case of mixed conductors (MIEC) double perovskite structure (A A B{sub 2}O{sub 5+δ}) using different doping elements as La, Sr, Fe, Ti, Cr, Sm, Co, Cu, Pr, Nd, Gd, dy, Mn, among others, which could improve the operational performance of existing cathode materials, promoting the development of optimized intermediate temperature Sofc designs. (Author)

  4. Development status of planar SOFCs at Sanyo

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Yasuo; Akiyama, Yukinori; Yasuo, Takashi [SANYO Electric Co., Ltd., Osaka (Japan)] [and others

    1996-12-31

    A 2 kW class combined cell stacked module (182 cm{sup 2} X 4X 17) was examined. An output power of 2.47 kW and output power density of 0.20 W/cm{sup 2} were obtained at the current density of 0.3 A/cm{sup 2}. The temperature uniformity is an important factor to develop large scale SOFC modules. Therefore, in this 2 kW class module, one cell was divided into four smaller unit cells to decrease temperature difference across these cells. Moreover, an internal heat-exchanging duct was arranged to spend the surplus heat effectively in the middle of the module. As for the basic research, the followings were investigated to improve thermal cycle characteristics. One was to adopt a silica/alumina-based sealing, material in order to absorb the thermal expansion difference between the electrolyte and the separator. Deterioration was quite small after 12 thermal cycles with a 150 by 150 mm single cell. The other was to use a heat-resisting ferritic alloy as a separator in a 50 by 50 mm single cell in order to decrease the thermal expansion coefficient of the separator. High performance was obtained for 2000 hours at 900{degrees}C in an endurance test and deterioration was quite small after a thermal cycle.

  5. Characterization of ceria-based SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, R.; Routbort, J.; Krumpelt, M. [Argonne National Lab., IL (United States)

    1996-12-31

    Solid Oxide Fuel Cells (SOFCs) operating at low temperatures (500-700{degrees}C) offer many advantages over the conventional zirconia-based fuel cells operating at higher temperatures. Reduced operating temperatures result in: (1) Application of metallic interconnects with reduced oxidation problems (2) Reduced time for start-up and lower energy consumption to reach operating temperatures (3) Increased thermal cycle ability for the cell structure due to lower thermal stresses of expansion mismatches. While this type of fuel cell may be applied to stationary applications, mobile applications require the ability for rapid start-up and frequent thermal cycling. Ceria-based fuel cells are currently being developed in the U.K. at Imperial College, Netherlands at ECN, and U.S.A. at Ceramatec. The cells in each case are made from a doped ceria electrolyte and a La{sub 1-x}Sr{sub x}Co{sub 1-y}Fe{sub y}O{sub 3} cathode.

  6. Development of cofired type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Hiroaki; Sakamoto, Sadaaki; Zhou, Hua-Bing [Murata Manufacturing Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    We have developed fabrication process for planar SOFC fabricated with cofired anode/electrolyte/cathode multilayers and interconnects. By cofiring technique for the multilayers, we expect to reduce the thickness of the electrolyte layers, resulting in decrease of innerimpedance, and achieve low production cost. On the other hand, the cofiring technique requires that the sintering temperature, the shrinkage profiles and the thermal expansion characteristics of all component materials should be compatible with the other. It is, therefore, difficult to cofire the multilayers with large area. Using the multilayers with surface area of 150cm{sup 2}, we fabricated the multiple cell stacks. The maximum power of 5x4 multiple cell stack (5 planes of cells in series, 4 cells in parallel in each planes 484cm{sup 2} effective electrode area of each cell planes) was 601W (0.25Wcm{sup -2}, Uf=40%). However, the terminal voltage of the multiple cell stack decreased by the cause of cell cracking, gas leakage and degradation of cofired multilayers. This paper presents the improvements of cofired multilayers, and the performance of multiple cell stacks with the improved multilayers.

  7. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, determination of the limits of safe operation and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires applica...... out at a range of ac perturbation amplitudes in order to investigate linearity of the response and the signal-to-noise ratio. Separation of the measured impedance into series and polarisation resistances was possible....... to analyse in detail. Today one is forced to use mathematical modelling to extract information about existing gradients and cell resistances in operating stacks, as mature techniques for local probing are not available. This type of spatially resolved information is essential for model refinement...... and validation, and helps to further the technological stack development. Further, more detailed information obtained from operating stacks is essential for developing appropriate process monitoring and control protocols for stack and system developers. An experimental stack with low ohmic resistance from Topsoe...

  8. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  9. In-Situ Raman Characterization of SOFC Anodes

    KAUST Repository

    Maher, Robert C.

    2012-01-01

    Solid oxide fuel cells (SOFCs) have many advantages when compared to other fuel cell technologies, particularly for distributed stationary applications. As a consequence they are becoming ever more economically competitive with incumbent energy solutions. However, as with all technologies, improvements in durability, efficiency and cost is required before they become feasible alternatives. Such improvements are enabled through improved understanding of the critical material interactions occurring during operation. Raman spectroscopy is a noninvasive and non-destructive optical characterization tool which is ideally suited to the study of these critical chemical processes occurring within operational SOFCs. In this paper we will discuss advantages of using Raman characterization for understanding these important chemical processes occurring within SOFCs. We will present the specific examples of the type of measurement possible and discuss the direction of future research. © 2012 Materials Research Society.

  10. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  11. Aluminosilicate-based sealants for SOFCs and other electrochemical applications - A brief review

    Science.gov (United States)

    Tulyaganov, Dilshat U.; Reddy, Allu Amarnath; Kharton, Vladislav V.; Ferreira, José M. F.

    2013-11-01

    Among different designs of solid oxide fuel cells (SOFCs), planar design is the most promising due to easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. For a sealant to work effectively in high-temperature SOFC environment, equilibrium needs to be achieved amid its mechanical properties and flow behavior so that it does not only maintain its hermeticity at high temperature but is also able to reduce mechanical stresses generated in the seal during thermal cycling. The most common sealants based on glass or glass-ceramic materials have been shown to operate in fuel cells for more than 1000 h with no significant degradation. Analysis of the current literature sources demonstrated that from thermal and chemical stability points of view, silicate based glass systems are more suitable than borate and borosilicate glass systems. In this work, different glass-ceramic (GC) compositions based on alkaline- and alkaline-earth aluminosilicate-based glass systems are reviewed with a special emphasis on their thermal, chemical, mechanical, and electrical properties. Based on these considerations, glass composition design approaches are provided that aid in search of the best seal glasses satisfying the rigid functional requirements. Among all the glass systems studied, a pyroxene based CaO-MgO-SrO-BaO-La2O3-Al2O3-SiO2 seal GC compositions have been specifically discussed because those have achieved appropriate thermal and chemical properties along with high stability. Approaches for further developments and optimization of GC sealants are briefly discussed.

  12. Study of variables for accelerating lifetime testing of SOFCs

    DEFF Research Database (Denmark)

    Ploner, Alexandra; Hagen, Anke; Hauch, Anne

    Solid oxide fuel cell (SOFC) applications require lifetimes of several years on the system level. A big challenge is to proof/confirm/demonstrate such exceptionally long lifetimes.Accelerated or compressed testing are possible methods. Activities in this area have been carried out without arriving...... at different current load cycling profiles revealed a strong deviation between predicted and measured lifetime [3].In this study, we present a detailed analysis of durability results for degradation mechanisms of single SOFC components as function of operating conditions. Electrochemical impedance data...

  13. Optimization of the strength of SOFC anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Ramos, Tania; Faes, A.

    2012-01-01

    During operation solid oxide fuel cells are stressed by temperature gradients and various internal and external mechanical loads, which must be withstood. This work deals with the optimization of the strength of as-sintered anode supported half-cells by imposing changes to production parameters...... technology a mathematical frame to determine the optimal porosity of a SOFC system is presented....

  14. Simulation of SOFCs based power generation system using Aspen

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-12-01

    Full Text Available This study presents a thermodynamic Aspen simulation model for Solid Oxide Fuel Cells, SOFCs, based power generation system. In the first step, a steady-state SOFCs system model was developed. The model includes the electrochemistry and the diffusion phenomena. The electrochemical model gives good agreement with experimental data in a wide operating range. Then, a parametric study has been conducted to estimate effects of the oxygen to carbon ratio, O/C, on reformer temperature, fuel cell temperature, fuel utilization, overall fuel cell performance, and the results are discussed in this paper. In the second step, a dynamic analysis of SOFCs characteristic has been developed. The aim of dynamic modelling was to find the response of the system against the fuel utilization and the O/C ratio variations. From the simulations, it was concluded that both developed models in the steady and dynamic state were reasonably accurate and can be used for system level optimization studies of the SOFC based power generation system.

  15. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    upon redox cycling, while other properties such as catalytic activity for methane reforming and/or water gas shift, thermal conductivity in addition to electronic conductivity for current pickup are highly wanted for SOFC applications. In order to combine the advantages of a redox stable anode...

  16. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    the sulfur content in the NG and afterwards a pre-reformer break down the heavier hydrocarbons. Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel reformer reactors are considered in this study. The gases from the SOFC stacks enter into a burner to burn the rest of the fuel...

  17. Effects of Pretreatment Methods on Electrodes and SOFC Performance

    Directory of Open Access Journals (Sweden)

    Guo-Bin Jung

    2014-06-01

    Full Text Available Commercially available tapes (anode, electrolyte and paste (cathode were choosen to prepare anode-supported cells for solid oxide fuel cell applications. For both anode-supported cells or electrolyte-supported cells, the anode needs pretreatment to reduce NiO/YSZ to Ni/YSZ to increase its conductivity as well as its catalytic characteristics. In this study, the effects of different pretreatments (open-circuit, closed-circuit on cathode and anodes as well as SOFC performance are investigated. To investigate the influence of closed-circuit pretreatment on the NiO/YSZ anode alone, a Pt cathode is utilized as reference for comparison with the LSM cathode. The characterization of the electrical resistance, AC impedance, and SOFC performance of the resulting electrodes and/or anode-supported cell were carried out. It’s found that the influence of open-circuit pretreatment on the LSM cathode is limited. However, the influence of closed-circuit pretreatment on both the LSM cathode and NiO/YSZ anode and the resulting SOFC performance is profound. The effect of closed-circuit pretreatment on the NiO/YSZ anode is attributed to its change of electronic/pore structure as well as catalytic characteristics. With closed-circuit pretreatment, the SOFC performance improved greatly from the change of LSM cathode (and Pt reference compared to the Ni/YSZ anode.

  18. The modeling and simulation of thermal based modified solid oxide fuel cell (SOFC for grid-connected systems

    Directory of Open Access Journals (Sweden)

    Ayetül Gelen

    2015-05-01

    Full Text Available This paper presents a thermal based modified dynamic model of a Solid Oxide Fuel Cell (SOFC for grid-connected systems. The proposed fuel cell model involves ohmic, activation and concentration voltage losses, thermal dynamics, methanol reformer, fuel utilization factor and power limiting module. A power conditioning unit (PCU, which consists of a DC-DC boost converter and a DC-AC voltage-source inverter (VSI, their controller, transformer and filter, is designed for grid-connected systems. The voltage-source inverter with six Insulated Gate Bipolar Transistor (IGBT switches inverts the DC voltage that comes from the converter into a sinusoidal voltage synchronized with the grid. The simulations and modeling of the system are developed on Matlab/Simulink environment. The performance of SOFC with converter is examined under step and random load conditions. The simulation results show that the designed boost converter for the proposed thermal based modified SOFC model has fairly followed different DC load variations. Finally, the AC bus of 400 Volt and 50 Hz is connected to a single-machine infinite bus (SMIB through a transmission line. The real and reactive power managements of the inverter are analyzed by an infinite bus system. Thus, the desired nominal values are properly obtained by means of the inverter controller.

  19. Study of a hybrid system using solid oxide fuel cells (SOFC) and gas turbine; Estudo de um sistema hibrido empregando celula de combustivel de oxido solido (SOFC) e turbina a gas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Antonio Carlos Caetano de; Gallo, Giulliano Batelochi; Silveira, Jose Luz [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia], e-mail: caetano@feg.unesp.br

    2004-07-01

    In this paper a hybrid solid oxide fuel cell (SOFC) system, applying a combined cycle using gas turbine for rational decentralized energy production is analyzed. The relative concepts about the fuel cell are presented, followed by some chemical and technical information such as the change of Gibbs free energy in isothermal fuel oxidation directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC and gas turbine system is developed, considering the electricity and steam production for a hospital. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. A Sankey Diagram shows that the hybrid SOFC system is a good opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a good technical alternative, demanding special methods of design, equipment selection and contractual deals associated to electricity and fuel supply. (author)

  20. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System

    Directory of Open Access Journals (Sweden)

    Shivashankar Sukumar

    2017-10-01

    Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.

  1. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine

    2008-01-01

    been synthesized with a recently developed modified glycine-nitrate process. The synthesized powders have been calcined and sintered in air or in 9% H(2) / N(2) between 800 - 1400 degrees C. After calcination the samples were single phase Nb-doped strontium titanate with grain sizes of less than 100 nm...... in diameter on average. The phase purity, defect structure, and microstructure of the materials have been analyzed with SEM, XRD, and TGA. The electrical conductivity of the Nb-doped titanate decreased with increasing temperature and showed a phonon scattering conduction mechanism with sigma > 120 S...... ability of the Nb-doped titanates to be used as a part of a SOFC anode. However, the catalytic activity of the materials was not sufficient and it needs to be improved if titanate based materials are to be realized as constituents in SOFC anodes....

  2. Manufacture of SOFC electrodes by wet powder spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wilkenhoener, R.; Mallener, W.; Buchkremer, H.P. [Forschungszentrum Juelich GmbH (Germany)] [and others

    1996-12-31

    The reproducible and commercial manufacturing of electrodes with enhanced electrochemical performance is of central importance for a successful technical realization of Solid Oxide Fuel Cell (SOFC) systems. The route of electrode fabrication for the SOFC by Wet Powder Spraying (WPS) is presented. Stabilized suspensions of the powder materials for the electrodes were sprayed onto a substrate by employing a spray gun. After drying of the layers, binder removal and sintering are performed in one step. The major advantage of this process is its applicability for a large variety of materials and its flexibility with regard to layer shape and thickness. Above all, flat or curved substrates of any size can be coated, thus opening up the possibility of {open_quotes}up-scaling{close_quotes} SOFC technology. Electrodes with an enhanced electrochemical performance were developed by gradually optimizing the different process steps. For example an optimized SOFC cathode of the composition La{sub 0.65}Sr{sub 0.3}MnO{sub 3} with 40% 8YSZ showed a mean overpotential of about -50 mV at a current density of -0.8 A/cm{sup 2}, with a standard deviation amounting to 16 mV (950{degrees}C, air). Such optimized electrodes can be manufactured with a high degree of reproducibility, as a result of employing a computer-controlled X-Y system for moving the spray gun. Several hundred sintered composites, comprising the substrate anode and the electrolyte, of 100x 100 mm{sup 2} were coated with the cathode by WPS and used for stack integration. The largest manufactured electrodes were 240x240 mm{sup 2}, and data concerning their thickness homogeneity and electrochemical performance are given.

  3. Study on durability for thermal cycle of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi [Tonen Corp., Saitama (Japan)] [and others

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  4. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raj

    2008-06-30

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  5. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    Science.gov (United States)

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  6. Realisation of an anode supported planar SOFC system

    Energy Technology Data Exchange (ETDEWEB)

    Buchkremer, H.P.; Stoever, D. [Institut fuer Werkstoffe der Energietechnik, Juelich (Germany); Diekmann, U. [Zentralabteilung Technologie, Juelich (Germany)] [and others

    1996-12-31

    Lowering the operating temperature of S0FCs to below 800{degrees}C potentially lowers production costs of a SOFC system because of a less expensive periphery and is able to guarantee sufficient life time of the stack. One way of achieving lower operating temperatures is the development of new high conductive electrolyte materials. The other way, still based on state-of-the-art material, i.e. yttria-stabilized zirconia (YSZ) electrolyte, is the development of a thin film electrolyte concept. In the Forschungszentrum Julich a program was started to produce a supported planar SOFC with an YSZ electrolyte thickness between 10 to 20 put. One of the electrodes, i.e. the anode, was used as support, in order not to increase the number of components in the SOFC. The high electronic conductivity of the anode-cermet allows the use of relatively thick layers without increasing the cell resistance. An additional advantage of the supported planar concept is the possibility to produce single cells larger than 10 x 10 cm x cm, that is with an effective electrode cross area of several hundred cm{sup 2}.

  7. Development of 10kW SOFC module

    Energy Technology Data Exchange (ETDEWEB)

    Hisatome, N.; Nagata, K. [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan); Kakigami, S. [Electric Power Development Co., Inc., Tokyo (Japan)] [and others

    1996-12-31

    Mitsubishi Heavy industries, Ltd. (MHI) has been developing tubular type Solid Oxide Fuel Cells (SOFC) since 1984. A 1 kW module of SOFC has been continuously operated for 3,000 hours with 2 scheduled thermal cycles at Electric Power Development Co., Inc. (EPDC) Wakamatsu Power Station in 1993. We have obtained of 34% (HHV as H{sub 2}) module efficiency and deterioration rate of 2% Per 1,000 hours in this field test. As for next step, we have developed 10 kW module in 1995. The 10 kW module has been operated for 5,000 hours continuously. This module does not need heating support to maintain the operation temperature, and the module efficiency was 34% (HHV as H{sub 2}). On the other hand, we have started developing the technology of pressurized SOFC. In 1996, pressurized MW module has been tested at MHI Nagasaki Shipyard & Machinery, Works. We are now planning the development of pressurized 10 kW module.

  8. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    Science.gov (United States)

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  9. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    Directory of Open Access Journals (Sweden)

    Paola Costamagna

    2016-08-01

    Full Text Available The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  10. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  11. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  12. Robust automatic high resolution segmentation of SOFC anode porosity in 3D

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Bowen, Jacob R.

    2008-01-01

    Routine use of 3D characterization of SOFCs by focused ion beam (FIB) serial sectioning is generally restricted by the time consuming task of manually delineating structures within each image slice. We apply advanced image analysis algorithms to automatically segment the porosity phase of an SOFC...

  13. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y.; Hishinuma, M. [Tokyo Gas Co., Ltd. (Japan)

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  14. Life Cycle Assessment and Life Cycle Costing of a SOFC system for distributed power generation

    International Nuclear Information System (INIS)

    Strazza, Carlo; Del Borghi, Adriana; Costamagna, Paola; Gallo, Michela; Brignole, Emma; Girdinio, Paola

    2015-01-01

    Highlights: • Assessment of 230 kW SOFC system from a life cycle perspective. • LCA–LCC toolbox developed to compare SOFC and MGT. • Eight sustainability indicators are identified as drivers for decision making. • Investment cost is a bottle-neck for SOFC systems. • SOFC systems show environmental–economic benefits for household applications. - Abstract: Through the combination of Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) in a dedicated toolbox, the aim of this paper is to evaluate both potential environmental impacts and potential costs of the operation of a 230 kW Solid Oxide Fuel Cell (SOFC) system. LCA and LCC methodologies have been here applied for a comparison with a conventional technology, i.e. Micro Gas Turbine (MGT) for distributed power generation applications. A contribution analysis for the SOFC system fuelled with natural gas, reveals that the fuel supply is responsible of a relevant share of the environmental impact. The same system, fed with biogas, shows environmental benefits on global and regional impact categories, depending on the power energy mix used during the digestion process. For both SOFC and MGT systems, the life cycle hotspots are identifiable in the operation stage for the global warming category, and in the fuel supply stage for all the remaining impact categories. The LCA–LCC comparison between SOFC and MGT systems, based on a toolbox embedding a set of 8 sustainability indicators for decision making, shows that the SOFC system presents environmental and economic benefits in a life cycle perspective, particularly for household application. However, cost results to be the most sensitive bottle-neck for benchmarking with traditional energy systems. Therefore, the SOFC system is preferable to the conventional MGT technology when the sustainability of investment cost is demonstrated, whilst a wide advantage in environmental performance along the life cycle has been proved

  15. Parametric exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack through finite-volume model

    International Nuclear Information System (INIS)

    Calise, F.; Ferruzzi, G.; Vanoli, L.

    2009-01-01

    This paper presents a very detailed local exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack. In particular, a complete parametric analysis has been carried out, in order to assess the effects of the synthesis/design parameters on the local irreversibilities in the components of the stack. A finite-volume axial-symmetric model of the tubular internal reforming Solid Oxide Fuel Cell stack under investigation has been used. The stack consists of: SOFC tubes, tube-in-tube pre-reformer and tube and shell catalytic burner. The model takes into account the effects of heat/mass transfer and chemical/electrochemical reactions. The model allows one to predict the performance of a SOFC stack once a series of design and operative parameters are fixed, but also to investigate the source and localization of inefficiency. To this scope, an exergy analysis was implemented. The SOFC tube, the pre-reformer and the catalytic burner are discretized along their longitudinal axes. Detailed models of the kinetics of the reforming, catalytic combustion and electrochemical reactions are implemented. Pressure drops, convection heat transfer and overvoltages are calculated on the basis of the work previously developed by the authors. The heat transfer model includes the contribution of thermal radiation, so improving the models previously used by the authors. Radiative heat transfer is calculated on the basis of the slice-to-slice configuration factors and corresponding radiosities. On the basis of this thermochemical model, an exergy analysis has been carried out, in order to localize the sources and the magnitude of irreversibilities along the components of the stack. In addition, the main synthesis/design variables were varied in order to assess their effect on the exergy destruction within the component to which the parameter directly refers ('endogenous' contribution) and on the exergy destruction of all remaining components ('exogenous' contribution). Then, this analysis

  16. Dense Membranes for Anode Supported all Perovskite IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba

    2006-09-14

    During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electron microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to

  17. Manufacturing of Electrolyte and Cathode Layers SOFC Using Atmospheric Spraying Method and Its Characterization

    Directory of Open Access Journals (Sweden)

    S. Sulistyo

    2012-12-01

    Full Text Available The use of Solid Oxide Fuel Cell (SOFC has created various interest in many parties, due to its capability to convert gases into electricity. The main requirement of SOFC cell components is to be produced as thin as possible to minimize the losses of electrical resistance, as well as able to support internal and external loads. This paper discusses the procedure of making a thin electrolyte layer, as well as a porous thin layer cathode using atmospheric spraying technique. The procedure of spraying was in room temperature with the process of sintering at temperature of 13500 C held for 3 hours. The SOFC characterization of electrolyte and cathode microstructure was determined by using the SEM, FESEM, XRD and impedance spectroscopy, to measure the impedance of SOFC cells. The results show that the thickness of thin layer electrolyte and porous cathode obtained of about 20 µm and 4 µm, respectively. Also the SOFC cell impedance was measured of 2.3726 x 106 Ω at room temperature. The finding also demonstrated that although the materials (anode, cathode and electrolyte possess different coefficient thermal expansion, there was no evidence of flaking layers which seen the materials remain intact. Thus, the atmospheric spraying method can offer an alternative method to manufacturing of SOFC thin layer electrolyte and cathode. [Key words: SOFC; spraying method; electrolyte; cathode

  18. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    The cause of the degradation effect of moisture during operation of LSM cathode based SOFCs has been investigated by means of a detailed impedance characterization on LSM:YSZ composite cathode based SOFCs. Further the role of YSZ as cathode composite material was studied by measurements on SOFCs...... in the serial resistance and the high and low frequency cathode arcs. On the basis of these results and reports within literature a mechanism for the effect of moisture was proposed, which attribute to moisture the role of participating in an enhanced removal of manganese from the LSM/YSZ interface and thus...

  19. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  20. Development of an integrated system for a SOFC for combined heat and power generation; Entwicklung eines integrierten Systems fuer eine SOFC mit Kraft-Waerme-Stoffkopplung

    Energy Technology Data Exchange (ETDEWEB)

    Stichtenoth, J.; Meyer-Pittroff, R.

    2002-06-01

    The feasibility of CO2 removal from the exhaust of a 250 kW{sub e} SOFC module, with recirculation of the liquefied CO2 is discussed for the example of a German brewery (Bayerische Staatsbrauerei Weihenstephan). An electric efficiency of 50% can be achieved provided that the liquefied CO2 is utilized to substitute CO2 liquefaction in another point of the process. The high-temperature waste heat of the 250 kW SOFC is fed into the brewer's copper via feedwater preheating. [German] In dieser Studie werden die Moeglichkeiten einer technischen Rueckgewinnung von CO{sub 2} aus dem Abgasstrom eines SOFC-Moduls mit 250 kW elektrischer Leistung und Rueckfuehrung des verfluessigten CO{sub 2} in den Wertschoepfungsprozess am Beispiel der Bayerischen Staatsbrauerei Weihenstephan untersucht. Unter der Voraussetzung, dass dieses verfluessigte CO{sub 2} als Produkt Verwendung findet und die CO{sub 2}-Verfluessigung an anderer Stelle substituiert, kann der von der SOFC gelieferte Energiebeitrag zur CO{sub 2}-Verfluessigung dem Gesamtsystem gutgeschrieben werden, so dass der elektrische Wirkungsgrad bei 50% bleibt. Die Hochtemperaturabwaerme der 250 kW-SOFC wird ueber eine Speisewasservorwaermung in den Dampfkessel der Brauerei eingekoppelt.

  1. Fabrication and characteristics of unit cell for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwi-Yeol; Eom, Seung-Wook; Moon, Seong-In [Korea Electrotechnology Research Institute, Kyongnam (Korea, Republic of)] [and others

    1996-12-31

    Research and development on solid oxide fuel cells in Korea have been mainly focused on unit cell and small stack. Fuel cell system is called clean generation system which not cause NOx or SOx. It is generation efficiency come to 50-60% in contrast to 40% of combustion generation system. Among the fuel cell system, solid oxide fuel cell is constructed of ceramics, so stack construction is simple, power density is very high, and there are no corrosion problems. The object of this study is to develop various composing material for SOFC generation system, and to test unit cell performance manufactured. So we try to present a guidance for developing mass power generation system. We concentrated on development of manufacturing process for cathode, anode and electrolyte.

  2. Power generation characteristics of tubular type SOFC by wet process

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, H.; Nakayama, T. [Kyushu Electric Power Company, Inc., Fukuoka (Japan); Kuroishi, M. [TOTO Ltd., Kanagawa (Japan)] [and others

    1996-12-31

    The development of a practical solid oxide fuel cell requires improvement of a cell performance and a cell manufacturing technology suitable for the mass production. In particular tubular type SOFC is thought to be superior in its reliability because its configuration can avoid the high temperature sealing and reduce the thermal stress resulting from the contact between cells. The authors have fabricated a tubular cell with an air electrode support by a wet processing technique, which is suitable for mass production in improving a power density. To enhance the power output of the module, the Integrated Tubular-Type (ITT) cell has been developed. This paper reports the performance of the single cells with various active anode areas and the bundle with series-connected 9-ITT cells with an active anode area of 840 cm{sup 2}.

  3. Trends in Catalytic Activity for SOFC Anode materials

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Bessler, W. G.

    2008-01-01

    Quantum mechanical calculations on the level of density-functional theory are used to calculate the stability of surface-adsorbed hydrogen atoms, oxygen atoms, and hydroxyl radicals for a variety of metals (Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Pt, Au) that may be used as electrode materials...... for solid oxide fuel cell (SOFC) anodes. The reaction energies along the hydrogen oxidation pathway were quantified for both, oxygen spillover and hydrogen spillover mechanisms at the three-phase boundary. The ab initio results are compared to previously-obtained experimental anode activities measured...... for nine different metal/stabilized zirconia anodes. The experimentally-observed variation of electrode activity with anode material is well-correlated with the calculated stability of surface-adsorbed atomic oxygen, but uncorrelated with the stability of surface-adsorbed hydrogen. This finding indicates...

  4. Mathematical modeling of transport phenomena in porous SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.M.; Li, X. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Dincer, I. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT) Oshawa, Ontario L1H 7K4 (Canada)

    2007-01-15

    In the present study, a mathematical model describing the transport of multi-component species inside porous SOFC anodes is developed. The model considers the reaction zone layer as a distinct volume rather than a mere mathematical surface (boundary condition) as treated in the existing models. The reaction zone layer is a relatively thin layer in the vicinity of electrolyte where electrochemical H{sub 2} oxidation takes place to produce electrons and water vapor. The model also incorporates the effect of Knudsen diffusion in the porous electrode and reaction zone layers. Simulations are performed using multi-component ethanol reformate fuel to predict the distribution of multi-component species in the electrode and reaction zone layers at different loads (current densities). In addition, the effect of shift reaction on the concentration over-potential is examined. Moreover, the effect of treating reaction zone layer as a discrete volume is investigated. (author)

  5. Thermoeconomic Analysis Of a Gasification Plant Fed By Woodchips And Integrated With SOFC And STIG Cycles

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2013-01-01

    of the influence of SOFC stack cost on the generation cost is also presented. In order to discuss the investment cost, an economic analysis has been carried out by involving main parameters such as Net Present Value (NPV), Internal Rate of Return (IRR), Time of Return of Investment (TIR) are calculated......This paper presents a thermo-economic analysis of an integrated biogas-fueled solid oxide fuel cell (SOFC) system for electric power generation. Basic plant layout consists of a gasification plant (GP), an SOFC and a retrofitted gas turbine with steam injection (STIG). Different system...... configurations and simulations are presented and investigated. A parallel analysis for simpler power plants, combining GP, SOFC, and hybrid gas turbine (GT) is carried out to obtain a reference point for thermodynamic results. Thermodynamic analysis shows energetic and exergetic efficiencies for optimized plant...

  6. Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane

    International Nuclear Information System (INIS)

    Ivanov, Peter

    2007-01-01

    Mathematical model based on the thermodynamic modeling of gaseous mixtures is developed for SOFC with internal steam reforming of methane. Macroscopic porous-electrode theory, including non-linear kinetics and gas-phase diffusion, is used to calculate the reforming reaction and the concentration polarization. Provided the data concerning properties and costs of materials the model is fit for wide range of parametric analysis of thermodynamic cycles including SOFC

  7. Avances en el desarrollo de interconectores metálicos de celdas SOFC

    Directory of Open Access Journals (Sweden)

    Alvarado-Flores, J.

    2013-08-01

    Full Text Available Interest in solid oxide fuel cells (SOFC stems from their higher efficiencies and lower levels of emitted pollutants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i.e., to maintain high electrical conductivity, good stability in both reducing and oxidizing atmospheres, and close thermal expansion coefficient (TEC match and good compatibility with other SOFC ceramic components. This paper reviewed the interconnect materials, and coatings for metallic interconnect materials in a SOFC cell.El interés en las celdas de combustible de óxido sólido (SOFC, se deriva de su alta eficiencia y la capacidad de tener un bajo nivel de emisiones contaminantes, en comparación con los métodos tradicionales de producción de energía. Los interconectores, son parte crítica del ordenamiento de una celda SOFC, debido a que conecta en serie las celdas y además, separa el aire u oxígeno (cátodo del combustible (ánodo. Por lo tanto, los requisitos del interconector son muy exigentes, por ejemplo, es necesario mantener conductividad eléctrica elevada, óptima estabilidad tanto en atmósferas reductoras como oxidantes y el coeficiente de expansión térmica (TEC, debe ser compatible con los otros componentes cerámicos de la celda SOFC. Este artículo, revisa los materiales de interconexión, y materiales de revestimiento para interconectores metálicos en una celda SOFC.

  8. Analysis Proton Conducting Electrolyte IT-SOFC Hybrid System Exhaust Gas With External Reforming of Biofuel

    Directory of Open Access Journals (Sweden)

    Nizar Amir

    2013-03-01

    Full Text Available In this analysis, a hybrid system containing proton SOFC (P-SOFC combine with micro gas turbine (MGT with biofuel external reforming is investigation to decrease the greenhouse gases problem facing in electrical power plant. The hybrid system consist of a proton solid oxide fuel cell stack, a micro gas turbine, a combustor, compressors, heat exchangers and external reformer. The main operating parameter such as, fuel utilization and steam - carbon ratio is determined in this analysis.

  9. Development of solid oxide fuel cells (SOFC); Desenvolvimento de celulas a combustivel do tipo oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Souza, F.M.B. de; Carvalho, L.F.V. de; Alencar, M.G de; Boaventura, J.S. [Universidade Federal da Bahia (DFQ/UFBA), Salvador, BA (Brazil). Dept de Fisico-Quimica. Grupo de energia e Ciencias dos Materiais], e-mail: bventura@ufba.br

    2008-07-01

    The most promising technology for generating electric power, with reduced environmental impact, is the fuel cell. This technology is virtually non-polluting and the fuel supplies can be renewable. Therefore is necessary to study the technique of preparing the entire anode / electrolyte / cathode to optimize its operation. There are still major challenges to making the SOFC economically viable. The key is the improvement of manufacturing of its components and use of materials that can simultaneously reduce costs and reduce the temperature of operation. Among the properties of the cell, was shown the dependence of the efficiency of the device on the properties of the electrolyte, particularly its thickness. The mixture of YSZ with GDC in the composition of the anode and electrolyte aims to obtain a material with greater ionic conductivity. After sintering the cell was characterized by scanning electron microscopy (SEM). (author)

  10. Performance characteristics of a MW-class SOFC/GT hybrid system based on a commercially available gas turbine

    Science.gov (United States)

    Song, Tae Won; Sohn, Jeong Lak; Kim, Tong Seop; Ro, Sung Tack

    The ultimate purpose of a SOFC/GT hybrid system is for distributed power generation applications. Therefore, this study investigates the possible extension of a SOFC/GT hybrid system to multi-MW power cases. Because of the matured technology of gas turbines and their commercial availability, it was reasonable to construct a hybrid system with an off-the-shelf gas turbine. Based on a commercially available gas turbine, performance analysis was conducted to find the total appropriate power for the hybrid system with consideration of the maximum allowable cell temperature. In order to maintain high performance characteristics of the hybrid system during part-load operations, it was necessary to find the optimal control strategy for the system according to the change in power required. The results of the performance analysis for part-load conditions showed that supplied fuel and air must be changed simultaneously. Furthermore, in order to prevent performance degradation, it was found that both cell temperature and turbine inlet temperature must be maintained as close as possible to design-point conditions.

  11. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  12. Fabricación de soportes anódicos metálicos para SOFC por vía pulvimetalúrgica

    Directory of Open Access Journals (Sweden)

    Arahuetes, E.

    2008-10-01

    Full Text Available The commercialization of environmentally-friendly power production technologies as solid oxide fuel cells (SOFC implies the cost reduction of the materials initially used in their design. The employment of a porous metallic support that significantly reduces the amount of active ceramic material is an interesting option. In this work, the processing of four different alloys (two Fe-based and two Ni-based is evaluated for their possible use as porous metallic supports in SOFC. A binder system is proposed that, mixed with big-sized metallic powders, allows to obtain materials with the required porosity level (≥ 30%. Moreover, a stage of grinding prior to compaction of mixes binder-metallic powder allows the manufacturing of dimensionally stable components during binder removal, even although their high porosity.

    La comercialización de tecnologías de producción de energía medioambientalmente respetuosas, como las pilas de óxido sólido (SOFC, implica el abaratamiento de los materiales con que han sido, inicialmente, diseñadas. El empleo de un soporte metálico poroso que reduzca significativamente la cantidad de material cerámico activo es una opción muy interesante. En este trabajo se estudia el procesado de 4 aleaciones diferentes (dos base Fe y dos base Ni para su posible utilización como soportes metálicos porosos en SOFC. Se propone un sistema ligante que, mezclado con polvos metálicos de gran tamaño, permita obtener materiales con el nivel de porosidad requerida (≥ 30 %. Además, la realización de una etapa de granulado previa a la compactación de las mezclas de polvo metálico permite fabricar piezas que mantienen, pese a su elevada porosidad, la estabilidad dimensional durante el proceso de eliminación del ligante.

  13. CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties

    International Nuclear Information System (INIS)

    Shi Junxiang; Xue Xingjian

    2010-01-01

    A comprehensive 2-D CFD model is developed to investigate bi-electrode supported cell (BSC) performance. The model takes into account the coupled complex transport phenomena of mass/heat transfer, charge (electron/ion) transport, and electrochemical reactions. The uniqueness of this modeling work is that heterogeneous electrode properties are taken into account, which includes not only linear functionally graded porosity distribution but also various nonlinear distributions in a general sense according to porous electrode features in BSC design. Extensive numerical analysis is performed to elucidate various heterogeneous porous electrode property effects on cell performance. Results indicate that cell performance is strongly dependent on porous microstructure distributions of electrodes. Among the various porosity distributions, inverse parabolic porosity distribution shows promising effects on cell performance. For a given porosity distribution of electrodes, cell performance is also dependent on operating conditions, typically fuel/gas pressure losses across the electrodes. The mathematical model developed in this paper can be utilized for high performance BSC SOFC design and optimization.

  14. Studies on Perovskite-Based Electrodes for Symmetrical SOFCs

    Directory of Open Access Journals (Sweden)

    Dos Santos García, A. J.

    2008-10-01

    Full Text Available The use of the same material as anode and cathode in symmetrical solid oxide fuel cells (SFCs promises notable benefits as easier fabrication, hence lower cost production and resistance to carbon formation upon fuel cracking. Although chromites and chromo-manganites have been proposed as candidate electrode materials for this novel SOFC configuration, demonstrating promising performances, further work is required to develop compositions exhibiting higher efficiencies. In the present work we evaluate the structural evolution from cubic to orthorhombic unit cells with increasing the Fe content and the performance of La4Sr8Ti12-xFexO38-δ (LSTF phases and compare their response with other symmetrical electrodes. The electrochemical performance is 20% higher when using graded LSTF electrodes than in other perovskite-based systems.

    La utilización simultánea de un mismo material cerámico como ánodo y cátodo en pilas de combustible de óxido sólido simétricas (SFCs aporta una serie de beneficios entre los que figura una fabricación más sencilla, reducción de los costes de producción, así como resistencia a la formación de depósitos de carbón por craqueo del combustible. Recientemente, cromitas y cromomanganitas han sido propuestos como materiales capaces de adoptar esta novedosa configuración SOFC y, si bien los resultados obtenidos son prometedores, se requiere de una mayor investigación para el desarrollo de nuevas composiciones que presenten eficiencias más elevadas. En el presente trabajo, se evalúan la evolución de la estructura desde celdas cúbicas a ortorrómbicas al aumentar el contenido en Fe y las prestaciones del sistema La4Sr8Ti12-xFexO38-δ (LSTF y se compara su respuesta con otros electrodos simétricos, observándose que el rendimiento es hasta un 20% mayor en el caso de emplear electrodos LSTF que en

  15. Measurement of residual stresses in deposited films of SOFC component materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y. [Electrotechnical Lab., Ibaraki (Japan)

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  16. Capability of a SOFC-APU to optimise the fuel consumption of motor vehicles; Potenzial einer SOFC-APU bei der Verbrauchsoptimierung von Kraftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Diegelmann, Christian B.

    2008-04-28

    While the energy system motor vehicle is analysed in this work different application possibilities of a SOFC-Auxiliary Power Unit for reducing the fuel consumption are identified. Apart from the pure electric power supply the APU can support functions like the engine-stop automatism or electric driving (hybrid vehicle). In addition the SOFC-APU generates waste heat at a high temperature level. The waste heat can be used for heating the passenger cabin or for preheating the combustion engine. Several methods are used for evaluating the conservation potentials. A simple estimate of the fuel consumption by means of medium efficiency and power already suffices to identify and evaluate the major impacts. The conservation potential of a SOFC-APU mainly depends on three factors, the start-up consumption of the APU, the operating period and the required electric power. A cold APU must first be heated-up to an operational temperature between 700 and 800 degrees Celsius. The heat-up process requires energy resulting in an excess consumption first. This excess consumption will only be compensated by the high efficiency of the SOFC-APU after a longer operating period. The operating period strongly depends on the electric power. In case of higher electric power the APU achieves a higher conservation rate. An APU is particularly interesting in standard applications with high energy demand. The APU avoids an operation of the combustion engine in the extreme underload range. In case of an air-conditioning at idling speed lasting for 30 minutes a fuel conservation of approx. 36% can be achieved including the start-up consumption. Conservation potentials in fuel consumption can only be achieved in the driving mode if the APU is operational and in case of a longer operating period. The difference in consumption compared to vehicles without APU was determined at vehicles with different basic operating strategies (current vehicle, vehicle with engine-stop automatism, vehicle with

  17. Lanthanum germanate-based apatites as electrolyte for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D.; Diaz-Carrasco, P.; Ramos-Barrado, J.R. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain)

    2011-02-15

    Germanate apatites with composition La{sub 10-x}Ge{sub 5.5}Al{sub 0.5}O{sub 26.75-3x/2} have been evaluated for the first time as possible electrolytes for solid oxide fuel cells (SOFCs). Different electrode materials have been considered in this study, i.e. manganite, ferrite, nickelates and cobaltite as cathode materials; and NiO-CGO composite and chromium-manganite as anodes. The chemical compatibility and electrochemical performance of these electrodes with La{sub 9.8}Ge{sub 5.5}Al{sub 0.5}O{sub 26.45} have been studied by X-ray powder diffraction (XRPD) and impedance spectroscopy. The XRPD analysis did not reveal appreciable bulk reactivity with the formation of reaction products between the germanate electrolyte and these electrodes up to 1,200 C. However, a significant cation interdiffusion was observed by energy dispersive spectroscopy (EDS) at the electrode/electrolyte interface, which leads to a significant decrease of the performance of these electrodes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  19. Modeling and Analysis of Transport Processes and Efficiency of Combined SOFC and PEMFC Systems

    Directory of Open Access Journals (Sweden)

    Abid Rabbani

    2014-08-01

    Full Text Available A hybrid fuel cell system (~10 kWe for an average family house including heating is proposed. The investigated system comprises a Solid Oxide Fuel Cell (SOFC on top of a Polymer Electrolyte Fuel Cell (PEFC. Hydrogen produced from the off-gases of the SOFC can be fed directly to the PEFC. Simulations for the proposed system were conducted using different fuels. Here, results for natural gas (NG, dimethyl ether (DME and ethanol as a fuel are presented and analysed. Behaviour of the proposed system is further investigated by comparing the effects of key factors such as utilisation factor, operating conditions, oxygen-to-carbon (O/C ratios and fuel preheating effects on these fuels. The combined system improves the overall electrical conversion efficiency compared with standalone PEFC or SOFC systems. For the combined SOFC and PEFC system, the overall power production was increased by 8%–16% and the system efficiency with one of the fuels is found to be 12% higher than that of the standalone SOFC system.

  20. Infiltration of SOFC Stacks: Evaluation of the Electrochemical Performance Enhancement and the Underlying Changes in the Microstructure

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Zielke, Philipp; Høgh, Jens Valdemar Thorvald

    2016-01-01

    Experimental SOFC stacks with 10 SOFCs (LSM-YSZ/YSZ/Ni-YSZ) were infiltrated with CGO and Ni-CGO on the air and fuel side, respectively in an attempt to counter degradation and improve the output. The electrochemical performance of each cell was characterized (i) before infiltration, (ii) after i...

  1. Oxygen reduction kinetics on mixed conducting SOFC model cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, F.S.

    2006-07-01

    The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos

  2. Performance Assessment of SOFC Systems Integrated with Bio-Ethanol Production and Purification Processes

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul

    2010-03-01

    Full Text Available The overall electrical efficiencies of the integrated systems of solid oxide fuel cell (SOFC and bio-ethanol production with purification processes at different heat integration levels were investigated. The simulation studies were based on the condition with zero net energy. It was found that the most suitable operating voltage is between 0.7 and 0.85 V and the operating temperature is in the range from 973 to 1173 K. For the effect of percent ethanol recovery, the optimum percent ethanol recovery is at 95%. The most efficient case is the system with full heat integration between SOFC and bio-ethanol production and purification processes with biogas reformed for producing extra hydrogen feed for SOFC which has the overall electrical efficiency = 36.17%. However more equipment such as reformer and heat exchangers are required and this leads to increased investment cost.

  3. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  4. Thermodynamic Model of a Very High Efficiency Power Plant based on a Biomass Gasifier, SOFCs, and a Gas Turbine

    Directory of Open Access Journals (Sweden)

    P V Aravind

    2012-07-01

    Full Text Available Thermodynamic calculations with a power plant based on a biomass gasifier, SOFCs and a gas turbine are presented. The SOFC anode off-gas which mainly consists of steam and carbon dioxides used as a gasifying agent leading to an allothermal gasification process for which heat is required. Implementation of heat pipes between the SOFC and the gasifier using two SOFC stacks and intercooling the fuel and the cathode streams in between them has shown to be a solution on one hand to drive the allothermal gasification process and on the other hand to cool down the SOFC. It is seen that this helps to reduce the exergy losses in the system significantly. With such a system, electrical efficiency around 73% is shown as achievable.

  5. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle

    International Nuclear Information System (INIS)

    Aminyavari, Mehdi; Mamaghani, Alireza Haghighat; Shirazi, Ali; Najafi, Behzad; Rinaldi, Fabio

    2016-01-01

    Highlights: • An exergetic-economic-environmental analysis of an SOFC-GT-ST plant was performed. • Exergetic efficiency and total cost rate of the plant were considered as objectives. • Multi-objective optimization was conducted to obtain a set of optimal solutions. • Exergy destruction rate and capital cost of components of the plant were determined. • The Rankine bottoming cycle enhanced the exergetic efficiency of the plant by 8.84%. - Abstract: In the present study, a detailed thermodynamic model for an internal-reforming solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system integrated with a Rankine (steam) cycle is developed, and exergetic, economic and environmental analyses have been carried out on the plant. Considering the exergetic efficiency and the total cost rate of the system as conflicting objectives, a multi-objective optimization of the system is conducted to determine the optimal design point of the plant. A set of optimal solutions (Pareto front) is achieved, each of which is a trade-off between the chosen objectives. Finally, TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) decision-making method is used to choose the final optimal design parameters. The results demonstrate that the final optimal design of the proposed plant leads to an exergetic efficiency of 65.11% and total cost rate of 0.13745 €/s. Furthermore, the optimization results reveal that the integration of the Rankine cycle with the SOFC-GT system has led to an 8.84% improvement in the total exergetic efficiency of the plant, producing additional 8439.2 MW h of electricity and avoiding ∼5900 metric tons of carbon dioxide emissions annually.

  6. Binary co-generative plants with height temperature SOFC fuel cells

    International Nuclear Information System (INIS)

    Tashevski, D; Dimitrov, K.; Armenski, S.

    2005-01-01

    In this paper, a field of binary co-generative plants with height temperature SOFC fuel cells is presented. Special attention of application of height temperature SOFC fuel cells and binary co-generative units has been given. These units made triple electricity and heat. Principle of combination of fuel cells with binary cycles has been presented. A model and computer programme for calculation of BKPFC, has been created. By using the program, all the important characteristic-results are calculated: power, efficiency, emission, dimension and economic analysis. On base of results, conclusions and recommendations has been given. (Author)

  7. Binary co-generative plants with height temperature SOFC fuel cells

    International Nuclear Information System (INIS)

    Tashevski, D; Dimitrov, K.; Armenski, S.

    2006-01-01

    In this paper, a field of binary co-generative plants with height temperature SOFC fuel cells is presented. Special attention of application of height temperature SOFC fuel cells and binary co-generative units has been given. These units made triple electricity and heat. Principle of combination of fuel cells with binary cycles has been presented. A model and computer programme for calculation of BKPFC, has been created. By using the program, all the important characteristic-results are calculated: power, efficiency, emission, dimension and economic analysis. On base of results, conclusions and recommendations has been given. (Author)

  8. Quality Assurance of Solid Oxide Fuel Cell (SOFC) and Electrolyser (SOEC) Stacks

    DEFF Research Database (Denmark)

    Lang, Michael; Auer, Corinna; Couturier, Karine

    2017-01-01

    In the EU-funded project “Solid oxide cell and stack testing and quality assurance” (SOCTESQA) standardized and industry wide test modules and programs for high temperature solid oxide cells and stacks are being developed. These test procedures can be applied for the fuel cell (SOFC......), the electrolysis (SOEC) and in the combined SOFC/SOEC mode. In order to optimize the test modules the project partners have tested identical SOC stacks with the same test programs in several testing campaigns. Altogether 10 pre-normative test modules were developed: Start-up, current-voltage characteristics...

  9. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative...

  10. Modeling and Analysis of Transport Processes and Efficiency of Combined SOFC and PEMFC Systems

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2014-01-01

    A hybrid fuel cell system (~10 kWe) for an average family house including heating is proposed. The investigated system comprises a Solid Oxide Fuel Cell (SOFC) on top of a Polymer Electrolyte Fuel Cell (PEFC). Hydrogen produced from the off-gases of the SOFC can be fed directly to the PEFC....... Simulations for the proposed system were conducted using different fuels. Here, results for natural gas (NG), dimethyl ether (DME) and ethanol as a fuel are presented and analysed. Behaviour of the proposed system is further investigated by comparing the effects of key factors such as utilisation factor...

  11. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    Science.gov (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  12. Microstructure degradation of an anode/electrolyte interface in SOFC studied by transmission electron microscopy

    DEFF Research Database (Denmark)

    Liu, Y.L.; Jiao, C.G.

    2005-01-01

    This work is one of the first attempts of using focused ion beam/lift-out (FIB/lift-out) techniques to prepare TEM specimens containing electrode/electrolyte interfaces in solid oxide fuel cells (SOFC). The present specimen was made from an Ni+YSZ (anode)/YSZ (electrolyte) half-cell which has und...

  13. Thermodynamic and Thermoeconomic investigation of an Integrated Gasification SOFC and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Thermodynamic and thermoeconomic investigation of a small scale Integrated Gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kW have been performed. Woodchips are used as gasification feedstock to produce syngas which...

  14. Ag-Zr(Sc)O{sub 2} cermet cathode for reduced temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Hosoda, K.; Dokiya, M. [Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Lan, T.N. [Fuel Cell Group, Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology, 1-1-4, Umezono, Tsukuba, Ibaraki (Japan); Yasumoto, K. [Materials Science Research Laboratory, Central Research Institute of Electric Power Industry, 2-6-1 Kagasaka, Yokosuka 240-0196 (Japan); Wang, S. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi RD. 200050 Shanghai (China)

    2004-10-29

    Polarization characteristics of Ag-(Sc{sub 0.10}Ce{sub 0.01}) Zr{sub 0.89}O{sub 2}, SSZ, cermet cathodes were investigated in order to develop a new cathode for reduced temperature solid oxide fuel cells, SOFCs. Ag-SSZ cermet cathode was prepared by mixing Ag powder with SSZ powder using a high-energy ball mill in a vacuum and pasting the cermet onto yttria-stabilized zirconia, YSZ, electrolyte. An Ag-SSZ cermet cathode achieved as high as 0.8 S/cm{sup 2} of interfacial conductivity, {sigma}{sub E}, at 773 K in air. Morphology and the {sigma}{sub E} of this Ag/SSZ cermet cathode were unchanged at 773 K in air by application of cathodic DC bias of 0.5 V. These results suggest that this Ag-SSZ cermet cathode has enough electrode reactivity and durability for a 773-K operating SOFCs for 700 h. This high-electrode reactivity can be originated from an increase of reaction site and a small activation energy, E{sub a}. These results suggested that an Ag-SSZ might be a suitable cathode material for SOFCs operated at 773 K. These observations show the Ag/SSZ ratio for cathode of SOFCs operated at 773 K, suggesting that morphology of cermet would have a large effect on cathode property.

  15. A Zero-Dimensional Model of a 2nd Generation Planar SOFC Using Calibrated Parameters

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank

    2006-01-01

    This paper presents a zero-dimensional mathematical model of a planar 2nd generation co-flow SOFC developed for simulation of power systems. The model accounts for the electrochemical oxidation of hydrogen as well as the methane reforming reaction and the water-gas shift reaction. An important part...

  16. Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis

    Science.gov (United States)

    Singh, Devinder; Hernández-Pacheco, Eduardo; Hutton, Phillip N.; Patel, Nikhil; Mann, Michael D.

    This work presents a thermodynamic analysis of the carbon deposition in a solid oxide fuel cell (SOFC) fueled by a biomass gasifier. Integrated biomass-SOFC units offer considerable benefits in terms of efficiency and fewer emissions. SOFC-based power plants can achieve a system efficiency of 70-80% (including heat utilization) as compared to 30-37% for conventional systems. The fuel from the biomass gasifier can contain considerable amounts of tars depending on the type of gasifier used. These tars can lead to the deposition of carbon at the anode side of SOFCs and affect the performance of the fuel cells. This paper thermodynamically studies the risk of carbon deposition due to the tars present in the feed stream and the effect various parameters like current density, steam, and temperature have on carbon deposition. Since tar is a complex mixture of aromatics, it is represented by a mixture of toluene, naphthalene, phenol, and pyrene. A total of 32 species are considered for the thermodynamic analysis, which is done by the Gibbs energy minimization technique. The carbon deposition is shown to decrease with an increase in current density and becomes zero after a critical current density. Steam in the feed stream also decreases the amount of carbon deposition. With the increase in temperature the amount of carbon first decreases and then increases.

  17. Turbo på udvikling af 3. generations SOFC brændselsceller

    DEFF Research Database (Denmark)

    Sønderberg Petersen, L.

    2006-01-01

    Højteknologifonden har bevilliget 30 mio. kr. til et projekt Risø skal gennemføre sammen med Topsoe Fuel Cell A/S, Amminex A/S og DTU. Målet er at udvikle 3. generations SOFC brændselscellesystemer....

  18. Evaluation of Perovskite Overlay Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z Gary; Xia, Gordon; Maupin, Gary D.; Stevenson, Jeffry W.

    2006-08-02

    Conductive oxide coatings are used to improve electrical performance and surface stability of metallic interconnects, as well as to mitigate or prevent chromium poisoning in solid oxide fuel cells (SOFCs). To further understand materials suitability and shed light on mass transport, two conductive perovskites, were taken as examples and applied as dense coatings via radio frequency (rf)-sputtering on three stainless steels.

  19. Operation of real landfill gas fueled solid oxide fuel cell (SOFC) using internal dry reforming

    DEFF Research Database (Denmark)

    Langnickel, Hendrik; Hagen, Anke

    2017-01-01

    Biomass is one renewable energy source, which is independent from solar radiation and wind effect. Solid oxide fuel cells (SOFC’s) are able to convert landfill gas derived from landfill directly into electricity and heat with a high efficiency. In the present work a planar 16cm2 SOFC cell...

  20. Cr-tolerance of the IT-SOFC La(Ni,Fe)O3 material

    NARCIS (Netherlands)

    Stodolny, M.K.

    2012-01-01

    This thesis deals with a study on the Cr-tolerance of the LaNi0.6Fe0.4O3 (LNF) material. LNF is being considered for use as a current collecting layer, an interconnect protective coating and/or an electrochemically active solid oxide fuel cell (SOFC) cathode layer in an intermediate temperature

  1. The financial viability of an SOFC cogeneration system in single-family dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Kari; Saari, Arto [Department of Civil and Environmental Engineering, Laboratory of Construction Economics and Management, Helsinki University of Technology, P.O. Box 2100, 02015 TKK (Finland); Ugursal, V. Ismet [Department of Mechanical Engineering, University of Victoria, Victoria, BC (Canada); Good, Joel [Department of Environmental Engineering, Dalhousie University, Halifax, Nova Scotia (Canada)

    2006-07-14

    In the near future, fuel cell-based residential micro-CHP systems will compete with traditional methods of energy supply. A micro-CHP system may be considered viable if its incremental capital cost compared to its competitors equals to cumulated savings during a given period of time. A simplified model is developed in this study to estimate the operation of a residential solid oxide fuel cell (SOFC) system. A comparative assessment of the SOFC system vis-a-vis heating systems based on gas, oil and electricity is conducted using the simplified model for a single-family house located in Ottawa and Vancouver. The energy consumption of the house is estimated using the HOT2000 building simulation program. A financial analysis is carried out to evaluate the sensitivity of the maximum allowable capital cost with respect to system sizing, acceptable payback period, energy price and the electricity buyback strategy of an energy utility. Based on the financial analysis, small (1-2kW{sub e}) SOFC systems seem to be feasible in the considered case. The present study shows also that an SOFC system is especially an alternative to heating systems based on oil and electrical furnaces. (author)

  2. Effect of Samarium Oxide on the Electrical Conductivity of Plasma-Sprayed SOFC Anodes

    Science.gov (United States)

    Panahi, S. N.; Samadi, H.; Nemati, A.

    2016-10-01

    Solid oxide fuel cells (SOFCs) are rapidly becoming recognized as a new alternative to traditional energy conversion systems because of their high energy efficiency. From an ecological perspective, this environmentally friendly technology, which produces clean energy, is likely to be implemented more frequently in the future. However, the current SOFC technology still cannot meet the demands of commercial applications due to temperature constraints and high cost. To develop a marketable SOFC, suppliers have tended to reduce the operating temperatures by a few hundred degrees. The overall trend for SOFC materials is to reduce their service temperature of electrolyte. Meanwhile, it is important that the other components perform at the same temperature. Currently, the anodes of SOFCs are being studied in depth. Research has indicated that anodes based on a perovskite structure are a more promising candidate in SOFCs than the traditional system because they possess more favorable electrical properties. Among the perovskite-type oxides, SrTiO3 is one of the most promising compositions, with studies demonstrating that SrTiO3 exhibits particularly favorable electrical properties in contrast with other perovskite-type oxides. The main purpose of this article is to describe our study of the effect of rare-earth dopants with a perovskite structure on the electrical behavior of anodes in SOFCs. Sm2O3-doped SrTiO3 synthesized by a solid-state reaction was coated on substrate by atmospheric plasma spray. To compare the effect of the dopant on the electrical conductivity of strontium titanate, different concentrations of Sm2O3 were used. The samples were then investigated by x-ray diffraction, four-point probe at various temperatures (to determine the electrical conductivity), and a scanning electron microscope. The study showed that at room temperature, nondoped samples have a higher electrical resistance than doped samples. As the temperature was increased, the electrical

  3. Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF

    Energy Technology Data Exchange (ETDEWEB)

    Rembelski, D.; Viricelle, J.P.; Rieu, M. [ENSMSE, Centre SPIN, departement PRESSIC, 42023 Saint-Etienne (France); Combemale, L. [ICB, 21078 Dijon (France)

    2012-04-15

    Four cathode materials for single chamber solid oxide fuel cell (SC-SOFC) [La{sub 0.8}Sr{sub 0.2}MnO{sub 3-{delta}} (LSM), Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF), Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (SSC), and La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF)] were investigated regarding their chemical stability, electrical conductivity, catalytic activity, and polarization resistance under air and methane/air atmosphere. Electrolyte-supported fuel cells, with Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}} (CGO) electrolyte and a Ni-CGO anode, were tested in several methane/air mixtures with each cathode materials between 625 and 725 C. These single cells were not optimized but only designed to compare the four studied cathodes. The decrease of methane-to-oxygen ratio from 2 to 0.67 strongly increased the performance of fuel cells for all cathode materials but the effect of temperature was not always significant. Cells with SSC, BSCF, and LSCF have shown a maximum power density about 20 mW cm{sup -2} while the cell with LSM has given only 5 mW cm{sup -2}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Use of wastewater treatment plant biogas for the operation of Solid Oxide Fuel Cells (SOFCs).

    Science.gov (United States)

    Lackey, Jillian; Champagne, Pascale; Peppley, Brant

    2017-12-01

    Solid Oxide Fuel Cells (SOFCs) perform well on light hydrocarbon fuels, and the use of biogas derived from the anaerobic digestion (AD) of municipal wastewater sludges could provide an opportunity for the CH 4 produced to be used as a renewable fuel. Greenhouse gas (GHG), NO x , SO x , and hydrocarbon pollutant emissions would also be reduced. In this study, SOFCs were operated on AD derived biogas. Initially, different H 2 dilutions were tested (N 2 , Ar, CO 2 ) to examine the performance of tubular SOFCs. With inert gases as diluents, a decrease in cell performance was observed, however, the use of CO 2 led to a higher decrease in performance as it promoted the reverse water-gas shift (WGS) reaction, reducing the H 2 partial pressure in the gas mixture. A model was developed to predict system efficiency and GHG emissions. A higher electrical system efficiency was noted for a steam:carbon ratio of 2 compared to 1 due to the increased H 2 partial pressure in the reformate resulting from higher H 2 O concentration. Reductions in GHG emissions were estimated at 2400 tonnes CO 2 , 60 kg CH 4 and 18 kg N 2 O. SOFCs were also tested using a simulated biogas reformate mixture (66.7% H 2 , 16.1% CO, 16.5% CO 2 , 0.7% N 2 , humidified to 2.3 or 20 mol% H 2 O). Higher humidification yielded better performance as the WGS reaction produced more H 2 with additional H 2 O. It was concluded that AD-derived biogas, when cleaned to remove H 2 S, Si compounds, halides and other contaminants, could be reformed to provide a clean, renewable fuel for SOFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical

  6. Singler-chamber SOFCs based on gadolinia doped ceria operated on methane and propane; Pilas de combustible de una sola camara, basadas en electrolitos de ceria dopada con gadolinia y operadas con metano y propano

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M.; Roa, J. J.; Capdevila, X. G.; Segarra, M.; Pinol, S.

    2010-07-01

    The main advantages of single-chamber solid oxide fuel cells (SOFCs) respect to dual-chamber SOFCs, are to simplify the device design and to operate in mixtures of hydrocarbon (methane, propane...) and air, with no separation between fuel and oxidant. However, this design requires the use of selective electrodes for the fuel oxidation and the oxidant reduction. In this work, electrolyte-supported SOFCs were fabricated using gadolinia doped ceria (GDC) as the electrolyte, Ni + GDC as the anode and LSC(La{sub 0}.5Sr{sub 0}.5CoO{sub 3}-{delta})-GDC-Ag{sub 2}O as the cathode. The electrical properties of the cell were determined in mixtures of methane + air and propane + air. The influence of temperature, gas composition and total flow rate on the fuel cell performance was investigated. As a result, the power density was strongly increased with increasing temperature, total flow rate and hydrocarbon composition. Under optimized gas compositions and total flow conditions, power densities of 70 and 320 mW/cm{sup 2} operating on propane at a temperature of 600 degree centigrade and methane (795 degree centigrade) were obtained, respectively. (Author)

  7. Hydrogen consumption and power density in a co-flow planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ben Moussa, Hocine; Zitouni, Bariza [Laboratoire d' etude des systemes energetiques industriels (LESEI), Universite de Batna, Batna (Algeria); Oulmi, Kafia [Laboratoire de chimie et de chimie de l' environnement, Universite de Batna, Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP. 62 Route de l' Observatoire. Bouzareah. Alger (Algeria); Mandin, Philippe [Centre de Developpement des Energies Renouvelables (CDER), LECA, UMR 7575 CNRS-ENSCP Paris 6 (France)

    2009-06-15

    In the present work, power density and hydrogen consumption in a co-flow planar solid oxide fuel cell (SOFC) are studied according to the inlet functional parameters; such as the operational temperature, the operational pressure, the flow rates and the mass fractions of the species. Furthermore, the effect of the cell size is investigated. The results of a zero and a one-dimensional numerical electro-dynamic model predict the remaining quantity of the fed hydrogen at the output of the anode flow channel. The remaining hydrogen quantities and the SOFC's power density obtained are discussed as a function of the inlet functional parameters, the geometrical configuration of the cell and several operating cell voltages values. (author)

  8. Plant Characteristics af a Multi-Fuel Sofc-Stirling Hybrid Configuration

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A novel hybrid system ( kWe) for an average family house including heating is proposed. The system investigated, contains of a Solid Oxide Fuel Cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle is fed to the bottoming Stirling engine wherein additional power...... is generated. Simulations for the proposed system were conducted using different fuels which facilitate use of variety of fuels depending on availability. Here, results for Natural Gas (NG), ammonia, Di-Methyl Ether (DME), methanol and ethanol are presented and analysed. System behaviour is further...... investigated by comparing the effects of key factors such as: utilisation factor, operating conditions, Oxygen-to-Carbon (O/C) ratios and fuel preheating effects on these fuels. Moreover, effect of Methanator on plant efficiency is also studied. The combined system improves the overall electrical conversion...

  9. Ag as an alternative for Ni in direct hydrocarbon SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cantos-Gomez, A.; Van Duijn, J. [Instituto de Energias Renovables, Universidad de Castilla La Mancha, Paseo de la Investigacion 1, 02006 Albacete (Spain); Ruiz-Bustos, R. [Instituto de Energias Renovables, Parque Cientifico y Tecnologico de Albacete, Paseo de la Investigacion 1, 02006 Albacete (Spain)

    2011-02-15

    Ag has been shown to be a good metal for SOFC anode cermets using CO fuel. Here we have expanded on the work reported by testing Ag-YSZ cermets against different hydrocarbon based fuel (H{sub 2} and CH{sub 4}). This study shows that while Ag is a good current collector, it alone does not have the required catalytic activity for the direct oxidation of hydrocarbon based fuels needed to be used in SOFC anodes. As such an additional catalytic material (e.g. CeO{sub 2}) needs to be present when using fuels other then CO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

    2011-10-13

    This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.

  11. Total cost of ownership of CHP SOFC systems: Effect of installation context

    International Nuclear Information System (INIS)

    Arduino, Francesco; Santarelli, Massimo

    2016-01-01

    Solid oxide fuel cells (SOFC) are one of the most interesting between the emerging technologies for energy production. Although some information about the production cost of these devices are already known, their operational cost has not been studied yet with sufficient accuracy. This paper presents a life cycle cost (LCC) analysis of CHP (combined heat and power) SOFC systems performed in hospitals located in various cities of the US and one in Italy. In this study the strong effects of the installation context will be analyzed using a customized use phase model for each location. The cost effectiveness of these devices has been proved without credits in Mondovi (IT), New York (NY) and Minneapolis (MN) where the payback time goes from 10 to 7 years. Considering the credits, it is possible to obtain economic feasibility also in Chicago (IL) and reduce the payback for other cities to values from 4 to 6 years. In other cities like Phoenix (AZ) and Houston (TX) the payback can’t be reached in any case. The life cycle impact assessment analysis has shown how, even in the cities with cleaner electricity grid, there is a reduction in the emissions of both greenhouse gases and pollutants. - Highlights: •Life cycle cost analysis has been performed for CHP SOFC systems. •The strong effects of the installation context have been analyzed. •Economic feasibility has been proven in new york, Minneapolis and Mondovi. •Economic feasibility can’t be reached in phoenix and Houston. •SOFC always provide a reduction in the emissions of greenhouse gases and pollutant.

  12. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Song, Rak-Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of); Dokiya, Masayuki [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  13. Electrochemical Characterization and Degradation Analysis of Large SOFC Stacks by Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2013-01-01

    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires application of advanced methods for detailed electroc......As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires application of advanced methods for detailed...... electrochemical characterization during operation. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized in detail using electrochemical impedance spectroscopy (EIS). An investigation of the optimal geometrical placement of the current feeds and voltage probes was carried out...... in order to minimize measurement errors caused by stray impedances. Three different stack geometries were investigated by impedance spectroscopy and the stack geometry with the minimum effect of stray impedances was selected. A 13-cell experimental SOFC stack was tested during 2,500 h of operation...

  14. Performance Impact Associated with Ni-Based SOFCs Fueled with Higher Hydrocarbon-Doped Coal Syngas

    Science.gov (United States)

    Hackett, Gregory A.; Gerdes, Kirk; Chen, Yun; Song, Xueyan; Zondlo, John

    2015-03-01

    Energy generation strategies demonstrating high efficiency and fuel flexibility are desirable in the contemporary energy market. When integrated with a gasification process, a solid oxide fuel cell (SOFC) can produce electricity at efficiencies exceeding 50 pct by consuming fuels such as coal, biomass, municipal solid waste, or other opportunity wastes. The synthesis gas derived from such fuel may contain trace species (including arsenic, lead, cadmium, mercury, phosphorus, sulfur, and tars) and low concentration organic species that adversely affect the SOFC performance. This work demonstrates the impact of exposure of the hydrocarbons ethylene, benzene, and naphthalene at various concentrations. The cell performance degradation rate is determined for tests exceeding 500 hours at 1073 K (800 °C). Cell performance is evaluated during operation with electrochemical impedance spectroscopy, and exposed samples are post-operationally analyzed by scanning electron microscopy/energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The short-term performance is modeled to predict performances to the desired 40,000-hours operational lifetime for SOFCs. Possible hydrocarbon interactions with the nickel anode are postulated, and acceptable hydrocarbon exposure limits are discussed.

  15. Effect of interlayer on structure and performance of anode-supported SOFC single cells

    International Nuclear Information System (INIS)

    Eom, Tae Wook; Yang, Hae Kwang; Kim, Kyung Hwan; Yoon, Hyon Hee; Kim, Jong Sung; Park, Sang Joon

    2008-01-01

    To lower the operating temperatures in solid oxide fuel cell (SOFC) operations, anode-supported SOFC single cells with a single dip-coated interlayer were fabricated and the effect of the interlayer on the electrolyte structure and the electrical performance was investigated. For the preparation of SOFC single cells, yttria-stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode, and 50% YSZ-50% strontium-doped lanthanum manganite (LSM) cathode were used. In order to characterize the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized and the gas (air) permeability measurements were conducted for gas tightness estimation. When the interlayer was inserted onto NiO-YSZ anode, the surface roughness of anode was diminished by about 40% and dense crack-free electrolytes were obtained. The electrical performance was enhanced remarkably and the maximum power density was 0.57 W/cm 2 at 800 deg. C and 0.44 W/cm 2 at 700 deg. C. On the other hand, the effect of interlayer on the gas tightness was negligible. The characterization study revealed that the enhancement in the electrical performance was mainly attributed to the increase of ion transmission area of anode/electrolyte interface and the increase of ionic conductivity of dense crack-free electrolyte layer

  16. The Effect of H2S on the Performance of SOFCs using Methane Containing Fuel

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hagen, Anke

    2010-01-01

    In recent years, the interest for using biogas derived from biomass as fuel in solid oxide fuel cells (SOFCs) has increased. To maximise the biogas to electrical energy output, it is important to study the effects of the main biogas components (CH4 and CO2), minor ones and traces (e.g. H2S......) on performance and durability of the SOFC. Single anode-supported SOFCs with Ni–Yttria-Stabilised-Zirconia (YSZ) anodes, YSZ electrolytes and lanthanum-strontium-manganite (LSM)–YSZ cathodes have been tested with a CH4–H2O–H2 fuel mixture at open circuit voltage (OCV) and 1 A cm–2 current load (850 °C). The cell...... performance was monitored with electric measurements and impedance spectroscopy. At OCV 2–24 ppm H2S were added to the fuel in 24 h intervals. The reforming activity of the Ni-containing anode decreased rapidly when H2S was added to the fuel. This ultimately resulted in a lower production of fuel (H2 and CO...

  17. STEAM AND SOFC BASED REFORMING OPTIONS OF PEM FUEL CELLS FOR MARINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Mohamed M. El Gohary

    2015-06-01

    Full Text Available The need for green energy sources without or with low emissions in addition to improve the using efficiency of current fossil fuels in the marine field makes it important to replace or improve current fossil-fuelled engines. The replacement process should work on narrowing the gap between the most scientific innovative clean energy technologies and the concepts of feasibility and cost-effective solutions. Early expectations of very low emissions and relatively high efficiencies have been met in marine power plants using fuel cell. In this study, steam and SOFC based reforming options of natural gas for PEM fuel cells are proposed as an attractive option to limit the environmental impact of the marine sector. The benefits of these two different reforming options can be assessed using computer predictions incorporating chemical flow sheeting software. It is found that a high overall efficiency approaching 60% may be achieved using SOFC based reforming systems which are significantly better than a reformed PEM system or an SOFC only system.

  18. Synthesis of praseodymium doped cerium oxides by the polymerization-combustion method for application as anodic component in SOFC devices

    Science.gov (United States)

    Cruz Pacheco, A. F.; Gómez Cuaspud, J. A.; López, E. Vera

    2016-02-01

    This work reports the synthesis and the characterization of six oxides; it is based on Ce1-xPrxO2 (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) system, which is obtained by the polymerization- combustion technique for potential applications on design of advanced electrodic components, for solid oxide fuel cells (SOFC). Initially the solid precursors are characterized by infrared spectroscopy (FTIR) and thermal analysis (TGA-DTA), allowing to determine the formation of prevalent citrate species and the optimal temperature for the consolidation of the desired crystalline phases. The X-ray diffraction (XRD) and the transmission electron microscopy analysis (TEM) are performed over calcined samples which provided information about the formation of a fluorite phase with grain distribution, surface, textural and morphological properties consistent with the nanometric obtaining crystallites (30nm), it is oriented along the (1 1 1) facet, with d spacings of 0.31nm for the main diffraction signal. These results indicate the effectiveness of the proposed synthesis method for potential applications in the design of advanced anodic materials for solid oxide fuel cells.

  19. Development of a Low Cost 10kW Tubular SOFC Power System

    Energy Technology Data Exchange (ETDEWEB)

    Bessette, Norman [Acumentrics Corporation, Westwood, MA (United States); Litka, Anthony [Acumentrics Corporation, Westwood, MA (United States); Rawson, Jolyon [Acumentrics Corporation, Westwood, MA (United States); Schmidt, Douglas [Acumentrics Corporation, Westwood, MA (United States)

    2013-06-06

    The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all of the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program

  20. Refinement of numerical models and parametric study of SOFC stack performance

    Science.gov (United States)

    Burt, Andrew C.

    The presence of multiple air and fuel channels per fuel cell and the need to combine many cells in series result in complex steady-state temperature distributions within Solid Oxide Fuel Cell (SOFC) stacks. Flow distribution in these channels, when non-uniform, has a significant effect on cell and stack performance. Large SOFC stacks are very difficult to model using full 3-D CFD codes because of the resource requirements needed to solve for the many scales involved. Studies have shown that implementations based on Reduced Order Methods (ROM), if calibrated appropriately, can provide simulations of stacks consisting of more than 20 cells with reasonable computational effort. A pseudo 2-D SOFC stack model capable of studying co-flow and counter-flow cell geometries was developed by solving multiple 1-D SOFC single cell models in parallel on a Beowulf cluster. In order to study cross-flow geometries a novel Multi-Component Multi-Physics (MCMP) scheme was instantiated to produce a Reduced Order 3-D Fuel Cell Model. A C++ implementation of the MCMP scheme developed in this study utilized geometry, control volume, component, and model structures allowing each physical model to be solved only for those components for which it is relevant. Channel flow dynamics were solved using a 1-D flow model to reduce computational effort. A parametric study was conducted to study the influence of mass flow distribution, radiation, and stack size on fuel cell stack performance. Using the pseudo 2-D planar SOFC stack model with stacks of various sizes from 2 to 40 cells it was shown that, with adiabatic wall conditions, the asymmetry of the individual cell can produce a temperature distribution where high and low temperatures are found in the top and bottom cells, respectively. Heat transfer mechanisms such as radiation were found to affect the reduction of the temperature gradient near the top and bottom cell. Results from the reduced order 3-D fuel cell model showed that greater

  1. Danish strategy for developing SOFC fuel cells 2010-2020; Dansk strategi for udvikling af SOFC-braendselsceller 2010-2020

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.; Linderoth, S. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Themsen, J. (Dantherm Power A/S, Hobro (Denmark)); Richter, A.B.; Hansen, Hakon J.; Holm-Larsen, H.; Andersen, Claus V. (Topsoe Fuel Cell A/S, Lyngby (Denmark))

    2010-09-15

    SOFC fuel cells are a promising technology for efficient production of electricity. The technology is expected to contribute very significantly to climate and environmental goals, security of supply of energy, increased employment and exports. Denmark has a very strong technology position within the SOFC area based on years of cooperation between Topsoe Fuel Cell and Risoe DTU as well as a later developed relationship with Dantherm Power. The Danish players have received more than DKK 250 million in public funding. With this support and the players' own funding (approx. two times higher than public support), the players managed over the past 10 years to bring development of SOFC technology significantly closer to the market. This strategy has been prepared by the Danish players in the field and gives a picture of the required overall development needs in the coming years. Technology development has reached the stage where in the coming years demonstrations on a larger scale have to be launched. The focus is basically on three valuable market segments: micro power and heat, auxiliary power for mobile applications, and decentralized power and CHP, which all have a great potential for market penetration internationally. When the market is established in one or more of these segments, other business opportunities must be explored for other applications based on the established technological platform. The road to commercialization is a long process that begins with demonstrations and later introduction of commercial products. The primary actors are currently the largest companies and institutions but as the number of produced fuel cell units increases, job creation with subcontractors and other directly related businesses and research centres will increase. A conservative estimate of market size worldwide is 2-4 GW of installed capacity per. year representing an annual turnover of 15-30 billion DKK and 10.000-20.000 more jobs. The export ratio is expected to exceed

  2. Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjelm, Johan

    2014-01-01

    It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore, it was illustr......It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore......, it was illustrated through a literature review on SOFC electrodes that porous electrode theory not only describes the classic LSM:YSZ SOFC cathode well, but SOFC electrodes in general. The extensive impedance spectroscopy study of LSM:YSZ cathodes consisted of measurements on cathodes with three different sintering...... temperatures and hence different microstructures and varying degrees of LSM/YSZ solid state interactions. LSM based composite cathodes, where YSZ was replaced with CGO was also studied in order to acquire further knowledge on the chemical compatibility between LSM and YSZ. All impedance measurements were...

  3. Synthesis of modified calcium aluminate with lanthanum manganite (LSM) for possible use in solid oxide fuel cell (SOFC); Sintese de aluminato de calcio modificado com manganita de lantanio (LSM) para possivel utilizacao em celula combustivel de oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, F.C.T.; Jurado, J.; Sousa, V.C. de, E-mail: faili.cintia@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais; Cava, S.S. [Universidade Federal de Pelotas, RS (Brazil)

    2016-07-01

    The fuel cells solid oxide (SOFC) is made up of three basic elements: two electrodes, the anode and cathode and a conductive electrolyte ions. The objective of this work consists of calcium aluminate synthesis modified LSM in a 1: 1 by combustion synthesis method with a view to its use as a cathode in SOFC. The characterization of the post was carried out by the methods of XRD, TEM and EIS. After heat treatment at 1200°C/4 hours it was possible to obtain Ca0.5Sr1.5MnO4 and CaMnO2.56 phases. The material showed a semiconductor characteristics because with increasing temperature the electrical resistance value tends to decrease obtaining electrical conductivity greater than 10-6S / cm featuring an extrinsic semiconductor with an activation energy of 0.12. Therefore, with an activation energy value within the range of materials used for a SOFC cathodes. (author)

  4. SOFC solid oxide fuel cell power plants for the decentralised electric energy supply; SOFC-Brennstoffzellen-Kraftwerke fuer die dezentrale elektrische Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Fogang Tchonla, Etienne

    2012-07-01

    To use the fuel cell economically, the efficiency of the system must still be raised so that it can be set up in the market. Within the scope of analysis on this topic, a 120-kW-SOFC-demonstration power plant was to be considered. Since not enough information about the demonstration power plant from the operator was available for the investigation, we had to calculate with the help of the known technical data of similar power plants. After that a model was build and simulated by means of MATLAB/Simulink. Before that the single power plant components were being described. Two of them (the boost converter as well as the inverter) were looked at more thoroughly. As a result of the analysis, it was found that a standard inverter which had been conceived for other applications, for example, Photovoltaic or Wind Power can also be used for fuel cells. Unfortunately, this was not the case for the added boost converter. It had to be precisely conceived for the used fuel cell type. After this discovery information was won for the realization of a 1-MW-Fuel Cell Power Plant. The topology of the 1-MW-power plant was fixed on the basis of the 120-kW-system. A parallel connection of eight 120-kW SOFC-fuel cell aggregates is intended, as well as a connection at the outlet side 120-kW boost converters. A standard inverter with 1 MW electrical power as well as a 1-MVA-transformer could be used for the realization of the 1-MW-power plant. The binding of the power plant in the three-phase current network was examined in view of the norms, laws and connection conditions. Beside the distinction of the operating forms of the power plant (parallel or isolated operation) the security of the plant was emphasized with regard to quick fault recognition, safe supply line isolation in the fault case as well as a compliance of the prescribed regulations. To verify the calculated results as well as the provided models, a 10-kW-labor sample was built and examined in the lab. This experimental

  5. Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells, with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura; Nielsen, Jimmi; Hjelm, Johan

    2009-01-01

    Impedance spectra of a symmetrical cell with SOFC cathodes (LSM-YSZ/YSZ/LSM-YSZ) and an anode supported planar SOFC (Ni-YSZ/YSZ/LSM-YSZ) were collected at OCV at 650{degree sign}C in air (cathode) and humidified (4%) hydrogen (anode), over 155 hours. The impedance was affected by degradation over...

  6. Fracture-mechanical analysis of metal/ceramic composites for applications in high-temperature fuel cells (SOFC); Bruchmechanische Untersuchung von Metall/Keramik-Verbunsystemen fuer die Anwendung in der Hochtemperaturbrennstoffzelle (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Bernd Josef

    2008-08-25

    The author investigated the deformation and damage behaviour of soldered ceramic/metal joints in SOFC stacks, using thermochemical methods. Methods for analyzing sandwich systems and for mechanical characterization of joints were adapted and modified in order to provide fundamental understanding of the mechanical properties of soldered joints. [German] In dieser Arbeit wurde das Verformungs- und Schaedigungsverhalten von Keramik/ Metall-Loetverbindungen fuer SOFC-Stacks thermomechanisch untersucht. Verfahren zur Analyse von Schichtsystemen und fuer die mechanische Charakterisierung von Fuegeverbindungen wurden adaptiert und weiterentwickelt, um zu einem grundlegenden Verstaendnis der mechanischen Eigenschaften von Loetverbindungen zu gelangen.

  7. Synthesis of modified calcium aluminate with lanthanum manganite (LSM) for possible use in solid oxide fuel cell (SOFC)

    International Nuclear Information System (INIS)

    Veiga, F.C.T.; Jurado, J.; Sousa, V.C. de

    2016-01-01

    The fuel cells solid oxide (SOFC) is made up of three basic elements: two electrodes, the anode and cathode and a conductive electrolyte ions. The objective of this work consists of calcium aluminate synthesis modified LSM in a 1: 1 by combustion synthesis method with a view to its use as a cathode in SOFC. The characterization of the post was carried out by the methods of XRD, TEM and EIS. After heat treatment at 1200°C/4 hours it was possible to obtain Ca0.5Sr1.5MnO4 and CaMnO2.56 phases. The material showed a semiconductor characteristics because with increasing temperature the electrical resistance value tends to decrease obtaining electrical conductivity greater than 10-6S / cm featuring an extrinsic semiconductor with an activation energy of 0.12. Therefore, with an activation energy value within the range of materials used for a SOFC cathodes. (author)

  8. Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes

    Directory of Open Access Journals (Sweden)

    Massimiliano Cimenti

    2009-06-01

    Full Text Available Solid oxide fuel cells (SOFC have the advantage of being able to operate with fuels other than hydrogen. In particular, liquid fuels are especially attractive for powering portable applications such as small power generators or auxiliary power units, in which case the direct utilization of the fuel would be convenient. Although liquid fuels are easier to handle and transport than hydrogen, their direct use in SOFC can lead to anode deactivation due to carbon formation, especially on traditional nickel/yttria stabilized zirconia (Ni/YSZ anodes. Significant advances have been made in anodic materials that are resistant to carbon formation but often these materials are less electrochemically active than Ni/YSZ. In this review the challenges of using liquid fuels directly in SOFC, in terms of gas-phase and catalytic reactions within the anode chamber, will be discussed and the alternative anode materials so far investigated will be compared.

  9. Fabrication of Sr- and Co-doped lanthanum chromite interconnectors for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Setz, L.F.G. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos - DEMa/UFSCar (Brazil); Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN (Brazil); Santacruz, I. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, 29071 Malaga (Spain); Colomer, M.T., E-mail: tcolomer@icv.csic.es [Instituto de Ceramica y Vidrio, ICV (CSIC), 28049 Madrid (Spain); Mello-Castanho, S.R.H. [Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN (Brazil); Moreno, R. [Instituto de Ceramica y Vidrio, ICV (CSIC), 28049 Madrid (Spain)

    2011-07-15

    Graphical abstract: FESEM micrographs of the fresh fracture surfaces for the La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3} sintered specimens cast from optimised suspensions with 13.5, 15 and 17.5 vol.% solids loading. Aqueous suspensions were prepared using ammonium polyacrylate (PAA) as dispersant and tetramethylammonium hydroxide (TMAH) to assure a basic pH and providing stabilization. Sintering of the green discs was performed in air at 1600 {sup o}C for 4 h. Highlights: {yields} Optimum casting slips were achieved with 3 wt.% of ammonium polyacrylate and 1 wt.% of tetramethylammonium hydroxide. -- Abstract: Many studies have been performed dealing with the processing conditions of electrodes and electrolytes in solid oxide fuel cells (SOFCs). However, the processing of the interconnector material has received less attention. Lanthanum chromite (LaCrO{sub 3}) is probably the most studied material as SOFCs interconnector. This paper deals with the rheology and casting behaviour of lanthanum chromite based materials to produce interconnectors for SOFCs. A powder with the composition La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3} was obtained by combustion synthesis. Aqueous suspensions were prepared to solids loading ranging from 8 to 17.5 vol.%, using ammonium polyacrylate (PAA) as dispersant and tetramethylammonium hydroxide (TMAH) to assure a basic pH and providing stabilization. The influence of the additives concentrations and suspension ball milling time were studied. Suspensions prepared with 24 h ball milling, with 3 wt.% and 1 wt.% of PAA and TMAH, respectively, yielded the best conditions for successful slip casting. Sintering of the green discs was performed in air at 1600 {sup o}C for 4 h leading to relatively dense materials.

  10. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    International Nuclear Information System (INIS)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo

    2017-01-01

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  11. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  12. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo, E-mail: mcarmov@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Grupo de Estudos em Cinetica e Catalise; Ballarini, Adriana; Maina, Silvia [Instituto de Investigaciones en Catalisis Y Petroquimica Ing. Jose Miguel Parera (INCAPE), Santa Fe (Argentina)

    2017-01-15

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  13. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... it reacts with air and produces electricity. The exhausted gases out of the SOFC enter a burner for further fuel combusting and finally the off-gases are sent to a gas turbine to produce additional electricity. Different plant configurations have been studied and the best one found to be a regenerative gas...

  14. The mechanism behind redox instability of anodes in high-temperature SOFCs

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chung, Charissa; Larsen, Peter Halvor

    2005-01-01

    Bulk expansion of the anode upon oxidation is considered to be responsible for the lack of redox stability in high-temperature solid oxide fuel cells (SOFCs). The bulk expansion of nickel-yttria stabilized zirconia (YSZ) anode materials was measured by dilatometry as a function of sample geometry......, ceramic component, temperature, and temperature cycling. The strength of the ceramic network and the degree of Ni redistribution appeared to be key parameters of the redox behavior. A model of the redox mechanism in nickel-YSZ anodes was developed based on the dilatometry data and macro...

  15. In situ tailored nickel nano-catalyst layer for internal reforming hydrocarbon fueled SOFCs

    OpenAIRE

    Myung, Jaeha; Neagu, Dragos; Tham, Mark; Irvine, John Thomas Sirr

    2015-01-01

    The authors gratefully thank the Engineering and Physical Sciences Research Council (EPSRC) SuperGen Hydrogen Fuel Cells Challenges Flame SOFC Project (Grant No EP/K021036/1) for financial support Conventional Ni cermet anodes suffer from carbon deposition when they are directly used with hydrocarbon fuels due to the negative effects of pyrolysis and Boudouard reactions. In this work, the use of a non-stoichiometric perovskite, La0.8Ce0.1Ni0.4Ti0.6O3, as a reforming layer in reducing atmos...

  16. Progress of SOFC/SOEC Development at DTU Energy: From Materials to Systems

    DEFF Research Database (Denmark)

    Hagen, Anke; Hendriksen, Peter Vang

    2017-01-01

    DTU Energy has over the past 20 years had a very substantial effort on SOFC/SOEC development. The current project volume corresponds to ~40 man years per year. Activities span over a broad range in the value chain, from materials to cells, stacks and analyses at energy system level. In addition...... to that, research areas comprise ceramic processing methods, micro-structural analysis, electrochemical characterization, and modelling. Among recent highlights are electrode and cell developments, including metal supported cells, stack development durability studies under realistic operation conditions...

  17. The electrochemical oxidation of H{sub 2} and CO at patterned Ni anodes of SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Annika

    2011-07-01

    In this work, a deeper understanding of the electrochemical oxidation at SOFC anodes was gained by the experimental characterization of patterned Ni anodes in H{sub 2}-H{sub 2}O and CO-CO{sub 2} atmosphere. By high resolution data analysis, the Line Specific Resistance attributed to charge transfer and its dependencies on gas composition, temperature and polarization voltage were identified. Furthermore, the comparison of the performance of patterned and cermet anodes was enabled using a transmission line model. (orig.)

  18. Sealing of ceramic SOFC-components with glass seals; Fuegen von keramischen Komponenten der Hochtemperatur-Brennstoffzellen mittels Glas- und Glaskeramikloten

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, Cora

    2012-07-10

    The solid oxide fuel cell (SOFC) converts chemical energy of a fuel directly into electrical energy. However, for the implementation of SOFC-technology in competition to conventional power plants costs have to be reduced. The use of an alternative tubular cell design without closed end would allow reducing costs during cell manufacturing. However, this change in design makes a gastight sealing inside the generator near the gas inlet necessary. Different ceramic materials with varying coefficients of thermal expansion have to be sealed gastight and electrical insulating at temperatures between 850 C and 1000 C to prevent the gases from mixing and an electrical shortcut between the cells. This work comprises analysis of commercially available glass and glass-ceramic systems manufactured by Schott Electronic Packaging, Areva T and D and Ferro Corporation. Additionally new developed sealing glass and glass-ceramic systems were investigated and all systems were characterized fundamentally for the use as sealing material in SOFC generators. Therefore different test assemblies and series were conducted. Essential characteristics of a suitable sealing system are a thermal expansion coefficient between 9,5 and 12 . 10{sup -6}K{sup -1}, a viscosity in the range between 10{sup 4} to 10{sup 6} dPa{sup *}s and a wetting angle smaller than 90 during the sealing process. Also unwanted chemical side reactions between the sealing partners must be prevented, because a change in the phase composition or the creation of new phases in the sealing material could endanger the stability of the seal. Heat cycles, particularly those during generator operation, cause deterioration of the sealing material and subsequent reduction in its ability to prevent mixing of the gases. Sealant leaks can drastically impact efficiency of the generator. In order to ensure optimum operation low leak rates around 2,3 . 10{sup -4} mbar l/sec/cm{sup 2} must be maintained. Especially glass and glass

  19. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships

    International Nuclear Information System (INIS)

    Strazza, C.; Del Borghi, A.; Costamagna, P.; Traverso, A.; Santin, M.

    2010-01-01

    Fuel cells own the potential for significant environmental improvements both in terms of air quality and climate protection. Through the use of renewable primary energies, local pollutant and greenhouse gas emissions can be significantly minimized over the full life cycle of the electricity generation process, so that marine industry accounts renewable energy as its future energy source. The aim of this paper is to evaluate the use of methanol in Solid Oxide Fuel Cells (SOFC), as auxiliary power systems for commercial vessels, through Life Cycle Assessment (LCA). The LCA methodology allows the assessment of the potential environmental impact along the whole life cycle of the process. The unit considered is a 20 kWel fuel cell system. In a first part of the study different fuel options have been compared (methanol, bio-methanol, natural gas, hydrogen from cracking, electrolysis and reforming), then the operation of the cell fed with methanol has been compared with the traditional auxiliary power system, i.e. a diesel engine. The environmental benefits of the use of fuel cells have been assessed considering different impact categories. The results of the analysis show that fuel production phase has a strong influence on the life cycle impacts and highlight that feeding with bio-methanol represents a highly attractive solution from a life cycle point of view. The comparison with the conventional auxiliary power system shows extremely lower impacts for SOFCs.

  20. Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Papazisi Kalliopi Maria

    2017-01-01

    Full Text Available A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen. A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2 cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3 as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation.

  1. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  2. Palliative effects of H2 on SOFCs operating with carbon containing fuels

    Science.gov (United States)

    Reeping, Kyle W.; Bohn, Jessie M.; Walker, Robert A.

    2017-12-01

    Chlorine can accelerate degradation of solid oxide fuel cell (SOFC) Ni-based anodes operating on carbon containing fuels through several different mechanisms. However, supplementing the fuel with a small percentage of excess molecular hydrogen effectively masks the degradation to the catalytic activity of the Ni and carbon fuel cracking reaction reactions. Experiments described in this work explore the chemistry behind the "palliative" effect of hydrogen on SOFCs operating with chlorine-contaminated, carbon-containing fuels using a suite of independent, complementary techniques. Operando Raman spectroscopy is used to monitor carbon accumulation and, by inference, Ni catalytic activity while electrochemical techniques including electrochemical impedance spectroscopy and voltammetry are used to monitor overall cell performance. Briefly, hydrogen not only completely hides degradation observed with chlorine-contaminated carbon-containing fuels, but also actively removes adsorbed chlorine from the surface of the Ni, allowing for the methane cracking reaction to continue, albeit at a slower rate. When hydrogen is removed from the fuel stream the cell fails immediately due to chlorine occupation of methane/biogas reaction sites.

  3. Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenguo; Xia, Guanguang; Maupin, Gary D.; Stevenson, Jeffry W.

    2006-12-20

    Conductive oxide coatings are used as protection layers on metallic interconnects in SOFCs to improve their surface stability and electrical performance, as well as to mitigate or prevent chromium poisoning to cells. This paper discusses materials requirements for this particular application and summarizes our systematic study on varied conductive oxides as potential candidate materials for protection layers on stainless steel substrates. Overall, it appeared that chromites such as (La,Sr)CrO3 improved surface stability, but might not be good candidates for the protection layer applications due to chromium vaporization, albeit at a lower rate than Cr2O3, from these oxides at high temperatures in air or moist air. The application of non-chromite perovskite (La,Sr)FeO3 protection layers resulted in improved oxidation resistance and electrical performance. It is doubtful, however, that LSF can be an effective barrier to prevent chromium release during long term SOFC stack operation due to chromium diffusion through the LSF coatings. With a high oxygen ion conductivity, the coatings of Sn-doped In2O3 failed to provide protection to the metal substrate and are thus not suitable for the protection layer applications. The best performance was achieved using thermally-grown (Mn,Co)3O4 spinel protection layers that substantially improved the surface stability of the metal substrates, and prevented chromium outward migration.

  4. Determination of strontium and lanthanum zirconates in YPSZ-LSM mixtures for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Escobedo, Claudia Alicia [Centro de Investigacion e Innovacion Tecnologica del IPN, Cda. Cecati s/n, Col. Sta. Catarina, CP 02250, Azcapotzalco, D.F. (Mexico); Munoz-Saldana, Juan [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, pdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Bolarin-Miro, Ana Maria; Sanchez-de Jesus, Felix [Centro de Investigaciones en Materiales y Metalurgia, Universidad Autonoma del Estado de Hidalgo, CU, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, CP 42184, Hidalgo (Mexico)

    2008-05-15

    Mixtures of 3% yttria- and partially-stabilized zirconia with LSM{sub x} (strontium-doped lanthanum manganite, x = 0, 0.15 and 0.2) were prepared and heat treated at temperatures between 1000 and 1300 C to recreate the cathode-electrolyte interface interactions taking place during preparation and operation of solid oxide fuel cells (SOFC). Such interactions include the formation of La{sub 2}Zr{sub 2}O{sub 7} and SrZrO{sub 3}, which are undesirable for SOFC. The effect of the manganese oxidation number on the mechanosynthesis of LSM during zirconate formation is also discussed. A quantitative analysis of zirconate formation by X-ray diffraction and Rietveld refinement was undertaken. Formation of lanthanum and strontium zirconates was completely avoided at temperatures as high as 1300 C by synthesizing lanthanum manganites from MnO{sub 2} doped with 15 at.% of Sr. Finally, in the presence of LSM, monoclinic phase content was diminished to less than 1.5 mol% after heat treatment at 1300 C. (author)

  5. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen

    Science.gov (United States)

    Meng, Guangyao; Jiang, Cairong; Ma, Jianjun; Ma, Qianli; Liu, Xingqin

    A nickel-based anode-supported solid oxide fuel cell (SOFC) was assembled with a 10 μm thick Ce 0.8Sm 0.2O 2- δ (SDC) electrolyte and a Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) cathode. The cell performance was investigated with hydrogen and ammonia gas evaporated from liquefied ammonia as fuel. Fueled by hydrogen the maximum power densities were 1872, 1357, and 748 mW cm -2 at 650, 600, and 550 °C, respectively. While with ammonia as fuel, the cell showed the maximum power densities of 1190, 434, and 167 mW cm -2, correspondingly. The power densities lower than that predicted, particularly at the lower operating temperatures for ammonia fuel cell, compared to hydrogen fuel cell, could be attributed to actual lower temperature than thermocouple display due to endothermic reaction of ammonia decomposition as well as the rather larger inlet ammonia flow rate. The results demonstrated that the ammonia was a right convenient liquid fuel for SOFCs as long as it was keeping the decomposition completion of ammonia in the cell or before entering the cell.

  6. An FPGA Based Controller for a SOFC DC-DC Power System

    Directory of Open Access Journals (Sweden)

    Kanhu Charan Bhuyan

    2013-01-01

    Full Text Available Fuel cells are an attractive option for alternative power and of use in a variety of applications. This paper proposes a state space model for the solid oxide fuel cell (SOFC based power system that comprises fuel cell, DC-DC buck converter, and load. In this investigation we have taken up a case study for SOFC feeding a DC load where a DC-DC buck converter acts as the interface between the load and the source. A proportional-integral (PI controller is used in conjunction with pulse width modulation (PWM that computes the pulse width and switches the MOSFET at the right instant so that the desired voltage is obtained. The proposed model is validated through extensive simulation using MATLAB/SIMULINK. Controller for the fuel cell power system (FCPS is prototyped using XC3S500E development board containing a SPARTAN 3E Xilinx FPGA that simplifies the entire control circuit besides providing additional flexibility for further improvement. The results clearly indicate improved performance and validate our proposed model.

  7. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  8. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly; Tadd, Andrew; Schwank, Johannes; Kibler, Roland; McLean, David; Samineni, Mahesh; Smith, Ryan; Parvathikar, Sameer; Mayne, Joe; Westrich, Tom; Mader, Jerry; Faubert, F. Michael

    2010-07-30

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were

  9. Development of perovskite cathodes for solid oxide fuel cells (SOFC); Desenvolvimento de catodos de perovskitas para celula a combustivel solido de eletrolito solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica], e-mail: joelma@iq.unesp.br; Pereira, J.T.; Saeki, M.J. [UNESP, Bauru, SP (Brazil). Faculdade de Ciencias

    2006-07-01

    Solid Oxide Fuel Cells (SOFC) are energy conversion systems of great interest for industrial applications because they present a high efficiency for energy generation and several advantages for the environment. In this work, perovskite type oxides La{sub 085}Sr{sub 0,15}MnO{sub 3}, La{sub 0,7} Sr{sub 0,3}MnO{sub 3}, La{sub 0,6}Sr{sub 0,4}MnO{sub 3}, La{sub 0,85}Sr{sub 0,15}CoO{sub 3}, La{sub 0,7}Sr{sub 0,3}CoO{sub 3}, La{sub 0,6}Sr{sub 0,4}CoO{sub 3}, La{sub 0.6}Sr{sub 0,4}Fe{sub 0,8}Co{sub 0,2}O{sub 3} e La{sub 0.6}Sr{sub 0,4}Fe{sub 0,4}Co{sub 0,6}O{sub 3} were prepared by a polymeric method with the purpose of using them as cathodes in SOFCs. The electrochemical cell was mounted utilizing YSZ (ZrO{sub 2} - 8 mol%Y{sub 2}O{sub 3}) disks as electrolyte, where a paste containing Pt was calcined onto one face while the other one was covered with the oxide materials synthesized ('screen printing'). The oxide materials prepared were characterized by X-ray diffraction, transmission electronic microscopy and thermogravimetry. The oxygen reduction reaction was studied by taking polarization curves in oxygen and/or air (800 deg C a 950 deg C). The best performance was obtained for 15 {mu}m thickness electrodes La{sub 0.6}Sr{sub 0,4}MnO{sub 3} and La{sub 0.6}Sr{sub 0,4}MnO{sub 3} with addition of dispersed Pt. (author)

  10. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  11. High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas

    DEFF Research Database (Denmark)

    Hofmann, P.; Schweiger, A.; Fryda, L.

    2007-01-01

    and tar traces. The chosen SOFC was electrolyte supported with a nickel/gadolinium-doped cerium oxide (Ni-GDC) anode, known for its carbon deposition resistance. Through humidification the steam to carbon ratio (S/C) was adjusted to 0.5, which results in a thermodynamically carbon free condition...

  12. NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Agersted, Karsten; Hansen, Karin Vels

    2014-01-01

    and finally reduced during start-up of the SOFC/SOEC in H2 at the operating temperature of the cell (ca. 800 °C). This contribution presents environmental transmission electron microscopy (ETEM) nanoscale observations of the reduction process of a NiO/YSZ powder in H2 at temperatures up to almost 1000 °C...

  13. Towards retrofitting integrated gasification combined cycle (IGCC) power plants with solid oxide fuel cells (SOFC) and CO

    NARCIS (Netherlands)

    Thallam Thattai, A.; Oldenbroek, V.D.W.M.; Schoenmakers, L; Woudstra, T.; Purushothaman Vellayani, A.

    2017-01-01

    This article presents a detailed thermodynamic case study based on the Willem-Alexander Centrale (WAC) power plant in the Netherlands towards retrofitting SOFCs in existing IGCC power plants with a focus on near future implementation. Two systems with high percentage (up to 70%) biomass

  14. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kWe have been performed. Woodchips are used as gasification feedstock to produce syngas...

  15. Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tuong Lan; Honda, Takeo; Iimura, Youko; Kato, Ken; Neghisi, Akira; Nozaki, Ken; Tappero, Fabrizio; Kato, Tohru [Fuel Cell Group, Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 (Japan); Kobayashi, Kenichi; Sasaki, Kazuya; Shirahama, Hiroshi; Dokiya, Masayuki [Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 (Japan); Ota, Kenichiro [Department of Energy and Safety Engineering, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 (Japan)

    2004-10-29

    We have fabricated anode-supported solid oxide fuel cells (SOFCs) for reduced temperature operation by wet ceramic processes. Nickel/yttria-stabilised ZrO{sub 2} (Ni-YSZ), nickel/scandia-stabilised ZrO{sub 2} (Ni-ScSZ) cermets, ScSZ, gadolinia-doped ceria (GDC), and strontium-doped LaCoO{sub 3} (LSCO) were used as materials for anode substrate, anode functional layer, electrolyte, interlayer, and cathode, respectively. The influences of firing temperature of GDC films to the characteristics of ScSZ/GDC interface were investigated in detail using XRD and AC impedance spectroscopy; 1200C was considered as the optimum firing temperature of GDC film on ScSZ electrolyte. By combining the ScSZ electrolyte film with GDC interlayer, we succeeded in preventing the solid-state reactions between ScSZ and LSCO. The anode-supported SOFCs with GDC interlayer fired at 1200C generated electricity successfully at reduced temperature. However, in the case of SOFCs, with whole functional layers cofired together at 1200C, the performances of the cell were badly affected by the contact between ScSZ and GDC films. Further investigation for matching the sintering behaviors of ScSZ and GDC green films are required to realize a cost-effective cofiring process for fabricating the anode-supported SOFCs employing CGO interlayer.

  16. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture : Part B: Applications

    NARCIS (Netherlands)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-01-01

    An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced

  17. Biomass Gasifier–SOFC Systems : From Electrode Studies to the Development of Integrated Systems and New Applications

    NARCIS (Netherlands)

    Aravind, P.V.; Liu, M.; Fan, L.; Promes, E.J.O.; Giraldo, S.Y.; Woudstra, T.

    2013-01-01

    An overview of the research activities and on-going multiple projects at Delft University of Technology aimed at the development of Gasifier–Solid Oxide Fuel Cell (SOFC) based power plants are presented. Biosyngas generated in gasifiers consists of a mixture of carbon monoxide (CO), carbon dioxide

  18. Analysis and design of solid oxide fuel cell for railroad applications

    Science.gov (United States)

    Kothapally, Adarsh Srivatsav

    Solid oxide fuel cell (SOFC) is a direct chemical-to-electrical energy conversion system using hydrogen and oxygen as reactants, operating at a higher temperature range (800°--1100° C). With the advantages of low-cost materials for anode, cathode, membrane, and the versatility in the use of various types of fuels as compared to other fuel cell types, the SOFC is one of the most recommendable fuel cells for large power generating system. An additional distinct advantage is of using the hot exhaust by-product gases to generate electricity in an advance combined power generation system along with a gas turbine. The objective of the present work is to analyze a tri-layer SOFC using a two-dimensional simulation model. This work was concerned with the evaluation of different fuel cell losses, heat generation, and determining the performance polarization of the SOFC using in-house computer code. The operation characteristics were evaluated with a wide spectrum of cell parameters and operating conditions. Further, a 1-MW SOFC is designed for a locomotive engine based on the selected operating characteristics and using the state-of-the-art SOFC materials.

  19. Use of Methanation for Optimization of a Hybrid Plant Combining Two-Stage Biomass Gasification, SOFCs and a Micro Gas Turbine

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of the two-stage gasification concept, solid oxide fuel cells (SOFCs) and a micro gas turbine (MGT) was considered for optimization. The hybrid plant is a sustainable and efficient alternative to conventional decentralized...... CHP plants. The demonstrated two-stage gasifier produces a clean product gas, thus ensuring the need for only simple gas conditioning prior to the SOFCs. Focus in this optimization study was on SOFC cooling and the investigation was conducted by system-level modelling combining zerodimensional...

  20. Manganates of lanthanum and strontium as cathode of fuel cells (SOFC); Manganatos de lantanio e estroncio como catodo de celulas combustiveis (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Marfran C. de; Nascimento, Rubens M. do; Martinelli, Antonio E.; Melo, Dulce M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The fuel cells if constitute currently as a promising alternative modular generation of electric energy to leave of chemical energy. The SOFCs is distinguished as promising for the industry of the oil, therefore they can use the produced natural gas in the platforms as combustible, allowing generation of raised power electric.The material of cathode constituent of the cell are oxides with perovskites structure, normally doped with a earthy-alkaline element (Sr{sup +3}). In this work, two compositions of the La{sub 1-x}Sr{sub x} MnO{sub 3} system were synthesized (x = 0,15 and 0,30), through the Pechini method and after resultants of the process they were characterized by X- Ray diffraction, Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG/DTG) and laser grain size analysis. The systems in study shown similar behavior how much to the results of absorption in the region of infra-red ray and TG/DTG, therefore if it can prove the loss of organic substance with the increase of the temperature.The average particle diameter for the two systems also increased gradually with the temperature. In general way the synthesis method was satisfactory for the formation of the perovskites phase in the two studied compositions. (author)

  1. Sense of community and its relationship with walking and neighborhood design.

    Science.gov (United States)

    Wood, Lisa; Frank, Lawrence D; Giles-Corti, Billie

    2010-05-01

    The aim of this study is to examine the association between sense of community, walking, and neighborhood design characteristics. The current study is based on a sub-sample of participants (n=609) from the US Atlanta SMARTRAQ study who completed a telephone survey capturing physical activity patterns, neighborhood perceptions, and social interactions. Objective measures of neighborhood form were also computed. Univariate and multivariate models (General Linear Models (GLM)) were used to examine the association between sense of community (SofC) and aspects of the built environment, physical activity, and neighborhood perceptions. In multivariate models the impact on SofC was examined with progressive adjustment for demographics characteristics followed by walking behavior, neighborhood design features, neighborhood perceptions and time spent traveling in a car. After adjustment, SofC was positively associated with leisurely walking (days/week), home ownership, seeing neighbors when walking and the presence of interesting sites. SofC was also associated with higher commercial floor space to land area ratios (FAR) - a proxy for walkable site design that captures the degree to which retail destinations are set back from the street, the amount of surface parking, and urban design of an area. Conversely the presence of more mixed use and perceptions of steep hills were inversely associated with SofC. SofC is enhanced by living in areas that encourage leisurely walking, hence it is associated with living in neighbourhoods with lower levels of land use mix, but higher levels of commercial FAR. Our results suggest that in terms of SofC, the presence of commercial destinations may inhibit social interaction among local residents unless urban design is used to create convivial pedestrian-friendly commercial areas, e.g., providing street frontage, rather than flat surface parking. This finding has policy implications and warrants further investigation. Copyright 2010 Elsevier

  2. Direct internal steam reforming of ethanol in a solid oxide fuel cell (SOFC) - A thermodynamic analysis

    International Nuclear Information System (INIS)

    Lima da Silva, Aline; De Fraga Malfatti, Celia; Heck, Nestor Cesar; Melo Halmenschlager, Cibele

    2003-01-01

    Among the various types of fuel cells, the solid oxide fuel cell (SOFC) has attracted considerable interest due to the possibility for operation with an internal reformer and higher system efficiency. In SOFC, high operative temperature allows the direct conversion of ethanol into H 2 and CO to take place in the electrochemical cell. Ethanol is considered to be an attractive fuel because it is a renewable energy source and presents some advantages over other green fuels such as safety in storage and handling. Direct internal reforming of ethanol, however, can produce undesirable products that diminish system efficiency and, in the case of carbon deposition over the anode, promote the growth of carbon filaments attached to the anode crystallites which generate massive forces within the electrode structure leading to its rapid breakdown. In this context, a thermodynamic analysis is fundamental to predict the product distribution as well as the conditions favorable for carbon to precipitate inside the cell. Despite of such importance, there are few works in literature dealing with thermodynamic analysis of the direct internal steam reforming of ethanol in fuel cell systems. Hence, the aim of this work is to find appropriate ranges for operating conditions where carbon deposition in SOFC with direct internal reforming operation is not feasible, in temperature range of 500- 1200K. The calculation here is more complicated than that for a reformer because the disappearance of hydrogen and the generation of H 2 O from electrochemical reaction must be taken into account. In the present study, the effects of hydrogen consumption on anode components and on carbon formation are investigated. Equilibrium determinations are performed by the Gibbs energy minimization method, considering the following species: H 2 , H 2 O, CH 4 , CO, CO 2 and C gr . (graphite). The effect of the type of solid electrolyte (oxygen-conducting and hydrogen-conducting) on carbon formation is also

  3. Investigation and Design Studies of SOFC Electrode Performance at Elevated Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ted Ohrn; Shung Ik Lee

    2010-07-31

    An experimental program was set forth to study fuel cell performance at pressure and under various compositions. Improvement in cathode electrode performance is on the order of 33-40% at pressures of 6.4 Bara compared to atmospheric pressure. Key cathode operational parameters are the concentration and partial pressure of O2, and temperature. The effect of partial pressure of oxygen (PO2) decreases the activation polarization, although there appears to be a secondary effect of absolute pressure as well. The concentration of oxygen impacts the diffusion component of the polarization, which is largely insensitive to absolute pressure. The effect of pressure was found to reduce the total polarization resistance of full fuel-cells beyond the reduction determined for the cathode alone. The total reduction in ASR was on the order of 0.10 ohm-cm2 for a pressure increase from 1 to 6.5 Bara, with about 70% of the improvement being realized from 1 to 4 Bara. An important finding was that there is an effect of steam on the cathode that is highly temperature dependent. The loss of performance at temperatures below 850 C was very large for the standard LSM + YSZ cathodes.

  4. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  5. Application of Coordinated SOFC and SMES Robust Control for Stabilizing Tie-Line Power

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-04-01

    Full Text Available Wind power causes fluctuations in power systems and introduces issues concerning system stability and power quality because of the lack of controllability of its discontinuous and intermittent resources. This paper presents a coordinated control strategy for solid oxide fuel cells (SOFCs and superconducting magnetic energy storage (SMES to match the intermittent wind power generation and compensate for the rapid load changes. An optimal H∞ control method, where the weighting function selection is expressed as an optimization problem, is proposed to mitigate tie-line power fluctuations and the mixed-sensitivity approach is used to deal with the interference suppression. Simulation results show that the proposed method significantly improves the smoothing effect of wind power fluctuations. Compared with the conventional control method, the proposed method has better anti-interference performance in various operating situations.

  6. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Neufeld, Kai; Liu, Yi-Lin

    2010-01-01

    Anode-supported solid oxide fuel cells (SOFCs) based on Ni–yttria-stabilized zirconia (YSZ) anodes, YSZ electrolytes, and lanthanum strontium manganite (LSM)–YSZ cathodes were studied with respect to durability in humid air (~4%) typically over 1500 h. Operating temperature and current density were...... varied between 750 and 850°C and 0.25–0.75 A/cm2, respectively. The introduction of humidity affected the cell voltage under polarization of the cell, and this effect was (at least partly) reversible upon switching off the humidity. Generally, the studied cells were operated in humid air under...... technologically relevant conditions over more than 1500 h. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750°C in humid air, conditions that cause significant cell voltage degradation in dry air on cells...

  7. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Chen, Ming; Neufeld, Kai

    2009-01-01

    Anode supported SOFCs based on Ni-YSZ anodes, YSZ electrolytes, and LSM-YSZ cathodes were studied with respect to durability in humid air (~4%) over typically 1500 hours. Operating temperature and current density were varied between 750 and 850 oC and 0.25-0.75 A/cm2, respectively. It was found...... that the introduction of humidity affected the cell voltage under polarization of the cell and that this effect was (at least partly) reversible upon switching off the humidity, probably related to a segregation of impurities towards the three phase boundary in the presence of humidity. Generally, the studied cells...... were successfully operated in humid air under technologically relevant conditions. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750 oC in humid air - conditions that are known to cause...

  8. Properties of zirconia thin layers elaborated by high voltage anodisation in view of SOFC application

    Science.gov (United States)

    Montero, Xabier; Pauporté, Thierry; Ringuedé, Armelle; Vannier, Rose-Noelle; Cassir, Michel

    In order to adapt the anodisation technique to SOFC application, zirconium and zirconium-niobium alloys were tested in various electrolytic media and applied potentials (up to 420 V). The elaborated ZrO 2 insulating layers were characterised in situ by electrochemical impedance spectroscopy and their thicknesses were determined as ranging up to 1 μm. The effect of thermal annealing treatment of layers prepared in various experimental conditions was investigated by X-ray diffraction (XRD) and solid-state electrochemical impedance spectroscopy in a planar configuration. The effect of the growing conditions on significant parameters such as zirconia crystallite size, zirconia conductivity and activation energy were deduced up to 800 °C. The possibility of using the anodisation process for fuel cell devices is discussed. This study demonstrates that it surely requires the use of more efficient dopants, such as yttria.

  9. Properties and Performance of SOFCs Produced on a Pre-Pilot Plant Scale

    DEFF Research Database (Denmark)

    Hagen, Anke; Menon, Mohan; Barfod, Rasmus

    2006-01-01

    In the present paper, anode supported solid oxide fuel cells (SOFCs), produced on a pre-pilot plant scale in ten batches of ∼100 cells, are characterised with respect to performance. The main purpose was to evaluate the reproducibility of the scaled-up process. Based on 20 tests, the average area...... specific cell resistance at 850 °C was found to be 0.24 Ω cm2 with a standard deviation of 0.05 Ω cm2. The variation in performance between the cells can be largely attributed to variations in the cathode performance. Experimental evidence will be presented on full 4 × 4 cm2 cells, symmetric cells with two...... cathodes on a YSZ strip, and a special cell with a divided cathode....

  10. Investigation of Degradation Mechanisms of LSCF Based SOFC Cathodes — by CALPHAD Modeling and Experiments

    DEFF Research Database (Denmark)

    Zhang, Weiwei; Barfod, Rasmus

    contributor to the observed electrical degradation whereas the consequences of the increasing sub-micron inhomogeneity are not yet known. The diffusion of Sr through the CGO barrier layer and formation of Sr-Zr phases at the CGO−YSZ interface further contribute to the long term degradation.......LSCF (La1−xSrxCo1−yFeyO3−δ) is a promising cathode material for intermediate temperature SOFCs (Solid Oxide Fuel Cells). However, the LSCF cathode degrades over an extended period of time. The processes that play a dominant role for the degradation and their relation to cell durability have...... not been fully understood at the moment. With the developments of computer software and thermodynamic databases, advances have been made in calculating complex phase equilibria and predicting thermodynamic properties of the materials. In order to identify physicochemical degradation mechanisms of LSCF...

  11. Fabricating Pinhole-Free YSZ Sub-Microthin Films by Magnetron Sputtering for Micro-SOFCs

    Directory of Open Access Journals (Sweden)

    T. Hill

    2011-01-01

    Full Text Available Submicron thin yttria stabilized zirconia (YSZ films were prepared on a variety of substrates with different surface morphologies by magnetron sputtering followed by thermal oxidation. Pinholes were observed in the films deposited on nanoporous alumina substrates. Initial dense Y/Zr films developed nanocracks after thermal oxidation on smooth Si wafer substrates. At optimal sputtering and oxidation conditions, smooth and crack/pore-free films were achieved on Si wafer substrates. The thin YSZ films exhibited fully ionic conduction with ionic conductivities, and activation energy corroborated well with the values from commercial YSZ plates. The thin YSZ films can be utilized in Solid Oxide Fuel Cells (SOFCs for intermediate temperature operations.

  12. Investigations on autothermal reforming of kerosene Jet A-1 for supplying solid oxide fuel cells (SOFC); Untersuchungen zur autothermen Reformierung von Kerosin Jet A-1 zur Versorgung oxidkeramischer Festelektrolyt-Brennstoffzellen (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, B.

    2007-01-25

    The auxiliary power unit of commercial aircraft is a gas turbine producing electric power with an efficiency of 18 %. This APU can be replaced by a fuel cell system, consisting of an autothermal kerosene reformer and a solid oxide fuel cell (SOFC). The fuel is kerosene Jet A-1. The autothermal reforming of Jet A-1 is practically investigated under variation of steam-to-carbon-ratio, air ratio, space velocity, time in operation and reactor pressure on commercial catalysts. Using stationary system simulation the thermodynamic processes of the device is investigated. Finally, the autothermal reformer and the SOFC consisting of 14 cells are coupled. During this test series, I-V-characteristics are measured, fuel utilisation is calculated and the self-sufficient system operation is shown. (orig.)

  13. Preparation of cathode materials for solid oxide solid fuel (SOFC) using gelatin; Preparacao de materiais catodicos para celulas a combustivel de oxido solido (SOFC) atraves do uso de gelatina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.M.; Aquino, F. de M.; Macedo, D.A. de; Sa, A.M.; Galvao, G.O., E-mail: rinaldo_mendesa@hotmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)

    2016-07-01

    Fuel cells are electrochemical devices that convert chemical energy into electrical energy. These devices are basically divided into interconnectors, electrolyte, anode, and cathode. Recently, studies of improvements in microstructural and morphological properties of calcium cobaltate (Ca{sub 3}Co{sub 4}O{sub 9}, C349) has been made regarding its potential use as SOFC cathode for intermediate temperature. Gelatin has proven to be effective as a polymerizing agent in the synthesis of nanocrystalline materials. This work reports the synthesis and characterization of the C349 cathode using commercial gelatin. The structural properties of the material were determined by X-ray diffraction (XRD). Morphological characterization was performed by scanning electron microscopy (SEM). The results showed the formation of the crystalline phase at 900 °C, indicating the effectiveness of the gelatin in the preparation of cathodes for SOFC. (author)

  14. Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ni, De Wei

    . The characterization of thermo-mechanical properties, such as viscoelasticity, enables a prediction of microstructural stability of SOFCs. Tape-cast bi-layer structures for CGO/YSZ and CGO/ScYSZ was studied during the thermal processing. Different sintering kinetics of bi-layer tape give rise to localized tensile...... stresses, which develop a camber in the final sintered body. To analyze the phenomena, shrinkage of SOFC components single layers and camber development of bi-layers were measured in-situ by optical dilatometry. In addition, a thoughtful investigation of the viscoelastic properties of individual layers...... was carried out by thermo-mechanical analysis (TMA). The results from the different techniques were found complementary and viscous behavior of the layered ceramics was verified....

  15. Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST Plant

    Directory of Open Access Journals (Sweden)

    Juanjo Ugartemendia

    2013-09-01

    Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.

  16. Recent Progress in Development and Manufacturing of SOFC at Topsoe Fuel Cell A/S and Risø DTU

    DEFF Research Database (Denmark)

    Christiansen, Niels; Holm-Larsen, Helge; Primdahl, Søren

    2011-01-01

    The SOFC development at Topsoe Fuel Cell A/S (TOFC) and Risø DTU is based on a R&D consortium which includes material development and manufacturing of materials, cells and stacks with metallic interconnects focussing on high electrochemical performance, durability and robustness. A significant....... TOFC is engaged in development and demonstration of stack assemblies, multi-stack modules and PowerCore units that integrate stack modules with hot fuel processing units....

  17. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120 kW e have been performed. Woodchips are used as gasification feedstock to produce syngas, which is then utilized to feed the anode side of the SOFC stacks. A thermal efficiency of 0.424 LHV (lower heating value) for the plant is found to use 89.4 kg/h of feedstock to produce the above mentioned electricity. Thermoeconomic analysis shows that the production price of electricity is 0.1204 $/kWh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214 $/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity at a cost that is competitive with the corresponding renewable systems of the same size. - Highlights: • A 120 kW e integrated gasification SOFC–Stirling CHP is presented. • Effect of important parameters on plant characteristic and economy are studied. • A modest thermal efficiency of 0.41 is found after thermoeconomic optimization. • Reducing stack numbers cuts cost of electricity at expense of thermal efficiency. • The plant cost is estimated to be about 3433 $/kW when disposal costs are neglected

  18. Long-term commitment of Japanese gas utilities to PAFCs and SOFCs

    Science.gov (United States)

    Matsumoto, Kiyokazu; Kasahara, Komei

    Tokyo Gas and Osaka Gas have been committed to addressing the energy- and environment-related issues of Japan through promotion of natural gas, an energy friendly to the environment. Being aware of the diversifying market needs (e.g. efficient energy utilization, rising demand for electricity, etc.), active efforts have been made in marketing gas-fired air-conditioning and co-generation systems. In this process, a high priority has also been placed on fuel cells, particularly for realizing their market introduction. Since their participation in the TARGET Program in USA in 1972, the two companies have been involved with the field testing and operation of phosphoric acid fuel cells (PAFCs), whose total capacity has amounted to 12.4 MW. The two companies have played a vital role in promoting and accelerating fuel cell development through the following means: (1) giving incentives to manufacturers through purchase of units and testing, (2) giving feedback on required specifications and technical problems in operation, and (3) verifying and realizing long-term operation utilizing their maintenance techniques. It has been expected that the primary goal of the cumulative operation time of 40 000 h shall be achieved in the near future. Work has also been in progress to develop SOFC. In the joint R&D of a 25-kW solid oxide fuel cell (SOFC) with Westinghouse, the record operation time of 13 000 h has been achieved. Though still twice as much as the average price of competing equipment, the commercialization of PAFCs is close at hand. By utilizing government spending and subsidies for field testing, work will be continued to verify reliability and durability of PAFCs installed at users' sites. These activities have been expected to contribute to realizing economically viable systems and enhance market introduction. The superlative advantages of fuel cells, particularly their environment-friendly qualities, should be best taken advantage of at an appropriate time. In

  19. Experimental evaluation of the sensitivity to fuel utilization and air management on a 100 kW SOFC system

    Science.gov (United States)

    Santarelli, M.; Leone, P.; Calì, M.; Orsello, G.

    The tubular SOFC generator CHP-100, built by Siemens Power Generation (SPG) Stationary Fuel Cells (SFC), is running at the Gas Turbine Technologies (GTT) in Torino (Italy), in the framework of the EOS Project. The nominal load of the generator ensures a produced electric power of around 105 kW e ac and around 60 kW t of thermal power at 250 °C to be used for the custom tailored HVAC system. Several experimental sessions have been scheduled on the generator; the aim is to characterize the operation through the analysis of some global performance index and the detailed control of the operation of the different bundles of the whole stack. All the scheduled tests have been performed by applying the methodology of design of experiment; the main obtained results show the effect of the change of the analysed operating factors in terms of distribution of voltage and temperature over the stack. Fuel consumption tests give information about the sensitivity of the voltage and temperature distribution along the single bundles. On the other hand, since the generator is an air cooled system, the results of the tests on the air stoichs have been used to analyze the generator thermal management (temperature distribution and profiles) and its effect on the polarization. The sensitivity analysis of the local voltage to the overall fuel consumption modifications can be used as a powerful procedure to deduce the local distribution of fuel utilization (FU) along the single bundles: in fact, through a model obtained by deriving the polarization curve respect to FU, it is possible to link the distribution of voltage sensitivities to FC to the distribution of the local FU. The FU distribution will be shown as non-uniform, and this affects the local voltage and temperatures, causing a high warming effect in some rows of the generator. Therefore, a discussion around the effectiveness of the thermal regulation made by the air stoichs, in order to reduce the non-uniform distribution of

  20. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    Science.gov (United States)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  1. Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-30

    This work explored the use of oxide heterostructures for enhancing the catalytic and degradation properties of solid oxide fuel cell (SOFC) cathode electrodes. We focused on heterostructures of Ruddlesden-Popper and perovskite phases. Building on previous work showing enhancement of the Ruddlesden-Popper (La,Sr)2CoO4 / perovskite (La,Sr)CoO3 heterostructure compared to pure (La,Sr)CoO3 we explored the application of related heterostructures of Ruddlesden-Popper phases on perovskite (La,Sr)(Co,Fe)O3. Our approaches included thin-film electrodes, physical and electrochemical characterization, elementary reaction kinetics modeling, and ab initio simulations. We demonstrated that Sr segregation to surfaces is likely playing a critical role in the performance of (La,Sr)CoO3 and (La,Sr)(Co,Fe)O3 and that modification of this Sr segregation may be the mechanism by which Ruddlesden-Popper coatings enhance performances. We determined that (La,Sr)(Co,Fe)O3 could be enhanced in thin films by about 10× by forming a heterostructure simultaneously with (La,Sr)2CoO4 and (La,Sr)CoO3. We hope that future work will develop this heterostructure for use as a bulk porous electrode.

  2. Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Kawai, Masahito; Kawae, Osamu; Morizane, Yuta

    2013-01-01

    Highlights: ► The characteristics of a microgrid composed of SOFCs and tidal power generators were investigated. ► The CO 2 emissions of this microgrid were calculated based on an oceanographic investigation. ► The frequency and wave form quality of the electric power system were investigated. ► The voltage regulation and reactive power control of the electric power system need to be improved. -- Abstract: The development of local energy systems is important to curtailing global warming and improving public safety. Therefore, in this work, the basic performance of an independent microgrid consisting of tidal power generators, photovoltaics, fuel cells, and heat pumps to locally produce energy for local consumption was analyzed. Fast tidal currents near inlets that join lakes to the sea were converted into electrical energy via a three-phase synchronized generator connected to Darius water turbines. On the basis of the results of an oceanographic survey, the production of electricity and the CO 2 emissions of each generator were calculated using balanced equations for electricity and heat. The calculations indicated that 33% of the CO 2 emissions were associated with the energy supplied through conventional methods during the summer season. Although the frequency and waveform of the electricity of the microgrid were high quality, improvement in the voltage regulation was still required.

  3. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Michael [Technology Management Inc., Cleveland, OH (United States); Ruhl, Robert [Technology Management Inc., Cleveland, OH (United States)

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  4. Inkjet printing and inkjet infiltration of functional coatings for SOFCs fabrication

    Directory of Open Access Journals (Sweden)

    Tomov Rumen I.

    2016-01-01

    Full Text Available Inkjet printing fabrication and modification of electrodes and electrolytes of SOFCs were studied. Electromagnetic print-heads were utilized to reproducibly dispense droplets of inks at rates of several kHz on demand. Printing parameters including pressure, nozzle opening time and drop spreading were studied in order to optimize the inks jetting and delivery. Scanning electron microscopy revealed highly conformal ~ 6-10 μm thick dense electrolyte layers routinely produced on cermet and metal porous supports. Open circuit voltages ranging from 0.95 to 1.01 V, and a maximum power density of ~180 mW.cm−2 were measured at 750 °C on Ni-8YSZ/YSZ/LSM single cell 50×50 mm in size. The effect of anode and cathode microstructures on the electrochemical performance was investigated. Two - step fabrication of the electrodes using inkjet printing infiltration was implemented. In the first step the porous electrode scaffold was created printing suspension composite inks. During the second step inkjet printing infiltration was utilized for controllable loading of active elements and a formation of nano-grid decorations on the scaffolds radically reducing the activation polarization losses of both electrodes. Symmetrical cells of both types were characterized by impedance spectroscopy in order to reveal the relation between the microstructure and the electrochemical performance.

  5. Développement de matériaux pour les piles à combustibles SOFC

    Science.gov (United States)

    Dubourdieu, G.; Gauthier, G.; Henry, J. Y.; Sanchette, F.; Delépine, J.; Lefebvre-Joud, F.

    2002-04-01

    Dans le cadre des nouveaux programmes du CEA dédiés aux Nouvelles Technologies pour l'Energie, l'un des axes concerne les piles à combustible haute température et tout solide (SOFC). Deux voies de recherche sont présentées ici ; l'une traite de l'élaboration d'électrolytes connus - de type zircone yttriée - en couche mince, par des techniques de dépôt PVD ou CVD à injection, ceci dans le but d'un fonctionnement à plus basse température. L'autre a trait au développement de matériaux d'anode compatibles avec l'utilisation directe du méthane à la place de l'hydrogène. Les chromates de lanthane substitué par le strontium, dont une méthode de synthèse sous forme de poudres très divisées est présentée ici, semblent être des matériaux prometteurs pour cette application, à condition qu'ils ne subissent pas de dégradation en fonctionnement.

  6. Fuel cell studies of perovskite-type materials for IT-SOFC

    Science.gov (United States)

    Peña-Martínez, J.; Marrero-López, D.; Ruiz-Morales, J. C.; Buergler, B. E.; Núñez, P.; Gauckler, L. J.

    The electrochemical performance of solid oxide fuel cells (SOFCs) based on perovskite-type materials (ABO 3) was investigated. La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM) ceramics were used as electrolyte and a composite containing La 0.8Sr 0.2MnO 3 (LSM) as cathode. Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) was also used as cathode and La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCM) as anode materials. Furthermore, fluorite-type Sm 0.15Ce 0.85O 2- δ (SDC) material was used as buffer layer between the electrolyte and the anode to avoid possible interfacial reactions. The maximum power density value of BSCF/LSGM/LSCM with 1.5 mm thick electrolyte supported cell was 160 mW cm -2 at 1073 K, using moist H 2 diluted with N 2 as fuel and air as oxidant.

  7. Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.; LU, Zigui; Stevenson, Jeffry W.

    2017-12-04

    Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact, adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.

  8. Plasma-Sprayed LSM Protective Coating on Metallic Interconnect of SOFC

    Directory of Open Access Journals (Sweden)

    Jia-Wei Chen

    2017-12-01

    Full Text Available In this study, a (La0.8Sr0.20.98MnO3 protective layer was prepared on the C276, Crofer22 APU, SUS304, and SUS430 alloys by the atmospheric plasma spraying technique (APS. The oxidation behavior and electrical property of these metal alloys have been investigated isothermally at 800 °C in air for up to 300 h. Results showed that the ferritic steels transform into MnCr2O4 spinels and a Cr2O3 layer during isothermal oxidation. The C276 alloy formed NiCr2O4 and FeCr2O4 layers; these are protective and act as an effective barrier against chromium migration into the outer oxide layer, and the alloy demonstrated good oxidation resistance and a reasonable match to the coefficient of thermal expansion of the substrate and a low-oxide scale area-specific resistance. The ASR effects on the formation of oxide scale have been investigated, and the ASR of coated samples was below 0.024 Ω·cm2. It has good electrical conductivity for SOFC in long-term use.

  9. Temperature field, H{sub 2} and H{sub 2}O mass transfer in SOFC single cell: Electrode and electrolyte thickness effects

    Energy Technology Data Exchange (ETDEWEB)

    Zitouni, Bariza; Moussa, Hocine Ben; Saighi, Slimane [Laboratoire d' etude des systemes energetiques industriels (LESEI), Universite de Batna, Batna (Algeria); Oulmi, Kafia [Laboratoire de chimie et de chimie de l' environnement, Universite de Batna, Batna (Algeria); Chetehouna, Khaled [Laboratoire Energetique Explosions Structures (LEES). ENSI, Bourges (France)

    2009-06-15

    The temperature increment in electrodes and electrolyte of a fuel cell is mainly attributed to the chemical reaction and the irreversibilities. The aim of this work is to study the increasing temperature of a SOFC single cell under the influence of the electrode and electrolyte thicknesses for its type of heat source. The hydrogen and water field are also discussed according to anode thickness. The results of a self-developed mathematical model show the increasing temperature in the solid side of SOFC; anode, electrolyte and cathode by heat source types ''Joule effect'' at the several geometric configurations of SOFC. The maximum temperature value is also discussed for several cathode thicknesses under the activation polarization effect. Moreover, mass transfer for both hydrogen and water is studied according to anode thickness. (author)

  10. Manufacturing technology of AS-SOFC prepared with different commercially available precursors

    Directory of Open Access Journals (Sweden)

    Kawalec M.

    2016-01-01

    Full Text Available Fuel cells are devices converting the chemical energy into the electrical energy and heat as result of the electrochemical reaction between gaseous fuel and a gas oxidant in flameless combustion process. Because of omission of thermo-mechanical steps that are present in any traditional energy conversion technology (e.g. gas turbine fuel cells show increased efficiency in comparison. Compact sizes and modular scalability predestines this technology for distributed energy generation including but not limited to renewable energy sources (e.g. wind, solar. Fuel cells technology also addresses other very important part of distributed renewable energy generation. Because of the unreliable energy production rates and the usual for renewable energy sources mismatch between energy supply and demand, some sort of energy storage is needed to store surplus of produced energy and release it when needed. Reversible fuel cells, that generate hydrogen from available surplus of energy and then generate energy from that stored fuel when needed are cheaper and more ecologically friendly alternative to usually used batteries. This technology is still under development, including research at IEn OC CEREL. In the early development of reversible fuel cells, new types of nickel oxide and porosity forming carbon was evaluated for this task. This work compares the electrical and mechanical parameters of SOFC manufactured with JT Backer NiO and Carbon Polska carbon with cells made from other commercially available materials. Based on evaluated quality, purity, availability and cost, following materials were selected for comparison: Novamet NiO, 99,9 % pure, grain size 1-2 µm and Aldrich carbon with parameters similar to graphite used previously. Preliminary tests show clear changes in the microstructural, mechanical and electrical parameters.

  11. Electrically conducting perovskites for SOFC and catalysis. Preparation characterization and testing

    Energy Technology Data Exchange (ETDEWEB)

    Gordes, P.

    1997-12-31

    Solid oxide fuel cells offer the possibility of high efficiency and low pollution energy source. A fuel cell converts chemical energy directly to electricity without combustion as an intermediate step. H{sub 2}, CO or hydrocarbons can be used as fuel gas. At present the main problems in developing a commercial SOFC are related to the air electrode and interconnect. Commercial air electrode and interconnect materials are still not on the market. This dissertation concerns the following main tasks: 1. A theoretical part on the co-optimization of electronic and catalytic properties of perovskites (ABO{sub 3}) where the A position is occupied by mixed rare earth or alkaline earth metal (Ca, Sr, Ba, La, etc) and the B position is occupied by a mixture of transition metals (Mn, Fe, Co, Ni, Cr, etc). 2. Optimization of the drip pyrolysis method and fabrication of high quality perovskite powders of selected compositions for further studies. This work involves a detailed characterization of powders prepared in terms of phase homogeneity, crystallite size, agglomeration, chemical composition etc. 3. Development of the necessary processing technology for fabrication of shaped samples with a closely controlled porosity and pore size distribution. This work involves development of a suitable shaping process (uniaxial pressing, extrusion, tape casting), and a detailed study of the phase evolution and densification properties of the powders as a function of temperature. 4. Characterization of the prepared perovskite components in terms of phase homogeneity, microstructure, as well as electrical and catalytic properties. 5. Recommendations for future work. (EG) 151 refs.

  12. Análise termodinâmica de um ciclo de potência com célula a combustível sofc e turbina a vapor = Thermodynamic analysis of a power cycle such as SOFC fuel cell and steam turbine

    Directory of Open Access Journals (Sweden)

    Alexandre Sordi

    2006-01-01

    Full Text Available O objetivo deste artigo foi realizar a análise termodinâmica de um sistema híbrido, SOFC / ST (célula a combustível tipo SOFC e turbina a vapor ST. O combustível considerado para a análise foi o gás metano (biogás produzido por meio da digestão anaeróbica de resíduos orgânicos. A metodologia utilizada foi o balanço de energia dosistema SOFC / ST, considerando a reforma interna do metano na célula a combustível, de forma a obter a sua eficiência elétrica. O resultado foi comparado a um ciclo combinado convencional de turbina a gás e turbina a vapor (GT / ST para potências entre 10 MW e 30MW. A eficiência do sistema híbrido SOFC / ST variou de 61% a 66% em relação ao poder calorífico do metano; e a eficiência do ciclo combinado GT / ST variou de 41% a 55% para o mesmo intervalo de potência. Para geração distribuída a célula a combustível SOFC é atecnologia mais eficiente.The objective of this article was to analyze the thermodynamic of ahybrid system, SOFC / ST (SOFC fuel cell and ST steam turbine. The fuel for the analysis was the gas methane (biogas produced through the anaerobic digestion of the organic residues. The utilized methodology was the energy balance of the system SOFC / ST,considering the internal reforming of methane in the fuel cell, in a way to obtain its electric effectiveness. The result was compared to a conventional combined cycle of gas turbine and steam turbine (GT / ST for powers between 10 MW and 30 MW. The efficiency of the hybrid system SOFC / ST varied from 61 to 66% in relation to the lower heating value of methane; and the efficiency of the combined cycle GT / ST varied from 41 to 55% within the same power interval. For distributed generation, the SOFC fuel cell is the most efficienttechnology.

  13. Multi modélisation des phénomènes thermiques dans les piles type SOFC planaire

    OpenAIRE

    Ben Moussa, Hocine; Zitouni, Bariza; Oulmi, Kafia; Saighi, Slimane

    2007-01-01

    International audience; C'est l'enthalpie de formation de l'eau qui est l'origine de la transformation de l'énergie chimique en énergie électrique dans les piles à combustible. Dans le cas des piles SOFC, le carburant et le comburant respectivement à l'anode et à cathodique diffusent à travers les deux électrodes vers les interfaces avec l'électrolyte où les réactions chimiques endothermiques et exothermiques auront lieu. Dans le cadre de ce travail, l'augmentation de la température dans la p...

  14. Potentialities of the sol-gel route to develop cathode and electrolyte thick layers Application to SOFC systems

    OpenAIRE

    Lenormand, Pascal; Rieu, Mathilde; Cienfuegos, René Fabian; Julbe, Anne; Castillo, Simone; Ansart, Florence

    2008-01-01

    In this work, we report the potential of sol–gel process to prepare cathode and electrolyte thin and thick layers on anodic NiO-YSZ supports which were also made from powders prepared by sol–gel route. YSZ and La2 − xNiO4 + δ, La4Ni3O10 were synthesized as electrolyte and cathode materials for SOFC applications. For electrolyte shaping, yttria stabilized zirconia (YSZ, 8% Y2O3) thick films were cast onto porous NiO-YSZ composite substrates by a dip-coating process using a new suspension formu...

  15. Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: homogenized behaviors and effect of contact

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2016-01-01

    Currently thermo-mechanical analysis of the entire solid oxide fuel cell (SOFC) stack at operational conditions is computationally challenging if the geometry of metallic interconnects is considered explicitly. This is particularly the case when creep deformations in the interconnect are considered...... interconnect. Finally, the developed constitutive law is verified by comparing its predictions for creep strain with results from the original 2D finite element model for different loading conditions. The constitutive law is found to satisfactorily describe the mechanical behavior of corrugated metallic...

  16. A Novel SOFC/SOEC Sealing Glass with a Low SiO2 Content and a High Thermal Expansion Coefficient

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Agersted, Karsten; Zielke, Philipp

    2017-01-01

    the amount of Si emission, a low Si containing sealing glass (chemical composition: 50 mol% CaO, 20 mol% ZnO, 20 mol% B2O3 and 10 mol% SiO2) was developed at DTU. In this work, the results from thermal characterization, the crystallization behavior of the glass and the long-term stability and adhesion...... behavior of the glass were studied under SOFC and SOEC relevant conditions. The glass-ceramic sealant performed well over 400 h, and no cell degradation or leakage related to the seal was found, indicating that the developed glass system is applicable for the use in SOFC/SOEC stacks....

  17. Effects of Sm doping content on the ionic conduction of CeO2 in SOFCs from first principles

    Science.gov (United States)

    Fu, Zhaoming; Sun, Qian; Ma, Dongwei; Zhang, Na; An, Yipeng; Yang, Zongxian

    2017-07-01

    Sm-doping effects on ionic conduction of the CeO2 electrolyte in solid oxide fuel cells (SOFCs) are investigated using the first-principles calculations. We focus on the influence of the Sm content on ionic conductivity in Sm-doped ceria (SDC). In previous studies, the Sm-doping effects are attributed to the increase in the oxygen vacancies induced by Sm3+. However, our investigations reveal that Sm doping contents play multiple roles in affecting the ionic conductivity. First, the activity of oxygen migration can be controlled by the Sm concentration. Second, the association energy between the dopant and oxygen vacancies, which is very important for O conductivity in SDC, can also be tuned by changing the dopant content. In addition, oxygen-rich and oxygen-poor conditions will significantly modify the band structures of SDC. Our work is helpful to understand the mechanism of high ionic conductivity in the electrolyte of Sm-doped ceria in SOFCs.

  18. Preparation of Ni-YSZ Cermet through Reduction of NiO-YSZ Ceramic for SOFC Anode

    Science.gov (United States)

    Baity, P. S. N.; Budiana, B.; Suasmoro, S.

    2017-07-01

    Research on the synthesis of Nickel-Yttria Stabilized Zirconia (Ni-YSZ) cermet for Solid Oxide Fuel Cell (SOFC) anode has been performed. The preparation was carried out through the reduction process of the Nickel Oxide-Yttria stabilized Zirconia (NiO-YSZ) ceramic. NiO and YSZ were prepared separately, the NiO powder was prepared by calcination of CH4Ni3O7.xH2O at 500°C for 3 hours, while YSZ powder was prepared by calcination of 7mol% Y2O3 and 93mol% ZrO2 mixture at 1350°C for an hour. The NiO-YSZ ceramic preparation was carried outby mixing of YSZ and NiO powder with natural white starch by weight ratio NiO: YSZ: natural white starch = 4:6:1 followed by sintering at 1200°C for 4 hours. The completion of reduction process of NiO-YSZ ceramic was performed at 1000°C in flowing Argon (Ar) containing 10% Hydrogen (H2) up to 4 hours. The characterisations include thermogravimetric analysis (TGA), XRD, SEM-EDX and Impedance Analyzer meter. The synthesised Ni-YSZ cermet at composition 33wt% Ni and 67wt% YSZ, shows relative density 70% and electrical conductivity 10-2 S/cm at 700°C, it qualifies as anode for SOFC.

  19. Obtaining of ceria - samaria - gadolinia ceramics for application as solid oxide fuel cell (SOFC) electrolyte

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo

    2010-01-01

    Cerium oxide (CeO 2 ) when doped with rare earth oxides has its ionic conductivity enhanced, enabling its use as electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), which is operated in temperatures between 500 e 700 degree C. The most effective additives or dopants for ionic conductivity improvement are (samarium oxide - Sm 2 O 3 ) and gadolinia (gadolinium oxide - Gd 2 O 3 ), fixing the concentration between 10 and 20 molar%. In this work, Ce 0,8 (SmGd) 0,2 O 1,9 powders have been synthesized by hydroxide, carbonate and oxalate coprecipitation routes. The hydrothermal treatment has been studied for powders precipitated with ammonium hydroxide. A concentrate of rare earths containing 90wt% of CeO 2 and other containing 51% of Sm 2 O 3 and 30% of Gd 2 O 3 , both prepared from monazite processing, were used as starting materials. These concentrates were used due the lower cost compared to pure commercial materials and the chemical similarity of others rare earth elements. Initially, the coprecipitation and calcination conditions were defined. The process efficiency was verified by ceramic sinterability evaluation. The results showed that powders calcined in the range of 450 and 800 degree C presented high specific surface area (90 - 150 m 2 .g -1 ) and fluorite cubic structure, indicating the solid solution formation. It was observed, by scanning electron microscopy, that morphology of particles and agglomerates is a function of precipitant agent. The dilatometric analysis indicated the higher rate of shrinkage at temperatures around 1300-1350 degree C. High densification values (>95% TD) was obtained at temperatures above 1400 degree C. Synthesis by hydroxides coprecipitation followed by hydrothermal treatment demonstrated to be a promising route for crystallization of ceria nano powders at low temperatures (200 degree C). High values of specific surface area were reached with the employment of hydrothermal treatment (about 100 m 2 .g -1

  20. Protons in ceria and their roles in SOFC electrode reactions from thermodynamic and SIMS analyses

    Energy Technology Data Exchange (ETDEWEB)

    Yokokawa, H.; Horita, T.; Sakai, N.; Yamaji, K.; Brito, M.E.; Xiong, Y.-P.; Kishimoto, H. [Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology AIST, Central No. 5 1-1 Higashi, 305-8565, Tsukuba, Ibaraki (Japan)

    2004-10-29

    This paper reviews our recent activities of investigations on protons and other defects in ceria and their relations to the solid oxide fuel cell (SOFC) electrode reactions. Thermodynamic analyses have revealed that the chemical potential of dopant YO{sub 1.5} is a good measure for indicating the configuration of oxide ion vacancies in ceria and zirconia; that is, the large negative value of YO{sub 1.5} chemical potential in YSZ corresponds to the next nearest neighbor position of vacancies to the dopant site, whereas in doped ceria, the nearest neighbor position is favored and it corresponds to the less-negative chemical potential. Further thermodynamic analyses based on activities for CeO{sub 1.5} and YO{sub 1.5} have revealed that protons solubility and hole conductivity are governed mainly by the activity of YO{sub 1.5}, whereas electron conductivity is well interpreted with CeO{sub 1.5} concentration calculated from the activities of CeO{sub 2} and CeO{sub 1.5}. Analysis of the oxygen isotope exchange reaction rate that is enhanced in the presence of water vapor was made based on recognition that adsorption and desorption can be taken place at different sites which are connected with hopping processes; when a reaction-related elementary process is enhanced by water vapor, such a hopping process may become the rate-limiting step; this can explain why essentially the same activation energy was obtained for the surface reaction rate and the oxide ion diffusivity. In the electrochemical reactions, effects due to water vapors have been analyzed based on the fact that protons can be migrated in ceria due to the high proton solubility. For anodes, the oxygen transfer mechanism via water vapor from the electrolyte surface or from the electrolyte/anode/gas triple-phase boundaries to nickel surface is suggested under the assumption that protons in nickel can be transferred to ceria or consumed at the three-phase boundaries. This mechanism can explain why ceria can help

  1. Proteic sol-gel synthesis of copper doped misfit Ca-cobaltites with potential SOFC application

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Chrystian G.M. [Materials Science and Engineering Postgraduate Program, UFPB, 58051-900, João Pessoa (Brazil); Silva, Rinaldo M. [Department of Chemical Engineering, UFPB, 58051-900, João Pessoa (Brazil); Aquino, Flávia de M. [Alternative and Renewable Energy Center, UFPB, 58051-900, João Pessoa (Brazil); Raveau, Bernard; Caignaert, Vincent [Laboratoire CRISMAT ENSICAEN UMR CNRS 6508, 6 Boulevard du Maréchal Juin, 14050, Caen Cedex 04 (France); Cesário, Moisés R., E-mail: moises.cesario@ensicaen.fr [Laboratoire CRISMAT ENSICAEN UMR CNRS 6508, 6 Boulevard du Maréchal Juin, 14050, Caen Cedex 04 (France); Macedo, Daniel A., E-mail: damaced@gmail.com [Materials Science and Engineering Postgraduate Program, UFPB, 58051-900, João Pessoa (Brazil)

    2017-02-01

    The present work reports the synthesis, structure and electrochemical assessment of Cu-doped calcium cobaltites as cathode materials for solid oxide fuel cells (SOFCs). Powders of composition Ca{sub 3−x}Cu{sub x}Co{sub 4}O{sub 9−δ} (0 ≤ x ≤ 0.2) were obtained by a proteic sol-gel method which uses gelatin as polymerizing agent. As-prepared materials were calcined at 900 °C for 1 h and characterized by X-ray diffraction, with Rietveld refinement of the diffraction data, and scanning electron microscopy. Screen-printed porous electrodes fired (at 950 °C for 2 h) on both faces of ceria based electrolytes were electrochemically characterized by impedance spectroscopy between 600 and 800 °C in air atmosphere. The results indicated the attainment of Ca{sub 3−x}Cu{sub x}Co{sub 4}O{sub 9−δ} solid solutions with monoclinic misfit layered structure and around 2 vol% Co{sub 3}O{sub 4} as a secondary phase. Micro-plates like powders had irregular shape and average diameter near 2 μm. The area specific resistance (ASR) is in line with literature data for cathodes of similar compositions prepared by other synthetic routes. ASR was optimized for the composition Ca{sub 2.99}Cu{sub 0.01}Co{sub 4}O{sub 9−δ}, achieving 0.84 Ω cm{sup 2} at 800 °C in air. - Highlights: • Proteic sol-gel synthesis of Ca{sub 3−x}Cu{sub x}Co{sub 4}O{sub 9−δ} (0 ≤ x ≤ 0.2). • Cu{sup 2+} doping enhances electrode densification. • Area specific resistance (ASR = 0.84 Ω cm{sup 2} at 800 °C) optimized for Ca{sub 2.99}Cu{sub 0.01}Co{sub 4}O{sub 9−δ}.

  2. High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.; Colclasure, A. M.; Goldin, G.

    Effective thermal integration of system components is critical to the performance of small-scale (design and simulation tool for a highly-integrated tubular SOFC system. The SOFC is modeled using a high fidelity, one-dimensional tube model coupled to a three-dimensional computational fluid dynamics (CFD) model. Recuperative heat exchange between SOFC tail-gas and inlet cathode air and reformer air/fuel preheat processes are captured within the CFD model. Quasi one-dimensional thermal resistance models of the tail-gas combustor (TGC) and catalytic partial oxidation (CPOx) complete the balance of plant (BoP) and SOFC coupling. The simulation tool is demonstrated on a prototype 66-tube SOFC system with 650 W of nominal gross power. Stack cooling predominately occurs at the external surface of the tubes where radiation accounts for 66-92% of heat transfer. A strong relationship develops between the power output of a tube and its view factor to the relatively cold cylinder wall surrounding the bundle. The bundle geometry yields seven view factor groupings which correspond to seven power groupings with tube powers ranging from 7.6-10.8 W. Furthermore, the low effectiveness of the co-flow recuperator contributes to lower tube powers at the bundle outer periphery.

  3. Nickel-ceria infiltrated Nb-doped SrTiO3 for low temperature SOFC anodes and analysis on gas diffusion impedance

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Jacobsen, Torben

    2012-01-01

    This report concentrates on high performance anodes appropriate for SOFCs operating at low temperatures (400–600 °C). Symmetrical cells were made by screen printing of Nb-doped SrTiO3 (STN) on both sides of a dense ScYSZ electrolyte. Backbones I (36% porosity) and II (47% porosity) were obtained...

  4. Bonding characteristics of glass seal/metallic interconnect for SOFC applications: Comparative study on chemical and mechanical properties of the interface

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    Glass and glass–ceramics have been extensively used as seal material in planar solid oxide fuel cell (SOFC) stack. The main objective of the present work was to investigate the joining properties of a silicate based glass-ceramic as seal material with two different ferritic stainless alloys as in...

  5. High performance ceria-bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating

    KAUST Repository

    Hou, Jie

    2015-03-24

    The Sm0.075Nd0.075Ce0.85O2-δ-Er0.4Bi1.6O3 bilayer structure film, which showed an encouraging performance in LT-SOFCs, was successfully fabricated by a simple low cost technique combining one-step co-pressing with drop-coating.

  6. Numerical model for evaluation of the effects of carbon deposition on the performance of 1 kW SOFC stack – a proposal

    Directory of Open Access Journals (Sweden)

    Motylinski Konrad

    2017-01-01

    Full Text Available Solid oxide fuel cells are high-temperature electrochemical energy conversion devices which operate at elevated temperature (600- 900°C. As a result it possible to internally reform the incoming fuel, thus except hydrogen and carbon monoxide, SOFCs can be fuelled with various hydrocarbonaceous gases. The presence of carbon-containing compounds in the fuel might result in the formation and of carbon in a form of a thin layer on the SOFC anode. The carbon deposition process depends on the thermodynamic conditions, such as temperature and steam to carbon ratio. The higher the temperature, the longer period of time is required for the solid carbon particles to deposit on the porous surface. The correlation used for this study is based on creating the ternary diagrams or Gibb’s diagrams. The presented results cover a first stage of the analysis of the carbon deposition processes in SOFCs, focusing mainly on the numerical study of the changes of the fuel cell performance due to degradation of anode performance. A dedicated model of SOFC was proposed. It accounts for the diminution of the active area and/or deactivation by the increase of the resistance of the anode. The article presents the proposed methodology and the numerical approach.

  7. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei

    2013-11-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte structure showed good chemical stability in both CO2 and H2O atmosphere, indicating that the BZPY layers effectively protect the inner BCY electrolyte, while the BCY electrolyte alone decomposed completely under the same conditions. Fuel cell prototypes fabricated with the sandwiched electrolyte achieved a relatively high performance of 185 mW cm- 2 at 700 C, with a high electrolyte film conductivity of 4 × 10- 3 S cm- 1 at 600 C. © 2013 Elsevier B.V.

  8. NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Agersted, Karsten; Hansen, Karin Vels

    2014-01-01

    (ETEM). ETEM offer the possibility to record image series (movies) of the ceramic nanostructures with atomic scale resolution during exposure to a reactive gas environment at elevated temperatures. The present contribution focuses on the typical reduction preparation step for the state-of-the-art Ni....../YSZ (YSZ = Y2O3-stabilized ZrO2) based anodes for SOFC and cathodes for SOEC. Specifically, the reduction of nickel oxide to form the catalytically active nickel surface is monitored directly at the nano- and atomic scale by using an ETEM. The reduction process was followed while exposing NiO/YSZ and pure...... rapid temperature ramping for example from room temperature to 800°C in only 1 s. The ETEM results are compared to complementary averaging techniques such as thermo-gravimetric analysis (TGA) and X-ray diffraction analysis (XRD). The figure presents a TEM image series of NiO during exposure to 2 mbar H2...

  9. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias

    2015-01-01

    . The zone is austenitic at the exposure temperature but transforms to ferrite during cooling. When a CeO2 nickel diffusion barrier layer was used The ASR was considerably higher. These results imply that nickel diffusion is not only detrimental: It leads to microstructural instability but also results......Metallic interconnects in solid oxide fuel cell (SOFC) stacks are often in direct contact with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Interdiffusion between the two components may occur at the operating temperature of 700–850◦C. The alteration of chemical composition can result...... anode conditions at 800◦C. The microstructure in the contact area was characterized using scanning electron microscopy techniques. The ASR was low for the steel in direct contact with the Ni/YSZ anode. Nickel diffusion into the steel resulted in a fine grained zone, which was identified as ferrite...

  10. Characterization of a well performing and durable Ni:CGO-infiltrated anode for metal-supported SOFC

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Graves, Christopher R.

    3000 hours of 0.25A/cm2 galvanostatic testing at 650 ºC was shown. Furthermore, it was shown on button cells that if the cathode side consisted of a dense CGO barrier layer in combination with a LSC cathode, a performance with an area specific resistance (ASR) of 0.27 Ω cm2 at 650 ºC could be obtained....... These performance and durability characteristics are very encouraging but despite several papers on metal supported SOFC with this type of infiltrated anode [1-3], the performance and the factors controlling the performance and durability is not yet well understood. Only some initial data on symmetrical cells...

  11. R and D of proton conducting SOFC reactors to co-generate electricity and ethylene at University of Alberta

    International Nuclear Information System (INIS)

    Fu, X.Z.; Zhou, G.H.; Luo, J.L.; Chuang, K.T.; Sanger, A.R.

    2010-01-01

    Ethane exists in many natural gas deposits and is also a by-product of petroleum refining. Ethane's primary use is as a petrochemical feedstock to produce ethylene, a major intermediate in the manufacture of polymers and petrochemicals. Steam cracking is the principal method for conversion of ethane to ethylene. However, in this process, over 10 per cent of ethane is oxidized to carbon dioxide (CO 2 ), generating a nitrogen oxide pollutant. A large amount of ethane is deeply oxidized to CO 2 using common oxidative dehydrogenation of ethane to ethylene, and the chemical energy is not easily recovered as high grade energy. In addition, oxidative methods also produce acetylene, which is very detrimental to the manufacture of polymers because it poisons the catalysts and must therefore be removed to form high purity ethylene feed, which is a costly process. Ethane has the potential to be used as a fuel for hydrocarbon solid oxide fuel cells (SOFCs) to generate electrical energy with high efficiency and low impact on the environment, in which it is completely oxidized to CO 2 and water. However, consumption of ethane generates greenhouse gas (CO 2 ) emissions in conventional SOFCs using oxygen ion electrolyte, and consumption of these non-renewable resources is less desirable than their use for manufacture of petrochemicals. This paper discussed the development of ethane proton conducting solid oxide fuel cell reactors and related materials in order to more efficiently use ethane resources in an environmentally friendly process. The advantages of these fuel cell reactors were presented. 5 refs.

  12. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    This publication is unique in its demystification and operationalization of the complex and elusive nature of the design process. The publication portrays the designer’s daily work and the creative process, which the designer is a part of. Apart from displaying the designer’s work methods...... and design parameters, the publication shows examples from renowned Danish design firms. Through these examples the reader gets an insight into the designer’s reality....

  13. Fuel Cell Power Plant Initiative. Volume II: Preliminary Design of a Fixed-Base LFP/SOFC Power System

    National Research Council Canada - National Science Library

    Veyo, S

    1997-01-01

    .... Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate...

  14. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction

    Science.gov (United States)

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2016-10-01

    The crystal structure and oxygen stoichiometry of the proposed double perovskite solid oxide fuel cell (SOFC) anode material PrBaMn2O5+δ were determined under SOFC anode conditions via in-situ neutron diffraction. Measurements were performed in reducing atmospheres between 692 K and 984 K. The structure was fit to a tetragonal (space group P4/mmm) layered double perovskite structure with alternating Pr and Ba A-site cation layers. Under all conditions examined, the oxygen sites in the Ba and Mn layers were fully occupied, while the sites in the Pr layer were close to completely vacant. The results of the neutron diffraction experiments are compared to previous thermogravimetric analysis experiments to verify the accuracy of both experiments. PrBaMn2O5+δ was shown to be stable over a wide range of reducing atmospheres similar to anode operating conditions in solid oxide fuel cells without significant structural changes.

  15. Tests for the use of La{sub 2}Mo{sub 2}O{sub 9}-based oxides as multipurpose SOFC core materials

    Energy Technology Data Exchange (ETDEWEB)

    Jacquens, J.; Corbel, G. [Laboratoire des Oxydes et Fluorures, UMR CNRS, Universite du Maine (France); Farrusseng, D. [IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR CNRS 5256, Universite Lyon 1, Villeurbanne (France); Georges, S. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, UMR CNRS 5631-INPG-UJF, Saint Martin d' Heres (France); Viricelle, J.P. [Ecole Nationale Superieure des Mines, LPMG-UMR CNRS, Departement Microsystemes Instrumentation et Capteurs Chimiques, Centre SPIN, Saint-Etienne (France); Gaudillere, C. [IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR CNRS 5256, Universite Lyon 1, Villeurbanne (France); Institut Carnot de Bourgogne, UMR CNRS 5209, Dijon (France); Lacorre, P.

    2010-06-15

    The mixed ionic-electronic conductivity under dilute hydrogen, the stability and the catalytic activity under propane:air type mixtures of a series of LAMOX oxide-ion conductors have been studied. The effect of exposure to dilute hydrogen on the conductivity of the {beta}-La{sub 2}(Mo{sub 2} {sub -y}W{sub y})O{sub 9} series at 600 C depends on tungsten content: almost negligible for the highest (y = 1.4), it is important for La{sub 2}Mo{sub 2}O{sub 9} (y=0). In propane:air, all tested LAMOX electrolytes are stable at 600-700 C, but get reduced when water vapour is present. La{sub 2}Mo{sub 2}O{sub 9} is the best oxidation catalyst of the series, with an activity comparable to that of nickel. The catalytic activity of other tested LAMOX compounds is much lower, (La{sub 1.9}Y{sub 0.1})Mo{sub 2}O{sub 9} showing a deactivation phenomenon. These results suggest that depending on composition, La{sub 2}(Mo{sub 2} {sub -y}W{sub y})O{sub 9} compounds could be either electrolytes in single-chamber SOFC and dual-chamber micro-SOFC (y = 1.4) or anode materials in dual-chamber SOFC (low y) or oxidation catalysts in SOFCs operating with propane (y = 0). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Hybrid Solid Oxide Fuel Cell/Gas Turbine System Design for High Altitude Long Endurance Aerospace Missions

    Science.gov (United States)

    Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.

    2006-01-01

    A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.

  17. Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC

    International Nuclear Information System (INIS)

    Huang Bo; Ye, X.F.; Wang, S.R.; Nie, H.W.; Liu, R.Z.; Wen, T.L.

    2007-01-01

    A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd 0.2 Ce 0.8 O 2 ) within the pores of the anode for a solid oxide fuel cell (SOFC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Open circuit voltages (OCVs) increased from 1.027 to 1.078 V, and the maximum power densities increased from 238 to 825 mW/cm 2 , as the operating temperature of a SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 deg. C in humidified hydrogen. The coating of nano-sized Gd 0.2 Ce 0.8 O 2 particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cell. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Consequently, 2.0 wt.%GDC-coated Ni/ScSZ anode could be used as a novel anode material for a SOFC due to better electrochemical performance

  18. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bin Hassan, Oskar Hasdinor

    2010-10-21

    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported

  19. Thermodynamical simulation for solid oxide (SOFC) type fuel cells with ethanol direct internal reforming; Simulacao termodinamica para celulas a combustivel do tipo SOFC com reforma interna direta do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aline Lima da; Malfatti, Celia de Fraga; Heck, Nestor Cezar [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGEM)]. E-mail: als14br2000@yahoo.com.br; Mello, Celso Gustavo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Quimica (PPGEQ); Halmenschlager, Cibele Melo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGEM). Lab. de Materiais Ceramicos

    2008-07-01

    In SOFC, high operative temperature allows the direct conversion of ethanol into H{sub 2} to take place in the electrochemical cell. Direct internal reforming of ethanol, however, can produce undesirable products that diminish system efficiency and, in the case of carbon deposition over the anode, may occur the breakdown of the electrode. In this way, thermodynamic analysis is fundamental to predict the product distribution as well as the conditions favorable for carbon to precipitate inside the cell. Equilibrium determinations are performed by the Gibbs energy minimization method, using the GRG algorithm. Thermodynamic conditions for carbon deposition were analyzed, in order to establish temperature ranges and H{sub 2}O/ethanol ratios where carbon precipitation is not feasible. A mathematical relationship between Lagrange multipliers and carbon activity is presented, unveiling the carbon activity in atmosphere. The effect of the type of solid electrolyte (O{sup 2-} or H{sup +} conducting) on carbon formation is also investigated. The results of this work are in agreement with previous results reported in literature using the stoichiometric method. (author)

  20. Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Ramos, Tania

    are of paramount importance for performance and performance stability. Therefore an accurate understanding of the microstructure evolution during electrochemical operation will facilitate evaluating performances of SOFC anodes, and in turn optimize its design. Here we report a wealth of microstructural...... investigations of Ce0.8Gd0.2O1.9/Ni (hereafter CGO/Ni)-infiltrated Zr0.84Y0.16O1.92 composited Sr0.94Ti0.9Nb0.1O3-δ (STN94/8YSZ) anode in a symmetric cell design under a short electrochemical evaluation test (fingerprint test), applying electrochemical impedance spectroscopy (EIS) at mild 3% H2O/H2 and harsh 50...

  1. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz; Ahsan, Muhammad; Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, PO Box 800, King Saud University, Riyadh 11421 (Saudi Arabia)

    2016-02-15

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  2. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Science.gov (United States)

    Irshad, Muneeb; Siraj, Khurram; Raza, Rizwan; Javed, Fayyaz; Ahsan, Muhammad; Shakir, Imran; Rafique, Muhammad Shahid

    2016-02-01

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na2CO3 (SDCC) and GDC amorphous Na2CO3 (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na2CO3 in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na2CO3 and SDC/ amorphous Na2CO3 nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  3. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-02-01

    Full Text Available Nanocomposites Samarium doped Ceria (SDC, Gadolinium doped Ceria (GDC, core shell SDC amorphous Na2CO3 (SDCC and GDC amorphous Na2CO3 (GDCC were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs. The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC and dual phase core shell (SDCC, GDCC electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na2CO3 in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na2CO3 and SDC/ amorphous Na2CO3 nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC with methane fuel.

  4. Low thermal conductivity of porous Al{sub 2}O{sub 3} foams for SOFC insulation

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Y.W. [Dept. Mat. Sci. Eng., National Taiwan University, Roosevelt Rd. Section 4, Taipei 106, Taiwan (China); Wei, W.C.J., E-mail: wjwei@ntu.edu.tw [Dept. Mat. Sci. Eng., National Taiwan University, Roosevelt Rd. Section 4, Taipei 106, Taiwan (China); Hsueh, C.H. [Dept. Mat. Sci. Eng., National Taiwan University, Roosevelt Rd. Section 4, Taipei 106, Taiwan (China); Materials Sci. Tech. Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Dept. Physics and Astronomy, Univ. Tennessee, Knoxville, TN (United States)

    2011-09-15

    Highlights: {yields} Porous Al{sub 2}O{sub 3} foams with total porosity of 85-95% were made by direct foaming technique. {yields} Extremely low thermal conductivities of 0.05 W m{sup -1} K{sup -1} at room temperature and 0.14 W m{sup -1} K{sup -1} at 800 deg. C are achieved. {yields} Photon radiation in IR range dominates thermal conductivity >400 deg. C. - Abstract: Ceramic thermal insulator is one of the important thermal management devices for SOFC operating at medium temperatures (<800 deg. C). This study used colloidal dispersion, direct foaming method, microwave drying, and sintering to prepare porous Al{sub 2}O{sub 3} foams with total porosity of 85-95%. The measurement of thermal conductivity by a hot-wire method was conducted. The effects of cell structure on thermal conductivity were investigated with scanning electron microscopy (SEM) and Fourier transformed infrared spectroscopy (FTIR). By optimizing the cell structures of Al{sub 2}O{sub 3} foams, low thermal conductivities of 0.05 W m{sup -1} K{sup -1} at room temperature and 0.14 W m{sup -1} K{sup -1} at 800 deg. C were achieved in this study.

  5. Hydrazine as efficient fuel for low-temperature SOFC through ex-situ catalytic decomposition with high selectivity toward hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jia; Ran, Ran; Shao, Zongping [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009 (China)

    2010-08-15

    Hydrazine is a promising fuel for portable fuel cells because it is a liquid, it is carbon free and it has a high energy density. In this work, hydrazine was investigated as an efficient fuel for low temperature solid-oxide fuel cells (SOFCs) with a traditional nickel anode. A catalytic system with high selectivity toward hydrogen was developed using Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) as the main catalyst and potassium hydroxide as the promoter. The result of compositional analysis of the products showed that the hydrazine can be decomposed into hydrogen and nitrogen with 100% selectivity when an appropriate amount of KOH promoter is used. Acceptable power densities were achieved for a thin-film samaria-doped ceria (SDC) electrolyte cell operating on hydrazine decomposition products and hydrogen over a complete operation temperature range of 650-450 C. In addition, a similar cell with ammonia as the fuel displayed a much lower performance. (author)

  6. Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC

    Directory of Open Access Journals (Sweden)

    Zhonggang Zhang

    2013-12-01

    Full Text Available In this study, a three-dimensional computational fluid dynamics (CFD model is developed for an anode-supported planar SOFC from the Chinese Academy of Science Ningbo Institute of Material Technology and Engineering (NIMTE. The simulation results of the developed model are in good agreement with the experimental data obtained under the same conditions. With the simulation results, the distribution of temperature, flow velocity and the gas concentrations through the cell components and gas channels is presented and discussed. Potential and current density distributions in the cell and overall fuel utilization are also presented. It is also found that the temperature gradients exist along the length of the cell, and the maximum value of the temperature for the cross-flow is at the outlet region of the cell. The distribution of the current density is uneven, and the maximum current density is located at the interfaces between the channels, ribs and the electrodes, the maximum current density result in a large over-potential and heat source in the electrodes, which is harmful to the overall performance and working lifespan of the fuel cells. A new type of flow structure should be developed to make the current flow be more evenly distributed and promote most of the TPB areas to take part in the electrochemical reactions.

  7. Recovery Act: Demonstration of a SOFC Generator Fueled by Propane to Provide Electrical Power to Real World Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bessette, Norman [Acumentrics Corporation, Westwood, MA (United States)

    2016-08-01

    The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portable generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.

  8. Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Pettiway, Keon

    2017-01-01

    by designers, planners, etc. (staging from above) and mobile subjects (staging from below). A research agenda for studying situated practices of mobility and mobilities design is outlined in three directions: foci of studies, methods and approaches, and epistemologies and frames of thinking. Jensen begins......In this chapter, Ole B. Jensen takes a situational approach to mobilities to examine how ordinary life activities are structured by technology and design. Using “staging mobilities” as a theoretical approach, Jensen considers mobilities as overlapping, actions, interactions and decisions...... with a brief description of how movement is studied within social sciences after the “mobilities turn” versus the idea of physical movement in transport geography and engineering. He then explains how “mobilities design” was derived from connections between traffic and architecture. Jensen concludes...

  9. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    Design - proces & metode iBog®  er enestående i sit fokus på afmystificering og operationalisering af designprocessens flygtige og komplekse karakter. Udgivelsen går bag om designerens daglige arbejde og giver et indblik i den kreative skabelsesproces, som designeren er en del af. Udover et bredt...... indblik i designerens arbejdsmetoder og designparametre giver Design - proces & metode en række eksempler fra anerkendte designvirksomheder, der gør det muligt at komme helt tæt på designerens virkelighed....

  10. Design of a thermally integrated bioethanol-fueled solid oxide fuel cell system integrated with a distillation column

    Science.gov (United States)

    Jamsak, W.; Douglas, P. L.; Croiset, E.; Suwanwarangkul, R.; Laosiripojana, N.; Charojrochkul, S.; Assabumrungrat, S.

    Solid oxide fuel cell systems integrated with a distillation column (SOFC-DIS) have been investigated in this study. The MER (maximum energy recovery) network for SOFC-DIS system under the base conditions (C EtOH = 25%, EtOH recovery = 80%, V = 0.7 V, fuel utilization = 80%, T SOFC = 1200 K) yields Q Cmin = 73.4 and Q Hmin = 0 kW. To enhance the performance of SOFC-DIS, utilization of internal useful heat sources from within the system (e.g. condenser duty and hot water from the bottom of the distillation column) and a cathode recirculation have been considered in this study. The utilization of condenser duty for preheating the incoming bioethanol and cathode recirculation for SOFC-DIS system were chosen and implemented to the SOFC-DIS (CondBio-CathRec). Different MER designs were investigated. The obtained MER network of CondBio-CathRec configuration shows the lower minimum cold utility (Q Cmin) of 55.9 kW and total cost index than that of the base case. A heat exchanger loop and utility path were also investigated. It was found that eliminate the high temperature distillate heat exchanger can lower the total cost index. The recommended network is that the hot effluent gas is heat exchanged with the anode heat exchanger, the external reformer, the air heat exchanger, the distillate heat exchanger and the reboiler, respectively. The corresponding performances of this design are 40.8%, 54.3%, 0.221 W cm -2 for overall electrical efficiency, Combine Heat and Power (CHP) efficiency and power density, respectively. The effect of operating conditions on composite curves on the design of heat exchanger network was investigated. The obtained composite curves can be divided into two groups: the threshold case and the pinch case. It was found that the pinch case which T SOFC = 1173 K yields higher total cost index than the CondBio-CathRec at the base conditions. It was also found that the pinch case can become a threshold case by adjusting split fraction or operating at

  11. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    Science.gov (United States)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell

  12. Design

    Science.gov (United States)

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  13. Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Pettiway, Keon

    2017-01-01

    In this chapter, Ole B. Jensen takes a situational approach to mobilities to examine how ordinary life activities are structured by technology and design. Using “staging mobilities” as a theoretical approach, Jensen considers mobilities as overlapping, actions, interactions and decisions by desig......In this chapter, Ole B. Jensen takes a situational approach to mobilities to examine how ordinary life activities are structured by technology and design. Using “staging mobilities” as a theoretical approach, Jensen considers mobilities as overlapping, actions, interactions and decisions...... by designers, planners, etc. (staging from above) and mobile subjects (staging from below). A research agenda for studying situated practices of mobility and mobilities design is outlined in three directions: foci of studies, methods and approaches, and epistemologies and frames of thinking. Jensen begins...... with a brief description of how movement is studied within social sciences after the “mobilities turn” versus the idea of physical movement in transport geography and engineering. He then explains how “mobilities design” was derived from connections between traffic and architecture. Jensen concludes...

  14. High Efficiency Power Converter for a Doubly-fed SOEC/SOFC System

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe

    2016-01-01

    Regenerative fuel cells (RFC) have become an attractive technology for energy storage systems due to their high energy density and lower end-of-life disposal concerns. However, high efficiency design of power conditioning unit (PCU) for RFC becomes challenging due to their asymmetrical currentpower...... characteristics that are dependent on the operation mode (energy storage / energy supply). This paper proposes a new PCU architecture for grid-tie RFC with which the RFC’s asymmetrical characteristic becomes less critical and thus a much more symmetrical power rating of the dc-dc converter for both operating...... operating range of the RFC as well as the utilization of the same control strategy design for the two RFC operating modes....

  15. Propiedades termo-mecánicas de sellos vitrocerámicos del sistema RO-MgO-B2O3-SiO2 (R=Ba, Sr) para SOFC

    OpenAIRE

    Rodríguez López, Sonia

    2016-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Aplicada. Fecha de lectura: 27 de abril de 2016 Las pilas de combustible de óxido sólido (SOFC) han experimentado un gran desarrollo en la última década debido a su alta eficiencia en la generación de energía eléctrica sin la emisión de CO2 u otros gases contaminantes que contribuyan al efecto invernadero. En la actualidad se están desarrollando pilas SOFC ligeras para aplica...

  16. Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design

    Science.gov (United States)

    Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.

    2009-01-01

    The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.

  17. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP plants......-level modelling study of three conceptual plant designs based on two-stage gasification of wood chips with a thermal biomass input of ~0.5 MWth (LHV) is presented. Product gas is converted in a micro gas turbine (MGT) in the first plant design, in SOFCs in the second, and in a combined SOFC-MGT arrangement......Development of sustainable power plants has gained focus in the recent years and utilization of biomass resources are seen as a pathway towards a sustainable combined heat and power (CHP) production. Biomass resources are distributed, thus decentralized biomass conversion would avoid extensive cost...

  18. Electrochemical behaviour of (La1-xSrx)(s)Co1-yNiyO3-δ as porous SOFC cathodes

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Søgaard, Martin; Mogensen, Mogens Bjerg

    2009-01-01

    behaviours exhibited similar patterns with respect to the dependence on T and PO2. An increase in polarisation resistance with time at SOFC operating conditions was observed, which was related exclusively to the electrode reaction kinetics and not to oxygen concentration polarisation. It was also found...

  19. Design and development of major balance of plant components in solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wen-Tang; Huang, Cheng-Nan; Tan, Hsueh-I; Chao, Yu [Institute of Nuclear Energy Research Atomic Energy Council, Taoyuan County 32546 (Taiwan, Province of China); Yen, Tzu-Hsiang [Green Technology Research Institute, CPC Corporation, Chia-Yi City 60036 (Taiwan, Province of China)

    2013-07-01

    The balance of plant (BOP) of a Solid Oxide Fuel Cell (SOFC) system with a 2 kW stack and an electric efficiency of 40% is optimized using commercial GCTool software. The simulation results provide a detailed understanding of the optimal operating temperature, pressure and mass flow rate in all of the major BOP components, i.e., the gas distributor, the afterburner, the reformer and the heat exchanger. A series of experimental trials are performed to validate the simulation results. Overall, the results presented in this study not only indicate an appropriate set of operating conditions for the SOFC power system, but also suggest potential design improvements for several of the BOP components.

  20. Renewable energy SOFC project

    NARCIS (Netherlands)

    M. Barankin; G. Tijseling; R. Bijkerk; R. van Straten; T. Bakker

    2013-01-01

    A trend of increasing overall efficiency when increasing carbon dioxide, hydrogen percentage comparing to pure methane or natural gas. Significantly decreasing Temperature of exhaust gas when increasing carbon dioxide and hydrogen percentage (result graphs 4.2, 4.3, 4.5 & 4.6). The BlueGen

  1. SOFC interface studies

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Bay, Lasse; West, Keld

    come from channels formed along the interface, i.e. an elongation of the triple phase boundary. Based on the assumption of a formation of interfacial reaction zones (i.e. pores) which are only stable in the presence of a local current, a model describing the hysteresis observed is developed. Fig...

  2. SOFC Cathode Mechanisms

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse

    1996-01-01

    litterature. It is argued that this kind of mechanism can only partly explain the experimental observations. The capacitive part of the low frequency response at anodic potentials is shown to be due to gas enclosures at the lectrode-electrolyte interface. As to the inductive activation mechanism...

  3. Fuel cell: new electrocatalysts for SOFC (Solid Oxide Fuel Cells) anodes and regulation between cell performance and catalytic activity; Celula a combustivel: novos eletrocatalisadores para anodos de SOFC (Celulas a Combustivel de Oxido Solido) e correlacao entre desempenho da celula e atividade catalitica

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, Jaime S.; Aguiar, Aurinete B.; Brandao, Soraia T. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Frank, Maria Helena Troise; Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Electro-catalysts were prepared using new routes. Chemical Ultrasound Deposition (CUD) method: aqueous solution of nickel nitrate and citric acid was ultrasound vaporized and deposited on heated Ytria-stabilized Zirconia (YSZ). Resin impregnation (IPR) method: nickel oxide and YSZ were mixed, added to phenolic resins, precipitated in acidic water and milled. Wet impregnation method (IMP) was used for comparison: YSZ and an aqueous solution of nickel nitrate and citric acid were mixed, followed by evaporation, drying and calcination. The catalysts were evaluated for methane steam reforming in a quartz reactor. The reactions were conducted for one hour with no significant catalytic activity loss. In reactions with 100 mg of catalyst and a mixture consisting of methane and steam (3:1), IPR catalyst showed activity higher and better stability than those by IMP. On other tests, the reform was conducted with 100 mg of catalyst and methane to steam of 10. The IPR catalyst activity was so high that the reaction approached equilibrium conditions. Anode/electrolyte/cathode units (A/E/C) were prepared with the above catalysts as follows: the anode was a catalyst porous layer; the electrolyte an YSZ dense layer; and the cathode an LSM porous layer; graphite powder formed the material porosity. The two first layers, in powder form, were put in a stainless steel cast, pressed to 4000 bars and sinterized. The cathode layer was subsequently added using tape-casting techniques followed by sintering. A/E/C units showed 40% linear contraction and porosity higher than 20%. For fuel cell tests, A/E/C was mounted in alumina plates with platinum current collectors. Unitary SOF cells were loaded with hydrogen diluted in nitrogen showing opened circuit voltage from circa 700 mV, for the CUD anode, to 350 mV, for the IPR anode. The unitary SOFC was loaded with methane for 15 minutes or longer, with no noticeable voltage loss. At 1300 K the SOFC made with IPR or IMP catalysts showed opened

  4. Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance.

    Science.gov (United States)

    Song, Yufei; Wang, Wei; Ge, Lei; Xu, Xiaomin; Zhang, Zhenbao; Julião, Paulo Sérgio Barros; Zhou, Wei; Shao, Zongping

    2017-11-01

    Solid oxide fuel cells (SOFCs), which can directly convert chemical energy stored in fuels into electric power, represent a useful technology for a more sustainable future. They are particularly attractive given that they can be easily integrated into the currently available fossil fuel infrastructure to realize an ideal clean energy system. However, the widespread use of the SOFC technology is hindered by sulfur poisoning at the anode caused by the sulfur impurities in fossil fuels. Therefore, improving the sulfur tolerance of the anode is critical for developing SOFCs for use with fossil fuels. Herein, a novel, highly active, sulfur-tolerant anode for intermediate-temperature SOFCs is prepared via a facile impregnation and limited reaction protocol. During synthesis, Ni nanoparticles, water-storable BaZr 0.4 Ce 0.4 Y 0.2 O 3- δ (BZCY) perovskite, and amorphous BaO are formed in situ and deposited on the surface of a Sm 0.2 Ce 0.8 O 1.9 (SDC) scaffold. More specifically, a porous SDC scaffold is impregnated with a well-designed proton-conducting perovskite oxide liquid precursor with the nominal composition of Ba(Zr 0.4 Ce 0.4 Y 0.2 ) 0.8 Ni 0.2 O 3- δ (BZCYN), calcined and reduced in hydrogen. The as-synthesized hierarchical architecture exhibits high H 2 electro-oxidation activity, excellent operational stability, superior sulfur tolerance, and good thermal cyclability. This work demonstrates the potential of combining nanocatalysts and water-storable materials in advanced electrocatalysts for SOFCs.

  5. A Ba-free sealing glass with a high CTE and excellent interface stability optimized for SOFC/SOEC stack applications

    DEFF Research Database (Denmark)

    Ritucci, Ilaria; Agersted, Karsten; Zielke, Philipp

    2017-01-01

    A new glass-ceramic composition containing Si, Mg, Ca, Na, Al, Zr and B is presented here as sealant for planar SOFCs/SOECs, with the aim of joining the metallic interconnect (Crofer22APU) to the solid oxide cell (YSZ electrolyte or CGO barrier layer). Characteristic temperature, thermo.......3%; after crystallization the glass-ceramic sealant has a CTE of 12.8 x 10-6 K −1 and it is compliant with the other materials typically used for stack components.. This work shows that the developed glass-ceramic can successfully join the ceramic cell with the Crofer22APU (pre-oxidized and alumina coating......), proven by tests on small and large-scale samples. No signs of unwanted reactions at the glass-metal and the glass-cell interface are observed and sufficient gas tightness is achieved....

  6. On the stability of Sr-doped La{sub 2}CuO{sub 4} against different electrolytes for IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Bustos, R.; Santos-Garcia, A.J. dos; Sanchez-Bautista, C. [Instituto de Energias Renovables, Parque Cientifico y Tecnologico de Albacete, Paseo de la Investigacion 1, 02006 Albacete (Spain); Cantos-Gomez, A.; Duijn, J. van [Instituto de Energias Renovables, Universidad de Castilla La Mancha, Paseo de la Investigacion 1, 02006 Albacete (Spain)

    2011-02-15

    The thermal stability of the cathode material against an electrolyte at the operating temperature plays an important role in the fuel cell's performance. As such, compatibility tests of the most common used electrolytes with La{sub 2-x}Sr{sub x}CuO{sub 4} have been performed. The chemical reaction between these two materials in the temperature ranging from 800 to 1,000 C was examined by X-ray diffraction analyses. The results show that in all the cases there is reaction above 925 C, making conventional cell fabrication non-appropriate. However, we demonstrate that infiltration is a useful technique for obtaining cuprate cermets for use as cathode materials in IT-SOFCs. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Evidence of the current collector effect: study of the SOFC cathode material Ca{sub 3}Co{sub 4}O{sub 9+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Rolle, A.; Thoreton, V.; Capoen, E.; Mentre, O.; Daviero-Minaud, S. [Univ. Lille Nord de France, Lille (France); CNRS UMR 8181-Unite de Catalyse et de Chimie du Solide - UCCS, ENSC, USTL Villeneuve d' Ascq (France); Rozier, P. [Centre d' Elaboration de Materiaux et d' Etudes Structurales, UPR CNRS 8011, Toulouse (France); Boukamp, B. [Faculty of Science and Technology and MESA+, Institute for Nanotechnology, University of Twente, Enschede (Netherlands)

    2012-04-15

    In the study of the performance of solid oxide fuel cell (SOFC) electrodes, the possible influence of the applied current collector is often not mentioned or recognized. In this article, as part of an optimization study of the potentially attractive Ca{sub 3}Co{sub 4}O{sub 9+{delta}} cathode material (Ca349), special attention is paid to the choice of current collector. The influence of both gold and platinum paste or grid current collectors on pure and composite (Ca349 + 30 wt.% Gd-doped ceria) is studied, using electrochemical impedance spectroscopy (EIS). Although, platinum is catalytically active in the oxygen reduction reaction and then is often considered as current collector for SOFC cathodes, in combination with Ca349 cathodes, additional low frequency dispersion is observed, leading to a larger polarization resistance than found in the case of gold current collectors. A subsequent experiment revealed that Pt reacts with Ca349, forming undesirable phases: CaPt{sub 2}O{sub 4}, Ca{sub 4}PtO{sub 6}, Ca{sub 3}Co{sub 2}O{sub 6}, and Co{sub 3}O{sub 4}. The impedance spectra were analyzed with ZView 3.3a and with EqCwin v1.2. One series equivalent circuit was deduced using ZView, whereas, two possible equivalent circuits (series and nested), leading to the same quality of fits, were evidenced in EqCwin. The circuits are closely related to interactions of the current collector and layer thickness effects of the cathodes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. On the Predictions of Carbon Deposition on the Nickel Anode of a SOFC and Its Impact on Open-Circuit Conditions

    KAUST Repository

    Lee, W. Y.

    2012-12-04

    Previous thermodynamic analyses of carbon formation in SOFCs assumed that graphite could be used to represent the properties of carbon formed in the anode. It is generally observed, however, that catalytically grown carbon nanofibers (CNF) are more likely to form in the SOFC anode with nickel catalysts. The energetic and entropic properties of CNF are different from those of graphite.We compare equilibrium results based on thermochemical properties for graphite, to new results based on a previously reported value of an empirically determined Gibbs free energy for carbon fibers grown on a nickel support (with fitted values of H°CNF = 54.46 kJ/mol and S°CNF = 68.90 J/mol/K for a nickel crystal size of 5.4 nm). There is little difference in predictions of carbon formation under open-circuit conditions between the two carbon types for methane mixtures, with graphite predicted to form at lower temperatures than CNF. There is a much bigger difference in predictions for methanol mixtures, especially at low steam-carbon ratios. The differences for propane are even more pronounced, and the improved predictions assuming CNF are in closer agreement with past observations.We show a strong dependence of CNF formation and "coking threshold" on nickel crystallite size, supporting previous reports that the nickel particle size is a dominating parameter for controlling filament growth. If both carbon types are included in the calculations, only the thermodynamically favored form (i.e., the type having the lowest formation energy) exists. Predicted Nernst potentials are more-or-less independent of the carbon type and in agreement with measured open-circuit voltages. © 2012 The Electrochemical Society.

  9. In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs

    Science.gov (United States)

    Zhang, Zhenbao; Wang, Jian; Chen, Yubo; Tan, Shaozao; Shao, Zongping; Chen, Dengjie

    2018-05-01

    BaZrxCeyY1-x-yO3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H+-SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr0.4Ce0.4Y0.2O3-δ (BZCY) scaffold to generate a 3D core-shell and triple-conducting (H+/O2-/e-) electrode in situ via infiltrating and reactive sintering. The core is the bulk BZCY scaffold, while the shell is composed of the cubic Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ, cubic spinel Co3O4 and cubic fluorite (Ce, Zr, Y)O2. The obtained electrode exhibits an excellent compatibility with the BZCY electrolyte, and performs well in yielding a low and stable polarization resistance for oxygen reduction reaction for intermediate-temperature H+-SOFCs. In particular, it achieves polarization resistances as low as 0.094 and 0.198 Ω cm2 at 650 and 600 °C in wet air (3% H2O) when the sintering temperature for the electrode is 900 °C. In addition, a symmetrical cell also exhibits operation stability of 70 h at 650 °C. Furthermore, a fuel cell assembled with the 3D core-shell and triple-conducting electrode delivers a peak power density of ∼330 mW cm-2 at 650 °C. The substantially improved electrochemical performance and high stability are ascribed to the unique core-shell structure and the formation of Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ in the shell.

  10. A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shixue Liu

    2009-06-01

    Full Text Available A two dimensional numerical model of a solid oxide fuel cell (SOFC with electrode functional layers is presented. The model incorporates the partial differential equations for mass transport, electric conduction and electrochemical reactions in the electrode functional layers, the anode support layer, the cathode current collection layer and at the electrode/electrolyte interfaces. A dusty gas model is used in modeling the gas transport in porous electrodes. The model is capable of providing results in good agreement with the experimental I-V relationship. Numerical examples are presented to illustrate the applications of this numerical model as a tool for the design and optimization of SOFCs. For a stack assembly of a pitch width of 2 mm and an interconnect-electrode contact resistance of 0.025 Ωcm2, a typical SOFC stack cell should consist of a rib width of 0.9 mm, a cathode current collection layer thickness of 200–300 μm, a cathode functional layer thickness of 20–40 μm, and an anode functional layer thickness of 10–20 μm in order to achieve optimal performance.

  11. Synthesis and characterization of Ce{sub 1-x}SmXO{sub 2-(x/2)} as solid electrolyte for application in IT-SOFCs; Sintese e caracterizacao de Ce{sub 1-x}SmXO{sub 2-(x/2)} como eletrolito solido para aplicacao em IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Nicodemo, J.P.; Martinelli, A.E.; Nascimento, R.M. [Universidade Federal do Rio Grande do Norte (DECM/UFRN), Natal, RN (Brazil). Dept. de Engenharia de Materiais], e-mail: juli_pivotto@yahoo.com.br; Melo, D.M.A. [Universidade Federal do Rio Grande do Norte (DQ/UFRN), Natal, RN (Brazil). Dept. de Quimica; Cela, B. [Universidade Federal do Rio Grande do Norte (PPGCEM/UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Macedo, D.A. [Universidade Federal do Rio Grande do Norte (PPGEM/UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2008-07-01

    Mixed rare earth doped CeO{sub 2} oxide-based have been extensively studied for use in solid electrolytes for fuel cells. Ceramics-based CeO{sub 2} have high ionic conductivity and enable the operation of solid oxide fuel cells (SOFCs) in intermediate temperatures, in the range of 500 to 750 deg C. In this work, was investigated the Sm{sub 2}O{sub 3} doped CeO{sub 2} by Pechini method to obtain Ce{sub 0,9}Sm{sub 0,1}O{sub 1,95}. The resulting powders were characterized by the chemical composition (EDS) and crystallographic (XRD), thermal analysis (TG/ATD and DTG), and particles morphology (SEM). After calcinations of 500 and 700 deg C for 2 hours were obtained nanosized powders with crystalline structure of cubic phase type fluorite fully formed. (author)

  12. Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling

    International Nuclear Information System (INIS)

    Lee, Tae Seok; Chung, J.N.; Chen, Yen-Cho

    2011-01-01

    Highlights: → In this work, an analytical, parametric study is performed to evaluate the feasibility and performance of a combined fuel reforming and SOFC system. → Specifically the effects of adding the anode off-gas recycling and recirculation components and the CO 2 absorbent unit are investigated. → The AOG recycle ratio increases with increasing S/C ratio and the addition of AOG recycle eliminates the need for external water consumption. → The key finding is that for the SOFC operating at 900 deg. C with the steam to carbon ratio at 5 and no AOG recirculation, the system efficiency peaks. - Abstract: An energy conversion and management concept for a combined system of a solid oxide fuel cell coupled with a fuel reforming device is developed and analyzed by a thermodynamic and electrochemical model. The model is verified by an experiment and then used to evaluate the overall system performance and to further suggest an optimal design strategy. The unique feature of the system is the inclusion of the anode off-gas recycle that eliminates the need of external water consumption for practical applications. The system performance is evaluated as a function of the steam to carbon ratio, fuel cell temperature, anode off gas recycle ratio and CO 2 adsorption percentage. For most of the operating conditions investigated, the system efficiency starts at around 70% and then monotonically decreases to the average of 50% at the peak power density before dropping down to zero at the limiting current density point. From an engineering application point of view, the proposed combined fuel reforming and SOFC system with a range of efficiency between 50% and 70% is considered very attractive. It is suggested that the optimal system is the one where the SOFC operates around 900 deg. C with S/C ratio higher than 3, maximum CO 2 capture, and minimum AOG recirculation.

  13. Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2014-01-01

    Full Text Available A proton-conductive solid oxide fuel cell (H-SOFC has the advantage of operating at higher temperatures than a PEM fuel cell, but at lower temperatures than a SOFC. This study proposes a mathematical model for an H-SOFC in order to simulate the performance and optimize the flow channel designs. The model analyzes the average mass transfer and species’ concentrations in flow channels, which allows the determination of an average concentration polarization in anode and cathode gas channels, the proton conductivity of electrolyte membranes, as well as the activation polarization. An electrical circuit for the current and proton conduction is applied to analyze the ohmic losses from an anode current collector to a cathode current collector. The model uses relatively less amount of computational time to find the V-I curve of the fuel cell, and thus it can be applied to compute a large amount of cases with different flow channel dimensions and operating parameters for optimization. The modeling simulation results agreed satisfactorily with the experimental results from literature. Simulation results showed that a relatively small total width of flow channel and rib, together with a small ratio of the rib’s width versus the total width, are preferable for obtaining high power densities and thus high efficiency.

  14. Thermal expansion and specific heat of a superior IR-SOFC cathode material Sr1-xCexCoO3-δ

    Science.gov (United States)

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2017-05-01

    We present the specific heat (Cv) and thermal expansion (α) of lightly doped Sr1-xCexCoO3-δ (x=0.0-0.15) using Modified Rigid Ion Model (MRIM) and a novel atomistic approach of Atom in Molecules(AIM) theory. We partial replaced the A-site Strontium cation by other element (Cerium) of different size, valence and mass. The effect of Cerium doping on lattice specific heat (Cv)lat, thermal expansion(α) of Sr1-xCexCoO3-δ (x = 0.0-0.15) as a function of temperature (20K≤T≤ 1000K) is reported probably for the first time. The results indicate better thermal compatibility of Sr0.95Ce0.05CoO3 with Samaria doped Ceria (SDC) electrolyte than other studied compounds. The Debye temperature of these perovskite material as cathode for Intermediate Range Solid Oxide Fuel Cell (IR-SOFC) is also predicted.

  15. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    Full Text Available This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG. A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  16. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  17. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A = Ca, Sr, Ba)

    Science.gov (United States)

    Huan, Yu; Li, Yining; Yin, Baoyi; Ding, Dong; Wei, Tao

    2017-08-01

    In this work, the mixed oxide-ion/electron conductor (MIEC) double-perovskite compounds A2FeMoO6 (AFMO, A = Ca, Sr, Ba) are investigated as anode materials for O2--ion conducting solid-oxide fuel cells (SOFCs). Several advantages are outlined here; 1) under H2 atmosphere, the conductivities of Ba2FeMoO6 (BFMO), Sr2FeMoO6 (SFMO) and Ca2FeMoO6 (CFMO) reach as high as 243, 302 and 561 S cm-1, respectively, which can be comparable with the commercial NiO-electrolyte anode; 2) excellent structure and phase stability at high temperature and in H2 atmosphere; 3) matched thermodynamic compatibility (such as TECs) with electrolyte materials; 4) fast oxidization for fuel with O2- ions accepted by oxygen vacancies from the electrolyte. Moreover, with H2 as fuel gas, the cell power output, cell's long-term stabilities and the structural parameter are also been examined to evaluate the AFMO anode.

  18. Analisis Pemodelan Sistem Hibrid Proton Conducting Solid Oxide Fuel Cell (pSOFC – Turbin Gas Mikro Pada Matlab-Simulink

    Directory of Open Access Journals (Sweden)

    Bayu Pranoto

    2016-05-01

    Full Text Available This study simulated Proton Conducting Solid Oxide Fuel Cell (pSOFC – Micro Gas Turbine (MGT hybrid system on three different configuration. The first configuration use bypass hot gas from combustor going to fuel heater without  pass the turbine first. The second configuration use bypass hot gas out of turbine going to fuel heater. The third configuration is combined bypass out of combustor and also bypass out of turbine. The performance of these system are analyzed by using variation of operating pressure, fuel utilization (Uf, steam to carbon ratio (S/C, and bypass valve. Moreover, the impact of different bypass position were also evaluated. The result shows that the efficiency of using a double bypass hot gas flow after combustor and turbine is about 67%. This configuration became the best one among of another two configuration which proposed in this research.  The utilization of heat by using a double bypass hot flow gas after turbine and combustor has proven more effective to increase the system efficiency. Means that it can reduce the heat losses of the system.

  19. Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H{sub 2}O-CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sumi, Hirofumi; Ukai, Kenji; Mizutani, Yasunobu [Fundamental Research Department, Toho Gas Co., Ltd., Tokai 476-8501 (Japan); Mori, Hiroshi [Materials Research and Development Laboratory (Japan); Wen, Ching-Ju [Department of Energy Science, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Takahashi, Hiroshi [Department of Chemical System Engineering, Tokyo University, Tokyo 113-8656 (Japan); Yamamoto, Osamu [Aichi Institute of Technology, Toyota 470-0392 (Japan)

    2004-10-29

    The performance of solid oxide fuel cells (SOFCs) with a nickel-scandia-stabilized zirconia (Ni-ScSZ) anode and a nickel-yttria-stabilized zirconia (Ni-YSZ) anode was examined at a low steam/methane ratio (S/C) of 3% H{sub 2}O-CH{sub 4}. The power density of the cell with the Ni-ScSZ anode showed 0.85 W/cm{sup 2} at 0.85 V at 1273 K without degradation of power density during over 250 h. A whisker-shaped graphite was observed on a part of the Ni-ScSZ surface after the generation tests. On the other hand, the Ni-YSZ anode showed the power density of 0.8 W/cm{sup 2} at an initial stage and degraded to be 0.6 W/cm{sup 2} after 250 h. The degradation of the power density could be explained by the formation of amorphous carbon on the Ni-particles by the methane decomposition.

  20. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system

    Science.gov (United States)

    Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191

  1. Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer : An exergy analysis of different system designs

    NARCIS (Netherlands)

    Fernandes, A.A.; Woudstra, T.; van Wijk, A.J.M.; Verhoef, L.A.; Purushothaman Vellayani, A.

    2016-01-01

    Delft University of Technology, under its "Green Village" programme, has an initiative to build a power plant (car parking lot) based on the fuel cells used in vehicles for motive power. It is a trigeneration system capable of producing electricity, heat, and hydrogen. It comprises three main

  2. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  3. Sinterización de vidrios del sistema RO-BaO-SiO2 (R= Mg, Zn para el sellado de SOFC

    Directory of Open Access Journals (Sweden)

    Lara, C.

    2007-04-01

    Full Text Available Glasses of composition 50SiO2•30BaO•20ZnO, mol% (Zn1.5-50, 55SiO2•27BaO•18ZnO, mol% (Zn1.5-55, and 55SiO2•27BaO•18MgO, mol% (Mg1.5-55 present good properties for application in sealing planar solid oxide fuel cells with an intermediate temperature of operation (850ºC (IT-SOFC. The sealing must take place on sintering the glass powder during the start-up of the cell between 700 and 850ºC. Further treatment at the operation temperature provokes the crystallisation of barium silicates with the subsequent increase of viscosity and seal rigidity. This work is a study of the sintering behaviour of these glasses using different heating rates and particle-size distributions of the glass powder in order to obtain dense and homogeneous seals. The glasses Zn1.5-55 and Mg1.5-55 with a particle size less than 63 μm heated at 2ºC/min reach final densities higher than 95%. A good agreement has been demonstrated between the measured sintering kinetics and those predicted with the sintering model of Clusters formation in the absence of concurrent crystallisation.

    Los vidrios de composición molar 50SiO2•30BaO•20ZnO (Zn1.5-50, 55SiO2•27BaO•18ZnO (Zn1.5-55, y 55SiO2•27BaO•18MgO (Mg1.5-55 presentan buenas propiedades para su aplicación en el sellado de pilas de combustible de óxido sólido de configuración plana y temperatura de operación intermedia (850ºC (IT-SOFC. El sellado debe producirse a través de la sinterización del polvo de vidrio, durante el arranque de la pila, a temperaturas entre 700 y 850ºC. El tratamiento posterior a la temperatura de operación da lugar a la cristalización de silicatos de bario con el consiguiente aumento de viscosidad y rigidez del sello. Este trabajo es un estudio del comportamiento de sinterización de estos vidrios utilizando diferentes velocidades de calentamiento y distribuciones de tamaño de partícula del polvo de vidrio, para la obtención final de sellos densos y homog

  4. Effect of Ce-doping on the electrical and electrocatalytical behavior of La/Sr chromo-manganite perovskite as new SOFC anode

    Energy Technology Data Exchange (ETDEWEB)

    Lay, E. [CEA, LITEN, Laboratoire d' Innovation Technologique et des Energies Nouvelles, 17 rue des Martyrs, 38054 Grenoble (France); LEPMI, Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces, UMR 5279, CNRS - Grenoble INP - Universite de Savoie - Universite Joseph Fourier, BP75, 38402 Saint Martin d' Heres (France); Benamira, M.; Pirovano, C. [Universite Lille Nord de France, UMR CNRS 8181, Unite de Catalyse et de Chimie du Solide, ENSCL, 59652 Villeneuve d' Ascq cedex (France); Gauthier, G. [CEA, LITEN, Laboratoire d' Innovation Technologique et des Energies Nouvelles, 17 rue des Martyrs, 38054 Grenoble (France); Dessemond, L. [LEPMI, Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces, UMR 5279, CNRS - Grenoble INP - Universite de Savoie - Universite Joseph Fourier, BP75, 38402 Saint Martin d' Heres (France)

    2012-04-15

    The effect of cerium substitution on the electrical and electrochemical characteristics of a new anode material La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3} (LSCM) was examined by synthesizing Ce{sub x}La{sub 0.75-x}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3} for x = (0-0.375). From x = 0-0.25, the structure is rhombohedral (S.G. R-3c), and with a higher cerium content (x = 0.375) it becomes cubic (S.G. Pm-3m). These materials are stable in the operating conditions of an SOFC anode. Ce{sub x}La{sub 0.75-x}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3} and LSCM materials are p-type semi-conductors. Cerium substitution improves the conductivity in neutral atmosphere from 18.3 to 35.4 S cm{sup -1} for x = 0 and 0.375, respectively, at 1,173 K. In reducing conditions, the conductivity is not influenced by cerium substitution, and it is about 1 S cm{sup -1} at 1,173 K. High temperature XRD shows that structure becomes cubic at 1,073 K in operating (reducing) conditions. Cerium substitution positively enhances the electrochemical behavior, as proved by studying the properties of dense cone-shaped electrodes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte

    Science.gov (United States)

    Ahmad, Syed Ismail; Mohammed, Tasneem; Bahafi, Amal; Suresh, Madireddy Buchi

    2017-06-01

    Samples of Sm and Mg co-doped ceria electrolyte of Ce1- x Sm x- y Mg y O2- δ ( x = 0.2; y = 0.00, 0.05, 0.1, 0.15, and 0.175) were synthesized by sol-gel process. The prepared samples were sintered at 1100 and 1400 °C for 4 h. The bulk densities were measured by Archimedes method. XRD measurements indicate that the synthesized samples were in single-phase cubic fluorite structure (space group Fm3m). The cell parameters decrease with the concentration of Mg, and 2 θ values slightly shift towards right. The particle sizes obtained were between 7.14 and 17.44 nm. The sintered sample achieved 95% of theoretical density. FTIR spectra of samples sintered at 1400 °C indicates weak interactions between 3550-3400 cm-1 and 1600-1300 cm-1 are attributed to O-H stretching modes and strong bonds 850-450 cm-1 are assigned to characteristic Ce-O vibrations. The surface morphology and chemical composition were analyzed by SEM and EDS, SEM micrographs show spherical faceted grains, and the samples were crack free, dense material with some pores on surface which are inconsistent with density results. The average grain size obtained was 0.5 μm. Particle size obtained by TEM was in agreement with that obtained by XRD. The high-density ceria co-doped ceramic can be used as electrolyte in SOFC.

  6. The influence of a-site-deficiency on the performance of strontium doped lanthanum-manganate perovskite type SOFC-cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.; Ivers-Tiffee, E. [Univ. Karlsruhe, Karlsruhe (Germany); Waser, R. [RWTH Aachen Univ. of Technology, Aachen (Germany); Maenner, R.; Jobst, B.; Schiele, M.; Cerva, H. [Siemens AG, Munich (Germany)

    1996-11-01

    SOFC-cathodes of composition La{sub 80.8-x})Sr{sub 0.2}MnO{sub 3} (LMS) with different La-deficiency X (X=0; 0,05; 0.075 and 0.1) were investigated. The LSM-powders and the sintered cathode layers were analysed by several analytical methods (XRD, SEM, TEM, ICP-OES, ICP-MS, EDX/TEM, HREM and EPMA). The electrical properties of the cathodes were determined by electrical DC-measurements and AC-impedance-spectroscopy during single cell tests at realistic working conditions. All the cathodes showed a significant decrease of the cathode resistance during the first electrical loading of the cell. With increasing La-deficiency X both the initial cathode resistance and the extent of the reduction decreased. After an operation time of some days, the different cells showed nearly the same cathode-performance. A maximum current density of about 1 A/cm{sup 2} at 0.7 V cell voltage at an operation temperature of 950 deg. C using O{sub 2} as the oxidant and H{sub 2} as the fuel (20 % fuel utilisation) was achieved. The microstructure analysis of the cathode layers before and after operation showed, that the decrease of the cathode resistance was attributed to an alternation process occurring at the cathode/electrolyte interface. In case of the cathode without La-deficiency, a decomposition of a lanthanum-zirconate- (La{sub 2}Zr{sub 2}O{sub 7}) layer between cathode and electrolyte, which emerged during sintering, was observed. (au)

  7. Study of synthesis routes and processing of NiO-YSZ ceramic composite for use as anode in solid oxide fuel cell (SOFC)

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji

    2011-01-01

    This study aim the definition of synthesis and ceramic processing conditions of the anodic component suitable for operation of SOFC, i.e, homogeneous distribution of NiO in YSZ matrix and porosity after reduction above 30%. The selected synthesis routes included the co-precipitation in ammonia media, mechanical mixing of powders and combustion reaction from nitrate salts. The characterization techniques of powders included the X-ray diffraction, scanning and transmission electron microscopy, laser diffraction, nitrogen gas adsorption technique (BET) and Helium pycnometry. The obtained results indicated that the loss of Ni 2+ in co-precipitation process, due to the formation of complex [Ni(NH 3 ) n ] 2+ , can be minimized by controlling the pH around 9.3, keeping the concentration of nickel cation in the solution to be precipitated around 0.1M. In the mechanical mixing method the best condition of powder dispersion, without differential sedimentation, was obtained for zeta potential values at pH around 8.0, fixing the dispersant concentration at 0.8%. For the combustion synthesis it was observed that when stoichiometric and twofold stoichiometric urea was used, amorphous phase was formed and a higher surface area was attained in the final products. Employing the fuel-rich solution condition, crystallization of the powder was observed and the relative intensity of reflections of XRD patterns increased with excess of fuel, due to increasing the reaction temperature. Sinterability studies of pellets prepared from powder synthesized by the three routes described above showed the temperature around 1300 deg C for maximum rate densification and porosity between 6.0 and 14%. Reduction results of the composites confirmed that the reduction kinetics occurs in two steps. The first one with a linear behavior and controlled by chemical reaction on the surface. The second reduction step is the reduction that is controlled by gas diffusion in micro pores, generated by reduction

  8. Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs

    Science.gov (United States)

    Jena, Paramananda; Jayasubramaniyan, S.; Patro, P. K.; Lenka, R. K.; Sinha, Amit; Muralidharan, P.; Srinadhu, E. S.; Satyanarayana, N.

    2018-02-01

    Nanocrystalline La10Si6O27 apatite-type sample was synthesized by the co-precipitation method. Thermal behavior, phase, structure, morphology and elemental composition of La, O and Si of the synthesized La10Si6O27 sample were investigated through TG/DTA, XRD, FTIR, Raman spectroscopy and SEM-EDX measurements respectively. Formation of phase purity of the nanocrystalline La10Si6O27 sample was confirmed by analysing the measured X-ray powder diffraction (XRD) pattern using Rietveld refinement and the calculated average crystallite size of the La10Si6O27 sample was found to be 33 nm. The electrical conductivity of the sintered La10Si6O27 pellet was investigated as a function of temperature ranging from 200 to 800 °C under air and it was found to be 1.92 × 10-3 S cm-1 at 800 °C. The chemical stability of La10Si6O27 powder under oxidizing and reducing atmospheres was confirmed from the analysis of the measured XRD pattern and Raman spectral results. Open circuit potential of a button cell, made up of the La10Si6O27 sample, was tested up to 800 °C with both oxygen and hydrogen at opposite sides of the cell and was found to 1 V. Hence, the results demonstrate that La10Si6O27 could be a promising solid electrolyte material for the solid oxide fuel cell (SOFC) applications.

  9. Investigation of a Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} based cathode IT-SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Aiyu; Cheng, Mojie; Dong, Yonglai; Yang, Weisheng [Fuel Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Maragou, Vasiliki; Song, Shuqin; Tsiakaras, Panagiotis [Department of Mechanical and Industrial Engineering, University of Thessalia, Pedion Areos, 383 34 Volos (Greece)

    2006-06-20

    A Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) based cathode intermediate temperature solid oxide fuel cell (IT-SOFC) was fabricated and tested. The effect of carbon dioxide on the performance of BSCF cathode was evaluated at temperatures ranging from 450 to 750{sup o}C. The current density was recorded at a constant discharge of voltage value and the electrochemical impedance spectra (EIS) measurements were carried out in the absence and in the presence of CO{sub 2} in the oxidant gas line (cathode). It was found that the presence even of relatively small quantities (0.28-3.07%) of CO{sub 2} negatively affects the H{sub 2}-IT-SOFC performance. It was shown that as the CO{sub 2} content in the cathode side increases and as the operation temperature decreases, the fuel cell performance is seriously aggravated up to 550{sup o}C in a reversible way. A further decrease of the operation temperature deteriorates the SOFC performance irreversibly. However, the cell performance can be recovered after treatment at 800{sup o}C in pure oxygen. It was also shown that as the CO{sub 2} content increases, the rate of oxygen electrochemical reduction decreases and the corresponding apparent activation energy increases linearly. The EIS results show that the interface resistance increases dramatically after carbon dioxide is added into the oxidant gas line. It is believed that carbon dioxide and temperature, acting in a synergetic way, decrease at least the cathode activity for oxygen reduction. This behaviour could be attributed to the strong carbon dioxide adsorption on the BSCF surface and to the formation of carbonates at temperatures as low as 500 and 450{sup o}C. (author)

  10. Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels

    Science.gov (United States)

    Li, Yang; Weng, Yiwu

    This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%.

  11. Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3 cathode on Ce0.8Gd0.2O1.9 electrolyte for IT-SOFC

    DEFF Research Database (Denmark)

    Ortiz-Vitoriano, N.; Bernuy-Lopez, C.; Hauch, Anne

    2014-01-01

    for this oxygen electrode using a Ce0.8Gd0.2O1.9 electrolyte, determined by impedance spectroscopy studies of symmetrical cells sintered at 800 _C and 1000 _C. Scanning electron microscopy (SEM) studies of the symmetrical cells revealed the absence of any reaction layer between cathode and electrolyte......For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology, suitable materials and structures which enable operation at lower temperatures, while retaining high cell performance, must be developed. Recently, the perovskitetype La0.6Ca0.4Fe0.8Ni0.2O3 oxide...

  12. FY 1993 report on the results of the commissioned research and development project. R and D of SOFC (solid oxide fuel cells); 1983 nendo nenryo denchi hatsuden gijutsu kaihatsu seika hokokusho. SOFC kotai denkaishitsugata nenryo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The research and development project is carried out for fuel cell power generation technologies and solid electrolyte type fuel cells, and the reports on the FY 1993 results issued by the participant organizations are summarized. For R and D of the modules, Fuji Electric conducted the R and D for the large-area, cell-stacked type, and Sanyo Electric for the composite cell-stacked type. For R and D of the materials and fundamental technologies, Fine Ceramics Center conducted the R and D for microscopic structures of the electrode, Fujikura for electrode structures produced by spraying or the like, Mitsubishi Heavy Industries for multi-functional fuel electrodes, Murata Seisakusho for co-sintering technologies, and Mitsui Shipbuilding for current collecting technologies. For R and D of the systems, Central Research Institute of Electric Power Industry conducted the R and D for the systems, Electric Power Development and Mitsubishi Heavy Industries jointly for designs of the cell peripheries, and the Japan Research and Development Center for Metals for elementary technologies for the peripheral devices. (NEDO)

  13. Characterization of cathode materials SrCoO3 and La0,2Sr0,8CoO3 for use in solid oxide fuel cells (SOFC); Caracterizacao de materiais catodicos SrCoO3 e La0,2Sr0,8CoO3 para aplicacao em celulas a combustivel de oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, G.O.; Aquino, F.M; Silva, R.M.; Medeiros, I.D.M. de, E-mail: gabriela.galvao@cear.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)

    2016-07-01

    Mixed oxide ceramics with chemical structure of ABO{sub 3} type are promising candidates for cathodes of solid oxide fuel cells (SOFC) for performing well on the electrical conductivity and thermal stability. Various methods of preparation have been studied and used for the synthesis of these materials. In this study, SrCoO{sub 3} and La{sub 0,2}Sr{sub 0,8}CoO{sub 3} perovskites were synthesized using gelatin as directing agent with the purpose of producing homogeneous and porous particles. The powders obtained at 350 ° C / 2 h were calcined at 600, 800 and 1000 ° C for 4 hours and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that gelatin is a good polymerizing agent for metal ions as the material showed characteristic peaks of perovskite, with good porosity and uniformity. Furthermore, the method of synthesis employed has advantages related to cost and toxicity, which are very low. (author)

  14. High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-δ perovskites as prospective electrode materials for symmetrical SOFC

    Science.gov (United States)

    Istomin, S. Ya.; Morozov, A. V.; Abdullayev, M. M.; Batuk, M.; Hadermann, J.; Kazakov, S. M.; Sobolev, A. V.; Presniakov, I. A.; Antipov, E. V.

    2018-02-01

    La1-yCayFe0.5+x(Mg,Mo)0.5-xO3-δ oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mössbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-δ and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-δ) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-δ is oxygen deficient with δ ≈ 0.15. Oxides are stable in reducing atmosphere (Ar/H2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x≥0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.

  15. A-site order–disorder in the NdBaMn2O5+δ SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow

    KAUST Repository

    Tonus, Florent

    2017-05-11

    The A-site disordered perovskite manganite, Nd0.5Ba0.5MnO3, has been obtained by heating the A-site-ordered and vacancy ordered layered double perovskite, NdBaMn2O5, in air at 1300 °C for 5 h. Combined transmission electron microscopy (TEM) images and neutron powder diffraction (NPD) analysis at 25 °C revealed that Nd0.5Ba0.5MnO3 has a pseudotetragonal unit cell with orthorhombic symmetry (space group Imma, √2ap × 2ap × √2ap) at 20 °C with the cell dimensions a = 5.503(1) Å, b = 7.7962(4) Å, c = 5.502(1) Å, in contrast to Pm[3 with combining macron]m or Cmcm that have been previously stated from X-ray diffraction studies. The in situ neutron diffraction study carried out on Nd0.5Ba0.5MnO3 in hydrogen flow up to T ∼ 900 °C, allows monitoring the A-site cation disorder–order structural phase transition of this representative member of potential SOFC anode materials between air sintering conditions and hydrogen working conditions. Oxygen loss from Nd0.5Ba0.5MnO3 proceeds with retention of A-site disorder until the oxygen content reaches the Nd0.5Ba0.5MnO2.5 composition at 600 °C. The phase transition to layered NdBaMn2O5 and localization of the oxygen vacancies in the Nd layer proceeds at 800 °C with retention of the oxygen content. Impedance spectroscopy measurements for the oxidized A-site ordered electrode material, NdBaMn2O6, screen printed on a Ce0.9Gd0.1O2−δ (CGO) electrolyte showed promising electrochemical performance in air at 700 °C with a polarization resistance of 1.09 Ω cm2 without any optimization.

  16. La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) nanocomposite cathode for low temperature SOFCs.

    Science.gov (United States)

    Raza, Rizwan; Abbas, Ghazanfar; Liu, Qinghua; Patel, Imran; Zhu, Bin

    2012-06-01

    Nanocomposite based cathode materials compatible for low temperature solid oxide fuel cells (LTSOFCs) are being developed. In pursuit of compatible cathode, this research aims to synthesis and investigation nanocomposite La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) based system. The material was synthesized through wet chemical method and investigated for oxide-ceria composite based electrolyte LTSOFCs. Electrical property was studied by AC electrochemical impedance spectroscopy (EIS). The microstructure, thermal properties, and elemental analysis of the samples were characterized by TGA/DSC, XRD, SEM, respectively. The AC conductivity of cathode was obtained for 2.4 Scm(-1) at 550 degrees C in air. This cathode is compatible with ceria-based composite electrolytes and has improved the stability of the material in SOFC cathode environment.

  17. Characterization of cathode materials SrCoO3 and La0,2Sr0,8CoO3 for use in solid oxide fuel cells (SOFC)

    International Nuclear Information System (INIS)

    Galvao, G.O.; Aquino, F.M; Silva, R.M.; Medeiros, I.D.M. de

    2016-01-01

    Mixed oxide ceramics with chemical structure of ABO 3 type are promising candidates for cathodes of solid oxide fuel cells (SOFC) for performing well on the electrical conductivity and thermal stability. Various methods of preparation have been studied and used for the synthesis of these materials. In this study, SrCoO 3 and La 0,2 Sr 0,8 CoO 3 perovskites were synthesized using gelatin as directing agent with the purpose of producing homogeneous and porous particles. The powders obtained at 350 ° C / 2 h were calcined at 600, 800 and 1000 ° C for 4 hours and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that gelatin is a good polymerizing agent for metal ions as the material showed characteristic peaks of perovskite, with good porosity and uniformity. Furthermore, the method of synthesis employed has advantages related to cost and toxicity, which are very low. (author)

  18. Symmetry breaking and electrical conductivity of La0.7Sr0.3Cr0.4Mn0.6O3-δ perovskite as SOFC anode material

    International Nuclear Information System (INIS)

    Reyes-Rojas, A.; Alvarado-Flores, J.; Esparza-Ponce, H.; Esneider-Alcala, M.; Espitia-Cabrera, I.; Torres-Moye, E.

    2011-01-01

    Research highlights: → Perovskite-type La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -NiO nucleation kinetics. Symmetry-breaking by introducing Ni 2+ cations at 1050 deg. C. Phase transition from high temperature aristotype R3-bar c to hettotype I4/mmm. At low Ni concentration ρ resistivity decreases when increasing the temperature. For Ni concentration higher than 25% ρ resistivity increases. - Abstract: This work is focused on nanocrystalline solid oxide fuel cell synthesis and characterization (SOFC) anodes of La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ (perovskite-type) with Nickel. Perovskite-type oxide chemical reactivity, nucleation kinetics and phase composition related with La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -NiO to La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -Ni transformation have been analyzed. SOFC anode powders were obtained by sol-gel synthesis, using polyvinyl alcohol as an organic precursor to get a porous cermet electrode after sintering at 1365 deg. C and oxide reduction by hydrogen at 800 deg. C/1050 deg. C for 8 h in a horizontal tubular reactor furnace under 10% H 2 /N 2 atmosphere. Composite powders were compressed into 10-mm diameter discs with 25-75 wt% Ni. Electrical and structural characterization by four-point probe method for conductivity, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Rietveld method were carried out. Symmetry-breaking by phase transition from high temperature aristotype R3-bar c to hettotype I4/mmm has been identified and confirmed by XRD and Rietveld method which can be produced by introducing Ni 2+ cations in the perovskite solid solution. Rietveld analysis suggests that Ni contents are directly proportional to La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 NiO 3.95 tetragonal structure cell volume and inversely proportional to Ni cubic structure cell volume after reduction at 1050 deg. C. Kinetic analysis indicated that the Johnson-Mehl-Avrami equation is able to provide a good fit to phase

  19. Design Methodology - Design Synthesis

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    2003-01-01

    ABSTRACT Design Methodology shall be seen as our understanding of how to design; it is an early (emerging late 60ies) and original articulation of teachable and learnable methodics. The insight is based upon two sources: the nature of the designed artefacts and the nature of human designing. Today...... Design Methodology is part of our practice and our knowledge about designing, and it has been strongly supported by the establishing and work of a design research community. The aim of this article is to broaden the reader¿s view of designing and Design Methodology. This is done by sketching...... the development of Design Methodology through time and sketching some important approaches and methods. The development is mainly forced by changing industrial condition, by the growth of IT support for designing, but also by the growth of insight into designing created by design researchers....

  20. Effect of propellant on the combustion synthesis of La07Sr0.3Co0.5Fe0.5O3 (LSCF) nanopowders for application as cathode in IT-SOFC

    International Nuclear Information System (INIS)

    Silva, Amada M.; Silva, Camila R.B.; Conceicao, Leandro da; Souza, Mariana M.V.M.; Ribeiro, Nielson F.P.

    2009-01-01

    Combustion synthesis has emerged as a simple and economically viable technique for the preparation of La 0,7 Sr 0,3 Co 0 ,5Fe 0,5 O 3 (LSCF) nanopowders. This material has attracted a substantial interest for application as cathode in the solid oxide fuel cells of intermediate temperature (IT-SOFC). The objective of this work is to study the effect of different propellants (urea, glycine, citric acid and sucrose) in the preparation of LSCF nanopowders by combustion method. The nitrates and the propellant were mixed on a hot plate (150 °C) and then introduced in a furnace (300°C), where the flame temperature is measured by thermocouple. The powder was finally calcined at different temperatures. The obtained materials were characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results obtained by XRD showed the presence of pure perovskite LSFC and a small formation of carbonate phases, but when urea and sucrose were used as propellant these secondary phases were almost nonexistent. (author)

  1. Combustion synthesis of NiO–Ce0.9Gd0.1O1.95 nanocomposite anode and its electrical characteristics of semi-cell configured SOFC assembly

    International Nuclear Information System (INIS)

    Akbari-Fakhrabadi, A.; Avila, Ricardo E.; Carrasco, Hector E.; Ananthakumar, S.; Mangalaraja, R.V.

    2012-01-01

    Highlights: ► Combustion synthesis was followed to prepare NiO–GDC nanocomposite. ► NiO–GDC anode was applied over GDC electrolyte to fabricate a semi-cell. ► Electrical conductivity of the semi-cell was characterized. ► Structure, composition, particle size and morphology of NiO–GDC were studied. - Abstract: NiO–Ce 0.9 Gd 0.1 O 1.95 (NiO–10GDC) nanocomposite anode material was synthesized through combustion technique for possible low temperature solid oxide fuel cells (LT–SOFCs). A low weight loss is seen in the TG/DTA thermogram that indicates the complete combustion of the reactant mixtures. The powder X-ray diffraction patterns showed that the presence of NiO, GDC and Ni crystallite phases in the as combusted product. Upon calcination at 600 °C, the metallic Ni oxidized to NiO. TEM images showed a wide size distribution of fine spherical GDC and large irregularly shaped NiO particles. This NiO–10GDC anode material was applied over GDC electrolyte as a porous thin layer. Using this surface engineered GDC electrolyte a semi-cell (electrode/electrolyte structure) was fabricated. The electrical conductivity of the semi-cell was characterized with respect to temperature.

  2. Designing Material Materialising Design

    DEFF Research Database (Denmark)

    Nicholas, Paul

    2013-01-01

    Designing Material Materialising Design documents five projects developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts, School of Architecture. These projects explore the idea that new designed materials might require new design methods...

  3. Designing Communication Design

    DEFF Research Database (Denmark)

    Løvlie, Anders Sundnes

    2016-01-01

    Innovating in the field of new media genres requires methods for producing designs that can succeed in being disseminated and used outside of design research labs. This article uses the author's experiences with the development of university courses in communication design to address the research...... question: How can we design courses to give students the competencies they need to work as designers of new media? Based on existing approaches from UX design and other fields, I present a model that has demonstrated its usefulness in the development of commercial products and services. The model...

  4. Computational Fluid Dynamics calculation of a planar solid oxide fuel cell design running on syngas

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-12-01

    Full Text Available The present study deals with modelling and validation of a planar Solid Oxide Fuel Cell (SOFC design fuelled by gas mixture of partially pre-reformed methane. A 3D model was developed using the ANSYS Fluent Computational Fluid Dynamics (CFD tool that was supported by an additional Fuel Cell Tools module. The governing equations for momentum, heat, gas species, ion and electron transport were implemented and coupled to kinetics describing the electrochemical and reforming reactions. In the model, the Water Gas Shift reaction in a porous anode layer was included. Electrochemical oxidation of hydrogen and carbon monoxide fuels were both considered. The developed model enabled to predict the distributions of temperature, current density and gas flow in the fuel cell.

  5. Preparation of one-step NiO/Ni-CGO composites using factorial design

    International Nuclear Information System (INIS)

    Araujo, A.J.M. de; Sousa, A R.O. de; Camposa, L.F.A.; Macedo, D.A.; Loureiro, F. J.A.; Fagg, D.P.

    2016-01-01

    This work deals with the synthesis, processing and characterization of NiO/Ni- CGO composite materials as potential solid oxide fuel cell (SOFC) anodes. The particulate materials were obtained by a one-step synthesis method and characterized by thermal analysis (prior to calcination) and X-ray diffraction (calcined powder). The ceramic processing of samples containing from 30 to 70 wt.% NiO was carried out by factorial design. Besides the NiO content controlled during the chemical synthesis, the impacts of the pore-former content (citric acid, used in proportions of 0, 7.5 and 15 wt.%) and the sintering temperature (1300, 1350 and 1400 °C) were also investigated. The open porosity of NiO-CGO composites and reduced Ni-CGO cermets was modeled as a function of factors (NiO content, citric acid content and sintering temperature) and interaction of factors. (author)

  6. Prompting Designers to Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Recent research suggest that engineering designers need assistance to understand what information is relevant for their particular design problem. They require guidance in formulating their queries and also to understand what information is relevant for them. This paper presents an approach...... to prompt designers with their design queries. A method that automatically extracts relationships between concepts is described, along with some examples. The method can be implemented as part of knowledge management system and the relationships are extracted form documents that are indexed within...... literature related to: 1) an understanding of how engineering designers search for information and 2) an understanding of the nature of experience in engineering design. Hence these are reviewed in the following sections....

  7. Prompting Designers to Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2006-01-01

    Recent research suggest that engineering designers need assistance to understand what information is relevant for their particular design problem. They require guidance in formulating their queries and also to understand what information is relevant for them. This paper presents an approach...... to prompt designers with their design queries. A method that automatically extracts relationships between concepts is described, along with some examples. The method can be implemented as part of knowledge management system and the relationships are extracted form documents that are indexed within...... literature related to: 1) an understanding of how engineering designers search for information and 2) an understanding of the nature of experience in engineering design. Hence these are reviewed in the following sections...

  8. Efecto sobre la reacción de oxígeno de la forma y la microestructura del contacto electrodo-electrolito de electrodos a difusión interna en Celdas de Combustible de Óxido Sólido (SOFC

    Directory of Open Access Journals (Sweden)

    Jiménez, R.

    1999-12-01

    Full Text Available In this work we have studied the elemental electrode shape and electrode - electrolyte contact microstructure influence of Internal diffusion (ID gas electrode in solid oxide fuel cells (SOFC. First the influence over the electrolyte effective resistance is studied. Then the influence of the shape of the elemental contact grain of ID electrode is also studied. Finally the influence of the electrode - electrolyte contact microstructure in the electrode response for a pure diffuse control is modelled. From the obtained results, conclusions on the contact microstructure and electrode shape influence over the oxygen reaction of this kind of gas electrodes are commented.

    En este trabajo, se estudia la influencia de la forma del electrodo elemental y la microestructura del contacto electrodo-electrolito, del electrodo de gas a difusión interna en celdas de combustible de óxido sólido (SOFC. Se determina la influencia de la microestructura del contacto electrodo electrolito sobre la resistencia efectiva del electrolito, la influencia de la forma del contacto de un grano elemental de un electrodo poroso suponiendo que sea aproximadamente una semiesfera sobre la reacción del electrodo y finalmente la influencia de la microestructura del contacto electrodo - electrolito en la respuesta a un control difusivo puro del electrodo. De los resultados obtenidos se pueden extraer conclusiones sobre la influencia de la microestructura del contacto y forma del electrodo en la reacción de oxígeno en este tipo de electrodos de gas.

  9. Synthesis and characterization of the double perovskite BaSrCoFe{sub 1}-{sub x}Ni{sub x}O{sub 5.5} like cathode for solid oxide fuel cells; Sintesis y caracterizacion de la doble perovskita BaSrCoFe{sub 1}-{sub x}Ni{sub x}O{sub 5.5} como catodo para celdas SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado F, J.; Avalos R, L.; Viramontes G, G. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Electrica, Santiago Tapia 403, Morelia 58030, Michoacan (Mexico); Reyes R, A. [Centro de Investigacion en Materiales Avanzados, Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109, Chihuahua (Mexico)

    2013-08-01

    Have been synthesized via sol-gel method and characterized by X-ray diffraction, electrical conductivity and thermal expansion coefficient, new material composites BaSrCoFe{sub 1{sub x}}Ni{sub x}O{sub 5.5} (double perovskite type) with the addition of Ni in solid solution Ni{sub x} (x = 0.025, 0.05, 0.075, 0.1 and 0.2), as alternative cathodes for solid oxide fuel cells of intermediate temperature (Sofc-It). X-ray diffraction confirmed the formation of the tetragonal structure perovskite phase BaSrCoFe{sub 1}-{sub x}Ni{sub x}O{sub 5.5}, with the presence of small peaks identified in 2{theta} values below 30 degrees as BaCO{sub 3} and CoFe{sub 2}O{sub 4}. The electrical conductivity increases with the temperature between 350-470 degrees C and then decreases due to the loss of oxygen in the net, which causes differences in conductivity. Semiconductor behavior was obtained in all compositions. Thermal expansion coefficient determination, showed a linear dependence inversely proportional to the concentration of Ni. Our results of electrical conductivity and thermal expansion coefficient, reach to the conclusion that the cathodes between 0.1 and 0.2 Ni, have the greatest possibility for application in Sofc-It. (Author)

  10. Sc and Nb Dopants in SrCoO3 Modulate Electronic and Vacancy Structures for Improved Water Splitting and SOFC Cathodes

    KAUST Repository

    Tahini, Hassan A.

    2017-01-12

    SrCoO3 is a promising material in the field of electrocatalysis. Difficulties in synthesising the material in its cubic phase have been overcome by doping it with Sc and Nb ions [Mater. Horiz.2015, 2, 495–501]. Using ab initio calculations and special quasi random structures we undertake a systematic study of these dopants in order to elucidate the effect of doping on electronic structure of the SrCoO3 host and the formation of oxygen vacancies. We find that while the overall electronic structure of SrCoO3 is preserved, increasing the Sc fraction leads to a decrease of electrical conductivity, in agreement with earlier experimental work. For low Sc and Nb doping fractions we find that the oxygen vacancy formation increases relative to undoped SrCoO3. However, as the dopants concentration is increased the vacancy formation energy drops significantly, indicating a strong tendency to accommodate high concentration of oxygen vacancies and hence non-stoichiometry. This is explained based on the electronic instabilities caused by the presence of Sc ions which weakens the B-O interactions as well as the increased degree of electron delocalization on the oxygen sublattice. Sc dopants also shift the p-band centre closer to the Fermi level, which can be associated with experimentally reported improvements in oxygen evolution reactions. These findings provide crucial baseline information for the design of better electrocatalysts for oxygen evolution reactions as well as fuel-cell cathode materials.

  11. Dansk Design

    DEFF Research Database (Denmark)

    Dickson, Thomas

    Indhold: Hvad er design?; Hvor kommer dansk design fra?; Produktdesign; Tekstil- og tøjdesign; Design af møbler og boligindretning; Bygningen og design; Arbejdets design; Transportdesign; Offentligt design; Grafisk design; Nye tider og en ny slags design...

  12. Design and analysis of a waste gasification energy system with solid oxide fuel cells and absorption chillers

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2018-01-01

    cooling. Other advantage of such waste to energy system is waste management, less disposal to sanitary landfills, saving large municipal fields for other human activity and considerable less environmental impact. Although plant electrical efficiency of such system is not significant but fuel utilization...... of them received subsidies to increase installation and reduce cost. This article presents a new sustainable trigeneration system (power, heat and cool) based on a solid oxide fuel cell (SOFC) system integrated with an absorption chiller for special applications such as hotels, resorts, hospitals, etc....... with a focus on plant design and performance. The proposal system is based on the idea of gasifying the municipal waste, producing syngas serving as fuel for the trigeneration system. Such advanced system when improved is thus self-sustainable without dependency on net grid, district heating and district...

  13. First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design

    Science.gov (United States)

    Ismail, Arif

    As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell. Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material. With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDC agree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus

  14. A conceptual design of catalytic gasification fuel cell hybrid power plant with oxygen transfer membrane

    Science.gov (United States)

    Shi, Wangying; Han, Minfang

    2017-09-01

    A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.

  15. VLSI design

    CERN Document Server

    Chandrasetty, Vikram Arkalgud

    2011-01-01

    This book provides insight into the practical design of VLSI circuits. It is aimed at novice VLSI designers and other enthusiasts who would like to understand VLSI design flows. Coverage includes key concepts in CMOS digital design, design of DSP and communication blocks on FPGAs, ASIC front end and physical design, and analog and mixed signal design. The approach is designed to focus on practical implementation of key elements of the VLSI design process, in order to make the topic accessible to novices. The design concepts are demonstrated using software from Mathworks, Xilinx, Mentor Graphic

  16. SOFC seal and cell thermal management

    Science.gov (United States)

    Potnis, Shailesh Vijay [Neenah, WI; Rehg, Timothy Joseph [Huntington Beach, CA

    2011-05-17

    The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.

  17. Application of impedance spectroscopy to SOFC research

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, G.; Mason, T.O. [Northwestern Univ., Evanston, IL (United States); Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  18. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  19. Viscous Glass Sealants for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott Misture

    2012-09-30

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  20. Flexible ceramic gasket for SOFC generator

    Science.gov (United States)

    Zafred, Paolo [Murrysville, PA; Prevish, Thomas [Trafford, PA

    2009-02-03

    A solid oxide fuel cell generator (10) contains stacks of hollow axially elongated fuel cells (36) having an open top end (37), an oxidant inlet plenum (52), a feed fuel plenum (11), a combustion chamber (94) for combusting reacted oxidant/spent fuel; and, optionally, a fuel recirculation chamber (106) below the combustion chamber (94), where the fuel recirculation chamber (94) is in part defined by semi-porous fuel cell positioning gasket (108), all within an outer generator enclosure (8), wherein the fuel cell gasket (108) has a laminate structure comprising at least a compliant fibrous mat support layer and a strong, yet flexible woven layer, which may contain catalytic particles facing the combustion chamber, where the catalyst, if used, is effective to further oxidize exhaust fuel and protect the open top end (37) of the fuel cells.

  1. Evidensbaseret design

    DEFF Research Database (Denmark)

    Pagh, Jesper

    2013-01-01

    Debatindlæg om evidensbaseret design, som argumenterer for at det dels er en gammeldags, modernistisk tilgang til design, dels ikke baserer sig på evidens.......Debatindlæg om evidensbaseret design, som argumenterer for at det dels er en gammeldags, modernistisk tilgang til design, dels ikke baserer sig på evidens....

  2. Design Games

    DEFF Research Database (Denmark)

    Johansson, Martin Wetterstrand

    2007-01-01

    In this paper design games are discussed as an approach to managing design sessions. The focus is on the collaborative design session and more particular on how to set up the collaboration and reinsure progress. Design games have the advantage of framing the collaborative assignment at hand....... Experiments can be set up to explore possible futures and design games has the qualities of elegantly focus the work at the same time as it lessens the burden for the process facilitator. The present paper goes into detail about how design games can be set up to facilitate collaboration and how the design...

  3. FPGA design

    CERN Document Server

    Simpson, Philip

    2010-01-01

    This book describes best practices for successful FPGA design. It is the result of the author's meetings with hundreds of customers on the challenges facing each of their FPGA design teams. By gaining an understanding into their design environments, processes, what works and what does not work, key areas of concern in implementing system designs have been identified and a recommended design methodology to overcome these challenges has been developed. This book's content has a strong focus on design teams that are spread across sites. The goal being to increase the productivity of FPGA design t

  4. Team designing

    DEFF Research Database (Denmark)

    Denise J. Stokholm, Marianne

    2012-01-01

    more attention to the underlying models, information management and shared goals. Simple machine understanding and obvious goals are not suitable to explain present states or how to reach a better state` (1). `Design is a universal method in the Age of Information` (2). Education of interdisciplinary...... in relation to a design-engineering education at Aalborg University. It will exemplify how the model has been used in workshops on team designing, challenged design learning and affected design competence. In specific it will investigate the influence of visual models of the perception of design, design...... thinking and communication in design. Trying to answer the question: How can visual system models facilitate learning in design thinking and team designing?...

  5. Design Accountability

    DEFF Research Database (Denmark)

    Koskinen, Ilpo; Krogh, Peter

    2015-01-01

    . This paper looks at constructive design research which takes the entanglement of theory and practice as its hallmark, and uses it as a test case in exploring how design researchers can work with theory, methodology, and practice without losing their identity as design researchers. The crux of practice based...... design research is that where classical research is interested in singling out a particular aspect and exploring it in depth, design practice is characterized by balancing numerous concerns in a heterogenous and occasionally paradoxical product. It is on this basis the notion of design accountability......When design research builds on design practice, it may contribute to both theory and practice of design in ways richer than research that treats design as a topic. Such research, however, faces several tensions that it has to negotiate successfully in order not to lose its character as research...

  6. VLSI design

    CERN Document Server

    Basu, D K

    2014-01-01

    Very Large Scale Integrated Circuits (VLSI) design has moved from costly curiosity to an everyday necessity, especially with the proliferated applications of embedded computing devices in communications, entertainment and household gadgets. As a result, more and more knowledge on various aspects of VLSI design technologies is becoming a necessity for the engineering/technology students of various disciplines. With this goal in mind the course material of this book has been designed to cover the various fundamental aspects of VLSI design, like Categorization and comparison between various technologies used for VLSI design Basic fabrication processes involved in VLSI design Design of MOS, CMOS and Bi CMOS circuits used in VLSI Structured design of VLSI Introduction to VHDL for VLSI design Automated design for placement and routing of VLSI systems VLSI testing and testability The various topics of the book have been discussed lucidly with analysis, when required, examples, figures and adequate analytical and the...

  7. Design Drawing

    DEFF Research Database (Denmark)

    Steinø, Nicolai

    2018-01-01

    In a time of computer aided design, computer graphics and parametric design tools, the art of design drawing is in a state of neglect. But design and drawing are inseparably linked in ways which often go unnoticed. Essentially, it is very difficult, if not impossible, to conceive of designs without...... and better than most medium-skilled draftsmen, drawing in design is not only about representing final designs. In fact, several steps involving the capacity to draw lie before the representation of a final design. Not only is drawing skills a prerequisite for learning about the nature of existing objects...... and thus to build a vocabulary of design. It is also a prerequisite for both reflecting and communicating about design ideas. In this paper, a taxonomy of notation, reflection, communication and presentation drawing is presented, discussed and exemplified. The paper is theoretical in nature, discussing...

  8. Mechanical design

    CERN Document Server

    Risitano, Antonino

    2011-01-01

    METHODOLOGICAL STATEMENT OF ENGINEERING DESIGNApproaches to product design and developmentMechanical design and environmental requirementsPROPERTIES OF ENGINEERING MATERIALSMaterials for mechanical designCharacterization of metalsStress conditionsFatigue of materialsOptimum material selection in mechanical designDESIGN OF MECHANICAL COMPONENTS AND SYSTEMSFailure theoriesHertz theoryLubrificationShafts and bearingsSplines and keysSpringsFlexible machine elementsSpur gearsPress and shrink fitsPressure tubesCouplingsClutchesBrakes

  9. Memory design

    DEFF Research Database (Denmark)

    Tanderup, Sisse

    Mind and Matter - Nordik 2009 Conference for Art Historians Design Matters Contributed Memory design BACKGROUND My research concerns the use of memory categories in the designs by the companies Alessi and Georg Jensen. When Alessi's designers create their products, they are usually inspired...... by cultural forms, often specifically by the concept of memory in philosophy, sociology and psychology, while Danish design traditionally has been focusing on form and function with frequent references to the forms of nature. Alessi's motivation for investigating the concept of memory is that it adds...... a cultural dimension to the design objects, enabling the objects to make an identity-forming impact. Whether or not the concept of memory plays a significant role in Danish design has not yet been elucidated fully. TERMINOLOGY The concept of "memory design" refers to the idea that design carries...

  10. Memory design

    DEFF Research Database (Denmark)

    Tanderup, Sisse

    over time. Memory is bonded with story telling. Both in the way the designer tells a story through his design and in the way the user recognizes the story in his perception of design. Memory design first requires recognition and then cognition. AIM The purpose of my research is to investigate the use......Mind and Matter - Nordik 2009 Conference for Art Historians Design Matters Contributed Memory design BACKGROUND My research concerns the use of memory categories in the designs by the companies Alessi and Georg Jensen. When Alessi's designers create their products, they are usually inspired...... by cultural forms, often specifically by the concept of memory in philosophy, sociology and psychology, while Danish design traditionally has been focusing on form and function with frequent references to the forms of nature. Alessi's motivation for investigating the concept of memory is that it adds...

  11. Design Diversity

    DEFF Research Database (Denmark)

    Dankl, Kathrina

    2014-01-01

    design projects not devote themselves to the actual challenges of aging? Do the channels of communication between designers and their target group perhaps not work? The exhibition is organized into four showcases along the themes "Housing," "Networking," "Supporting," and "Moving." Exhibition visitors....... The exhibition is oriented along disciplines such as inclusive design, which calls for products to be designed in such a way that they are equally attractive to people of all ages. Despite the existence of innovative design concepts, the number of well-designed products available on the market is low. While many...

  12. Designing Interfaces

    CERN Document Server

    Tidwell, Jenifer

    2010-01-01

    Despite all of the UI toolkits available today, it's still not easy to design good application interfaces. This bestselling book is one of the few reliable sources to help you navigate through the maze of design options. By capturing UI best practices and reusable ideas as design patterns, Designing Interfaces provides solutions to common design problems that you can tailor to the situation at hand. This updated edition includes patterns for mobile apps and social media, as well as web applications and desktop software. Each pattern contains full-color examples and practical design advice th

  13. Research Design

    DEFF Research Database (Denmark)

    2019-01-01

    Gunnar Scott Reinbacher (editor) Antology.  Research Design : Validation in Social Sciences. Gunnar Scott Reinbacher: Introduction. Research design and validity. 15p Ole Riis: Creative Research design. 16 p Lennart Nørreklit: Validity in Research Design. 24p Gitte Sommer Harrits: Praxeological...... Scott Reinbacher: Multidisciplinary Research Designs in Problem Based Research. The case of an european project on chronical diseases, the Tandem project (Training Alternmative Networking Skills in Diabetes Management). 15p Niels Nørgaard Kristensen: A qualitative bottom up approach to post modern...... knowledge: An integrated strategy for combining "explaining" and "understanding". 22p Heidi Houlberg Salomonsen & Viola Burau: Comparative research designs. 40p Rasmus Antoft & Heidi Houlberg Salomonsen: Studying organizations by a Pragmatic Research Design: the case of qualitative case study  designs. 31p...

  14. Design Anthropology

    DEFF Research Database (Denmark)

    Gunn, Wendy

    Design anthropology is a call for a different way of involving anthropology and participatory observation within practices of designing technologies, services, policies and infrastructure that does not aim towards changing human behavior. Here design is considered the process and not the object...... of inquiry. The paper presents a short history of design anthropology, its theoretical underpinnings and methodologies. Theoretically, the emerging field is influenced by processual, critical and action orientated approaches in anthropology. I argue that by combining anthropological methodology and knowledge...... with the future orientated imaginative praxis of design skill and collaborative design processes, anthropology and design could learn from each other. I conclude by referring to what theories, methods, and approaches are in use by practitioners of design anthropology....

  15. Danish design

    DEFF Research Database (Denmark)

    Dickson, Thomas

    2001-01-01

    Hvordan dansk design bliver innovativt og verdensberømt igen som i storhedstiden i 1950- og 60'erne......Hvordan dansk design bliver innovativt og verdensberømt igen som i storhedstiden i 1950- og 60'erne...

  16. Design What?%

    DEFF Research Database (Denmark)

    Engholm, Ida

    2017-01-01

    The design profession is under transformation. While the designer’s role was previously mainly about giving shape to products and handling specific design tasks, designers now have to operate under new conditions in a rapidly expanding knowledge-intensive field, where the task is not just about...... design and visualization but also about leading processes and facilitating the development of new products, services and concepts. That places new and different demands on designers, who have to be able to engage in interdisciplinary development projects and lead and oversee processes – from the original...... idea to the end-result. The goal for this graphic non-fiction project is to document and present both historical and current developments in design methodology, from the early attempts at documenting procedures for design process management at the Bauhaus School in the 1920s to contemporary design...

  17. Designing motivation

    DEFF Research Database (Denmark)

    How can products be designed to change our habits for the better? What is some of the leading research that designers can draw on to create new systems that motivate people towards healthier behaviour? Designing Motivation is an edited collection of ‘industrialist cheat sheets’: 22 single......-page summaries of research articles relating to technology design, motivation, and behaviour change. Ranging across the fields of economics, sociology, design research and behavioural science, each summary draws out the design implications of the research. It is intended as a resource for designers who...... are grappling with how to create motivating products, and as a primer for students who want a brief introduction to some of the relevant theories, findings and design interventions in these fields. The editor's introduction raises a number of issues encountered when we try to apply behavioural research...

  18. Design Education

    DEFF Research Database (Denmark)

    Brandt, Eva

    2007-01-01

    traditions into a research based institution for higher education is demanding. Danmarks Designskole is in the middle of this process, many activities are initiated, both employees and students are involved, and from outside representatives from various design professions. The design process has many...... stakeholders with various interests and opinions. The aim it is not to design a computer system, a service or product but re-designing curriculum, work procedures, self images etc. which support educating designers of the future. This paper reports on two investigations that have been carried through as part...... of the change processes at Danmarks Designskole. A questionnaire explore the present students reasons for wanting to become designers and their expectations to the design education and future jobs. Eight focus groups including representatives from various design professions discuss what skills and competencies...

  19. Design Anthropology in Participatory Design

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte; Kjærsgaard, Mette Gislev

    2015-01-01

    This focus section explores the opportunities of design anthropology in participatory design as an approach to research and design in an increasingly global and digital world. Traditionally, ethnography has been used in Participatory design to research real-life contexts and challenges, and as ways...... to involve people in defining user-needs and design opportunities. As the boundaries between diverse – material, digital and networked – spaces and experiences become increasingly blurred, so do the conventional distinctions between research and design. The papers presented in this focus section explore...... opportunities of using design anthropology as a holistic and critical approach to addressing societal challenges and change, and a way for anthropologists and designers to engage in participatory research and design that extend beyond the empirical....

  20. Design typology and design organisation

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Wognum, N.; McAloone, Timothy Charles

    2002-01-01

    The idea of focusing upon the creation of a design typology was articulated by [Andreasen & Wognum 2000] and detailed by [Andreasen & Wognum 2001]. The aim was to propose a typology, which could serve as identification of design types and design research contributions. For a long period the design...... research society has recognised normative procedural models of designing as being a reasonable answer to the question: How do designing proceed? The reasoning behind the models, from which the design methodology model by [Pahl & Beitz 1995], may be seen as a characteristic one, was a mix of human problem...... solving-, design management-, and artefact nature-reasoning. Critique has been raised to that type of models as being neither explanatory nor instructive. If we accept these models as merely being pragmatically "stepping-stone" explanations of what happens during designing, it is interesting to observe...

  1. Breakwater design

    OpenAIRE

    Verhagen, H.J.; van den Bos, J.P.

    2017-01-01

    For this book we have deliberately chosen that the text should follow a more or less logical design procedure for breakwaters. It follows the required design steps from the system level down to the individual crosssection level, and in time from conceptual design to construction. This systematic approach starts at the functional description of breakwaters, system analysis including side-effects and derivation of boundary conditions and continues to the actual design, first of the main armour ...

  2. Design Aspects

    International Nuclear Information System (INIS)

    Hillary, J.J.

    1974-01-01

    Summarizing part of a seminar on iodide filter testing the author classifies the design information on iodine filters which was presented at the meeting in terms of design requirements - species to be trapped sorption materials and engineering factors -, design evaluation, applications and operational experience

  3. Cooperative design

    DEFF Research Database (Denmark)

    Schmidt, Kjeld

    1998-01-01

    if concurrent engineering is to succeed. On the basis of ethnographic studies of cooperative design, the paper attempts to characterize cooperative work in the domain of design and to outline a set of crucial research problems to be addressed if CSCW is to help engineers and de-signers meet the challenges...

  4. Breakwater design

    NARCIS (Netherlands)

    Verhagen, H.J.; van den Bos, J.P.

    For this book we have deliberately chosen that the text should follow a more or less logical design procedure for breakwaters. It follows the required design steps from the system level down to the individual crosssection level, and in time from conceptual design to construction. This systematic

  5. Design Compass

    DEFF Research Database (Denmark)

    Stokholm, Marianne Denise J.

    2006-01-01

    , but as a cross field of interacting contexts and places design as both product and process in the centre. It build on a combination of ancient Greek and Roman definitions of man the made and recent models of integrated design by “state of the art” design studios like IDEO. It deals with the interaction...

  6. Design Processes

    DEFF Research Database (Denmark)

    Ovesen, Nis

    2009-01-01

    Inspiration for most research and optimisations on design processes still seem to focus within the narrow field of the traditional design practise. The focus in this study turns to associated businesses of the design professions in order to learn from their development processes. Through interviews...... advantages and challenges of agile processes in mobile software and web businesses are identified. The applicability of these agile processes is discussed in re- gards to design educations and product development in the domain of Industrial Design and is briefly seen in relation to the concept of dromology...

  7. Design and development of a diesel and JP-8 logistic fuel processor

    Science.gov (United States)

    Roychoudhury, Subir; Lyubovsky, Maxim; Walsh, D.; Chu, Deryn; Kallio, Erik

    The paper describes the design and performance of a breadboard prototype for a 5 kW fuel-processor for powering a solid oxide fuel cell (SOFC) stack. The system was based on a small, modular catalytic Microlith auto-thermal (ATR) reactor with the versatility of operating on diesel, Jet-A or JP-8 fuels. The reforming reactor utilized Microlith substrates and catalyst technology (patented and trademarked). These reactors have demonstrated the capability of efficiently reforming liquid and gaseous hydrocarbon fuels at exceptionally high power densities. The performance characteristics of the auto-thermal reactor (ATR) have been presented along with durability data. The fuel processor integrates fuel preparation, steam generation, sulfur removal, pumps, blowers and controls. The system design was developed via ASPEN ® Engineering Suite process simulation software and was analyzed with reference to system balance requirements. Since the fuel processor has not been integrated with a fuel cell, aspects of thermal integration with the stack have not been specifically addressed.

  8. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative......Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...

  9. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...

  10. Mobilities Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lanng, Ditte Bendix

    that of ‘mobilities design’. The book revolves around the following research question: How are design decisions and interventions staging mobilities? It builds upon the Staging Mobilities model (Jensen 2013) in an explorative inquiry into the problems and potentials of the design of mobilities. The exchange value...... between mobilities and design research is twofold. To mobilities research this means getting closer to the ‘material’, and to engage in the creative, explorative and experimental approaches of the design world which offer new potentials for innovative research. Design research, on the other hand, might...... enter into a fruitful relationship with mobilities research, offering a relational and mobile design thinking and a valuable base for a reflective design practice around the ubiquitous structures, spaces and systems of mobilities....

  11. Design Research

    DEFF Research Database (Denmark)

    Design Research is a new interdisciplinary research area with a social science orientation at its heart, and this book explores how scientific knowledge can be put into practice in ways that are at once ethical, creative, helpful, and extraordinary in their results. In order to clarify the common...... aspects – in terms of features and approaches – that characterize all strands of research disciplines addressing design, Design Research undertakes an in depth exploration of the social processes involved in doing design, as well as analyses of the contexts for design use. The book further elicits...... ‘synergies from interdisciplinary perspectives’ by discussing and elaborating on differing academic perspectives, theoretical backgrounds, and design concept definitions, and evaluating their unique contribution to a general core of design research. This book is an exciting contribution to this little...

  12. Integrated Design

    DEFF Research Database (Denmark)

    Jørgensen, Michael; Nielsen, M. W.; Strømann-Andersen, Jakob Bjørn

    2011-01-01

    This paper presents a case study of the implementation of integrated design in an actual architectural competition. The design process was carried out at a highly esteemed architectural office and attended by both engineers and architects working towards mutual goals of architectural excellence......, low-energy consumption, and high-quality indoor environment. We use this case study to investigate how technical knowledge about building performance can be integrated into the conceptual design stage. We have selected certain points during the design process that represented design challenges......'s performance. This article illustrates how a continuous implementation of technical knowledge early in the design process for an actual architectural competition resulted in a building design with an energy demand approximately 30% lower than Danish building regulations, yet which still maintains a high...

  13. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    Science.gov (United States)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  14. Design Thinking metodika Design Sprint

    OpenAIRE

    Kubáč, David

    2015-01-01

    The main objective of this bachelor thesis is to introduce the Design Sprint method to readers on both theoretical level and practical level of understanding. The bachelor thesis itself is composed of five chapters: The first chapter speaks about the topic, goals, and the structure. The second chapter introduces to readers the term of Design Thinking and the concept behind it as well as methods that are based on Design Thinking followed by the third chapter, in which the Design Sprint is intr...

  15. Business design or Creative design

    DEFF Research Database (Denmark)

    Sørensen, Suna; Lassen, Astrid Heidemann; Nielsen, Louise Møller

    2008-01-01

    is a rudimentary effort to fill this box. Since opportunity design is a creative process, ideas from the creative design industries and literature are brought in to suggest a framework to explain how opportunities intentionally and pro-actively can be designed. This framework is indeed valuable to support...

  16. Preparation of one-step NiO/Ni-CGO composites using factorial design; Efeitos do processamento e do teor de formador de poros na microestrutura de cermets Ni-CGO

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.J.M. de; Sousa, A R.O. de; Camposa, L.F.A.; Macedo, D.A. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Loureiro, F. J.A.; Fagg, D.P., E-mail: allanjp1993@hotmail.com [Universidade de Aveiro (Portugal)

    2016-07-01

    This work deals with the synthesis, processing and characterization of NiO/Ni- CGO composite materials as potential solid oxide fuel cell (SOFC) anodes. The particulate materials were obtained by a one-step synthesis method and characterized by thermal analysis (prior to calcination) and X-ray diffraction (calcined powder). The ceramic processing of samples containing from 30 to 70 wt.% NiO was carried out by factorial design. Besides the NiO content controlled during the chemical synthesis, the impacts of the pore-former content (citric acid, used in proportions of 0, 7.5 and 15 wt.%) and the sintering temperature (1300, 1350 and 1400 °C) were also investigated. The open porosity of NiO-CGO composites and reduced Ni-CGO cermets was modeled as a function of factors (NiO content, citric acid content and sintering temperature) and interaction of factors. (author)

  17. ECO DESIGN IN DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    PRALEA Jeni

    2014-05-01

    Full Text Available Eco-design is a new domain, required by the new trends and existing concerns worldwide, generated by the necessity of adopting new design principles. New design principles require the designer to provide a friendly relationship between concept created, environment and consume. This "friendly" relationship should be valid both at present and in the future, generating new opportunities for product, product components or materials from which it was made. Awareness, by the designer, the importance of this new trend, permits the establishment of concepts that have as their objective the protection of present values and ensuring the legacy of future generations. Ecodesig, by its principles, is involved in the design process, from early stage, the stage of product design. Priority objective of the designers will consist in reducing the negative effects on the environment through the entire life cycle and after it is taken out of use. The main aspects of the eco-design will consider extending product exploitation, make better use of materials, reduction of emission of waste. The design process in the "eco"domein must be started by selecting the function of the concept, materials and technological processes, causing the shape of macro and micro geometric of the product through an analysis that involves optimizing and streamlining the product. This paper presents the design process of a cross-sports footwear concept, built on the basis of the principles of ecodesign

  18. Cooperative design

    DEFF Research Database (Denmark)

    Schmidt, Kjeld

    1998-01-01

    In the contemporary world, engineers and designers face huge challenges as they shift towards novel organizational concepts such as ‘concurrent engineering’ in order to manage increasing product diversity so as to satisfy customer demands while trying to accelerate the design process to deal...... with the competitive realities of a global market and decreasing product life cycles. In this environment, the coordination and integration of the myriads of interdependent and yet distributed and concurrent design activities becomes enormously complex. It thus seems as if CSCW technologies may be indispensable...... if concurrent engineering is to succeed. On the basis of ethnographic studies of cooperative design, the paper attempts to characterize cooperative work in the domain of design and to outline a set of crucial research problems to be addressed if CSCW is to help engineers and de-signers meet the challenges...

  19. Workspace Design

    DEFF Research Database (Denmark)

    Seim, Rikke

    Arbejdsmiljø adresseres sjældent i den klassike tekniske tilgang til arbejdspladsdesign. Workspace Design konceptet er et alternativ tilgang til design eller re-design af arbejdspladser, baseret på en socio-teknisk systemforståelse, hvor hovedprincipperne er 1) transformation af...... arbejdsmiljørådgiveren til facilitator af arbejdspladsdesignprocessen og 2) transformation af medarbejderne til co-designere af deres egen arbejdsplads. Dette ph.d.-projekt er en del af Workspace Design forskningsprogrammet som har udviklet og testet Workspace Design konceptet og de tilhørende metoder ved intervention i...... arbejdspladsdesignprocesser i tre virksomheder tilhørende henholdsvis industri-, service- og sundhedssektoren. Ph.d.-projektet har belyst hvordan en medarbejderinvolverende designproces kan iscenesættes og faciliteres af arbejdsmiljøprofessionelle ved hjælp af kreative, visuelle metoder inspireret af Participatory Design...

  20. Workplace design

    OpenAIRE

    Karanika-Murray, M; Michaelides, G

    2015-01-01

    PURPOSE – Although both job design and its broader context are likely to drive motivation, little is known about the specific workplace characteristics that are important for motivation. The purpose of this paper is to present the Workplace Characteristics Model, which describes the workplace characteristics that can foster motivation, and the corresponding multilevel Workplace Design Questionnaire.\\ud \\ud DESIGN/METHODOLOGY/APPROACH – The model is configured as nine workplace attributes desc...

  1. Design theory

    CERN Document Server

    2009-01-01

    This book deals with the basic subjects of design theory. It begins with balanced incomplete block designs, various constructions of which are described in ample detail. In particular, finite projective and affine planes, difference sets and Hadamard matrices, as tools to construct balanced incomplete block designs, are included. Orthogonal latin squares are also treated in detail. Zhu's simpler proof of the falsity of Euler's conjecture is included. The construction of some classes of balanced incomplete block designs, such as Steiner triple systems and Kirkman triple systems, are also given.

  2. Transformative Design

    DEFF Research Database (Denmark)

    Tamke, Martin; Kobiella, Olaf

    2007-01-01

    The paper presents an architectural design method, which was tested in a master class for four times. It combines the education of complex digital tools with their simultaneous use in the whole design process of an architectural (experimental) building design. The design method contains four steps......: thematic association, idea to form, form to function, site implementation. The four steps are open to subjective conceptions as well as to individual use of different digital tools but all related to the overall building brief. Tools mostly used and educated were 3d animation softwares. Scripting, rapid...

  3. Designated Places

    Data.gov (United States)

    California Department of Resources — Census 2000 Place Names provides a seamless statewide GIS layer of places, including census designated places (CDP), consolidated cities, and incorporated places,...

  4. Reviews on Solid Oxide Fuel Cell Technology

    Directory of Open Access Journals (Sweden)

    Apinan Soottitantawat

    2009-02-01

    Full Text Available Solid Oxide Fuel Cell (SOFC is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants. This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect are presented. Later, the current important designs of SOFC (i.e. Seal-less Tubular Design, Segmented Cell in Series Design, Monolithic Design and Flat Plate Design are exampled. In addition, the possible operations of SOFC (i.e. external reforming, indirect internal reforming, and direct internal reforming are discussed. Lastly, the research studies on applications of SOFCs with co-generation (i.e. SOFC with Combined Heat and Power (SOFC-CHP, SOFC with Gas Turbine (SOFC-GT and SOFC with chemical production are given.

  5. Performance Design

    DEFF Research Database (Denmark)

    Svabo, Connie

    Contribution to conference: Art and Presence The emerging field of Performance Design is unfolded as a bastard form of research/art/design/practice, with shapeshifting, monstruous, hybrid and transformational qualities. The potential for presencing, which emerges out of momentarily transgressing...

  6. Interior Design.

    Science.gov (United States)

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document contains teacher's materials for an eight-unit secondary education vocational home economics course on interior design. The units cover period styles of interiors, furniture and accessories, surface treatments and lighting, appliances and equipment, design and space planning in home and business settings, occupant needs, acquisition…

  7. Design law

    DEFF Research Database (Denmark)

    Schovsbo, Jens Hemmingsen; Riis, Thomas

    2017-01-01

    This book chapter describes, analyses and discusses the development of and the challenges to the legal protection og designs in Scandinavia and the EU......This book chapter describes, analyses and discusses the development of and the challenges to the legal protection og designs in Scandinavia and the EU...

  8. Integrated Design

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    1999-01-01

    A homepage on the internet with course material, lecture plan, student exercises, etc. Continuesly updated during the course Integrated Design (80402, 80403)......A homepage on the internet with course material, lecture plan, student exercises, etc. Continuesly updated during the course Integrated Design (80402, 80403)...

  9. Intelligent Design

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2005-01-01

    Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig.......Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig....

  10. Publication Design.

    Science.gov (United States)

    Nelson, Roy Paul

    This book is designed to solve the problem of coordinating art and typography with content in publications. Through text and illustrations, this book suggests ways to make pages and spreads in magazines, newspapers, and books attractive and readable. As a book of techniques, it is directed at potential and practicing art directors, designers, and…

  11. Design tools

    Science.gov (United States)

    Anton TenWolde; Mark T. Bomberg

    2009-01-01

    Overall, despite the lack of exact input data, the use of design tools, including models, is much superior to the simple following of rules of thumbs, and a moisture analysis should be standard procedure for any building envelope design. Exceptions can only be made for buildings in the same climate, similar occupancy, and similar envelope construction. This chapter...

  12. Japansk design

    DEFF Research Database (Denmark)

    Kural, René

    2005-01-01

    Artiklen udspringer af interviews med ti af Japans bedste møbeldesignere, grafikere, arkitekter og designfirmaer. Efter samtalerne var der tre træk ved japansk design, som trådte frem: god økonomi, fantasi og vovemod. Det bedste japanske design fusionerer vovemod med den unikke japanske kultur med...

  13. Designing friends

    NARCIS (Netherlands)

    Heylen, Dirk K.J.; Nijholt, Antinus; Stronks, B.; van der Vet, P.E.; Rosenberg, D.

    2003-01-01

    Embodied Conversational Agents are virtual humans that can interact with humans using verbal and non-verbal forms of communication. In most cases, they have been designed for short interactions. This paper asks the question how one would start to design synthetic characters that can become your

  14. Opportunity Design

    DEFF Research Database (Denmark)

    Løwe Nielsen, Suna; Lassen, Astrid Heidemann; Nielsen, Louise Møller

    2013-01-01

    Entrepreneurship is about transforming novel ideas into future business, but it requires an entrepreneurial opportunity to be exploited via an effective strategic and organizational design. While the entrepreneurship literature says much about how to implement and organize new opportunities...... in a market setting (the back-end of entrepreneurial processes), it pays less attention to how entrepreneurs purposely design opportunities (the front-end of entrepreneurial processes). Drawing on methods and processes from the creative design literature, the paper introduces a framework of “opportunity...... design”. The framework explains how opportunities intentionally and pro-actively can be designed from methods and processes of moving-in and moving-out. An illustrative case of opportunity design within the area of sustainable energy and electric cars is presented to link the theoretical discussion...

  15. INFRASTRUCTURING DESIGN

    DEFF Research Database (Denmark)

    Ertner, Sara Marie

    The fact that the average citizen in Western societies is aging has significant implications for national welfare models. What some call ’the grey tsunami’ has resulted in suggestions for, and experiments in, re-designing healthcare systems and elderly care. In Denmark, one attempted solution...... one such project, Project Lev Vel, a public-private and user driven innovation project. The central questions posed by the dissertation are: What is welfare technology? How is it imagined, designed, and developed, and by whom? Who are driving the design processes and how? Who are the elderly users......? The dissertation aims to elucidate the activities of design, and the development of welfare technology within the framework of public-private (PPI) and user driven innovation (UDI) project. One of the main findings is that for design carried out under the auspices of PPI and UDI, the crafting of sociotechnical...

  16. Mobilities Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lanng, Ditte Bendix; Wind, Simon

    2016-01-01

    In this paper, we identify the nexus between design (architecture, urban design, service design, etc.) and mobilities as a new and emerging research field. In this paper, we apply a “situational mobilities” perspective and take point of departure in the pragmatist question: “What design decisions...... and interventions affords this particular mobile situation?” The paper presents the contours of an emerging research agenda within mobilities research. The advent of “mobilities design” as an emerging research field points towards a critical interest in the material as well as practical consequences of contemporary......-making. The paper proposes that increased understanding of the material affordances facilitated through design provides important insight to planning and policymaking that at times might be in risk of becoming too detached from the everyday life of the mobile subject within contemporary mobilities landscapes....

  17. Furniture design

    CERN Document Server

    Smardzewski, Jerzy

    2015-01-01

    Maximizing reader insights into the principles of designing furniture as wooden structures, this book discusses issues related to the history of furniture structures, their classification and characteristics, ergonomic approaches to anthropometric requirements and safety of use. It presents key methods and highlights common errors in designing the characteristics of the materials, components, joints and structures, as well as looking at the challenges regarding developing associated design documentation. Including analysis of how designers may go about calculating the stiffness and endurance of parts, joints and whole structures, the book analyzes questions regarding the loss of furniture stability and the resulting threats to health of the user, putting forward a concept of furniture design as an engineering processes. Creating an attractive, functional, ergonomic and safe piece of furniture is not only the fruit of the work of individual architects and artists, but requires an effort of many people working ...

  18. Designing Organizations

    DEFF Research Database (Denmark)

    Book Description The design of organizations has been an ongoing concern of management theory and practice over the past several decades. Over this time, there has been little change in the fundamental theory, principles and concepts of Organization Design (OD). Recently organizational life has...... changed dramatically with the advent of: new communication systems, adaptive mechanisms, information technology, knowledge management systems, innovation processes and more. This book systemically examines these developments and their impact on OD with contributions from leading scholars in the area...... threefold theme: (1) core issues in organization design, (2) emerging perspectives in OD, and (3) new developments and directions in organizational design. A special feature of each chapter is: 1) implications for theory, and 2) implications for practice. DESIGNING ORGANIZATIONS: 21st Century Approaches...

  19. Design Transformations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knoche, Hendrik

    2014-01-01

    /implications – Ensuring relevance, by adding larger context concerns, expansive critical methods and feedback processes in a cycle of understanding, acting, learning can have useful practical and social implications. This is germane when designing for quality of everyday use in, for example, education, urban environments......Purpose – Taking a case study approach, we synchronised two courses to focus on the students working with learning and applying tools in the one course and acting on understandings gained to produce artefacts in the other. Design/methodology/approach – Working with real users throughout all stages...... of the design process, we structured two courses so findings from the evaluation methods learnt in the one course (their analyses) were directly acted on in the other (their re-designs). We fostered a group–spirited learning environment where students presented designs-in-process; explained the findings from...

  20. Persuasiv design

    DEFF Research Database (Denmark)

    Hasle, Per

    2011-01-01

    Purpose – The purpose of this paper is to introduce the theme issue on “Persuasive design”. Design/methodology/approach – This editorial describes the essential ideas and purposes of persuasive design (PD). PD's relation to other IT‐disciplines and rhetoric in general is discussed. A special...... emphasis is put on the possible wider implications for the concept of information. Findings – PD makes an important difference for information systems design. It is also an obvious part of a wider development towards user involvement. PD rests not only on persuasive techniques adapted to information...

  1. Design paper

    DEFF Research Database (Denmark)

    Krogh, Jesper; Petersen, Lone; Timmermann, Michael

    2007-01-01

    /unemployed) and the tertiary outcomes consist of biological responses. DESIGN: The trial is designed as a randomized, parallel-group, observer-blinded clinical trial. Patients are recruited through general practitioners and psychiatrist and randomized to three different interventions: 1) non-aerobic, -- progressive resistance....... The trial is designed to include 45 patients in each group. Statistical analysis will be done as intention to treat (all randomized patients). Results from the DEMO trial will be reported according to the CONSORT guidelines in 2008-2009....

  2. Designed Places

    DEFF Research Database (Denmark)

    Stender, Marie

    like the forces of nature. Based on a fieldwork in three new housing developments in Copenhagen, this paper aims to bring the financial crisis ‘down to earth’ by examining the material shapes it has taken in the spaces of everyday life. The ethnographic cases in question are places that are somewhat...... over-designed: Not only the places’ architecture and built environment but also their identity, image and social life has been carefully planned for. At the same time their design and architectural layout bear witness to a seemingly longing for that which is unplanned and beyond design, thus staging...

  3. ARE INCLUSIVE DESIGNERS DESIGNING INCLUSIVELY?

    DEFF Research Database (Denmark)

    Herriott, Richard

    2013-01-01

    of activity conforming to an authoritative design method. Analysis of the result showed that of the 66 cases, 4.5% reported carrying out all six categories of activity. 39.3% carried out or reported just one step. The study also found that the predominant focus of reported design activity is in the initial...

  4. THERMAL AND ELECTRICAL PROPERTIES OF Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (x = 0.4, 0 ≤ y ≤ 0.25) AS CATHODE MATERIAL FOR IT-SOFCs

    Science.gov (United States)

    Burnwal, Suman Kumar; Kistaiah, P.

    2015-03-01

    Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (BSCFNi; x = 0.4, 0 ≤ y ≤ 0.25) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. An emphasis is made on the effect of Ni-doping on crystal structure, thermal expansion coefficient (TEC) and dc electrical conductivity. A cubic perovskite structure was observed in the X-ray diffraction (XRD) measurement. The TEC of BSCFNi obtained for 0 ≤ y ≤ 0.25, varies in the range of (12.38-18.81) × 10-6 K-1, measured in the temperature range of 30°C to 800°C. The electrical conductivity which is a major defect of Ba0.5Sr0.5CoxFe1-xO3-δ (BSCF) was improved by Ni-doping. The compound with y = 0.20 and 0.25 demonstrated a conductivity of σ = 62.59 S-cm-1 and 72.64 S-cm-1 at 400°C and 77.01 S-cm-1 and 89.68 S-cm-1 at 500°C.

  5. Determination of the mechanical properties and fracture mechanisms of YSZ and GDC for electrolyte-supported SOFCs by instrumented indentation test; Determinacion de las propiedades mecanicas y mecanismos de fractura de electrolitos soportados de YSZ y GDC mediante ensayos de indentacion instrumentada

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J. J.; Morales, M.; Capdevila, X. G.; Segarra, M.

    2010-07-01

    The main purpose of this work is to evaluate the different mechanical properties and the different fracture mechanisms activated during the instrumented indentation process of the electrolytes based on Yttria stabilized zirconia (YSZ) and gadolinia doped ceria (GDC), for solid oxide fuel cells (SOFCs). Both materials, with a thickness of 200 {mu}m, were shaped by uniaxial pressing at 500 MPa, and sintered at 1400 degree centigrade. Mechanical properties such as hardness (H) and Young's modulus (E) have been studied at different penetration depths using the Oliver and Pharr equations. The different fracture mechanisms activated during the instrumented indentation process have been studied at constant penetration depth of 500 nm, performed with a diamond Berkovich tip indenter. The residual indentation imprints have been observed with atomic force microscopy (AFM). The hardness and Young's modulus for YSZ electrolytes are higher than for GDC materials, due to the different fracture mechanism activated during the indentation process. As a result, the electrolytes of YSZ presented trans- and intergranular fracture mechanisms, depending on the place of the residual indentation imprint (in the grain boundary or in the middle of the grain, respectively). However, the GDC electrolyte revealed radical cracks at the corners of the residual nano indentation imprints, thus producing a phenomenon known as chipping. (Author)

  6. Designing Users/Designing Innovation

    DEFF Research Database (Denmark)

    The paper addresses issues of user conceptualisation and representation in the processes of designing and innovating artifacts and use-practices. It is informed by early as well as more recent insights from technology studies within the new sociology of technology (e.g. Akrich 1995, Bijker & Law...... and competencies. Characteristic of these projects are the interplay between the social and the technical dimensions in the process of product development, and the students are expected to apply socio-technical methodologies in their strategies. The students’ need to inform the design through iteratively...... themes ranging from user-oriented design to product redesign and workspace design, etc. It is expected that some of the insights gained from these projects may be related outside of the immediate context of the classroom, to inform the notion of competencies in engineering design and sociotechnical...

  7. Design Research as Conceptual Designing

    DEFF Research Database (Denmark)

    Ylirisku, Salu; Jacucci, Giulio; Sellen, Abigail

    2015-01-01

    The term ‘conceptual designing’ refers to an activity that various practitioners already undertake, but for which we lack a clear definition. This article provides that definition and uses an example of a design concept called ‘Manhattan’ to present how exactly this type of process happens. We...... that conceptual designing can be especially useful in research and design projects that bring different kinds of people, organizations, technologies and domains together into the forming of new well-founded proposals for development. The presentation of conceptual designing in this paper is written...... with an intention to provide designers and researchers with terminology and concepts that they may use to structure their work as well as to become more resourceful in reflecting upon their projects....

  8. Design '82

    International Nuclear Information System (INIS)

    1982-01-01

    The papers in the symposium cover many aspects of the economy and effectiveness of chemical engineering design in industrial plants. Among the topics dealt with are the special problems associated with nuclear reprocessing plants. (U.K.)

  9. Design Education

    DEFF Research Database (Denmark)

    Brandt, Eva

    2007-01-01

    of the change processes at Danmarks Designskole. A questionnaire explore the present students reasons for wanting to become designers and their expectations to the design education and future jobs. Eight focus groups including representatives from various design professions discuss what skills and competencies...... background information about Danmarks Designskole, the initiation of the change process, and curriculum concerns. Then the research approach is described. From section 3 to section 6 the results from the investigations are discussed. First if a vocational education still is expected? Then views about......In resent years the two main design schools in Denmark (Danmarks Designskole and Designskolen Kolding ) undergo many changes. The overall goal for both is to obtain status as a university, and they will be evaluated in this regard in 2010. Transforming a vocational school with long handicraft...

  10. Dark Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    Any design idea or intervention in the world is based on an underpinning logic or a set of normative principles and values. At times such will be very explicit, at other times they will be unspoken and tacit. In this paper the underpinning values leading to power exercise, social exclusion...... extend the theoretical framing into thinking about design codes, codes of conducts, city plans, technologies, artefacts, objects, and new ways of including materialities into the mobilities analysis (e.g. Anderson & Wilie 2009; Bennett 2010; Ingold 2014; Jensen 2016; Jensen & Lanng 2016; Latour & Yanneva...... 2008; Vannini 2010). Empirically the paper breaches from the author’s own research into sky trains, metros, drones, and street design (e.g. Jensen 2013, 2014; Jensen & Lanng 2016) over secondary research into the social exclusion taking place by the design of infrastructure spaces and application...

  11. Participatory Design

    DEFF Research Database (Denmark)

    Robertson, Toni; Simonsen, Jesper

    2012-01-01

    The aim of this book is to provide a current account of the commitments and contributions of research and practice in the Participatory Design of information technologies. An overview of the central concepts that have defined and shaped the field is provided as an introduction to the more detailed...... focus of later chapters. The target audience is identified, and the structure of the book explained. A short description of each chapter highlights its particular contributions as well as the associated challenges facing designers and researchers engaged in participatory approaches. The chapter...... concludes with some guidance and recommendations for further reading. An introduction to Participatory Design is followed by explanations of how practitioners and researchers in the field understand participation and practice and how design is approached as a process driven by social interaction...

  12. Participatory Design

    DEFF Research Database (Denmark)

    Robertson, Toni; Simonsen, Jesper

    2012-01-01

    concludes with some guidance and recommendations for further reading. An introduction to Participatory Design is followed by explanations of how practitioners and researchers in the field understand participation and practice and how design is approached as a process driven by social interaction......The aim of this book is to provide a current account of the commitments and contributions of research and practice in the Participatory Design of information technologies. An overview of the central concepts that have defined and shaped the field is provided as an introduction to the more detailed...... focus of later chapters. The target audience is identified, and the structure of the book explained. A short description of each chapter highlights its particular contributions as well as the associated challenges facing designers and researchers engaged in participatory approaches. The chapter...

  13. Designed communities?

    DEFF Research Database (Denmark)

    Stender, Marie

    2013-01-01

    as an identity unit. In Ørestad residents thus tend to identify by the name of the house they live in, rather than by the street name. These residential spaces may thus be seen as promoting micro-urban entities, as social and urban life is designed and staged within the residential complex, and activities...... of these designed communities: What social life is promoted in such recent architectural visions? And to what extent can the social life and identity of a place actually be designed? The paper discusses these questions based on a fieldwork in three new housing complexes in the Copenhagen Region: The A......-house by architect Carsten Holgaard, the 8-house by BIG, and Lange Eng (The Long Meadow) by Dorte Mandrup. Rather than taking the perspective of either architect or user, the fieldwork has ethnographically traced the entire process from design to occupancy. The aim is to explore how the social life and identity...

  14. Design Anthropology

    DEFF Research Database (Denmark)

    This edited volume provides an introduction to the emerging field of design anthropology from the point of view of anthropologists engaging in its development. Contributors include young anthropologists with experience in the field and leading theoreticians, who combine to articulate the specific...... style of knowing involved in doing design anthropology. So far design anthropology has been developed mostly in the practice of industry and the public sector, in particular in Scandinavia and the US, and the sustained academic reflection to support this practice is still in its early stages. This book...... will contribute to this theoretical reflection and provide a reference for practitioners, teachers and students of anthropology, as well as design and innovation....

  15. Design of high quality doped CeO2 solid electrolytes with nanohetero structure

    International Nuclear Information System (INIS)

    Mori, T.; Ou, D.R.; Ye, F.; Drennan, J.

    2006-01-01

    Doped cerium (CeO 2 ) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650 o C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO 2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO 2 electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO 2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO 2 . It is essential that the electrolytic properties in doped CeO 2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO 2 electrolytes in the fuel cells. (author)

  16. Designing Clean

    DEFF Research Database (Denmark)

    Koch, Christian; Haubjerg, Esben Lundsgaard

    2011-01-01

    perception of main actors, the role of information technology, the relation to lean, and forms of collaboration. Furthermore the focus of the variants differ (industry, organizational or project level).The paper discusses case studies of four teams of engineers and architects. It is argued that there exists...... is necessary in order to comply with the increased complexity of sustainable building design. This tendency changes the traditional roles and responsibilities in the design process....

  17. Mechanical design

    Science.gov (United States)

    1976-01-01

    Design concepts for a 1000 mw thermal stationary power plant employing the UF6 fueled gas core breeder reactor are examined. Three design combinations-gaseous UF6 core with a solid matrix blanket, gaseous UF6 core with a liquid blanket, and gaseous UF6 core with a circulating blanket were considered. Results show the gaseous UF6 core with a circulating blanket was best suited to the power plant concept.

  18. Corporate design

    OpenAIRE

    Bejr, Štěpán

    2012-01-01

    The Master's Thesis deals with the issue of corporate design. The theoretical part specifies the integration of corporate design into marketing theory, introduces its basic components, principles and process of its creation. The practical part explores corporate identity changes in four significant Czech organizations - Czech Television, Czech Radio, Zoo Praha and Česká pojišťovna. It reveals specifics of each case, its positive and negative aspects and aims to find important factors that aff...

  19. Design junctions

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2012-01-01

    This article discusses the question: Are weak signals independent of framing and interactions with the environment? The response proposed here is that many of the developments identified by efforts to detect and interpret weak signals are the result of designed interventions that define the reper......This article discusses the question: Are weak signals independent of framing and interactions with the environment? The response proposed here is that many of the developments identified by efforts to detect and interpret weak signals are the result of designed interventions that define...... given to weak signals are strongly influenced by design choices made at the outset. In this sense design is a constitutive element of both the environment and signal detection/use. An example of how design is constitutive of both context and understanding can be found in the history of hospital hygiene....... This case study illustrates how dominant regimes of practice, established through the conception of pathogen bacteria and antibacterial treatments and disinfection, are now creating signals that call into question fundamental design of hygiene practices. By examining the epistemic assumptions of scientific...

  20. Mobilities Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Lanng, Ditte Bendix

    2016-01-01

    Contemporary society is marked and defined by the ways in which mobile goods, bodies, vehicles, objects, and data are organized, moved and staged. On the backgound of the ‘mobilities turn’ (for short review paper on this see; Sheller 2011, Vannini 2010) this paper proposes a further development....... There is a need for research targeting the material, physical and design-oriented dimensions of the multiple mobilities from the local to the global. Despite its cross-disciplinary identity the ‘mobilities turn’ has not sufficiently capitalized from the potential in exploring issues of material design...... of life’ for billions of people in the everyday life. This paper is structured in three parts. After the general introduction we present the mobilities theory perspective of ‘staging mobilities’ and connects this to the empirical phenomenon of parking lots and their design. The paper ends in section three...

  1. Design thinking.

    Science.gov (United States)

    Brown, Tim

    2008-06-01

    In the past, design has most often occurred fairly far downstream in the development process and has focused on making new products aesthetically attractive or enhancing brand perception through smart, evocative advertising. Today, as innovation's terrain expands to encompass human-centered processes and services as well as products, companies are asking designers to create ideas rather than to simply dress them up. Brown, the CEO and president of the innovation and design firm IDEO, is a leading proponent of design thinking--a method of meeting people's needs and desires in a technologically feasible and strategically viable way. In this article he offers several intriguing examples of the discipline at work. One involves a collaboration between frontline employees from health care provider Kaiser Permanente and Brown's firm to reengineer nursing-staff shift changes at four Kaiser hospitals. Close observation of actual shift changes, combined with brainstorming and rapid prototyping, produced new procedures and software that radically streamlined information exchange between shifts. The result was more time for nursing, better-informed patient care, and a happier nursing staff. Another involves the Japanese bicycle components manufacturer Shimano, which worked with IDEO to learn why 90% of American adults don't ride bikes. The interdisciplinary project team discovered that intimidating retail experiences, the complexity and cost of sophisticated bikes, and the danger of cycling on heavily trafficked roads had overshadowed people's happy memories of childhood biking. So the team created a brand concept--"Coasting"--to describe a whole new category of biking and developed new in-store retailing strategies, a public relations campaign to identify safe places to cycle, and a reference design to inspire designers at the companies that went on to manufacture Coasting bikes.

  2. Lighting Design

    DEFF Research Database (Denmark)

    Hansen, Ellen Kathrine; Mullins, Michael

    2014-01-01

    of design developed from three experiments show how distinct qualitative and quantitative criteria in different disciplinary traditions can be integrated successfully, despite disparate technical/scientific, social scientific and art/humanities backgrounds. The model is applied to a pedagogical curriculum......Light as a multi-dimensional design element has fundamental importance for a sustainable environment. The paper discusses the need for an integration of scientific, technical and creative approaches to light and presents theory, methods and applications toward fulfilling this need. A theory...

  3. Design & Innovation

    DEFF Research Database (Denmark)

    Boelskifte, Per; Jørgensen, Ulrik

    2005-01-01

    The new design and innovation programme at DTU is challenging some of the standard concepts dominating most engineering educations. The programme, its background, context and basic educational ideas are presented and discussed in this paper. To build competences that match the need for innovative...... and design oriented engineers in industry and society has turned out to challenge a number of the standard – and often taken for granted – concepts in engineering education still dominated world wide by rather strict norms and concepts of learning that do not challenge the students creativity and innovative...

  4. VLSI design

    CERN Document Server

    Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 14: VLSI Design presents a comprehensive exposition and assessment of the developments and trends in VLSI (Very Large Scale Integration) electronics. This volume covers topics that range from microscopic aspects of materials behavior and device performance to the comprehension of VLSI in systems applications. Each article is prepared by a recognized authority. The subjects discussed in this book include VLSI processor design methodology; the RISC (Reduced Instruction Set Computer); the VLSI testing program; silicon compilers for VLSI; and special

  5. Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    movements of people, goods, and information 'from A to B'. Accordingly, the way people, goods, and information moves shapes the way we understand our built environment, other consociates, and ourselves. The book contributes with a new and critical-creative gaze on what might seem to be trivial and mundane...... acts of moving in the city. 'Designing Mobilities' is based on more than a decade of academic research by Professor of Urban Theory, Ole B. Jensen and a must-read for students and scholars with an interest in urban studies, urban design, architecture, urban planning, transport planning and geography...

  6. Persuasive Design

    DEFF Research Database (Denmark)

    Gram-Hansen, Sandra Burri

    2013-01-01

    Within the field of Persuasive Technology it is widely acknowledged that successful persuasion is dependent on timing and the ability to act within the opportune moment known as Kairos. Kairos constitutes the link between the opportune moment and the appropriate action, all in consideration...... of the specific context. This paper argues that the claim of persuasive design may not be the ability to change the user’s attitude or behaviour towards a given subject, but rather on the ability to create designs, which adapt the context in a way, which facilitates the ability to act within the opportune moment....

  7. Design & Innovation

    DEFF Research Database (Denmark)

    Boelskifte, Per; Jørgensen, Ulrik

    2005-01-01

    The new design and innovation programme at DTU is challenging some of the standard concepts dominating most engineering educations. The programme, its background, context and basic educational ideas are presented and discussed in this paper. To build competences that match the need for innovative...

  8. Designer's Identity

    DEFF Research Database (Denmark)

    Kunrath, Kamila; Cash, Philip; Li-Ying, Jason

    2016-01-01

    A designer’s professional identity (DPI) develops through both education and professional experience, building on core personality traits and innate skills. In this paper a systematic literature review and a secondary narrative review were developed in order to map personal attributes and design...

  9. Design Anthropology

    DEFF Research Database (Denmark)

    This edited volume provides an introduction to the emerging field of design anthropology from the point of view of anthropologists engaging in its development. Contributors include young anthropologists with experience in the field and leading theoreticians, who combine to articulate the specific...

  10. Safety design

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Shiozawa, Shusaku

    2004-01-01

    JAERI established the safety design philosophy of the HTTR based on that of current reactors such as LWR in Japan, considering inherent safety features of the HTTR. The strategy of defense in depth was implemented so that the safety engineering functions such as control of reactivity, removal of residual heat and confinement of fission products shall be well performed to ensure safety. However, unlike the LWR, the inherent design features of the high-temperature gas-cooled reactor (HTGR) enables the HTTR meet stringent regulatory criteria without much dependence on active safety systems. On the other hand, the safety in an accident typical to the HTGR such as the depressurization accident initiated by a primary pipe rupture shall be ensured. The safety design philosophy of the HTTR considers these unique features appropriately and is expected to be the basis for future Japanese HTGRs. This paper describes the safety design philosophy and safety evaluation procedure of the HTTR especially focusing on unique considerations to the HTTR. Also, experiences obtained from an HTTR safety review and R and D needs for establishing the safety philosophy for the future HTGRs are reported

  11. Designing Organizations

    DEFF Research Database (Denmark)

    DESIGNING ORGANIZATIONS: 21st Century Approaches er en vigtig publikation inden for organisationsdesign. Fokus ligger på nye udviklinger inden for organisationsdesign og bogen hjælper med at skabe mere reflekterende forskining og stærkere empiriske analyser inden for dette vigtige felt inden...

  12. Designing Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    Within the so-called ‘mobilities turn’ (Adey 2010; Cresswell 2006; Urry 2007) much research has taken place during the last decade bringing mobilities into the centre of sociological analysis. However, the materiality and spatiality of artefacts, infrastructures, and sites hosting mobilities are ......: motorway ecologies, bicycle systems design, urban shopping malls and a train transit hub....

  13. Mobilities Design

    DEFF Research Database (Denmark)

    Lanng, Ditte Bendix; Wind, Simon; Jensen, Ole B.

    2017-01-01

    utilitarian transport from A to B; they constitute a rich societal phenomenon with, for example, social, cultural, sensorial, emotional, and material dimensions. The article proposes two fruitful links between the mobilities turn and the designerly examination of mobilities spaces. First, the mobilities turn...

  14. Dwelling Designers

    Science.gov (United States)

    Szekely, George

    2012-01-01

    Children's inventions go far beyond track housing or Ethan Allen furniture; they foreshadow the most innovative ideas in building forms and interior designs. Children improvise with containers and find places in a home that suggest enticing dwellings. A drawer left open becomes a balcony, soap trays become cots, and the space between twin beds…

  15. Probabilistic Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, H. F.

    This chapter describes how partial safety factors can be used in design of vertical wall breakwaters and an example of a code format is presented. The partial safety factors are calibrated on a probabilistic basis. The code calibration process used to calibrate some of the partial safety factors...

  16. Collaborative Design

    Science.gov (United States)

    Broderick, Debora

    2014-01-01

    This practitioner research study investigates the power of multimodal texts within a real-world context and argues that a participatory culture focused on literary arts offers marginalized high school students opportunities for collaborative design and authoring. Additionally, this article invites educators to rethink the at-risk label. This…

  17. Didaktisk Design

    DEFF Research Database (Denmark)

    Sørensen, Birgitte Holm; Levinsen, Karin

    projekter - Individuelle fordybelsesprojekter. Forfatterne introducerer begrebet elever som didaktiske designere og viser med konkrete eksempler fra dansk, matematik og tværfaglige forløb, hvordan læreren med et overordnet rammedesign kan understøtte elevernes design af deres egne læreprocesser og dermed...

  18. Integreret Design

    DEFF Research Database (Denmark)

    Helweg-Larsen, Klavs; Lenau, Torben Anker; Kristensen, Tore

    Integreret Design (ItD) var et tværdisciplinært kursus, der gennemførtes i samarbejde mellem Danmarks Designskole, Danmarks Tekniske Universitet og Handelshøjskolen i København i årene 1998 - 2001. Som støtte for undervisningen blev der udviklet et kompendium i bogform, som udgives af Danmarks...

  19. Design culture and design education

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Bang, Anne Louise

    2014-01-01

    Textiles are a part of a global fast fashion system that launches several collections over a year. Research from consumer and wardrobe studies has shown that consumers often wear their clothes only a few times. This has a tremendous impact on the environment. In order to meet this challenge we need...... tools for teaching fashion and textile students in order to stimulate new ways of thinking and engaging with users. By employing participatory design methods in the field of fashion and textiles, we seek to develop an alternative transformational strategy that may further the design of products...... and services for a more sustainable future. This paper is based on a case from teaching fashion and textile students at Design School Kolding in Denmark, where we run different courses aiming at changing the profession. By moving the focus from the production phase to the use phase, the project seeks to create...

  20. Design culture and design education

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Bang, Anne Louise

    2014-01-01

    tools for teaching fashion and textile students in order to stimulate new ways of thinking and engaging with users. By employing participatory design methods in the field of fashion and textiles, we seek to develop an alternative transformational strategy that may further the design of products...... and services for a more sustainable future. This paper is based on a case from teaching fashion and textile students at Design School Kolding in Denmark, where we run different courses aiming at changing the profession. By moving the focus from the production phase to the use phase, the project seeks to create......Textiles are a part of a global fast fashion system that launches several collections over a year. Research from consumer and wardrobe studies has shown that consumers often wear their clothes only a few times. This has a tremendous impact on the environment. In order to meet this challenge we need...

  1. Mechanisms Design

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    , freudenstein’s equation for three point function generation, synthesis of mechanisms for specific applications. At the end of this module you will be able to apply systematic procedures and use different methods to find a suitable configuration for a mechanism that complies with motion, trajectory and...... such mechanisms. This is a horizontal subject, which means you will be asked to make use of your knowledge in different disciplines, specially statics and dynamics, but also material selection, general product development, etc. At the end of this course you will be able to: • Generate alternative configurations...... using criteria such as size, performance parameters, operation environment, etc. Content: Understanding Mechanisms Design (2 weeks) Definitions, mechanisms representations, kinematic diagrams, the four bar linkage, mobility, applications of mechanisms, types of mechanisms, special mechanisms, the design...

  2. Designing Privacy-by-Design

    NARCIS (Netherlands)

    Rest, J.H.C. van; Boonstra, D.; Everts, M.H.; Rijn, M. van; Paassen, R.J.G. van

    2014-01-01

    The proposal for a new privacy regulation d.d. January 25th 2012 introduces sanctions of up to 2% of the annual turnover of enterprises. This elevates the importance of mitigation of privacy risks. This paper makes Privacy by Design more concrete, and positions it as the mechanism to mitigate these

  3. Design livre: cannibalistic interaction design

    NARCIS (Netherlands)

    van Amstel, Frederick; Vassao, C.A.; Ferraz, G.B.; Formia, E.M.

    2012-01-01

    This paper provides a historical account of cannibalism as used to explain how Brazilians integrate foreign cultural influences into their own culture and introduces a design praxis based on it. From Modernism to Digital Culture, cannibalism is a recurring tactic used to overcome cultural traditions

  4. Nuclear design

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Nojiri, Naoki; Ando, Hiroei; Yamashita, Kiyonobu

    2004-01-01

    The high-temperature engineering test reactor (HTTR) has been designed for an outlet temperature of 950 deg. C. That is the highest temperature in the world for a block-type high-temperature gas-cooled reactor (HTGR). The functions of the reactivity control system are determined considering the operational conditions, and the reactivity balance is planned so that the design requirements are fully satisfied. Moreover, the reactivity coefficients are evaluated to confirm the safety characteristics of the reactor. The power distribution in the core was optimized by changing the uranium enrichment to maintain the fuel temperature at less than the limit (1600 deg. C). Deviation from the optimized distribution due to the burnup of fissile materials was avoided by flattening time-dependent changes in local reactivities. Flattening was achieved by optimizing the specifications of the burnable poisons. The original nuclear design model had to be modified based on the first critical experiments. The Monte Carlo code MVP was also used to predict criticality of the initial core. The predicted excess reactivities are now in good agreement with the experimental results

  5. Electrochemical and microstructure characteristics of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) cathodes prepared by citrate precursor method for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-H.; Chang, C.-L. [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Hwang, B.-H. [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)], E-mail: zorro@mail.nsysu.edu.tw

    2009-05-15

    Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) films as solid oxide fuel cell (SOFC) cathodes were screen-printed on Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (CGO) electrolyte disks using powders prepared from the citrate precursor method. Two different powders were obtained via different calcination schemes: the one obtained with an additional calcination step in nitrogen protection atmosphere (P-NA) consisted of smaller aggregates of fine particles in comparison with that obtained only through a calcination step in air (P-A). X-ray diffraction and scanning electron microscope observation were carried out to examine the structures and morphologies of the BSCF powders and films obtained with different sintering temperatures ranging from 800 to 950 deg. C. AC impedance spectra for BSCF/CGO/BSCF cells were also measured to obtain the interfacial area specific resistances (ASRs). The ASR values varied with sintering temperature and powder used to prepare the electrodes. In particular, the lowest values of 0.78 {omega} cm{sup 2} at 500 deg. C, 0.10 {omega} cm{sup 2} at 600 deg. C and 0.018 {omega} cm{sup 2} at 700 deg. C were obtained from the electrode prepared using a sintering temperature of 900 deg. C and P-NA powder. The results of microstructure examination along with that of the porosity evaluation were analyzed to reveal the effects of sintering temperature and microstructures of powders and electrode films on ASR.

  6. Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) and La 0.6Ba 0.4Co 0.2Fe 0.8O 3- δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs

    Science.gov (United States)

    Lee, Seunghun; Lim, Yongho; Lee, Eun A.; Hwang, Hae Jin; Moon, Ji-Woong

    The potential candidates for IT-SOFCs cathode materials, Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) and La 0.6Ba 0.4Co 0.2Fe 0.8O 3- δ (LBCF), were synthesized by the combined citrate-EDTA method. The BSCF and LSCF aqueous precursors solutions were prepared from Sr(NO 3) 2, Ba(NO 3) 2, La(NO 3) 3·6H 2O, Co(NO 3) 2·6H 2O, Fe(NO 3) 3·9H 2O, citric acid and EDTA-NH 3. BSCF precursor solutions with different pH values were dried at 130 °C and subsequently calcined at various temperatures. Symmetrical electrochemical cells consisting of porous BSCF or LBCF electrodes and a GDC electrolyte were fabricated by the screen-printing technique, and the cathode performance of the interfaces between the porous electrode (BSCF or LBCF) and GDC electrolyte was investigated at intermediate temperatures (500-700 °C) using AC impedance spectroscopy. The pH value of the precursor solution did not affect the phase evolution behavior of the BSCF powder. On the other hand, it appears that a low pH value results in the calcined BSCF powder having a more porous microstructure. The cathode performances of the BSCF and LBCF electrodes were sensitive to the powder preparation conditions. The BSCF electrode prepared from the precursor solution with a pH value of 8 showed low polarization resistance, and its area specific resistances (ASR) were 1.1, 0.15 and 0.035 Ω cm 2 at 500, 600 and 700 °C, respectively. On the other hand, the cathode polarization resistances of the LBCF electrode were slightly higher than those of the BSCF electrode.

  7. Study on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}-Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} composite cathode materials for IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Wenxia [Center for Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China) and Heilongjiang August First Land Reclamation University, Daqing, Heilongjiang 163319 (China)], E-mail: zhuwenxia_2000@163.com; Lue Zhe [Center for Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: lvzhe@hit.edu.cn; Li Shuyan; Wei Bo; Miao Jipeng; Huang Xiqiang; Chen Kongfa; Ai Na [Center for Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Su Wenhui [Center for Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Department of Condensed Matter Physics, Jilin University, Changchun 130023 (China); International Center for Materials Physics, Academia Sinica, Shenyang 110015 (China)

    2008-10-06

    Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}-xSm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (BSCF-xSSC, x = 0-40 wt%) composite cathodes supported on Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) electrolyte were studied for applications in IT-SOFCs. X-ray diffraction patterns showed obvious solid-state reactions between BSCF and SSC. However, the composite materials exhibited higher conductivity than that of pure BSCF, e.g., around 176 S cm{sup -1} at 500 deg. C for the x = 30 wt% composite, which was nearly seven times higher than that of BSCF. The thermal expansion coefficients of the BSCF-SSC were between (18.0 and 21.9) x 10{sup -6} K{sup -1} from 30 to 800 deg. C, which was slightly higher than that of BSCF. In addition, electrochemical impedance spectra exhibited the better performance of BSCF-SSC composite cathodes than pure BSCF. The results of the polarization resistance indicated that the optimum content of SSC in the composite cathodes was about 30 wt%, e.g., the polarization resistance value of BSCF-30 wt%SSC was only 0.71 {omega} cm{sup 2} at 550 deg. C, about one seventh of that BSCF at 550 deg. C.

  8. Designer's Identity

    DEFF Research Database (Denmark)

    Kunrath, Kamila; Cash, Philip; Li-Ying, Jason

    2016-01-01

    skills that comprise the DPI. Just a few works in literature dealt with these two elements holistically. Thus, in order to address this gap a holistic understanding of these elements, in context, is proposed as a cohesive framework where a DPI can be described as it evolves over time.......A designer’s professional identity (DPI) develops through both education and professional experience, building on core personality traits and innate skills. In this paper a systematic literature review and a secondary narrative review were developed in order to map personal attributes and design...

  9. Design Strategy and Software Design Effectiveness

    NARCIS (Netherlands)

    Tang, A.; van Vliet, H.

    2012-01-01

    A study of software design activities establishes four archetypical strategies that apply under different circumstances. Designers can consider these strategies among their early design decisions. © 2012, IEEE

  10. Robot Design

    Science.gov (United States)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  11. Nacelle Design

    Science.gov (United States)

    1982-01-01

    Rohr Industries, Inc. specializes in the manufacturing of nacelles, thrust reversers, and other engine components, has made use of the COSMIC program in nacelle work for aircraft like the McDonnell Douglas DC-10, the French/German Airbus and the Boeing 727, 737 and 747 jetliners. They also manufacture complete nacelles for military and business aircraft and are supplying nacelle components for the Boeing 757. The nacelle requires research and development for each type of airplane because of complex airflows around the engine inlet and high pressures on the nacelle skin. The use of the computer program defines the airflow field around turbofan engine nacelle inlet and cowls. Pressures on the nacelle skin are estimated for various flight conditions and structural integrity of the nacelle design. Rohr estimates that use of this program saved six man-months of programmer time necessary to develop alternative software.

  12. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  13. Dansk design - English edition

    DEFF Research Database (Denmark)

    Dickson, Thomas

    Indhold: Hvad er design?; Hvor kommer dansk design fra?; Produktdesign; Tekstil- og tøjdesign; Design af møbler og boligindretning; Bygningen og design; Arbejdets design; Transportdesign; Offentligt design; Grafisk design; Nye tider og en ny slags design...

  14. Synthesis and characterization of novel Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} perovskite material and possible application as a cathode for low–intermediate temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Njoku, Chima Benjamin; Ndungu, Patrick Gathura, E-mail: ndungup@ukzn.ac.za

    2015-08-15

    Highlights: • Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using sol–gel methods. • Material was thoroughly characterized using Raman, FTIR, XRD, HRTEM, SEM, and TGA. • Electrochemical performance showed the materials are a promising new cathode material for low temperature SOFC. - Abstract: A novel perovskite material, Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using a sol–gel technique. The materials were calcined at temperatures of 800 °C, 900 °C, and 1000 °C and then characterized using X-ray diffraction, Raman and infrared spectroscopy, high resolution transmission electron microscopy and scanning electron microscopy (SEM). The particle sizes and crystallite sizes increased with increasing calcination temperature and formed perovskite type materials with some separate magnetite and iridium oxide. The powders were used to assemble button cells using samarium doped ceria as the electrolyte and NiO/SDC as the anode materials. The electrochemical properties were investigated using a Fiaxell open flanges test set-up and a Nuvant™ Powerstat-05 potentiostat/galvanostat. The Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} cathode material calcined at 1000 °C exhibited the most promising performance, with a maximum power density of 0.400 W/cm{sup 2}, a current density of 0.8 A/cm{sup 2}, and a corresponding area specific resistance of 0.247 Ωcm{sup 2} at 500 °C. The button cells were reasonably stable over15 h.

  15. Design Games for In-Situ Design

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2013-01-01

    The mobile culture has spawned a host of context-based products, like location-based and tag-based applications. This presents a new challenge for the designer. There is a need of design methods that acknowledge the context and allows it to influence the design ideas. This article focuses...... on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but we propose an approach...... that calls for the designer to conceptualise and perform ideas in-situ, that is on the site, where the game is supposed to be played. The problem was to design a creativity method that incorporated in-situ design work and which generated game concepts for pervasive games. The proposed design method, called...

  16. System design projects for undergraduate design education

    Science.gov (United States)

    Batill, S. M.; Pinkelman, J.

    1993-01-01

    Design education has received considerable in the recent past. This paper is intended to address one aspect of undergraduate design education and that is the selection and development of the design project for a capstone design course. Specific goals for a capstone design course are presented and their influence on the project selection are discussed. The evolution of a series of projects based upon the design of remotely piloted aircraft is presented along with students' perspective on the capstone experience.

  17. Transdisciplinary Interaction Design in Design Education

    OpenAIRE

    Blevis, Eli; Koskinen, Ilpo K.; Lee, Kun-Pyo; Bødker, Susanne; Chen, Lin-Lin; Lim, Youn-kyung; Wei, Huaxin; Wakkary, Ron

    2015-01-01

    Transdisciplinary design—which is the idea of design that transcends disciplinary boundaries—has been proposed as a fourth design paradigm of interaction design education, scholarship, and practice alongside the technical, cognitive, and ethnographic paradigms. As an educational concern in particular, its aim is to teach students how to bring a values orientation to interaction design. Its focuses are design frameworks, values and ethics, design for important themes such as sustainability, eq...

  18. Selected aspects of the design and diagnostics of solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Lis Bartłomiej

    2016-01-01

    Full Text Available An increased growth in demand for energy accompanied by efforts to limit its negative impact on the environment is forcing society to seek new, more efficient energy sources. Fuel cells are one of the most promising solutions among the widely developed new generation of electrical generators. Fuel cells directly convert chemical fuel into electricity. Water and waste heat are by-products of fuel cell operation. Solid oxide fuel cells (SOFCs have proven to be one of the most interesting solutions among the five types of technologically advanced fuel cells, for their ability to operate at temperatures above 800°C. Furthermore, SOFCs are characterized by other advantages in comparison to PEMFCs, including: (1 no need to use expensive catalysts (e.g. platinum, the price of which is high, and its resources limited, (2 the possibility of direct, internal conversion of hydrocarbon fuels, (3 lower sensitivity to contaminants (in particular, hydrogen fuel containing CO, which is useful for SOFCs instead of the platinum catalyst poisoners, and (4 the possibility of using waste heat in a gas turbine, or for heating or other industrial purposes. The paper discusses selected issues regarding the construction and characteristics of planar solid oxide fuel cells. Selected results of the following electrochemical investigations: Ba0.9Ca0.1Ce0.9Y0.1O3-based proton electrolyte as possible components of SOFCs operating at intermediate temperature range (500-700°C.

  19. Sharing the design intent between industrial designers and engineering designers

    DEFF Research Database (Denmark)

    Laursen, Esben Skov; Møller, Louise

    2016-01-01

    The aim of the paper is to understand the challenges sharing the product frame between industrial designers with the engineering designers. The study is based on six case studies. The analysis showed correspondence between industrial designers and engineering designers in their understanding...... of the key elements of the context and concept. However the analysis also showed a lack of correspondence between the industrial designers and engineering designers in regards to the product framing and thereby how the different elements of the product frame is connected and interrelated....

  20. design, construction design, construction and performance

    African Journals Online (AJOL)

    eobe

    of heat and light (two forms of electromagnetic radiations), life processes on ... important that the solar system be designed in such a ... tillation Plant. 2.1.1 Design Considerations. Design Considerations. Design Considerations. The performance of any solar thermal energy conversion device is governed by the rates of heat.

  1. Service design : Tuning the industrial design profession

    NARCIS (Netherlands)

    Sleeswijk Visser, F.

    2013-01-01

    Design is not only about the design and production of goods, but is increasingly addressing complex social issues nowadays. Roles of designers are becoming more and more varied, and at the same time other professionals are increasingly using design tools in their business, organizational or other

  2. Designing interfaces patterns for effective interaction design

    CERN Document Server

    Tidwell, Jenifer

    2005-01-01

    This convenient resource offers advice on creating user-friendly interface designs--whether they're delivered on the Web, a CD, or a smart" devices like a cell phone. Solutions to common UI design problems are expressed as a collection of patterns--each one containing concrete examples, recommendations, and warnings. Intended for designers with basic UI design knowledge

  3. The Art of Design: A Design Methodology

    Science.gov (United States)

    2009-04-01

    both ‘what’ and ‘how.’”7 Employing Design Thinking Design, planning, and execution are interde- pendent and continuous activities as illustrated in...communicate the results of design, so saMs encourages the creative use of both written narratives and graphic portrayals of design thinking to transmit

  4. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  5. Ergonomics in design or design in ergonomics

    DEFF Research Database (Denmark)

    Binder, Thomas

    2005-01-01

    approach to design. This has over the years created many points of contact between designers and others concerned with a healthy and rewarding working life. Looking back one can see both continuity and change in how designers has dealt with this responsibility. From an early recentment towards the modes...... and other work-life professionals be partners to the designers? Or will they have to learn the trade of designing themselves?...

  6. Design for Accessibility

    DEFF Research Database (Denmark)

    Herriott, Richard

    2012-01-01

    A report on how nine rail builder, operators and transport designers deal with design for accessibility......A report on how nine rail builder, operators and transport designers deal with design for accessibility...

  7. Design is an Attitude

    DEFF Research Database (Denmark)

    Eriksen, Kaare Riise

    2005-01-01

    Arttiklen beskriver den mexicanske designer Rafael Davidsons arbejder gennem en menneskealder, samt hans visioner for mexicansk design i fremtiden.......Arttiklen beskriver den mexicanske designer Rafael Davidsons arbejder gennem en menneskealder, samt hans visioner for mexicansk design i fremtiden....

  8. Design as Value Celebration: Rethinking Design Argumentation

    DEFF Research Database (Denmark)

    Halstrøm, Per Liljenberg

    2016-01-01

    This article introduces knowledge of the rhetorical genre of epideictic to design. The aim is to provide designers with concepts that stimulate their ability to deliberate about design choices and explore the arguments they may be making about the human-made world. The article begins with explora......, situational perspectives, and rhetorical genres, the article concludes that designers can benefit from perceiving their design as value celebration rather than problem solving....... with explorations of how to perceive the situations that designers may address; it then provides rhetorical perspectives that may be useful when creating design arguments; finally, examples of how to use these rhetorical perspectives in design are provided. Based on analyzed examples and theories on design problems...

  9. Design rules for dynamic organization design

    DEFF Research Database (Denmark)

    Burton, Richard; Obel, Børge

    2013-01-01

    need to revise existing rules and perhaps devise totally new design rules for managing uncertainty and interdependency to design efficient, effective and sustainable organizations. In this paper, we explore the development and evaluation of organizational design rules for the future.......Organizational design rules are contingent if-then statements about what a good design should be for a given situation. Today’s challenge is to look forward to devise organization design rules for a different future with greater uncertainty and greater interdependency – all with dynamic performance...... for a future new situation – is a disciplined response to examine the new contingencies of organizational design and their design consequences. Computational laboratories permit us to go beyond what is to develop and examine new design possibilities and boundaries to explore a future world of what might be. We...

  10. Design Characteristics as Basis for Design Languages

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik

    1997-01-01

    The application of modern feature based CAD systems has in many companies lead to significant rationalisation of design, particulary the "down stream" acticities such as NC code generation, FEM analysis, mould flow simulation and documentation. The subject of this paper is the "up stream......" activities, i.e.the synthesis of designs. One can now ask: what preconditions have to be fulfilled in order to be able to synthesize designs in an interplay with a computer system, a Designer's Workbench (DWB). One precondition seems to be the existence of one or more design languaes or design grammars, thus...... the designer can "spell" a desig. This paper will propose contents of a design language/design grammar....

  11. Design of modern experiments

    International Nuclear Information System (INIS)

    Park, Sung Hweon

    1984-03-01

    This book is for researchers and engineers, which is written to focus on practical design of experiments. It gives descriptions of conception of design of experiments, basic statistics theory, one way design of experiment, two-way layout without repetition, two-way layout with repetition, partition, a correlation analysis and regression analysis, latin squares, factorial design, design of experiment by table of orthogonal arrays, design of experiment of response surface, design of experiment on compound, Evop, and design of experiment of taguchi.

  12. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    Science.gov (United States)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  13. Democratic design experiments

    DEFF Research Database (Denmark)

    Ehn, Pelle; Brandt, Eva; Halse, Joachim

    2016-01-01

    Designers and design researchers are increasingly exploring societal challenges through engagements with issues that call forward new publics and new modes of democratic citizenship. Whatever this is called design activism, social design, adversarial design, participatory design or something else...... that form a third space of re-presentation and emergent civic action between laboratory and parliament....

  14. Computational Design Tools for Integrated Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2010-01-01

    In an architectural conceptual sketching process, where an architect is working with the initial ideas for a design, the process is characterized by three phases: sketching, evaluation and modification. Basically the architect needs to address three areas in the conceptual sketching phase......: aesthetical, functional and technical requirements. The aim of the present paper is to address the problem of a vague or not existing link between digital conceptual design tools used by architects and designers and engineering analysis and simulation tools. Based on an analysis of the architectural design...... process different digital design methods are related to tasks in an integrated design process....

  15. Fuel flow distribution in SOFC stacks revealed by impedance spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, Rasmus

    2014-01-01

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized using Electrochemical...... Impedance Spectroscopy (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible...... to separate the loss contributions in an ohmic and a polarization part and that the low frequency response is useful in detecting mass transfer limitations. This methodology can be used to detect possible minor changes in the supply of gas to the individual cells, which is important when going to high fuel...

  16. Liquid Tin Anode SOFC JP-8 Start-up

    Science.gov (United States)

    2008-10-01

    and excessive soot build up on the stand off. ............................. 15 Figure 11: The JP-8 flow rate as a function of air leak rate...high fuel utilization is the solubility limit of oxygen in liquid tin. Work by CellTech Power has shown experimentally and theoretically that 80% fuel...operational temperature, 1000°C. This prevents detrimental formation of tin dioxide ( SnO2 ) as opposed to the formation of tin monoxide (SnO) which is

  17. Relationships between structures and performance of SOFC anodes

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg; Jacobsen, Torben

    system. A model of the redox mechanism on the microstructural level was described. The degradation related to redox cycling was ascribed to a dynamic reorganization of the Ni/NiO phase, when in the reduced state and upon re-oxidation. The redistribution generated fractures in the YSZ matrix, and bulk...... of the ceramic component, and possibly on the local porosity. The redistribution of the NiO phase upon oxidation was seen to depend on the kinetics and the local porosity. At higher temperatures the oxide growth involved fragmentation of the particles. At lower temperatures the growth occurred in the form...... of an external oxide peel. The mechanical strength of the ceramic component was indicated as a technological potential parameter for improving the redox stability. However, considerable strengthening was indicated to be required. Strengthening that will result in a reduction of the bulk expansion upon re...

  18. Application of SIMS analyses on oxygen transport in SOFC materials

    International Nuclear Information System (INIS)

    Sakai, N.; Yamaji, K.; Horita, T.; Kishimoto, H.; Brito, M.E.; Yokokawa, H.; Uchimoto, Y.

    2006-01-01

    The oxygen transport was investigated for modelled interface of striped metal electrode on a solid oxide electrolyte by oxygen tracer exchange and three dimensional imaging techniques by using a secondary ion mass spectrometry (SIMS). The gold or platinum electrode on yttrium stabilized zirconia (YSZ) electrolyte were stable, and acted as a blocking layer of 18 O diffusion during the treatments in dry atmosphere at T = 873 K in p( 18 O 2 ) = 7 kPa. The oxygen flow via triple phase boundary was clearly observed for both electrodes. The treatment in humid atmosphere (T = 773 K, p( 18 O 2 ) = 7 kPa, p(H 2 18 O) = 2 kPa) raised the flux of oxygen diffusion through YSZ surface, however, it did not affect on the role of electrode on the oxygen transport properties

  19. Hydrogen Rich Natural Gas as a Fuel for SOFC Systems

    OpenAIRE

    Leucht, Florian; Henke, Moritz; Willich, Caroline; Westner, Christina; Kallo, Josef; Friedrich, K. Andreas

    2012-01-01

    With the increase in installed renewable power in Europe and especially in Germany, the need for energy storage becomes urgent. One interesting option due to its high energy density is the generation of hydrogen from renewable electricity using electrolysis. Produced hydrogen can either be sold as fuel for mobile applications or it can be stored in existing infrastructure. One major storage capability is the natural gas pipeline network in which a huge amount of energy can be stored and distr...

  20. Segregated exhaust SOFC generator with high fuel utilization capability

    Science.gov (United States)

    Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.

    2003-08-26

    A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.