WorldWideScience

Sample records for sodium taste function

  1. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    Science.gov (United States)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  2. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  3. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  4. Low-sodium meat products: retaining salty taste for sweet health.

    Science.gov (United States)

    Verma, Arun Kumar; Banerjee, Rituparna

    2012-01-01

    There is a positive correlation between excessive intake of sodium and incidence of hypertension. As diet is the main source of sodium, awareness among people regarding its possible role upon health has driven demand for various low sodium foods including meat products. Meat products contribute a significant amount of dietary sodium, thus maligning their own image. However, this is not an easy task as common salt affects taste and flavor, functional attributes, stability, and food safety of meat products. The various properties such as taste and flavor, binding, as well as microbiological characteristics should be given due care while developing low salt meat products and accordingly different approaches have been proposed for processing of such products. Potassium chloride has been mostly used to replace sodium; however, a number of other salts, flavor enhancers, bitter blockers and water, as well as fat binders have also been attempted either alone or in different combinations. A number of low sodium meat products have been developed but their economy and consumer acceptability are the major concerns needing proper attention. In future it is anticipated that these challenges would be overcome to provide well acceptable and cost-effective healthier meat products to the consumers.

  5. Salt taste adaptation: the psychophysical effects of adapting solutions and residual stimuli from prior tastings on the taste of sodium chloride.

    Science.gov (United States)

    O'Mahony, M

    1979-01-01

    The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.

  6. Lean production of taste improved lipidic sodium benzoate formulations.

    Science.gov (United States)

    Eckert, C; Pein, M; Breitkreutz, J

    2014-10-01

    Sodium benzoate is a highly soluble orphan drug with unpleasant taste and high daily dose. The aim of this study was to develop a child appropriate, individually dosable, and taste masked dosage form utilizing lipids in melt granulation process and tableting. A saliva resistant coated lipid granule produced by extrusion served as reference product. Low melting hard fat was found to be appropriate as lipid binder in high-shear granulation. The resulting granules were compressed to minitablets without addition of other excipients. Compression to 2mm minitablets decreased the dissolved API amount within the first 2 min of dissolution from 33% to 23%. The Euclidean distances, calculated from electronic tongue measurements, were reduced, indicating an improved taste. The reference product showed a lag time in dissolution, which is desirable for taste masking. Although a lag time was not achieved for the lipidic minitablets, drug release in various food materials was reduced to 2%, assuming a suitable taste masking for oral sodium benzoate administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    Science.gov (United States)

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role

  8. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    Science.gov (United States)

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Peptide regulators of peripheral taste function.

    Science.gov (United States)

    Dotson, Cedrick D; Geraedts, Maartje C P; Munger, Steven D

    2013-03-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Formulation, preparation, and evaluation of novel orally disintegrating tablets containing taste-masked naproxen sodium granules and naratriptan hydrochloride.

    Science.gov (United States)

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2014-04-01

    The purpose of this study was to develop and manufacture novel freeze-dried orally disintegrating tablets (ODTs) for migraine therapy containing taste-masked naproxen sodium and naratriptan hydrochloride. The formulation was optimized based on freeze-drying of sucrose solutions with different binders (hydroxyethylstarch, sodium alginate, methylcellulose, and gelatin) and varying amounts of Eudragit® E-coated naproxen sodium granules. Excellent product performance of the ODTs in terms of hardness and disintegration time (hydrochloride, and taste-masked naproxen sodium granules corresponding to 200 mg of naproxen were then added, and the final batches of ODTs for migraine therapy were produced. The ODTs were fully characterized, and subsequently stored for 1 month at room temperature and at 40°C. The amount of free naproxen sodium after freeze-drying and storage was below the threshold bitterness value, and the coating remained intact. Additionally, the particle size distribution of taste-masked granules was preserved, and more than 90 % naproxen sodium was released after 30 min. Naratriptan hydrochloride was dissolved immediately after disintegration, hence facilitating buccal absorption of the active pharmaceutical ingredient. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Optimizing the taste-masked formulation of acetaminophen using sodium caseinate and lecithin by experimental design.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-09-10

    In a previous study of ours, the association of sodium caseinate and lecithin was demonstrated to be promising for masking the bitterness of acetaminophen via drug encapsulation. The encapsulating mechanisms were suggested to be based on the segregation of multicomponent droplets occurring during spray-drying. The spray-dried particles delayed the drug release within the mouth during the early time upon administration and hence masked the bitterness. Indeed, taste-masking is achieved if, within the frame of 1-2 min, drug substance is either not released or the released amount is below the human threshold for identifying its bad taste. The aim of this work was (i) to evaluate the effect of various processing and formulation parameters on the taste-masking efficiency and (ii) to determine the optimal formulation for optimal taste-masking effect. Four investigated input variables included inlet temperature (X1), spray flow (X2), sodium caseinate amount (X3) and lecithin amount (X4). The percentage of drug release amount during the first 2 min was considered as the response variable (Y). A 2(4)-full factorial design was applied and allowed screening for the most influential variables i.e. sodium caseinate amount and lecithin amount. Optimizing these two variables was therefore conducted by a simplex approach. The SEM and DSC results of spray-dried powder prepared under optimal conditions showed that drug seemed to be well encapsulated. The drug release during the first 2 min significantly decreased, 7-fold less than the unmasked drug particles. Therefore, the optimal formulation that performed the best taste-masking effect was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Identification by functional MRI of human cerebral region activated by taste stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Naoya [Osaka Univ. (Japan). Faculty of Dentistry

    2000-09-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  13. Identification by functional MRI of human cerebral region activated by taste stimulation

    International Nuclear Information System (INIS)

    Kakimoto, Naoya

    2000-01-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  14. Smell and taste function in the visually impaired.

    Science.gov (United States)

    Smith, R S; Doty, R L; Burlingame, G K; McKeown, D A

    1993-11-01

    Surprisingly few quantitative studies have addressed the question of whether visually impaired individuals evidence, perhaps in compensation for their loss of vision, increased acuteness in their other senses. In this experiment we sought to determine whether blind subjects outperform sighted subjects on a number of basic tests of chemosensory function. Over 50 blind and 75 sighted subjects were administered the following olfactory and gustatory tests: the University of Pennsylvania Smell Identification Test (UPSIT); a 16-item odor discrimination test; and a suprathreshold taste test in which measures of taste-quality identification and ratings of the perceived intensity and pleasantness of sucrose, citric acid, sodium chloride, and caffeine were obtained. In addition, 39 blind subjects and 77 sighted subjects were administered a single staircase phenyl ethyl alcohol (PEA) odor detection threshold test. Twenty-three of the sighted subjects were employed by the Philadelphia Water Department and trained to serve on its water quality evaluation panel. The primary findings of the study were that (a) the blind subjects did not outperform sighted subjects on any test of chemosensory function and (b) the trained subjects significantly outperformed the other two groups on the odor detection, odor discrimination, and taste identification tests, and nearly outperformed the blind subjects on the UPSIT. The citric acid concentrations received larger pleasantness ratings from the trained panel members than from the blind subjects, whose ratings did not differ significantly from those of the untrained sighted subjects. Overall, the data imply that blindness, per se, has little influence on chemosensory function and add further support to the notion that specialized training enhances performance on a number of chemosensory tasks.

  15. Sodium butyrate into the insular cortex during conditioned taste-aversion acquisition delays aversive taste memory extinction.

    Science.gov (United States)

    Núñez-Jaramillo, Luis; Reyes-López, Julian; Miranda, María Isabel

    2014-04-16

    Histone acetylation is one mechanism that promotes gene expression, and it increases during learning of various tasks. Specifically, novel taste consumption produces an increased acetylation of histone lysine residues in the insular cortex (IC), where protein synthesis is crucial during memory consolidation of conditioned taste aversion (CTA). However, the role of this elevated histone acetylation during CTA learning has not been examined directly. Thus, the present study investigated the effects of sodium butyrate (NaBu), a histone deacetylase inhibitor, injected into the IC during CTA acquisition. Male Wistar rats, IC bilaterally implanted, were injected 60 min before saccharine presentation, with a total volume of 0.5 µl of NaBu solution (100, 500, and 10 µg/0.5 µl) or saline; 30 min later animals were injected intraperitoneally with lithium chloride, a malaise-inducing drug. The next day, CTA retrieval was tested. No effects of NaBu were observed during acquisition or retrieval, but during extinction trials, a significant delay in aversive memory extinction was observed in the group injected with the lowest NaBu dose. This result indicates that NaBu in the IC strengthens CTA and delays aversive memory extinction, and suggests that histone acetylation could increase long-term taste-aversive memory strength.

  16. Dietary sodium intake in young Korean adults and its relationship with eating frequency and taste preference.

    Science.gov (United States)

    Shim, Eugene; Ryu, Ha-Jung; Hwang, Jinah; Kim, Soo Yeon; Chung, Eun-Jung

    2013-06-01

    Dietary sodium intake is considered one of the major causal factors for hypertension. Thus, to control the increase of blood pressure and reduce the risk of hypertension-related clinical complications, a reduction in sodium intake is recommended. The present study aimed at determining the association of dietary sodium intake with meal and snack frequency, snacking time, and taste preference in Korean young adults aged 20-26 years, using a 125-item dish-frequency questionnaire. The mean dietary sodium intakes of men and women were 270.6 mmol/day and 213.1 mmol/day, which were approximately 310% and 245% of the daily sodium intake goal for Korean men and women, respectively. Dietary sodium intake was positively correlated with systolic blood pressure in the total group, and BMI in the total and men-only groups. In the total and men-only groups, those who consumed meals more times per day consumed more dietary sodium, but the number of times they consumed snacks was negatively correlated with dietary sodium intake in the total, men-only, and women-only groups. In addition, those who consumed snacks in the evening consumed more sodium than those who did so in the morning in the men-only group. The sodium intake was also positively associated with preference for salty and sweet taste in the total and women-only groups. Such a high intake of sodium in these young subjects shows that a reduction in sodium intake is important for the prevention of hypertension and related diseases in the future.

  17. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    Science.gov (United States)

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  18. Fast Disintegrating Combination Tablet of Taste Masked Levocetrizine Dihydrochloride and Montelukast Sodium: Formulation Design, Development, and Characterization

    Directory of Open Access Journals (Sweden)

    M. M. Gupta

    2014-01-01

    Full Text Available The aim of this study was to prepare fast disintegrating combination tablet of taste masked Levocetrizine dihydrochloride and Montelukast sodium by using direct compression method. To prevent bitter taste and unacceptable odour of the Levocetrizine dihydrochloride drug, the drug was taste masked with ion exchange resins like Kyron-T-104 and Tulsion-412. Among the two resins, Kyron-T-104 was selected for further studies because of high drug loading capacity, low cost, and better drug release profile. An ion exchange resin complex was prepared by the batch technique and various parameters; namely, resin activation, drug: resin ratio, pH, temperature, and stirring time, and swelling time were optimized to successfully formulate the tasteless drug resin complex (DRC. The tablets were prepared using microcrystalline cellulose (MCC PH 102 as diluent along with crospovidone (CP, croscarmellose sodium (CCM, and sodium starch glycolate (SSG as a superdisintegrants. The tablets were evaluated for weight variation, hardness, friability, wetting time, water absorption ratio, disintegration time (DT, and dissolution study and it was concluded that the tablet formulation prepared with 2% SSG + CCS showed better disintegration time in comparison with other formulation and good drug release. The stability studies were carried out for the optimized batch for three months and it showed acceptable results.

  19. Salt craving: The psychobiology of pathogenic sodium intake

    OpenAIRE

    Morris, Michael J.; Na, Elisa S.; Johnson, Alan Kim

    2008-01-01

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate – an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environmen...

  20. Averting the foul taste of pediatric medicines improves adherence and can be lifesaving ? Pheburane? (sodium phenylbutyrate)

    OpenAIRE

    Koren, Gideon; Rieder, Michael J; Amitai, Yona

    2016-01-01

    Background Children?s aversions to poor and mostly bitter tastes and their inability to swallow tablets and capsules are major challenges in pediatric medicine. Sodium phenylbutyrate (NaPB) is a lifesaving waste nitrogen, alternative to urea nitrogen, for individuals suffering from urea cycle disorders. A major issue in the use of NaPB is its highly foul taste, which often leads to children being unable to consume it, resulting in ineffective treatment, or alternatively, necessitating the app...

  1. Physiological responses to taste signals of functional food components.

    Science.gov (United States)

    Narukawa, Masataka

    2018-02-01

    The functions of food have three categories: nutrition, palatability, and bioregulation. As the onset of lifestyle-related diseases has increased, many people have shown interest in functional foods that are beneficial to bioregulation. We believe that functional foods should be highly palatable for increased acceptance from consumers. In order to design functional foods with a high palatability, we have investigated about the palatability, especially in relation to the taste of food. In this review, we discuss (1) the identification of taste receptors that respond to functional food components; (2) an analysis of the peripheral taste transduction system; and (3) the investigation of the relationship between physiological functions and taste signals.

  2. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  3. Averting the foul taste of pediatric medicines improves adherence and can be lifesaving – Pheburane® (sodium phenylbutyrate

    Directory of Open Access Journals (Sweden)

    Koren G

    2016-10-01

    Full Text Available Gideon Koren,1 Michael J Rieder,1 Yona Amitai2 1Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada; 2Bar-Ilan University, Ramat Gan, Israel Background: Children’s aversions to poor and mostly bitter tastes and their inability to swallow tablets and capsules are major challenges in pediatric medicine. Sodium phenylbutyrate (NaPB is a lifesaving waste nitrogen, alternative to urea nitrogen, for individuals suffering from urea cycle disorders. A major issue in the use of NaPB is its highly foul taste, which often leads to children being unable to consume it, resulting in ineffective treatment, or alternatively, necessitating the application of the drug through a nasogastric tube or gastrostomy. Methods: This study reviews the published data on a novel formulation of NaPB, Pheburane® granules, which begin to release their NaPB after a lag time of ~10 seconds followed by a slow release over several minutes. Results: The taste-masked granule formulation of NaPB dramatically improves the acceptability of the drug by children and appears in initial studies to be both safe and effective. Conclusion: While more studies are needed to substantiate and enrich these initial trials, the available data provide a telling example where masking the drug taste of medicine for children can sometimes be the difference between life and death. Keywords: sodium phenylbutyrate, adherence, urea cycle disorders, Pheburane®, taste, children

  4. Orosensory and Homeostatic Functions of the Insular Taste Cortex.

    Science.gov (United States)

    de Araujo, Ivan E; Geha, Paul; Small, Dana M

    2012-03-01

    The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation.

  5. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  6. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  7. Averting the foul taste of pediatric medicines improves adherence and can be lifesaving - Pheburane® (sodium phenylbutyrate).

    Science.gov (United States)

    Koren, Gideon; Rieder, Michael J; Amitai, Yona

    2016-01-01

    Children's aversions to poor and mostly bitter tastes and their inability to swallow tablets and capsules are major challenges in pediatric medicine. Sodium phenylbutyrate (NaPB) is a lifesaving waste nitrogen, alternative to urea nitrogen, for individuals suffering from urea cycle disorders. A major issue in the use of NaPB is its highly foul taste, which often leads to children being unable to consume it, resulting in ineffective treatment, or alternatively, necessitating the application of the drug through a nasogastric tube or gastrostomy. This study reviews the published data on a novel formulation of NaPB, Pheburane ® granules, which begin to release their NaPB after a lag time of ~10 seconds followed by a slow release over several minutes. The taste-masked granule formulation of NaPB dramatically improves the acceptability of the drug by children and appears in initial studies to be both safe and effective. While more studies are needed to substantiate and enrich these initial trials, the available data provide a telling example where masking the drug taste of medicine for children can sometimes be the difference between life and death.

  8. The Association between Sweet Taste Function, Anthropometry, and Dietary Intake in Adults.

    Science.gov (United States)

    Low, Julia Y Q; Lacy, Kathleen E; McBride, Robert; Keast, Russell S J

    2016-04-23

    Variation in ability to detect, recognize, and perceive sweetness may influence food consumption, and eventually chronic nutrition-related conditions such as overweight and obesity. The aim of this study was to investigate the associations between sweet taste function, anthropometry, and dietary intake in adults. Participants' (n = 60; mean age in years = 26, SD = ±7.8) sweet taste function for a range of sweeteners (glucose, fructose, sucrose, sucralose, erythritol, and Rebaudioside A) was assessed by measuring detection and recognition thresholds and sweetness intensity. Height, weight, and waist circumference were also measured, and participants also completed a Food Frequency Questionnaire. There was large inter-individual variation in detection, recognition and sweetness intensity measures. Pearson's correlation coefficient revealed no robust correlations between measures of sweet taste function, anthropometry, and dietary intake, with the exception of suprathreshold intensity, which was moderately correlated with total energy intake (r = 0.23-0.40). One-way analysis of variance revealed no significant differences between the most and least sensitive participants in terms of BMI, waist circumference, and dietary intake for all measures of sweet taste function and sweeteners (all p > 0.01). When stratified into BMI categories, there were no significant differences in any measure of sweet taste function between the normal weight and overweight/obese participants (all p > 0.01). Results show that that sweet taste function is not associated with anthropometry and sweetness intensity measures are the most appropriate measure when assessing links between sweet taste and food consumption.

  9. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl and sour (citric acid tastants.

    Directory of Open Access Journals (Sweden)

    Yu-Kyong Shin

    2010-09-01

    Full Text Available The gustatory system plays a critical role in determining food preferences, food intake and energy balance. The exact mechanisms that fine tune taste sensitivity are currently poorly defined, but it is clear that numerous factors such as efferent input and specific signal transduction cascades are involved.Using immunohistochemical analyses, we show that ghrelin, a hormone classically considered to be an appetite-regulating hormone, is present within the taste buds of the tongue. Prepro-ghrelin, prohormone convertase 1/3 (PC 1/3, ghrelin, its cognate receptor (GHSR, and ghrelin-O-acyltransferase (GOAT , the enzyme that activates ghrelin are expressed in Type I, II, III and IV taste cells of mouse taste buds. In addition, ghrelin and GHSR co-localize in the same taste cells, suggesting that ghrelin works in an autocrine manner in taste cells. To determine a role for ghrelin in modifying taste perception, we performed taste behavioral tests using GHSR null mice. GHSR null mice exhibited significantly reduced taste responsivity to sour (citric acid and salty (sodium chloride tastants.These findings suggest that ghrelin plays a local modulatory role in determining taste bud signaling and function and could be a novel mechanism for the modulation of salty and sour taste responsivity.

  10. Averting the foul taste of pediatric medicines improves adherence and can be lifesaving – Pheburane® (sodium phenylbutyrate)

    Science.gov (United States)

    Koren, Gideon; Rieder, Michael J; Amitai, Yona

    2016-01-01

    Background Children’s aversions to poor and mostly bitter tastes and their inability to swallow tablets and capsules are major challenges in pediatric medicine. Sodium phenylbutyrate (NaPB) is a lifesaving waste nitrogen, alternative to urea nitrogen, for individuals suffering from urea cycle disorders. A major issue in the use of NaPB is its highly foul taste, which often leads to children being unable to consume it, resulting in ineffective treatment, or alternatively, necessitating the application of the drug through a nasogastric tube or gastrostomy. Methods This study reviews the published data on a novel formulation of NaPB, Pheburane® granules, which begin to release their NaPB after a lag time of ~10 seconds followed by a slow release over several minutes. Results The taste-masked granule formulation of NaPB dramatically improves the acceptability of the drug by children and appears in initial studies to be both safe and effective. Conclusion While more studies are needed to substantiate and enrich these initial trials, the available data provide a telling example where masking the drug taste of medicine for children can sometimes be the difference between life and death. PMID:27799750

  11. Long-term effects of radiotherapy on taste and salivary function in man

    International Nuclear Information System (INIS)

    Mossman, K.; Shatzman, A.; Chencharick, J.

    1982-01-01

    The long-term effects of radiotherapy on taste and salivary function were studied in 13 patients treated by radiation 1-7 years previously for tumors of the head and neck. Taste function was studied quantitatively using a standard forced choice, three-stimulus-drop technique for the determination of detection and recognition thresholds and a forced-scaling technique for the determination of taste intensity reponsiveness. Parotid salivary function was quantitatively evaluated by determination of flow rate and protein secretion rate. Nine of the 13 patients studied (69%) had measurable taste loss; every patient who had radiotherapy including the parotid glands had measurable salivary dysfunction. Our results demonstrate that curative courses of radiotherapy for tumors of the head and neck may result in long-term changes in taste and salivary function. From the present study, the maximum tolerance doses resulting in a 50% complication rate 5 years after treatment (TD 50/5) are estimated to be 40-65 Gy for xerostomia and 50-65 Gy for taste loss. Therefore, in a standard treatment regimen for tumors of the head and neck, with curative intent, gustatory and salivary gland tissues frequently sustain maximum tolerance injury

  12. The Association between Sweet Taste Function, Anthropometry, and Dietary Intake in Adults

    Directory of Open Access Journals (Sweden)

    Julia Y. Q. Low

    2016-04-01

    Full Text Available Variation in ability to detect, recognize, and perceive sweetness may influence food consumption, and eventually chronic nutrition-related conditions such as overweight and obesity. The aim of this study was to investigate the associations between sweet taste function, anthropometry, and dietary intake in adults. Participants’ (n = 60; mean age in years = 26, SD = ±7.8 sweet taste function for a range of sweeteners (glucose, fructose, sucrose, sucralose, erythritol, and Rebaudioside A was assessed by measuring detection and recognition thresholds and sweetness intensity. Height, weight, and waist circumference were also measured, and participants also completed a Food Frequency Questionnaire. There was large inter-individual variation in detection, recognition and sweetness intensity measures. Pearson’s correlation coefficient revealed no robust correlations between measures of sweet taste function, anthropometry, and dietary intake, with the exception of suprathreshold intensity, which was moderately correlated with total energy intake (r = 0.23–0.40. One-way analysis of variance revealed no significant differences between the most and least sensitive participants in terms of BMI, waist circumference, and dietary intake for all measures of sweet taste function and sweeteners (all p > 0.01. When stratified into BMI categories, there were no significant differences in any measure of sweet taste function between the normal weight and overweight/obese participants (all p > 0.01. Results show that that sweet taste function is not associated with anthropometry and sweetness intensity measures are the most appropriate measure when assessing links between sweet taste and food consumption.

  13. Functional cell types in taste buds have distinct longevities.

    Directory of Open Access Journals (Sweden)

    Isabel Perea-Martinez

    Full Text Available Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  14. Functional cell types in taste buds have distinct longevities.

    Science.gov (United States)

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  15. Role of the ectonucleotidase NTPDase2 in taste bud function.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  16. Taste and hypertension in humans

    DEFF Research Database (Denmark)

    Roura, Eugeni; Foster, Simon; Winklebach, Anja

    2016-01-01

    The association between salty taste and NaCl intake with hypertension is well-established, although it is far from completely understood. Other taste types such as sweet, umami or bitter have also been related to alterations in blood pressure. Here, we review the mutual relationship between taste...... and hypertension to identify potential avenues to better control blood pressure. This review focuses on published data involving humans, with the exception of a section on molecular mechanisms. There is compelling evidence to suggest that changes in salty taste sensitivity can be used to predict the onset...... of hypertension. This goes hand in hand with the medical concept of sodium sensitivity, which also increases with age, particularly in hypertensive patients. The association of hypertension with the loss of taste acuity less definitive with some data/conclusions masked by the use of anti-hypertensive drugs...

  17. Relationship Between Salt Intake, Salt-Taste Threshold and Blood ...

    African Journals Online (AJOL)

    Conclusion: Sodium intake measured as 24-hour urinary sodium is increased in subjects with hypertension attesting to sodium intake as a risk factor for the development of high blood pressure. Subjects with high salt taste threshold also have increased urinary sodium excretion which may predispose them to deveploment ...

  18. Effects of haemodialysis on taste for salt in relation to changes in blood constituents.

    Science.gov (United States)

    Farleigh, C A; Shepherd, R; Jevons, S; Pryor, J S

    1987-11-01

    Taste sensitivity and preference for sodium chloride in bread and pea soup were assessed before and after haemodialysis in 12 female chronic renal failure patients. Blood samples were also taken pre- and post-dialysis and analysed for zinc, sodium and renin. The patients demonstrated an increased sensitivity to, and decreased preference for, sodium chloride in both bread and pea soup following dialysis. These taste changes were found to correlate with pre- to post-dialysis changes in the zinc levels in the blood. Patients receiving a more severely sodium-restricted diet showed a greater sensitivity to the taste of sodium chloride in the foods tested. Renin levels dropped in all patients following dialysis, the size of the change correlating with the size of the change in body weight.

  19. Salt craving: the psychobiology of pathogenic sodium intake.

    Science.gov (United States)

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2008-08-06

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate--an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors.

  20. Salivary Proteome Patterns Affecting Human Salt Taste Sensitivity.

    Science.gov (United States)

    Stolle, Theresa; Grondinger, Freya; Dunkel, Andreas; Meng, Chen; Médard, Guillaume; Kuster, Bernhard; Hofmann, Thomas

    2017-10-25

    To investigate the role of perireceptor events in inter-individual variability in salt taste sensitivity, 31 volunteers were monitored in their detection functions for sodium chloride (NaCl) and classified into sensitive (0.6-1.7 mmol/L), medium-sensitive (1.8-6.9 mmol/L), and nonsensitive (7.0-11.2 mmol/L) subjects. Chemosensory intervention of NaCl-sensitive (S + ) and nonsensitive (S - ) panellists with potassium chloride, ammonium chloride, and sodium gluconate showed the salt taste sensitivity to be specific for NaCl. As no significant differences were found between S + and S - subjects in salivary sodium and protein content, salivary proteome differences and their stimulus-induced dynamic changes were analyzed by tryptic digestion, iTRAQ labeling, and liquid chromatography-tandem mass spectrometry analysis. Differences in the salivary proteome between S + and S - subjects were found primarily in resting saliva and were largely independent of the dynamic alterations observed upon salt stimulation. Gene ontology enrichment analysis of key proteins, i.e., immunoglobulin heavy constant y1, myeloblastin, cathepsin G, and kallikrein, revealed significantly increased serine-type endopeptidase activity for the S + group, while the S - group exhibited augmented cysteine-type endopeptidase inhibitor activity by increased abundances in lipocalin-1 and cystatin-D, -S, and -SN, respectively. As proteases have been suggested to facilitate transepithelial sodium transport by cleaving the y-subunit of the epithelial sodium channel (ENaC) and protease inhibitors have been shown to reduce ENaC-mediated sodium transport, the differentially modulated proteolytic activity patterns observed in vivo for S + and S - subjects show evidence of them playing a crucial role in affecting human NaCl sensitivity.

  1. Adding sodium information to casual dining restaurant menus: Beneficial or detrimental for consumers?

    Science.gov (United States)

    Byrd, Karen; Almanza, Barbara; Ghiselli, Richard F; Behnke, Carl; Eicher-Miller, Heather A

    2018-06-01

    High sodium levels in restaurant food have prompted Philadelphia and New York City to require inclusion of sodium content in addition to calories on menus to "nudge" consumers toward lower sodium foods. However, taste perceptions may impact the effectiveness of this intervention. An online survey tested whether sodium and calorie menu nutrition information (MNI) influenced consumer choices from a casual dining restaurant menu, accounting for consumers' intuition about taste of food relative to sodium, calories, and healthiness. Consumer choices were assessed based on calorie and sodium content of the menu items they selected. Participants were randomized to a menu with (1) calorie MNI only, (2) calorie plus numeric sodium MNI, (3) calorie MNI plus a sodium warning symbol for foods with 2300 mg of sodium or more, or (4) no MNI. Calorie plus numeric sodium MNI was associated with selection of meals lower in sodium compared to meals from the calorie MNI only menu or no MNI menu, but only for consumers with a taste intuition that (relatively) lower sodium, lower calorie, healthy foods were tasty. Consumers with the opposite taste intuition *(foods with these characteristics are not tasty) ordered meals higher in sodium. Inclusion of the sodium warning symbol did not result in a significantly different meal sodium content compared to the other menu conditions, regardless of taste intuition. However, differing levels of taste intuition alone, without consideration of MNI, was associated with ordering meals of significantly different calorie content. Overall, findings suggest adding calorie plus numeric sodium MNI may lead to beneficial outcomes (i.e., selecting meals lower in sodium) for some consumers and detrimental outcomes (i.e., selecting meals higher in sodium) for others, depending on their taste intuition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    Science.gov (United States)

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  3. Averting the foul taste of pediatric medicines improves adherence and can be lifesaving – Pheburane® (sodium phenylbutyrate)

    OpenAIRE

    Koren G; Rieder MJ; Amitai Y

    2016-01-01

    Gideon Koren,1 Michael J Rieder,1 Yona Amitai2 1Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada; 2Bar-Ilan University, Ramat Gan, Israel Background: Children’s aversions to poor and mostly bitter tastes and their inability to swallow tablets and capsules are major challenges in pediatric medicine. Sodium phenylbutyrate (NaPB) is a lifesaving waste nitrogen, alternative to urea nitrogen, for individuals suffering from urea cycle disorder...

  4. Functional expression of ionotropic purinergic receptors on mouse taste bud cells.

    Science.gov (United States)

    Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2007-10-15

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 microm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca(2+) imaging showed that similarly applied 1 mum ATP, 30 microm BzATP (a P2X(7) agonist), or 1 microm 2MeSATP (a P2Y(1) and P2Y(11) agonist) increased intracellular Ca(2+) concentration, but 100 microm UTP (a P2Y(2) and P2Y(4) agonist) and alpha,beta-meATP (a P2X agonist except for P2X(2), P2X(4) and P2X(7)) did not. RT-PCR suggested the expression of P2X(2), P2X(4), P2X(7), P2Y(1), P2Y(13) and P2Y(14) among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X(2). The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 microm PPADS (a non-selective P2 blocker) and 1 microm KN-62 (a P2X(7) blocker). These results showed for the first time the functional expression of P2X(2) and P2X(7) on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed.

  5. Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart.

    Directory of Open Access Journals (Sweden)

    Simon R Foster

    Full Text Available G protein-coupled receptors (GPCRs are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2 as well as Tas1r1 and Tas1r3 (comprising the umami receptor are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and by in situ hybridization can be visualized across the myocardium in isolated cardiac cells. Tas1r1 gene-targeted mice (Tas1r1(Cre/Rosa26(tdRFP strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart.

  6. Radiation effects on bovine taste bud membranes

    International Nuclear Information System (INIS)

    Shatzman, A.R.; Mossman, K.L.

    1982-01-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy

  7. NaCl responsive taste cells in the mouse fungiform taste buds.

    Science.gov (United States)

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  8. The taste of KCl - What a difference a sugar makes.

    Science.gov (United States)

    Ben Abu, Natalie; Harries, Daniel; Voet, Hillary; Niv, Masha Y

    2018-07-30

    Dramatic increase in NaCl consumption lead to sodium intake beyond health guidelines. KCl substitution helps reduce sodium intake but results in a bitter-metallic off-taste. Two disaccharides, trehalose and sucrose, were tested in order to untangle the chemical (increase in effective concentration of KCl due to sugar addition) from the sensory effects. The bitter-metallic taste of KCl was reduced by these sugars, while saltiness was enhanced or unaltered. The perceived sweetness of sugar, regardless of its type and concentration, was an important factor in KCl taste modulation. Though KCl was previously shown to increase the chemical activity of trehalose but not of sucrose, we found that it suppressed the perceived sweetness of both sugars. Therefore, sensory integration was the dominant factor in the tested KCl-sugar combinations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of sodium lactate /sodium diacetate in combination with sodium nitrite on physiochemical, microbial properties and sensory evaluation of cow sausage

    Directory of Open Access Journals (Sweden)

    Habib Sedghi

    2014-11-01

    Full Text Available Sodium nitrite has been always considered as one of the common additives due to its antibacterial effects on Clostridium botulinum and meat products' color, however it produces cancer creating nitrosamine. Recently, organic acids and their salts such as lactates have been employed as antimicrobial compounds. Lactates also improve organileptic properties including color, texture and taste and antioxidant properties. Sodium lactate causes to more reduction of anaerobic spore former bacteria than nitrite, inhibits botulin produced by Clostridium botulinum. Sodium lactate produces a permanent reddish pink color through reduction of deoxymygloboline and producing deoxymyoglobuline. In this study, the decrease of sodium nitrite amount from 120ppm to 15ppm by adding sodium lactate / sodium diacetate led to achieve an acceptable product. The best results revealed through adding 3.0625% of sodium lactate / sodium diacetate in combination with 30ppm sodium nitrite. Results also exhibited more reduction of pathogens' growth than nitrite, enhanced flavor slightly, but unable to produce reddish pink color as produced by nitrite. Results also exhibited that sodium lactate / diacetate cause to retard in microbial growth, reducing chemical change, enhance sensory properties, partially improvement in taste and texture. Although inappropriate color demonstrated sodium lactate / diacetate's inability in red pink color production in 4th sample (contains 15 ppm nitrite, its synergy effect in combination with sodium nitrite on nitroso myoglobuline production has been proven, led to sodium nitrite reduction in sausages.

  10. Sweet taste signaling functions as a hypothalamic glucose sensor

    Directory of Open Access Journals (Sweden)

    Xueying Ren

    2009-06-01

    Full Text Available Brain glucosensing is essential for normal body glucose homeostasis and neuronal function. However, the exact signaling mechanisms involved in the neuronal sensing of extracellular glucose levels remain poorly understood. Of particular interest is the identification of candidate membrane molecular sensors allowing neurons to change firing rates independently of intracellular glucose metabolism. Here we describe for the first time the expression of the taste receptor genes Tas1r1, Tas1r2 and Tas1r3, and their associated G-protein genes, in the mammalian brain. Neuronal expression of taste genes was detected in different nutrient-sensing forebrain regions, including the paraventricular and arcuate nuclei of the hypothalamus, the CA fields and dentate gyrus of the hippocampus, the habenula, and cortex. Expression was also observed in the intra-ventricular epithelial cells of the choroid plexus. These same regions were found to express the corresponding gene products that form the heterodimeric T1R2/T1R3 and T1R1/T1R3 sweet and L-amino acid taste G-protein coupled receptors, respectively. These regions were also found to express the taste G-protein α-Gustducin. Moreover, in vivo studies in mice demonstrate that the hypothalamic expression of taste-related genes is regulated by the nutritional state of the animal, with food deprivation significantly increasing expression levels of Tas1r1 and Tas1r2 in hypothalamus, but not in cortex. Furthermore, exposing mouse hypothalamic cells to a low-glucose medium, while maintaining normal L-amino acid concentrations, specifically resulted in higher expression levels of the sweet-associated gene Tas1r2. This latter effect was reversed by adding the non-metabolizable artificial sweetener sucralose to the low-glucose medium, indicating that taste-like signaling in hypothalamic neurons does not require intracellular glucose oxidation. Our findings suggest that the G-protein coupled sweet receptor T1R2/T1R3 is a

  11. Sodium Carbonate is Saltier Than Sodium Chloride to Sodium-Depleted Rats.

    Science.gov (United States)

    St John, Steven J; McBrayer, Anya M; Krauskopf, Erin E

    2017-10-01

    In a series of behavioral experiments in the 1960s, G.R. Morrison identified several unique features of the taste of Na2CO3 to rats; namely, it is 1) considerably more intense than NaCl at isomolar concentrations, 2) avoided at 10 times lower concentrations than NaCl to thirsty rats, 3) preferred at 10 times lower concentrations than NaCl in sodium-depleted rats. He also demonstrated its qualitatively similarity to NaCl. In Experiment 1, we confirmed and extended many of Morrison's observations. Rats were injected with furosemide on 3 occasions to stimulate a sodium appetite. After each depletion, rats were given a brief-access taste test in a lickometer presenting, in random order, water and 7 concentrations of salt. One test used NaCl (0.028-0.89 M, quarter log steps), another used Na2CO3, and the third used Na2CO3, but at a tenfold lower concentration range (0.0028-0.089 M). Rats licked NaCl in an inverted-U shaped concentration-response function peaking at 0.158-0.281 M. As Morrison's results predicted, rats licked Na2CO3 in nearly identical fashion, but at a tenfold lower concentration range (peak at 0.0158-0.028 M). In a second experiment, furosemide-treated rats were repeatedly tested with the lower Na2CO3 range but mixed in the epithelial sodium channel blocker amiloride at various concentrations (3-300 μM, half log steps). Amiloride reduced licking for Na2CO3 and shifted the peak response rightward up to about half a log unit. Thus, this "super-saltiness" of Na2CO3 to rats is at least partly amiloride-dependent. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  13. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.

    Science.gov (United States)

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen

    2012-04-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.

  14. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators.

    Science.gov (United States)

    Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-05-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.

  15. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    Science.gov (United States)

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  16. Effect of ionizing radiation on the taste function of patients submitted to head and neck radiotherapy

    International Nuclear Information System (INIS)

    Silva, Amaro Ilidio Vespasiano; Galante, Celio

    2011-01-01

    Objective: to evaluate the effects of ionizing radiation on the taste function in patients submitted to radiotherapy in the head and neck region. Materials and methods: twenty patients diagnosed with head and neck tumors and undergoing treatment in the Division of Radiotherapy at Santa Casa de Misericordia de Belo Horizonte, MG, Brazil, were selected. For their taste function testing, four solutions were manipulated with salt (NaCl), sugar (sucrose), citric acid (for acidity), and urea (for bitterness), at three different (low, medium and high) concentrations. Weekly tests were performed during the first three weeks of radiotherapy, with random administration of the solutions (three drops each) respecting the order of their concentration levels (low, medium and high). After the application of each solution, the patient reported which flavor he/she tasted. Results: a statistically significant difference was observed in the loss of taste function as the results in the 1st and 4th weeks of treatment were compared, with salty solution at the three concentration levels, with the sweet solution at low and medium concentrations, and with the sour and bitter solutions, only at low concentration. Conclusion: ionizing radiation alters the taste function of patients submitted to head and neck radiotherapy. (author)

  17. Effect of ionizing radiation on the taste function of patients submitted to head and neck radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amaro Ilidio Vespasiano [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Galante, Celio [Santa Casa de Misericordia de Belo Horizonte, MG (Brazil). Div. de Radioterapia; Manzi, Flavio Ricardo, E-mail: manzi@pucminas.b [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte, MG (Brazil)

    2011-09-15

    Objective: to evaluate the effects of ionizing radiation on the taste function in patients submitted to radiotherapy in the head and neck region. Materials and methods: twenty patients diagnosed with head and neck tumors and undergoing treatment in the Division of Radiotherapy at Santa Casa de Misericordia de Belo Horizonte, MG, Brazil, were selected. For their taste function testing, four solutions were manipulated with salt (NaCl), sugar (sucrose), citric acid (for acidity), and urea (for bitterness), at three different (low, medium and high) concentrations. Weekly tests were performed during the first three weeks of radiotherapy, with random administration of the solutions (three drops each) respecting the order of their concentration levels (low, medium and high). After the application of each solution, the patient reported which flavor he/she tasted. Results: a statistically significant difference was observed in the loss of taste function as the results in the 1st and 4th weeks of treatment were compared, with salty solution at the three concentration levels, with the sweet solution at low and medium concentrations, and with the sour and bitter solutions, only at low concentration. Conclusion: ionizing radiation alters the taste function of patients submitted to head and neck radiotherapy. (author)

  18. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    Science.gov (United States)

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  19. Taste information derived from T1R-expressing taste cells in mice.

    Science.gov (United States)

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  20. A longitudinal study of altered taste and smell perception and change in blood pressure.

    Science.gov (United States)

    Liu, Y-H; Huang, Z; Vaidya, A; Li, J; Curhan, G C; Wu, S; Gao, X

    2018-05-29

    Previous studies suggest that olfactory receptors, which mediate smell chemosensation, are located in the kidney and involved in blood pressure regulation. Mammalian epithelial sodium channels located in taste receptor cells are also found to participate in blood pressure regulation. However, there is currently no human study that has examined the association between taste and smell function and blood pressure. We thus conducted a longitudinal study to examine whether participants with altered taste and smell perception had larger increases in blood pressure compared with those without altered perception in a community-based cohort. The study included 5190 Chinese adults (4058 men and 1132 women) who were normotensive at baseline. Taste and smell perception were assessed via questionnaire in 2012 (baseline). Blood pressure was measured in 2012 and 2014 to determine relative change in blood pressure. Mean differences of 2-year blood pressure change and 95% confidence intervals (CIs) across four categories of taste and smell perception were calculated after adjusting for known risk factors for hypertension. After adjusting for potential confounders, individuals with altered taste and smell perception had larger increases in systolic blood pressure (adjusted mean difference = 5.1 mmHg, 95% CI: 0.1-10.0, p-value: 0.04) and mean arterial pressure (adjusted mean difference = 3.8 mmHg, 95% CI: 0.4-7.1, p-value: 0.03) after two years of follow-up compared with those having neither altered taste nor altered smell perception. No significant association was observed in individuals with altered taste or smell perception only. Our results suggest an association between chemosensory function and blood pressure. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights

  1. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    Science.gov (United States)

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  2. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Science.gov (United States)

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  3. Taste: The Bedrock of Flavor

    Directory of Open Access Journals (Sweden)

    Gary K Beauchamp

    2014-07-01

    There are two general approaches to reducing dietary sodium. First, there is considerable interest in developing salt substitutes and salt enhancers. Potassium chloride is widely used (usually in combination with NaCl as a substitute but it is not ideal since many find it has an unpleasant off-taste. There is considerable academic and industry research to identify new substitutes but to date there are none for salty as there are for sweet taste. A second approach to lowering sodium intake on a population-wide level in the United States, where more than 80% of the average person’s salt intake comes from food purchased and not from being added during cooking or at the table, is for food manufacturers and restaurants to gradually reduce the amount of salt in prepared foods. Experimental studies have demonstrated that if one reduces salt intake preferences for salt are similarly reduced. Based on this, the Institute of Medicine (IOM recommended that the Food and Drug Administration require gradual reduction by food manufacturers and large restaurant chains (IOM. The FDA has not acted on this recommendation. Conclusion. As illustrated by the difficulties in reducing salt in spite of the health benefits (a similar set of arguments for reducing excess consumption of carbohydrate sugars could be made, the sense of taste is a powerful driver of food intake. A deeper understanding of this important but neglected sensory system is required if we are to adequately address critical health problems in modern society that are often driven by excess consumption of tasty nutrients.

  4. Clofibrate inhibits the umami-savory taste of glutamate

    OpenAIRE

    Kochem, Matthew; Breslin, Paul A. S.

    2017-01-01

    In humans, umami taste can increase the palatability of foods rich in the amino acids glutamate and aspartate and the 5'-ribonucleotides IMP and GMP. Umami taste is transduced, in part, by T1R1-T1R3, a heteromeric G-protein coupled receptor. Umami perception is inhibited by sodium lactisole, which binds to the T1R3 subunit in vitro. Lactisole is structurally similar to the fibrate drugs. Clofibric acid, a lipid lowering drug, also binds the T1R3 subunit in vitro. The purpose of this study was...

  5. Taste of Fat: A Sixth Taste Modality?

    Science.gov (United States)

    Besnard, Philippe; Passilly-Degrace, Patricia; Khan, Naim A

    2016-01-01

    An attraction for palatable foods rich in lipids is shared by rodents and humans. Over the last decade, the mechanisms responsible for this specific eating behavior have been actively studied, and compelling evidence implicates a taste component in the orosensory detection of dietary lipids [i.e., long-chain fatty acids (LCFA)], in addition to textural, olfactory, and postingestive cues. The interactions between LCFA and specific receptors in taste bud cells (TBC) elicit physiological changes that affect both food intake and digestive functions. After a short overview of the gustatory pathway, this review brings together the key findings consistent with the existence of a sixth taste modality devoted to the perception of lipids. The main steps leading to this new paradigm (i.e., chemoreception of LCFA in TBC, cell signaling cascade, transfer of lipid signals throughout the gustatory nervous pathway, and their physiological consequences) will be critically analyzed. The limitations to this concept will also be discussed in the light of our current knowledge of the sense of taste. Finally, we will analyze the recent literature on obesity-related dysfunctions in the orosensory detection of lipids ("fatty" taste?), in relation to the overconsumption of fat-rich foods and the associated health risks. Copyright © 2016 the American Physiological Society.

  6. Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.

    Science.gov (United States)

    Huang, Anthony Y; Wu, Sandy Y

    2015-09-16

    Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus

  7. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives.

    Science.gov (United States)

    Peña-Quintana, Luis; Llarena, Marta; Reyes-Suárez, Desiderio; Aldámiz-Echevarria, Luis

    2017-01-01

    Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients' compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate.

  8. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  9. Results from a Nationwide Cohort Temporary Utilization Authorization (ATU) Survey of Patients in France Treated with Pheburane® (Sodium Phenylbutyrate) Taste-Masked Granules

    OpenAIRE

    Kibleur, Yves; Dobbelaere, Dries; Barth, Magalie; Brassier, Anaïs; Guffon, Nathalie

    2014-01-01

    Objectives The aim of this study was to describe a nationwide system for pre-marketing follow-up (cohort temporary utilization authorization [ATU] protocol; i.e., ‘therapeutic utilization’) of a new taste-masked formulation of sodium phenylbutyrate (NaPB) granules (Pheburane®) in France and to analyze safety and efficacy in this treated cohort of patients with urea cycle disease (UCD). Methods In October 2012, a cohort ATU was established in France to monitor the use of Pheburane® on a named-...

  10. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    Science.gov (United States)

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  11. Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal "bitter taste" cue.

    Science.gov (United States)

    Schier, Lindsey A; Davidson, Terry L; Powley, Terry L

    2011-11-01

    The discovery that cells in the gastrointestinal (GI) tract express the same molecular receptors and intracellular signaling components known to be involved in taste has generated great interest in potential functions of such post-oral "taste" receptors in the control of food intake. To determine whether taste cues in the GI tract are detected and can directly influence behavior, the present study used a microbehavioral analysis of intake, in which rats drank from lickometers that were programmed to simultaneously deliver a brief yoked infusion of a taste stimulus to the intestines. Specifically, in daily 30-min sessions, thirsty rats with indwelling intraduodenal catheters were trained to drink hypotonic (0.12 M) sodium chloride (NaCl) and simultaneously self-infuse a 0.12 M NaCl solution. Once trained, in a subsequent series of intestinal taste probe trials, rats reduced licking during a 6-min infusion period, when a bitter stimulus denatonium benzoate (DB; 10 mM) was added to the NaCl vehicle for infusion, apparently conditioning a mild taste aversion. Presentation of the DB in isomolar lithium chloride (LiCl) for intestinal infusions accelerated the development of the response across trials and strengthened the temporal resolution of the early licking suppression in response to the arrival of the DB in the intestine. In an experiment to evaluate whether CCK is involved as a paracrine signal in transducing the intestinal taste of DB, the CCK-1R antagonist devazepide partially blocked the response to intestinal DB. In contrast to their ability to detect and avoid the bitter taste in the intestine, rats did not modify their licking to saccharin intraduodenal probe infusions. The intestinal taste aversion paradigm developed here provides a sensitive and effective protocol for evaluating which tastants-and concentrations of tastants-in the lumen of the gut can control ingestion.

  12. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    Science.gov (United States)

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  13. Taste in holon paradigm

    Directory of Open Access Journals (Sweden)

    Klimova G. P.

    2016-07-01

    Full Text Available in this research the authors tried to investigate and generalize theoretic and applied studies of aesthetic taste, as well as, opportunities of its productivity distribution in terms of socio-cultural, person-professional and psychological levels. The article deals with traditional outlooks upon the origin of taste and its relationship with art and its current situation of taste functioning in terms of increasing globalization, virtualization and informatization of modern society.

  14. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.

    Science.gov (United States)

    Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua

    2014-11-18

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.

  15. Taste and smell function in testicular cancer survivors treated with cisplatin-based chemotherapy in relation to dietary intake, food preference, and body composition.

    Science.gov (United States)

    IJpma, Irene; Renken, Remco J; Gietema, Jourik A; Slart, Riemer H J A; Mensink, Manon G J; Lefrandt, Joop D; Ter Horst, Gert J; Reyners, Anna K L

    2016-10-01

    Chemotherapy can affect taste and smell function. This may contribute to the high prevalence of overweight and metabolic syndrome in testicular cancer survivors (TCS). Aims of the study were to evaluate taste and smell function and possible consequences for dietary intake, food preference, and body composition in TCS treated with cisplatin-based chemotherapy. Fifty TCS, 1-7 years post-chemotherapy, and 50 age-matched healthy men participated. Taste and smell function were measured using taste strips and 'Sniffin' Sticks', respectively. Dietary intake was investigated using a food frequency questionnaire. Food preference was assessed using food pictures varying in taste (sweet/savoury) and fat or protein content. Dual-Energy X-ray Absorptiometry was performed to measure body composition. Presence of metabolic syndrome and hypogonadism were assessed. TCS had a lower total taste function, a higher bitter taste threshold, higher Body Mass Index (BMI), and more (abdominal) fat than controls (p body composition in TCS (p = 0.016). Although taste function was impaired in TCS, this was not related to a different dietary intake compared to controls. Lower testosterone levels were associated with a higher BMI, fat mass, and abdominal fat distribution in TCS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    Science.gov (United States)

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  17. Olfaction, taste, and cognition

    National Research Council Canada - National Science Library

    Rouby, Catherine

    2002-01-01

    .... The book is conveniently divided into sections, including linguistic representations, emotion, memory, neural bases, and individual variation. Leading experts have written chapters on many facets of taste and smell, including odor memory, cortical representations, psychophysics and functional imaging studies, genetic variation in taste, and ...

  18. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    Science.gov (United States)

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  19. Effect of sodium lactate /sodium diacetate in combination with sodium nitrite on physiochemical, microbial properties and sensory evaluation of cow sausage

    OpenAIRE

    Habib Sedghi; Ali Mohamadi Sani; Masood Najaf Najafi; Mohammad Ali Shariati

    2014-01-01

    Sodium nitrite has been always considered as one of the common additives due to its antibacterial effects on Clostridium botulinum and meat products' color, however it produces cancer creating nitrosamine. Recently, organic acids and their salts such as lactates have been employed as antimicrobial compounds. Lactates also improve organileptic properties including color, texture and taste and antioxidant properties. Sodium lactate causes to more reduction of anaerobic spore former bacteria tha...

  20. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    Science.gov (United States)

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Relationship between gustatory function and average number of taste buds per fungiform papilla measured by confocal laser scanning microscopy in humans.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro; Sano, Kazuo

    2017-02-01

    The aim of this study was to elucidate the relationship between the gustatory function and average number of taste buds per fungiform papilla (FP) in humans. Systemically healthy volunteers (n = 211), pre-operative patients with chronic otitis media (n = 79), and postoperative patients, with or without a chorda tympani nerve (CTN) severed during middle ear surgery (n = 63), were included. Confocal laser scanning microscopy was employed to observe fungiform taste buds because it allows many FP to be observed non-invasively in a short period of time. Taste buds in an average of 10 FP in the midlateral region of the tongue were counted. In total, 3,849 FP were observed in 353 subjects. The gustatory function was measured by electrogustometry (EGM). An inverse relationship was found between the gustatory function and average number of fungiform taste buds per papilla. The healthy volunteers showed a lower EGM threshold (better gustatory function) and had more taste buds than did the patients with otitis media, and the patients with otitis media showed a lower EGM threshold and had more taste buds than did postoperative patients, reflecting the severity of damage to the CTN. It was concluded that the confocal laser scanning microscope is a very useful tool for using to observe a large number of taste buds non-invasively. © 2017 Eur J Oral Sci.

  2. Taste: The Bedrock of Flavor

    OpenAIRE

    Gary K Beauchamp

    2014-01-01

    The significance of taste for human health:Throughout most of human evolution, the daily decisions of what to put into ones mouth and swallow and what to reject presented challenges fraught with danger. Energy-rich foods were often difficult to find; protein was in short supply; sodium was scarce. Moreover, many plants that did contain nutrients were also equipped with defensive compounds that were poisonous. Now many humans over consume exactly the foods that they evolved to find particu...

  3. Taste Disturbance After Palatopharyngeal Surgery for Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Han-Ren Hsiao

    2007-04-01

    Full Text Available Taste disorder is a rare complication of uvulopalatopharyngoplasty, and may have a significant impact on quality of life. Herein, we report a case of obstructive sleep apnea syndrome in a 51- year-old man who experienced taste disturbance after palatopharyngeal surgery using electrocautery for developing a uvulopalatal flap. Gustatory function test using three-drop-method with solutions of highest concentration was implemented to assess the deficiency of four basic tastes. The results showed deficit of sweet taste associated with phantom of bitter taste. The patient reported constant spontaneous bitter taste and dysgeusia in sweet taste with poor quality of life at the 2-year follow-up. We suggest that patients are informed of the potential for taste impairment from palatopharyngeal surgery, as well as reducing the use of electrocautery in developing uvulopalatal flap to reduce damage to taste function.

  4. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  5. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    Science.gov (United States)

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Habitual Tastes and Embedded Taste

    DEFF Research Database (Denmark)

    Hedegaard, Liselotte

    2016-01-01

    The interest of this paper is to position taste within the framework of time. This might seem peculiar given that taste, in its physical sense, is referred to as an ephemeral experience taking place in the mouth. Taste, however, is more than that. It is the transient experience that infiltrates...... may be bridged by story-telling or other ways of handing over historically embedded practices, but this leaves a more fundamental question unanswered. Namely, that given that all remembrance has individual recollection as the point of departure, then how does individual recollection of tastes...

  7. Glutamate: Tastant and Neuromodulator in Taste Buds.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  8. Strategies to reduce sodium consumption: a food industry perspective.

    Science.gov (United States)

    Dötsch, Mariska; Busch, Johanneke; Batenburg, Max; Liem, Gie; Tareilus, Erwin; Mueller, Rudi; Meijer, Gert

    2009-11-01

    The global high prevalence of hypertension and cardiovascular disease has raised concerns regarding the sodium content of the foods which we consume. Over 75% of sodium intake in industrialized diets is likely to come from processed and restaurant foods. Therefore international authorities, such as the World Health Organisation, are encouraging the food industry to reduce sodium levels in their products. Significant sodium reduction is not without complications as salt plays an important role in taste, and in some products is needed also for preservation and processing. The most promising sodium reduction strategy is to adapt the preference of consumers for saltiness by reducing sodium in products in small steps. However, this is a time-consuming approach that needs to be applied industry-wide in order to be effective. Therefore the food industry is also investigating solutions that will maintain the same perceived salt intensity at lower sodium levels. Each of these has specific advantages, disadvantages, and time lines for implementation. Currently applied approaches are resulting in sodium reduction between 20-30%. Further reduction will require new technologies. Research into the physiology of taste perception and salt receptors is an emerging area of science that is needed in order to achieve larger sodium reductions.

  9. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives

    Directory of Open Access Journals (Sweden)

    Peña-Quintana L

    2017-09-01

    Full Text Available Luis Peña-Quintana,1–3 Marta Llarena,2 Desiderio Reyes-Suárez,2 Luis Aldámiz-Echevarria4 1Pediatric Gastroenterology, Hepatology, and Nutrition Unit, Universitario Materno-Infantil Hospital de Canarias, University of Las Palmas de Gran Canaria, 2Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas, 3CIBEROBN, Madrid, 4Unit of Metabolism, Cruces University Hospital, BioCruces Health Research Institute, GCV-CIBER de Enfremedades Raras (CIBERER, Barakaldo, Spain Abstract: Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients’ compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the

  10. Comparison of fungiform taste-bud distribution among age groups using confocal laser scanning microscopy in vivo in combination with gustatory function.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro; Sano, Kazuo

    2016-04-01

    The aim of this study was to compare the distribution of taste buds in fungiform papillae (FP) and gustatory function between young and elderly age groups. Confocal laser scanning microscopy was used because it allows many FP to be observed non-invasively in a short period of time. The age of participants (n = 211) varied from 20 to 83 yr. The tip and midlateral region of the tongue were observed. Taste buds in an average of 10 FP in each area were counted. A total of 2,350 FP at the tongue tip and 2,592 FP in the midlateral region could be observed. The average number of taste buds was similar among all age groups both at the tongue tip and in the midlateral region. The taste function, measured by electrogustometry, among participants 20-29 yr of age was significantly lower than that in the other age groups; however, there was no difference among any other age groups in taste function. These results indicate that the peripheral gustatory system is well maintained anatomically and functionally in elderly people. © 2016 Eur J Oral Sci.

  11. Discrimination of taste qualities among mouse fungiform taste bud cells.

    Science.gov (United States)

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  12. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    Science.gov (United States)

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  14. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  15. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Ryusuke Yoshida

    2017-10-01

    Full Text Available Cholecystokinin (CCK is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30% of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues.

  16. Taste function assessed by electrogustometry in burning mouth syndrome: a case-control study.

    Science.gov (United States)

    Braud, A; Descroix, V; Ungeheuer, M-N; Rougeot, C; Boucher, Y

    2017-04-01

    Idiopathic burning mouth syndrome (iBMS) is characterized by oral persistent pain without any clinical or biological abnormality. The aim of this study was to evaluate taste function in iBMS subjects and healthy controls. Electrogustometric thresholds (EGMt) were recorded in 21 iBMS patients and 21 paired-matched controls at nine loci of the tongue assessing fungiform and foliate gustatory papillae function. Comparison of EGMt was performed using the nonparametric Wilcoxon signed-rank test. A correlation between EGMt and self-perceived pain intensity assessed using a visual analogic scale (VAS) was analyzed with the Spearman coefficient. The level of significance was fixed at P < 0.05. Mean EGMt were significantly increased with iBMS for right side of the dorsum of the tongue and right lateral side of the tongue (P < 0.05). In the iBMS group, VAS scores were significantly correlated to EGMt at the tip of the tongue (r = -0.59; P < 0.05) and at the right and left lateral sides of the tongue (respectively, r = -0.49 and r = -0.47; P < 0.05). These data depicted impaired taste sensitivity in iBMS patients within fungiform and foliate taste bud fields and support potent gustatory/nociceptive interaction in iBMS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Late radiation effects on hearing, vestibular function, and taste in brain tumor patients

    International Nuclear Information System (INIS)

    Johannesen, Tom B.; Rasmussen, Kjell; Winther, Finn Oe.; Halvorsen, Ulf; Lote, Knut

    2002-01-01

    Purpose: To investigate late radiation effects on hearing, vestibular function, and taste after conventional radiotherapy in brain tumor patients. Methods and Materials: Hearing, vestibular function, and taste were assessed in 33 brain tumor patients irradiated unilaterally to the tumor-bearing hemisphere and the temporal bone. Median observation time after completion of radiotherapy was 13 years; the fraction dose was 1.8 Gy, and mean radiation dose was 53.1 Gy. Results: Deep ulceration in the external ear canal and osteoradionecrosis on the irradiated side was seen in three patients. Reduced hearing was found for air and bone conduction of the irradiated side compared to the opposite side (0.25-2 kHz: 6.1 dB, 4 kHz: 10.3 dB, 6 kHz: 15.6 dB, and 8 kHz: 16.5 dB). For bone conduction, the corresponding figures were 0.25-2 kHz: 5.5 dB and 4 kHz: 8.2 dB. Three patients had a canal paresis of the irradiated side, and three patients had affection of the chorda tympani. Conclusion: Irradiation of the temporal bone with doses usually given in the treatment of patients with brain tumors may cause osteoradionecrosis, sensorineural hearing loss, dysfunction of the vestibular inner ear, and loss of taste. Head-and-neck examination should be included in the follow-up of long-term survivors

  18. Breadth of Tuning and Taste Coding in Mammalian Taste Buds

    OpenAIRE

    Tomchik, Seth M.; Berg, Stephanie; Kim, Joung Woul; Chaudhari, Nirupa; Roper, Stephen D.

    2007-01-01

    A longstanding question in taste research concerns taste coding and, in particular, how broadly are individual taste bud cells tuned to taste qualities (sweet, bitter, umami, salty, and sour). Taste bud cells express G-protein-coupled receptors for sweet, bitter, or umami tastes but not in combination. However, responses to multiple taste qualities have been recorded in individual taste cells. We and others have shown previously there are two classes of taste bud cells directly involved in gu...

  19. Processing umami and other tastes in mammalian taste buds.

    Science.gov (United States)

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  20. Consumer attitudes and understanding of low-sodium claims on food: an analysis of healthy and hypertensive individuals.

    Science.gov (United States)

    Wong, Christina L; Arcand, JoAnne; Mendoza, Julio; Henson, Spencer J; Qi, Ying; Lou, Wendy; L'Abbé, Mary R

    2013-06-01

    Sodium-related claims on food labels should facilitate lower-sodium food choices; however, consumer attitudes and understanding of such claims are unknown. We evaluated consumer attitudes and understanding of different types of sodium claims and the effect of having hypertension on responses to such claims. Canadian consumers (n = 506), with and without hypertension, completed an online survey that contained a randomized mock-package experiment, which tested 4 packages that differed only by the claims they carried as follows: 3 sodium claims (disease risk reduction, function, and nutrient-content claims) and a tastes-great claim (control). Participants answered the same questions on attitudes and understanding of claims after seeing each package. Food packages with any sodium claim resulted in more positive attitudes toward the claim and the product healthfulness than did packages with the taste control claim, although all mock packages were identical nutritionally. Having hypertension increased ratings related to product healthfulness and purchase intentions, but there was no difference in reported understanding between hypertensives and normotensives. In general, participants attributed additional health benefits to low-sodium products beyond the well-established relation of sodium and hypertension. Sodium claims have the potential to facilitate lower-sodium food choices. However, we caution that consumers do not seem to differentiate between different types of claims, but the nutritional profiles of foods that carry different sodium claims can potentially differ greatly in the current labeling environment. Additional educational efforts are needed to ensure that consumers do not attribute inappropriate health benefits to foods with low-sodium claims. This trial was registered at clinicaltrials.gov as NCT01764724.

  1. What is taste and how do we teach taste?

    DEFF Research Database (Denmark)

    Wistoft, Karen; Qvortrup, Lars

    2017-01-01

    students to learn about taste. This section presents a systematic division of taste into its four main dimensions: The dimension of good taste, the dimension of healthy taste, the dimension of perceived taste, and the dimension of moral taste. The second section comprises taste as an instrument of teaching....... Here, the intention is to use ‘taste’ as a means to teach home economics and food education. This section answers the question of how to teach in a way that enables the students to develop knowledge and skills in relation to the four dimensions of taste. In this section four knowledge types...... and argument forms are presented, each related to one of the four taste dimensions, because they provide a basis for structuring an appropriate curriculum of taste. The final aim is to enable students to make well-reasoned food decisions with ‘taste’ as the compass of judgment....

  2. Perception of sweet taste is important for voluntary alcohol consumption in mice.

    Science.gov (United States)

    Blednov, Y A; Walker, D; Martinez, M; Levine, M; Damak, S; Margolskee, R F

    2008-02-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.

  3. Consumer attitudes, barriers, and meal satisfaction associated with sodium-reduced meal intake at worksite cafeterias.

    Science.gov (United States)

    Lee, Jounghee; Park, Sohyun

    2015-12-01

    Targeting consumers who consume lunches at their worksite cafeterias would be a valuable approach to reduce sodium intake in South Korea. To assess the relationships between socio-demographic factors, consumer satisfaction, attitudes, barriers and the frequency of sodium-reduced meal intake. We implemented a cross-sectional research, analyzing data from 738 consumers aged 18 years or older (327 males and 411 females) at 17 worksite cafeterias in South Korea. We used the ordinary least squares regression analysis to determine the factors related to overall satisfaction with sodium-reduced meal. General linear models with LSD tests were employed to examine the variables that differed by the frequency of sodium-reduced meal intake. Most subjects always or usually consumed the sodium-reduced meal (49%), followed by sometimes (34%) and rarely or never (18%). Diverse menus, taste and belief in the helpfulness of the sodium-reduced meal significantly increased overall satisfaction with the sodium-reduced diet (P < 0.05). We found importance of needs in the following order: 1) 'menu diversity' (4.01 points), 2) 'active promotion' (3.97 points), 3) 'display of nutrition labels in a visible location' (3.96 points), 4) 'improvement of taste' (3.88 points), and 5) 'education of sodium-reduction self-care behaviors' (3.82 points). Dietitians could lead consumers to choose sodium-reduced meals by improving their taste and providing diverse menus for the sodium-reduced meals at worksite cafeterias.

  4. Intravital Microscopic Interrogation of Peripheral Taste Sensation

    Science.gov (United States)

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-01

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  5. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    Science.gov (United States)

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  6. Taste perception and sensory sensitivity: Relationship to feeding problems in boys with Barth Syndrome.

    Science.gov (United States)

    Reynolds, Stacey; Kreider, Consuelo M; Meeley, Lauren E; Bendixen, Roxanna M

    2015-03-01

    Feeding problems are common in boys with Barth syndrome and may contribute to the population's propensity for growth delay and muscle weakness. The purpose of this study was to quantify and describe these feeding issues and examine altered taste perception and sensory sensitivity as contributing factors. A cross-sectional, two-group comparison design was used to examine feeding preferences and behaviors, chemical taste perception, and sensory sensitivities in fifty boys with (n=24) and without (n=26) Barth ages 4-17 years. Taste perception was measured using chemical test strips saturated with phenylthiocarbamide (PTC) and sodium benzoate (NaB). Feeding problems were documented by parents using a Food Inventory, while sensory sensitivities were recorded using a Short Sensory Profile. Boys with Barth differed significantly from typical peers with regards to problem feeding behaviors. For boys with Barth, food refusal and food selectivity were identified as being present in 50% the sample, while 70% of had identified problems related to gagging or swallowing foods. About half of all Barth families noted that their child's eating habits did not match the family's and that separate meals were often prepared. As demonstrated in previous research, about 50% of boys with Barth demonstrated probable or definite differences in taste/smell sensitivity, which was significantly higher than controls. On tests of chemical taste perception, boys with Barth were significantly more likely to be supertasters to PTC and non-tasters to NaB. Taster-status did not directly relate to the presence of feeding problems, however, taste/smell sensitivity did significantly relate to food selectivity by type and texture. Results indicate feeding problems in at least 50-70% of boys with Barth syndrome, and suggest that behaviors are often present before 6 months of age. Differences in taste perception may influence dietary choices in boys with Barth, particularly their craving of salty foods

  7. Radiogenic damage to the sense of taste

    International Nuclear Information System (INIS)

    Schulz-Freywald, G.

    1975-01-01

    In order to determine radiogenic impairment of taste and the natural laws it obeys, gustometric investigations were carried out on 11 patients under radiation treatment. From the investigations it could be seen that the first measurable impairment is present after about 2,000 rad and the climax of the sensory radiation injury occurs after 4,000 rad. The individual taste qualities are damaged in the sequence bitter, sweet, salty and sour. Then the taste surprisingly improves somewhat although irradiation continues. Our observation that the interval between sensation threshold and recognition threshold during radiotherapy grows indicating an apparently stronger damage to the recognition threshold and only later goes back to the standard, is also new and has so far no explanation. It was seen in all posttherapeutical taste tests that the taste function was only fully normalized with a few patients, while in most cases a more or less large function defect remained. This result contradicts the general opinion that there is a complete restitution at the latest 3 months after terminating the irradiation. The present result is fully confirmed by the post-investigation of 55 patients whose irradiation went back up to 13 years. A significant, remaining reduction of the average taste function can also be found here. As the extent of the remaining taste impairment is measurable but very small, it is hardly ever noticed by the patients. Similar to in the course investigations, one could see here, too, that the sensation thresholds on the long run are less damaged than the recognition thresholds. (orig./MG) [de

  8. Salt equivalence and temporal dominance of sensations of different sodium chloride substitutes in butter.

    Science.gov (United States)

    de Souza, Vanessa Rios; Freire, Tassyana Vieira Marques; Saraiva, Carla Gonçalves; de Deus Souza Carneiro, João; Pinheiro, Ana Carla Marques; Nunes, Cleiton Antônio

    2013-08-01

    Studies indicate a positive association between dietary salt intake and some diseases, which has promoted the tendency to reduce the sodium in foods. The objective of this study was to determine the equivalent amount of different sodium chloride replacements required to promote the same degree of ideal saltiness in butter and to study the sensory profile of sodium chloride and the substitutes using the analysis of Temporal Dominance of Sensations (TDS). Using the magnitude estimation method, it was determined that the potencies of potassium chloride, monosodium glutamate and potassium phosphate relative to the 1% sodium chloride in butter are 83·33, 31·59 and 33·32, respectively. Regarding the sensory profile of the tested salt substitutes, a bitter taste was perceived in the butter with potassium chloride, a sour taste was perceived in the butter with potassium phosphate and sweet and umami tastes were dominant in the butter with monosodium glutamate. Of all the salt substitutes tested calcium lactate, potassium lactate, calcium chloride and magnesium chloride were impractical to use in butter.

  9. Taste and smell function in testicular cancer survivors treated with cisplatin-based chemotherapy in relation to dietary intake, food preference, and body composition

    NARCIS (Netherlands)

    IJpma, Irene; Renken, Remco J.; Gietema, Jourik A.; Slart, Riemer H. J. A.; Mensink, Manon G. J.; Lefrandt, Joop D.; Ter Horst, Gert J.; Reyners, Anna K. L.

    2016-01-01

    Background: Chemotherapy can affect taste and smell function. This may contribute to the high prevalence of overweight and metabolic syndrome in testicular cancer survivors (TCS). Aims of the study were to evaluate taste and smell function and possible consequences for dietary intake, food

  10. Taste bud homeostasis in health, disease, and aging.

    Science.gov (United States)

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  11. Taste Bud Homeostasis in Health, Disease, and Aging

    Science.gov (United States)

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  12. Clofibrate inhibits the umami-savory taste of glutamate.

    Science.gov (United States)

    Kochem, Matthew; Breslin, Paul A S

    2017-01-01

    In humans, umami taste can increase the palatability of foods rich in the amino acids glutamate and aspartate and the 5'-ribonucleotides IMP and GMP. Umami taste is transduced, in part, by T1R1-T1R3, a heteromeric G-protein coupled receptor. Umami perception is inhibited by sodium lactisole, which binds to the T1R3 subunit in vitro. Lactisole is structurally similar to the fibrate drugs. Clofibric acid, a lipid lowering drug, also binds the T1R3 subunit in vitro. The purpose of this study was to determine whether clofibric acid inhibits the umami taste of glutamate in human subjects. Ten participants rated the umami taste intensity elicited by 20 mM monosodium glutamate (MSG) mixed with varying concentrations of clofibric acid (0 to 16 mM). In addition, fourteen participants rated the effect of 1.4 mM clofibric acid on umami enhancement by 5' ribonucleotides. Participants were instructed to rate perceived intensity using a general Labeled Magnitude Scale (gLMS). Each participant was tested in triplicate. Clofibric acid inhibited umami taste intensity from 20 mM MSG in a dose dependent manner. Whereas MSG neat elicited "moderate" umami taste intensity, the addition of 16 mM clofibric acid elicited only "weak" umami intensity on average, and in some subjects no umami taste was elicited. We further show that 1.4 mM clofibric acid suppressed umami enhancement from GMP, but not from IMP. This study provides in vivo evidence that clofibric acid inhibits glutamate taste perception, presumably via T1R1-T1R3 inhibition, and lends further evidence that the T1R1-T1R3 receptor is the principal umami receptor in humans. T1R receptors are expressed extra-orally throughout the alimentary tract and in regulatory organs and are known to influence glucose and lipid metabolism. Whether clofibric acid as a lipid-lowering drug affects human metabolism, in part, through T1R inhibition warrants further examination.

  13. Reduction of sodium content in spicy soups using monosodium glutamate

    DEFF Research Database (Denmark)

    Jinap, Selamat; Hajeb, Parvaneh; Karim, Roslina

    2016-01-01

    reduction was investigated.Methods and Results: The trained panellists were presented with basic spicy soups (curry chicken and chili chicken) containing different amounts of sodium chloride (NaCl) (0-1.2%) and MSG (0-1.2%). They tasted the optimum concentrations of NaCl and MSG for the two spicy soups...... and the overall acceptability were 0.8% and 0.7%, respectively. There was no significant effect of spiciness level on the saltiness and umami taste of both soups. The optimum levels of combined NaCl and MSG for overall acceptance in the chili and curry soups were 0.3% and 0.7%, respectively. The results showed...... that with the addition of MSG, it is possible to reduce sodium intake without changing the overall acceptability of the spicy soup. A 32.5% reduction in sodium level is made feasible by adding 0.7% MSG to the spicy soups.Conclusions: This study suggests that low-sodium soups can be developed by the addition...

  14. Taste and smell function in testicular cancer survivors treated with cisplatin-based chemotherapy in relation to dietary intake, food preference, and body composition

    NARCIS (Netherlands)

    IJpma, Irene; Renken, Remco J.; Gietema, Jourik A.; Slart, Riemer H.J.A.; Mensink, Manon G.J.; Lefrandt, Joop D.; Horst, ter Gert J.; Reyners, Anna K.L.

    2016-01-01

    Background

    Chemotherapy can affect taste and smell function. This may contribute to the high prevalence of overweight and metabolic syndrome in testicular cancer survivors (TCS). Aims of the study were to evaluate taste and smell function and possible consequences for dietary intake, food

  15. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    Science.gov (United States)

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  16. A taste for ATP: neurotransmission in taste buds

    Science.gov (United States)

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  17. A taste for ATP: neurotransmission in taste buds

    Directory of Open Access Journals (Sweden)

    Thomas E. Finger

    2013-12-01

    Full Text Available Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells.

  18. Sweet taste disorder and vascular complications in patients with abnormal glucose tolerance.

    Science.gov (United States)

    Tsujimoto, Tetsuro; Imai, Kenjiro; Kanda, Sayaka; Kakei, Masafumi; Kajio, Hiroshi; Sugiyama, Takehiro

    2016-10-15

    It remains unknown whether taste disorders can be a risk factor for micro- and macro-vascular diseases in patients with abnormal glucose tolerance. A cross-sectional study in a nationally representative samples of 848 and 849 US adults (aged ≥40years) with diabetes or prediabetes who had sweet and salt taste disorders, respectively, from the National Health and Nutrition Examination Survey 2011-2012. Among the study population, 5.7% had sweet taste disorder and 8.6% had salt taste disorder. These data correspond to approximately 1.5 million and 1.8 million individuals with abnormal glucose tolerance aged 40years or older in the US population, respectively. In the adjusted model, sweet taste disorder was significantly associated with complication of ischemic heart disease (adjusted odds ratio [OR], 2.45; 95% confidence interval [CI], 1.03-5.81; P=0.04). Moreover, sweet taste disorder in patients with diabetes was significantly associated with diabetic retinopathy (adjusted OR, 2.89; 95% CI, 1.09-7.69; P=0.03) and diabetic nephropathy (adjusted OR, 3.17; 95% CI, 1.07-9.36; P=0.03). Meanwhile, salt taste disorder was not significantly associated with diabetic retinopathy, diabetic nephropathy, ischemic heart disease, or stroke. Total sugar intake was significantly higher in patients with sweet taste disorder than in those without it, whereas total daily intake of carbohydrate did not differ significantly. No significant association was observed between salt taste disorder and daily intake of sodium after multivariate analysis. Sweet taste disorder in patients with abnormal glucose tolerance was associated with increased sugar intake and vascular complications. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  20. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    Science.gov (United States)

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  1. Taste perception, associated hormonal modulation, and nutrient intake

    Science.gov (United States)

    Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick

    2015-01-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  2. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  3. Progress and renewal in gustation: new insights into taste bud development.

    Science.gov (United States)

    Barlow, Linda A

    2015-11-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. © 2015. Published by The Company of Biologists Ltd.

  4. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  5. Research progress of the bitter taste receptor genes in primates.

    Science.gov (United States)

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  6. Results from a Nationwide Cohort Temporary Utilization Authorization (ATU) survey of patients in france treated with Pheburane(®) (Sodium Phenylbutyrate) taste-masked granules.

    Science.gov (United States)

    Kibleur, Yves; Dobbelaere, Dries; Barth, Magalie; Brassier, Anaïs; Guffon, Nathalie

    2014-10-01

    The aim of this study was to describe a nationwide system for pre-marketing follow-up (cohort temporary utilization authorization [ATU] protocol; i.e., 'therapeutic utilization') of a new taste-masked formulation of sodium phenylbutyrate (NaPB) granules (Pheburane(®)) in France and to analyze safety and efficacy in this treated cohort of patients with urea cycle disease (UCD). In October 2012, a cohort ATU was established in France to monitor the use of Pheburane(®) on a named-patient basis. All treated UCD patients were included in a follow-up protocol developed by the Laboratory (Lucane Pharma) and the French Medicines Agency (ANSM), which recorded demographics, dosing characteristics of NaPB, concomitant medications, adverse events, and clinical outcome during the period of treatment. Following the granting of the Marketing Authorization in Europe, the cohort ATU was terminated approximately 1 year after its initiation, as the product was launched on the French market. The ease of administration and acceptability were much better with the new taste-masked formulation than with the previous treatment. No episodes of metabolic decompensation were observed over a treatment period ranging from 3 to 11 months with Pheburane(®) and the range of ammonia and glutamine plasma levels improved and remained within the normal range. In all, no adverse events were reported with Pheburane(®) treatment. The recently developed taste-masked formulation of NaPB granules improved the quality of life for UCD patients. This may translate into improved compliance, efficacy, and safety, which may be demonstrated either in further studies or in the post-marketing use of the product.

  7. Long-Term Follow-Up on a Cohort Temporary Utilization Authorization (ATU) Survey of Patients Treated with Pheburane (Sodium Phenylbutyrate) Taste-Masked Granules.

    Science.gov (United States)

    Kibleur, Yves; Guffon, Nathalie

    2016-04-01

    The aim was to describe the status of patients with urea cycle disorders (UCD) at the latest long-term clinical follow-up of treatment with a new taste-masked formulation of sodium phenylbutyrate (NaPB) granules (Pheburane). These patients are a subset of those treated under a cohort temporary utilisation study (ATU) previously reported and now followed for 2 years. From a French cohort temporary utilization authorization (ATU) set up to monitor the use of Pheburane on a named-patient basis in UCD patients in advance of its marketing authorization, a subset of patients were followed up in the long term. Data on demographics, dosing characteristics of NaPB, concomitant medications, adverse events and clinical outcomes were collected at a follow-up visit after 1-2 years of treatment with the drug administered under marketing conditions. This paper reports on the subset of patients who were included in further long-term follow-up at the principal recruiting metabolic reference center involved in the original cohort. No episode of metabolic decompensation was observed over a treatment period ranging from 8 to 30 months with Pheburane, and the range of ammonia and glutamine levels continued to improve and remained within the normal range, thus adding valuable longer-term feedback to the original ATU report. In all, no adverse events were reported with Pheburane treatment. These additional data demonstrate the maintenance of the safety and efficacy of Pheburane over time. The recently developed taste-masked formulation of NaPB granules (Pheburane) improved the quality of life for UCD patients. The present post-marketing report on the use of the product confirms the original observations of improved compliance, efficacy and safety with this taste-masked formulation of NaPB.

  8. Taste isn't just for taste buds anymore

    OpenAIRE

    Finger, Thomas E.; Kinnamon, Sue C.

    2011-01-01

    Taste is a discriminative sense involving specialized receptor cells of the oral cavity (taste buds) and at least two distinct families of G protein-coupled receptor molecules that detect nutritionally important substances or potential toxins. Yet the receptor mechanisms that drive taste also are utilized by numerous systems throughout the body. How and why these so-called taste receptors are used to regulate digestion and respiration is now a matter of intense study. In this article we provi...

  9. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    Directory of Open Access Journals (Sweden)

    Yu-Chieh David Chen

    2017-12-01

    Full Text Available Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide roadmaps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. : Chen and Dahanukar carry out a large-scale, systematic analysis to understand the molecular organization of pharyngeal taste neurons. Taking advantage of the molecular genetic toolkit that arises from this map, they use genetic dissection strategies to probe the functional roles of selected pharyngeal neurons in food choice. Keywords: Drosophila, taste, pharynx, chemosensory receptors, gustatory receptors, ionotropic receptors, feeding

  10. Whole transcriptome profiling of taste bud cells.

    Science.gov (United States)

    Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F

    2017-08-08

    Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.

  11. Molecular and cellular organization of taste neurons in adult Drosophila pharynx

    Science.gov (United States)

    Chen, Yu-Chieh (David); Dahanukar, Anupama

    2017-01-01

    SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040

  12. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

    Science.gov (United States)

    Yamamoto, Yoshiyuki; Byerly, Mardi S; Jackman, William R; Jeffery, William R

    2009-06-01

    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.

  13. Detection of bitterness-Suppression using a taste sensor

    International Nuclear Information System (INIS)

    Iiyama, Satoru; Ezaki, Shu; Toko, Kiyoshi

    2008-01-01

    We tried to detect the suppression of bitterness with a taste sensor. Quinine hydrochloride, which has a positive charge usually cause large potential change of negatively, charged membranes of the sensor. The potential change was decreased by sour substances such as acetic acid. The decrease of the potential change of response implies a decrease in the intensity of bitterness. Contrary to this, response of the sensor to sodium picrate, which has a negative charge, was diminished by sodium salts of organic acids. As the hydrophobicity of organic acids increased, the suppression of bitterness also increased. The present study is expected to provide a new quantitative technique to measure the strength of bitterness of foods and drugs in place of sensory evaluation. (author)

  14. Processing Umami and Other Tastes in Mammalian Taste Buds

    OpenAIRE

    Roper, Stephen D.; Chaudhari, Nirupa

    2009-01-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potentia...

  15. Smell and Taste

    Science.gov (United States)

    ... Gustatory (taste nerve) cells are clustered in the taste buds of the mouth and throat. They react to ... that can be seen on the tongue contain taste buds. These surface cells send taste information to nearby ...

  16. Changes in taste and smell function, dietary intake, food preference, and body composition in testicular cancer patients treated with cisplatin-based chemotherapy

    NARCIS (Netherlands)

    Ijpma, Irene; Renken, Remco J.; Gietema, Jourik A.; Slart, Riemer H. J. A.; Mensink, Manon G. J.; Lefrandt, Joop D.; Ter Horst, Gert J.; Reyners, Anna K. L.

    2017-01-01

    Background & aims: Taste and smell changes due to chemotherapy May contribute to the high prevalence of overweight in testicular cancer patients (TCPs). This study investigates the taste and smell function, dietary intake, food preference, and body composition in TCPs before, during, and up to 1

  17. Participation of the peripheral taste system in aging-dependent changes in taste sensitivity.

    Science.gov (United States)

    Narukawa, Masataka; Kurokawa, Azusa; Kohta, Rie; Misaka, Takumi

    2017-09-01

    Previous studies have shown that aging modifies taste sensitivity. However, the factors affecting the changes in taste sensitivity remain unclear. To investigate the cause of the age-related changes in taste sensitivity, we compared the peripheral taste detection systems in young and old mice. First, we examined whether taste sensitivity varied according to age using behavioral assays. We confirmed that the taste sensitivities to salty and bitter tastes decreased with aging. In other assays, the gustatory nerve responses to salty and sweet tastes increased significantly with aging, while those to bitter taste did not change. Thus, the profile of the gustatory nerve responses was inconsistent with the profile of the behavioral responses. Next, we evaluated the expressions of taste-related molecules in the taste buds. Although no apparent differences in the expressions of representative taste receptors were observed between the two age groups, the mRNA expressions of signaling effectors were slightly, but significantly, decreased in old mice. No significant differences in the turnover rates of taste bud cells were observed between the two age groups. Thus, we did not observe any large decreases in the expressions of taste-related molecules and turnover rates of taste bud cells with aging. Based on these findings, we conclude that changes in taste sensitivity with aging were not caused by aging-related degradation of peripheral taste organs. Meanwhile, the concentrations of several serum components that modify taste responses changed with age. Thus, taste signal-modifying factors such as serum components may have a contributing role in aging-related changes in taste sensitivity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Taste masking of ofloxacin and formation of interpenetrating polymer network beads for sustained release

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2017-08-01

    Full Text Available The objective of this study was to carry out taste masking of ofloxacin (Ofl by ion exchange resins (IERs followed by sustained release of Ofl by forming interpenetrating polymer network (IPN beads. Drug-resin complexes (DRCs with three different ratios of Ofl to IERs (1:1, 1:2, 1:4 were prepared by batch method and investigated for in vivo and in vitro taste masking. DRC of methacrylic acid-divinyl benzene (MD resin and Ofl prepared at a ratio of 1:4 was used to form IPN beads. IPN beads of MD 1:4 were prepared by following the ionic cross-linking method using sodium carboxymethyl xanthan gum (SCMXG and SCMXG-sodium carboxymethyl cellulose (SCMXG-SCMC. IPN beads were characterized with FT-IR and further studied on sustained release of Ofl at different pH. In vivo taste masking carried out by human volunteers showed that MD 1:4 significantly reduced the bitterness of Ofl. Characterization studies such as FT-IR, DSC, P-XRD and taste masking showed that complex formation took place between drug and resin. In vitro study at gastric pH showed complete release of drug from MD 1:4 within 30 min whereas IPN beads took 5 h at gastric pH and 10 h at salivary pH for the complete release of drug. As the crosslinking increased the release kinetics changed into non-Fickian diffusion to zero-order release mechanism. MD 1:4 showed better performance for the taste masking of Ofl and IPNs beads prepared from it were found useful for the sustained release of Ofl at both the pH, indicating a versatile drug delivery system.

  19. Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart

    OpenAIRE

    Foster, Simon R.; Porrello, Enzo R.; Purdue, Brooke; Chan, Hsiu-Wen; Voigt, Anja; Frenzel, Sabine; Hannan, Ross D.; Moritz, Karen M.; Simmons, David G.; Molenaar, Peter; Roura, Eugeni; Boehm, Ulrich; Meyerhof, Wolfgang; Thomas, Walter G.

    2013-01-01

    G protein-coupled receptors (GPCRs) are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosens...

  20. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    Science.gov (United States)

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. © FASEB.

  1. Tasting with Eyes

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakai

    2011-10-01

    Full Text Available Whenever we eat and drink something, we experience the sense of taste. We attribute the sense of taste to gustation without doubt, but it is not true. The olfaction is the most important component of the flavor. On the other hand, the gustation (basic tastes is affected strongly by the olfaction; when participants tasted solutions containing odors without any tastants, they reported there were some tastes. Odors of the foods and beverages show interaction with (potentiate and/or inhibit basic tastes, and determined the flavor of them. Here, some experiments exploring about the role of the vision in the sense of taste are shown: The color of sushi distorted (enhanced or eliminated the perception of fishy, the color of the packages of chocolate distorted the perception of taste, the color of syrup determined the participants' ability of identification of the flavor, and so on. These results show the vision is an important component of the sense of taste. These visual effects on taste are supposed to be mediated by the olfaction. It is because there are many studies showing the vision affects the olfaction, but studies showing the vision affects gustation are very little and inconsistent with each other.

  2. A comparison of English and Japanese taste languages: taste descriptive methodology, codability and the umami taste.

    Science.gov (United States)

    O'Mahony, M; Ishii, R

    1986-05-01

    Everyday taste descriptions for a range of stimuli were obtained from selected groups of American and Japanese subjects, using a variety of stimuli, stimulus presentation procedures and response conditions. In English there was a tendency to use a quadrapartite classification system: 'sweet', 'sour', 'salty' and 'bitter'. The Japanese had a different strategy, adding a fifth label: 'Ajinomoto', referring to the taste of monosodium glutamate. This label was generally replaced by umami--the scientific term--by Japanese who were workers or trained tasters involved with glutamate manufacture. Cultural differences in taste language have consequences for taste psychophysicists who impose a quadrapartite restriction on allowable taste descriptions. Stimulus presentation by filter-paper or aqueous solution elicited the same response trends. Language codability was only an indicator of degree of taste mixedness/singularity if used statistically with samples of sufficient size; it had little value as an indicator for individual subjects.

  3. AP1 transcription factors are required to maintain the peripheral taste system.

    Science.gov (United States)

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-10-27

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.

  4. Developing a new formulation of sodium phenylbutyrate.

    Science.gov (United States)

    Guffon, Nathalie; Kibleur, Yves; Copalu, William; Tissen, C; Breitkreutz, Joerg

    2012-12-01

    Sodium phenylbutyrate (NaPB) is used as a treatment for urea cycle disorders (UCD). However, the available, licensed granule form has an extremely bad taste, which can compromise compliance and metabolic control. A new, taste-masked, coated-granule formulation (Luc 01) under development was characterised for its in vitro taste characteristics, dissolution profiles and bioequivalence compared with the commercial product. Taste, safety and tolerability were also compared in healthy adult volunteers. The in vitro taste profile of NaPB indicated a highly salty and bitter tasting molecule, but Luc 01 released NaPB only after a lag time of ∼10 s followed by a slow release over a few minutes. In contrast, the licensed granules released NaPB immediately. The pharmacokinetic study demonstrated the bioequivalence of a single 5 g dose of the two products in 13 healthy adult volunteers. No statistical difference was seen either for maximal plasma concentration (C(max)) or for area under the plasma concentration-time curve (AUC). CI for C(max) and AUC(0-inf) of NaPB were included in the bioequivalence range of 0.80-1.25. One withdrawal for vomiting and five reports of loss of taste perception (ageusia) were related to the licensed product. Acceptability, bitterness and saltiness assessed immediately after administration indicated a significant preference for Luc 01 (p<0.01), confirming the results of the taste prediction derived from in vitro measurements. In vitro dissolution, in vitro and in vivo taste profiles support the view that the newly developed granules can be swallowed before release of the bitter active substance, thus avoiding stimulation of taste receptors. Moreover, Luc 01 was shown to be bioequivalent to the licensed product. The availability of a taste-masked form should improve compliance which is critical to the efficacy of NaPB treatment in patients with UCD.

  5. Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.

    Science.gov (United States)

    Han, Xue; Xu, Shu-Zhen; Dong, Wen-Rui; Wu, Zhai; Wang, Ren-Hai; Chen, Zhong-Xiu

    2014-12-01

    Sensory evaluation of Aspartame in the presence of sodium carboxymethyl cellulose (CMC-L) and sodium alginate (SA) revealed that only CMC-L showed a suppression effect, while SA did not. By using an artificial taste receptor model, we found that the presence of SA or CMC-L resulted in a decrease in association constants. Further investigation of CMC-L solution revealed that the decrease in water mobility and diffusion also contribute to the suppression effect. In the case of SA, the decreased viscosity and comparatively higher amount of free water facilitated the diffusion of sweetener, which might compensate for the decreased binding constant between Aspartame and receptor. This may suppress the impact of SA on sweetness intensity. The results suggest that exploring the binding affinity of taste molecules with the receptor, along with water mobility and diffusion in hydrocolloidal structures, provide sufficient information for understanding the mechanism behind the effect of macromolecular hydrocolloids on taste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor.

    Science.gov (United States)

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2016-08-23

    It is widely accepted that humans can taste mono- and disaccharides as sweet substances, but they cannot taste longer chain oligo- and polysaccharides. From the evolutionary standpoint, the ability to taste starch or its oligomeric hydrolysis products would be highly adaptive, given their nutritional value. Here, we report that humans can taste glucose oligomer preparations (average degree of polymerization 7 and 14) without any other sensorial cues. The same human subjects could not taste the corresponding glucose polymer preparation (average degree of polymerization 44). When the sweet taste receptor was blocked by lactisole, a known sweet inhibitor, subjects could not detect sweet substances (glucose, maltose, and sucralose), but they could still detect the glucose oligomers. This suggests that glucose oligomer detection is independent of the hT1R2/hT1R3 sweet taste receptor. Human subjects described the taste of glucose oligomers as "starchy," while they describe sugars as "sweet." The dose-response function of glucose oligomer was also found to be indistinguishable from that of glucose on a molar basis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Measuring taste impairment in epidemiologic studies: the Beaver Dam Offspring Study.

    Science.gov (United States)

    Cruickshanks, K J; Schubert, C R; Snyder, D J; Bartoshuk, L M; Huang, G H; Klein, B E K; Klein, R; Nieto, F J; Pankow, J S; Tweed, T S; Krantz, E M; Moy, G S

    2009-07-01

    Taste or gustatory function may play an important role in determining diet and nutritional status and therefore indirectly impact health. Yet there have been few attempts to study the spectrum of taste function and dysfunction in human populations. Epidemiologic studies are needed to understand the impact of taste function and dysfunction on public health, to identify modifiable risk factors, and to develop and test strategies to prevent clinically significant dysfunction. However, measuring taste function in epidemiologic studies is challenging and requires repeatable, efficient methods that can measure change over time. Insights gained from translating laboratory-based methods to a population-based study, the Beaver Dam Offspring Study (BOSS) will be shared. In this study, a generalized labeled magnitude scale (gLMS) method was used to measure taste intensity of filter paper disks saturated with salt, sucrose, citric acid, quinine, or 6-n-propylthiouracil, and a gLMS measure of taste preferences was administered. In addition, a portable, inexpensive camera system to capture digital images of fungiform papillae and a masked grading system to measure the density of fungiform papillae were developed. Adult children of participants in the population-based Epidemiology of Hearing Loss Study in Beaver Dam, Wisconsin, are eligible for this ongoing study. The parents were residents of Beaver Dam and 43-84 years of age in 1987-1988; offspring ranged in age from 21-84 years in 2005-2008. Methods will be described in detail and preliminary results about the distributions of taste function in the BOSS cohort will be presented.

  8. Isolation of chicken taste buds for real-time Ca2+ imaging.

    Science.gov (United States)

    Kudo, Ken-ichi; Kawabata, Fuminori; Nomura, Toumi; Aridome, Ayumi; Nishimura, Shotaro; Tabata, Shoji

    2014-10-01

    We isolated chicken taste buds and used a real-time Ca2+ imaging technique to investigate the functions of the taste cells. With RT-PCR, we found that isolated chicken taste bud-like cell subsets express chicken gustducin messenger RNA. Immunocytochemical techniques revealed that the cell subsets were also immunopositive for chicken gustducin. These results provided strong evidence that the isolated cell subsets contain chicken taste buds. The isolated cell subsets were spindle-shaped and approximately 61-75 μm wide and 88-98 μm long, and these characteristics are similar to those of sectional chicken taste buds. Using Ca2+ imaging, we observed the buds' response to 2 mmol/L quinine hydrochloride (a bitter substance) and their response to a mixture of 25 mmol/L L-glutamic acid monopotassium salt monohydrate and 1 mmol/L inosine 5'-monophosphate disodium salt, umami substances. The present study is the first morphological demonstration of isolated chicken taste buds, and our results indicate that the isolated taste buds were intact and functional approaches for examining the taste senses of the chicken using Ca2+ imaging can be informative. © 2014 Japanese Society of Animal Science.

  9. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III taste bud cells (∼50% respond to 100 µM glutamate, NMDA, or kainic acid (KA with an increase in intracellular Ca(2+. In contrast, Receptor (Type II taste cells rarely (4% responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  10. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  11. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    Science.gov (United States)

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  12. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  13. Analysis of Umami Taste Compounds in a Fermented Corn Sauce by Means of Sensory-Guided Fractionation.

    Science.gov (United States)

    Charve, Joséphine; Manganiello, Sonia; Glabasnia, Arne

    2018-02-28

    Corn sauce, an ingredient obtained from the fermentation of enzymatically hydrolyzed corn starch and used in culinary applications to provide savory taste, was investigated in this study. The links between its sensory properties and taste compounds were assessed using a combination of analytical and sensory approaches. The analyses revealed that glutamic acid, sodium chloride, and acetic acid were the most abundant compounds, but they could not explain entirely the savory taste. The addition of other compounds, found at subthreshold concentrations (alanine, glutamyl peptides, and one Amadori compound), contributed partly to close the sensory gap between the re-engineered sample and the original product. Further chemical breakdown, by a sensory-guided fractionation approach, led to the isolation of two fractions with taste-modulating effects. Analyses by mass spectrometry and nuclear magnetic resonance showed that the fractions contained glutamyl peptides, pyroglutamic acid, glutamic acid, valine, N-formyl-glutamic acid, and N-acetyl-glutamine.

  14. Modulation of taste responsiveness by the satiation hormone peptide YY

    Science.gov (United States)

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  15. Taste disturbance following tonsillectomy--a prospective study.

    Science.gov (United States)

    Heiser, Clemens; Landis, Basile N; Giger, Roland; Cao Van, Helene; Guinand, Nils; Hörmann, Karl; Stuck, Boris A

    2010-10-01

    Persistent taste disturbance is a rare complication after tonsillectomy and mainly documented by case reports or a few retrospective and prospective trials with a limited number of patients. None could clarify frequency, time course, or prognosis of long-lasting dysgeusia after tonsillectomy. The aim of the study was to provide a symptom-based follow-up after tonsillectomy to assess postoperative taste disorders. Prospective clinical trial. From December 2007 to June 2009 adult patients undergoing tonsillectomy were asked to take part in the trial. Two hundred twenty-three patients (119 female, 104 male; mean age, 33 ± 13 years) were included. The day prior to surgery, and 2 weeks and 6 months after tonsillectomy a standardized questionnaire was completed by patients. The questionnaire focused on taste function, taste disorders, pain, foreign body sensation, and bleeding episodes after tonsillectomy. One hundred eighty-eight (2 weeks) and 181 (6 months) patients returned the questionnaires. Thirty-two percent (n = 60) of patients reported taste disorders after tonsillectomy 2 weeks postoperatively and 15 patients (8%) at 6-month follow-up. Metallic and bitter parageusia were most frequently reported. The mean ratings of gustatory function were significantly lower 2 weeks after surgery (P < .001) and reached preoperative values 6 months after surgery. Almost 30% of patients reported postoperative bleeding, 10% long-lasting postoperative pain, and 20% foreign body sensation. Long-lasting taste disturbance (metallic and bitter parageusia) after tonsillectomy is more frequent than previously reported. Long-lasting pain and foreign body sensation seem to be common symptoms. With regard to these results, a thorough preoperative explanation is mandatory.

  16. Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles

    Directory of Open Access Journals (Sweden)

    Huaming Zhong

    2017-08-01

    Full Text Available As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs in reptiles, we identified Tas2r genes in 19 genomes (species corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1 gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles.

  17. Sodium phenylbutyrate coated granules (Pheburane). Defective urea synthesis: a welcome formulation.

    Science.gov (United States)

    2015-02-01

    Compared with Ammonaps granules, Pheburane coated granules mask the unpleasant taste of sodium phenylbutyrate. A more precise dosing device is provided with the coated granules than with the uncoated granules (Ammonaps).

  18. Evolution of Taste Compounds of Dezhou-Braised Chicken During Cooking Evaluated by Chemical Analysis and an Electronic Tongue System.

    Science.gov (United States)

    Liu, Dengyong; Li, Shengjie; Wang, Nan; Deng, Yajun; Sha, Lei; Gai, Shengmei; Liu, Huan; Xu, Xinglian

    2017-05-01

    This paper aimed to study the time course changes in taste compounds of Dezhou-braised chicken during the entire cooking process mainly consisting of deep-frying, high-temperature boiling, and low-temperature braising steps. For this purpose, meat samples at different processing stages were analyzed for 5'-nucleotides and free amino acids, and were also subjected to electronic tongue measurements. Results showed that IMP, Glu, Lys, and sodium chloride were the main compounds contributing to the taste attributes of the final product. IMP and Glu increased in the boiling step and remained unchanged in the following braising steps. Meanwhile, decrease in Lys content and increase in sodium chloride content were observed over time in both boiling and braising steps. Intensities for bitterness, saltiness, and Aftertaste-B obtained from the electronic tongue analysis were correlated with the concentrations of these above chemical compounds. Therefore, the electronic tongue system could be applied to evaluate the taste development of Dezhou-braised chicken during processing. © 2017 Institute of Food Technologists®.

  19. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  20. Acid stimulation (sour taste elicits GABA and serotonin release from mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Several transmitter candidates including serotonin (5-HT, ATP, and norepinephrine (NE have been identified in taste buds. Recently, γ-aminobutyric acid (GABA as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO cells stably co-expressing GABA(B receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+-dependent; removing Ca(2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III cells and not from Receptor (Type II cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.

  1. Genetic taste markers and preferences for vegetables and fruit of female breast care patients.

    Science.gov (United States)

    Drewnowski, A; Henderson, S A; Hann, C S; Berg, W A; Ruffin, M T

    2000-02-01

    To explore links between genetic responsiveness to the bitter taste of 6-n-propylthiouracil (PROP) and self-reported preferences for vegetables and fruit of female breast care patients. PROP tasting was defined by detection thresholds and by perceived bitterness and hedonic ratings for PROP solutions. Nontasters, medium tasters, and supertasters were identified by their PROP thresholds and by the ratio of perceived bitterness of PROP to the perceived saltiness of sodium chloride solutions. Subjects rated preferences for vegetables and fruit using 9-point category scales. A clinical sample of 170 patients with newly diagnosed breast cancer and 156 cancer-free control subjects were recruited from the University of Michigan Breast Care Center. Principal components factor analysis, one-way analyses of variance, and Pearson correlations and chi 2 tests were used to analyze taste and food preference data. Genetic responsiveness to PROP was associated with lower acceptance of cruciferous and selected green and raw vegetables (P cancer prevention that emphasize consumption of cruciferous vegetables and bitter salad greens. Alternatively, PROP-sensitive women may seek to reduce bitter taste by adding fat, sugar, or salt.

  2. 21 CFR 184.1804 - Sodium potassium tartrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium potassium tartrate. 184.1804 Section 184.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... has a cooling saline taste. It is obtained as a byproduct of wine manufacture. (b) The ingredient...

  3. Taste disorders after tonsillectomy: a long-term follow-up.

    Science.gov (United States)

    Heiser, Clemens; Landis, Basile N; Giger, Roland; Cao Van, Helene; Guinand, Nils; Hörmann, Karl; Stuck, Boris A

    2012-06-01

    In a former study, taste disturbances after tonsillectomy seemed to be more frequent than expected. Eight percent of patients reported subjective taste disorders 6 months after tonsillectomy. Fifteen patients from the initial trial, who reported taste disorders after tonsillectomy, were contacted again for this long-term follow-up. A telephone interview using the same questionnaire addressing the current self-estimate of taste function was performed. At 32 ± 10 months following surgery, two (0.9%) patients still reported suffering from taste disturbance. This long-term follow-up study shows that dysgeusia following tonsillectomy occurs in approximately 1% of patients. These data should be considered when patients are informed about complications after tonsillectomy. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  4. Taste and chemical characteristics of low molecular weight fractions from tofuyo - Japanese fermented soybean curd.

    Science.gov (United States)

    Lioe, Hanifah Nuryani; Kinjo, Ayano; Yasuda, Shin; Kuba-Miyara, Megumi; Tachibana, Shinjiro; Yasuda, Masaaki

    2018-06-30

    Tofuyo, a Japanese traditional food, is a fermented soybean curd manufactured in Okinawa region. Due to its original cheese-like flavor, the current study was designed to evaluate the sensory and chemical characteristics of three stepwise ultrafiltration fractions, using 10,000, 3000 and 500 Da membranes and further chromatographic fractions from tofuyo. The results showed that umami, sweet and salty were the characteristic tastes of all fractions, with umami intensity evaluated for the fraction with MW less than 500 Da (F-500) as the most prominent among the three fractions. Subsequent Sephadex G-25 SF fractions and RP-HPLC fractions were subjected to sensory and chemical analyses. The tastiest fraction contained sodium chloride, sugars, organic acids, umami and sweet free amino acids, at concentrations above their thresholds. The abundant presence of umami and sweet free amino acids with certain concentrations of sodium chloride and glucose might provide the typical savory taste of tofuyo. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Association between Dietary Sodium Intake and Cognitive Function in Older Adults.

    Science.gov (United States)

    Rush, T M; Kritz-Silverstein, D; Laughlin, G A; Fung, T T; Barrett-Connor, E; McEvoy, L K

    2017-01-01

    To examine the association of dietary sodium intake with cognitive function in community-dwelling older adults. Cross-sectional study. Southern California community. White men (n=373) and women (n=552), aged 50-96 years from the Rancho Bernardo Study, a longitudinal study of cardiovascular disease risk factors and healthy aging. During the 1992-1996 research clinic visit, a food frequency questionnaire was used to determine daily sodium intake; cognitive function was assessed with Trails Making Test, part B (Trails B), Mini-Mental State Exam (MMSE), and Verbal Fluency Test (VFT); and medical, clinical and demographic information was obtained. Linear regression was used to assess the association between calorie-adjusted sodium intake and cognitive test scores with adjustment for demographic, behavioral and health measures. Logistic regression examined the odds of having cognitive impairment by sodium intake. Lower sodium intake was associated with poorer performance on Trails B (p=0.008) and MMSE (p=0.003) after controlling for age, sex, and education. Associations did not differ by sex, but there was a significant interaction by age for the Trails B: older (≥80 years), but not younger, adults showed worse performance with lower sodium intake (p=0.03). Associations remained significant after additional adjustment for smoking, alcohol intake, exercise, body weight, cardiovascular risk factors, kidney function, diuretic medication use, and diet quality. Lower daily sodium intake was associated with increased odds of cognitive impairment on the MMSE (score cognitive function in older community-dwelling adults. For the maintenance of cognitive health, older adults may be advised to avoid very low sodium diets.

  6. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System.

    Directory of Open Access Journals (Sweden)

    Kirsti Greiff

    Full Text Available The European diet today generally contains too much sodium (Na(+. A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+ was replaced by K(+. The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt, a replacement of Na(+-ions by K(+-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture.

  7. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System.

    Science.gov (United States)

    Greiff, Kirsti; Mathiassen, John Reidar; Misimi, Ekrem; Hersleth, Margrethe; Aursand, Ida G

    2015-01-01

    The European diet today generally contains too much sodium (Na(+)). A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+) was replaced by K(+). The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt), a replacement of Na(+)-ions by K(+)-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture.

  8. Are Reductions in Population Sodium Intake Achievable?

    Directory of Open Access Journals (Sweden)

    Jessica L. Levings

    2014-10-01

    Full Text Available The vast majority of Americans consume too much sodium, primarily from packaged and restaurant foods. The evidence linking sodium intake with direct health outcomes indicates a positive relationship between higher levels of sodium intake and cardiovascular disease risk, consistent with the relationship between sodium intake and blood pressure. Despite communication and educational efforts focused on lowering sodium intake over the last three decades data suggest average US sodium intake has remained remarkably elevated, leading some to argue that current sodium guidelines are unattainable. The IOM in 2010 recommended gradual reductions in the sodium content of packaged and restaurant foods as a primary strategy to reduce US sodium intake, and research since that time suggests gradual, downward shifts in mean population sodium intake are achievable and can move the population toward current sodium intake guidelines. The current paper reviews recent evidence indicating: (1 significant reductions in mean population sodium intake can be achieved with gradual sodium reduction in the food supply, (2 gradual sodium reduction in certain cases can be achieved without a noticeable change in taste or consumption of specific products, and (3 lowering mean population sodium intake can move us toward meeting the current individual guidelines for sodium intake.

  9. Neural correlates of taste perception in congenital olfactory impairment

    DEFF Research Database (Denmark)

    Gagnon, Léa; Vestergaard, Martin; Madsen, Kristoffer

    2014-01-01

    taste identification accuracy and its neural correlates using functional magnetic resonance imaging (fMRI) in 12 congenitally olfactory impaired individuals and 8 normosmic controls. Results showed that taste identification was worse in congenitally olfactory impaired compared to control subjects. The fMRI...

  10. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  11. Taste sensing FET (TSFET)

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K.; Yasuda, R.; Ezaki, S. [Kyushu University, Fukuoka (Japan); Fujiyoshi, T. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1997-12-20

    Taste can be quantified using a multichannel taste sensor with lipid/polymer membranes. Its sensitivity and stability are superior to those of humans. A present study is concerned with the first step of miniaturization and integration of the taste sensor with lipid/polymer membranes using FET. As a result, it was found that gate-source voltage of the taste sensing FET showed the same behaviors as the conventional taste sensor utilizing the membrane-potential change due to five kinds of taste substances. Discrimination of foodstuffs was very easy. A thin lipid membrane formed using LB technique was also tried. These results will open doors to fabrication of a miniaturized, integrated taste sensing system. 12 refs., 6 figs.

  12. Effect of umami taste on pleasantness of low-salt soups during repeated testing.

    Science.gov (United States)

    Roininen, K; Lähteenmäki, L; Tuorila, H

    1996-09-01

    In the present study the effects of the umami substances, monosodium glutamate (0.2%) and 5'-ribonucleotides (0.05%), on the acceptance of low-salt soups in two groups of subjects, one with low-salt (n = 21) and the other with high-salt (n = 23) preferences were assessed. The groups were presented with soups containing 0.3% sodium chloride (low-salt group) and 0.5% sodium chloride (high-salt group). The subjects three times consumed leek-potato or minestrone soup with umami and three times the other soup without umami during six sessions over 5 weeks (sessions 2-7). In addition they tasted these and two other soups (lentil and mushroom soup) during sessions 1 and 8, during which they evaluated the pleasantness, taste intensity, and ideal saltiness of the soups with and without added umami. These ratings were higher when soups contained umami in both the low- and high-salt groups, and they remained higher regardless of which of the soups served for lunch contained umami. The low- and high-salt groups did not differ in pleasantness ratings, although the former rated the taste intensity of their soups higher and ideal saltiness closer to the ideal than did the latter. The pleasantness ratings of soups without umami were significantly lower at the end of the study than at the beginning, whereas those of soups with umami remained unchanged. These data suggest that the pleasantness of reduced-salt foods could be increased by addition of appropriate flavors.

  13. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  14. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  15. Optical fiber taste sensors using potential sensitive dye coatings. Makuden'i kanjusei shikisomaku wo mochiita hikari fiber mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, S.; Yamaguchi, A. (Toyama National College of Maritime Technology, Toyama (Japan))

    1992-12-20

    The present paper proposes a new taste recognition system using optical response patterns from multi-channel optical fiber sensors having potential sensitive dye coatings. It was found that the sensors give large changes in optical absorption spectra of the dyes when they are immersed in various taste solutions. Consequently, it was shown that the sensors can be used as a taste sensor. Six dyes, which give large changes in dye absorption, were selected from twenty dyes and used for six-channel optical fiber taste sensors array. The absorption spectra change data were processed by multiple discriminant analysis and neural networks using back-propagation algorithm. From the analytical results, it was demonstrated that salty (NaCl), bitter (quinidine), sweet (sucrose), sour (HCl), and umami (sodium glutamate) substances can be recognized from each other by using the optical taste sensor system. 11 refs., 8 figs., 2 tabs.

  16. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  17. Caffeine taste signaling in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A Apostolopoulou

    2016-08-01

    Full Text Available The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal and ventral organ. However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative coreceptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s. This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviours.

  18. Taste disorders: A review

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ambaldhage

    2014-01-01

    Full Text Available For maintenance of the health of an individual, taste sensation is very important. It is an important sensation that serves to assess the nutritious content of food, support oral intake, and prevent ingestion of potentially toxic substances. Disturbances in the perception of taste can lead to loss of appetite, causing malnutrition and thus distressing both the physical and psychological well-being of the patient. Oral physicians are often the first clinicians who hear complaints about alteration in taste from the patients. In spite of the effect of taste changes on health, literature on the diagnosis, pathogenesis, and precise treatment of taste disorders are less. Taste changes may lead patients to seek inappropriate dental treatments. Proper diagnosis of the etiology is the foremost step in the treatment of taste disorders. Thus, it is important that dental clinicians to be familiar with the various causes and proper management of taste changes. In this article, we have reviewed related articles focusing on taste disorders and their management, to provide a quick sketch for the clinicians. A detailed search was performed to identify the systematic reviews and research articles on taste disorders, using PUBMED and Cochrane. All the authors independently extracted data for analysis and review. Ultimately, 26 articles underwent a full text review. In conclusion, the research to date certainly offers us valid management strategies for taste disorders. Meanwhile, practical strategies with the highest success are needed for further intervention.

  19. Knocking out P2X receptors reduces transmitter secretion in taste buds

    Science.gov (United States)

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  20. Knocking out P2X receptors reduces transmitter secretion in taste buds.

    Science.gov (United States)

    Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D

    2011-09-21

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.

  1. Verbal priming and taste sensitivity make moral transgressions gross.

    Science.gov (United States)

    Herz, Rachel S

    2014-02-01

    The aims of the present study were to assess whether: (a) visceral and moral disgust share a common oral origin (taste); (b) moral transgressions that are also viscerally involving are evaluated accordingly as a function of individual differences in taste sensitivity; (c) verbal priming interacts with taste sensitivity to alter how disgust is experienced in moral transgressions; and (d) whether gender moderates these effects. Standard tests of disgust sensitivity, a questionnaire developed for this research assessing different types of moral transgressions (nonvisceral, implied-visceral, visceral) with the terms "angry" and "grossed-out," and a taste sensitivity test of 6-n-propylthiouracil (PROP) were administered to 102 participants. Results confirmed past findings that the more sensitive to PROP a participant was the more disgusted they were by visceral, but not moral, disgust elicitors. Importantly, the findings newly revealed that taste sensitivity had no bearing on evaluations of moral transgressions, regardless of their visceral nature, when "angry" was the emotion primed. However, when "grossed-out" was primed for evaluating moral violations, the more intense PROP tasted to a participant the more "grossed-out" they were by all transgressions. Women were generally more disgust sensitive and morally condemning than men, but disgust test, transgression type, and priming scale modulated these effects. The present findings support the proposition that moral and visceral disgust do not share a common oral origin, but show that linguistic priming can transform a moral transgression into a viscerally repulsive event and that susceptibility to this priming varies as a function of an individual's sensitivity to the origins of visceral disgust-bitter taste.

  2. Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking

    Science.gov (United States)

    Hayes, John E.; Sullivan, Bridget S.; Duffy, Valerie B.

    2010-01-01

    Our sodium-rich food supply compels investigation of how variation in salt sensation influences liking and intake of high-sodium foods. While supertasters (those with heightened propylthiouracil (PROP) bitterness or taste papillae number) report greater saltiness from concentrated salt solutions, the non-taster/supertaster effect on sodium intake is unclear. We assessed taster effects on salt sensation, liking and intake among 87 healthy adults (45 men). PROP bitterness showed stronger associations with perceived saltiness in foods than did papillae number. Supertasters reported: greater saltiness in chips/pretzels and broth at levels comparable to regular-sodium products; greater sensory and/or liking changes to growing sodium concentration in cheeses (where sodium ions mask bitterness) and broths; and less frequently salting foods. PROP effects were attenuated in women. Compared with men, women reported more saltiness from high-sodium foods and greater liking for broth at salt levels comparable to regular-sodium products. Across men and women, Structural Equation Models showed PROP and papillae number independently explained variability in consuming high-sodium foods by impacting salt sensation and/or liking. PROP supertasters reported greater changes in sensation when more salt was added to broth, which then associated with greater changes in broth liking, and finally with more frequent high-sodium food intake. Greater papillae number was associated with less frequent high-sodium food intake via reduced liking for high-fat/high-sodium foods. In summary, variation in sensations from salt was associated with differences in hedonic responses to high-sodium foods and thus sodium intake. Despite adding less salt, PROP supertasters consumed more sodium through food, as salt was more important to preference, both for its salty taste and masking of bitterness. PMID:20380843

  3. Interactions between Flavor and Taste: Using Dashi Soup as a Taste Stimulus

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakai

    2011-10-01

    Full Text Available There are many researches showing interactions between olfaction and taste. Many of them supported that the interactions are not innate, but are learned through our daily eating experiences. Stevenson (2009 called this phenomenon as “learned synesthesia”. The authors also showed the interactions between flavor and taste are learned and processed by higher cognitive systems in rats and humans (Sakai et al., 2001; Sakai and Imada, 2003. Here the interactions between umami taste and dashi flavors are developed by the daily eating experience of Japanese traditional cuisine. Twenty flavors (such as sea weed, bonito, onion, garlic, ginger etc. by courtesy of YAMAHO CO. Ltd. were used as flavor stimuli. Taste stimuli are monosodium glutamate (umami substance, MSG, miso soup, and Katsuo Dashi (bonito soup stock. Participants tasted these stimuli, 12∼20 stimuli in a day, and evaluated the strength of umami taste, the palatability, congruity between taste and flavor with 100 mm visual analogue scales. The results of evaluations analyzed with the participants' daily eating experience showed the interactions between taste and flavor are developed by their own daily intake of traditional Japanese cuisine, especially dashi soup.

  4. Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Agnes Kim

    Full Text Available While our understanding of the molecular and cellular aspects of taste reception and signaling continues to improve, the aberrations in these processes that lead to taste dysfunction remain largely unexplored. Abnormalities in taste can develop in a variety of diseases, including infections and autoimmune disorders. In this study, we used a mouse model of autoimmune disease to investigate the underlying mechanisms of taste disorders. MRL/MpJ-Fas(lpr/J (MRL/lpr mice develop a systemic autoimmunity with phenotypic similarities to human systemic lupus erythematosus and Sjögren's syndrome. Our results show that the taste tissues of MRL/lpr mice exhibit characteristics of inflammation, including infiltration of T lymphocytes and elevated levels of some inflammatory cytokines. Histological studies reveal that the taste buds of MRL/lpr mice are smaller than those of wild-type congenic control (MRL/+/+ mice. 5-Bromo-2'-deoxyuridine (BrdU pulse-chase experiments show that fewer BrdU-labeled cells enter the taste buds of MRL/lpr mice, suggesting an inhibition of taste cell renewal. Real-time RT-PCR analyses show that mRNA levels of several type II taste cell markers are lower in MRL/lpr mice. Immunohistochemical analyses confirm a significant reduction in the number of gustducin-positive taste receptor cells in the taste buds of MRL/lpr mice. Furthermore, MRL/lpr mice exhibit reduced gustatory nerve responses to the bitter compound quinine and the sweet compound saccharin and reduced behavioral responses to bitter, sweet, and umami taste substances compared with controls. In contrast, their responses to salty and sour compounds are comparable to those of control mice in both nerve recording and behavioral experiments. Together, our results suggest that type II taste receptor cells, which are essential for bitter, sweet, and umami taste reception and signaling, are selectively affected in MRL/lpr mice, a model for autoimmune disease with chronic

  5. Discrete innervation of murine taste buds by peripheral taste neurons.

    Science.gov (United States)

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  6. Salt, sodium chloride or sodium? Content and relationship with chemical, instrumental and sensory attributes in cooked meat products.

    Science.gov (United States)

    Kameník, Josef; Saláková, Alena; Vyskočilová, Věra; Pechová, Alena; Haruštiaková, Danka

    2017-09-01

    The aim of this study was to determine the salt content in selected cooked meat products by the methods of determining the sodium content and the content of chlorides. The resulting data was compared with other chemical, instrumental and sensory parameters of the analysed samples. A total of 133 samples of 5 meat products were tested. The sodium content ranged from 558.0 to 1308.0mgNa/100g. Salt level determined by the two methods strongly correlated and did not differ in any meat product. Intensity of salty taste of the product was independent on its salt content. The salt (sodium) content may be reduced without a negative impact on sensory or instrumental properties of meat products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    Science.gov (United States)

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  8. Fingerprinting taste buds: intermediate filaments and their implication for taste bud formation.

    OpenAIRE

    Witt, M; Reutter, K; Ganchrow, D; Ganchrow, J R

    2000-01-01

    Intermediate filaments in taste organs of terrestrial (human and chick) as well as aquatic (Xenopus laevis) species were detected using immunohistochemistry and electron microscopy. During development, the potential importance of the interface between the taste bud primordium and non-gustatory adjacent tissues is evidenced by the distinct immunoreactivity of a subpopulation of taste bud cells for cytokeratins and vimentin. In human foetuses, the selective molecular marker for taste bud primor...

  9. The Miracle Fruit: An Undergraduate Laboratory Exercise in Taste Sensation and Perception.

    Science.gov (United States)

    Lipatova, Olga; Campolattaro, Matthew M

    2016-01-01

    "Miracle Fruit" is a taste-altering berry that causes sour foods to be perceived as sweet. The present paper describes a laboratory exercise that uses Miracle Fruit to educate students about the sensation and perception of taste. This laboratory exercise reinforces course material pertaining to the function of sweet taste receptors covered in a Sensation and Perception course at Christopher Newport University. Here we provide a step-by-step explanation of the methodology, and an example of data collected and analyzed by one group of students who participated in this laboratory exercise. The origins of the Miracle Fruit, the structure and the physiological function of miraculin (the glycoprotein responsible for the taste-modifying effect found in the pulp of the Miracle Fruit) were discussed before the laboratory exercise. Students then sampled foods known to target different types of tastes (i.e., sweet, sour, bitter and salty) and rated their perception of taste intensity for each food item. Next, students each consumed Miracle Fruit berries, then resampled each original food item and again recorded their perception of taste intensity ratings for these foods. The data confirmed that the sour food items were perceived sweeter after the Miracle Fruit was consumed. The students also completed a written assignment to assess what they learned about the origins, structure, and physiological function of Miracle Fruit. This hands-on laboratory exercise received positive feedback from students. The exercise can be used by other neuroscience educators to teach concepts related to the sensory system of taste.

  10. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  11. Further evidence for conditioned taste aversion induced by forced swimming.

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2005-01-31

    A series of experiments with rats reported that aversion to a taste solution can be established by forced swimming in a water pool. Experiment 1 demonstrated that correlation of taste and swimming is a critical factor for this phenomenon, indicating associative (i.e., Pavlovian) nature of this learning. Experiment 2 showed that this learning obeys the Pavlovian law of strength, by displaying a positive relationship between the duration of water immersion in training and the taste aversion observed in subsequent testing. Experiment 3 revealed that swimming rather than being wet is the critical agent, because a water shower did not endow rats with taste aversion. Experiment 4 found that taste aversion was a positive function of water level of the pools in training (0, 12 or 32 cm). These results, taken together, suggest that energy expenditure caused by physical exercise might be involved in the development of taste aversion.

  12. Use of calcium caseinate in association with lecithin for masking the bitterness of acetaminophen--comparative study with sodium caseinate.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-11-18

    Owing to a variety of structural and functional properties, milk proteins are steadily studied for food and pharmaceutical applications. In the present study, calcium caseinate in association with lecithin was firstly investigated in order to encapsulate the acetaminophen through spray-drying for taste-masking purpose for pediatric medicines. A 2(4)-full factorial design revealed that the spray flow, the calcium caseinate amount and the lecithin amount had significant effects on the release of drug during the first 2 min. Indeed, increasing the spray flow and/or the calcium caseinate amount led to increase the released amount, whereas increasing the lecithin amount decreased the released amount. The "interaction" between the calcium caseinate amount and the lecithin amount was also shown to be statistically significant. The second objective was to compare the efficiency of two caseinate-based formulations, i.e. sodium caseinate and calcium caseinate, on the taste-masking effect. The characteristics of spray-dried powders determined by SEM and DSC were shown to depend on the caseinate/lecithin proportion rather than the type of caseinate. Interestingly, calcium caseinate-based formulations were found to lower the released amount of drug during the early time to a higher extent than sodium caseinate-based formulations, which indicates better taste-masking efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.

    Science.gov (United States)

    Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2011-01-07

    Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. What is the role of metabolic hormones in taste buds of the tongue.

    Science.gov (United States)

    Cai, Huan; Maudsley, Stuart; Martin, Bronwen

    2014-01-01

    Gustation is one of the important chemical senses that guides the organism to identify nutrition while avoiding toxic chemicals. An increasing number of metabolic hormones and/or hormone receptors have been identified in the taste buds of the tongue and are involved in modulating taste perception. The gustatory system constitutes an additional endocrine regulatory locus that affects food intake, and in turn whole-body energy homeostasis. Here we provide an overview of the main metabolic hormones known to be present in the taste buds of the tongue; discuss their potential functional roles in taste perception and energy homeostasis and how their functional integrity is altered in the metabolic imbalance status (obesity and diabetes) and aging process. Better understanding of the functional roles of metabolic hormones in flavor perception as well as the link between taste perception and peripheral metabolism may be vital for developing strategies to promote healthier eating and prevent obesity or lifestyle-related disorders. © 2014 S. Karger AG, Basel.

  15. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    International Nuclear Information System (INIS)

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds

  16. "Turn Up the Taste": Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch.

    Science.gov (United States)

    Wang, Qian Janice; Wang, Sheila; Spence, Charles

    2016-05-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants' loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants' choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants' valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch-taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. © The Author 2016. Published by Oxford University Press.

  17. Receptosecretory nature of type III cells in the taste bud.

    Science.gov (United States)

    Yoshie, Sumio

    2009-01-01

    Type III cells in taste buds form chemical synapses with intragemmal afferent nerve fibers and are characterized by the presence of membrane-bound vesicles in the cytoplasm. Although the vesicles differ in shape and size among species, they are primarily categorized into small clear (40 nm in diameter) and large dense-cored (90-200 nm) types. As such vesicles tend to be closely juxtaposed to the synaptic membrane of the cells, it is reasonable to consider that the vesicles include transmitter(s) towards the gustatory nerve. In the guinea-pig taste bud, stimulation with various taste substances (sucrose, sodium chloride, quinine hydrochloride, or monosodium L-glutamate) causes ultrastructural alterations of the type III cells. At the synapse, the presynaptic plasma membrane often displays invaginations of 90 nm in a mean diameter towards the cytoplasm, which indicates the dense-cored vesicles opening into the synaptic cleft by means of exocytosis. The vesicles are also exocytosed at the non-synaptic region into the intercellular space. These findings strongly suggest that the transmitters presumably contained in the vesicles are released to conduct the excitement of the type III cells to the nerves and also to exert their paracrine effects upon the surroundings, such as the Ebner's salivary gland, acting as local hormones.

  18. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    Science.gov (United States)

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Science.gov (United States)

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  20. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  1. Intake and hedonics of calcium and sodium during pregnancy and lactation in the rat.

    Science.gov (United States)

    Leshem, M; Levin, T; Schulkin, J

    2002-03-01

    These experiments sought to distinguish whether increased calcium intake during pregnancy and lactation in the rat is due to arousal of a specific calcium appetite, with altered taste hedonics, as occurs with sodium depletion, to reduced taste sensitivity, or to the hyperdipsia of reproduction. We find that, during pregnancy and lactation, CaCl(2) intake is not increased more (in fact less) than intakes of control tastants, MgCl(2) and quinine HCl, and multiparous dams do not have a greater calcium intake than primaparous dams. Changes in taste reactivity to CaCl(2) and to NaCl do not correlate with changes in intake of these minerals during pregnancy or lactation, suggesting that alterations in hedonics or sensitivity do not explain the increased intake of these minerals. Taken together with the increased intake of all the tastants, it may be that the increased intakes of calcium and sodium during reproduction are not due to respective specific appetites or to a general mineral appetite but rather to the reproduction-increased ingestion that may meet all the dam's increased mineral and nutrient requirements. Differences in the degree of increased intakes of tastes may be due to specific alterations in their transduction during reproduction.

  2. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Masubuchi

    Full Text Available BACKGROUND: Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS: In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6. The α subunits of Gs (Gαs and G14 (Gα14 but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS: 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

  3. Polycose taste pre-exposure fails to influence behavioral and neural indices of taste novelty.

    Science.gov (United States)

    Barot, Sabiha K; Bernstein, Ilene L

    2005-12-01

    Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular cortex, but also failed to induce stronger taste aversion learning than familiar Polycose. Novel NaCl, on the other hand, showed patterns of FLI activation and aversion learning similar to that of novel sweet tastes. Possible reasons for the resistance of Polycose to typical pre-exposure effects are discussed. Copyright (c) 2006 APA, all rights reserved.

  4. Changes in taste bud volume during taste disturbance.

    Science.gov (United States)

    Srur, Ehab; Pau, Hans Wilhelm; Just, Tino

    2011-08-01

    On-line mapping and serial volume measurements of taste buds with confocal laser scanning microscopy provide information on the peripheral gustatory organ over time. We report the volumetric measurements of four selected fungiform papillae over 8 weeks in a 62-year-old man with taste disturbance, which was more apparent on the right than on the left side. In the two papillae on the right side, no taste buds were detected within the fungiform papillae in the sixth and eighth week. During sixth and eighth week, there was no response to the highest presented stimuli in electrogustometry (1 mA) on the right-sided tongue tip nor at the tongue edge. The morphology (shape, diameter) of the fungiform papillae on both sides remained unchanged. Comparison of the time course of the volume changes revealed differences corresponding to gustatory sensitivity. These findings suggest that the time course of volume changes indicated taste disturbance in our patient, rather than morphological changes in the fungiform papillae. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Expression of sulfonylurea receptors in rat taste buds.

    Science.gov (United States)

    Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan

    2011-07-01

    To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Polycose Taste Pre-Exposure Fails to Influence Behavioral and Neural Indices of Taste Novelty

    OpenAIRE

    Barot, Sabiha K.; Bernstein, Ilene L.

    2005-01-01

    Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose®) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular ...

  7. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2017-08-01

    Full Text Available Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  8. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  9. Response properties of the pharyngeal branch of the glossopharyngeal nerve for umami taste in mice and rats.

    Science.gov (United States)

    Kitagawa, Junichi; Takahashi, Yoshihiro; Matsumoto, Shigeji; Shingai, Tomio

    2007-04-24

    Many studies have reported the mechanism underlying umami taste. However, there are no investigations of responses to umami stimuli taste originating from chemoreceptors in the pharyngeal region. The pharyngeal branch of the glossopharyngeal nerve (GPN-ph) innervating the pharynx has unique responses to taste stimulation that differs from responses of the chorda tympani nerve and lingual branch of the glossopharyngeal nerve. Water evokes robust response, but NaCl solutions at physiological concentrations do not elicit responses. The present study was designed to examine umami taste (chemosensory) responses in the GPN-ph. Response characteristics to umami taste were compared between mice and rats. In mice, stimulation with compounds eliciting umami taste (0.1M monosodium L-glutamate (MSG), 0.01M inosine monophosphate (IMP) and the mixture of 0.1M MSG+0.01M IMP) evoked higher responses than application of distilled water (DW). However, synergistic response of a mixture of 0.1M MSG+0.01M IMP was not observed. In rats, there is no significant difference between the responses to umami taste (0.1M MSG, 0.01M IMP and the mixture of 0.1M MSG+0.01M IMP) and DW. Monopotassium glutamate (MPG) was used in rats to examine the contribution of the sodium component of MSG on the response. Stimulation with 0.1M MPG evoked a higher response when compared with responses to DW. The present results suggest that umami taste compounds are effective stimuli of the chemoreceptors in the pharynx of both mice and rats.

  10. Taste buds: cells, signals and synapses.

    Science.gov (United States)

    Roper, Stephen D; Chaudhari, Nirupa

    2017-08-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.

  11. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  12. TRPs in Taste and Chemesthesis

    Science.gov (United States)

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  13. Saliva and gastrointestinal functions of mastication, taste and textural perception, swallowing and initial digestion

    DEFF Research Database (Denmark)

    Pedersen, Anne Marie Lynge; Sørensen, Christiane E; Proctor, Gordon

    2018-01-01

    pattern. This review paper provides insight into the mechanisms by which saliva acts in relation to taste, mastication, bolus formation, enzymatic digestion, and swallowing. Also the protective functions of saliva including maintenance of dental and mucosal integrity will be discussed as they indirectly......Saliva exerts multiple functions in relation to the initial digestive processes taking place in the upper parts of the gastrointestinal tract. Ingestion of food and beverages, in turn, is a strong stimulus for secretion of saliva with a differential composition depending on the neuronal stimulation...... influence the digestive process. The final part of this paper focuses on the implications of xerostomia and salivary gland dysfunction on gastrointestinal functions. This article is protected by copyright. All rights reserved....

  14. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    Science.gov (United States)

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  15. The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.

    Science.gov (United States)

    Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji

    2010-04-01

    The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.

  16. Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices.

    Science.gov (United States)

    Nowak, Kristen L; Fried, Linda; Jovanovich, Anna; Ix, Joachim; Yaffe, Kristine; You, Zhiying; Chonchol, Michel

    2018-01-01

    Dietary sodium may influence cognitive function through its effects on cerebrovascular function and cerebral blood flow. The aim of this study was to evaluate the association of dietary sodium intake with cognitive decline in community-dwelling older adults. We also evaluated the associations of dietary potassium and sodium:potassium intake with cognitive decline, and associations of these nutrients with micro- and macro-structural brain magnetic resonance imaging (MRI) indices. In all, 1,194 participants in the Health Aging and Body Composition study with measurements of dietary sodium intake (food frequency questionnaire [FFQ]) and change in the modified Mini Mental State Exam (3MS) were included. The age of participants was 74 ± 3 years with a mean dietary sodium intake of 2,677 ± 1,060 mg/day. During follow-up (6.9 ± 0.1 years), 340 (28%) had a clinically significant decline in 3MS score (≥1.5 SD of mean decline). After adjustment, dietary sodium intake was not associated with odds of cognitive decline (OR 0.96, 95% CI 0.50-1.84 per doubling of sodium). Similarly, potassium was not associated with cognitive decline; however, higher sodium:potassium intake was associated with increased odds of cognitive decline (OR 2.02 [95% CI 1.01-4.03] per unit increase). Neither sodium or potassium alone nor sodium:potassium were associated with micro- or macro-structural brain MRI indices. These results are limited by the use of FFQ. In community-dwelling older adults, higher sodium:potassium, but not sodium or potassium intake alone, was associated with decline in cognitive function, with no associations observed with micro- and macro-structural brain MRI indices. These findings do not support reduction dietary sodium/increased potassium intake to prevent cognitive decline with aging. © 2018 S. Karger AG, Basel.

  17. Dietary sodium in chronic kidney disease: a comprehensive approach.

    Science.gov (United States)

    Wright, Julie A; Cavanaugh, Kerri L

    2010-01-01

    Despite existing guidelines, dietary sodium intake among people worldwide often exceeds recommended limits. Research evidence is growing in both animal and human studies showing indirect and direct adverse consequences of high dietary sodium on the kidney. In patients with kidney disease, dietary sodium may have important effects on proteinuria, efficacy of antiproteinuric pharmacologic therapy, hypertension control, maintaining an optimal volume status, and immunosuppressant therapy. Dietary sodium intake is an important consideration in patients with all stages of chronic kidney disease, including those receiving dialysis therapy or those who have received a kidney transplant. We review in detail the dietary sodium recommendations suggested by various organizations for patients with kidney disease. Potential barriers to successfully translating current sodium intake guidelines into practice include poor knowledge about the sodium content of food among both patients and providers, complex labeling information, patient preferences related to taste, and limited support for modifications in public policy. Finally, we offer existing and potential solutions that may assist providers in educating and empowering patients to effectively manage their dietary sodium intake.

  18. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    Science.gov (United States)

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Learning through the taste system

    Directory of Open Access Journals (Sweden)

    Thomas R. Scott

    2011-11-01

    Full Text Available Taste is the final arbiter of which chemicals from the environment will be admitted to the body. The action of swallowing a substance leads to a physiological consequence of which the taste system should be informed. Accordingly, taste neurons in the central nervous system are closely allied with those that receive input from the viscera so as to monitor the impact of a recently ingested substance. There is behavioral, anatomical, electrophysiological, gene expression, and neurochemical evidence that the consequences of ingestion influence subsequent food selection through development of either a conditioned taste aversion (if illness ensues or a conditioned taste preference (if satiety. This ongoing communication between taste and the viscera permits the animal to tailor its taste system to its individual needs over a lifetime.

  20. Pragmatically on the sense of taste - a short treatise based on culinary art.

    Science.gov (United States)

    Waluga, Marek; Jonderko, Krzysztof; Buschhaus, Magdalena

    2013-01-01

    The sense of taste is essential for proper functioning of the organism. The authors describe, in an accessible way, the complex mechanisms of taste perception. The structure of particular taste receptors, variants of their activation, as well as physical and chemical factors modifying the sensation of taste, are presented. Exquisite culinary examples are given in order to facilitate the reader with the understanding of why, at the level of the cerebral cortex, a virtually infinite number of combinations of taste sensations can be perceived. The discourse is spiced up by reflections of the eminent philosopher of taste, J.A. Brillat-Savarin, who convinces us that food intake should be not only a physiological act, but also a refined pleasure.

  1. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    Science.gov (United States)

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing.

    Science.gov (United States)

    Sternini, Catia; Anselmi, Laura; Rozengurt, Enrique

    2008-02-01

    This review discusses the role of enteroendocrine cells of the gastrointestinal tract as chemoreceptors that sense lumen contents and induce changes in gastrointestinal function and food intake through the release of signaling substances acting on a variety of targets locally or at a distance. Recent evidence supports the concept that chemosensing in the gut involves G protein-coupled receptors and effectors that are known to mediate gustatory signals in the oral cavity. These include sweet-taste and bitter-taste receptors, and their associated G proteins, which are expressed in the gastrointestinal mucosa, including selected populations of enteroendocrine cells. In addition, taste receptor agonists elicit a secretory response in enteroendocrine cells in vitro and in animals in vivo, and induce neuronal activation. Taste-signaling molecules expressed in the gastrointestinal mucosa might participate in the functional detection of nutrients and harmful substances in the lumen and prepare the gut to absorb them or initiate a protective response. They might also participate in the control of food intake through the activation of gut-brain neural pathways. These findings provide a new dimension to unraveling the regulatory circuits initiated by luminal contents of the gastrointestinal tract.

  3. Similar taste-nutrient relationships in commonly consumed Dutch and Malaysian foods.

    Science.gov (United States)

    Teo, Pey Sze; van Langeveld, Astrid W B; Pol, Korrie; Siebelink, Els; de Graaf, Cees; Yan, See Wan; Mars, Monica

    2018-06-01

    Three recent studies showed that taste intensity signals nutrient content. However, current data reflects only the food patterns in Western societies. No study has yet been performed in Asian culture. The Malaysian cuisine represents a mixture of Malay, Chinese and Indian foods. This study aimed to investigate the associations between taste intensity and nutrient content in commonly consumed Dutch (NL) and Malaysian (MY) foods. Perceived intensities of sweetness, sourness, bitterness, umami, saltiness and fat sensation were assessed for 469 Dutch and 423 Malaysian commonly consumed foods representing about 83% and 88% of an individual's average daily energy intake in each respective country. We used a trained Dutch (n = 15) and Malaysian panel (n = 20) with quantitative sensory Spectrum™ 100-point rating scales and reference solutions, R1 (13-point), R2 (33-point) and R3 (67-point). Dutch and Malaysian foods had relatively low mean sourness and bitterness (taste intensity of Malaysian foods (15-point) was higher than that of Dutch foods (8-point). Positive associations were found between sweetness and mono- and disaccharides (R 2  = 0.67 (NL), 0.38 (MY)), between umami and protein (R 2  = 0.29 (NL), 0.26 (MY)), between saltiness and sodium (R 2  = 0.48 (NL), 0.27 (MY)), and between fat sensation and fat content (R 2  = 0.56 (NL), 0.17(MY)) in Dutch and Malaysian foods (all, p < 0.001). The associations between taste intensity and nutrient content are not different between different countries, except for fat sensation-fat content. The two dimensional basic taste-nutrient space, representing the variance and associations between tastes and nutrients, is similar between Dutch and Malaysian commonly consumed foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells

    Directory of Open Access Journals (Sweden)

    Brand Joseph

    2010-06-01

    Full Text Available Abstract Background The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Results Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF-α, interferon (IFN-γ, and interleukin (IL-6, in mouse circumvallate and foliate papillae. TNF-α and IFN-γ immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds

  5. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    Science.gov (United States)

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor

  6. Taste and odor recognition memory: the emotional flavor of life.

    Science.gov (United States)

    Miranda, Maria Isabel

    2012-01-01

    In recent years, our knowledge of the neurobiology of taste and smell has greatly increased; by using several learning models, we now have a better understanding of the behavioral and neurochemical basis of memory recognition. Studies have provided new evidence of some processes that depend on prior experience with the specific combination of sensory stimuli. This review contains recent research related to taste and odor recognition memory, and the goal is to highlight the role of two prominent brain structures, the insular cortex and the amygdala. These structures have an important function during learning and memory and have been associated with the differences in learning induced by the diverse degrees of emotion during taste/odor memory formation, either aversive or appetitive or when taste and odor are combined and/or potentiated.Therefore, this review includes information about certain neurochemical transmitters and their interactions during appetitive or aversive taste memory formation,taste-potentiated odor aversion memory, and conditioned odor aversion, which might be able to maintain the complex processes necessary for flavor recognition memory.

  7. The insular taste cortex contributes to odor quality coding

    Directory of Open Access Journals (Sweden)

    Maria G Veldhuizen

    2010-07-01

    Full Text Available Despite distinct peripheral and central pathways, stimulation of both the olfactory and the gustatory systems may give rise to the sensation of sweetness. Whether there is a common central mechanism producing sweet quality sensations or two discrete mechanisms associated independently with gustatory and olfactory stimuli is currently unknown. Here we used fMRI to determine whether odor sweetness is represented in the piriform olfactory cortex, which is thought to code odor quality, or in the insular taste cortex, which is thought to code taste quality. Fifteen participants sampled two concentrations of a pure sweet taste (sucrose, two sweet food odors (chocolate and strawberry, and two sweet floral odors (lilac and rose. Replicating prior work we found that olfactory stimulation activated the piriform, orbitofrontal and insular cortices. Of these regions, only the insula also responded to sweet taste. More importantly, the magnitude of the response to the food odors, but not to the non-food odors, in this region of insula was positively correlated with odor sweetness rating. These findings demonstrate that insular taste cortex contributes to odor quality coding by representing the taste-like aspects of food odors. Since the effect was specific to the food odors, and only food odors are experienced with taste, we suggest this common central mechanism develops as a function of experiencing flavors.

  8. Music Taste Groups and Problem Behavior.

    Science.gov (United States)

    Mulder, Juul; Bogt, Tom Ter; Raaijmakers, Quinten; Vollebergh, Wilma

    2007-04-01

    Internalizing and externalizing problems differ by musical tastes. A high school-based sample of 4159 adolescents, representative of Dutch youth aged 12 to 16, reported on their personal and social characteristics, music preferences and social-psychological functioning, measured with the Youth Self-Report (YSR). Cluster analysis on their music preferences revealed six taste groups: Middle-of-the-road (MOR) listeners, Urban fans, Exclusive Rock fans, Rock-Pop fans, Elitists, and Omnivores. A seventh group of musically Low-Involved youth was added. Multivariate analyses revealed that when gender, age, parenting, school, and peer variables were controlled, Omnivores and fans within the Exclusive Rock groups showed relatively high scores on internalizing YSR measures, and social, thought and attention problems. Omnivores, Exclusive Rock, Rock-Pop and Urban fans reported more externalizing problem behavior. Belonging to the MOR group that highly appreciates the most popular, chart-based pop music appears to buffer problem behavior. Music taste group membership uniquely explains variance in both internalizing and externalizing problem behavior.

  9. Fungiform Taste Bud Degeneration in C57BL/6J Mice Following Chorda-Lingual Nerve Transection

    OpenAIRE

    Guagliardo, Nick A.; Hill, David L.

    2007-01-01

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were ...

  10. Quantification of taste of green tea with taste sensor; Aji sensor wo mochiita ryokucha no aji no teiryoka

    Energy Technology Data Exchange (ETDEWEB)

    Ikezaki, H.; Taniguchi, A. [Anritsu Corp., Tokyo (Japan); Toko, K. [Kyushu University, Fukuoka (Japan)

    1997-08-20

    We have developed a multichannel taste sensor with artificial lipid membranes and have applied it to quantification of taste of green tea. We used multiple regression analysis and found high correlations of outputs of the taste sensor with the results of sensory test (taste, flavor and color) and chemical analyses (amino acids and tannin that are main taste substances in green tea). It is concluded that the taste sensor has a potential for quantification of taste of green tea. The taste sensor responds not only to amino acids and tannin, but also to many other taste substances, and hence it contains much more taste information than conventional chemical analyses. 12 refs., 5 figs., 6 tabs.

  11. Observation of regenerated fungiform taste buds after severing the chorda tympani nerve using confocal laser scanning microscopy in vivo.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Kato, Yuji; Yamada, Takechiyo; Manabe, Yasuhiro; Narita, Norihiko

    2014-03-01

    To evaluate whether regenerated fungiform taste buds after severing the chorda tympani nerve can be detected by confocal laser scanning microscopy in vivo. Retrospective study. University hospital. Six patients with a normal gustatory function (Group 1), 9 patients with taste function recovery after severing the CTN (Group 2), and 5 patients without taste function recovery (Group 3) were included. In Groups 2 and 3, canal wall up (closed) tympanoplasty or canal wall down with canal reconstruction tympanoplasty was performed in all patients. Diagnostic. The severed nerves were readapted or approximated on the temporalis muscle fascia used to reconstruct the eardrum during surgery. Preoperative and postoperative gustatory functions were assessed using electrogustometry. Twelve to 260 months after severing the CTN, the surface of the midlateral region of the tongue was observed with a confocal laser microscope. EGM thresholds showed no response 1 month after surgery in all patients of Groups 2 and 3. In Group 2, EGM thresholds showed recovery 1 to 2 years after surgery and before confocal microscopy (-1.3 ± 6.5 dB). There was a significant difference between Group 1 (-5.7 ± 2.0 dB; p taste buds were observed in each FP, and 55 (79.7%) of 69 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 3.7 ± 3.6. In patients with a recovered taste function (Group 2), 0 to 8 taste buds were observed in each FP. In this group, 54 (56.2%) of 94 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 2.0 ± 2.2 (p taste bud was observed. Regenerated fungiform taste bud could be observed in vivo using confocal laser scanning microscopy, indicating that regenerated taste bud can be detected without biopsy.

  12. Food-Grade Synthesis of Maillard-Type Taste Enhancers Using Natural Deep Eutectic Solvents (NADES).

    Science.gov (United States)

    Kranz, Maximilian; Hofmann, Thomas

    2018-01-28

    The increasing demand for healthier food products, with reduced levels of table salt, sugar, and mono sodium glutamate, reinforce the need for novel taste enhancers prepared by means of food-grade kitchen-type chemistry. Although several taste modulating compounds have been discovered in processed foods, their Maillard-type ex food production is usually not exploited by industrial process reactions as the yields of target compounds typically do not exceed 1-2%. Natural deep eutectic solvents (NADES) are reported for the first time to significantly increase the yields of the taste enhancers 1-deoxy-ᴅ-fructosyl-N-β-alanyl-ʟ-histidine (49% yield), N-(1-methyl-4-oxoimidazolidin-2-ylidene) aminopropionic acid (54% yield) and N²-(1-carboxyethyl) guanosine 5'-monophosphate (22% yield) at low temperature (80-100 °C) within a maximum reaction time of 2 h. Therefore, NADES open new avenues to a "next-generation culinary chemistry" overcoming the yield limitations of traditional Maillard chemistry approaches and enable a food-grade Maillard-type generation of flavor modulators.

  13. Food-Grade Synthesis of Maillard-Type Taste Enhancers Using Natural Deep Eutectic Solvents (NADES

    Directory of Open Access Journals (Sweden)

    Maximilian Kranz

    2018-01-01

    Full Text Available The increasing demand for healthier food products, with reduced levels of table salt, sugar, and mono sodium glutamate, reinforce the need for novel taste enhancers prepared by means of food-grade kitchen-type chemistry. Although several taste modulating compounds have been discovered in processed foods, their Maillard-type ex food production is usually not exploited by industrial process reactions as the yields of target compounds typically do not exceed 1–2%. Natural deep eutectic solvents (NADES are reported for the first time to significantly increase the yields of the taste enhancers 1-deoxy-ᴅ-fructosyl-N-β-alanyl-ʟ-histidine (49% yield, N-(1-methyl-4-oxoimidazolidin-2-ylidene aminopropionic acid (54% yield and N2-(1-carboxyethyl guanosine 5′-monophosphate (22% yield at low temperature (80–100 °C within a maximum reaction time of 2 h. Therefore, NADES open new avenues to a “next-generation culinary chemistry” overcoming the yield limitations of traditional Maillard chemistry approaches and enable a food-grade Maillard-type generation of flavor modulators.

  14. Taste learning and memory: a window to the study of brain aging.

    Directory of Open Access Journals (Sweden)

    Fernando eGámiz

    2011-11-01

    Full Text Available Taste learning exhibits advantages for research on memory brain systems and its reorganization along the life. A review of the effects of aging on taste memory abilities offers a complex picture showing preserved, impaired and enhanced functions. Some of the age-related changes in taste memory seem to be associated with an altered temporal processing. Longer taste-illness delays can be introduced for acquisition of conditioned taste aversions and the modulation of taste learning by the temporal context is absent in naïve aged rats. Evidence is presented suggesting that hippocampal-dependent taste memory can be reactivated by previous learning experiences in old rats. As long as temporary hipocampal inactivation might represent a better model than permanent damage of the aged hippocampus, reversion inactivation of the dorsal Hippocampus by tetrotodoxin (TTX has been applied in aged rats. Results are reported indicating the need of taking into account the interactions between the previous experiences and acute brain intervention when applying taste learning and memory tasks at advanced ages.

  15. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    Science.gov (United States)

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Oxytocin signaling in mouse taste buds.

    Science.gov (United States)

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite

  17. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    Science.gov (United States)

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  18. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    Directory of Open Access Journals (Sweden)

    Yi-ke Li

    2015-01-01

    Full Text Available The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  19. Is wine savory? Umami taste in wine

    OpenAIRE

    Alice, Vilela; António, Inês; Fernanda, Cosme

    2016-01-01

    Umami is an important taste element in natural products like wine. The umami taste has distinctive properties that differentiate it from other tastes, including a taste-enhancing synergism between two umami compounds, L-glutamate and 5’-ribonulceotides, and a prolonged aftertaste. In human taste cells, taste buds transduce the chemicals that elicit the umami tastes into membrane depolarization, which triggers release of transmitter to activate gustatory afferent nerve fibers. Umami taste stim...

  20. Using Sound-Taste Correspondences to Enhance the Subjective Value of Tasting Experiences

    Directory of Open Access Journals (Sweden)

    Felipe eReinoso Carvalho

    2015-09-01

    Full Text Available The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate’s taste while listening to an auditory stimulus. Four different conditions were presented to four different groups in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop’s own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food’s identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations.

  1. Impact of sodium lauryl sulfate in oral liquids on e-tongue measurements.

    Science.gov (United States)

    Immohr, Laura Isabell; Turner, Roy; Pein-Hackelbusch, Miriam

    2016-12-30

    During development of oral liquid medicines taste assessment is often required to evaluate taste and taste masking. Electronic tongue analysis can provide taste assessment of medicinal products but should only be conducted with medicines that interact with the instrument without damaging the sensor membranes or interfering with their electrical output so that robust data is generated. To explore the impact of a substance deemed unsuitable for electronic tongue analysis the influence of the anionic surfactant sodium lauryl sulfate (SLS), on the performance of the electronic tongue was conducted using electronic tongues equipped with self-developed PVC based sensors. The results showed a significant impact of SLS on all applied sensor types and an alteration of the sensor's sensitivity. Nevertheless, concentration dependent sensor responses could still be obtained and the sensor performance was not impacted negatively. Assessment of unsuitable substances should therefore be evaluated prior to performing electronic tongue analysis so that their impact is understood fully. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oxytocin signaling in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Michael S Sinclair

    2010-08-01

    Full Text Available The neuropeptide, oxytocin (OXT, acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout overconsume salty and sweet (i.e. sucrose, saccharin solutions. We asked if OXT might also act on taste buds via its receptor, OXTR.Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM. OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II nor Presynaptic (Type III cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene.We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of

  3. The chemistry of sour taste and the strategy to reduce the sour taste of beer.

    Science.gov (United States)

    Li, Hong; Liu, Fang

    2015-10-15

    The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    Science.gov (United States)

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  5. Video: Taste - no waste

    DEFF Research Database (Denmark)

    Kamuk, Anette; Mortensen, Birthe Kofoed; Mithril, Charlotte Elisabeth

    2017-01-01

    of different foods. In addition, the aim was to create experiences which could show how taste and taste courage are influenced by social interactions and relations. A final aim was to bring awareness of how you can reduce waste with the example of how to use all parts of fruits and vegetables. In total......, approximately 120 children aged 10-12 years participated. In one workshop, children experimented with making juice to explore the basic tastes and worked with the pulp as an example of how to reduce food waste. In another workshop, the children prepared and tasted roasted insects as an example of a future novel...

  6. Abstract: Taste - no waste

    DEFF Research Database (Denmark)

    Mithril, Charlotte Elisabeth; Kamuk, Anette; Hoffmeyer, Agnete

    of different foods. In addition, the aim was to create experiences which could show how taste and taste courage are influenced by social interactions and relations. A final aim was to bring awareness of how you can reduce waste with the example of how to use all parts of fruits and vegetables. In total......, approximately 120 children aged 10-12 years participated. In one workshop, children experimented with making juice to explore the basic tastes and worked with the pulp as an example of how to reduce food waste. In another workshop, the children prepared and tasted roasted insects as an example of a future novel...

  7. Drugs and taste aversion

    International Nuclear Information System (INIS)

    Rondeau, D.B.; Jolicoeur, F.B.; Merkel, A.D.; Wayner, M.J.

    1981-01-01

    The literature on the effects of drugs on the acquisition and the magnitude of taste aversion is reviewed and discussed. Then, the results of a series of experiments on the effects of phenobarbital and related drugs on taste aversion are reported. A standard taste aversion model was used in all experiments; test drugs were injected prior to drinking in a one bottle situation on the first test day following the taste aversion treatment. Phenobarbital in doses ranging from 20 to 80 mg/kg significantly attenuated taste aversion induced by lithium chloride (LiCl) and x-radiation, the maximal effect occurred with the 60 mg/kg dose. The attenuating effect was found to be dependent upon the magnitude of the aversion to the sapid solution. Phenobarbital completely abolished aversion produced by 0.375 mEq LiCl while the attenuation effect decreased linearly with higher doses of LiCl. Results also indicate that phenobarbital's attenuating effect cannot be solely attributed to its dipsogenic characteristic or to its state dependent learning effect. Attenuation of LiCl aversion to a saccharin solution was also observed following single doses of amobarbital, 30 mg/kg, pentobarbital, 15 mg/kg, and chloropromazine, 0.75 mg/kg. Taste aversion was not affected by other doses of those drugs or by hexobarbital, barbital, and chlordiazepoxide. Phenobarbital's attenuating effect on taste aversion is discussed in relation to other known behavioral and neurophysiological effects of the drug

  8. A novel pungency biosensor prepared with fixing taste-bud tissue of rats.

    Science.gov (United States)

    Qiao, Lixin; Jiao, Lihua; Pang, Guangchang; Xie, Junbo

    2015-06-15

    A novel taste biosensor based on ligand-receptor interaction was developed through fixing taste-bud tissues of SD rats to a glassy carbon electrode. Using the sodium alginate-starch gel as a fixing agent, taste-bud tissues of SD rats were fixed between two nuclear microporous membranes to make a sandwich-type sensing membrane. With the taste biosensor, the response current induced by capsaicin and gingerol stimulating the corresponding receptors was measured. The results showed that the lowest limit of detection of this biosensor to capsaicin was 1×10(-13) mol/L and the change rate of response current was the highest at the concentration of 9×10(-13) mol/L, indicating that the capsaicin receptor was saturated at this point. The lowest limit of detection of this biosensor to gingerol was 1×10(-12) mol/L, and the gingerol receptor was saturated when the concentration of gingerol was 3×10(-11) mol/L. It was demonstrated that the interaction curves of capsaicin and gingerol with their respective receptors exhibited high correlation (R(2): 0.9841 and 0.9904). The binding constant and dissociation constant of gingerol with its receptor were 1.564×10(-11) and 1.815×10(-11) respectively, which were all higher than those of capsaicin with its receptor (1.249×10(-12) and 2.078×10(-12)). This study, for the first time, made it possible to quantitatively determine the interaction of the taste receptor and pungent substances with a new biosensor, thus providing a simple approach for monitoring pungent substances and investigating the mechanism of ligand-receptor interaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Wine Expertise Predicts Taste Phenotype.

    Science.gov (United States)

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  10. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    Science.gov (United States)

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.

  11. "What's Your Taste in Music?" A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes.

    Science.gov (United States)

    Wang, Qian Janice; Woods, Andy T; Spence, Charles

    2015-12-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  12. Genetics of sweet taste preferences†

    OpenAIRE

    Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K

    2011-01-01

    Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a sign...

  13. Long-term Follow-up Results of Regeneration Process of Fungiform Taste Buds After Severing the Chorda Tympani Nerve During Middle Ear Surgery.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro

    2016-05-01

    To elucidate the regeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. In 7 consecutive patients whose CTN was severed during tympanoplasty, an average of 10 fungiform papillae in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted until 12 to 24 months after surgery. Gustatory function was assessed by EGM. EGM thresholds showed no response within 1 month after surgery in any patient. All taste buds had disappeared until 13 to 71 days after surgery. Regenerated taste buds were first detected 5 to 8 months after surgery in 5 of the 7 patients. EGM thresholds recovered to their preoperative values in 2 patients. In these 2 patients, the number of regenerated taste buds gradually increased in combination with a recovered taste function. However, a time lag existed between taste bud regeneration and taste function recovery. EGM thresholds did not recover in the other 3 patients with regenerated taste buds, suggesting that these taste buds were immature without gustatory function. The long-term regeneration process of fungiform taste buds could be clarified using confocal laser scanning microscopy. © The Author(s) 2015.

  14. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.

    Science.gov (United States)

    Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B

    2013-05-29

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.

  15. E-tongue: a tool for taste evaluation.

    Science.gov (United States)

    Gupta, Himanshu; Sharma, Aarti; Kumar, Suresh; Roy, Saroj K

    2010-01-01

    Taste has an important role in the development of oral pharmaceuticals. With respect to patient acceptability and compliance, taste is one of the prime factors determining the market penetration and commercial success of oral formulations, especially in pediatric medicine. Taste assessment is one important quality-control parameter for evaluating taste-masked formulations. Hence, pharmaceutical industries invest time, money and resources into developing palatable and pleasant-tasting products. The primary method for the taste measurement of a drug substance or a formulation is by human sensory evaluation, in which tasting a sample is relayed to inspectors. However, this method is impractical for early stage drug development because the test in humans is expensive and the taste of a drug candidate may not be important to the final product. Therefore, taste-sensing analytical devices, which can detect tastes, have been replacing the taste panelists. In the present review we are presenting different aspect of electronic tongue. The review article also discussed some useful patents and instrument with respect to E-tongue.

  16. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds.

    Science.gov (United States)

    Huang, Anthony Y; Wu, Sandy Y

    2018-04-01

    Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. Our results showed that SP elicited PLC activation-dependent intracellular Ca 2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud. © 2018 The British Pharmacological Society.

  17. Dietary Sodium Modulation of Aldosterone Activation and Renal Function During the Progression of Experimental Heart Failure Miller: Dietary Sodium and Early Heart Failure

    Science.gov (United States)

    Miller, Wayne L.; Borgeson, Daniel D.; Grantham, J. Aaron; Luchner, Andreas; Redfield, Margaret M.; Burnett, John C.

    2015-01-01

    Aims Aldosterone activation is central to the sodium-fluid retention that marks the progression of heart failure (HF). The actions of dietary sodium restriction, a mainstay in HF management, on cardiorenal and neuroendocrine adaptations during the progression of HF are poorly understood. The study aim was to assess the role of dietary sodium during the progression of experimental HF. Methods and Results Experimental HF was produced in a canine model by rapid right ventricular pacing which evolves from early mild HF to overt, severe HF. Dogs were fed one of three diets: 1) high sodium [250 mEq (5.8 grams) per day, n=6]; 2) standard sodium [58 mEq (1.3 grams) per day, n=6]; and 3) sodium restriction [11 mEq (0.25 grams) per day, n=6]. During the 38 day study hemodynamics, renal function, renin activity (PRA), and aldosterone were measured. Changes in hemodynamics at 38 days were similar in all three groups, as were changes in renal function. Aldosterone activation was demonstrated in all three groups, however, dietary sodium restriction, in contrast to high sodium, resulted in early (10 days) activation of PRA and aldosterone. High sodium demonstrated significant suppression of aldosterone activation over the course of HF progression. Conclusions Excessive dietary sodium restriction particularly in early stage HF results in early aldosterone activation, while normal and excess sodium intake are associated with delayed or suppressed activation. These findings warrant evaluation in humans to determine if dietary sodium manipulation, particularly during early stage HF, may have a significant impact on neuroendocrine disease progression. PMID:25823360

  18. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  19. Understanding taste dysfunction in patients with cancer.

    Science.gov (United States)

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  20. Lessons learned from community-based approaches to sodium reduction.

    Science.gov (United States)

    Kane, Heather; Strazza, Karen; Losby, Jan L; Lane, Rashon; Mugavero, Kristy; Anater, Andrea S; Frost, Corey; Margolis, Marjorie; Hersey, James

    2015-01-01

    This article describes lessons from a Centers for Disease Control and Prevention initiative encompassing sodium reduction interventions in six communities. A multiple case study design was used. This evaluation examined data from programs implemented in six communities located in New York (Broome County, Schenectady County, and New York City); California (Los Angeles County and Shasta County); and Kansas (Shawnee County). Participants (n = 80) included program staff, program directors, state-level staff, and partners. Measures for this evaluation included challenges, facilitators, and lessons learned from implementing sodium reduction strategies. The project team conducted a document review of program materials and semistructured interviews 12 to 14 months after implementation. The team coded and analyzed data deductively and inductively. Five lessons for implementing community-based sodium reduction approaches emerged: (1) build relationships with partners to understand their concerns, (2) involve individuals knowledgeable about specific venues early, (3) incorporate sodium reduction efforts and messaging into broader nutrition efforts, (4) design the program to reduce sodium gradually to take into account consumer preferences and taste transitions, and (5) identify ways to address the cost of lower-sodium products. The experiences of the six communities may assist practitioners in planning community-based sodium reduction interventions. Addressing sodium reduction using a community-based approach can foster meaningful change in dietary sodium consumption.

  1. Taste bud cells and nerves

    OpenAIRE

    武田,正子/内田,暢彦/鈴木,裕子; タケダ,マサコ/ウチダ,ノブヒコ/スズキ,ユウコ; TAKEDA,Masako/UCHIDA,Nobuhiko/SUZUKI,Yuko

    2002-01-01

    Sectioning of glossopharyngeal nerves which innervate the taste buds in the circumvallate papillae caused apoptosis of taste buds, the numbers decreasing and the taste buds disappearing after 11 days. This indicates that gustatory nerves may release a trophic substance that induces and maintains taste buds. Taste bud cells contain neurotrophins, NCAM, NSE, PGP9.5, and NeuroD which are specific markers of neurons. The BDNF and GDNF of neurotrophins, and Trk B and GFRαl of their receptors were ...

  2. Disorders of saliva production and taste sensation after oropharyngeal irradiation

    International Nuclear Information System (INIS)

    Herrmann, T.; Adamski, K.; Stefan, M.

    1984-01-01

    Salivary secretion and disorders of taste sensation during and after radiotherapy of the oropharyngeal region were investigated in 20 patients. Salivary glands and tongue were exposed to radiation in different extent. Telecobalt irradiations were given in daily doses of 1.8 - 2.0 Gy, the total dose being 55 - 60 Gy in the salivary glands (1,590 - 1,760 ret). The patients were asked for subjective statements on salivary secretion, taste disorders were measured by semiquantitative gustometry with different dilution ratios for the four basis qualities of taste. 2 weeks after the onset of irradiation (20.0 Gy) a reduction of saliva production appeared without tendency of recovery. A statistically significant increase of the taste threshold appeared for all qualities of taste after 20 - 30 Gy. The criterion 'bitter' was primarily affected. This radiogen disorder, apparently caused on the cellular level of the taste buds, seems to be reversible also for doses of 60 Gy (1,760 ret) while radiogen functional disorders of the salivary glands are irreversible from 45 Gy (1,500 ret). Considering all sensual and organic effects of xerostomy (dental caries, osteoradionecrosis) it is advisable to keep the dose for at least one third of the salivary gland tissue below this critical value. (author)

  3. Optimized furosemide taste masked orally disintegrating tablets

    Directory of Open Access Journals (Sweden)

    Mohamed Abbas Ibrahim

    2017-11-01

    Full Text Available Optimized orally disintegrating tablets (ODTs containing furosemide (FUR were prepared by direct compression method. Two factors, three levels (32 full factorial design was used to optimize the effect of taste masking agent (Eudragit E100; X1 and superdisintegarant; croscarmellose sodium (CCS; X2 on tablet properties. A composite was prepared by mixing ethanolic solution of FUR and Eudragit E100 with mannitol prior to mixing with other tablet ingredients. The prepared ODTs were characterized for their FUR content, hardness, friability and wetting time. The optimized ODT formulation (F1 was evaluated in term of palatability parameters and the in vivo disintegration. The manufactured ODTs were complying with the pharmacopeia guidelines regarding hardness, friability, weight variation and content. Eudragit E100 had a very slightly enhancing effect on tablets disintegration. However, the effects of both Eudragit E100 (X1 and CCS (X2 on ODTs disintegration time (Y1 were insignificant (p > 0.05. Moreover, X1 exhibited antagonistic effect on the dissolution after 5 and 30 min (D5 and D30, respectively, but only its effect on D30 is significant (p = 0.0004. Furthermore, the optimized ODTs formula showed good to acceptable taste in term of palatability, and in vivo disintegration time of this formula was about 10 s.

  4. DEVELOPING A SENSE OF TASTE

    Science.gov (United States)

    Kapsimali, Marika; Barlow, Linda A.

    2012-01-01

    Taste buds are found in a distributed array on the tongue surface, and are innervated by cranial nerves that convey taste information to the brain. For nearly a century, taste buds were thought to be induced by nerves late in embryonic development. However, this view has shifted dramatically. A host of studies now indicate that taste bud development is initiated and proceeds via processes that are nerve-independent, occur long before birth, and governed by cellular and molecular mechanisms intrinsic to the developing tongue. Here we review the state of our understanding of the molecular and cellular regulation of taste bud development, incorporating important new data obtained through the use of two powerful genetic systems, mouse and zebrafish. PMID:23182899

  5. Bortezomib alters sour taste sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Akihiro Ohishi

    Full Text Available Chemotherapy-induced taste disorder is one of the critical issues in cancer therapy. Bortezomib, a proteasome inhibitor, is a key agent in multiple myeloma therapy, but it induces a taste disorder. In this study, we investigated the characteristics of bortezomib-induced taste disorder and the underlying mechanism in mice. Among the five basic tastes, the sour taste sensitivity of mice was significantly increased by bortezomib administration. In bortezomib-administered mice, protein expression of PKD2L1 was increased. The increased sour taste sensitivity induced by bortezomib returned to the control level on cessation of its administration. These results suggest that an increase in protein expression of PKD2L1 enhances the sour taste sensitivity in bortezomib-administered mice, and this alteration is reversed on cessation of its administration. Keywords: Taste disorder, Bortezomib, Sour taste, Chemotherapy, Adverse effect

  6. Taste didactic reflection theory

    DEFF Research Database (Denmark)

    Wistoft, Karen; Qvortrup, Lars

    and gastrophysicists), and social sciences (anthropologists) as well as educators (preschool, elementary, secondary and vocational schools, colleges and universities) and chefs. Through interdisciplinary research collaboration and communication we attempt to span the perceived chasm separating food-sensory science......, high schools and vocational educations. By integrating research, taste, learning, didactics and communication, our projects focus on three main areas: sensory sciences and didactics; gastrophysics and the integration of scientific disciplines; and innovation and honing of culinary skills. While we...... teach pupils, students and the broader public in educational institutions and festivals about and through taste, we also study their use of taste, taste preferences, and learning processes by gathering empirical data for anthropological, sensory and pedagogical research. At the conference, we wish...

  7. Taste buds as peripheral chemosensory processors.

    Science.gov (United States)

    Roper, Stephen D

    2013-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Rewiring the taste system.

    Science.gov (United States)

    Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P

    2017-08-17

    In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.

  9. Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors

    Directory of Open Access Journals (Sweden)

    Takashi Yamamoto

    2008-10-01

    Full Text Available Taste is unique among sensory systems in its innate association with mechanisms of reward and aversion in addition to its recognition of quality, e.g., sucrose is sweet and preferable, and quinine is bitter and aversive. Taste information is sent to the reward system and feeding center via the prefrontal cortices such as the mediodorsal and ventrolateral prefrontal cortices in rodents and the orbitofrontal cortex in primates. The amygdala, which receives taste inputs, also influences reward and feeding. In terms of neuroactive substances, palatability is closely related to benzodiazepine derivatives and β-endorphin, both of which facilitate consumption of food and fluid. The reward system contains the ventral tegmental area, nucleus accumbens and ventral pallidum and finally sends information to the lateral hypothalamic area, the feeding center. The dopaminergic system originating from the ventral tegmental area mediates the motivation to consume palatable food. The actual ingestive behavior is promoted by the orexigenic neuropeptides from the hypothalamus. Even palatable food can become aversive and avoided as a consequence of a postingestional unpleasant experience such as malaise. The neural mechanisms of this conditioned taste aversion will also be elucidated.

  10. Developing and regenerating a sense of taste.

    Science.gov (United States)

    Barlow, Linda A; Klein, Ophir D

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.

  11. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    International Nuclear Information System (INIS)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-01-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial

  12. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds

    Science.gov (United States)

    Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  13. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    Directory of Open Access Journals (Sweden)

    Bradley T Biggs

    Full Text Available Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2 were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R, were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14 promoter (K14-Cre::Igf1rlox/lox. While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox, this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2 and carbonic anhydrase 4- (Car4 positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  14. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    Science.gov (United States)

    Biggs, Bradley T; Tang, Tao; Krimm, Robin F

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  15. Stakeholder discussion to reduce population-wide sodium intake and decrease sodium in the food supply: a conference report from the American Heart Association Sodium Conference 2013 Planning Group.

    Science.gov (United States)

    Antman, Elliott M; Appel, Lawrence J; Balentine, Douglas; Johnson, Rachel K; Steffen, Lyn M; Miller, Emily Ann; Pappas, Antigoni; Stitzel, Kimberly F; Vafiadis, Dorothea K; Whitsel, Laurie

    2014-06-24

    A 2-day interactive forum was convened to discuss the current status and future implications of reducing sodium in the food supply and to identify opportunities for stakeholder collaboration. Participants included 128 stakeholders engaged in food research and development, food manufacturing and retail, restaurant and food service operations, regulatory and legislative activities, public health initiatives, healthcare, academia and scientific research, and data monitoring and surveillance. Presentation topics included scientific evidence for sodium reduction and public health policy recommendations; consumer sodium intakes, attitudes, and behaviors; food technologies and solutions for sodium reduction and sensory implications; experiences of the food and dining industries; and translation and implementation of sodium intake recommendations. Facilitated breakout sessions were conducted to allow for sharing of current practices, insights, and expertise. A well-established body of scientific research shows that there is a strong relationship between excess sodium intake and high blood pressure and other adverse health outcomes. With Americans getting >75% of their sodium from processed and restaurant food, this evidence creates mounting pressure for less sodium in the food supply. The reduction of sodium in the food supply is a complex issue that involves multiple stakeholders. The success of new technological approaches for reducing sodium will depend on product availability, health effects (both intended and unintended), research and development investments, quality and taste of reformulated foods, supply chain management, operational modifications, consumer acceptance, and cost. The conference facilitated an exchange of ideas and set the stage for potential collaboration opportunities among stakeholders with mutual interest in reducing sodium in the food supply and in Americans' diets. Population-wide sodium reduction remains a critically important component of

  16. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  17. Gli3 is a negative regulator of Tas1r3-expressing taste cells

    Science.gov (United States)

    Jyotaki, Masafumi; Redding, Kevin; Jiang, Peihua

    2018-01-01

    Mouse taste receptor cells survive from 3–24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging. PMID:29415007

  18. Utilitarian Aggregation of Beliefs and Tastes.

    Science.gov (United States)

    Gilboa, Itzhak; Samet, Dov; Schmeidler, David

    2004-01-01

    Harsanyi's utilitarianism is extended here to Savage's framework. We formulate a Pareto condition that implies that both society's utility function and its probability measure are linear combinations of those of the individuals. An indiscriminate Pareto condition has been shown to contradict linear aggregation of beliefs and tastes. We argue that…

  19. The Importance of Taste for Food Demand and the Experienced Taste Effect of Healthy Labels

    DEFF Research Database (Denmark)

    Thunström, Linda; Nordström, Leif Jonas

    findings imply a large positive effect on demand for potato chips from higher taste scores: when consumers’ experienced taste from potato chips improves by one unit, the average WTP for a 150 gram bag of chips increases by 20 euro cents. The effect from taste on bread demand seems smaller, but may...

  20. What Are Taste Buds?

    Science.gov (United States)

    ... Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español What Are Taste Buds? KidsHealth / For Kids / What Are Taste Buds? ...

  1. Tasteful Brands: Products of Brands Perceived to be Warm and Competent Taste Subjectively Better

    Directory of Open Access Journals (Sweden)

    Boyka Bratanova

    2015-06-01

    Full Text Available Using survey and experimental data, the present research examines the effect of brand perception on experienced taste. The content of brand perception can be organized along the two social perception dimensions of warmth and competence. We use these two dimensions to systematically investigate the influence of brand perception on experienced taste and consumer behavior toward food products. The brand’s perceived warmth and competence independently influenced taste, both when it was measured as a belief and as an embodied experience following consumption. Taste mediated the link between brand’s warmth and competence perceptions and three consumer behavioral tendencies crucial for the marketing success of brands: buying intentions, brand loyalty, and support for the brand.

  2. Attempt to develop taste bud models in three-dimensional culture.

    Science.gov (United States)

    Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro

    2011-09-01

    Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.

  3. Taste, terroir, and technology

    Directory of Open Access Journals (Sweden)

    Pinder RM

    2016-03-01

    Full Text Available Roger M PinderInternational Journal of Wine Research, York, UKWine drinkers have long acknowledged the link between taste and terroir, the often unmistakable connection between the flavor of a wine and the particular patch of ground in which the vines were grown. But the science behind the connection, indeed the whole concept of taste and terroir, has long been disputed. New technological developments in both "neuroenology" – how the brain creates the taste of wine1 – and in wine chemistry2 have offered more insight into the science.

  4. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  5. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    Science.gov (United States)

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  6. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells

    DEFF Research Database (Denmark)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna

    2017-01-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na(+)) and, indirectly, serum potassium (K(+)) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis...

  7. Limited taste discrimination in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  8. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus).

    Science.gov (United States)

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces

  9. [Therapeutic effect of double fill nine tastes soup in treating recurrent respiratory infection (RRI) and change of immune function in children].

    Science.gov (United States)

    Wang, Youcheng; Zhang, Lijuan; Hu, Guohua; Wang, Menghe; Tang, Xiaoyuan; Guo, Hui; Shi, Yimei; Chen, Shufang; Shi, Changchun

    2012-04-01

    To investigate the therapeutic effect of double fill nine tastes soup in treating children recurrent respiratory infection (RRTI) and the change of immune function. 77 RRTI patients were randomly selected into observation and control groups. The observation group was treated with Chinese medicine- double fill nine tastes soup,water frying points 2 times oral. The control was treated with transfer factor oral liquid,every 10 mL,2 times daily oral. Treatment periods were both two months. IgA, IgG, IgM and IL-12, TNF-alpha, INF-gamma were detected before and after treatment to assess the clinical effects and the changes of immune factors, meanwhile, a health group was established. Before treatment, compared with the health group, the serum IgA, IgG, IgM, IgE, IL-12, TNF-alpha, IFN-gamma in both groups were significantly different (P soup has significant effects in treating recurrent respiratory infection (RRI) and enhance the immune function in children.

  10. Lessons Learned From Community-Based Approaches to Sodium Reduction

    Science.gov (United States)

    Kane, Heather; Strazza, Karen; Losby PhD, Jan L.; Lane, Rashon; Mugavero, Kristy; Anater, Andrea S.; Frost, Corey; Margolis, Marjorie; Hersey, James

    2017-01-01

    Purpose This article describes lessons from a Centers for Disease Control and Prevention initiative encompassing sodium reduction interventions in six communities. Design A multiple case study design was used. Setting This evaluation examined data from programs implemented in six communities located in New York (Broome County, Schenectady County, and New York City); California (Los Angeles County and Shasta County); and Kansas (Shawnee County). Subjects Participants (n = 80) included program staff, program directors, state-level staff, and partners. Measures Measures for this evaluation included challenges, facilitators, and lessons learned from implementing sodium reduction strategies. Analysis The project team conducted a document review of program materials and semi structured interviews 12 to 14 months after implementation. The team coded and analyzed data deductively and inductively. Results Five lessons for implementing community-based sodium reduction approaches emerged: (1) build relationships with partners to understand their concerns, (2) involve individuals knowledgeable about specific venues early, (3) incorporate sodium reduction efforts and messaging into broader nutrition efforts, (4) design the program to reduce sodium gradually to take into account consumer preferences and taste transitions, and (5) identify ways to address the cost of lower-sodium products. Conclusion The experiences of the six communities may assist practitioners in planning community-based sodium reduction interventions. Addressing sodium reduction using a community-based approach can foster meaningful change in dietary sodium consumption. PMID:24575726

  11. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    Science.gov (United States)

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  12. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  13. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef.

    Science.gov (United States)

    Zou, Yunhe; Kang, Dacheng; Liu, Rui; Qi, Jun; Zhou, Guanghong; Zhang, Wangang

    2018-09-01

    The objective of this study was to assess the effects of ultrasonic assisted cooking on the chemical profiles of spiced beef taste and flavor. Ultrasound power with 0 W, 400 W, 600 W, 800 W and 1000 W (frequency of 20 kHz) were used for cooking 120 min. The sodium chloride, sugar, free amino acids (FAAs), 5'-ribonucleotides, lipid oxidation, volatile flavor substance contents and electronic nose of spiced beef were determined. Results showed that ultrasonic treatment could significantly increase the content of sodium chloride in beef sample (P  0.05). With the ultrasonic treatment, the types and relative content of volatile flavor substances were significantly increased (P alcohols and ketones. However, there was no significant variation among the different ultrasound power groups (P > 0.05). This result was consistent with the measurement of electronic nose. Data points of control samples were away from ultrasonic treatment groups, while data points of different ultrasonic treatment groups were flock together. The results indicate that the application of ultrasound during cooking has a positive effect on chemical profiles of spiced beef taste and flavor, particularly for the power of 800 W. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    International Nuclear Information System (INIS)

    Hwang, P.M.; Verma, A.; Bredt, D.S.; Snyder, S.H.

    1990-01-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of 45 Ca 2+ , inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of [ 3 H]cytidine diphosphate diacylglycerol formed from [ 3 H]cytidine. Accumulated 45 Ca 2+ , inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant

  15. Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa.

    Science.gov (United States)

    Oberndorfer, Tyson A; Frank, Guido K W; Simmons, Alan N; Wagner, Angela; McCurdy, Danyale; Fudge, Julie L; Yang, Tony T; Paulus, Martin P; Kaye, Walter H

    2013-10-01

    Recent studies suggest that altered function of higher-order appetitive neural circuitry may contribute to restricted eating in anorexia nervosa and overeating in bulimia nervosa. This study used sweet tastes to interrogate gustatory neurocircuitry involving the anterior insula and related regions that modulate sensory-interoceptive-reward signals in response to palatable foods. Participants who had recovered from anorexia nervosa and bulimia nervosa were studied to avoid confounding effects of altered nutritional state. Functional MRI measured brain response to repeated tastes of sucrose and sucralose to disentangle neural processing of caloric and noncaloric sweet tastes. Whole-brain functional analysis was constrained to anatomical regions of interest. Relative to matched comparison women (N=14), women recovered from anorexia nervosa (N=14) had significantly diminished and women recovered from bulimia nervosa (N=14) had significantly elevated hemodynamic response to tastes of sucrose in the right anterior insula. Anterior insula response to sucrose compared with sucralose was exaggerated in the recovered group (lower in women recovered from anorexia nervosa and higher in women recovered from bulimia nervosa). The anterior insula integrates sensory reward aspects of taste in the service of nutritional homeostasis. One possibility is that restricted eating and weight loss occur in anorexia nervosa because of a failure to accurately recognize hunger signals, whereas overeating in bulimia nervosa could represent an exaggerated perception of hunger signals. This response may reflect the altered calibration of signals related to sweet taste and the caloric content of food and may offer a pathway to novel and more effective treatments.

  16. Water as an Independent Taste Modality

    Directory of Open Access Journals (Sweden)

    Andrew M Rosen

    2010-10-01

    Full Text Available To qualify as a basic taste quality or modality, defined as a group of chemicals that taste alike, three empirical benchmarks have commonly been used. The first is that a candidate group of tastants must have a dedicated transduction mechanism in the peripheral nervous system. The second is that the tastants evoke physiological responses in dedicated afferent taste nerves innervating the oropharyngeal cavity. Last, the taste stimuli evoke activity in central gustatory neurons, some of which may respond only to that group of tastants. Here we argue that water may also be an independent taste modality. This argument is based on the identification of a water dedicated transduction mechanism in the peripheral nervous system, water responsive fibers of the peripheral taste nerves and the observation of water responsive neurons in all gustatory regions within the central nervous system. We have described electrophysiological responses from single neurons in nucleus of the solitary tract (NTS and parabrachial nucleus of the pons (PbN, respectively the first two central relay nuclei in the rodent brainstem, to water presented as a taste stimulus in anesthetized rats. Responses to water were in some cases as robust as responses to other taste qualities and sometimes occurred in the absence of responses to other tastants. Both excitatory and inhibitory responses were observed. Also, the temporal features of the water response resembled those of other taste responses. We argue that water may constitute an independent taste modality that is processed by dedicated neural channels at all levels of the gustatory neuraxis. Water-dedicated neurons in the brainstem may constitute key elements in the regulatory system for fluid in the body, i.e. thirst, and as part of the swallowing reflex circuitry.

  17. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    OpenAIRE

    Yu-Chieh David Chen; Anupama Dahanukar

    2017-01-01

    Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The ...

  18. Fabrication of taste sensor for education

    Science.gov (United States)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  19. Acquiring taste in home economics?

    DEFF Research Database (Denmark)

    Stenbak Larsen, Christian

    Objective: To explore how home economics was taught in Denmark before the recent Danish school reform, which also revised the objectives and content of home economics, naming it Food Knowledge (Madkundskab) Methods: Participant observation was done in home economic lessons in two case schools...... appreciated by the group of boys, and others again learned to stick with their idiosyncrasies when pressured by the teacher. Conclusions: Children were acquiring taste in the home economic lessons, but not only the kind of tastes that the teacher had planned for. This leads to reflections on the very complex...... process of taste acquiring and to a call for further research into taste acquiring in complex real life contexts as home economics lessons....

  20. Enhancement of Retronasal Odors by Taste

    OpenAIRE

    Green, Barry G.; Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2011-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste (“sweet,” “sour,” “salty,” and “bitter”) and odor (“ot...

  1. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Fernandez-Garcia

    Full Text Available Sensory factors may play an important role in the determination of appetite and food choices. Also, some adipokines may alter or predict the perception and pleasantness of specific odors. We aimed to analyze differences in smell-taste capacity between females with different weights and relate them with fat and fat-free mass, visceral fat, and several adipokines.179 females with different weights (from low weight to morbid obesity were studied. We analyzed the relation between fat, fat-free mass, visceral fat (indirectly estimated by bioelectrical impedance analysis with visceral fat rating (VFR, leptin, adiponectin and visfatin. The smell and taste assessments were performed through the "Sniffin' Sticks" and "Taste Strips" respectively.We found a lower score in the measurement of smell (TDI-score (Threshold, Discrimination and Identification in obese subjects. All the olfactory functions measured, such as threshold, discrimination, identification and the TDI-score, correlated negatively with age, body mass index (BMI, leptin, fat mass, fat-free mass and VFR. In a multiple linear regression model, VFR mainly predicted the TDI-score. With regard to the taste function measurements, the normal weight subjects showed a higher score of taste functions. However a tendency to decrease was observed in the groups with greater or lesser BMI. In a multiple linear regression model VFR and age mainly predicted the total taste scores.We show for the first time that a reverse relationship exists between visceral fat and sensory signals, such as smell and taste, across a population with different body weight conditions.

  2. Gene Network Analysis in Amygdala following Taste Aversion Learning in Rats

    Directory of Open Access Journals (Sweden)

    Siva K. Panguluri

    2013-01-01

    Full Text Available Conditioned taste aversion (CTA is an adaptive behavior that benefits survival of animals including humans and also serves as a powerful model to study the neural mechanisms of learning. Memory formation is a necessary component of CTA learning and involves neural processing and regulation of gene expression in the amygdala. Many studies have been focused on the identification of intracellular signaling cascades involved in CTA, but not late responsive genes underlying the long-lasting behavioral plasticity. In this study, we explored in silico experiments to identify persistent changes in gene expression associated with CTA in rats. We used oligonucleotide microarrays to identify 248 genes in the amygdala regulated by CTA. Pathway Studio and IPA software analyses showed that the differentially expressed genes in the amygdala fall in diverse functional categories such as behavior, psychological disorders, nervous system development and function, and cell-to-cell signaling. Conditioned taste aversion is a complex behavioral trait which involves association of visceral and taste inputs, consolidation of taste and visceral information, memory formation, retrieval of stored information, and extinction phase. In silico analysis of differentially expressed genes is therefore necessary to manipulate specific phase/stage of CTA to understand the molecular insight.

  3. A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds

    Science.gov (United States)

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the

  4. A physiologic role for serotonergic transmission in adult rat taste buds.

    Directory of Open Access Journals (Sweden)

    Luc Jaber

    Full Text Available Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells and was once thought to be essential to neurotransmission (now understood as purinergic. However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers

  5. A physiologic role for serotonergic transmission in adult rat taste buds.

    Science.gov (United States)

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the

  6. The Insula and Taste Learning

    Directory of Open Access Journals (Sweden)

    Adonis Yiannakas

    2017-11-01

    Full Text Available The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC, among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII, transcription factors (CREB, Elk-1 and immediate early genes (c-fos, Arc, has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.

  7. Neural processing of basic tastes in healthy young and older adults - an fMRI study

    NARCIS (Netherlands)

    Hoogeveen, Heleen R.; Dalenberg, Jelle R.; Renken, Remco J.; ter Horst, Gert J.; Lorist, Monicque M.

    2015-01-01

    Ageing affects taste perception as shown in psychophysical studies, however, underlying structural and functional mechanisms of these changes are still largely unknown. To investigate the neurobiology of age-related differences associated with processing of basic tastes, we measured brain activation

  8. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance.

    Science.gov (United States)

    Song, Hyun Seok; Jin, Hye Jun; Ahn, Sae Ryun; Kim, Daesan; Lee, Sang Hun; Kim, Un-Kyung; Simons, Christopher T; Hong, Seunghun; Park, Tai Hyun

    2014-10-28

    The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. However, the detection capability of previous artificial taste sensors has been far inferior to that of animal tongues, in terms of its sensitivity and selectivity. Herein, we developed a bioelectronic tongue using heterodimeric human sweet taste receptors for the detection and discrimination of sweeteners with human-like performance, where single-walled carbon nanotube field-effect transistors were functionalized with nanovesicles containing human sweet taste receptors and used to detect the binding of sweeteners to the taste receptors. The receptors are heterodimeric G-protein-coupled receptors (GPCRs) composed of human taste receptor type 1 member 2 (hTAS1R2) and human taste receptor type 1 member 3 (hTAS1R3), which have multiple binding sites and allow a human tongue-like broad selectivity for the detection of sweeteners. This nanovesicle-based bioelectronic tongue can be a powerful tool for the detection of sweeteners as an alternative to labor-intensive and time-consuming cell-based assays and the sensory evaluation panels used in the food and beverage industry. Furthermore, this study also allows the artificial sensor to exam the functional activity of dimeric GPCRs.

  9. Coevolutionary patterning of teeth and taste buds

    Science.gov (United States)

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  10. Coevolutionary patterning of teeth and taste buds.

    Science.gov (United States)

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-03

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  11. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2015-05-01

    Full Text Available Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF and posterior circumvallate (CV taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  12. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  13. Insights on consciousness from taste memory research.

    Science.gov (United States)

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  14. Taste aversion memory reconsolidation is independent of its retrieval.

    Science.gov (United States)

    Rodriguez-Ortiz, Carlos J; Balderas, Israela; Garcia-DeLaTorre, Paola; Bermudez-Rattoni, Federico

    2012-10-01

    Reconsolidation refers to the destabilization/re-stabilization memory process upon its activation. However, the conditions needed to undergo reconsolidation, as well as its functional significance is quite unclear and a matter of intense investigation. Even so, memory retrieval is held as requisite to initiate reconsolidation. Therefore, in the present work we examined whether transient pharmacological disruption of memory retrieval impedes reconsolidation of stored memory in the widely used associative conditioning task, taste aversion. We found that AMPA receptors inhibition in the amygdala impaired retrieval of taste aversion memory. Furthermore, AMPA receptors blockade impeded retrieval regardless of memory strength. However, inhibition of retrieval did not affect anisomycin-mediated disruption of reconsolidation. These results indicate that retrieval is a dispensable condition to undergo reconsolidation and provide evidence of molecular dissociation between retrieval and activation of memory in the non-declarative memory model taste aversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    Science.gov (United States)

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Exploring taste hyposensitivity in Japanese senior high school students.

    Science.gov (United States)

    Ohnuki, Mari; Shinada, Kayoko; Ueno, Masayuki; Zaitsu, Takashi; Wright, Fredrick Allan Clive; Kawaguchi, Yoko

    2012-02-01

    The main objective of this study was to investigate the prevalence of taste hyposensitivity and the relationships between sex, oral health status, and eating habits with taste hyposensitivity in Japanese senior high school students. Oral examinations, sweet and salt whole-mouth taste tests, and a questionnaire about eating habits were conducted on 234 senior high school students. Factors affecting taste hyposensitivity were investigated using a multivariate analysis. Sweet-taste hyposensitivity was observed in 7.3% of the students, and salt-taste hyposensitivity in 22.2%. Approximately 3% of the students had both sweet- and salt-taste hyposensitivity, and 22.6% had either sweet- or salt-taste hyposensitivity. In total, 26% had a taste hyposensitivity. There were significant relationships between the intake of instant noodles with sweet-taste hyposensitivity, and the intake of vegetables or isotonic drinks with salt-taste hyposensitivity. There was a significant association between eating habits and taste hyposensitivity in Japanese senior high school students. Taste tests would be a helpful adjunct for students to recognize variations in taste sensitivity, and a questionnaire about their eating habits might provide an effective self-review of their eating habits, and therefore, provide motivation to change. © 2011 Blackwell Publishing Asia Pty Ltd.

  17. Influence of taste disorders on dietary behaviors in cancer patients under chemotherapy

    Directory of Open Access Journals (Sweden)

    Laviano Alessandro

    2010-03-01

    Full Text Available Abstract Objectives To determine the relationship between energy and nutrient consumption with chemosensory changes in cancer patients under chemotherapy. Methods We carried out a cross-sectional study, enrolling 60 subjects. Cases were defined as patients with cancer diagnosis after their second chemotherapy cycle (n = 30, and controls were subjects without cancer (n = 30. Subjective changes of taste during treatment were assessed. Food consumption habits were obtained with a food frequency questionnaire validated for Mexican population. Five different concentrations of three basic flavors --sweet (sucrose, bitter (urea, and a novel basic taste, umami (sodium glutamate-- were used to measure detection thresholds and recognition thresholds (RT. We determine differences between energy and nutrient consumption in cases and controls and their association with taste DT and RT. Results No demographic differences were found between groups. Cases showed higher sweet DT (6.4 vs. 4.4 μmol/ml; p = 0.03 and a higher bitter RT (100 vs. 95 μmol/ml; p = 0.04 than controls. Cases with sweet DT above the median showed significant lower daily energy (2,043 vs.1,586 kcal; p = 0.02, proteins (81.4 vs. 54 g/day; p = 0.01, carbohydrates (246 vs.192 g/day; p = 0.05, and zinc consumption (19 vs.11 mg/day; p = 0.01 compared to cases without sweet DT alteration. Cases with sweet DT and RT above median were associated with lower completion of energy requirements and consequent weight loss. There was no association between flavors DT or RT and nutrient ingestion in the control group. Conclusion Changes of sweet DT and bitter RT in cancer patients under chemotherapy treatment were associated with lower energy and nutrient ingestion. Taste detection and recognition thresholds disorders could be important factors in malnutrition development on patients with cancer under chemotherapy treatment.

  18. The semantic basis of taste-shape associations

    Directory of Open Access Journals (Sweden)

    Carlos Velasco

    2016-02-01

    Full Text Available Previous research shows that people systematically match tastes with shapes. Here, we assess the extent to which matched taste and shape stimuli share a common semantic space and whether semantically congruent versus incongruent taste/shape associations can influence the speed with which people respond to both shapes and taste words. In Experiment 1, semantic differentiation was used to assess the semantic space of both taste words and shapes. The results suggest a common semantic space containing two principal components (seemingly, intensity and hedonics and two principal clusters, one including round shapes and the taste word “sweet,” and the other including angular shapes and the taste words “salty,” “sour,” and “bitter.” The former cluster appears more positively-valenced whilst less potent than the latter. In Experiment 2, two speeded classification tasks assessed whether congruent versus incongruent mappings of stimuli and responses (e.g., sweet with round versus sweet with angular would influence the speed of participants’ responding, to both shapes and taste words. The results revealed an overall effect of congruence with congruent trials yielding faster responses than their incongruent counterparts. These results are consistent with previous evidence suggesting a close relation (or crossmodal correspondence between tastes and shape curvature that may derive from common semantic coding, perhaps along the intensity and hedonic dimensions.

  19. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  20. Extinction, Spontaneous Recovery and Renewal of Flavor Preferences Based on Taste-Taste Learning

    Science.gov (United States)

    Diaz, Estrella; De la Casa, L. G.

    2011-01-01

    This paper presents evidence of extinction, spontaneous recovery and renewal in a conditioned preferences paradigm based on taste-taste associations. More specifically, in three experiments rats exposed to a simultaneous compound of citric acid-saccharin solution showed a preference for the citric solution when the preference was measured with a…

  1. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Directory of Open Access Journals (Sweden)

    Ralf Kist

    2014-10-01

    Full Text Available In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  2. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Science.gov (United States)

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  3. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    Directory of Open Access Journals (Sweden)

    Qian (Janice Wang

    2015-12-01

    Full Text Available We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks, whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks, compared with chance (choosing any specific taste 25% of the time. In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  4. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    Science.gov (United States)

    Woods, Andy T.; Spence, Charles

    2015-01-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365

  5. Taste as feeling

    OpenAIRE

    Highmore, Ben

    2016-01-01

    This article is premised on two presumptions. The first is, I think, uncontroversial, the second less so. The first presumption is that today, serious discussions about taste usually start out by rehearsing Pierre Bourdieu’s contribution to our understanding of how taste preferences operate in society. This, then, is merely to recognize that when Bourdieu first published books such as The Love of Art (1969, written with Alain Darbel) and Distinctions: A Social Critique of the Judgement of Tas...

  6. Taste detection and recognition thresholds in Japanese patients with Alzheimer-type dementia.

    Science.gov (United States)

    Ogawa, Takao; Irikawa, Naoya; Yanagisawa, Daijiro; Shiino, Akihiko; Tooyama, Ikuo; Shimizu, Takeshi

    2017-04-01

    Alzheimer-type dementia (AD) is pathologically characterized by massive neuronal loss in the brain, and the taste cortex is thought to be affected. However, there are only a few reports regarding the gustatory function of AD patients, and the conclusions of this research are inconsistent. This prospective study enrolled 22 consecutive patients with mild to moderately severe Alzheimer-type dementia (AD) with mean age of 84.0 years, and 49 elderly volunteers without dementia with mean age of 71.0 years as control subjects. The control subjects were divided into two groups according to age: a younger group (N=28, mean age: 68.5) and an older group (N=21, mean age: 83.0). The gustatory function was investigated using the filter paper disc method (FPD) and electrogustometry (EGM). The gustatory function as measured by the FPD was significantly impaired in patients with AD as compared with age-matched control subjects; no such difference was found between the younger and the older control groups. On the other hand, as for the EGM thresholds, there were no differences between the AD patient group and the age-matched controls. The FPD method demonstrated decreased gustatory function in AD patients beyond that of aging. On the other hand, EGM thresholds did not differ between the AD patient group and the age-matched controls. These results suggest that failure of taste processing in the brain, but not taste transmission in the peripheral taste system, occurs in patients with AD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Late taste disorders in bone marrow transplantation: clinical evaluation with taste solutions in autologous and allogeneic bone marrow recipients.

    Science.gov (United States)

    Marinone, M G; Rizzoni, D; Ferremi, P; Rossi, G; Izzi, T; Brusotti, C

    1991-01-01

    The aim of this work was to determine the type and the significance of taste disorders in allogeneic bone marrow transplanted patients. In a retrospective study the taste threshold of a cohort of 15 allogeneic bone marrow transplanted patients, 4-51 months after transplantation (mean: 30.6 +/- 15.8), was compared to the taste threshold of 8 autologous bone marrow recipients, 4-48 months after transplantation (mean: 24.12 +/- 12.18), and to the taste threshold of a group of 20 consecutive normal subjects. Allogeneic bone marrow transplanted patients showed a significant hypogeusia for salt (Pearson's chi square p = 0.0002; Yates' correction p = 0.0007) and sour (Pearson's chi square p = 0.001; Yates' correction p = 0.008). No significant variations were observed for sweet and bitter. Autologous bone marrow recipients did not show any significant variation of taste acuity for sweet, salt or sour; a constant reduction of the taste threshold for bitter was observed, but the values were not significantly different from normal (Pearson's chi square p = 0.47; Yates' correction p = 0.83). So, late and selective taste disorders are observed in allogeneic bone marrow transplanted patients. Since the severity of the disorders is not strictly related to the severity of chronic oral G.V.H.D., taste analysis could discover the slightest, clinically undetectable cases of chronic oral G.V.H.D. The mechanism of immune aggression on the sensorial taste cells is poorly understood. Further trials are needed to define variations of taste acuity not only after allogeneic bone marrow transplantation, but also in systemic immune diseases.

  8. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  9. Tasting in mundane practices

    DEFF Research Database (Denmark)

    Mann, Anna

    2015-01-01

    This thesis presents an ethnographic investigation into practices of tasting. Based on ethnographic fieldwork in various Western Europe settings in which people sensually engaged with food and drinks, the chapters show how tasting is done by research subjects in sensory science laboratories; guests...... response to a food object, leading on to a multi-sensory experience of its qualities, that do not just emerge from the food but are co-shaped by the context and that give rise to sensorial knowledge. By investigating specificities, articulating alternatives, showing construction processes, and typecasting...... particular practices, the chapters unpack each of these assumptions. What emerges is an alternative, composite understanding of tasting as variously done in varied mundane practices....

  10. Enhancement of retronasal odors by taste.

    Science.gov (United States)

    Green, Barry G; Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2012-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste ("sweet," "sour," "salty," and "bitter") and odor ("other") intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste-odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of "cherry" and "vanilla" flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods. © The Author 2011. Published by Oxford University Press. All rights reserved.

  11. Taste dysfunction in irradiated patients with head and neck cancer

    International Nuclear Information System (INIS)

    Zheng, Wen-Kai; Yamamoto, Tomoya; Komiyama, Sohtaro

    2002-01-01

    Taste disorders caused by radiation therapy for head and neck cancer are common. This prospective study of 40 patients with head and neck cancer assessed changes in taste sensations during radiation therapy. The relationship between the time course and the degree of taste disorder was studied. The taste recognition threshold and supra-threshold taste intensity performance for the four basic tastes were measured using the whole-mouth taste method before, during, and after radiation therapy. Bitter taste was affected most. An increase in threshold for sweet taste depended upon whether the tip of tongue was included within the radiation field. The slope of the taste intensity performance did not change during or after radiotherapy. The pattern of salivary dysfunction was different from that of taste dysfunction. The main cause of taste disorders during radiation support the hypothesis that taste dysfunction is due to damage to the taste buds in the radiation field. (author)

  12. Taste dysfunction in irradiated patients with head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wen-Kai; Yamamoto, Tomoya; Komiyama, Sohtaro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Inokuchi, Akira [Saga Medical School (Japan)

    2002-04-01

    Taste disorders caused by radiation therapy for head and neck cancer are common. This prospective study of 40 patients with head and neck cancer assessed changes in taste sensations during radiation therapy. The relationship between the time course and the degree of taste disorder was studied. The taste recognition threshold and supra-threshold taste intensity performance for the four basic tastes were measured using the whole-mouth taste method before, during, and after radiation therapy. Bitter taste was affected most. An increase in threshold for sweet taste depended upon whether the tip of tongue was included within the radiation field. The slope of the taste intensity performance did not change during or after radiotherapy. The pattern of salivary dysfunction was different from that of taste dysfunction. The main cause of taste disorders during radiation support the hypothesis that taste dysfunction is due to damage to the taste buds in the radiation field. (author)

  13. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  14. Intrinsic nitric oxide regulates the taste response of the sugar receptor cell in the blowfly, Phormia regina.

    Science.gov (United States)

    Murata, Yoshihiro; Mashiko, Masashi; Ozaki, Mamiko; Amakawa, Taisaku; Nakamura, Tadashi

    2004-01-01

    The taste organ in insects is a hair-shaped taste sensory unit having four functionally differentiated contact chemoreceptor cells. In the blowfly, Phormia regina, cGMP has been suggested to be a second messenger for the sugar receptor cell. Generally, cGMP is produced by membranous or soluble guanylyl cyclase (sGC), which can be activated by nitric oxide (NO). In the present paper, we electrophysiologically showed that an NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO), an NO donor, 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC 7) or an NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) specifically affected the response in the sugar receptor cell, but not in other receptor cells. PTIO, when introduced into the receptor cells in a sensillum aided by sodium deoxycholate (DOC, pH 7.2), depressed the response of sugar receptor cells to sucrose but did not affect those of the salt or water receptor cells. NOC 7, given extracellularly, latently induced the response of sugar receptor cells; and L-NAME, when introduced into the receptor cells, depressed the response of sugar receptor cells. The results clearly suggest that NO, which may be produced by intrinsic NOS in sugar receptor cells, participates in the transduction cascade of these cells in blowfly.

  15. Differences in taste between two polyethylene glycol preparations.

    Science.gov (United States)

    Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F

    2007-12-01

    Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (pPEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (pPEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.

  16. The bamboo-eating giant panda (Ailuropoda melanoleuca) has a sweet tooth: behavioral and molecular responses to compounds that taste sweet to humans.

    Science.gov (United States)

    Jiang, Peihua; Josue-Almqvist, Jesusa; Jin, Xuelin; Li, Xia; Brand, Joseph G; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K

    2014-01-01

    A growing body of behavioral and genetic information indicates that taste perception and food sources are highly coordinated across many animal species. For example, sweet taste perception is thought to serve to detect and motivate consumption of simple sugars in plants that provide calories. Supporting this is the observation that most plant-eating mammals examined exhibit functional sweet perception, whereas many obligate carnivores have independently lost function of their sweet taste receptors and exhibit no avidity for simple sugars that humans describe as tasting sweet. As part of a larger effort to compare taste structure/function among species, we examined both the behavioral and the molecular nature of sweet taste in a plant-eating animal that does not consume plants with abundant simple sugars, the giant panda (Ailuropoda melanoleuca). We evaluated two competing hypotheses: as plant-eating mammals, they should have a well-developed sweet taste system; however, as animals that do not normally consume plants with simple sugars, they may have lost sweet taste function, as has occurred in strict carnivores. In behavioral tests, giant pandas avidly consumed most natural sugars and some but not all artificial sweeteners. Cell-based assays revealed similar patterns of sweet receptor responses toward many of the sweeteners. Using mixed pairs of human and giant panda sweet taste receptor units (hT1R2+gpT1R3 and gpT1R2+hT1R3) we identified regions of the sweet receptor that may account for behavioral differences in giant pandas versus humans toward various sugars and artificial sweeteners. Thus, despite the fact that the giant panda's main food, bamboo, is very low in simple sugars, the species has a marked preference for several compounds that taste sweet to humans. We consider possible explanations for retained sweet perception in this species, including the potential extra-oral functions of sweet taste receptors that may be required for animals that consume

  17. The bamboo-eating giant panda (Ailuropoda melanoleuca has a sweet tooth: behavioral and molecular responses to compounds that taste sweet to humans.

    Directory of Open Access Journals (Sweden)

    Peihua Jiang

    Full Text Available A growing body of behavioral and genetic information indicates that taste perception and food sources are highly coordinated across many animal species. For example, sweet taste perception is thought to serve to detect and motivate consumption of simple sugars in plants that provide calories. Supporting this is the observation that most plant-eating mammals examined exhibit functional sweet perception, whereas many obligate carnivores have independently lost function of their sweet taste receptors and exhibit no avidity for simple sugars that humans describe as tasting sweet. As part of a larger effort to compare taste structure/function among species, we examined both the behavioral and the molecular nature of sweet taste in a plant-eating animal that does not consume plants with abundant simple sugars, the giant panda (Ailuropoda melanoleuca. We evaluated two competing hypotheses: as plant-eating mammals, they should have a well-developed sweet taste system; however, as animals that do not normally consume plants with simple sugars, they may have lost sweet taste function, as has occurred in strict carnivores. In behavioral tests, giant pandas avidly consumed most natural sugars and some but not all artificial sweeteners. Cell-based assays revealed similar patterns of sweet receptor responses toward many of the sweeteners. Using mixed pairs of human and giant panda sweet taste receptor units (hT1R2+gpT1R3 and gpT1R2+hT1R3 we identified regions of the sweet receptor that may account for behavioral differences in giant pandas versus humans toward various sugars and artificial sweeteners. Thus, despite the fact that the giant panda's main food, bamboo, is very low in simple sugars, the species has a marked preference for several compounds that taste sweet to humans. We consider possible explanations for retained sweet perception in this species, including the potential extra-oral functions of sweet taste receptors that may be required for animals

  18. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus.

    Directory of Open Access Journals (Sweden)

    Weiwei Lei

    Full Text Available Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in

  19. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  20. Experimental studies of food choices and palatability responses in European subjects exposed to the Umami taste.

    Science.gov (United States)

    Bellisle, France; France, Bellisle

    2008-01-01

    In the Western world, consumers have only recently learned to discriminate the Umami taste, although they have enjoyed its contribution to the palatability of traditional dishes for centuries. The flavor enhancing properties of MSG have been scientifically investigated in European subjects. By adding MSG to such foods as soups, their content in sodium can be decreased without altering palatability, thus favoring a net decrease in sodium intake. Consumers presented with a novel food often have to get accustomed to the new taste before they acquire a preference for the food. A study showed that when such novel foods are added with some appropriate amount of MSG, consumers acquire a preference for them more rapidly. In elderly persons, the addition of MSG to nutritionally valuable foods (soups, vegetables, starches) did induce an increase of intake of MSG-added foods. Total meal size, however, was not affected, since the increased intake of MSG-containing foods was followed by a decreased consumption of foods served later in the meal, such as desserts. The same observations were repeated in hospitalized diabetic patients. Again, the patients ingested more healthy MSG-containing foods and less of other foods, with the same total meal energy intake. These two studies suggested that MSG could be used to stimulate appropriate food choices in certain populations.

  1. Sarco/Endoplasmic reticulum Ca2+-ATPases (SERCA contribute to GPCR-mediated taste perception.

    Directory of Open Access Journals (Sweden)

    Naoko Iguchi

    Full Text Available The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory, bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca(2+ concentration ([Ca(2+](c for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca(2+](c from the cytosol of taste receptor cells (TRCs and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca(2+ clearance in TRCs, we sought the molecules involved in [Ca(2+](c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA family that sequesters cytosolic Ca(2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca(2+ release for signaling. Serca3-knockout (KO mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca(2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception.

  2. Change of Taste Sensitivity of Clove Cigarette Smokers in Medan

    Directory of Open Access Journals (Sweden)

    Marlina Simamora

    2013-07-01

    Full Text Available Tongue has taste buds that contain taste receptor which affected by many factors, including smoking habit. Objective: To analyze the differences of sweet and bitter taste sensitivity in the pedicab driver clove cigarette smokers compared to non-smokers in Medan Padang Bulan. Methods: This study was conducted by placing the sweet taste strips and bitter taste strips on four taste receptors of the tongue, with increasing solution concentration in 74 subjects. This was a cross sectional study on pedicab driver population in Medan Padang Bulan. Results: There were differences between clove cigarette smokers and non-smokers on sweet taste examination (p<0.005. There was a difference between clove cigarette smokers and non-smokers on examination bitter taste receptors (p<0.005. On the clove cigarette smokers, there was no significant difference between sweet taste and bitter taste on the receptors itself. Conclusion: Non-smokers are more sensitive to sweet taste than the clove cigarette smokers. Bitter taste sensitivity is greater in cigarettes smokers than in non-smokers. Taste receptors on all location of the tongue could taste sweet and bitter substances, but a certain location of taste receptors were more sensitive compared to others.

  3. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    Science.gov (United States)

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    OpenAIRE

    Li, Yi-ke; Yang, Juan-mei; Huang, Yi-bo; Ren, Dong-dong; Chi, Fang-lu

    2015-01-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: co...

  5. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    Science.gov (United States)

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  6. Music influences hedonic and taste ratings in beer

    Directory of Open Access Journals (Sweden)

    Felipe eReinoso Carvalho

    2016-05-01

    Full Text Available The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231. The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song.In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting.These results provide support for the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food events. Here we also suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction towards a song can have for the ensuing tasting experience.

  7. Music Influences Hedonic and Taste Ratings in Beer.

    Science.gov (United States)

    Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles

    2016-01-01

    The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience.

  8. Music Influences Hedonic and Taste Ratings in Beer

    Science.gov (United States)

    Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles

    2016-01-01

    The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience. PMID:27199862

  9. Norepinephrine is coreleased with serotonin in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  10. Training of a Dutch and Malaysian sensory panel to assess intensities of basic tastes and fat sensation of commonly consumed foods

    NARCIS (Netherlands)

    Teo, Pey Sze; Langeveld, van Astrid W.B.; Pol, Korrie; Siebelink, Els; Graaf, de Cees; Martin, Christophe; Issanchou, Sylvie; Yan, See Wan; Mars, Monica

    2018-01-01

    Taste has a nutrient sensing function and guides food choices. Therefore, investigating taste profiles of dietary patterns - within and across cultures - is highly relevant for nutritional research. However, this demands for accurately described food-taste databases, which are supported with data on

  11. Analysis of taste qualities and ingredients of beer by taste sensing system; Mikaku sensor ni yoru beer no ajishitsu to seibun no bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, S.; Yuki, T. [Kinki University, Osaka (Japan); Toko, K. [Kyushu University, Fukuoka (Japan); Tsuda, Y.; Nakatani, K. [Suntory Ltd., Osaka (Japan)

    1997-08-20

    The taste of beer was measured using a taste sensing system with eight kinds of lipid membrane. The output from the sensor has high discriminating power and high correlation with taste substances in beer and sensory test by human. The estimation of the concentration of taste substances by multiple regression analysis was fairly well. The taste sensor also well estimated the result of sensory test of many keywords concerning beer taste. 16 refs., 8 figs., 1 tab.

  12. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Extensive Gustatory Cortex Lesions Significantly Impair Taste Sensitivity to KCl and Quinine but Not to Sucrose in Rats.

    Directory of Open Access Journals (Sweden)

    Michelle B Bales

    Full Text Available Recently, we reported that large bilateral gustatory cortex (GC lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX and in sham-operated controls (SHAM. Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p., but postsurgical tests indicated a weak conditioned taste aversion (CTA even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average. For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001 in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006 in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and

  14. Dietary sodium modulation of aldosterone activation and renal function during the progression of experimental heart failure.

    Science.gov (United States)

    Miller, Wayne L; Borgeson, Daniel D; Grantham, J Aaron; Luchner, Andreas; Redfield, Margaret M; Burnett, John C

    2015-02-01

    Aldosterone activation is central to the sodium–fluid retention that marks the progression of heart failure (HF). The actions of dietary sodium restriction, a mainstay in HF management, on cardiorenal and neuroendocrine adaptations during the progression of HF are poorly understood. The study aim was to assess the role of dietary sodium during the progression of experimental HF. Experimental HF was produced in a canine model by rapid right ventricular pacing which evolves from early mild HF to overt, severe HF. Dogs were fed one of three diets: (i) high sodium [250 mEq (5.8 g) per day, n =6]; (ii) standard sodium [58 mEq (1.3 g) per day, n =6]; and (iii) sodium restriction [11 mEq (0.25 g) per day, n =6]. During the 38-day study, haemodynamics, renal function, plasma renin activity (PRA), and aldosterone were measured. Changes in haemodynamics at 38 days were similar in all three groups, as were changes in renal function. Aldosterone activation was demonstrated in all three groups; however, dietary sodium restriction, in contrast to high sodium, resulted in early (10 days) activation of PRA and aldosterone. High sodium demonstrated significant suppression of aldosterone activation over the course of HF progression. Excessive dietary sodium restriction particularly in early stage HF results in early aldosterone activation, while normal and excess sodium intake are associated with delayed or suppressed activation. These findings warrant evaluation in humans to determine if dietary sodium manipulation, particularly during early stage HF, may have a significant impact on neuroendocrine disease progression.

  15. Immunohistochemical Analysis of Human Vallate Taste Buds.

    Science.gov (United States)

    Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S; Finger, Thomas E

    2015-11-01

    The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  17. Distribution of sensory taste thresholds for phenylthiocarbamide ...

    African Journals Online (AJOL)

    The ability to taste Phenylthiocarbamide (PTC), a bitter organic compound has been described as a bimodal autosomal trait in both genetic and anthropological studies. This study is based on the ability of a person to taste PTC. The present study reports the threshold distribution of PTC taste sensitivity among some Muslim ...

  18. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds.

    Science.gov (United States)

    Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong

    2014-02-12

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.

  19. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Science.gov (United States)

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  20. Volumetry of human taste buds using laser scanning microscopy.

    Science.gov (United States)

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  1. Accuracy of self-report in detecting taste dysfunction.

    Science.gov (United States)

    Soter, Ana; Kim, John; Jackman, Alexis; Tourbier, Isabelle; Kaul, Arti; Doty, Richard L

    2008-04-01

    To determine the sensitivity, specificity, and positive and negative predictive value of responses to the following questionnaire statements in detecting taste loss: "I can detect salt in chips, pretzels, or salted nuts," "I can detect sourness in vinegar, pickles, or lemon," "I can detect sweetness in soda, cookies, or ice cream," and "I can detect bitterness, in coffee, beer, or tonic water." Responses to an additional item, "I can detect chocolate in cocoa, cake or candy," was examined to determine whether patients clearly differentiate between taste loss and flavor loss secondary to olfactory dysfunction. A total of 469 patients (207 men, mean age = 54 years, standard deviation = 15 years; and 262 women, mean age = 54 years, standard deviation = 14 years) were administered a questionnaire containing these questions with the response categories of "easily," "somewhat," and "not at all," followed by a comprehensive taste and smell test battery. The questionnaire items poorly detected bona fide taste problems. However, they were sensitive in detecting persons without such problems (i.e., they exhibited low positive but high negative predictive value). Dysfunction categories of the University of Pennsylvania Smell Identification Test (UPSIT) were not meaningfully related to subjects' responses to the questionnaire statements. Both sex and age influenced performance on most of the taste tests, with older persons performing more poorly than younger ones and women typically outperforming men. Although it is commonly assumed that straight-forward questions concerning taste may be useful in detecting taste disorders, this study suggests this is not the case. However, patients who specifically report having no problems with taste perception usually do not exhibit taste dysfunction. The difficulty in detecting true taste problems by focused questionnaire items likely reflects a combination of factors. These include the relatively low prevalence of taste deficits in the

  2. The taste of desserts' packages.

    Science.gov (United States)

    Overbeeke, C J; Peters, M E

    1991-10-01

    This article reports an experiment on expressing the behavioural meaning of designed objects. Can a designer express the taste of a desert in the form of its packaging and can consumers match these forms when tasting the desserts? Analysis of responses of 12 adults indicates positive answers to these questions.

  3. Taste-independent detection of the caloric content of sugar in Drosophila.

    Science.gov (United States)

    Dus, Monica; Min, SooHong; Keene, Alex C; Lee, Ga Young; Suh, Greg S B

    2011-07-12

    Feeding behavior is influenced primarily by two factors: nutritional needs and food palatability. However, the role of food deprivation and metabolic needs in the selection of appropriate food is poorly understood. Here, we show that the fruit fly, Drosophila melanogaster, selects calorie-rich foods following prolonged food deprivation in the absence of taste-receptor signaling. Flies mutant for the sugar receptors Gr5a and Gr64a cannot detect the taste of sugar, but still consumed sugar over plain agar after 15 h of starvation. Similarly, pox-neuro mutants that are insensitive to the taste of sugar preferentially consumed sugar over plain agar upon starvation. Moreover, when given a choice between metabolizable sugar (sucrose or D-glucose) and nonmetabolizable (zero-calorie) sugar (sucralose or L-glucose), starved Gr5a; Gr64a double mutants preferred metabolizable sugars. These findings suggest the existence of a taste-independent metabolic sensor that functions in food selection. The preference for calorie-rich food correlates with a decrease in the two main hemolymph sugars, trehalose and glucose, and in glycogen stores, indicating that this sensor is triggered when the internal energy sources are depleted. Thus, the need to replenish depleted energy stores during periods of starvation may be met through the activity of a taste-independent metabolic sensing pathway.

  4. An examination of the association of cognitive functioning, adherence to sodium restriction and Na/K ratios in Korean heart failure patients.

    Science.gov (United States)

    Hwang, Seon Young; Kim, JinShil

    2016-06-01

    Maintaining adequate ratios of sodium-to-potassium requires heart failure patients to be adherent to recommended dietary guidelines. A potential deterrent to adherence is poor cognitive functioning. The aims of this study were to (1) estimate dietary sodium and potassium intake and sodium-to-potassium ratios and (2) examine the associations between cognitive functioning and sodium-to-potassium ratios. Cognitive impairment may impact levels of adherence and subsequently sodium-to-potassium ratios; however, little is known about the relationship of cognitive functioning, adherence to dietary restrictions and sodium-to-potassium ratios. This study used a descriptive correlational design. Face-to-face interviews were conducted with heart failure patients with preserved or reduced left ventricular ejection fraction. Standard cognitive measures were used and included neuropsychological tests of global cognition, immediate and delayed recall, and executive function. Further, patients were instructed to complete a three-day food diary as an indirect measure of sodium-to-potassium intake. Ninety-one Korean patients with heart failure participated in this study (age 57 years, women 33%, education 10 years). A major underlying cause for heart failure was dilated cardiomyopathy (40%), followed by ischaemic cause (24%); the mean heart failure duration was 37 months. Average sodium intake was 3982 mg/day, with men consuming a significantly higher amount than women (4207 vs. 3523 mg). Potassium intake was 2583 mg/day, with both men and women consuming similarly insufficient amounts. Sodium-to-potassium ratio was 1·60, with men having a significantly elevated ratio compared with women (1·68 vs. 1·44). Cognitive function by sodium-to-potassium quartile groups showed nonlinear associations. Participants in the study consumed excessive sodium and insufficient potassium; correspondingly, elevated sodium-to-potassium ratios showed significant associations with cognitive

  5. Pathophysiology of primary burning mouth syndrome with special focus on taste dysfunction: a review.

    Science.gov (United States)

    Kolkka-Palomaa, M; Jääskeläinen, S K; Laine, M A; Teerijoki-Oksa, T; Sandell, M; Forssell, H

    2015-11-01

    Primary burning mouth syndrome (BMS) is a chronic oral condition characterized by burning pain often accompanied with taste dysfunction and xerostomia. The most compelling evidence concerning BMS pathophysiology comes from studies on the somatosensory system using neurophysiologic or psychophysical methods such as blink reflex, thermal quantitative sensory testing, as well as functional brain imaging. They have provided convincing evidence for neuropathic involvement at several levels of the somatosensory system in BMS pain pathophysiology. The number of taste function studies trying to substantiate the subjective taste disturbances or studies on salivary factors in BMS is much more limited, and most of them suffer from definitional and methodological problems. This review aims to critically evaluate the existing literature on the pathophysiology of BMS, paying special attention to the correctness of case selection and the methodology used in published studies, and to summarize the current state of knowledge. Based on the recognition of several gaps in the current understanding of the pathophysiology of BMS especially as regards taste and pain system interactions, the review ends with future scenarios for research in this area. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Taste Receptor Signaling-- From Tongues to Lungs

    Science.gov (United States)

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  7. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  8. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    Science.gov (United States)

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  9. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    Full Text Available Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  10. Distribution and function of voltage-gated sodium channels in the nervous system.

    Science.gov (United States)

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  11. Ethanol-induced conditioned taste avoidance: reward or aversion?

    Science.gov (United States)

    Liu, Chuang; Showalter, John; Grigson, Patricia Sue

    2009-03-01

    Rats avoid intake of a palatable taste cue when paired with all drugs of abuse tested. Evidence suggests that, at least for morphine and cocaine, rats avoid the taste cue because they are anticipating the rewarding properties of the drug. Thus, the suppressive effects of a rewarding sucrose solution and cocaine, but not those of the putatively aversive agent, lithium chloride (LiCl), are exaggerated in drug-sensitive Lewis rats. Likewise, the suppressive effects of sucrose and morphine, but not those of LiCl, are eliminated by bilateral lesions of the gustatory thalamus. Unlike morphine and cocaine, it is less clear whether rewarding or aversive drug properties are responsible for ethanol-induced suppression of intake of a taste cue. The present set of studies tests whether, like cocaine, ethanol-induced suppression of intake of a taste cue also is greater in the drug-sensitive Lewis rats and whether the suppressive effects of the drug are prevented by bilateral lesions of the taste thalamus. In Experiment 1, fluid-deprived Lewis and Fischer rats were given 5-minute access to 0.15% saccharin and then injected with saline or a range of doses of ethanol (0.5, 0.75, 1.0, or 1.5 g/kg). There was a total of 6 such pairings. In Experiments 2 and 3, Sprague-Dawley rats received bilateral electrophysiologically guided lesions of the gustatory thalamus. After recovery, suppression of intake of the saccharin cue was evaluated following repeated daily pairings with either a high (1.5 g/kg) or a low (0.75 g/kg) dose of ethanol. Ethanol-induced suppression of intake of the saccharin conditioned stimulus (CS) did not differ between the drug-sensitive Lewis rats relative to the less-sensitive Fischer rats. Lesions of the taste thalamus, however, prevented the suppressive effect of the 0.75 g/kg dose of the drug, but had no impact on the suppressive effect of the 1.5 g/kg dose of ethanol. The results suggest that the suppressive effects of ethanol on CS intake are mediated by both

  12. Anatomy, physiology and diagnostic considerations of taste and smell disorders

    NARCIS (Netherlands)

    A. Visser; R. van Weissenbruch; A. Vissink; A. van Nieuw Amerongen; F.K.L. Spijkervet; Dr. Harriët Jager-Wittenaar

    2013-01-01

    Taste and smell perception are closely related. The taste perception is performed by taste buds which can distinguish salt, sour, sweet, bitter, and umami. Moreover, 2,000-4,000 smells can be recognized. Many taste disorders are in fact smell disorders. Saliva affects taste perception because it

  13. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Taste responses to monosodium glutamate after alcohol exposure.

    Science.gov (United States)

    Wrobel, Elzbieta; Skrok-Wolska, Dominika; Ziolkowski, Marcin; Korkosz, Agnieszka; Habrat, Boguslaw; Woronowicz, Bohdan; Kukwa, Andrzej; Kostowski, Wojciech; Bienkowski, Przemyslaw; Scinska, Anna

    2005-01-01

    The aim of the present study was to evaluate the effects of acute and chronic exposure to alcohol on taste responses to a prototypic umami substance, monosodium glutamate (MSG). The rated intensity and pleasantness of MSG taste (0.03-10.0%) was compared in chronic male alcoholics (n = 35) and control subjects (n = 25). In a separate experiment, the effects of acute exposure of the oral mucosa to ethanol rinse (0.5-4.0%) on MSG taste (0.3-3.0%) were studied in 10 social drinkers. The alcoholic and control group did not differ in terms of the rated intensity and pleasantness of MSG taste. Electrogustometric thresholds were significantly (P alcohol-dependent subjects. The difference remained significant after controlling for between-group differences in cigarette smoking and coffee drinking. Rinsing with ethanol did not alter either intensity or pleasantness of MSG taste in social drinkers. The present results suggest that: (i) neither acute nor chronic alcohol exposure modifies taste responses to MSG; (ii) alcohol dependence may be associated with deficit in threshold taste reactivity, as assessed by electrogustometry.

  15. Utilizing Mushrooms to Reduce Overall Sodium in Taco Filling Using Physical and Sensory Evaluation.

    Science.gov (United States)

    Wong, Kristin M; Decker, Eric A; Autio, Wesley R; Toong, Ken; DiStefano, Garett; Kinchla, Amanda J

    2017-10-01

    decrease fat and sodium intake while still delivering acceptable taste. Mushroom substitution into meat-based products can be a strategy to develop products that can decrease fat and sodium consumption while increasing vegetable intake without compromising the quality and taste consumers demand. This research shows how consumers can accept meat-based products containing mushrooms with potential for direct food service application. © 2017 Institute of Food Technologists®.

  16. Quantitative analysis of developing epiglottal taste buds in sheep.

    OpenAIRE

    Bradley, R M; Cheal, M L; Kim, Y H

    1980-01-01

    Epiglottal taste buds of the sheep increase in number during development, and continue to increase until the epiglottis has reached its adult size. However, since the increase in taste bud numbers is paralleled by increase in the surface area of the epiglottis, the density of taste buds decreases progressively in the fetus and newborn. After birth the density remains relatively constant. From examination of the morphological stages of epiglottal taste bud development, we conclude that taste b...

  17. Tasting Wine: A Learning Experience

    Science.gov (United States)

    King, Tanya J.; Donaldson, Jilleen A.; Harry, Emma

    2012-01-01

    This paper describes a field trip by senior undergraduate anthropology students to a local winery, where they participated in a wine-tasting class with winery staff. In response to explicit hints from a wine-tasting facilitator, and more subtle cues from the cultural capital embedded in their surroundings and the winery staff, the students…

  18. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor

    Science.gov (United States)

    Baldwin, Maude W.; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J.; Klasing, Kirk C.; Misaka, Takumi; Edwards, Scott V.; Liberles, Stephen D.

    2015-01-01

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. PMID:25146290

  19. Exploring the Musical Taste of Expert Listeners: Musicology Students reveal Tendency towards Omnivorous Taste

    Directory of Open Access Journals (Sweden)

    Paul eElvers

    2015-08-01

    Full Text Available The current study examined the musical taste of musicology students as compared to a control student group. Participants (n=1003 completed an online survey regarding the frequency with which they listened to 22 musical styles. A factor analysis revealed six underlying dimensions of musical taste. A hierarchical cluster analysis then grouped all participants, regardless of their status, according to their similarity on these dimensions. The employed exploratory approach was expected to reveal potential differences between musicology students and controls. A three-cluster solution was obtained. Comparisons of the clusters in terms of musical taste revealed differences in the listening frequency and variety of appreciated music styles: The first cluster (51% musicology students / 27% controls showed the greatest musical engagement across all dimensions although with a tendency towards »sophisticated« musical styles. The second cluster (36% musicology students / 46% controls exhibited an interest in »conventional« music, while the third cluster (13% musicology students / 27% controls showed a strong liking of rock music. The results provide some support for the notion of specific tendencies in the musical taste of musicology students and the contribution of familiarity and knowledge towards musical omnivorousness.

  20. Change of the human taste bud volume over time.

    Science.gov (United States)

    Srur, Ehab; Stachs, Oliver; Guthoff, Rudolf; Witt, Martin; Pau, Hans Wilhelm; Just, Tino

    2010-08-01

    The specific aim of this study is to measure the taste volume in healthy human subjects over a 2.5-month period and to demonstrate morphological changes of the peripheral taste organs. Eighteen human taste buds in four fungiform papillae (fPap) were examined over a 10-week period. The fungiform papillae investigated were selected based on the form of the papillae or the arrangement of surface taste pores. Measurements were performed over 10 consecutive weeks, with five scans in a day once a week. The following parameters were measured: height and diameter of the taste bud, diameter of the fungiform papilla and diameter of the taste pore. The findings of this exploratory study indicated that (1) taste bud volumes changed over a 10-week period, (2) the interval between two volume maxima within the 10-week period was 3-5 weeks, and (3) the diameter of the fPap did not correlate with the volume of a single taste bud or with the volume of all taste buds in the fPap within the 10-week period. This exploratory in vivo study revealed changes in taste bud volumes in healthy humans with age-related gustatory sensitivity. These findings need to be considered when studying the effect of denervation of fungiform papillae in vivo using confocal microscopy. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Metallic taste from electrical and chemical stimulation.

    Science.gov (United States)

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  2. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2015-07-01

    Full Text Available The aim of the study was to taste mask ciprofloxacin (CP by using ion-exchange resins (IERs followed by sustain release of CP by forming interpenetrating polymer network (IPN. IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised. Drug-resin complexes (DRCs with three different ratios of drug to IERs (1:1, 1:2, 1:4 were prepared & evaluated for taste masking by following in vivo and in vitro methods. Human volunteers graded ADC 1:4, acrylic acid-divinyl benzene (ADC-3 resin as tasteless. Characterization studies such as FTIR, SEM, DSC, P-XRD differentiated ADC 1:4, from physical mixture (PM 1:4 and confirmed the formation of complex. In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid (SGF i.e. pH 1.2. IPN beads were prepared with ADC 1:4 by using sodium alginate (AL and sodium alginate-chitosan (AL-CS for sustain release of CP at SGF pH and followed by simulated intestinal fluid (SIF i.e. pH 7.4. FTIR spectra confirmed the formation of IPN beads. The release of CP was sustain at SGF pH (75%. The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.

  3. Taste Bud Homeostasis in Health, Disease, and Aging

    OpenAIRE

    Feng, Pu; Huang, Liquan; Wang, Hong

    2013-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature...

  4. Taste profile characterization of white ginseng by electronic tongue ...

    African Journals Online (AJOL)

    GREGORY

    2012-05-10

    May 10, 2012 ... the flavor of substances such as foods and poisons. Humans perceive taste through sensory organs called taste buds concentrated on the upper tongue surface. Basic taste contributes to the sensation and flavor of foods in the mouth. Sourness is the taste that detects acidity. The sourness of substances is ...

  5. Tachykinins stimulate a subset of mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Jeff Grant

    Full Text Available The tachykinins substance P (SP and neurokinin A (NKA are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1. These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+-imaging on isolated taste cells, it was observed that SP induces Ca(2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like and umami-responsive Type II (Receptor cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+ responses evoked by umami stimuli in Type II (Receptor cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.

  6. [Molecular logic of alcohol and taste].

    Science.gov (United States)

    Matsumoto, Ichiro; Abe, Keiko; Arai, Soichi

    2006-10-01

    Ethanol, a main constituent of every alcohol beverage, has long been calling our attention to its gustatory effect. Recent molecular dynamics studies have suggested that ethanol as well as other tastants in foods, when taken in the oral cavity, gives rise to a taste signal which is expressed via reception at taste cells in the taste bud, intracellular signal transduction in collaboration with G proteins and effecters, and signal transmission to synapsed taste neurons, and/or simultaneous reception at and signal transduction in somatosensory neurons. The taste of ethanol and its acceptability are then recognized and judged at the higher center, with generation of various physiological phenomena in the body. We have tried to make an all-inclusive DNA microarray analysis, demonstrating that when a rat tongue is stimulated with a drop of aqueous ethanol in vivo, several particular genes are specifically up- or down-regulated in trigeminal ganglions. These initial gene expression changes at peripheral neurocytes might in whole or in part trigger some of the ethanol-associated gustatory and bodily response. The importance of defining a related molecular logic is emphasized to understand academic and industrial significances of this unique food constituent, ethanol.

  7. Taste avoidance induced by wheel running: effects of backward pairings and robustness of conditioned taste aversion.

    Science.gov (United States)

    Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C

    2004-09-15

    Rats repeatedly exposed to a distinctive novel solution (conditioned stimulus, CS) followed by the opportunity to run in a wheel subsequently drink less of this solution. Investigations on this phenomenon indicate that wheel running is an effective unconditioned stimulus (US) for establishing conditioned taste aversion (CTA) when using a forward conditioning procedure (i.e., the US-wheel running follows the CS-taste). However, other studies show that wheel running produces reliable preference for a distinctive place when pairings are backward (i.e., the CS-location follows the US-wheel running). One possibility to account for these results is that rewarding aftereffects of wheel running conditioned preference to the CS. The main objective of the present study was to assess the effects of backward conditioning using wheel running as the US and a distinctive taste as the CS. In a between-groups design, two experimental groups [i.e., forward (FC) and backward conditioning (BC)] and two control groups [CS-taste alone (TA) and CS-US unpaired (UNP)] were compared. Results from this experiment indicated that there is less suppression of drinking when a CS-taste followed a bout of wheel running. In fact, rats in the BC group drank more of the paired solution than all the other groups.

  8. Metallic taste in cancer patients treated with chemotherapy.

    Science.gov (United States)

    IJpma, I; Renken, R J; Ter Horst, G J; Reyners, A K L

    2015-02-01

    Metallic taste is a taste alteration frequently reported by cancer patients treated with chemotherapy. Attention to this side effect of chemotherapy is limited. This review addresses the definition, assessment methods, prevalence, duration, etiology, and management strategies of metallic taste in chemotherapy treated cancer patients. Literature search for metallic taste and chemotherapy was performed in PubMed up to September 2014, resulting in 184 articles of which 13 articles fulfilled the inclusion criteria: English publications addressing metallic taste in cancer patients treated with FDA-approved chemotherapy. An additional search in Google Scholar, in related articles of both search engines, and subsequent in the reference lists, resulted in 13 additional articles included in this review. Cancer patient forums were visited to explore management strategies. Prevalence of metallic taste ranged from 9.7% to 78% among patients with various cancers, chemotherapy treatments, and treatment phases. No studies have been performed to investigate the influence of metallic taste on dietary intake, body weight, and quality of life. Several management strategies can be recommended for cancer patients: using plastic utensils, eating cold or frozen foods, adding strong herbs, spices, sweetener or acid to foods, eating sweet and sour foods, using 'miracle fruit' supplements, and rinsing with chelating agents. Although metallic taste is a frequent side effect of chemotherapy and a much discussed topic on cancer patient forums, literature regarding metallic taste among chemotherapy treated cancer patients is scarce. More awareness for this side effect can improve the support for these patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Interactions between radiation and amphetamine in taste aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intact rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion

  10. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress

    Science.gov (United States)

    Greaney, Jody L; DuPont, Jennifer J; Lennon-Edwards, Shannon L; Sanders, Paul W; Edwards, David G; Farquhar, William B

    2012-01-01

    Animal studies have reported dietary salt-induced reductions in vascular function independent of increases in blood pressure (BP). The purpose of this study was to determine if short-term dietary sodium loading impairs cutaneous microvascular function in normotensive adults with salt resistance. Following a control run-in diet, 12 normotensive adults (31 ± 2 years) were randomized to a 7 day low-sodium (LS; 20 mmol day−1) and 7 day high-sodium (HS; 350 mmol day−1) diet (controlled feeding study). Salt resistance, defined as a ≤5 mmHg change in 24 h mean BP determined while on the LS and HS diets, was confirmed in all subjects undergoing study (LS: 84 ± 1 mmHg vs. HS: 85 ± 2 mmHg; P > 0.05). On the last day of each diet, subjects were instrumented with two microdialysis fibres for the local delivery of Ringer solution and 20 mm ascorbic acid (AA). Laser Doppler flowmetry was used to measure red blood cell flux during local heating-induced vasodilatation (42°C). After the established plateau, 10 mm l-NAME was perfused to quantify NO-dependent vasodilatation. All data were expressed as a percentage of maximal cutaneous vascular conductance (CVC) at each site (28 mm sodium nitroprusside; 43°C). Sodium excretion increased during the HS diet (P sodium loading impairs cutaneous microvascular function independent of BP in normotensive adults and suggest a role for oxidative stress. PMID:22907057

  11. Private and Shared Taste in Art and Face Appreciation

    Directory of Open Access Journals (Sweden)

    Helmut eLeder

    2016-04-01

    Full Text Available Whether beauty is in the eye of the beholder or shared among individuals is a longstanding question in empirical aesthetics. By decomposing the variance structure of data for facial attractiveness, it has been previously shown that beauty evaluations comprise a similar amount of private and shared taste (Hönekopp, 2006. Employing the same methods, we found that, for abstract artworks, components that vary between individuals and relate to personal taste are particularly strong. Moreover, we instructed half of our participants to disregard their own taste and judge stimuli according to the taste of others instead. Ninety-five women rated 100 abstract artworks for liking and 100 faces for attractiveness. We found that the private taste proportion was much higher in abstract artworks, accounting for 75% of taste compared to 40% in the face condition. Abstract artworks were also less affected than faces by the instruction to rate according to others’ taste and therefore less susceptible to incorporation of external beauty standards. Together, our findings support the notion that art—and especially abstract art—crystallizes private taste.

  12. Elaboration of garlic and salt spice with reduced sodium intake.

    Science.gov (United States)

    Rodrigues, Jéssica F; Junqueira, Gabriela; Gonçalves, Carla S; Carneiro, João D S; Pinheiro, Ana Carla M; Nunes, Cleiton A

    2014-12-01

    Garlic and salt spice is widely used in Brazilian cookery, but it has a high sodium content; as high sodium intake has been strongly correlated to the incidence of chronic diseases. This study aimed to develop a garlic and salt spice with reduced sodium intake. Sensory evaluation was conducted by applying the spices to cooked rice. First, the optimal concentration of spice added during rice preparation was determined. Subsequently, seasonings (3:1) were prepared containing 0%, 50% and 25% less NaCl using a mixture of salts consisting of KCl and monosodium glutamate; a seasoning with a 0% NaCl reduction was established as a control. Three formulations of rice with different spices were assessed according to sensory testing acceptance, time-intensity and temporal domain of sensations. The proportions of salts used in the garlic and salt spice did not generate a strange or bad taste in the products; instead, the mixtures were less salty. However, the seasonings with lower sodium levels (F2 and F3) were better accepted in comparison to the traditional seasoning (F1). Therefore, a mixture of NaCl, KCl and monosodium glutamate is a viable alternative to develop a garlic and salt spice with reduced sodium intake.

  13. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    Directory of Open Access Journals (Sweden)

    Pavel Masek

    Full Text Available Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  14. Re-test reliability of gustatory testing and introduction of the sensitive Taste-Drop-Test

    DEFF Research Database (Denmark)

    Fjaeldstad, A; Niklassen, A; Fernandes, H

    2018-01-01

    . Testing gustatory function can be important for diagnostics and assessment of treatment effects. However, the gustatory tests applied are required to be both sensitive and reliable.In this study, we investigate the re-test validity of popular Taste Strips gustatory test for gustatory screening....... Furthermore, we introduce a new sensitive Taste-Drop-Test, which was found to be superior for detecting a more accurate measure of tastant sensitivity....

  15. Loss-of-Function Sodium Channel Mutations in Infancy A Pattern Unfolds

    NARCIS (Netherlands)

    Chockalingam, Priya; Wilde, Arthur A. M.

    2012-01-01

    The role of channelopathies in the pathogenesis of sudden cardiac death (SCD) in patients with structurally normal hearts is a rapidly evolving story.(1) Many ion channels are involved, including loss-of-function sodium channelopathies of which the phenotypic spectrum ranges from lethal arrhythmias

  16. Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    Directory of Open Access Journals (Sweden)

    Perna Marla K

    2011-04-01

    Full Text Available Abstract Background Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene. Results Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types. Conclusions p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia

  17. X-ray microanalysis of Zn in the taste organ of the teleost Ameiurus nebulosus

    International Nuclear Information System (INIS)

    Reutter, K.

    1983-01-01

    The trace metal Zn seems to be essential for the normal functioning of the gustatory sense. It was tried to localize Zn within the peripheral and central parts of the bullhead's gustatory system by the use of scanning electron microscopy and X-ray microanalysis. In freeze dried preparations of the bullhead's barbel taste buds (and the taste buds of rabbits) Zn is found in randomly distributed granules, which cannot be related to distinct taste bud regions. Furthermore, Zn occurs in subunits of the central gustatory nuclei, the vagal and facial lobe of the rhombencephalon. Therefore Zn appears to be essential for intact peripheral as well as central gustatory processes, at least in lower vertebrates. (author)

  18. Learning Consumer Tastes Through Dynamic Assortments

    NARCIS (Netherlands)

    Ulu, C.; Honhon, D.B.L.P.; Alptekinoglu, A.

    2012-01-01

    How should a firm modify its product assortment over time when learning about consumer tastes? In this paper, we study dynamic assortment decisions in a horizontally differentiated product category for which consumers' diverse tastes can be represented as locations on a Hotelling line. We presume

  19. The taste in a polyparadigmal system

    Directory of Open Access Journals (Sweden)

    Klimova G. P.

    2016-09-01

    Full Text Available modern spiritual situation is determined as a transfer from a united cultural paradigm to a poliparadigmal cultural space. It is characterized by an unlimited diversity of unlinked spiritual structures, ideas, theories, styles and direction. Polyphony, eclecticism, subjective assembling, inlaid, and omnivorous are perceived as a norm today. Total impact of cultural specimen, intensified by an industry of informational technologies deform valuable aesthetic orientations of a personality, including taste. Individual experience in the taste becomes unified and social. Tastes differentiated before (aesthetic, artistic, mass, elite, etc. became homogenous. Cultural reflection may be a purposeful preservation of elite valuable cultural orientation.

  20. Zizyphin modulates calcium signalling in human taste bud cells and fat taste perception in the mouse.

    Science.gov (United States)

    Murtaza, Babar; Berrichi, Meryem; Bennamar, Chahid; Tordjmann, Thierry; Djeziri, Fatima Z; Hichami, Aziz; Leemput, Julia; Belarbi, Meriem; Ozdener, Hakan; Khan, Naim A

    2017-10-01

    Zizyphin, isolated from Zizyphus sps. leaf extracts, has been shown to modulate sugar taste perception, and the palatability of a sweet solution is increased by the addition of fatty acids. We, therefore, studied whether zizyphin also modulates fat taste perception. Zizyphin was purified from edible fruit of Zizyphus lotus L. Zizyphin-induced increases in [Ca 2+ ]i in human taste bud cells (hTBC). Zizyphin shared the endoplasmic reticulum Ca 2+ pool and also recruited, in part, Ca 2+ from extracellular environment via the opening of store-operated Ca 2+ channels. Zizyphin exerted additive actions on linoleic acid (LA)-induced increases in [Ca 2+ ]i in these cells, indicating that zizyphin does not exert its action via fatty acid receptors. However, zizyphin seemed to exert, at least in part, its action via bile acid receptor Takeda-G-protein-receptor-5 in hTBC. In behavioural tests, mice exhibited preference for both LA and zizyphin. Interestingly, zizyphin increased the preference for a solution containing-LA. This study is the first evidence of the modulation of fat taste perception by zizyphin at the cellular level in hTBC. Our study might be helpful for considering the synthesis of zizyphin analogues as 'taste modifiers' with a potential in the management of obesity and lipid-mediated disorders. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  1. Conditioned taste aversion, drugs of abuse and palatability.

    Science.gov (United States)

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2014-09-01

    We consider conditioned taste aversion to involve a learned reduction in the palatability of a taste (and hence in amount consumed) based on the association that develops when a taste experience is followed by gastrointestinal malaise. The present article evaluates the well-established finding that drugs of abuse, at doses that are otherwise considered rewarding and self-administered, cause intake suppression. Our recent work using lick pattern analysis shows that drugs of abuse also cause a palatability downshift and, therefore, support conditioned taste aversion learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Posterior cerebral artery Wada test: sodium amytal distribution and functional deficits

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, H.; Schild, H.H. [Dept. of Radiology/Neuroradiology, Univ. of Bonn (Germany); Klemm, E.; Biersack, H.J. [Bonn Univ. (Germany). Klinik fuer Nuklearmedizin; Linke, D.B.; Behrends, K.; Schramm, J. [Dept. of Neurosurgery, Univ. of Bonn (Germany)

    2001-04-01

    Inadequate sodium amytal delivery to the posterior hippocampus during the intracarotid Wada test has led to development of selective tests. Our purpose was to show the sodium amytal distribution in the posterior cerebral artery (PCA) Wada test and to relate it to functional deficits during the test. We simultaneously injected 80 mg sodium amytal and 14.8 MBq {sup 99} {sup m}Tc-hexamethylpropyleneamine oxime (HMPAO) into the P2-segment of the PCA in 14 patients with temporal lobe epilepsy. To show the skull, we injected 116 MBq {sup 99} {sup m}Tc-HDP intravenously. Sodium amytal distribution was determined by high-resolution single-photon emission computed tomography (SPECT). In all patients, HMPAO was distributed throughout the parahippocampal gyrus and hippocampus; it was also seen in the occipital lobe in all cases and in the thalamus in 11. Eleven patients were awake and cooperative; one was slightly uncooperative due to speech comprehension difficulties and perseveration. All patients showed contralateral hemianopia during the test. Four patients had nominal dysphasia for 1-3 min. None developed motor deficits or had permanent neurological deficits. Neurological deficits due to inactivation of extrahippocampal areas thus do not grossly interfere with neuropsychological testing during the test. (orig.)

  3. Iopamidol as an oral contrast media for computed tomography: a taste comparison to iohexol, diatrizoate sodium, and barium sulfate.

    Science.gov (United States)

    Rogers, Douglas; Sheth, Chandni; Eisenmenger, Laura; Mignogna, Eugene; Winter, Thomas

    2017-12-01

    The objective of this study is to compare the palatability of iopamidol and iohexol. This was a blinded and randomized trial in which fifty healthy subjects taste tested iopamidol (Isovue, Bracco Diagnostics), iohexol (Omnipaque, GE Healthcare), diatrizoate meglumine and diatrizoate sodium solution (Gastrografin, Bracco Diagnostics), and barium sulfate suspension 2.1% w/v, 2.0% w/w (READI-CAT2, E-Z-EM). Participants scored palatability on a continuous scale from 0 to 40 (0 = intolerable, 10 = unpleasant but tolerable, 20 = neutral, 30 = kind of like, 40 = strongly like). Mean scores (SD/SEM) for the contrast agents (n = 50) were iopamidol = 21.0 (8.4/1.2); iohexol = 21.8 (7.1/1.0); Gastrografin = 16.8 (9.6/1.4); and barium = 23.7 (9.1/1.3). One-way ANOVA equality of means test shows rejection of the hypothesis that the means are equal (F* = 6.550, p = .000). Post hoc testing demonstrates Gastrografin to be significantly less preferred to barium (p = .000) and iohexol (p = .012). No difference was found between iopamidol and iohexol (p = .959). One-way ANOVA equality of means test of just iopamidol, iohexol, and barium does not reject the hypothesis that means are equal (F* = 1.778 and p = .174). There is no significant difference in palatability between iopamidol and iohexol, supporting the use of iopamidol as a viable alternative to iohexol as an oral contrast agent.

  4. Superior performance of constant-saltier-reference DTF and DTFM to same-different tests by consumers for discriminating products varying sodium contents

    DEFF Research Database (Denmark)

    Choi, Yoon-Jung; Kim, Jin-Young; Christensen, Rune Haubo Bojesen

    2014-01-01

    Reducing sodium content in foods and beverages has become very important, and great efforts are being made to achieve this while maintaining overall taste/acceptance of food. This requires more robust sensory discrimination test methods in terms of operational power because discrimination tests u...

  5. Effectiveness of Taste Lessons with and without additional experiential learning activities on children's willingness to taste vegetables

    NARCIS (Netherlands)

    Battjes-Fries, Marieke C.E.; Haveman-Nies, Annemien; Zeinstra, Gertrude G.; Dongen, van Ellen J.I.; Meester, Hante J.; Top, van den Rinelle; Veer, van 't Pieter; Graaf, de Kees

    2017-01-01

    This study assessed the effectiveness of the Dutch school programme Taste Lessons with and without additional experiential learning activities on children's willingness to taste unfamiliar vegetables. Thirty-three primary schools (877 children in grades 6-7 with a mean age of 10.3 years)

  6. Fetal development and renal function in adult rats prenatally subjected to sodium overload.

    Science.gov (United States)

    Cardoso, Henriqueta D; Cabral, Edjair V; Vieira-Filho, Leucio D; Vieyra, Adalberto; Paixão, Ana D O

    2009-10-01

    The aims of this study were (1) to evaluate two factors that affect fetal development--placental oxidative stress (Ox) and plasma volume (PV)--in dams with sodium overload and (2) to correlate possible alterations in these factors with subsequent modifications in the renal function of adult offspring. Wistar dams were maintained on 0.17 M NaCl instead of water from 20 days before mating until either the twentieth pregnancy day/parturition or weaning. Colorimetric methods were used to measure Ox in maternal and offspring tissues, PV, 24-h urinary protein (U(Prot24 h)) and serum triacylglycerols (TG) and cholesterol (Chol). Renal hemodynamics was evaluated in the offspring at 90 days of age using a blood pressure transducer, a flow probe and inulin clearance to measure mean arterial pressure (MAP), renal blood flow and glomerular filtration rate (GFR), respectively. The number of nephrons (NN) was counted in kidney suspensions. Dams showed unchanged PV, placental Ox and fetal weight but increased U(Prot24 h) (150%, P sodium-overloaded pups showed increased U(Prot24 h) (45%, P sodium-overloaded rats showed increased U(Prot24 h) (27%, P sodium-overloaded group. We conclude that salt overload from the prenatal stage until weaning leads to alterations in lipid metabolism and in the renal function of the pups, which are additional to those alterations seen in rats only overloaded prenatally.

  7. Evolution of taste and solitary chemoreceptor cell systems.

    Science.gov (United States)

    Finger, T E

    1997-01-01

    Vertebrates possess four distinct chemosensory systems distinguishable on the basis of structure, innervation and utilization: olfaction, taste, solitary chemoreceptor cells (SCC) and the common chemical sense (free nerve endings). Of these, taste and the SCC sense rely on secondary receptor cells situated in the epidermis and synapsing on sensory nerve fibers innervating them near their base. The SCC sense occurs in anamniote aquatic craniates, including hagfish, and may be used for feeding or predator avoidance. The sense of taste occurs only in vertebrates and is always utilized for feeding. The SCC system achieves a high degree of specialization in two teleosts: sea robins (Prionotus) and rocklings (Ciliata). In sea robins, SCCs are abundant on the three anterior fin rays of the pectoral fin which are free of fin webbing and are used in active exploration of the substrate. Behavioral and physiological studies show that this SCC system responds to feeding cues and drives feeding behavior. It is connected centrally like a somatosensory system. In contrast, the specialized SCC system of rocklings occurs on the anterior dorsal fin which actively samples the surrounding water. This system responds to mucus substances and may serve as a predator detector. The SCC system in rocklings is connected centrally like a gustatory system. Taste buds contain multiple receptor cell types, including a serotonergic Merkel-like cell. Taste receptor cells respond to nutritionally relevant substances. Due to similarities between SCCs and one type of taste receptor cell, the suggestion is made that taste buds may be compound sensory organs that include some cells related to SCCs and others related to cutaneous Merkel cells. The lack of taste buds in hagfish and their presence in all vertebrates may indicate that the phylogenetic development of taste buds coincided with the elaboration of head structures at the craniate-vertebrate transition.

  8. A test for measuring gustatory function.

    Science.gov (United States)

    Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A; Sobel, Marc; Sayed, Nabil

    2008-08-01

    The purpose of this study was to determine the usefulness of edible taste strips for measuring human gustatory function. The physical properties of edible taste strips were examined to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined to determine whether or not taste strips could detect recognition thresholds that were equal to or better than those obtained from aqueous tests. Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 cm2 taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared with results that were obtained from a standard "sip and spit" recognition threshold test. Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to 5% of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared with an aqueous taste test. Edible taste strips are a highly sensitive method for examining taste recognition thresholds in humans. This

  9. On the Emerging Role of the Taste Receptor Type 1 (T1R Family of Nutrient-Sensors in the Musculoskeletal System

    Directory of Open Access Journals (Sweden)

    Shoichiro Kokabu

    2017-03-01

    Full Text Available The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs of the taste receptor type 1 (T1R family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-β2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.

  10. Using Single Colors and Color Pairs to Communicate Basic Tastes

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2016-07-01

    Full Text Available Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty with specific colors (e.g., red, green, black, and white. In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  11. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    Science.gov (United States)

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  12. Radiation-induced changes in taste acuity in cancer patients

    International Nuclear Information System (INIS)

    Mossman, K.L.; Henkin, R.I.

    1978-01-01

    Changes in taste acuity were measured in 27 patients with various forms of cancer who received radiation to the head and neck region. In 9 of these patients (group I), measurements of taste acuity were made more than 1 year after completion of radiation therapy. In the other 18 patients (group II), taste measurements were made before, during, and approximately 1 month after radiation therapy. Taste acuity was measured for four taste qualities (salt, sweet, sour, and bitter) by a forced choice-three stimulus drop technique which measured detection and recognition thresholds and by a forced scaling technique which measured taste intensity responsiveness. In group II patients, impaired acuity, as indicated by elevated detection and recognition thresholds, was observed approximately 3 weeks after initiation of radiotherapy. The bitter and salt qualities showed the earliest and greatest impairment and the sweet quality the least. Taste intensity responsiveness also was impaired in group II patients. As for thresholds, scaling impairment was most severe for bitter and salt taste qualities. Scaling impairment occurred before changes in either detection or recognition thresholds. Detection and recognition thresholds determined in group I patients also showed salt and bitter qualities were affected more severely than either sweet or sour qualities. Zinc administration to group I patients in an uncontrolled study suggested that zinc therapy may be useful in ameliorating taste impairment in some patients. These results suggest that taste loss may be a factor in the anorexia and weight loss that is observed commonly in patients who have undergone radiation treatment. Correction of this abnormality may be useful in aiding the nutritional status of these patients

  13. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue.

    Directory of Open Access Journals (Sweden)

    Taufiqul Huque

    2009-10-01

    Full Text Available The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli.Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells.These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts" suggests a cell lineage for sour that is independent of the other taste modalities.

  14. Mechanisms of radiation-induced conditioned taste aversion learning

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.

    1986-01-01

    The literature on taste aversion learning is reviewed and discussed, with particular emphasis on those studies that have used exposure to ionizing radiation as an unconditioned stimulus to produce a conditioned taste aversion. The primary aim of the review is to attempt to define the mechanisms that lead to the initiation of the taste aversion response following exposure to ionizing radiation. Studies using drug treatments to produce a taste aversion have been included to the extent that they are relevant to understanding the mechanisms by which exposure to ionizing radiation can affect the behavior of the organism. 141 references

  15. Clinical observation of taste disturbance induced by radiation therapy

    International Nuclear Information System (INIS)

    Murakami, Yuzuru; Sera, Koshi; Nagasawa, Hiroshi; Fukushima, Noriyuki; Yajin, Koji; Harada, Yasuo

    1984-01-01

    Qualitative gustometry (filter paper disc method) was performed in six patients who underwent radiation therapy. Following results were obtained. 1) Subjective taste disturbance appeared when irradiation dosage amounted to 1000-2000 rad. Whereas, it disappeared in 1 to 3 months after the termination of irradiation. 2) The longer the period of irradiation, the more slowly taste disturbance recovered. 3) Disgeusia was noticed in 44.3% of S, 66.7% of N, 70% of T and 36.2% of Q tests. 4) Taste thresholds in the apical tongue region improved almost parallel to subjective recovery of the taste. Occasionally taste disturbance was prolonged over a month. This is possibly due to delayed regeneration of the gustatory buds. Furthermore, conditions of the oral cavity, such as infection, or mechanical stimulation, may well influence degree of taste disturbance and the process of regeneration. (author)

  16. Aminopropyl groups of the functionalized Mobil Crystalline Material 41 as a carrier for controlled diclofenac sodium and piroxicam delivery.

    Science.gov (United States)

    Khodaverdi, Elham; Ahmadi, Mina; Kamali, Hossein; Hadizadeh, Farzin

    2017-01-01

    Synthetic Mobil Crystalline Material 41 (MCM-41) as a mesoporous material and functionalized MCM-41 using aminopropyl groups were studied in order to investigate their ability to encapsulate and to control the release of diclofenac sodium and piroxicam. MCM-41 was synthesized through sol-gel procedure and functionalized with aminopropyl groups. The physicochemical properties of MCM-41 were studied through particle size analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and carbon-hydrogen-nitrogen analysis. Diclofenac sodium and piroxicam were loaded into the MCM-41 matrix using the filtration and solvent evaporation methods. The drug-loading capacity was determined by ultraviolet, Fourier transform infrared, X-ray diffraction, and Brunauer-Emmett-Teller analysis. According to the results for pure drug release, >57% was released in the 1 st h, but when these drugs were loaded into pure Mobil Crystalline Material 41 (MCM-41) and functionalized MCM-41, the release into the simulated gastrointestinal medium was less, continuous, and slower. The release of piroxicam from functionalized MCM-41 was slower than that from MCM-41 in the simulated intestinal medium because of the formation of electrostatic bonds between piroxicam and the aminopropyl groups of the functionalized MCM-41. However, in the case of diclofenac sodium, there was no significant difference between pure MCM-41 and functionalized MCM-41. The difference between piroxicam and diclofenac sodium was due to the high solubility of diclofenac sodium in the intestinal medium (pH 6.8), which caused more rapid release from the matrixes than for piroxicam. Our findings indicate that, after functionalization of MCM-41, it could offer a good means of delivering controlled diclofenac sodium and piroxicam.

  17. Exploring the musical taste of expert listeners: musicology students reveal tendency toward omnivorous taste.

    Science.gov (United States)

    Elvers, Paul; Omigie, Diana; Fuhrmann, Wolfgang; Fischinger, Timo

    2015-01-01

    Musicology students are engaged with music on an academic level and usually have an extensive musical background. They have a considerable knowledge of music history and theory and listening to music may be regarded as one of their primary occupations. Taken together, these factors qualify them as ≫expert listeners≪, who may be expected to exhibit a specific profile of musical taste: interest in a broad range of musical styles combined with a greater appreciation of ≫sophisticated≪ styles. The current study examined the musical taste of musicology students as compared to a control student group. Participants (n = 1003) completed an online survey regarding the frequency with which they listened to 22 musical styles. A factor analysis revealed six underlying dimensions of musical taste. A hierarchical cluster analysis then grouped all participants, regardless of their status, according to their similarity on these dimensions. The employed exploratory approach was expected to reveal potential differences between musicology students and controls. A three-cluster solution was obtained. Comparisons of the clusters in terms of musical taste revealed differences in the listening frequency and variety of appreciated music styles: the first cluster (51% musicology students/27% controls) showed the greatest musical engagement across all dimensions although with a tendency toward ≫sophisticated≪ musical styles. The second cluster (36% musicology students/46% controls) exhibited an interest in ≫conventional≪ music, while the third cluster (13% musicology students/27% controls) showed a strong liking of rock music. The results provide some support for the notion of specific tendencies in the musical taste of musicology students and the contribution of familiarity and knowledge toward musical omnivorousness. Further differences between the clusters in terms of social, personality, and sociodemographic factors are discussed.

  18. Gustatory papillae and taste bud development and maintenance in the absence of TrkB ligands BDNF and NT-4.

    Science.gov (United States)

    Ito, Akira; Nosrat, Christopher A

    2009-09-01

    Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF(-/-)xNT-4(-/-) and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF(-/-)xNT-4(-/-) mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance.

  19. Analysis of Facial Expression by Taste Stimulation

    Science.gov (United States)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  20. Differential effects of beta-adrenergic receptor blockade in the medial prefrontal cortex during aversive and incidental taste memory formation.

    Science.gov (United States)

    Reyes-López, J; Nuñez-Jaramillo, L; Morán-Guel, E; Miranda, M I

    2010-08-11

    The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC beta-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the beta-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that beta-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. A crossmodal role for audition in taste perception.

    Science.gov (United States)

    Yan, Kimberly S; Dando, Robin

    2015-06-01

    Our sense of taste can be influenced by our other senses, with several groups having explored the effects of olfactory, visual, or tactile stimulation on what we perceive as taste. Research into multisensory, or crossmodal perception has rarely linked our sense of taste with that of audition. In our study, 48 participants in a crossover experiment sampled multiple concentrations of solutions of 5 prototypic tastants, during conditions with or without broad spectrum auditory stimulation, simulating that of airline cabin noise. Airline cabins are an unusual environment, in which food is consumed routinely under extreme noise conditions, often over 85 dB, and in which the perceived quality of food is often criticized. Participants rated the intensity of solutions representing varying concentrations of the 5 basic tastes on the general Labeled Magnitude Scale. No difference in intensity ratings was evident between the control and sound condition for salty, sour, or bitter tastes. Likewise, panelists did not perform differently during sound conditions when rating tactile, visual, or auditory stimulation, or in reaction time tests. Interestingly, sweet taste intensity was rated progressively lower, whereas the perception of umami taste was augmented during the experimental sound condition, to a progressively greater degree with increasing concentration. We postulate that this effect arises from mechanostimulation of the chorda tympani nerve, which transits directly across the tympanic membrane of the middle ear. (c) 2015 APA, all rights reserved).

  2. Musical taste, employment, education, and global region.

    Science.gov (United States)

    North, Adrian C; Davidson, Jane W

    2013-10-01

    Sociologists have argued that musical taste should vary between social groups, but have not considered whether the effect extends beyond taste into uses of music and also emotional reactions to music. Moreover, previous research has ignored the culture in which participants are located. The present research employed a large sample from five post-industrial global regions and showed that musical taste differed between regions but not according to education and employment; and that there were three-way interactions between education, employment, and region in the uses to which participants put music and also their typical emotional reactions. In addition to providing partial support for existing sociological theory, the findings highlight the potential of culture as a variable in future quantitative research on taste. © 2013 The Scandinavian Psychological Associations.

  3. Impaired NaCl taste thresholds in Zn deprived rats

    International Nuclear Information System (INIS)

    Brosvic, G.M.; Slotnick, B.M.; Nelson, N.; Henkin, R.I.

    1986-01-01

    Zn deficiency is a relatively common cause of loss of taste acuity in humans. In some patients replacement with exogenous Zn results in rapid reversal of the loss whereas in others prolonged treatment is needed to restore normal taste function. To study this 300 gm outbred Sprague Dawley rats were given Zn deficient diet (< 1 ppm Zn) supplemented with Zn in drinking water (0.1 gm Zn/100 gm body weight). Rats were trained in an automated operant conditions procedure and NaCl taste thresholds determined. During an initial training period and over two replications mean thresholds were 0.006% and mean plasma Zn was 90 +/- 2 μg/dl (M +/- SEM) determined by flame atomic absorption spectrophotometry. Rats were then divided into two groups; in one (3 rats) Zn supplement was removed, in the other (4 rats), pair-fed with the former group, Zn supplement was continued. In 10 days NaCl thresholds in Zn deprived rats increased significantly (0.07%, p < 0.01) and in 17 days increased 13 fold (0.08%) but thresholds for pair fed, supplemented rats remained constant (0.006%). There was no overlap in response between any rat in the two groups. Plasma Zn at 17 days in Zn-deprived rats was significantly below pair-fed rats (52 +/- 13 vs 89 +/- 6 μg/dl, respectively, P < 0.01). At this time Zn-deprived rats were supplemented with Zn for 27 days without any reduction in taste thresholds. These preliminary results are consistent with previous observations in Zn deficient patients

  4. Bitter taste – cheese failure

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2001-10-01

    Full Text Available Bitter taste is serous and very often cheese failure in modern cheesemaking process. In this paper the sources and bitter taste development in cheese will be presented. Bitterness in cheese is linked to bitter compounds development during cheese ripening. Most of the bitter compounds come from bitter peptides, the mechanism of theirs development being due to proteasepeptidase system of the cured enzymes and the milk cultures as well as other proteases present in cheese. By the action of curd enzymes, the milk protein - casein - is firstly degraded into high molecular weight compounds possessing no bitter taste. Those compounds are then degraded, by milk protease cultures, to hydrophobic bitter peptides of low molecular weight further degraded, by bacterial endopeptidase during cheese ripening, to bitter peptides and amino acids. In the case when no balance exists, between bitter compounds development and breakdown by lactic acid bacteria peptidase, an accumulation of bitter peptides occurs thus having an influence on cheese bitterness. During cheese ripening naturally occurring milk protease – plasmin, and thermostable proteases of raw milk microflora are also involved in proteolytic process. Fat cheese lipases, initiated by lipase originating from psychrotrophic bacteria in raw milk as well as other cheese lipases, are also associated with bitter taste generation. The other sources of bitterness come from the forages, the medicament residues as well as washing and disinfecting agents. In order to eliminate these failures a special care should be taken in milk quality as well as curd and milk culture selection. At this point technological norms and procedures, aimed to maintain the proteolysis balance during cheese ripening, should be adjusted, thus eliminating the bitter taste of the cheese.

  5. Evaluation of changes in the taste of cooked meat products during curing using an artificial taste sensor.

    Science.gov (United States)

    Nodake, Kazumasa; Numata, Masahiro; Kosai, Kiichi; Kim, Yun-Jung; Nishiumi, Tadayuki

    2013-08-01

    The purpose of this study was to assess an evaluation method using an artificial taste sensor, in comparison with chemical analysis and sensory evaluation of the taste of meat during curing. Samples of Canadian pork were treated with salt, nitrite and phosphate. Curing time ranged from 0 to 168 h. In the sensory evaluation, there were no significant differences in the all characteristic items at 72-h cured sample compared to the 0-h sample. Some of the characteristic items for the 168-h sample (umami, overall taste, richness and overall palatability) showed significant difference (P meat products. © 2013 Japanese Society of Animal Science.

  6. Formulation, evaluation and 3(2) full factorial design-based optimization of ondansetron hydrochloride incorporated taste masked microspheres.

    Science.gov (United States)

    Kharb, Vandana; Saharan, Vikas Anand; Dev, Kapil; Jadhav, Hemant; Purohit, Suresh

    2014-11-01

    Masking the bitter taste of Ondansetron hydrochloride (ONS) may improve palatability, acceptance and compliance of ONS products. ONS-loaded, taste-masked microspheres were prepared with a polycationic pH-sensitive polymer and 3(2) full factorial design (FFD) was applied to optimize microsphere batches. Solvent evaporation, in acetone--methanol/liquid paraffin system, was used to prepare taste-masked ONS microspheres. The effect of varying drug/polymer (D/P) ratios on microspheres characteristics were studied by 3(2) FFD. Desirability function was used to search the optimum formulation. Microspheres were evaluated by FTIR, XRD and DSC to examine interaction and effect of microencapsulation process. In vitro taste assessment approach based on bitterness threshold and drug release was used to assess bitterness scores. Prepared ONS microspheres were spherical and surface was wrinkled. ONS was molecularly dispersed in microspheres without any incompatibility with EE100. In hydrochloric acid buffer pH 1.2, ONS released completely from microsphere in just 10 min. Contrary to this, ONS release at initial 5 min from taste-masked microspheres was less than the bitterness threshold. Full factorial design and in vitro taste assessment approach, coupled together, was successfully applied to develop and optimize batches of ONS incorporated taste-masked microspheres.

  7. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    Directory of Open Access Journals (Sweden)

    Alexandre N Ermilov

    2016-11-01

    Full Text Available For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings

  8. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    Science.gov (United States)

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  9. Food branding and young children's taste preferences: a reassessment.

    Science.gov (United States)

    Elliott, Charlene D; Carruthers Den Hoed, Rebecca; Conlon, Martin J

    2013-08-20

    This study examines the effects of branding and packaging on young children's taste preferences. Preschool children aged 3 to 5 (n=65) tasted five pairs of identical foods in packaging from McDonald's and in matched packaging that was either plain, Starbucks-branded, or colourful (but unbranded). Children were asked if the foods tasted the same or if one tasted better. Children preferred the taste of foods wrapped in decorative wrappings, relying more on aesthetics than on familiar branding when making their choices. The findings suggest the need to explore questions beyond commercial advertising (and brand promotion) on television and other media platforms. More attention should be directed at the important role of packaging in directing children's food preferences.

  10. A taste for words and sounds: a case of lexical-gustatory and sound-gustatory synesthesia

    Directory of Open Access Journals (Sweden)

    Olympia eColizoli

    2013-10-01

    Full Text Available Gustatory forms of synesthesia involve the automatic and consistent experience of tastes that are triggered by non-taste related inducers. We present a case of lexical-gustatory and sound-gustatory synesthesia within one individual, SC. Most words and a subset of nonlinguistic sounds induce the experience of taste, smell and physical sensations for SC. SC’s lexical-gustatory associations were significantly more consistent than those of a group of controls. We tested for effects of presentation modality (visual vs. auditory, taste-related congruency, and synesthetic inducer-concurrent direction using a priming task. SC’s performance did not differ significantly from a trained control group. We used functional magnetic resonance imaging to investigate the neural correlates of SC’s synesthetic experiences by comparing her brain activation to the literature on brain networks related to language, music and sound processing, in addition to synesthesia. Words that induced a strong taste were contrasted to words that induced weak-to-no tastes (tasty vs. tasteless words. Brain activation was also measured during passive listening to music and environmental sounds. Brain activation patterns showed evidence that two regions are implicated in SC’s synesthetic experience of taste and smell: the left anterior insula and left superior parietal lobe. Anterior insula activation may reflect the synesthetic taste experience. The superior parietal lobe is proposed to be involved in binding sensory information across sub-types of synesthetes. We conclude that SC’s synesthesia is genuine and reflected in her brain activation. The type of inducer (visual-lexical, auditory-lexical, and non-lexical auditory stimuli could be differentiated based on patterns of brain activity.

  11. Enhancement of Saltiness Perception by Monosodium Glutamate Taste and Soy Sauce Odor: A Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Onuma, Takuya; Maruyama, Hiroaki; Sakai, Nobuyuki

    2018-02-26

    Previous studies have reported that the umami taste of monosodium l-glutamate (MSG) and salty-smelling odors (e.g., soy sauce, bacon, sardines) enhance the perception of saltiness. This study aimed to investigate the neural basis of the enhancement of saltiness in human participants using functional near-infrared spectroscopy (fNIRS). University students who had passed a taste panel test participated in this study. Sodium chloride solutions were presented with or without either 0.10% MSG or the odor of soy sauce. The participants were asked to drink a cup of the stimulus and to evaluate only saltiness intensity in Experiment 1, as well as other sensory qualities in Experiment 2, and temporal brain activity was measured using fNIRS. In Experiment 3, the participants were asked to evaluate saltiness intensity using the time-intensity (TI) method, and the response of the parotid salivary glands was measured using fNIRS. The fNIRS data showed that the added MSG and soy sauce enhanced the hemodynamic response in temporal brain regions, including the frontal operculum, but no effect on the hemodynamic salivary responses was detected. These results indicate that the perceived enhancement of saltiness occurs in the brain region that is involved in central gustatory processing. Furthermore, the results of the sensory evaluations suggest that enhancement of saltiness by the addition of MSG is mainly based on fusion of the salty-like property of MSG and saltiness of NaCl, whereas enhancement by the addition of soy sauce odor is mainly based on modulation of the temporal dynamics of saltiness perception.

  12. Adoptable Interventions, Human Health, and Food Safety Considerations for Reducing Sodium Content of Processed Food Products

    Science.gov (United States)

    Allison, Abimbola; Fouladkhah, Aliyar

    2018-01-01

    Although vital for maintaining health when consumed in moderation, various epidemiological studies in recent years have shown a strong association between excess dietary sodium with an array of health complications. These associations are robust and clinically significant for development of hypertension and prehypertension, two of the leading causes of preventable mortality worldwide, in adults with a high-sodium diet. Data from developed nations and transition economies show worldwide sodium intake of higher than recommended amounts in various nations. While natural foods typically contain a moderate amount of sodium, manufactured food products are the main contributor to dietary sodium intake, up to 75% of sodium in diet of American adults, as an example. Lower cost in formulation, positive effects on organoleptic properties of food products, effects on food quality during shelf-life, and microbiological food safety, make sodium chloride a notable candidate and an indispensable part of formulation of various products. Although low-sodium formulation of each product possesses a unique set of challenges, review of literature shows an abundance of successful experiences for products of many categories. The current study discusses adoptable interventions for product development and reformulation of products to achieve a modest amount of final sodium content while maintaining taste, quality, shelf-stability, and microbiological food safety. PMID:29389843

  13. Adoptable Interventions, Human Health, and Food Safety Considerations for Reducing Sodium Content of Processed Food Products.

    Science.gov (United States)

    Allison, Abimbola; Fouladkhah, Aliyar

    2018-02-01

    Although vital for maintaining health when consumed in moderation, various epidemiological studies in recent years have shown a strong association between excess dietary sodium with an array of health complications. These associations are robust and clinically significant for development of hypertension and prehypertension, two of the leading causes of preventable mortality worldwide, in adults with a high-sodium diet. Data from developed nations and transition economies show worldwide sodium intake of higher than recommended amounts in various nations. While natural foods typically contain a moderate amount of sodium, manufactured food products are the main contributor to dietary sodium intake, up to 75% of sodium in diet of American adults, as an example. Lower cost in formulation, positive effects on organoleptic properties of food products, effects on food quality during shelf-life, and microbiological food safety, make sodium chloride a notable candidate and an indispensable part of formulation of various products. Although low-sodium formulation of each product possesses a unique set of challenges, review of literature shows an abundance of successful experiences for products of many categories. The current study discusses adoptable interventions for product development and reformulation of products to achieve a modest amount of final sodium content while maintaining taste, quality, shelf-stability, and microbiological food safety.

  14. Mixing methods, tasting fingers

    DEFF Research Database (Denmark)

    Mann, Anna; Mol, Annemarie; Satalkar, Priya

    2011-01-01

    This article reports on an ethnographic experiment. Four finger eating experts and three novices sat down for a hot meal and ate with their hands. Drawing on the technique of playing with the familiar and the strange, our aim was not to explain our responses, but to articulate them. As we seek...... words to do so, we are compelled to stretch the verb "to taste." Tasting, or so our ethnographic experiment suggests, need not be understood as an activity confined to the tongue. Instead, if given a chance, it may viscously spread out to the fingers and come to include appreciative reactions otherwise...

  15. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    OpenAIRE

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary induct...

  16. The taste cell-related diffuse chemosensory system.

    Science.gov (United States)

    Sbarbati, A; Osculati, F

    2005-03-01

    Elements expressing the molecular mechanisms of gustatory transduction have been described in several organs in the digestive and respiratory apparatuses. These taste cell-related elements are isolated cells, which are not grouped in buds, and they have been interpreted as chemoreceptors. Their presence in epithelia of endodermal origin suggests the existence of a diffuse chemosensory system (DCS) sharing common signaling mechanisms with the "classic" taste organs. The elements of this taste cell-related DCS display a site-related morphologic polymorphism, and in the past they have been indicated with various names (e.g., brush, tuft, caveolated, fibrillo-vesicular or solitary chemosensory cells). It may be that the taste cell-related DCS is like an iceberg: the taste buds are probably only the most visible portion, with most of the iceberg more caudally located in the form of solitary chemosensory cells or chemosensory clusters. Comparative anatomical studies in lower vertebrates suggest that this 'submerged' portion may represent the most phylogenetically ancient component of the system, which is probably involved in defensive or digestive mechanisms. In the taste buds, the presence of several cell subtypes and of a wide range of molecular mechanisms permits precise food analysis. The larger, 'submerged' portion of the iceberg is composed of a polymorphic population of isolated elements or cell clusters in which the molecular cascade of cell signaling needs to be explored in detail. The little data we have strongly suggests a close relationship with taste cells. Morphological and biochemical considerations suggest that the DCS is a potential new drug target. Modulation of the respiratory and digestive apparatuses through substances, which act on the molecular receptors of this chemoreceptive system, could be a new frontier in drug discovery.

  17. Mechanisms of taste bud cell loss after head and neck irradiation.

    Science.gov (United States)

    Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A

    2012-03-07

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

  18. Mechanisms of taste bud cell loss after head and neck irradiation

    Science.gov (United States)

    Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.

    2012-01-01

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770

  19. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    Science.gov (United States)

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Disorders of taste and smell induced by head trauma in six cases

    International Nuclear Information System (INIS)

    Nin, Tomomi; Umemoto, Masanori; Negoro, Atsushi; Miuchi, Shinya; Sakagami, Masafumi

    2007-01-01

    Post-traumatic dysnosmia and dysgeusia are often caused by head injury. They were disregarded by both the patients and physicians because of the head injury and the frequent co-occurrence of other visceral or orthopedic injuries requiring immediate treatment. Since there have been so few reports about such cases, the those mechanisms have not been clear. In this study, 6 patients who complained of dysnosmia and dysgeusia after head injury were analyzed. They consisted of 3 males and 3 females, and their ages ranged from 29 to 63 years with a mean of 48.0 years. At the first visit, an olfactory and taste function test, SDS (sell-rating depression scale), measurement of serum zinc, iron and copper, and head MRI were performed. Two thirds cases (66.7%) had changes at the frontal lobe and 1/3 cases (33.3%) had changes at the temporal lobes in head MRI. The recognition thresholds were worse than detection thresholds in both the olfactory and taste function test. It indicated that post-traumatic dysnosmia and dysgeusia were caused by damage not only of direct neurotransmission system but also central nervous including limbic system damage. In half the patients, the taste function tended to improve, but there was no recovery of olfactory function in any case. Post-traumatic dysgeusia improves more frequently than post-traumatic dysnosmia. Post-traumatic dysgeusia is often caused by inc and iron deficiency after fasting. In these cases, it could be improved with administration of zinc and iron. More data will be needed for resolution of post-traumatic dysnosmia and dysgeusia. (author)

  1. Qualitative and quantitative differences between taste buds of the rat and mouse

    Directory of Open Access Journals (Sweden)

    Ma Huazhi

    2007-01-01

    Full Text Available Abstract Background Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT, PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume. Results There are significant differences (p 3 is smaller than a rat taste bud (64,200 μm3. The numerical density of taste cells in mouse circumvallate taste buds (2.1 cells/1000 μm3 is significantly higher than that in the rat (1.2 cells/1000 μm3. Conclusion These results suggest that rats and mice differ significantly in the percentages of taste cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect differences in their gustatory processing.

  2. Degeneration process of fungiform taste buds after severing the human chorda tympani nerve--observation by confocal laser scanning microscopy.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Kato, Yuji; Manabe, Yasuhiro; Narita, Norihiko

    2015-03-01

    To elucidate the degeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. Prospective study. University hospital. Seven consecutive patients whose CTN was severed during tympanoplasty for middle ear cholesteatoma. Diagnostic. Preoperative and postoperative gustatory functions were assessed by electrogustometry (EGM). An average of 10 fungiform papillae (FP) in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted using a confocal laser microscope. Among them, 2 to 3 reference FPs were selected based on the typical form of the FP or characteristic arrangements of taste pores. Observation was performed before surgery, 1 or 2 days after surgery, 2 or 3 times a week until 2 weeks after surgery, once a week between 2 and 4 weeks, and every 2 to 4 weeks thereafter until all taste buds had disappeared. EGM thresholds showed no response within 1 month after surgery in all patients. The initial change in the degeneration process was the disappearance of taste pores. The surface of taste buds became covered with epithelium. Finally, taste buds themselves atrofied and disappeared. The time course of degeneration differed depending upon individuals, each FP, and each taste bud. By employing the generalized linear mixed model under the Poisson distribution, it was calculated that all taste buds would disappear at around 50 days after surgery. Confocal laser scanning microscopy was useful for clarifying the degeneration process of fungiform taste buds.

  3. Clareの'Shadows of Taste'をめぐって

    OpenAIRE

    鈴木, 蓮一; スズキ, レンイチ; Suzuki, Renichi; Suzuki, Ren-ichi

    1987-01-01

    According to Tim Chilcott, Clare's poetry can be divided into two types: one is poetry of self-suppression, the other is that of self-expression. I've tried to grasp the meanings of Clare's "taste". concentrating on 'Shadows of Taste'. 'The Pleasures of Spring'. 'To the Rural Muse', and other poems. I've also tried to research into his conceptions of "genius" and "fancy", for they are intimately related with "taste". "Taste" as the instinct to "choose for joy" is inherited by all living thing...

  4. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction.

    Science.gov (United States)

    Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart

    2017-07-07

    The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Regulation of bitter taste responses by tumor necrosis factor.

    Science.gov (United States)

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effects of radiotherapy on the sense of taste

    Energy Technology Data Exchange (ETDEWEB)

    Umeyama, Masayoshi; Suzaki, Harumi [Showa Univ., Tokyo (Japan). School of Medicine

    2001-07-01

    The adverse effects of radiotherapy for cancer in the head and neck region include impairment of the sense of taste and smell and dry mouth. The present study was conducted to examine the effects of such radiotherapy on the sense of taste, in view of its influence on the quality of life of patients with malignant tumors of the head and neck following treatment. In 18 patients with malignant tumors of the head and neck (mean age, 59.9 years) the sense of taste was tested using the filter-paper disc method, serially before and after radiotherapy with {sup 60}Co {gamma} rays, in order to analyze the changes in gustatory threshold after radiotherapy. The patients were also observed for subjective symptoms, including dry mouth and impairment of the sense of taste, and changes in the lingual surface over the course of radiotherapy. No increase in the gustatory threshold or subjective impairment of the sense of taste was noted after radiotherapy when the field of irradiation did not include the tongue (4 cases of laryngeal cancer). When the field of irradiation included a part of the tongue (3 cases of maxillary cancer, 3 cases of hypopharyngeal cancer, 1 case of epipharyngeal cancer) or the entire tongue (2 cases of lingual cancer, 2 cases of cancer of the floor of the mouth, 3 cases of mesopharyngeal cancer), dry mouth was noted after irradiation at 7.2-39.6 Gy, and the gustatory threshold increased after irradiation at 12-40 Gy. Subjective impairment of the sense of taste was also reported after irradiation at 10-25.2 Gy, which was restored to normal within 2-3 months after the end of radiotherapy. In relation to the quality of taste, the gustatory threshold for sweet tastes increased the slowest, and was restored rapidly. In contrast, the gustatory threshold for sour tastes increased most rapidly, and was restored slowly. The relationship between the serum zinc level and the increase in gustatory threshold was unclear. There was a tendency for the lingual surface to

  7. Effects of radiotherapy on the sense of taste

    International Nuclear Information System (INIS)

    Umeyama, Masayoshi; Suzaki, Harumi

    2001-01-01

    The adverse effects of radiotherapy for cancer in the head and neck region include impairment of the sense of taste and smell and dry mouth. The present study was conducted to examine the effects of such radiotherapy on the sense of taste, in view of its influence on the quality of life of patients with malignant tumors of the head and neck following treatment. In 18 patients with malignant tumors of the head and neck (mean age, 59.9 years) the sense of taste was tested using the filter-paper disc method, serially before and after radiotherapy with 60 Co γ rays, in order to analyze the changes in gustatory threshold after radiotherapy. The patients were also observed for subjective symptoms, including dry mouth and impairment of the sense of taste, and changes in the lingual surface over the course of radiotherapy. No increase in the gustatory threshold or subjective impairment of the sense of taste was noted after radiotherapy when the field of irradiation did not include the tongue (4 cases of laryngeal cancer). When the field of irradiation included a part of the tongue (3 cases of maxillary cancer, 3 cases of hypopharyngeal cancer, 1 case of epipharyngeal cancer) or the entire tongue (2 cases of lingual cancer, 2 cases of cancer of the floor of the mouth, 3 cases of mesopharyngeal cancer), dry mouth was noted after irradiation at 7.2-39.6 Gy, and the gustatory threshold increased after irradiation at 12-40 Gy. Subjective impairment of the sense of taste was also reported after irradiation at 10-25.2 Gy, which was restored to normal within 2-3 months after the end of radiotherapy. In relation to the quality of taste, the gustatory threshold for sweet tastes increased the slowest, and was restored rapidly. In contrast, the gustatory threshold for sour tastes increased most rapidly, and was restored slowly. The relationship between the serum zinc level and the increase in gustatory threshold was unclear. There was a tendency for the lingual surface to become dry

  8. c-Fos expression is elevated in GABAergic interneurons of the gustatory cortex following novel taste learning.

    Science.gov (United States)

    Doron, Guy; Rosenblum, Kobi

    2010-07-01

    Long-term sensory memories are considered to be stored in the relevant cortical region subserving the given modality. We and others have recently identified a series of molecular alterations in the gustatory cortex (GC) of the rat at different time intervals following novel taste learning. Some of these correlative modifications were also necessary for taste memory acquisition and/or consolidation. However, very little is known about the localization of these molecular modifications within the GC or about the functional activation of the GC hours after novel taste learning. Here, we hypothesize that inhibitory interneurons are activated in the GC on a scale of hours following learning and used c-Fos expression and confocal microscopy with different markers to test this hypothesis. We found that GABAergic interneurons are activated in the GC in correlation with novel taste learning. The activation was evident in the deep but not superficial layers of the dysgranular insular cortex. These results suggest that the GABAergic machinery in the deep layers of the GC participates in the processing of taste information hours after learning, and provide evidence for the involvement of a local cortical circuit not only during acquisition of new information but also during off-line processing and consolidation of taste information.

  9. Expression of NUCB2/nesfatin-1 in the taste buds of rats.

    Science.gov (United States)

    Cao, Xun; Zhou, Xiao; Cao, Yang; Liu, Xiao-Min; Zhou, Li-Hong

    2016-01-01

    Nesfatin-1, an anorexigenic peptide derived from nucleobindin 2 (NUCB2), is closely involved in feeding behavior, glycometabolism, and satiety regulation. Some studies show that NUCB2/nesfatin-1 is highly expressed and interacts with many appetite-regulating peptides that are co-expressed in the gastrointestinal tract. However, it remains unclear whether nesfatin-1 is expressed and interacts similarly in taste buds. Glucagon-like peptide-1 (GLP-1), a well-known appetite down-regulating peptide, is associated with changes in the expression of nesfatin-1. Therefore, we measured the expression of the NUCB2 gene and the distribution of nesfatin-1-immunoreactive cells and investigated whether these variables change in taste buds of circumvallate papillae (CV) from rats with type 2 diabetes (T2DM) after treatment with liraglutide, a GLP-1 receptor agonist. The results showed that nesfatin-1 immunoreactive cells were localized in the taste buds of rat CV. Quantitative RT-PCR showed a significantly lower expression of NUCB2 mRNA in the taste buds of diabetic control rats (T2DM-C) than in those of the normal control group (NC) and a higher level of NUCB2 in the liraglutide treated group (T2DM + LIR) than either the T2DM-C or the NC groups. Changes in the expression of NUCB2 in the rat hypothalamus were opposite to those in CV taste buds. In summary, we found that rat CV taste buds express NUCB2/nesfatin-1, and that this expression decreases significantly in T2DM and increases after treatment with liraglutide in rat CV. This indicates that nesfatin-1 could be an important factor in the regulation of gustatory function, feeding and perhaps energy homeostasis.

  10. Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds.

    Science.gov (United States)

    Yang, Ruibiao; Ma, Huazhi; Thomas, Stacey M; Kinnamon, John C

    2007-06-20

    Mammalian buds contain a variety of morphological taste cell types, but the type III taste cell is the only cell type that has synapses onto nerve processes. We hypothesize that taste cell synapses utilize the SNARE protein machinery syntaxin, SNAP-25, and synaptobrevin, as is used by synapses in the central nervous system (CNS) for Ca2+-dependent exocytosis. Previous studies have shown that taste cells with synapses display SNAP-25- and synaptobrevin-2-like immunoreactivity (LIR) (Yang et al. [2000a] J Comp Neurol 424:205-215, [2004] J Comp Neurol 471:59-71). In the present study we investigated the presynaptic membrane protein, syntaxin-1, in circumvallate taste buds of the rat. Our results indicate that diffuse cytoplasmic and punctate syntaxin-1-LIR are present in different subsets of taste cells. Diffuse, cytoplasmic syntaxin-1-LIR is present in type III cells while punctate syntaxin-1-LIR is present in type II cells. The punctate syntaxin-1-LIR is believed to be associated with Golgi bodies. All of the synapses associated with syntaxin-1-LIR taste cells are from type III cells onto nerve processes. These results support the proposition that taste cell synapses use classical SNARE machinery such as syntaxin-1 for neurotransmitter release in rat circumvallate taste buds. (c) 2007 Wiley-Liss, Inc.

  11. A permeability barrier surrounds taste buds in lingual epithelia

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  12. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  13. Effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions.

    Science.gov (United States)

    Cheong, Jean Ne; Mirhosseini, Hamed; Tan, Chin Ping

    2010-06-01

    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.

  14. Identification and modulation of the key amino acid residue responsible for the pH sensitivity of neoculin, a taste-modifying protein.

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Nakajima

    Full Text Available Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS and a neoculin basic subunit (NBS. Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor-taste substance in particular.

  15. Evaluation of xerostomia and taste disturbance after radiotherapy of patients with head and neck lesion

    International Nuclear Information System (INIS)

    Toda, Yukihiro

    2002-01-01

    Because of high sensitivity to radiation, radiotherapy to the head and neck cancer is often conducted for purposes of functional preservation. However, the salivary glands and oral cavity must be included in the irradiation field. Thus, an inflammatory reaction of the oral mucosa to the radiotherapy is inevitable, and xerostomia, taste disturbance, and pain appear in the early stage of the treatment. These side effects sometimes cause not only interrupt or change planned treatment but also influence patients' Quality of Life after treatment. Thus, we conducted, in the form of questionnaire surveys, subjective and objective evaluations in respect to xerostomia and taste disturbance, and assessed the usefulness of the evaluations. The subjects were 40 patients who had received the radiotherapy in the major salivary glands, such as parotid glands, and almost the whole tongue, but who had not undergo a resection of the major salivary glands or tongue. The degree of damage to the salivary glands and taste were evaluated, subjectively and objectively. The subjective evaluation was conducted by questionnaires given to the patients. As for the objective evaluation, xerostomia was evaluated by measuring the salivary amount, while the taste disturbance was examined in 27 patients using taste disks. The results showed a positive correlation, indicating that the evaluation of xerostomia and taste disturbance using questionnaires is useful. The salivary amount was the least at six months after the radiotherapy, then increased gradually, and 24 months later, improved to a level similar to that seen immediately after the radiotherapy. The taste disturbance also improved gradually over the 24 months following radiotherapy. (author)

  16. Evaluation of xerostomia and taste disturbance after radiotherapy of patients with head and neck lesion

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Yukihiro [Kurume Univ., Fukuoka (Japan). School of Medicine

    2002-10-01

    Because of high sensitivity to radiation, radiotherapy to the head and neck cancer is often conducted for purposes of functional preservation. However, the salivary glands and oral cavity must be included in the irradiation field. Thus, an inflammatory reaction of the oral mucosa to the radiotherapy is inevitable, and xerostomia, taste disturbance, and pain appear in the early stage of the treatment. These side effects sometimes cause not only interrupt or change planned treatment but also influence patients' Quality of Life after treatment. Thus, we conducted, in the form of questionnaire surveys, subjective and objective evaluations in respect to xerostomia and taste disturbance, and assessed the usefulness of the evaluations. The subjects were 40 patients who had received the radiotherapy in the major salivary glands, such as parotid glands, and almost the whole tongue, but who had not undergo a resection of the major salivary glands or tongue. The degree of damage to the salivary glands and taste were evaluated, subjectively and objectively. The subjective evaluation was conducted by questionnaires given to the patients. As for the objective evaluation, xerostomia was evaluated by measuring the salivary amount, while the taste disturbance was examined in 27 patients using taste disks. The results showed a positive correlation, indicating that the evaluation of xerostomia and taste disturbance using questionnaires is useful. The salivary amount was the least at six months after the radiotherapy, then increased gradually, and 24 months later, improved to a level similar to that seen immediately after the radiotherapy. The taste disturbance also improved gradually over the 24 months following radiotherapy. (author)

  17. Taste and smell changes in cancer patients

    NARCIS (Netherlands)

    IJpma, Irene

    2017-01-01

    Patients with cancer often experience changes in taste and smell perception during chemotherapy. The aim of this dissertation was to investigate taste and smell changes and short- and long-term effects of chemotherapy in a homogeneous population of testicular cancer patients treated with

  18. New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet.

    Science.gov (United States)

    Karunanayaka, Kasun; Johari, Nurafiqah; Hariri, Surina; Camelia, Hanis; Bielawski, Kevin Stanley; Cheok, Adrian David

    2018-04-01

    Today's virtual reality (VR) applications such as gaming, multisensory entertainment, remote dining, and online shopping are mainly based on audio, visual, and touch interactions between humans and virtual worlds. Integrating the sense of taste into VR is difficult since humans are dependent on chemical-based taste delivery systems. This paper presents the 'Thermal Taste Machine', a new digital taste actuation technology that can effectively produce and modify thermal taste sensations on the tongue. It modifies the temperature of the surface of the tongue within a short period of time (from 25°C to 40 °C while heating, and from 25°C to 10 °C while cooling). We tested this device on human subjects and described the experience of thermal taste using 20 known (taste and non-taste) sensations. Our results suggested that rapidly heating the tongue produces sweetness, fatty/oiliness, electric taste, warmness, and reduces the sensibility for metallic taste. Similarly, cooling the tongue produced mint taste, pleasantness, and coldness. By conducting another user study on the perceived sweetness of sucrose solutions after the thermal stimulation, we found that heating the tongue significantly enhances the intensity of sweetness for both thermal tasters and non-thermal tasters. Also, we found that faster temperature rises on the tongue produce more intense sweet sensations for thermal tasters. This technology will be useful in two ways: First, it can produce taste sensations without using chemicals for the individuals who are sensitive to thermal taste. Second, the temperature rise of the device can be used as a way to enhance the intensity of sweetness. We believe that this technology can be used to digitally produce and enhance taste sensations in future virtual reality applications. The key novelties of this paper are as follows: 1. Development of a thermal taste actuation technology for stimulating the human taste receptors, 2. Characterization of the thermal taste

  19. Is Sweet Taste Perception Associated with Sweet Food Liking and Intake?

    Science.gov (United States)

    Jayasinghe, Shakeela N; Kruger, Rozanne; Walsh, Daniel C I; Cao, Guojiao; Rivers, Stacey; Richter, Marilize; Breier, Bernhard H

    2017-07-14

    A range of psychophysical taste measurements are used to characterize an individual's sweet taste perception and to assess links between taste perception and dietary intake. The aims of this study were to investigate the relationship between four different psychophysical measurements of sweet taste perception, and to explore which measures of sweet taste perception relate to sweet food intake. Forty-four women aged 20-40 years were recruited for the study. Four measures of sweet taste perception (detection and recognition thresholds, and sweet taste intensity and hedonic liking of suprathreshold concentrations) were assessed using glucose as the tastant. Dietary measurements included a four-day weighed food record, a sweet food-food frequency questionnaire and a sweet beverage liking questionnaire. Glucose detection and recognition thresholds showed no correlation with suprathreshold taste measurements or any dietary intake measurement. Importantly, sweet taste intensity correlated negatively with total energy and carbohydrate (starch, total sugar, fructose, glucose) intakes, frequency of sweet food intake and sweet beverage liking. Furthermore, sweet hedonic liking correlated positively with total energy and carbohydrate (total sugar, fructose, glucose) intakes. The present study shows a clear link between sweet taste intensity and hedonic liking with sweet food liking, and total energy, carbohydrate and sugar intake.

  20. Evaluation of Taste Properties of Commercially Available Salts

    OpenAIRE

    ISHIKAWA, Kyoko; SUGIMOTO, Maho; KUMAGAI, Masanori; MATSUNAGA, Ryuji

    2006-01-01

    This study examined commercially available salts'taste properties. The salts were used in preparation of four dishes: asazuke of cucumber, asazuke of Chinese cabbage, clear soup, and green soybean rice. The respective tastes of the salts in those prepared foods differed from those of the salts alone. We evaluated the parameters: saltiness, mildness, unpleasantness, and palatability. Differences of the salt samples affected the perception of saltiness. Results of taste sensor analyses showed t...

  1. Gustatory Dysfunction and Decreased Number of Fungiform Taste Buds in Patients With Chronic Otitis Media With Cholesteatoma.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Yamada, Takechiyo; Okamoto, Masayuki; Manabe, Yasuhiro

    2016-09-01

    To compare the number of fungiform taste buds among patients with chronic otitis media (COM), those with pars flaccida retraction type cholesteatoma, and those with pars tensa retraction type cholesteatoma in combination with gustatory function. Thirty-seven patients with COM, 22 patients with pars flaccida retraction type cholesteatoma, and 17 patients with pars tensa retraction type cholesteatoma were included. An average of 10 fungiform papillae (FP) per patient in the midlateral region of the tongue were observed by confocal laser scanning microscopy in vivo, and the average number of taste buds were counted. Just before the observation of FP, electrogustometry (EGM) was performed to evaluate gustatory function. A significant decrease of the average number of fungiform taste buds and significant elevation of EGM thresholds were clarified in the pars tensa retraction type cholesteatoma group but not in the COM or pars flaccida type cholesteatoma group. It was suggested that some neurotoxic cytokines produced by cholesteatoma tissue might affect the CTN morphology, resulting in a decreased number of fungiform taste buds and elevation of EGM threshold in patients with pars tensa retraction type cholesteatoma. © The Author(s) 2016.

  2. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    OpenAIRE

    Gutiérrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index. In addition, learned taste aversion in both short- and long-term memory tests was exclusively impa...

  3. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    Science.gov (United States)

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  4. The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Alan D. Workman

    2018-03-01

    Full Text Available BackgroundBitter (T2R and sweet (T1R taste receptors in the airway are important in innate immune defense, and variations in taste receptor functionality in one T2R (T2R38 correlate with disease status and disease severity in chronic rhinosinusitis (CRS. Quinine is a bitter compound that is an agonist for several T2Rs also expressed on sinonasal cells, but not for T2R38. Because of this property, quinine may stimulate innate immune defense mechanisms in the airway, and functional differences in quinine perception may be reflective of disease status in CRS.MethodsDemographic and taste intensity data were collected prospectively from CRS patients and non-CRS control subjects. Sinonasal tissue from patients undergoing rhinologic surgery was also collected and grown at an air–liquid interface (ALI. Nitric oxide (NO production and dynamic regulation of ciliary beat frequency in response to quinine stimulation were assessed in vitro.ResultsQuinine reliably increased ciliary beat frequency and NO production in ALI cultures in a manner consistent with T2R activation (p < 0.01. Quinine taste intensity rating was performed in 328 CRS patients and 287 control subjects demonstrating that CRS with nasal polyps (CRSwNP patients rated quinine as significantly less intense than did control subjects.ConclusionQuinine stimulates airway innate immune defenses by increasing ciliary beat frequency and stimulating NO production in a manner fitting with T2R activation. Patient variability in quinine sensitivity is observed in taste intensity ratings, and gustatory quinine “insensitivity” is associated with CRSwNP status. Thus, taste tests for quinine may be a biomarker for CRSwNP, and topical quinine has therapeutic potential as a stimulant of innate defenses.

  5. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    Science.gov (United States)

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  6. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.

    Science.gov (United States)

    Baldwin, Maude W; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J; Klasing, Kirk C; Misaka, Takumi; Edwards, Scott V; Liberles, Stephen D

    2014-08-22

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. Copyright © 2014, American Association for the Advancement of Science.

  7. Biological activity of the functional epitope of ciguatoxin fragment AB on the neuroblastoma sodium channel in tissue culture.

    Science.gov (United States)

    Hokama, Y; Chun, K E; Campora, C E; Higa, N; Suma, C; Hamajima, A; Isobe, M

    2006-01-01

    It is well established that the targeted receptor for ciguatoxin (CTX) in mammalian tissues is the sodium channel, affecting the influx of sodium into cells and altering the action potential and function of the cell. Since the syntheses of fragments of CTX has become available, our focus has been on the receptor functions of the west sphere AB and east sphere JKLM fragments using the neuroblastoma cell assay, guinea pig atrium assay, and the membrane immunobead assay (MIA). The data presented here suggest that the west sphere AB of the ciguatoxin molecule is the active portion and is responsible for the activation of the sodium channels. (c) 2006 Wiley-Liss, Inc.

  8. Leptin's effect on taste bud calcium responses and transmitter secretion.

    Science.gov (United States)

    Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D

    2015-05-01

    Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.

    Science.gov (United States)

    Ohguro, Hiroshi; Katsushima, Harumi; Maruyama, Ikuyo; Maeda, Tadao; Yanagihashi, Satsuki; Metoki, Tomomi; Nakazawa, Mitsuru

    2002-09-01

    The purpose of this study was to investigate the effects of glutamate accumulation in vitreous on retinal structure and function, due to a diet high in sodium glutamate. Three different diet groups were created, consisting of rats fed on a regular diet (diet A), a moderate excess of sodium glutamate diet (diet B) and a large excess of sodium glutamate diet (diet C). After 1, 3 and 6 months of the administration of these diets, amino acids concentrations in vitreous were analyzed. In addition, retinal morphology and function by electroretinogram (ERG) of three different diet groups were studied. Significant accumulation of glutamate in vitreous was observed in rats following addition of sodium glutamate to the diet as compared to levels with a regular diet. In the retinal morphology, thickness of retinal neuronal layers was remarkably thinner in rats fed on sodium glutamate diets than in those on a regular diet. TdT-dUTP terminal nick-end labelling (TUNEL) staining revealed significant accumulation of the positive staining cells within the retinal ganglion cell layers in retinas from diets B and C as compared with that from diet A. Similar to this, immunohistochemistry demonstrated increased expression of glial fibrillary acidic protein (GFAP) within the retinal inner layers from diets B and C as compared with diet A. Functionally, ERG responses were reduced in rats fed on a sodium glutamate diets as compared with those on a regular diet. The present study suggests that a diet with excess sodium glutamate over a period of several years may increase glutamate concentrations in vitreous and may cause retinal cell destruction.

  10. Inflammation Activates the Interferon Signaling Pathways in Taste Bud Cells

    OpenAIRE

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-01-01

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-γ rece...

  11. Post-learning molecular reactivation underlies taste memory consolidation

    Directory of Open Access Journals (Sweden)

    Kioko eGuzman-Ramos

    2011-09-01

    Full Text Available It is considered that memory consolidation is a progressive process that requires post-trial stabilization of the information. In this regard, it has been speculated that waves of receptors activation, expression of immediate early genes and replenishment of receptor subunit pools occur to induce functional or morphological changes to maintain the information for longer periods. In this paper, we will review data related to neuronal changes in the post-acquisition stage of taste aversion learning that could be involved in further stabilization of the memory trace. In order to achieve such stabilization, evidence suggests that the functional integrity of the insular cortex (IC and the amygdala (AMY is required. Particularly the increase of extracellular levels of glutamate and activation of N-methyl-D-aspartate (NMDA receptors within the IC shows a main role in the consolidation process. Additionally the modulatory actions of the dopaminergic system in the IC appear to be involved in the mechanisms that lead to taste aversion memory consolidation through the activation of pathways related to enhancement of protein synthesis such as the Protein Kinase A pathway. In summary, we suggest that post-acquisition molecular and neuronal changes underlying memory consolidation are dependent on the interactions between the AMY and the IC.

  12. Corticosterone and propranolol's role on taste recognition memory.

    Science.gov (United States)

    Ruetti, E; Justel, N; Mustaca, A; Boccia, M

    2014-12-01

    Taste recognition is a robust procedure to study learning and memory processes, as well as the different stages involved in them, i.e. encoding, storage and recall. Considerable evidence indicates that adrenal hormones and the noradrenergic system play an important role in aversive and appetitive memory formation in rats and humans. The present experiments were designed to characterize the effects of immediate post training corticosterone (Experiment 1) and propranolol administration (Experiment 2 and 3) on taste recognition memory. Administration of a high dose of corticosterone (5mg/kg, sc) impairs consolidation of taste memory, but the low and moderate doses (1 and 3mg/kg, sc) didn't affect it. On the other hand, immediate post-training administration of propranolol (1 and 2mg/kg, ip) impaired taste recognition memory. These effects were time-dependent since no effects were seen when drug administration was delayed 3h after training. These findings support the importance of stress hormones and noradrenergic system on the modulation of taste memory consolidation. Copyright © 2014. Published by Elsevier Inc.

  13. Sweet and sour taste preferences of children

    NARCIS (Netherlands)

    Liem, D.G.

    2004-01-01

    In the industrialized countries children have many foods to choose from, both healthy and unhealthy products, these choices mainly depend on children's taste preferences. The present thesis focused on preferences for sweet and sour taste of young children (4- to 12-years of age) living in the US and

  14. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.

    Science.gov (United States)

    Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi

    2016-01-01

    We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The effect of imiquimod on taste bud calcium transients and transmitter secretion.

    Science.gov (United States)

    Huang, Anthony Y; Wu, Sandy Y

    2016-11-01

    Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca 2+ concentrations. These Ca 2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca 2 + -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca 2 + mobilization elicited by imiquimod was dependent on release from internal Ca 2 + stores. Moreover, combining studies of Ca 2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling. © 2016 The British Pharmacological Society.

  16. Siwonhan-mat: The third taste of Korean foods

    OpenAIRE

    Soon Ah Kang; Hyun Ji Oh; Dai Ja Jang; Min Jung Kim; Dae Young Kwon

    2016-01-01

    Background: Smell and taste are frequently referenced senses when describing flavors of food. In addition to these two senses, Koreans have regarded that there is another sense of taste experienced through the body. This third sense, siwonhan-mat (시원한 맛), describes the sensation of the body including the tongue, stomach, and intestines when eating. While smell and taste play an important role in the enjoyment of food, it is also crucial to evaluate what your body can experience from eating. I...

  17. Perception of taste in HIV-positive individuals in treatment antiretroviral: results of a case-control study.

    Science.gov (United States)

    Henn, Indiara Welter; da Silva, Ruann Oswaldo Carvalho; Chaiben, Cassiano Lima; Fernandes, Ângela; Naval Machado, Maria Ângela; de Lima, Antonio Adilson Soares

    2017-01-01

    The aim of this study was to evaluate the perception of taste in HIV-infected patients. One hundred males and females (11 to 60 years old) were divided into two groups (50 patients infected by HIV and 50 controls) and evaluated for gustatory function. The results revealed that the mean score in the evaluation of taste was significantly lower in individuals with HIV when compared to controls for both sides of the tongue (p < 0.05). Patients with HIV infection had difficulty recognizing the bitter taste, followed by salty and sweet. When each side of the tongue was evaluated separately and compared, the Wilcoxon test showed that there was no significant difference on the tongue of individuals with HIV. The prevalence of hypogeusia was 20% in individuals with this disease. Individuals with HIV infection may have a deficit in taste that can affect your general and oral health. © 2016 Special Care Dentistry Association and Wiley Periodicals, Inc.

  18. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Science.gov (United States)

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  19. Manufacture and sensory analysis of reduced- and low-sodium Cheddar and Mozzarella cheeses.

    Science.gov (United States)

    Ganesan, Balasubramanian; Brown, Kelly; Irish, David A; Brothersen, Carl; McMahon, Donald J

    2014-01-01

    High sodium intake negatively affects consumer health, thus there is active interest in lowering sodium levels in dairy foods. Cheddar and low-moisture, part-skim Mozzarella cheeses were made with total salt levels of 0.7, 1.0, 1.25, 1.35, and 1.8% (wt/wt) in triplicate, thus reducing sodium by 25 to 60%. Multiple manufacturing protocols for salt reduction were used to produce cheeses with similar postpress moisture and pH, independent of the final salt levels in cheese, in order to study the role of salt in cheese acceptability. Cheese flavor was evaluated by a descriptive taste panel on a 15-point intensity scale. Consumer acceptance was evaluated by a consumer panel on a 9-point hedonic scale. Taste panels conducted with cubed Cheddar cheese (at 3 and 6mo) and cold shredded Mozzarella cheese (at 3wk) showed that consumer liking for cheese was low at 0.7 and 0.9% salt, but all cheeses containing higher salt levels (1.25, 1.35, and 1.8% salt) were comparably preferred. The cheeses had acceptable liking scores (≥6) when served as quesadilla or pizza toppings, and consumers were able to differentiate cheeses at alternate salt levels; for example, 1.8 and 1.5% salt cheeses scored similarly, as did cheeses with 1.5% and 1.35% salt, but 1.35% salt cheese scored lower than and was discernible from 1.8% salt cheese. Descriptive panelists perceived salty, sour, umami, bitter, brothy, lactone/fatty acid, and sulfur attributes as different across Mozzarella cheeses, with the perception of each significantly increasing along with salt level. Salty and buttery attributes were perceived more with increasing salt levels of Cheddar cheese by the descriptive panel at 3mo, whereas bitter, brothy, and umami attributes were perceived less at the higher salt levels. However, this trend reversed at 6mo, when perception of salty, sour, bitter, buttery, lactone/fatty acid, and umami attributes increased with salt level. We conclude that consumers can distinguish even a 30% salt

  20. Food Science of Dashi and Umami Taste.

    Science.gov (United States)

    Ninomiya, Kumiko

    2016-01-01

    Umami is a basic tastes, along with sweet, salty, bitter and sour, which is imparted by glutamate, one of the free amino acids in foods. Since its discovery of umami by a Japanese scientist in 1908, umami is now perceived globally a basic taste. Recent collaboration among chefs and researchers on traditional soup stocks showed a difference in taste profiles of Japanese soup stock 'dashi' and Western style soup stock. The free amino acids profile's in dashi and soup stock showed how Japanese have traditionally adopted a simple umami taste. The exchange of knowledge on cooking methods and diverse types of umami rich foods in different countries displays the blending of the culinary arts, food science and technology for healthy and tasty solutions. Since Japanese cuisine 'WASHOKU' was listed in the 'Intangible Heritage of UNESCO' in 2013, many people in the world now have great interest in Japanese cuisine. One of the unique characteristics of this cuisine is that 'dashi' is an indispensable material for cooking a variety of Japanese dishes. Many chefs from Europe, US and South America have come to Japan to learn Japanese cuisine in the last 10 years, and umami has become recognized as a common taste worldwide. Researchers and culinary professionals have begun to pay attention to the traditional seasonings and condiments rich in glutamate available throughout the world.

  1. Highly Sensitive Multi-Channel IDC Sensor Array for Low Concentration Taste Detection

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2015-06-01

    Full Text Available In this study, we designed and developed an interdigitated capacitor (IDC-based taste sensor array to detect different taste substances. The designed taste sensing array has four IDC sensing elements. The four IDC taste sensing elements of the array are fabricated by incorporating four different types of lipids into the polymer, dioctyl phenylphosphonate (DOPP and tetrahydrofuran (THF to make the respective dielectric materials that are individually placed onto an interdigitated electrode (IDE via spin coating. When the dielectric material of an IDC sensing element comes into contact with a taste substance, its dielectric properties change with the capacitance of the IDC sensing element; this, in turn, changes the voltage across the IDC, as well as the output voltage of each channel of the system. In order to assess the effectiveness of the sensing system, four taste substances, namely sourness (HCl, saltiness (NaCl, sweetness (glucose and bitterness (quinine-HCl, were tested. The IDC taste sensor array had rapid response and recovery times of about 12.9 s and 13.39 s, respectively, with highly stable response properties. The response property of the proposed IDC taste sensor array was linear, and its correlation coefficient R2 was about 0.9958 over the dynamic range of the taste sensor array as the taste substance concentration was varied from 1 μM to 1 M. The proposed IDC taste sensor array has several other advantages, such as real-time monitoring capabilities, high sensitivity 45.78 mV/decade, good reproducibility with a standard deviation of about 0.029 and compactness, and the circuitry is based on readily available and inexpensive electronic components. The proposed IDC taste sensor array was compared with the potentiometric taste sensor with respect to sensitivity, dynamic range width, linearity and response time. We found that the proposed IDC sensor array has better performance. Finally, principal component analysis (PCA was applied

  2. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    Science.gov (United States)

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  3. Reduced-Sodium Lunches Are Well-Accepted by Uninformed Consumers Over a 3-Week Period and Result in Decreased Daily Dietary Sodium Intakes: A Randomized Controlled Trial.

    Science.gov (United States)

    Janssen, Anke M; Kremer, Stefanie; van Stipriaan, Willeke L; Noort, Martijn W J; de Vries, Jeanne H M; Temme, Elisabeth H M

    2015-10-01

    Processed foods are major contributors to excessive sodium intake in Western populations. We investigated the effect of food reformulation on daily dietary sodium intake. To determine whether uninformed consumers accept reduced-sodium lunches and to determine the effect of consuming reduced-sodium lunches on 24-hour urinary sodium excretion. A single-blind randomized controlled pretest-posttest design with two parallel treatment groups was used. Participants chose foods in an experimental real-life canteen setting at the Restaurant of the Future in Wageningen, the Netherlands, from May 16 until July 1, 2011. After a run-in period with regular foods for both groups, the intervention group (n=36) consumed foods with 29% to 61% sodium reduction (some were partially flavor compensated). The control group (n=38) continued consuming regular foods. Outcomes for assessment of acceptance were the amount of foods consumed, energy and sodium intake, remembered food liking, and intensity of sensory aspects. Influence on daily dietary sodium intake was assessed by 24-hour urinary sodium excretion. Between and within-subject comparisons were assessed by analysis of covariance. Energy intake and amount consumed of each food category per lunch remained similar for both groups. Compared with the control group, the intervention group's sodium intake per lunch was significantly reduced by -1,093 mg (adjusted difference) (95% CI -1,285 to -901), equivalent to 43 mmol sodium. Remembered food liking, taste intensity, and saltiness were scored similarly for almost all of the reduced-sodium foods compared with the regular foods. After consuming reduced-sodium lunches, compared with the control group, intervention participants' 24-hour urinary sodium excretion was significantly lower by -40 mEq (adjusted difference) (95% CI -63 to -16) than after consuming regular lunches, and this reflects a decreased daily sodium intake of 1 g. Comparing the two treatment groups, consumption of reduced-sodium

  4. Stability of extemporaneously prepared sodium phenylbutyrate oral suspensions.

    Science.gov (United States)

    Caruthers, Regine L; Johnson, Cary E

    2007-07-15

    In an effort to minimize barriers to compliance and adherence and to improve the accuracy of dosage measurement, sugar-containing and sugar-free sodium phenylbutyrate suspensions were formulated, and the stability of these products over a 90-day period was determined. An oral suspension of sodium phenylbutyrate 200 mg/mL was prepared by thoroughly grinding 12 g of Sodium Phenylbutyrate Powder, USP, in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature. A 500-microL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 14, 28, 60, and 90 days. After further dilution to an expected concentration of 100 microg/mL with the mobile phase, the samples were assayed by high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 95% of the initial sodium phenylbutyrate concentration remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth in any sample. Extemporaneously compounded suspensions of sodium phenylbutyrate, 200 mg/mL, in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.

  5. Galvanic Tongue Stimulation Inhibits Five Basic Tastes Induced by Aqueous Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Kazuma Aoyama

    2017-12-01

    Full Text Available Galvanic tongue stimulation (GTS modulates taste sensation. However, the effect of GTS is contingent on the electrode polarity in the proximity of the tongue. If an anodal electrode is attached in the proximity of the tongue, an electrical or metallic taste is elicited. On the other hand, if only cathodal electrode is attached in the proximity of the tongue, the salty taste, which is induced by electrolyte materials, is inhibited. The mechanism of this taste inhibition is not adequately understood. In this study, we aim to demonstrate that the inhibition is cause by ions, which elicit taste and which migrate from the taste sensors on the tongue by GTS. We verified the inhibitory effect of GTS on all five basic tastes induced by electrolyte materials. This technology is effective for virtual reality systems and interfaces to support dietary restrictions. Our findings demonstrate that cathodal-GTS inhibits all the five basic tastes. The results also support our hypothesis that the effects of cathodal-GTS are caused by migrating tasting ions in the mouth.

  6. Perception of basic tastes and threshold sensitivity during testing of selected judges

    Directory of Open Access Journals (Sweden)

    Peter Zajác

    Full Text Available Normal 0 false false false SK JA X-NONE The sense of taste is one of the most important human senses. Alteration in taste perception can greately interfere to our lives, because it influences our dietary habits and consequently general human health. Many physiological and external factors can cause the loss of taste perception. These factors include for example certain diseases, the side effect of the use of certain medicaments, head trauma, gender, dietary habbits, smoking, role of saliva, age, stress and many more. In this paper we are discussing perception of basic tastes and treshold sensitivity during testing of selected groupe of 500 sensory judges. A resolution taste test and sensitivity treshold test were performed using basic tastes (sour, bitter, salty, sweet, umami, astringent, metallic. We have found that the perception of basic tastes decreese with human age. Smoking leads to significant errors in the determination of basic tastes. Different mistakes occures in different age categories. This study suggests further researches, investigating various factors influencing taste perception.  doi:10.5219/259

  7. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    Science.gov (United States)

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  8. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Directory of Open Access Journals (Sweden)

    Norifumi Takeda

    Full Text Available Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5 identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  9. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    Science.gov (United States)

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  10. BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.

    Science.gov (United States)

    Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin

    2017-07-01

    Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Blood pressure responses to dietary sodium: Association with autonomic cardiovascular function in normotensive adults.

    Science.gov (United States)

    Matthews, Evan L; Brian, Michael S; Edwards, David G; Stocker, Sean D; Wenner, Megan M; Farquhar, William B

    2017-12-01

    Blood pressure responses to dietary sodium vary widely person-to-person. Salt sensitive rodent models display altered autonomic function, a trait thought to contribute to poor cardiovascular health. Thus, we hypothesized that increased salt sensitivity (SS) in normotensive humans would be associated with increased muscle sympathetic nerve activity (MSNA), decreased high frequency heart rate variability (HF-HRV), and decreased baroreflex sensitivity. Healthy normotensive men and women completed 1week of high (300mmol·day -1 ) and 1week of low (20mmol·day -1 ) dietary sodium (random order) with 24h mean arterial pressure (MAP) assessed on the last day of each diet to assess SS. Participants returned to the lab under habitual sodium conditions for testing. Forty-two participants are presented in this analysis, 19 of which successful MSNA recordings were obtained (n=42: age 39±2yrs., BMI 24.3±0.5kg·(m 2 ) -1 , MAP 83±1mmHg, habitual urine sodium 93±7mmol·24h -1 ; n=19: MSNA burst frequency 20±2 bursts·min -1 ). The variables of interest were linearly regressed over the magnitude of SS. Higher SS was associated with increased MSNA (burst frequency: r=0.469, p=0.041), decreased HF-HRV (r=-0.349, p=0.046), and increased LF/HF-HRV (r=0.363, p=0.034). SS was not associated with sympathetic or cardiac baroreflex sensitivity (p>0.05). Multiple regression analysis accounting for age found that age, not SS, independently predicted HF-HRV (age adjusted no longer significant; p=0.369) and LF/HF-HRV (age adjusted p=0.273). These data suggest that age-related salt sensitivity of blood pressure in response to dietary sodium is associated with altered resting autonomic cardiovascular function. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Changes in taste preference after colorectal surgery: A longitudinal study.

    Science.gov (United States)

    Welchman, Sophie; Hiotis, Perryhan; Pengelly, Steven; Hughes, Georgina; Halford, Jason; Christiansen, Paul; Lewis, Stephen

    2015-10-01

    Nutrition is a key component of surgical enhanced recovery programmes. However, alterations in food preferences are often reported as reasons for patients not eating in the early postoperative period. We hypothesised that taste preferences are altered in the early postoperative period and this dysgeusia affects patients' food choices during this critical time. This is a longitudinal study looking at taste preferences of patients recovering from surgery. Patients undergoing colonic resections were recruited. Using visual analogue scales participants completed a questionnaire, taste tests and preference scoring of food images for the 6 groups of taste (bitter, salty, savoury, sour, spicy and sweet) preoperatively and on postoperative days 1-3. Patients were also offered snacks postoperatively, which represented foods from the six groups and consumption was measured. Differences from baseline were assessed using the Friedman's and Wilcoxon tests. 31 patients were studied. In the immediate postoperative period participants reported deterioration in their sense of taste (p ≤ 0.001), increased nausea (p palatability for salty taste increased (p = 0.001) following surgery. The highest rated images were for savoury food with only the ratings for salty food increasing after surgery (p foods in the postoperative period. Bitter, sour and spicy foods were the least frequently consumed. This is the first study to investigate postsurgical patients' food preferences. A consistent change in all the individual tastes with the exception of salty in the postoperative period was observed. The most desirable tastes were for savoury and sweet, reflecting patients' preoperative preferences. An improved understanding of taste may improve the resumption of eating after colonic surgery. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood

    OpenAIRE

    Krimm, Robin F.

    2006-01-01

    Brain derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform...

  14. Using Fish Sauce as a Substitute for Sodium Chloride in Culinary Sauces and Effects on Sensory Properties.

    Science.gov (United States)

    Huynh, Hue Linh; Danhi, Robert; Yan, See Wan

    2016-01-01

    Historically, fish sauce has been a standard condiment and ingredient in various Southeast Asian cuisines. Moreover, fish sauce imparts umami taste, which may enhance perceived saltiness in food. This quality suggests that fish sauce may be used as a partial substitute for sodium chloride (NaCl) in food preparation, which may present a valuable option for health-conscious and salt-restricted consumers. However, the degree to which NaCl can be decreased in food products without compromising taste and consumer acceptance has not been determined. We hypothesized that NaCl content in food may be reduced by partial replacement with fish sauce without diminishing palatability and consumer acceptance. Preparations of 3 types of food were assessed to test this hypothesis: chicken broth (n = 72); tomato sauce (n = 73); and coconut curry (n = 70). In the first session, the percentage of NaCl that could be replaced with fish sauce without a significant change in overall taste intensity was determined for each type of food using the 2-Alternative Forced Choice method. In the second session, subjects rated 5 samples for each food with varying NaCl and/or fish sauce content on 3 sensory attributes: deliciousness; taste intensity; and saltiness. Our results demonstrate that NaCl reduction was possible in chicken broth, tomato sauce, and coconut curry at 25%, 16%, and 10%, respectively, without a significant loss (P < 0.05) in deliciousness and overall taste intensity. These results suggest that it is possible to replace NaCl in foods with fish sauce without reducing overall taste intensity and consumer acceptance. © 2015 Institute of Food Technologists®

  15. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry.

    Science.gov (United States)

    Filbey, Francesca M; Claus, Eric; Audette, Amy R; Niculescu, Michelle; Banich, Marie T; Tanabe, Jody; Du, Yiping P; Hutchison, Kent E

    2008-05-01

    A growing number of imaging studies suggest that alcohol cues, mainly visual, elicit activation in mesocorticolimbic structures. Such findings are consistent with the growing recognition that these structures play an important role in the attribution of incentive salience and the pathophysiology of addiction. The present study investigated whether the presentation of alcohol taste cues can activate brain regions putatively involved in the acquisition and expression of incentive salience. Using functional magnetic resonance imaging, we recorded BOLD activity while delivering alcoholic tastes to 37 heavy drinking but otherwise healthy volunteers. The results yielded a pattern of BOLD activity in mesocorticolimbic structures (ie prefrontal cortex, striatum, ventral tegmental area/substantia nigra) relative to an appetitive control. Further analyses suggested strong connectivity between these structures during cue-elicited urge and demonstrated significant positive correlations with a measure of alcohol use problems (ie the Alcohol Use Disorders Identification Test). Thus, repeated exposure to the taste alcohol in the scanner elicits activation in mesocorticolimbic structures, and this activation is related to measures of urge and severity of alcohol problems.

  16. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    Science.gov (United States)

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  17. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size.

    Directory of Open Access Journals (Sweden)

    Camille I Petersen

    2011-06-01

    Full Text Available The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP. Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-;Spry2(-/- embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.

  18. Network model of chemical-sensing system inspired by mouse taste buds.

    Science.gov (United States)

    Tateno, Katsumi; Igarashi, Jun; Ohtubo, Yoshitaka; Nakada, Kazuki; Miki, Tsutomu; Yoshii, Kiyonori

    2011-07-01

    Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.

  19. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.

    Science.gov (United States)

    Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario

    2012-12-01

    The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (Prose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Association between Salivary Leptin Levels and Taste Perception in Children

    Directory of Open Access Journals (Sweden)

    Lénia Rodrigues

    2017-01-01

    Full Text Available The satiety inducing hormone leptin acts not only at central nervous system but also at peripheral level. Leptin receptors are found in several sense related organs, including the mouth. A role of leptin in sweet taste response has been suggested but, until now, studies have been based on in vitro experiments, or in assessing the levels of the hormone in circulation. The present study investigated whether the levels of leptin in saliva are related to taste perception in children and whether Body Mass Index (BMI affects such relationship. Sweet and bitter taste sensitivity was assessed for 121 children aged 9-10 years and unstimulated whole saliva was collected for leptin quantification, using ELISA technique. Children females with lower sweet taste sensitivity presented higher salivary leptin levels, but this is only in the normal weight ones. For bitter taste, association between salivary leptin and caffeine threshold detection was observed only in preobese boys, with higher levels of salivary hormone in low sensitive individuals. This study is the first presenting evidences of a relationship between salivary leptin levels and taste perception, which is sex and BMI dependent. The mode of action of salivary leptin at taste receptor level should be elucidated in future studies.