WorldWideScience

Sample records for sodium lidar project

  1. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  2. Lidar data used in the COFIN project

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Nielsen, Morten

    1999-01-01

    This report presents the Lidar data used in the COFIN project. The Lidar data have been obtained from several ground level dispersion experiments over flat and complex terrain. The method for treating the data and the conditons under which the data wereobtained are described in detail. Finally we...... describe the Tools to extract and visualize the Lidar data. Data, report, and visualisation tools are available on the Risø FTP server....

  3. A flat spectral Faraday filter for sodium lidar.

    Science.gov (United States)

    Yang, Yong; Cheng, Xuewu; Li, Faquan; Hu, Xiong; Lin, Xin; Gong, Shunsheng

    2011-04-01

    We report a flat spectral Faraday anomalous dispersion optical filter (FS-FADOF) for sodium lidar. The physical and technical considerations for obtaining a FS-FADOF with a 3.5 GHz flat spectral transmission function are presented. It was found that the effective transmission of this filter was much higher (>94%) and more uniform than that of the ultranarrowband FADOF, and therefore were less sensitive to laser-frequency drift. Thus, the FS-FADOF can improve lidar efficiency and precision.

  4. Project ABLE: (Atmospheric Balloonborne Lidar Experiment)

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1985-03-01

    Project ABLE (Atmospheric Balloonborne Lidar Experiment) is part of the A.F. Geophysics Laboratory's continuing interest in developing techniques for making remote measurements of atmospheric quantities such as density, pressure, temperatures, and wind motions. The system consists of a balloonborne lidar payload designed to measure neutral molecular density as a function of altitude from ground level to 70 km. The lidar provides backscatter data at the doubled and tripled frequencies of a Nd:YAG laser, which will assist in the separation of the molecular and aerosol contributions and subsequent determination of molecular and aerosol contributions and subsequent determination of molecular density vs altitude. The object of this contract was to fabricate and operate in a field test a balloonborne lidar experiment capable of performing nighttime atmospheric density measurements up to 70 km altitude with a resolution of 150 meters. The payload included a frequency-doubled and -tripled Nd:YAG laser with outputs at 355 and 532 nm; a telescoped receiver with PMT detectors; a command-controlled optical pointing system; and support system, including thermal control, telmetry, command, and power. Successful backscatter measurements were made during field operations which included a balloon launch from Roswell, NM and a flight over the White Sands Missile Range.

  5. 2010 ARRA Lidar: California Coastal Project (Zone 4)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR)...

  6. 2010 ARRA Lidar: California Coastal Project (Zone 3)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR)...

  7. Studies on a double-interferometer and mesospheric temperature measurements with a sodium-LIDAR-instrument

    International Nuclear Information System (INIS)

    Serwazi, M.

    1989-07-01

    The first part of this report describes the integration and alignment of a second Fabry-Perot-Interferometer into the optical bench of the sodium LIDAR experiment in Northern Norway. The spectral efficiency of this double interferometer was instrumentally and theoretically examined. The second part of the report presents results of temperature measurements in March 1989, which were made jointly with a Rayleigh LIDAR from the Max Planck Institute for Aeronomy. Measured temperatures and Na densities of three nights are presented. (orig.)

  8. 2005 Oahu/Maui Lidar Mapping Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning...

  9. Lidars for Wind Tunnels - an IRPWind Joint Experiment Project

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Vignaroli, Andrea; Angelou, Nikolas

    2017-01-01

    Measurement campaigns with continuous-wave Doppler Lidars (Light detection and ranging) developed at DTU Wind Energy in Denmark were performed in two very different wind tunnels. Firstly, a measurement campaign in a small icing wind tunnel chamber at VTT in Finland was performed with high frequency...... used in blind test comparisons for wind turbine wake modelers. These Lidar measurement activities constitute the Joint Experiment Project” L4WT - Lidars for Wind Tunnels, with applications to wakes and atmospheric icing in a prospective Nordic Network” with the aim of gaining and sharing knowledge...... about possibilities and limitations with lidar instrumentation in wind tunnels, which was funded by the IRPWind project within the community of the European Energy Research Alliance (EERA) Joint Programme on Wind Energy....

  10. Sporadic and Thermospheric Enhanced Sodium Layers Observed by a Lidar Chain over China

    Science.gov (United States)

    Xue, X.

    2013-12-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2N,116.2E), Hefei (31.8N, 117.3E), Wuhan (30.5N, 114.4E), and Haikou (19.5N, 109.1E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 hr per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4MHz). The co-observations of SSLs at three lidar site pairs, i.e., Hefei -- Beijing, Hefei -- Wuhan and Hefei -- Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei -- Wuhan and Hefei -- Haikou pairs than the Hefei -- Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  11. Project quality assurance plant: Sodium storage facility, project F-031

    International Nuclear Information System (INIS)

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009

  12. Esmeralda project for studying extensive sodium fire

    International Nuclear Information System (INIS)

    Sophy, Y.M.; Roy, D.; Bentz, A.; Gerosa, A.; Noel, H.

    1979-01-01

    This paper describes the Esmeralda Project for studying extensive fires involving up to 70 metric tons of sodium. The motivations which prompted the decision to create this research facility are related to construction of the Super-Phenix breeder reactor and to the scale effect problems posed by the use of very large quantities of sodium. Information is included on the dimensions of the installation, the objectives of the project, the means to be employed, the timetable to be followed, and the organization which was created for this project within the context of Franco-Italian cooperation

  13. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Area 1 (Aroostook), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  14. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Areas 2 and 3 (Mid-Coastal Cleanup), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  15. 2009 - 2011 CA Coastal Conservancy Coastal Lidar Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) data is remotely sensed high-resolution elevation data collected by an airborne collection platform. This LiDAR dataset is a...

  16. Lidar studies of extinction in clouds in the ECLIPS project

    International Nuclear Information System (INIS)

    Martin, C.; Platt, R.; Young, S.A.; Patterson, G.P.

    1992-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS

  17. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  18. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  19. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  20. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    Science.gov (United States)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes

  1. A statistical study of sporadic sodium layer observed by Sodium lidar at Hefei (31.8° N, 117.3° E

    Directory of Open Access Journals (Sweden)

    X.-K. Dou

    2009-06-01

    Full Text Available Sodium lidar observations of sporadic sodium layers (SSLs during the past 3 years at a mid-latitude location (Hefei, China, 31.8° N, 117.3° E are reported in this paper. From 64 SSL events detected in about 900 h of observation, an SSL occurrence rate of 1 event every 14 h at our location was obtained. This result, combined with previous studies, reveals that the SSL occurrence can be relatively frequent at some mid-latitude locations. Statistical analysis of main parameters for the 64 SSL events was performed. By examining the corresponding data from an ionosonde, a considerable correlation was found with a Pearson coefficient of 0.66 between seasonal variations of SSL and those of sporadic E (Es during nighttime, which was in line with the research by Nagasawa and Abo (1995. From comparison between observations from the University of Science and Technology of China (USTC lidar and from Wuhan Institute of Physics and Mathematics (WIPM lidar (Wuhan, China, 31° N, 114° E, the minimum horizontal range for some events was estimated to be over 500 km.

  2. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  3. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results...

  4. The ESMERALDA project for studying extensive sodium fire

    International Nuclear Information System (INIS)

    Sophy, Y.M.; Roy, D.; Noel, H.; Gerosa, A.

    1979-08-01

    This paper describes the Esmeralda Project for studying extensive fires involving up to 70 metric tons of sodium. The motivations which prompted the decision to create this research facility are related to construction of the Super-Phenix breeder reactor and to the scale effect problems posed by the use of very large quantities of sodium. Information is included on the dimensions of the installation, the objectives of the project, the means to be employed, the timetable to be followed, and the organization which was created for this project within the context of Franco-Italian cooperation

  5. Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR

    Science.gov (United States)

    Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin

    2016-06-01

    Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  6. ENHANCEMENT OF STEREO IMAGERY BY ARTIFICIAL TEXTURE PROJECTION GENERATED USING A LIDAR

    Directory of Open Access Journals (Sweden)

    J. Veitch-Michaelis

    2016-06-01

    Full Text Available Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  7. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  8. 2007 Florida Division of Emergency Management (FDEM) Lidar: Herbert Hoover Dike Project Area (Southeastern Florida, Lake Okeechobee Surrounding Area)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data was collected by Merrick & Company from September through December of 2007 for the Florida Division of Emergency Management (FDEM). The project area...

  9. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  10. 2009 - 2011 CA Coastal Conservancy Coastal Lidar Project: Hydro-flattened Bare Earth DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) data is remotely sensed high-resolution elevation data collected by an airborne collection platform. This LiDAR dataset is a...

  11. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    Science.gov (United States)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  12. Discrete return lidar in natural resources: Recommendations for project planning, data processing, and deliverables

    Science.gov (United States)

    Jeffrey S. Evans; Andrew T. Hudak; Russ Faux; Alistair M. S. Smith

    2009-01-01

    Recent years have seen the progression of light detection and ranging (lidar) from the realm of research to operational use in natural resource management. Numerous government agencies, private industries, and public/private stakeholder consortiums are planning or have recently acquired large-scale acquisitions, and a national U.S. lidar acquisition is likely before...

  13. The collaborative project on European sodium fast reactor (CP ESFR project)

    International Nuclear Information System (INIS)

    Fiorini, Gian-Luigi

    2010-01-01

    The paper summarizes the key characteristics of the four years large Collaborative Project on European Sodium Fast Reactor (CP ESFR - 2009-2012); the CP ESFR follows the 6th FP project named 'Roadmap for a European Innovative SOdium cooled FAst Reactor - EISOFAR' further identifying, organizing and implementing a significant part of the needed R and D effort. The paper also gives insights concerning the so called 'working horses' cores and systems which are provided by CEA and AREVA and that will be used as a basis to test the performances and assess the pertinence of innovative solutions. The CP ESFR merges the contribution of 25 European partners (EU + CH); it will be performed under the aegis of the 7th Euratom FP under the Area - Advanced Nuclear Systems with a refund from the European Commission. It will be a key component of the European Sustainable Nuclear Energy Technology Platform (SNE TP) and its Strategic Research Agenda (SRA). The inputs for the project are the key research goals for fourth generation of European sodium cooled fast reactors which can be summarized as follows: an improved safety with in particular the achievement of a robust architecture vis-a-vis of abnormal situations and the robustness of the safety demonstrations; the guarantee of a financial risk similar to that of the other means of energy production; a flexible and robust management of nuclear materials and especially waste reduction through Minor Actinides burning

  14. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  15. ESA’s spaceborne lidar mission ADM-Aeolus; project status and preparations for launch

    Directory of Open Access Journals (Sweden)

    Straume Anne Grete

    2018-01-01

    Full Text Available ESA’s Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus, was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK, and the instrument prime is Airbus Defence & Space France (ADS-F.

  16. ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch

    Science.gov (United States)

    Straume, Anne Grete; Elfving, Anders; Wernham, Denny; de Bruin, Frank; Kanitz, Thomas; Schuettemeyer, Dirk; Bismarck, Jonas von; Buscaglione, Fabio; Lecrenier, O.; McGoldrick, Phil

    2018-04-01

    ESA's Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus), was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP) and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK), and the instrument prime is Airbus Defence & Space France (ADS-F).

  17. 2007 Florida Division of Emergency Management (FDEM) Lidar Project: Southwest Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Light Detection and Ranging (LiDAR) LAS dataset is a topographic survey conducted for a coalition of GIS practitioners, including the Florida Division of...

  18. 2007 Florida Division of Emergency Management (FDEM) Lidar Project: Bay County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Light Detection and Ranging (LiDAR) LAS dataset is a topographic survey conducted for a coalition of GIS practitioners, including the Florida Division of...

  19. 2004 Southwest Florida Water Management District (SWFWMD) Lidar Project: Pasco County (Classified)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earthdata International was contracted to provide mapping services in Pasco County, Florida. Conventional aerial photography along with LIDAR observations were made....

  20. Comparison of Prescribed and Measured Dialysate Sodium: A Quality Improvement Project.

    Science.gov (United States)

    Gul, Ambreen; Miskulin, Dana C; Paine, Susan S; Narsipur, Sriram S; Arbeit, Leonard A; Harford, Antonia M; Weiner, Daniel E; Schrader, Ronald; Horowitz, Bruce L; Zager, Philip G

    2016-03-01

    There is controversy regarding the optimal dialysate sodium concentration for hemodialysis patients. Dialysate sodium concentrations of 134 to 138 mEq/L may decrease interdialytic weight gain and improve hypertension control, whereas a higher dialysate sodium concentration may offer protection to patients with low serum sodium concentrations and hypotension. We conducted a quality improvement project to explore the hypothesis that prescribed and delivered dialysate sodium concentrations may differ significantly. Cross-sectional quality improvement project. 333 hemodialysis treatments in 4 facilities operated by Dialysis Clinic, Inc. Measure dialysate sodium to assess the relationships of prescribed and measured dialysate sodium concentrations. Magnitude of differences between prescribed and measured dialysate sodium concentrations. Dialysate sodium measured pre- and late dialysis. The least square mean of the difference between prescribed minus measured dialysate sodium concentration was -2.48 (95% CI, -2.87 to -2.10) mEq/L. Clinics with a greater number of different dialysate sodium prescriptions (clinic 1, n=8; clinic 2, n=7) and that mixed dialysate concentrates on site had greater differences between prescribed and measured dialysate sodium concentrations. Overall, 57% of measured dialysate sodium concentrations were within ±2 mEq/L of the prescribed dialysate sodium concentration. Differences were greater at higher prescribed dialysate sodium concentrations. We only studied 4 facilities and dialysate delivery machines from 2 manufacturers. Because clinics using premixed dialysate used the same type of machine, we were unable to independently assess the impact of these factors. Pressures in dialysate delivery loops were not measured. There were significant differences between prescribed and measured dialysate sodium concentrations. This may have beneficial or deleterious effects on clinical outcomes, as well as confound results from studies assessing the

  1. Validation of the TOLNet lidars during SCOOP (Southern California Ozone Observation Project

    Directory of Open Access Journals (Sweden)

    Leblanc Thierry

    2018-01-01

    Full Text Available Five TOLNet lidars participated to a validation campaign at the JPL-Table Mountain Facility, CA in August 2016. All lidars agreed within ±10% of each other and within ±7% of the ozonesondes. Centralized data processing was used to compare the uncertainty budgets. The results highlight the TOLNet potential to address science questions ranging from boundary layer processes to long range transport. TOLNet can now be seen as a robust network for use in field campaigns and long term monitoring.

  2. IAEA NAPRO coordinated research project: physical properties of sodium - 15331

    International Nuclear Information System (INIS)

    Passerini, S.; Gerardi, C.; Grandy, C.; Azpitarte, O.E.; Chocron, M.; Japas, M.L.; Bubelis, E.; Perez-Martin, S.; Jayaraj, S.; Roelofs, F.; Latge, C.; Gerschenfeld, A.; Long, Bin; Selvaraj, P.; Marinenko, E.; Zagorulko, Y.; Ohira, H.; Monti, S.

    2015-01-01

    The International Atomic Energy Agency (IAEA) recently established a CRP on 'Sodium properties and safe operation of experimental facilities in support of the development and deployment of Sodium Cooled Fast Reactors - NAPRO', to be carried out in the period 2013-2017. The first phase of the CRP is focused on the collection and assessment of sodium properties, and it will lead to a consistent property data set which will be published in the form of a handbook. This work is carried out by the 11 participating organizations from 10 Member States through the review and evaluation of the existing available data, the identification of the data gaps and the development of recommendations for experimental programmes to support closing these data gaps. A specific work package (WP 1.1), under the leadership of Argonne National Laboratory, is focused on the analysis of physical properties of sodium: 19 thermodynamic properties (including gaseous state) and 12 transport properties. The expected outcome includes the improved understanding of the availability, accuracy and range of applications of sodium properties centered on fast reactors and other technological applications. The implemented methodology for WP 1.1 (including the division of work among participants and an overall overview of the collected references) is described and so the properties included in WP 1.1 and their classification. Major findings to date related to WP 1.1 are presented in this work, including detailed analysis of two selected properties. The availability of relevant data in principal and out-of-principal references is discussed. Finally, challenges encountered with the collection of references, uncertainty and lack of recent experimental investigation are also listed and adjustments to the methodological approach are proposed as future work. (authors)

  3. Results from the search-lidar demonstrator project for detection of small Sea-Surface targets

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Putten, F.J.M. van; Cohen, L.H.; Kemp, R.A.W.; Franssen, G.C.

    2009-01-01

    Coastal surveillance and naval operations in the littoral both have to deal with the threat of small sea-surface targets. These targets have a low radar cross-section and a low velocity that makes them hard to detect by radar. Typical threats include jet skis, FIAC's, and speedboats. Previous lidar

  4. sodium

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les initiatives de réduction de la consommation de sel qui visent l'ensemble de la population et qui ciblent la teneur en sodium des aliments et sensibilisent les consommateurs sont susceptibles de réduire la consommation de sel dans toutes les couches de la population et d'améliorer la santé cardiovasculaire. Ce projet a ...

  5. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  6. Uses of Single Photon Lidar (SPL) in the Monitoring Reporting and Verification of afforestation and carbon offset projects

    Science.gov (United States)

    Dolan, K. A.; DeCola, P.; Dubayah, R.; Huang, W.; Hurtt, G. C.; Tang, H.; Whitehurst, A.

    2017-12-01

    As societies move towards increased valuation of carbon through markets, regulations, and voluntary agreements the need to develop comprehensive, traceable and continuous, carbon monitoring, reporting and verification (MRV) systems has risen in priority locally to globally. Future landuse decisions, to conserve, develop or reforest, rests on the perceived valuation of anthropogenic and ecological benefits, as well as our ability to measure, report, verify, and "project" those benefits. Two carbon markets in the US, the Regional Green House Gas Initiative (RGGI) and the California Cap and Trade, accept carbon credits or offsets from the forestry sector from avoided emissions through forest conservation, by the enhancement land carbon sequestration through improved forest management and through reforestation projects. These investments often go beyond state, and national boundaries. For example, Blue Source a leading investment firm in forest carbon credits invested in over 20,000 acres of Pennsylvania forests in collaboration with The Nature Conservatory (TNC) Forest Conservation Program. Further local to national governments are writing their own climate policies and regulations and are setting targets for forest carbon storage and sequestration as part of their climate action portfolios. Yet, often little resources or effort is left for monitoring the success of projects such as afforestation initiatives once they have been completed. While field data is critical to monitoring efforts, covering the vast areas needed and getting accurate structural information from field campaigns alone can be difficult and costly. The use of Lidar as a supplement to other developed forest monitoring techniques has advanced significantly over the last decade. Here we evaluate the use of single photon lidar (SPL) collected in the summer of 2015, developed for rapidly collecting high-density, three-dimensional data over a variety of terrain targets, to aid in carbon offset MRV on an

  7. Elevation - LIDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  8. 2014 Horry County, South Carolina Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry...

  9. European commission - 7th framework programme. The collaborative project on European sodium fast reactor (CP ESFR)

    International Nuclear Information System (INIS)

    Fiorini, G.L.

    2009-01-01

    The paper summarizes the key characteristics of the four years large Collaborative Project on European Sodium Fast Reactor (CP ESFR - 2009-2012); the CP ESFR follows the 6th FP project named 'Roadmap for a European Innovative SOdium cooled FAst Reactor - EISOFAR' further identifying, organizing and implementing a significant part of the needed R and D effort. The CP ESFR merges the contribution of 25 european partners; it will be realized under the aegis of the 7th FP under the Area - Advanced Nuclear Systems with a refund from the European Commission of 5.8 M euro (11.55 M euro total budget). It will be a key component of the European Sustainable Nuclear Energy Technology Platform (SNE TP) and its Strategic Research Agenda (SRA). The inputs for the project are the key research goals for fourth generation of European sodium cooled fast reactors which can be summarized as follow: an improved safety with in particular the achievement of a robust architecture vis a vis of abnormal situations and the robustness of the safety demonstrations; the guarantee of a financial risk comparable to that of the other means of energy production; a flexible and robust management of the nuclear materials and especially the waste reduction through the Minor Actinides burning. (author)

  10. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  11. 2008 Florida Division of Emergency Management (FDEM) Lidar Project: Pasco County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is one component of a digital terrain model (DTM) for the Florida Division of Emergency Management's (FDEM) Project Management and Technical Services...

  12. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  13. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E).

    Science.gov (United States)

    Kawahara, T D; Nozawa, S; Saito, N; Kawabata, T; Tsuda, T T; Wada, S

    2017-06-12

    An Nd:YAG laser-based sodium temperature/wind lidar was developed for the measurement of the northern polar mesosphere and lower thermosphere at Tromsø (69.6N, 19.2E), Norway. Coherent light at 589 nm is produced by sum frequency generation of 1064 nm and 1319 nm from two diode laser end-pumped pulsed Nd:YAG lasers. The output power is as high as 4W, with 4 mJ/pulse at 1000 Hz repetition rate. Five tilting Cassegrain telescopes enable us to make five-direction (zenith, north, south, east, west) observation for temperature and wind simultaneously. This highly stable laser system is first of its kind to operate virtually maintenance-free during the observation season (from late September to March) since 2010.

  14. Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2005-01-01

    Full Text Available We report on the vertical distributions of Saharan dust aerosols over the N.E. Mediterranean region, which were obtained during a typical dust outbreak on August 2000, by two lidar systems located in Athens and Thessaloniki, Greece, in the frame of the European EARLINET project. MODIS and ground sun spectrophotometric data, as well as air-mass backward trajectories confirmed the existence of Saharan dust in the case examined, which was also successfully forecasted by the DREAM dust model. The lidar data analysis for the period 2000-2002 made possible, for the first time, an estimation of the vertical extent of free tropospheric dust layers [mean values of the aerosol backscatter and extinction coefficients and the extinction-to-backscatter ratio (lidar ratio, LR at 355 nm], as well as a seasonal distribution of Saharan dust outbreaks over Greece, under cloud-free conditions. A mean value of the lidar ratio at 355 nm was obtained over Athens (53±1 sr and over Thessaloniki (44±2 sr during the Saharan dust outbreaks. The corresponding aerosol optical thickness (AOT at 355 nm, in the altitude range 0-5 km, was 0.69±0.12 and 0.65±0.10 for Athens and Thessaloniki, respectively (within the dust layer the AOT was 0.23 and 0.21, respectively. Air-mass back-trajectory analysis performed in the period 2000-2002 for all Saharan dust outbreaks over the N.E. Mediterranean indicated the main pathways followed by the dust aerosols.

  15. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  16. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  17. Proliferation Resistance and Material Type considerations within the Collaborative Project for a European Sodium Fast Reactor

    International Nuclear Information System (INIS)

    Renda, Guido; Alim, Fatih; Cojazzi, Giacomo GM.

    2015-01-01

    The collaborative project for a European Sodium Fast Reactor (CP‑ESFR) is an international project where 25 European partners developed Research & Development solutions and concepts for a European sodium fast reactor. The project was funded by the 7. European Union Framework Programme and covered topics such as the reactor architectures and components, the fuel, the fuel element and the fuel cycle, and the safety concepts. Within sub‑project 3, dedicated to safety, a task addressed proliferation resistance considerations. The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR and PP) Evaluation Methodology has been selected as the general framework for this work, complemented by punctual aspects of the IAEA‑INPRO Proliferation Resistance methodology and other literature studies - in particular for material type characterization. The activity has been carried out taking the GIF PR and PP Evaluation Methodology and its Addendum as the general guideline for identifying potential nuclear material diversion targets. The targets proliferation attractiveness has been analyzed in terms of the suitability of the targets’ nuclear material as the basis for its use in nuclear explosives. To this aim the PR and PP Fissile Material Type measure was supplemented by other literature studies, whose related metrics have been applied to the nuclear material items present in the considered core alternatives. This paper will firstly summarize the main ESFR design aspects relevant for PR following the structure of the GIF PR and PP White Paper template. An analysis on proliferation targets is then discussed, with emphasis on their characterization from a nuclear material point of view. Finally, a high‑level ESFR PR analysis according to the four main proliferation strategies identified by the GIF PR and PP Evaluation Methodology (concealed diversion, concealed misuse, breakout, clandestine production in clandestine facilities) is

  18. Elevation - LiDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  19. Making lidar more photogenic: creating band combinations from lidar information

    Science.gov (United States)

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  20. 2010 ARRA Lidar: Golden Gate (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Golden Gate LiDAR Project is a cooperative project sponsored by the US Geological Survey (USGS) and San Francisco State University (SFSU) that has resulted in...

  1. 2010 USGS Lidar: Salton Sea (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Salton Sea project encompasses a 5-kilometer buffer around the Salton Sea, California. Dewberry classified LiDAR for a project boundary that touches 623...

  2. The long term stability of lidar calibrations

    DEFF Research Database (Denmark)

    Courtney, Michael; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. One of the requirements for the data to be accepted in support of project financing (so-called ‘banka-bility’) is to demonstrate the long-term stability of lidar cali-brations. Calibration results for six Leosphere WindCube li...

  3. Lidar observations of sodium layer over low latitude, Gadanki (13.5° N, 79.2° E): seasonal and nocturnal variations

    CSIR Research Space (South Africa)

    Prasanth, PV

    2009-10-01

    Full Text Available , Dordrecht, Holland, 200 pp, 1970. Clemesha, B. R., Kirchhoff, V. W. J. H., Kirchhoff, D. M., Taka- hashi, H., and Batista, P. P.: Simultaneous observations of sodium density and the NaD, OH(8,3), and OI5577- Ao night- glow emissions, J. Geophys. Res., 84....: Nighttime Na-D Emission observed from a Polar-Orbiting DMSP Satellite – Comment, J. Geophys. Res., 95, 6601–6606, 1990. Clemesha, B. R., Simonich, D. M., Takahasi, H., Melo, S. M. L., and Plane, J. M. C.: Experimental evidence for photochemical control...

  4. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Lewis County project of 2005. The project site covered approximately 223 square miles, divided...

  5. 2006 NOAA Bathymetric Lidar: Puerto Rico (Southwest)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set (Project Number OPR-I305-KRL-06) depicts depth values (mean 5 meter gridded) collected using LiDAR (Light Detection & Ranging) from the shoreline...

  6. USGS Atchafalaya 2 LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Atchafalaya Basin project area. The entire survey area for Atchafalaya encompasses approximately...

  7. 2007 Sumpter Powder River Mine Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data for the USDA Forest Service on September 17, 2007. The project covers an 8-mile...

  8. Break Lines, This data was produced for the USGS according to specific project requirements. The Lidar derived breaklines cover Somerset County and the Western portion of Wicomico County, Maryland. Inland streams, rivers, lakes, ponds and tidal features are present., Published in 2012, Not Applicable scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Break Lines dataset current as of 2012. This data was produced for the USGS according to specific project requirements. The Lidar derived breaklines cover Somerset...

  9. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  10. 2013 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Scappoose

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Scappoose study area. The Scappoose project area encompasses...

  11. 2013 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar DEM: Scappoose

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Scappoose study area. The Scappoose project area encompasses...

  12. Bayfield Co. QL2 LiDAR (2015-16) - DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bayfield County lidar project area covers approximately 1681 square miles plus a 100 meter buffer around the county boundary. The lidar data was acquired at a...

  13. Bayfield Co. QL2 LiDAR (2015-16) - Classified Point Cloud

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bayfield County lidar project area covers approximately 1681 square miles plus a 100 meter buffer around the county boundary. The lidar data was acquired at a...

  14. Manitowoc Co. QL2 LiDAR (2015-16) - Classified Point Cloud

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Manitowoc County lidar project area covers approximately 602 square miles plus a 100 meter buffer around the county boundary. The lidar data was acquired at a...

  15. Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data collection consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected,...

  16. 2007 US Army Corps of Engineers (USACE), Jacksonville District US Virgin Islands LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Light Detection and Ranging (LiDAR) bare-earth classified LAS dataset is a topographic survey conducted for the USACE USVI LiDAR Project. These data were...

  17. Manitowoc Co. QL2 LiDAR (2015-16) - DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Manitowoc County lidar project area covers approximately 602 square miles plus a 100 meter buffer around the county boundary. The lidar data was acquired at a...

  18. 2010 US Army Corps of Engineers (USACE) Portland District Columbia River Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Columbia River Light Detection and Ranging (LiDAR) survey project was a collaborative effort to develop detailed high density LiDAR terrain data for the US Army...

  19. NOAA Geotiff - 5 meter LiDAR Reflectivity, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) intensity mosaic (mean 5 meter gridded) from the shoreline of southwestern Puerto Rico to about 50...

  20. NOAA Geotiff - 5 meter LiDAR Reflectivity, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection and Ranging) intensity mosaic (mean 5 meter gridded) from the shoreline of southwestern Puerto Rico to about 50 meters...

  1. NOAA Geotiff - 4 meter LiDAR bathymetry, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection and Ranging) bathymetric mosaic (mean 4 meter gridded) collected along the coastline of southwestern Puerto Rico. The...

  2. NOAA Geotiff - 4 meter LiDAR bathymetry, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) bathymetric mosaic (mean 4 meter gridded) collected along the coastline of southwestern Puerto Rico....

  3. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: North Puget Sound Lowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data contributing to the Puget Sound Lowlands project of 2005. Arlington, City of Snohomish, Snohomish...

  4. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Olympic Peninsula

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Olympic Peninsula project of 2005, totaling approximately 114.59 sq mi: 24.5 for Clallam...

  5. CP ESFR: Collaborative Project for a European Sodium Fast Reactor Core studies

    International Nuclear Information System (INIS)

    Buiron, L.; Vasile, A.; Sunderland, R.

    2013-01-01

    • Significant progress has been made in optimizing both the oxide and carbide ESFR cores; • For the oxide core the optimisation process concentrated on the reduction of the sodium void reactivity effect and on the evaluation of MA burning performances. The CONF2 axial configuration has provided a significant overall reduction of the sodium void reactivity effect. • The carbide core had a significantly higher reactivity loss over the fuel cycle compared to the oxide one. By increasing slightly the fuel pin diameter, whilst still retaining the advantages of lower fuel temperatures of carbide fuel, and making changes in the core layout, the reactivity loss over the cycle has been reduced to a level similar to that of the oxide core. By adopting the CONF2 axial configuration initially developed for the oxide core, the sodium void reactivity of the carbide core has also been reduced appreciably. • The MA transmutation performances of the optimized ESFR oxide core have been investigated with respect to two boundary configurations. The HET2 configuration shows a low MA transmutation rate sufficient to burn the MA produced by the ESFR core without affecting the safety parameters. The HOM4 configuration (where 4%wt. MA are loaded homogeneously in each core SA) is the most challenging configuration due to its impact on safety coefficients but it shows an high MA burning rate suitable for burning also MA accumulated by a thermal reactor fleet

  6. 2015 OLC Lidar: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  7. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  8. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  9. Comparing data of terrestrial LiDAR and UAV (photogrammetric) in the context of the project "SedAlp"

    Science.gov (United States)

    Abel, Judith; Wegner, Kerstin; Haas, Florian; Heckmann, Tobias; Becht, Michael

    2014-05-01

    The project "SedAlp" (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower) concentrates on problems and approaches related to sediment transfer in the alpine region and is embedded in the European transnational cooperation program "Alpine Space". The catholic University Eichstätt-Ingolstadt contributes the German part to this project on behalf of the Bavarian Environment Agency and in collaboration with the Authority of Water Resources Weilheim. The area of interest is the river Isar between the Sylvenstein reservoir and the city of Bad Tölz, Bavaria, Germany. The main aim of the activities is to quantify the transfer of sediments from the tributary catchments to the river Isar, specifically in light of the fact that the construction of the Sylvenstein reservoir in the mid 1950ies has created a barrier to longitudinal sediment transfer, thus heavily impacting the sediment budget and morphodynamics of the Isar reaches downstream. Moreover, the further development of artificially inserted gravel deposits and the effect of dismantling reinforcement structures at the river banks need investigation. Therefore, the dynamics of alluvial fans and gravel bars in the areas of confluence of tributary torrents are monitored using multitemporal surveys with terrestrial laserscanners and drone-based imagery. The latter is used both for the generation of high-resolution digital elevation models and for the mapping of changes in comparison to historical aerial photos. This study focuses on a comparison of TLS and UAV-based photogrammetric digital elevation models in order to highlight advantages and disadvantages of the two methods in relation to the SedAlp-specific research problems. It is shown that UAV-based elevation models are highly accurate alternatives to TLS-based models; due to their favourable acquisition geometry with respect to the topography in floodplain areas, and their large areal coverage, their use is seen as

  10. Validation and deployment of the first Lidar based weather observation network in New York State: The NYS MesoNet Project

    Directory of Open Access Journals (Sweden)

    Thobois L.

    2018-01-01

    This paper will describe the New York State Mesonet that is being deployed in the state of New York, USA. It is composed of 126 stations including 17 profiler sites. These sites will acquire continuous upper air observations through the combination of WINDCUBE Lidars and microwave radiometers. These stations will provide temperature, relative humidity & “3D” wind profile measurements through and above the planetary boundary layer (PBL and will retrieve derived atmospheric quantities such as the PBL height, cloud base, momentum fluxes, and aerosol & cloud optical properties. The different modes and configurations that will be used for the Lidars are discussed. The performances in terms of data availability and wind accuracy and precision are evaluated. Several profiles with specific wind and aerosol features are presented to illustrate the benefits of the use of Coherent Doppler Lidars to monitor accurately the PBL.

  11. Earth Mesosphere Temperature Measurements via Sodium Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — This CIF effort is part of a larger research program. It addresses the front-end, lower TRL development of what will become the first ever spaceborn, Na laser...

  12. New Generation Lidar Technology and Applications

    Science.gov (United States)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of

  13. High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

    Science.gov (United States)

    Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.

    2015-12-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  14. Project planning of Gen-IV sodium cooled fast reactor technology

    International Nuclear Information System (INIS)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-01

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO 2 Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety

  15. Project planning of Gen-IV sodium cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-15

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO{sub 2} Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety.

  16. Constraining lidar stand-alone retrievals with lunar photometry measurements

    Science.gov (United States)

    Ortiz-Amezcua, Pablo; Luis Guerrero-Rascado, Juan; Antonio Benavent-Oltra, Jose; Román, Roberto; Böckmann, Christine; Alados-Arboledas, Lucas

    2018-04-01

    This study combines atmospheric optical information measured with lidar and nocturnal photometers in order to find configurations that allow for the retrieval of particle microphysical properties without "3+2" lidar setups. It has been carried out using data measured at the EARLINET Granada station during the experimental campaign SLOPE in the framework of ACTRIS-2 project.

  17. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production Task...

  18. 2015 OLC Lidar: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  19. Synthesis of results obtained on sodium components and technology through the Generation IV International Forum SFR Component Design and Balance-of-Plant Project

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Rodriguez, G.; Kisohara, N.; Kim, J. B.; Gerber, A.; Ashurko, Y.; Toyama, S.

    2013-01-01

    Status: The viability of designing SFR components and BOP has been demonstrated with design, construction and operation of previous sodium-cooled reactors. The main objective of this R&D project is related to system performance, or by development on the use of AECS in the BOP that could allow further cost improvements. Objective: To conduct collaborative research and development of components and BOP for the SFR System. The Project has to satisfy the GIF’s criteria of safety, economy, sustainability, proliferation resistance and physical protection. Activities within this Project are addressing experimental and analytical evaluation of advanced ISI&R, LBB assessment, development of AECS with Brayton cycles, advanced SG technologies. Project activities will be based in part on the extensive historical R&D experience with component design and balance of plant for sodium-cooled fast reactors

  20. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    OpenAIRE

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA...

  1. North Carolina Statewide Lidar DEM 2015 Phase 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geographic Extent: North Carolina Area of Interest, covering approximately 7,197 square miles. Dataset Description: The North Carolina LiDAR project called for the...

  2. 2015 NCFMP Lidar: Statewide North Carolina (Phase 3)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geographic Extent: North Carolina Area of Interest, covering approximately 7,197 square miles. Dataset Description: The North Carolina LiDAR project called for the...

  3. Validation and deployment of the first Lidar based weather observation network in New York State: The NYS MesoNet Project

    Science.gov (United States)

    Thobois, L.; Freedman, J.; Royer, P.; Brotzge, J.; Joseph, E.

    2018-04-01

    The number and quality of atmospheric observations used by meteorologists and operational forecasters are increasing year after year, and yet, consistent improvements in forecast skill remains a challenge. While contributing factors involving these challenges have been identified, including the difficulty in accurately establishing initial conditions, improving the observations at regional and local scales is necessary for accurate depiction of the atmospheric boundary layer (below 2km), particularly the wind profile, in high resolution numerical models. Above the uncertainty of weather forecasts, the goal is also to improve the detection of severe and extreme weather events (severe thunderstorms, tornadoes and other mesoscale phenomena) that can adversely affect life, property and commerce, primarily in densely populated urban centers. This paper will describe the New York State Mesonet that is being deployed in the state of New York, USA. It is composed of 126 stations including 17 profiler sites. These sites will acquire continuous upper air observations through the combination of WINDCUBE Lidars and microwave radiometers. These stations will provide temperature, relative humidity & "3D" wind profile measurements through and above the planetary boundary layer (PBL) and will retrieve derived atmospheric quantities such as the PBL height, cloud base, momentum fluxes, and aerosol & cloud optical properties. The different modes and configurations that will be used for the Lidars are discussed. The performances in terms of data availability and wind accuracy and precision are evaluated. Several profiles with specific wind and aerosol features are presented to illustrate the benefits of the use of Coherent Doppler Lidars to monitor accurately the PBL.

  4. Development of a regional LiDAR field plot strategy for Oregon and Washington

    Science.gov (United States)

    Arvind Bhuta; Leah Rathbun

    2015-01-01

    The National Forest System (NFS) Pacific Northwest Region (R6) has been flying LiDAR on a per project basis. Additional field data was also collected in situ to many of these LiDAR projects to aid in the development of predictive models and estimate values which are unattainable through LiDAR data alone (e.g. species composition, tree volume, and downed woody material...

  5. 2003 Oahu Coastline Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning...

  6. Alexandrite Lidar Receiver

    National Research Council Canada - National Science Library

    Wilkerson, Thomas

    2000-01-01

    ...". The chosen vendor, Orca Photonics, In. (Redmond, WA), in close collaboration with USU personnel, built a portable, computerized lidar system that not only is suitable as a receiver for a near IR alexandrite laser, but also contains an independent Nd...

  7. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  8. Lidar 2009 - All Returns

    Data.gov (United States)

    Kansas Data Access and Support Center — LIDAR-derived binary (.las) files containing classified points of all returns. We have 3 classifications Unclassified, Ground, Low points. The average Ground Sample...

  9. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  10. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  11. 2014 OLC Lidar: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  12. 2015 OLC Lidar DEM: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  13. 2015 OLC Lidar: Okanogan WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Okanogan FEMA study area. This study area is located in...

  14. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  15. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  16. Lidar Characterization of Boundary Layer Transport and Mixing for Estimating Urban-Scale Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Hardesty R. Michael

    2016-01-01

    Full Text Available A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.

  17. Identification of long-range transport of aerosols over Austria using EARLINET lidar measurements

    Science.gov (United States)

    Camelia, Talianu

    2018-04-01

    The aims of the study is to identify the paths of the long-range transported aerosols over Austria and their potential origin, and to estimate their properties, using lidar measurements from EARLINET stations closest to Austria from Germany and Romania and aerosol transport models. As of now, there is no lidar station in Austria. The study is part of a project to estimate the usefulness of a lidar station located in Vienna, Austria.

  18. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  19. Benchmark Analyses of Sodium Natural Convection in the Upper Plenum of the Monju Reactor Vessel. Final Report of a Coordinated Research Project 2008-2012

    International Nuclear Information System (INIS)

    2014-11-01

    The IAEA supports Member States in the area of advanced fast reactor technology development by providing a major fulcrum for information exchange and collaborative research programmes. The IAEA’s activities in this field are mainly carried out within the framework of the Technical Working Group on Fast Reactors (TWG-FR), which assists in the implementation of corresponding IAEA support, and ensures that all technical activities are in line with expressed needs of Member States. Among this broad range, the IAEA proposes and establishes coordinated research projects (CRPs), aimed at improving Member State capability in fast reactor design and analysis. An important opportunity to perform collaborative research activities was provided by the system startup tests carried out by the Japan Atomic Energy Agency (JAEA) in the prototype loop type sodium cooled fast reactor Monju, in particular a turbine trip test performed in December 1995. As the JAEA opened the experimental dataset to international collaboration in 2008, the IAEA launched the CRP on Benchmark Analyses of Sodium Natural Convection in the Upper Plenum of the Monju Reactor Vessel. The CRP, together with eight institutes from seven States, has contributed to improving capabilities in sodium cooled fast reactors simulation through code verification and validation, with particular emphasis on thermal stratification and natural circulation phenomena

  20. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    International Nuclear Information System (INIS)

    Dodds, J.N.; UNOCAL, Brea, CA

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na 2 NiFe(CN) 6 , and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300 degrees C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ''hot spot'' show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions

  1. 2004 Alaska Lidar Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data sets are generated using the OPTECH ALTM 70 kHz LIDAR system mounted onboard AeroMap's twin-engine Cessna 320 aircraft. Classified data sets such as this...

  2. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  3. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  4. Lidar 2009 - IMG

    Data.gov (United States)

    Kansas Data Access and Support Center — ESRI Grids 1 meter resolution are created from the ground classified lidar points. The tiles are delivered in 5,000m by 5,000m tiles. The ESRI grids are exported to...

  5. Efficient LIDAR Point Cloud Data Managing and Processing in a Hadoop-Based Distributed Framework

    Science.gov (United States)

    Wang, C.; Hu, F.; Sha, D.; Han, X.

    2017-10-01

    Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop's storage and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.

  6. FY12 St Johns River Water Management LiDAR Survey: Putnam (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the FY12 St Johns River Water Management LiDAR Survey, project area in north-central Florida and...

  7. 2015 OLC Lidar DEM: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  8. 2006 MDEQ Camp Shelby, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines...

  9. Lidar system for air-pollution monitoring over urban areas

    Science.gov (United States)

    Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.

    1997-05-01

    The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.

  10. An Application Example Analysis of Quality Assurance Program for STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) Project

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minhwan; Gam, Dayoung; Eoh, Jae-Hyuk; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    KAERI has been conducting various basic R and D activities in the field of nuclear technology. In addition, KAERI is now participating in the Generation IV International Forum (GIF), preparing for the development of key technologies for Generation IV nuclear energy system, including Sodium cooled Fast Reactor (SFR) development. All of the key technologies for SFR development need an appropriate level of QA activities to achieve the GIF safety and performance objectives. Therefore, QA activities have been conducted as an essential part of the national SFR project. As a result, QAM (Quality Assurance Manual) and QAP (Quality Assurance Procedures) have been developed for the SFR project, which are based on ASME NQA-1, KEPIC QAP and the GIF Quality Management System Guidelines. In this work, the introduction background and application examples of the QA program for the STELLA project were investigated. Application of the QA for the STELLA project has great significance because the QA has been mainly applied for the nuclear power plant area in operation, which helps ensure the reliability of the test data and completeness of the research performance. Nevertheless, developing more appropriate QA procedures remains a major task because some parts of them are not applicable to the Na-experiment.

  11. An Application Example Analysis of Quality Assurance Program for STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) Project

    International Nuclear Information System (INIS)

    Jung, Minhwan; Gam, Dayoung; Eoh, Jae-Hyuk; Jeong, Ji-Young

    2015-01-01

    KAERI has been conducting various basic R and D activities in the field of nuclear technology. In addition, KAERI is now participating in the Generation IV International Forum (GIF), preparing for the development of key technologies for Generation IV nuclear energy system, including Sodium cooled Fast Reactor (SFR) development. All of the key technologies for SFR development need an appropriate level of QA activities to achieve the GIF safety and performance objectives. Therefore, QA activities have been conducted as an essential part of the national SFR project. As a result, QAM (Quality Assurance Manual) and QAP (Quality Assurance Procedures) have been developed for the SFR project, which are based on ASME NQA-1, KEPIC QAP and the GIF Quality Management System Guidelines. In this work, the introduction background and application examples of the QA program for the STELLA project were investigated. Application of the QA for the STELLA project has great significance because the QA has been mainly applied for the nuclear power plant area in operation, which helps ensure the reliability of the test data and completeness of the research performance. Nevertheless, developing more appropriate QA procedures remains a major task because some parts of them are not applicable to the Na-experiment

  12. Lidar: air pollution applications

    International Nuclear Information System (INIS)

    Collis, R.T.H.

    1977-01-01

    This introduction to the use of lidar in air pollution applications is mainly concerned with its capability to detect and monitor atmospheric particulates by elastic backscattering. Even when quite imperceptible to the eye, such particulates may be detected at ranges of several kilometers even by lidars of modest performance. This capability is valuable in connection with air pollution in the following ways: by mapping and tracking inhomogeneities in particulate concentration, atmospheric structure and motion may be monitored; measurements of the optical properties of the atmosphere provide an indication of turbidity or of particulate number or mass concentrations; and the capability of obtaining at a single point return signals from remote atmospheric volumes makes it possible to make range-resolved measurements of gaseous concentration along the path by using the resonant absorption of energy of appropriate wavelengths

  13. Safety analyses for sodium-cooled fast reactors with pelletized and sphere-pac oxide fuels within the FP-7 European project PELGRIMM - 15386

    International Nuclear Information System (INIS)

    Maschek, W.; Andriolo, L.; Matzerath-Boccaccini, C.; Delage, F.; Parisi, C.; Del Nevo, A.; Abbate, G.; Schmitt, D.

    2015-01-01

    The European FP-7 project PELGRIMM addresses the development of Minor-Actinide (MA) bearing oxide fuel for Sodium-cooled Fast Reactors. Optionally, both MA homogeneous recycling and heterogeneous recycling is investigated with pellet and sphere-pac fuel. A first safety assessment of sphere-pac fuelled cores should be given in the Work Package 4 of the project. This assessment is in continuity with the former FP-7 CP-ESFR project. Within the CP-ESFR project the CONF2 core design has been developed characterized by a core with a large upper sodium plenum to reduce the coolant void worth. This optimized core has been chosen for the safety analyses in PELGRIMM. The task within the PELGRIMM project is thus a safety assessment of the CONF2 core loaded either with pellets or with sphere-pac fuel. The investigations started with the design of the CONF2 core with sphere-pac fuel and the determination of core safety parameters and burn-up behavior. The neutronic analyses have been performed with the MCNPX code. Variants of the CONF2 core contain up to 4% Am in the fuel. The results revealed an extended void worth (core + upper plenum) for an Am free core of 1 up to 3 dollars for the 4% Am core. Thermal-hydraulic design analyses have been performed by RELAP5-3D. The accident simulations should be performed by different codes, some of which focus on the initiation phase of the accident, as SAS4A, BELLA and the MAT5DYN code, whereas the SIMMER-III code will also deal with the later accident phases and a potential whole core melting. The codes had to be adapted to the specifics of the sphere-pac fuel, in particular to the thermal conductivity and gap conditions. Analyses showed that the safety assessment has to take into account two main phases. Starting up the core, the green fuel shows a reduced fuel thermal conductivity. After restructuring within a couple of hours, the thermal conductivity recovers and the fuel temperature decreases. The main objective of the safety analyses

  14. Heterodyne lidar for chemical sensing

    International Nuclear Information System (INIS)

    Oldenborg, Richard C.; Tiee, Joe J.; Shimada, Tsutomu; Wilson, Carl W.; Remelius, Dennis K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO 2 transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics

  15. Sporadic sodium and E layers observed during the summer 2002 MaCWAVE/MIDAS rocket campaign

    Directory of Open Access Journals (Sweden)

    B. P. Williams

    2006-07-01

    Full Text Available On 5 July 2002, a MaCWAVE (Mountain and Convective Waves Ascending VErtically payload launched from Andøya Rocket Range, Norway, observed narrow enhanced layers of electron density that were nearly coincident with sporadic sodium layers measured by the Weber sodium lidar at the nearby ALOMAR Observatory. We investigate the formation mechanism of these layers using the neutral wind and temperature profiles measured directly by the lidar and the vertical motion deduced from the sodium mixing ratio. Through comparisons of the lidar data to the sporadic E in situ data, we find support for the concentration and downward motion of ions to an altitude where chemical models predict the rapid conversion of sodium ions to neutral sodium.

  16. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  17. Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions

    Science.gov (United States)

    Fabian B. Galvez; Andrew T. Hudak; John C. Byrne; Nicholas L. Crookston; Robert F. Keefe

    2014-01-01

    Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the...

  18. Novel Methods for Measuring LiDAR

    Science.gov (United States)

    Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.

    2017-12-01

    The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and

  19. Prediction of Canopy Heights over a Large Region Using Heterogeneous Lidar Datasets: Efficacy and Challenges

    Directory of Open Access Journals (Sweden)

    Ranjith Gopalakrishnan

    2015-08-01

    Full Text Available Generating accurate and unbiased wall-to-wall canopy height maps from airborne lidar data for large regions is useful to forest scientists and natural resource managers. However, mapping large areas often involves using lidar data from different projects, with varying acquisition parameters. In this work, we address the important question of whether one can accurately model canopy heights over large areas of the Southeastern US using a very heterogeneous dataset of small-footprint, discrete-return airborne lidar data (with 76 separate lidar projects. A unique aspect of this effort is the use of nationally uniform and extensive field data (~1800 forested plots from the Forest Inventory and Analysis (FIA program of the US Forest Service. Preliminary results are quite promising: Over all lidar projects, we observe a good correlation between the 85th percentile of lidar heights and field-measured height (r = 0.85. We construct a linear regression model to predict subplot-level dominant tree heights from distributional lidar metrics (R2 = 0.74, RMSE = 3.0 m, n = 1755. We also identify and quantify the importance of several factors (like heterogeneity of vegetation, point density, the predominance of hardwoods or softwoods, the average height of the forest stand, slope of the plot, and average scan angle of lidar acquisition that influence the efficacy of predicting canopy heights from lidar data. For example, a subset of plots (coefficient of variation of vegetation heights <0.2 significantly reduces the RMSE of our model from 3.0–2.4 m (~20% reduction. We conclude that when all these elements are factored into consideration, combining data from disparate lidar projects does not preclude robust estimation of canopy heights.

  20. Status of the design and safety project for the sodium-cooled fast reactor as a generation IV nuclear energy system

    International Nuclear Information System (INIS)

    Niwa, Hajime; Fiorini, Gian-Luigi; Sim, Yoon-Sub; Lennox, Tom; Cahalan, James E.

    2005-01-01

    The Design and Safety Project Management Board (DSPMB) was established under the Sodium Cooled Fast Reactor (SFR) System Steering Committee (SSC) in the Generation IV international Forum. The DSPMB will promote collaborative R and D activities on reactor core design, and safety assessment for candidate systems, and also integrate these results together with those from other PMBs such as advanced fuel and component to a whole fast reactor system in order to develop high performance systems that will satisfy the goals of Generation IV nuclear energy systems. The DSPMB has formulated the present R and D schedules for this purpose. Two SFR concepts were proposed: a loop-type system with primarily a MOX fuel core and a pool-type system with a metal fuel core. Study of innovative systems and their evaluation will also be included. The safety project will cover both the safety assessment of the design and the preparation of the methods/tools to be used for the assessment. After a rather short viability phase, the project will move to the performance phase for development of performance data and design optimization of conceptual designs. This paper describes the schedules, work packages and tasks for the collaborative studies of the member countries. (author)

  1. Let’s agree on the casing of Lidar

    Science.gov (United States)

    Deering, Carol; Stoker, Jason M.

    2014-01-01

    Is it lidar, Lidar, LiDAR, LIDAR, LiDar, LiDaR, or liDAR? A comprehensive review of the scientific/technical literature reveals seven different casings of this short form for light detection and ranging. And there could be more.

  2. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...

  3. Four-wavelength lidar evaluation of particle characteristics and aerosol densities

    Science.gov (United States)

    Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.

    1985-06-01

    The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.

  4. 2010 U.S. Geological Survey (USGS) Topographic LiDAR: San Francisco Bay, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR)...

  5. 2007 Lake County Board of County Commissioners Topographic LiDAR: Lake County, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the LiDAR point data in LAS format produced by Kucera covering the project area of Lake County, FL. The data produced is...

  6. Coastal Elevation Data (from Lidar) for US and Territories from 1996 to Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Many different partners and groups, and several Center-led data projects, have contributed to the lidar data collection housed and distributed by the NOAA Office for...

  7. 2013 NOAA Topographic Lidar: U.S. Virgin Islands (St. Croix, St. John, St. Thomas)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The United States Virgin Islands Topographic LiDAR project collected topographic elevation point data derived from multiple return light detection and ranging...

  8. 2012 FEMA Topographic Lidar: Hudson-Hoosic and Deerfield Watersheds, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Hudson-Hoosic and Deerfield project area. The entire survey area for Massachusetts is...

  9. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  10. Low sodium diet (image)

    Science.gov (United States)

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  11. Balloonborne lidar experiment

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Brooke, R. W.; Hurd, A. G.

    1980-12-01

    The object of this contract was to design a balloonborne lidar experiment capable of performing nightime atmospheric density measurements in the 10 to 40 km altitude domain with a resolution of 100 meters. The payload includes a frequency-tripled Nd:YAG laser with outputs at 353 and 1064 nm, a telescoped receiver with PMT detectors, a command-controlled optical pointing system, and support systems, including thermal control, telemetry, command, and power. Density measurements would be made using the back-scattered 353 nm radiation data with aerosol corrections obtained from 1064 nm radiation scatterings.

  12. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  13. Comparisons of Simultaneously Acquired Airborne Sfm Photogrammetry and Lidar

    Science.gov (United States)

    Larsen, C. F.

    2014-12-01

    Digital elevation models (DEMs) created using images from a consumer DSLR camera are compared against simultaneously acquired LiDAR on a number of airborne mapping projects across Alaska, California and Utah. The aircraft used is a Cessna 180, and is equipped with the University of Alaska Geophysical Institute (UAF-GI) scanning airborne LiDAR system. This LiDAR is the same as described in Johnson et al, 2013, and is the principal instrument used for NASA's Operation IceBridge flights in Alaska. The system has been in extensive use since 2009, and is particularly well characterized with dozens of calibration flights and a careful program of boresight angle determination and monitoring. The UAF-GI LiDAR has a precision of +/- 8 cm and accuracy of +/- 15 cm. The photogrammetry DEM simultaneously acquired with the LiDAR relies on precise shutter timing using an event marker input to the IMU associated with the LiDAR system. The photo positions are derived from the fully coupled GPS/IMU processing, which samples at 100 Hz and is able to directly calculate the antenna to image plane offset displacements from the full orientation data. This use of the GPS/IMU solution means that both the LiDAR and Cessna 180 photogrammetry DEM share trajectory input data, however no orientation data nor ground control is used for the photorammetry processing. The photogrammetry DEMs are overlaid on the LiDAR point cloud and analyzed for horizontal shifts or warps relative to the LiDAR. No warping or horizontal shifts have been detectable for a number of photogrammetry DEMs. Vertical offsets range from +/- 30 cm, with a typical standard deviation about that mean of 10 cm or better. LiDAR and photogrammetry function inherently differently over trees and brush, and direct comparisons between the two methods show much larger differences over vegetated areas. Finally, the differences in flight patterns associated with the two methods will be discussed, highlighting the photogrammetry

  14. Effects of dialysate to serum sodium (Na+) alignment in chronic hemodialysis (HD) patients: retrospective cohort study from a quality improvement project.

    Science.gov (United States)

    Raimann, Jochen G; Ficociello, Linda H; Usvyat, Len A; Zhang, Hanjie; Pacelli, Lisa; Moore, Sandi; Sheppard, Penny; Xiao, Qingqing; Wang, Yuedong; Mullon, Claudy; Balter, Paul; Sullivan, Terry; Kotanko, Peter

    2018-04-02

    Evidence indicates favorable effects of dialysate (DNa + ) to serum sodium concentration (SNa + ) alignment, however, results from larger sample populations are needed. For this reason, we conducted a retrospective propensity score-matched cohort study from a quality improvement project to investigate the effects of alignment on population of maintenance hemodialysis patients. At 4 participating hemodialysis (HD) clinics, patients with SNa + lower than the standard DNa + of 137 mEq/L who received HD with DNa + aligned to the average of the last 4 SNa + measurements were evaluated (clinicaltrials.gov # NCT01825590 ). In this retrospective data analysis, an intention-to-treat (primary) and an as-treated "intervention" (secondary) cohort were created. "Aligned" patients from both cohorts (N = 163 for the primary and N = 137 for the secondary) were then propensity-score matched in a 1:1 fashion to "unaligned" patients from the Renal Research Institute database. The propensity score was generated based on age, gender, white race, Hispanic ethnicity, absence or presence of diabetes, hemodialysis vintage, interdialytic weight gain (IDWG; as a percentage of postdialysis body weight), catheter as primary dialysis access, predialysis systolic blood pressure, serum sodium concentration, hospitalization count during baseline. T-Test was employed for group comparisons of changes to the primary (volume-related and hemodynamic parameters) and tertiary outcomes. All-cause and fluid overload-related hospitalization admission rates were compared using Wilcoxon Rank Sum test and Cox regression analysis for repeated events. In the primary analysis, aligned and unaligned subjects showed comparable demographics at baseline. Treatment effects were significant for IDWG [-0.12 (95% CI -0.24 to 0) L] and showed decreasing non-significant trends for pre-dialysis hemodynamic parameters. Count comparison and Cox regression analysis showed no clear advantage of alignment in terms of

  15. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  16. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population...

  17. 2012 Oregon Lidar Consortium (OLC) Lidar DEM: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  18. 2012 Oregon Lidar Consortium (OLC) Lidar: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  19. Extinction of sodium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Spagna, F.

    1989-01-01

    This paper presents how, starting from a knowledge of sodium ignition and burning, principles for extinction (smothering catch trays, leak recuperation systems, powders) can be developed. These techniques applied in Superphenix 1 and PEC reactors have been tested in the ESMERALDA experimental program which is a joint French/Italian project. (author)

  20. 2009 SCDRN Lidar: Florence County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The South Carolina Department of Natural Resources (SCDNR) contracted with Sanborn to provide LiDAR mapping services for Florence County, SC. Utilizing multi-return...

  1. 2006 FEMA Lidar: Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The FEMA Task Order 26 LiDAR data set was collected by Airborne 1 Corporation of El Segundo, California in September - December of 2006 for URS Corp.

  2. 2009 SCDNR Charleston County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photoscience completed the original collection and classification of the multiple return LiDAR of Charleston County, South Carolina in the winter of 2006-2007. In...

  3. 2009 Chatham County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR generated point cloud acquired in spring 2009 for Chatham County, Georgia for the Metropolitan Planning Commission. The data are classified as follows: Class 1...

  4. 2014 NJMC Lidar: Hackensack Meadowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial, Inc. (QSI) was contracted by the New Jersey Meadowlands Commission (NJMC) to collect Light Detection and Ranging (LiDAR) data in...

  5. Alabama 2003 Lidar Coverage, USACE

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2003. The data...

  6. 2014 Mobile County, AL Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic was contracted to acquire high resolution topographic LiDAR (Light Detection and Ranging) data located in Mobile County, Alabama. The intent was to collect...

  7. 2008 City of Baltimore Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2008, the City of Baltimore expressed an interest to upgrade the City GIS Database with mapping quality airborne LiDAR data. The City of Baltimore...

  8. 2013 USGS Lidar: Norfolk (VA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laser Mapping Specialist, Inc (LMSI) and The Atlantic Group (Atlantic) provided high accuracy, calibrated multiple return LiDAR for roughly 1,130 square miles around...

  9. 2009 SCDNR Horry County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Horry County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  10. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  11. Balloonborne lidar payloads for remote sensing

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Hurd, A. G.; Rappaport, S. A.; Reidy, W. P.; Rieder, R. J.; Bedo, D. E.; Swirbalus, R. A.

    1994-02-01

    A series of lidar experiments has been conducted using the Atmospheric Balloonborne Lidar Experiment payload (ABLE). These experiments included the measurement of atmospheric Rayleigh and Mie backscatter from near space (approximately 30 km) and Raman backscatter measurements of atmospheric constituents as a function of altitude. The ABLE payload consisted of a frequency-tripled Nd:YAG laser transmitter, a 50 cm receiver telescope, and filtered photodetectors in various focal plane configurations. The payload for lidar pointing, thermal control, data handling, and remote control of the lidar system. Comparison of ABLE performance with that of a space lidar shows significant performance advantages and cost effectiveness for balloonborne lidar systems.

  12. Sodium Oxybate

    Science.gov (United States)

    ... or give your sodium oxybate to anyone else; selling or sharing it is against the law. Store ... dehydrogenase deficiency (an inherited condition in which certain substances build up in the body and cause retardation ...

  13. Sodium Azide

    Science.gov (United States)

    ... Exposure to a large amount of sodium azide by any route may cause these other health effects as well: Convulsions Low blood pressure Loss of consciousness Lung injury Respiratory failure leading to death Slow heart rate ...

  14. A New 3D Object Pose Detection Method Using LIDAR Shape Set.

    Science.gov (United States)

    Kim, Jung-Un; Kang, Hang-Bong

    2018-03-16

    In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird's eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets.

  15. Nacelle lidar for power curve measurement - Avedøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Davoust, Samuel

    measurement of the wind speed away from the instrument. In the first phase of the EUDP project: “Nacelle lidar for power performance measurement”, a measurement campaign with a na-celle lidar prototype placed on an onshore turbine demonstrated the poten-tial of the technology for power curve measurement....... The main deviations of this method to the requirement of the IEC 61400-12-1 were identified and a procedure was established for the use of a nacelle lidar specifically for power curve measurement. This report describes the results of a sec-ond measurement campaign aiming at testing and finalising...

  16. 2015 OLC Lidar DEM: Big Wood, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Big Wood 2015 study area. This study area is located in...

  17. 2007 South Carolina DNR Lidar: Dorchester County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Woolpert Inc. conducted a LiDAR survey to acquire LiDAR capable of producing a DEM for orthophoto rectification and able to support 2-foot contour specifications....

  18. 2015 OLC FEMA Lidar: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  19. 2007 South Carolina DNR Lidar: Anderson County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in 5 sessions, from March 7 to March 9, 2007. The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition...

  20. 2011 South Carolina DNR Lidar: York County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,500 square miles in York, Pickens, Anderson, and Oconee Counties in South Carolina. This metadata covers the LiDAR produced...

  1. 2014 PSLC Lidar: City of Redmond

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial (QSI) was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the City of...

  2. 2008 St. Johns County, FL Countywide Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne terrestrial LiDAR was collected for St. Johns County, FL. System Parameters/Flight Plan. The LiDAR system acquisition parameters were developed based on a...

  3. 2006 Volusia County Florida LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  4. 2009 Bayfield County Lake Superior Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LIDAR survey presents digital elevation data sets of a bald earth surface model and 2ft interval contours covering Bayfield County, Wisconsin. The LIDAR data was...

  5. 2014 OLC Lidar DEM: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  6. 2010 ARRA Lidar: 4 Southeast Counties (MI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Southeast Michigan LiDAR LiDAR Data Acquisition and Processing Production Task- Monroe, St. Clair, Macomb, and Livingston Counties SEMCOG CONTRACT:...

  7. 2015 Oregon Department Forestry Lidar: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  8. 2007 USGS Lidar: Canyon Fire (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Southern California Light Detection and Ranging (LiDAR) data is to provide high accuracy LIDAR data. These datasets will be the initial acquisition to support...

  9. Aerosols Observations with a new lidar station in Punta Arenas, Chile

    Science.gov (United States)

    Barja, Boris; Zamorano, Felix; Ristori, Pablo; Otero, Lidia; Quel, Eduardo; Sugimoto, Nobuo; Shimizu, Atsushi; Santana, Jorge

    2018-04-01

    A tropospheric lidar system was installed in Punta Arenas, Chile (53.13°S, 70.88°W) in September 2016 under the collaboration project SAVERNET (Chile, Japan and Argentina) to monitor the atmosphere. Statistical analyses of the clouds and aerosols behavior and some cases of dust detected with lidar, at these high southern latitude and cold environment regions during three months (austral spring) are discussed using information from satellite, modelling and solar radiation ground measurements.

  10. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive me...

  11. Lidar extinction measurement in the mid infrared

    Science.gov (United States)

    Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.

    2014-11-01

    We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.

  12. INTERACT-II campaign:comparison of commercial lidars and ceilometers with advanced multi-wavelength Raman lidars

    Science.gov (United States)

    Rosoldi, Marco; Madonna, Fabio; Pappalardo, Gelsomina; Vande Hey, Joshua; Zheng, Yunhui; Vaisala Team

    2017-04-01

    Knowledge of aerosol spatio-temporal distribution in troposphere is essential for the study of climate and air quality. For this purpose, global scale high resolution continuous measurements of tropospheric aerosols are needed. Global coverage high resolution networks of ground-based low-cost and low-maintenance remote sensing instruments, such as commercial automatic lidars and ceilometers, can strongly contribute to this scientific mission. Therefore, it is very interesting for scientific community to understand to which extent these instruments are able to provide reliable aerosol measurements and fill in the geographical gaps of existing networks of the advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). The INTERACT-II (INTERcomparison of Aerosol and Cloud Tracking) campaign, carried out at CIAO (CNR-IMAA Atmospheric Observatory) in Tito Scalo, Potenza, Italy (760m a.s.l., 40.60°N, 15.72°E), aims to evaluate the performances of commercial automatic lidars and ceilometers for tropospheric aerosol profiling. The campaign has been performed in the period from July 2016 to January 2017 in the framework of ACTRIS-2 (Aerosol Clouds Trace gases Research InfraStructure) H2020 research infrastructure project. Besides the commercial ceilometers operational at CIAO (VAISALA CT25K and Luftt CHM15k), the performance of a CL51 VAISALA ceilometer, a Campbell CS135 ceilometer and a mini-Micro Pulse Lidar (MPL) have been assessed using the EARLINET multi-wavelengths Raman lidars operative at CIAO as reference. Following a similar approach used in the first INTERACT campaign (Madonna et al., AMT 2015), attenuated backscatter coefficient profiles and signals obtained from all the instruments have been compared, over a vertical resolution of 60 meters and a temporal integration ranging between 1 and 2 hours, depending on the observed atmospheric scenario. CIAO lidars signals have been processed using the EARLINET Single Calculus Chain (SCC) also with the

  13. 2010 Northern San Francisco Bay Area Lidar: Portions of Alameda, Contra Costa, Marin, Napa, San Francisco, Solano, and Sonoma Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Light Detection and Ranging (LiDAR) dataset is a survey of northern San Francisco Bay, California. The project area consists of approximately 437 square miles...

  14. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  15. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  16. Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data

    Science.gov (United States)

    Lewis, Jasper R.; Campbell, James; Lolli, Simone; Tan, Ivy; Welton, Ellsworth J.

    2017-01-01

    Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.

  17. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... historical overview within the topic of wind lidar systems. Both the potential and the challenges of an industrialized wind lidar has been addressed here. Furthermore, the basic concept behind the heterodyne detection and a brief overview of the lidar signal processing is explained; and a simple...... investigation of the telescope truncation and lens aberrations is conducted, both numerically and experimentally. It is shown that these parameters dictate the spatial resolution of the lidar system, and have profound impact on the SNR. In this work, an all-semiconductor light source is used in the lidar design...

  18. Test Your Sodium Smarts

    Science.gov (United States)

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  19. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    the so-called whitebox approach. It consists mainly in calibrating the lidar primary measurementsof line-of-sight velocities. The line-of-sight velocity is the projection of the wind vector onto the laser beam propagation path. The calibration is performed in situ, by comparing the lidar velocity...... measurements to a reference quantity itself traceable to the international standards of units. The uncertainty of the line-ofsight velocity measurements was assessed using a normative methodology (GUM) which is based on the law of propagation of uncertainties. The generic calibration procedure was applied...... to two commercially developed nacelle lidars systems, the Avent 5-beam Demonstrator and the ZephIR Dual Mode lidars. Further, the lineof-sight positioning quantities such as inclination angles or beam trajectory werealso calibrated and their uncertainties assessed. Calibration results were of high...

  20. Initial multi-parameter detection of atmospheric metal layers by Beijing Na–K lidar

    International Nuclear Information System (INIS)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Cheng, Xuewu; Du, Lifang; Wang, Zelong; Gong, Wei

    2017-01-01

    Beijing Na–K lidar has been started running in 2010. This lidar has two laser beams: one dye laser emits a 589-nm laser beam for Na layer detection; the other dye laser emits a 770-nm laser beam for K layer detection. Under similar conditions, the echo signal of K layer is only about 2 orders of magnitude smaller than that of Na layer. This lidar has a sufficient Signal Noise Ratio (SNR). The structure and details of potassium layer can be effectively distinguished from a single original echo. Several examples of co-observation of density of Na and K layer showed some different results with previous studies. This lidar not only can supplement the lack of Na and K layer observation at this latitude region, but also provide evidence for the atmospheric sciences and space environment monitoring. - Highlights: • Full-band dual-beam lidar at 40°N. • Detecting sodium and potassium layer simultaneously. • Providing a supplement to the study of atmospheric metal layers and evidence for atmospheric sciences and space and atmospheric sciences and space environment monitoring.

  1. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  2. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers.

    Science.gov (United States)

    Laedermann, Cédric J; Pertin, Marie; Suter, Marc R; Decosterd, Isabelle

    2014-03-11

    Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured

  3. Mesospheric sodium over Gadanki during Geminid meteor shower 2007

    Science.gov (United States)

    Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.

    Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.

  4. LIDAR Thomson scattering for advanced tokamaks. Final report

    International Nuclear Information System (INIS)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-01-01

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured

  5. Lidar data assimilation for improved analyses of volcanic aerosol events

    Science.gov (United States)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar

  6. Winds observed in the Northern European seas with wind lidars, meteorological masts and satellite

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, D.; Peña, Alfredo

    2013-01-01

    Ocean winds have been observed in the Baltic, Irish and North Seas from a combination of groundbased lidars, tall offshore meteorological masts and satellites remote sensing in recent years. In the FP7 project NORSEWInD (2008-2012) the project partners joined forces to ensure collection of these ...

  7. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  8. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  9. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  10. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  11. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  12. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  13. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  14. The very precise LIDAR Digital Terrain Model (DTM) and its use in flood risk of categorised vulnerable items evaluation modeling in the river section Hricov - Nosice. Summarised information on the ANFAS Project processing (5th Frame Work Programme - IST RTD - of the EU)

    International Nuclear Information System (INIS)

    Petrovic, P.; Lukac, M.; Hluchy, L.; Tran, V.; Sramek, R.; Anon

    2004-01-01

    The participation of the Slovak Water Research Institute Bratislava in the project of Research and Technological development (RTD-IST) EU has opened a new chapter of our international co-operation and created for the Slovak Water Team the first opportunity to participate in a very interesting international co-operation. Processing of the exact digital terrain model by the LIDAR technology has been the first ever application in the water research in our company. The obtained data allow us to appreciate advantages (fastness and accuracy) of this method in evaluating calculations of possible flood wave propagation and extension at different discharge scenarios. Moreover, it is important for assessment of possible terrain treatment measures to achieve required protection improvement of selected objects after their classification into individual vulnerability classes or significance of their protection. An important role in the project solving (in terms of basic document processing and data acquisition), additionally to the mentioned organizations, has been played by district flood protection commissions, for which we would like to thank them as well. The project realisation gives the possibility to use obtained data and software for needs of of water management as well as our experience and know-how raising for ur joining similar international project in the future. (authors)

  15. Lidar investigations of atmospheric aerosols over Sofia

    International Nuclear Information System (INIS)

    Dreischuh, T.; Deleva, A.; Peshev, Z.; Grigorov, I.; Kolarov, G.; Stoyanov, D.

    2016-01-01

    An overview is given of the laser remote sensing of atmospheric aerosols and related processes over the Sofia area performed in the Institute of Electronics, Bulgarian Academy of Sciences, during the last three years. Results from lidar investigations of the optical characteristics of atmospheric aerosols obtained in the frame of the European Aerosol Research Lidar Network, as well as from the lidar mapping of near-surface aerosol fields for remote monitoring of atmospheric pollutants are presented and discussed in this paper.

  16. Leveraging Open Standards and Technologies to Enhance Community Access to Earth Science Lidar Data

    Science.gov (United States)

    Crosby, C. J.; Nandigam, V.; Krishnan, S.; Cowart, C.; Baru, C.; Arrowsmith, R.

    2011-12-01

    Lidar (Light Detection and Ranging) data, collected from space, airborne and terrestrial platforms, have emerged as an invaluable tool for a variety of Earth science applications ranging from ice sheet monitoring to modeling of earth surface processes. However, lidar present a unique suite of challenges from the perspective of building cyberinfrastructure systems that enable the scientific community to access these valuable research datasets. Lidar data are typically characterized by millions to billions of individual measurements of x,y,z position plus attributes; these "raw" data are also often accompanied by derived raster products and are frequently terabytes in size. As a relatively new and rapidly evolving data collection technology, relevant open data standards and software projects are immature compared to those for other remote sensing platforms. The NSF-funded OpenTopography Facility project has developed an online lidar data access and processing system that co-locates data with on-demand processing tools to enable users to access both raw point cloud data as well as custom derived products and visualizations. OpenTopography is built on a Service Oriented Architecture (SOA) in which applications and data resources are deployed as standards compliant (XML and SOAP) Web services with the open source Opal Toolkit. To develop the underlying applications for data access, filtering and conversion, and various processing tasks, OpenTopography has heavily leveraged existing open source software efforts for both lidar and raster data. Operating on the de facto LAS binary point cloud format (maintained by ASPRS), open source libLAS and LASlib libraries provide OpenTopography data ingestion, query and translation capabilities. Similarly, raster data manipulation is performed through a suite of services built on the Geospatial Data Abstraction Library (GDAL). OpenTopography has also developed our own algorithm for high-performance gridding of lidar point cloud data

  17. Airborne ocean water lidar (OWL) real time processor (RTP)

    Science.gov (United States)

    Hryszko, M.

    1995-03-01

    The Hyperflo Real Time Processor (RTP) was developed by Pacific-Sierra Research Corporation as a part of the Naval Air Warfare Center's Ocean Water Lidar (OWL) system. The RTP was used for real time support of open ocean field tests at Barbers Point, Hawaii, in March 1993 (EMERALD I field test), and Jacksonville, Florida, in July 1994 (EMERALD I field test). This report describes the system configuration, and accomplishments associated with the preparation and execution of these exercises. This document is intended to supplement the overall test reports and provide insight into the development and use of the PTP. A secondary objective is to provide basic information on the capabilities, versatility and expandability of the Hyperflo RTP for possible future projects. It is assumed herein that the reader has knowledge of the OWL system, field test operations, general lidar processing methods, and basic computer architecture.

  18. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  19. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system using the DIAL (Differential Absorption Lidar) system was operated during the NASA African Monsoon...

  20. EFFICIENT LIDAR POINT CLOUD DATA MANAGING AND PROCESSING IN A HADOOP-BASED DISTRIBUTED FRAMEWORK

    Directory of Open Access Journals (Sweden)

    C. Wang

    2017-10-01

    Full Text Available Light Detection and Ranging (LiDAR is one of the most promising technologies in surveying and mapping,city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop’s storage and computing ability. At the same time, the Point Cloud Library (PCL, an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.

  1. Fluorescence lidar measurements at the archaeological site House of Augustus at Palatino, Rome

    Science.gov (United States)

    Raimondi, Valentina; Alisi, Chiara; Barup, Kerstin; Bracciale, Maria Paola; Broggi, Alessandra; Conti, Cinzia; Hällström, Jenny; Lognoli, David; Palombi, Lorenzo; Santarelli, Maria Laura; Sprocati, Anna Rosa

    2013-10-01

    Early diagnostics and documentation fulfill an essential role for an effective planning of conservation and restoration of cultural heritage assets. In particular, remote sensing techniques that do not require the use of scaffolds or lifts, such as fluoresence lidar, can provide useful information to obtain an overall assessment of the status of the investigated surfaces and can be exploited to address analytical studies in selected areas. Here we present the results of a joint Italian-Swedish project focused on documenting and recording the status of some sections of the part closed to the public by using fluorescence hyperspectral imaging lidar. The lidar used a tripled-frequency Nd:YAG laser emitting at 355 nm as excitation source and an intensified, gated 512x512-pixel CCD as detector. The lidar had imaging capabilities thanks to a computer-controlled scanning mirror. The fluorescence characteristics of fresco wall paintings were compared to those of fresco fragments found at the same archaeological site and separately examined in the lab using FT-IR and Raman techniques for the identification of pigments. The fluorescence lidar was also used to remotely detect the growth of phototrophic biodeteriogens on the walls. The fluorescence lidar data were compared with results from biological sampling, cultivation and laboratory analysis by molecular techniques.

  2. Development of LiDAR measurements for the German offshore test site

    International Nuclear Information System (INIS)

    Rettenmeier, A; Kuehn, M; Waechter, M; Rahm, S; Mellinghoff, H; Siegmeier, B; Reeder, L

    2008-01-01

    The paper introduces the content of the recently started joint research project 'Development of LiDAR measurements for the German Offshore Test Site' which has the objective to support other research projects at the German offshore test site 'alpha ventus'. The project has started before the erection of the offshore wind farm and one aim is to give recommendations concerning LiDAR technology useable for offshore measurement campaigns and data analysis. The work is organized in four work packages. The work package LiDAR technology deals with the specification, acquisition and calibration of a commercial LiDAR system for the measurement campaigns. Power curve measurements are dedicated to power curve assessment with ground-based LiDAR using standard statistical methods. Additionally, it deals with the development of new methods for the measurement of non-steady short-term power curves. Wind field research aims at the development of wake loading simulation methods of wind turbines and the exploration of loading control strategies and nacelle-based wind field measurement techniques. Finally, dissemination of results to the industry takes place in work package Technology transfer

  3. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  4. Three-dimension imaging lidar

    Science.gov (United States)

    Degnan, John J. (Inventor)

    2007-01-01

    This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.

  5. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... Too much sodium in the diet may lead to: High blood pressure in some people A serious buildup of fluid in people with heart failure , cirrhosis of ...

  6. Use of lidar for the evaluation of traffic-related urban pollution

    Science.gov (United States)

    Eichinger, William E.; Cooper, D. I.; Buttler, William T.; Cottingame, William; Tellier, Larry

    1994-03-01

    Lidar (Light Detection and Ranging) is demonstrated as a tool for the detection and tracking of sources of aerosol pollution. Existing elastic lidars have been used to demonstrate the potential of the application of this technology in urban areas. Data from several experiments is shown along with analysis methods used for interpretation of the data. The goal of the project is to develop a light-weight, low-cost, lidar system and data analysis methods which can be used by urban planners and local air quality managers. The ability to determine the sources, i.e., causes, of non-attainment may lead to more effective use of tax dollars. Future directions for the project are also discussed.

  7. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  8. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  9. Development of lidar techniques for environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats

    1996-09-01

    The lidar group in Lund has performed many DIAL measurements with a mobile lidar system that was first described in 1987. The lidar system is based on a Nd:YAG-pumped dye laser. During the last few years the lidar group has focused on fluorescence imaging and mercury measurements in the troposphere. In 1994 we performed two campaigns: one fluorescence imaging measurement campaign outside Avignon, France and one unique lidar campaign at a mercury mine in Almaden, Spain. Both campaigns are described in this thesis. This thesis also describes how the mobile lidar system was updated with the graphical programming language LabVIEW to obtain a user friendly lidar system. The software controls the lidar system and analyses measured data. The measurement results are shown as maps of species concentration. All electronics and the major parts of the program are described. A new graphical technique to estimate wind speed from plumes is also discussed. First measurements have been performed with the new system. 31 refs, 19 figs, 1 tab

  10. 2013 NRCS-USGS Lidar: Lauderdale (MS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:NRCS LAUDERDALE MS 0.7M NPS LIDAR. LiDAR Data Acquisition and Processing Production Task. USGS Contract No. G10PC00057. Task Order No. G12PD000125 Woolpert...

  11. Infrastructure Investment Protection with LiDAR

    Science.gov (United States)

    2012-10-15

    The primary goal of this research effort was to explore the wide variety of uses of LiDAR technology and to evaluate their : applicability to NCDOT practices. NCDOT can use this information about LiDAR in determining how and when the : technology can...

  12. The ITER Thomson scattering core LIDAR diagnostic

    NARCIS (Netherlands)

    Naylor, G.A.; Scannell, R.; Beurskens, M.; Walsh, M.J.; Pastor, I.; Donné, A.J.H.; Snijders, B.; Biel, W.; Meszaros, B.; Giudicotti, L.; Pasqualotto, R.; Marot, L.

    2012-01-01

    The central electron temperature and density of the ITER plasma may be determined by Thomson scattering. A LIDAR topology is proposed in order to minimize the port access required of the ITER vacuum vessel. By using a LIDAR technique, a profile of the electron temperature and density can be

  13. Saginaw Bay, MI LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Saginaw Bay, MI LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01254 Woolpert Order...

  14. 2012 USGS Lidar: Elwha River (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Elwha River, WA LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01088 Woolpert Order No....

  15. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  16. 2006 South Carolina DNR Lidar: Aiken County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in five sessions, on March 15, 16 & 17, 2006, using a Leica ALS50 LiDAR System. Specific details about the ALS50 system...

  17. 2014 USGS/NRCS Lidar: Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS-NRCS Laurel MS 0.7m NPS LIDAR Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD01086 Woolpert...

  18. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  19. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  20. Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

    Energy Technology Data Exchange (ETDEWEB)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

    2003-01-01

    The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

  1. New methods of data calibration for high power-aperture lidar.

    Science.gov (United States)

    Guan, Sai; Yang, Guotao; Chang, Qihai; Cheng, Xuewu; Yang, Yong; Gong, Shaohua; Wang, Jihong

    2013-03-25

    For high power-aperture lidar sounding of wide atmospheric dynamic ranges, as in middle-upper atmospheric probing, photomultiplier tubes' (PMT) pulse pile-up effects and signal-induced noise (SIN) complicates the extraction of information from lidar return signal, especially from metal layers' fluorescence signal. Pursuit for sophisticated description of metal layers' characteristics at far range (80~130km) with one PMT of high quantum efficiency (QE) and good SNR, contradicts the requirements for signals of wide linear dynamic range (i.e. from approximate 10(2) to 10(8) counts/s). In this article, Substantial improvements on experimental simulation of Lidar signals affected by PMT are reported to evaluate the PMTs' distortions in our High Power-Aperture Sodium LIDAR system. A new method for pile-up calibration is proposed by taking into account PMT and High Speed Data Acquisition Card as an Integrated Black-Box, as well as a new experimental method for identifying and removing SIN from the raw Lidar signals. Contradiction between the limited linear dynamic range of raw signal (55~80km) and requirements for wider acceptable linearity has been effectively solved, without complicating the current lidar system. Validity of these methods was demonstrated by applying calibrated data to retrieve atmospheric parameters (i.e. atmospheric density, temperature and sodium absolutely number density), in comparison with measurements of TIMED satellite and atmosphere model. Good agreements are obtained between results derived from calibrated signal and reference measurements where differences of atmosphere density, temperature are less than 5% in the stratosphere and less than 10K from 30km to mesosphere, respectively. Additionally, approximate 30% changes are shown in sodium concentration at its peak value. By means of the proposed methods to revert the true signal independent of detectors, authors approach a new balance between maintaining the linearity of adequate signal (20

  2. Pointing Verification Method for Spaceborne Lidars

    Directory of Open Access Journals (Sweden)

    Axel Amediek

    2017-01-01

    Full Text Available High precision acquisition of atmospheric parameters from the air or space by means of lidar requires accurate knowledge of laser pointing. Discrepancies between the assumed and actual pointing can introduce large errors due to the Doppler effect or a wrongly assumed air pressure at ground level. In this paper, a method for precisely quantifying these discrepancies for airborne and spaceborne lidar systems is presented. The method is based on the comparison of ground elevations derived from the lidar ranging data with high-resolution topography data obtained from a digital elevation model and allows for the derivation of the lateral and longitudinal deviation of the laser beam propagation direction. The applicability of the technique is demonstrated by using experimental data from an airborne lidar system, confirming that geo-referencing of the lidar ground spot trace with an uncertainty of less than 10 m with respect to the used digital elevation model (DEM can be obtained.

  3. Calibration Methods for a Space Borne Backscatter Lidar

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Lidar returns from cloud decks and from the Earth's surface are useful for calibrating single scatter lidar signals from space. To this end analytical methods (forward and backward) are presented for inverting lidar waveforms in terms of the path integrated lidar retum and the transmission losses

  4. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  5. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-05-01

    Full Text Available We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1 and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1 in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr and summer (33 ± 10 sr. The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  6. The design, development, and test of balloonborne and groundbased lidar systems. Volume 3: Groundbased lidar systems

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  7. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    Science.gov (United States)

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  8. VT 2 ft Contour Lines generated from bare earth lidar - 35 percent of VT

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to contours derived from the various LiDAR project areas with different resolutions (RESCLASS), i.e., 0p6m, 0p7m, 1m, 1p4m,...

  9. 2012 USACE Post Sandy Topographic LiDAR: Virginia and Maryland

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK ORDER NAME: VIRGINIA AND MARYLAND LIDAR ACQUISITION FOR SANDY RESPONSE CONTRACT NUMBER: W912P9-10-D-0533 TASK ORDER NUMBER: W81C8X2314841 Woolpert Project...

  10. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  11. Liquid sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  12. Liquid sodium pool fires

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  13. A joint study of the lower ionosphere by radar, lidar, and spectrometer

    International Nuclear Information System (INIS)

    Zhou, Qihou.

    1991-01-01

    The dynamics and associated phenomena occurring in the lower ionospheric-E region, especially the mesopause region between 80 km to 110 km at low latitude, are studied. In particular, incoherent scatter radar (ISR), sodium lidar and airglow spectrometry are used to study the ionospheric structure and neutral sodium structure. The simultaneous study of the ionospheric plasma and neutral atomic sodium is unprecedented in scope and detail. The joint study of the mesopause region reveals that plasma, neutral densities and temperature are interconnected through the same atmospheric dynamics. The theme of the thesis is to explain the formation of the controversial sporadic sodium layer (SSL) events. Strong correlation is established between the average total ion and sodium concentrations, and between sporadic-E and SSL events. The mechanism proposed in the thesis, which invokes temperature fluctuations induced by tides and gravity waves, finds good agreement with observations. Tides and gravity waves can converge ions into thin layers through the windshear mechanisms and can influence the concentration of atomic sodium through temperature fluctuations. Sodium abundance is shown to augment rapidly when the temperature is increased. Gravity wave theory states that the ion convergence node coincides with a temperature maximum for a westward propagating gravity wave, and coincides with a temperature minimum for an eastward propagating wave. Because tidal winds propagate westward, the ion layer coincides with the temperature maximum which consequently induces higher sodium concentration. This can account for the general correlation between sodium and total ion concentration and is supported by the O2(0-1) rotational temperature. Gravity waves and their interaction with tidal winds are believed to be responsible for the close association between sudden sodium layers and sporadic-E layers

  14. i-LOVE: ISS-JEM lidar for observation of vegetation environment

    Science.gov (United States)

    Asai, Kazuhiro; Sawada, Haruo; Sugimoto, Nobuo; Mizutani, Kohei; Ishii, Shoken; Nishizawa, Tomoaki; Shimoda, Haruhisa; Honda, Yoshiaki; Kajiwara, Koji; Takao, Gen; Hirata, Yasumasa; Saigusa, Nobuko; Hayashi, Masatomo; Oguma, Hiroyuki; Saito, Hideki; Awaya, Yoshio; Endo, Takahiro; Imai, Tadashi; Murooka, Jumpei; Kobatashi, Takashi; Suzuki, Keiko; Sato, Ryota

    2012-11-01

    It is very important to watch the spatial distribution of vegetation biomass and changes in biomass over time, representing invaluable information to improve present assessments and future projections of the terrestrial carbon cycle. A space lidar is well known as a powerful remote sensing technology for measuring the canopy height accurately. This paper describes the ISS(International Space Station)-JEM(Japanese Experimental Module)-EF(Exposed Facility) borne vegetation lidar using a two dimensional array detector in order to reduce the root mean square error (RMSE) of tree height due to sloped surface.

  15. Some application with LIDAR data for Fermecatu Islet (Călărasi county, Romania

    Directory of Open Access Journals (Sweden)

    MIERLĂ Marian

    2009-09-01

    Full Text Available This paper presents some possibilities of applications of the LIDAR data. As a case study is used an islet on the Danube River closed to Calarasi town, Fermecatu islet. In the first part it is presented a way to handle the LIDAR transformed data and the creation of a digital terrain model (DTM. Later on there are presented some useful and facile application of using DTM. The data that were used in present paper derive from a big project named: “The Danube River, Lower Floodplain, ecological and economical resizing”, financedby the Ministry of Environment.

  16. IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar

    DEFF Research Database (Denmark)

    Clifton, Andrew; Clive, Peter; Gottschall, Julia

    2018-01-01

    IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex...... flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models......, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been...

  17. Development of mobile air pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  18. Development of mobile air pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A.

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols

  19. Laser transmitter for Lidar In-Space Technology Experiment

    Science.gov (United States)

    Chang, John; Cimolino, Marc; Petros, Mulugeta

    1991-01-01

    The Lidar In-Space Technology Experiment (LITE) Laser Transmitter Module (LTM) flight laser optical architecture has been space qualified by extensive testing at the system, subsystem and component level. The projected system output performance has been verified using an optically and electrically similar breadboard version of the laser. Parasitic lasing was closely examined and completely suppressed after design changes were implemented and tested. Oscillator and amplifier type heads were separately tested to 150 million shots. Critical subassemblies have undergone environmental testing to Shuttle qualification levels. A superior three color anti-reflection coating was developed and tested for use on 14 surfaces after the final amplifier.

  20. Small liquid sodium leaks

    International Nuclear Information System (INIS)

    Dufresne, J.; Rochedereux, Y.; Antonakas, D.; Casselman, C.; Malet, J.C.

    1986-05-01

    Usually, pessimistic considerations inassessing the safety of secondary sodium loops in LMFBR reactor lead to assume guillotine rupture releasing a large amount of sodium estimate the consequences of large sodium fires. In order to reduce these consequences, one has to detect the smallest leak as soon as possible and to evaluate the future of an initial small leak. Analysis of the relationship between crack size and sodium outflow rate; Analysis of a sodium pipe with a small open crack

  1. Clear-air lidar dark band

    Science.gov (United States)

    Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.

    2018-04-01

    This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.

  2. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  3. Multiangle lidar observations of the Atmosphere

    Science.gov (United States)

    Lalitkumar Prakash, Pawar; Choukiker, Yogesh Kumar; Raghunath, K.

    2018-04-01

    Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E), India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  4. Multiangle lidar observations of the Atmosphere

    Directory of Open Access Journals (Sweden)

    Lalitkumar Prakash Pawar

    2018-01-01

    Full Text Available Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E, India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  5. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  6. Detectors for LIDAR type Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hirsch, K.

    1991-04-01

    A report on the capability of the microchannel plate photomultiplier type (ITT F4128) presently used at the JET LIDAR Thomson Scattering System is given. Detailed investigation on time response, low noise amplification, shutter ratio, gating behaviour, linear mode of operation and saturation pulse recovery carried out during the design phase for LIDAR are presented. New investigation with respect to dc- and gated operation showed no measurable changes in sensitivity of this MCP photomultiplier. Comparing this type of detector with other MCP photomultipliers and with streak cameras some detection schemes for future LIDAR type diagnostic are proposed. (orig.)

  7. Detecting wind turbine wakes with nacelle lidars

    DEFF Research Database (Denmark)

    Held, D. P.; Larvol, A.; Mann, Jakob

    2017-01-01

    variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream...... turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level....

  8. LIDAR for atmosphere research over Africa

    CSIR Research Space (South Africa)

    Sivakumar, V

    2008-11-01

    Full Text Available d’aéronomie, CNRS, Paris, France 1Email: SVenkataraman@csir.co.za – www.csir.co.za K-6665 [www.kashangroup.com] Lidar for atmospheric studies: The CSIR’s laser research into monitoring various pollutants in the lower atmosphere via... to lidar applications for atmosphere studies including pollutant monitoring. The following salient features emanated from the survey: • Around 80% of the lidars are in the northern hemisphere • Of the 20% in the southern hemisphere region...

  9. Lidar observations of marine boundary-layer winds and heights: a preliminary study

    DEFF Research Database (Denmark)

    Peña, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2015-01-01

    the highest data availability (among the three sites) and a very good agreement with the observations of wind speed and direction from cup anemometers and vanes from the platform's tower. The wind lidar was also able to perform measurements under a winter storm where 10-s gusts were observed above 60 m s 1......Here we describe a nearly 1-yr meteorological campaign, which was carried out at the FINO3 marine research platform on the German North Sea, where a pulsed wind lidar and a ceilometer were installed besides the platform's 105-m tower and measured winds and the aerosol backscatter in the entire...... marine atmospheric boundary layer. The campaign was the last phase of a research project, in which the vertical wind profile in the atmospheric boundary layer was firstly investigated on a coastal and a semi-urban site. At FINO3 the wind lidar, which measures the wind speed up to 2000 m, shows...

  10. Korea-China Joint R and D on Doppler Lidar Technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kim, D. H.; Kwon, S. O.; Yang, K. H.; Song, I. K.

    2009-03-01

    Doppler lidar technology is to monitor atmospheric wind velocity by measuring the light scattering signals between a laser and aerosol particles or molecules existing in the atmosphere. When the particles (or molecules) in the atmosphere are moving by wind force, the frequency of backscattering light is shifted by doppler effect, so that the wind velocity profile can be obtained by measurement of the shifted frequencies. When the laser radiation is scanned in four different direction, three dimensional wind profiles are obtained. The Anhui Institute of Optics and Fine Mechanics under the China Academy of Sciences has developed and operated the doppler lidar system for long time. In this project we want to developed a new technologies adopted to the chinese doppler system and to test the updated In the process of collaboration between China and Korea research teams, we want to learn the state-of-art technology involved in the doppler lidar system

  11. Monitoring and Quantifying Particles Emissions around Industrial Sites with Scanning Doppler Lidar

    Science.gov (United States)

    Thobois, L.; Royer, P.; Parmentier, R.; Brooks, M.; Knoepfle, A.; Alexander, J.; Stidwell, P.; Kumar, R.

    2018-04-01

    Scanning Coherent Doppler Lidars have been used over the last decade for measuring wind for applications in wind energy [1], meteorology [2] and aviation [3]. They allow for accurate measurements of wind speeds up to a distance of 10 km based on the Doppler shift effect of aerosols. The signal reflectivity (CNR or Carrier-to-Noise Ratio) profiles can also be retrieved from the strength of the Lidar signal. In this study, we will present the developments of algorithm for retrieving aerosol optical properties like the relative attenuated backscatter coefficient and the mass concentration of particles. The use of these algorithms during one operational trial in Point Samson, Western Australia to monitor fugitive emissions over a mine will be presented. This project has been initiated by the Australian Department of Environment Regulations to better determine the impact of the Port on the neighboring town. During the trial in Summer, the strong impact of turbulence refractive index on Lidar performances has been observed. Multiple methodologies have been applied to reduce this impact with more or less success. At the end, a dedicated setup and configuration have been established that allow to properly observe the plumes of the mine with the scanning Lidar. The Lidar data has also been coupled to beta attenuation in-situ sensors for retrieving mass concentration maps. A few case of dispersion of plumes will be presented showing the necessity to combine both the wind and aerosol data.

  12. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    Science.gov (United States)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  13. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    Science.gov (United States)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  14. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed......In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...

  15. The Micro-Pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Shiobara, Masataka; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micro-pulse Lidar (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which limits multiple scattering concerns. The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratio of each layer, and profiles of extinction in each layer. The MPL has been used in a wide variety of field studies over the past 10 years, leading to nearly 20 papers and many conference presentations. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. The MPL-Net project is currently working to establish a worldwide network of MPL systems, all co-located with NASA's AERONET sunphotometers for joint measurements of optical depth and sky radiance. Automated processing algorithms have been developed to produce data products on a next day basis for all sites and some field experiments. Initial results from the first several sites are shown, along with aerosol data collected during several major field campaigns. Measurements of the aerosol extinction-to-backscatter ratio at several different geographic regions, and for various aerosol types are shown. This information is used to improve the construction of look up tables of the ratio, needed to process aerosol profiles acquired with satellite based lidars.

  16. 2010 Northwestern Hawaiian Islands Lidar - Midway Atoll

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  17. 2010 Northwestern Hawaiian Islands Lidar - Laysan Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  18. 2012 OLC Lidar: West Metro, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Oregon West Metro Study Area for the Oregon Department of Geology and Mineral Industries (DOGAMI)....

  19. 2012 OLC Lidar DEM: West Metro, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Oregon West Metro Study Area for the Oregon Department of Geology and Mineral Industries (DOGAMI)....

  20. 2013 South Carolina DNR Lidar: Greenville County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Group provided high accuracy, calibrated multiple return LiDAR for roughly 1,510 square miles covering both Greenville and Spartanburg counties, South...

  1. 2004 Harrison County, Mississippi Lidar Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the topographic mapping of Harrison County, Mississippi in March of 2004. Products generated include lidar point clouds in .LAS format...

  2. 2015 Cook & Tift County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Tift and Cook Counties GA Lidar Data Acquisition and Processing Production Task NOAA Contract No. EA133C-11-CQ-0010 Woolpert Order No. 75271...

  3. 2012 USGS Lidar: Brooks Camp (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) had a requirement for high resolution Lidar needed for mapping the Brooks Camp region of Katmai National Park in Alaska....

  4. 2004 USGS Lidar: San Francisco Bay (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  5. 2010 ARRA Lidar: Eleven County Virginia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint and LMSI collected LiDAR for over 2,572 square miles in Northumberland, Lancaster, Middlesex, King and Queen, Matthews, Gloucester, James City,...

  6. 2012 South Carolina DNR Lidar: Edgefield County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata...

  7. 2009 - 2011 OLC Lidar DEM: Deschutes (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data of the Deschutes Study Area for the Oregon Department of Geology and Mineral Industries...

  8. 2008 USGS New Jersey Lidar: Somerset County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data support the general geospatial needs of the USGS and other federal agencies. LiDAR data is remotely sensed high-resolution elevation data collected by an...

  9. 2016 USGS Lidar: Maine QL2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product: This lidar data set includes classified LAS files, breaklines, digital elevation models (DEMs), intensity imagery, and contours. Geographic Extent: Four...

  10. 2013 South Carolina DNR Lidar: Beaufort County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LMSI provided high accuracy, calibrated multiple return LiDAR for roughly 785 square miles covering Beaufort County, South Carolina. The nominal point spacing for...

  11. 2004 FEMA Lidar: Blackstone (MA & RI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LIDAR-derived data was collected in the Blackstone River area. This data supports the Federal Emergency Management Agency's specifications for mapping...

  12. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  13. 2011 USGS Lidar: Orange County (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  14. 2012 South Carolina DNR Lidar: Calhoun County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata...

  15. 2011 FEMA Lidar: Southern Virginia Cities

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dewberry collected LiDAR for ~3,341 square miles in various Virginia Counties, a part of Worcester County, and Hooper's Island. The acquisition was performed by...

  16. 2013 South Carolina DNR Lidar: Spartanburg County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Group provided high accuracy, calibrated multiple return LiDAR for roughly 1,510 square miles covering both Greenville and Spartanburg counties, South...

  17. 2014 USACE NCMP Topobathy Lidar DEM: Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  18. 2010 South Carolina DNR Lidar: Sumter County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Sumter County, SC. Provide Bare Earth DEM (vegetation removal) of Sumter County, SC.

  19. 2010 South Carolina DNR Lidar: Richland County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Richland County, SC. Provide Bare Earth DEM (vegetation removal) of Richland County, SC.

  20. 2015 City of Portland, Maine, Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 2015 City of Portland Maine Lidar Data Acquisition and Processing Woolpert Order No. 75564 Contractor: Woolpert, Inc. This task is for a high resolution data set of...

  1. 2016 Martin County QL2 Lidar (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Martin County FL QL2 Lidar Acquisition and Processing Production Task Task Order No. G14PS00574 Woolpert Order No. 76001 Contractor: Woolpert, Inc. This task is for...

  2. VT Data - Lidar 1ft Contours

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to contours derived from Quality Level 2 (QL2) Lidar 'collections' with a resolution (RESCLASS) of 0.7m. For an overview of...

  3. 2009 - 2011 OLC Lidar: Deschutes (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data of the Deschutes Study Area for the Oregon Department of Geology and Mineral Industries...

  4. 2005 NCFMP Lidar: NC Statewide Phase 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne LIDAR terrain mapping data acquired March through April 2005. These data sets may represent a single geographic tile of a larger, county/sub-county data...

  5. 2015 NOAA Lidar: Pelekane Watershed (HI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata describes the Digital Elevation Model (DEM) 1 meter products derived from the airborne LiDAR data collected in August of 2015 for the Pelekane...

  6. 2006 FEMA Lidar: Rhode Island Coastline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. By positioning laser range finding with the use of 1...

  7. 2010 South Carolina DNR Lidar: Kershaw County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Kershaw County, SC. Provide Bare Earth DEM (vegetation removal) of Kershaw County, SC.

  8. 2010 Northwestern Hawaiian Islands Lidar - Kure Atoll

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  9. 2010 Northwestern Hawaiian Islands Lidar - Lisianki Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  10. 2003 NCFMP Lidar: NC Statewide Phase 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne LIDAR terrain mapping data acquired January through March 2003. Point data (XYZ) in ASCII format. Horizontal datum NAD83(1995) North Carolina State Plane...

  11. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  12. Effect of multiple scattering on lidar measurements

    International Nuclear Information System (INIS)

    Cohen, A.

    1977-01-01

    The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed

  13. A New Framework for Quantifying Lidar Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer, F.; Clifton, Andrew; Bonin, Timothy A.; Churchfield, Matthew J.

    2017-03-24

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards discuss uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device. However, real-world experience has shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we propose the development of a new lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from an operational wind farm to assess the ability of the framework to predict errors in lidar-measured wind speed.

  14. Geotechnical applications of LiDAR pertaining to geomechanical evaluation and hazard identification

    Science.gov (United States)

    Lato, Matthew J.

    Natural hazards related to ground movement that directly affect the safety of motorists and highway infrastructure include, but are not limited to, rockfalls, rockslides, debris flows, and landslides. This thesis specifically deals with the evaluation of rockfall hazards through the evaluation of LiDAR data. Light Detection And Ranging (LiDAR) is an imaging technology that can be used to delineate and evaluate geomechanically-controlled hazards. LiDAR has been adopted to conduct hazard evaluations pertaining to rockfall, rock-avalanches, debris flows, and landslides. Characteristics of LiDAR surveying, such as rapid data acquisition rates, mobile data collection, and high data densities, pose problems to traditional CAD or GIS-based mapping methods. New analyses methods, including tools specifically oriented to geomechanical analyses, are needed. The research completed in this thesis supports development of new methods, including improved survey techniques, innovative software workflows, and processing algorithms to aid in the detection and evaluation of geomechanically controlled rockfall hazards. The scientific research conducted between the years of 2006-2010, as presented in this thesis, are divided into five chapters, each of which has been published by or is under review by an international journal. The five research foci are: (i) geomechanical feature extraction and analysis using LiDAR data in active mining environments; (ii) engineered monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR; (iii) optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses; (iv) location orientation bias when using static LiDAR data for geomechanical analysis; and (v) evaluating roadside rockmasses for rockfall hazards from LiDAR data: optimizing data collection and processing protocols. The research conducted pertaining to this thesis has direct and significant implications with

  15. Lidar-based biomass assessment for the Yukon River Basin

    Science.gov (United States)

    Peterson, B.; Wylie, B. K.; Stoker, J.; Nossov, D.

    2010-12-01

    lidar data set and are expected to result in improved biomass products for the YRB as they have been shown to be highly predictive of biomass in other biomes. The results of this project represent the first step in a larger effort to collect lidar and field data for various study sites across the YRB for biomass estimations to train large-scale mapping efforts using Landsat imagery and radar data. Bond-Lamberty, B., C. Wang, and S.T. Gower. 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32: 1441-1450. Mack, M., K. Treseder, K. Manies, J. Harden, E. Schuur, J. Vogel, J. Randerson, and F.S. Chapin III. 2008. Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska, Ecosystems v.11:209-225. Yarie, J., E. Kane, and M. Mack. 2007. Aboveground Biomass Equations for the Trees of Interior Alaska. AFES Bulletin 115.

  16. Study of the Integration of LIDAR and Photogrammetric Datasets by in Situ Camera Calibration and Integrated Sensor Orientation

    Science.gov (United States)

    Mitishita, E.; Costa, F.; Martins, M.

    2017-05-01

    Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  17. STUDY OF THE INTEGRATION OF LIDAR AND PHOTOGRAMMETRIC DATASETS BY IN SITU CAMERA CALIBRATION AND INTEGRATED SENSOR ORIENTATION

    Directory of Open Access Journals (Sweden)

    E. Mitishita

    2017-05-01

    Full Text Available Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO approach was performed using Interior Orientation Parameter (IOP values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  18. Japanese studies on sodium fires, design and testing

    International Nuclear Information System (INIS)

    Mitsutsuka, N.; Yoshida, N.

    1983-01-01

    Considerations of sodium fires are very important for the design and licensing of LMFBRs. Continuing effort has been made in the study of sodium fires and their consequences since the beginning of the Japanese fast breeder reactor development program. Recent effort is mainly focussed on studies related to Monju, especially on the design and testing of primary cell liners against large sodium spills. Experimental and analytical studies on sodium fires, water release from concrete and sodium concrete reactions are conducted as a part of this study. Some extinguishing agents are also tested against sodium fires. In addition, considerable effort is being made in the development of detection systems for the small sodium leaks before a pipe rupture. This paper briefly summarizes the Japanese status of these sodium fire related activities conducted by Fast Breeder Reactor Development Project of the Power Reactor and Nuclear Fuel Development Corporation (PNC)

  19. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  20. Naproxen sodium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  1. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  2. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  3. Docusate Sodium and Pregnancy

    Science.gov (United States)

    ... a risk of miscarriage. Can use of docusate sodium during pregnancy cause birth defects? Few studies have been done to look at the possible risks of docusate sodium during pregnancy. However, the available studies show that when used ...

  4. Sodium carbonate poisoning

    Science.gov (United States)

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and industrial products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do NOT ...

  5. ELTA: Citatrademark: Sodium measurement

    International Nuclear Information System (INIS)

    Mauvais, O.

    2002-01-01

    ELTA is pleased to present its last model of Sodium analyzers: CITA 2340: Automatically controlled sodium meter, integrating more automation and performances results respecting costs and wastes reduction. (authors)

  6. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle...

  7. Liquid sodium technology research

    International Nuclear Information System (INIS)

    Kim, W.C.; Lee, Y.W.; Nam, H.Y.; Chun, S.Y.; Kim, J.; Won, S.Y.

    1982-01-01

    This report describes the technology of impurity control and measurement of liquid sodium, problems associated with material degradation and change of heat transfer characteristics in liquid sodium, and the conceptual design of multipurpose sodium test loop. Discussion and the subsequent analysis are also made with regard to the test results for the sodium-H 2 0 reaction and its effects on the system. (author)

  8. Sodium sieving in children

    NARCIS (Netherlands)

    Rusthoven, Esther; Krediet, Raymond T.; Willems, Hans L.; Monnens, Leo A.; Schröder, Cornelis H.

    2005-01-01

    Sodium sieving is a consequence of dissociation between the amount of water and sodium transported over the peritoneal membrane. This dissociation occurs in the presence of aquaporin-mediated water transport. Sieving of sodium can be used as a rough measure for aquaporin-mediated water transport.

  9. 2013-2014 USGS Lidar: Olympic Peninsula (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS Olympic Peninsula Washington LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00849...

  10. 2015 OLC FEMA Lidar DEM: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  11. GRIP DOPPLER AEROSOL WIND LIDAR (DAWN) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Doppler Aerosol WiNd Lidar (DAWN) Dataset was collected by the Doppler Aerosol WiNd (DAWN), a pulsed lidar, which operated aboard a NASA DC-8 aircraft...

  12. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Lidar Atmospheric Sensing Experiment (LASE) dataset used the LASE system using the Differential Absorption Lidar (DIAL) system was operated during the NASA...

  13. 2014 USGS CMGP Lidar: Post Sandy (Long Island, NY)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Long Island New York Sandy LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00296 Woolpert...

  14. Multi-wavelength Ocean Profiling and Atmospheric Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and demonstrate the world's first multi-wavelength ocean-profiling high spectral resolution lidar (HSRL). The lidar will provide profiles of...

  15. Occurrence and characteristics of mutual interference between LIDAR scanners

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  16. 2006 FEMA New Jersey Flood Mitigation Lidar: Highlands Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) data is remotely sensed high-resolution elevation data collected by an airborne collection platform. LiDAR was flown for...

  17. 2012 NOAA Fisheries Topographic Lidar: Bridge Creek, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. This data set is an LAZ (compressed LAS) format file containing LIDAR point...

  18. 2010 USGS Lidar: Southeastern Michigan (Hillsdale, Jackson, Lenawee Counties)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Lake Erie LiDAR Priority Area 1 LiDAR Data Acquisition and Processing Production Task- Jackson, Hillsdale, and Lenawee Counties USGS Contract No....

  19. 2012 NRCS-USGS Tupelo, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  20. 2008 Florida Division of Emergency Management Lidar: Middle Suwannee River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR Survey for the Suwannee River Water Management District (SRWMD), Florida. The LiDAR aerial acquisition was conducted in January of 2008, and the breaklines and...

  1. 2015 Oregon Department Forestry Lidar DEM: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  2. PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS

    Directory of Open Access Journals (Sweden)

    V. Petras

    2016-06-01

    Full Text Available Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM, and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM. Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL, Point Cloud Library (PCL, and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

  3. Automated Feature Extraction of Foredune Morphology from Terrestrial Lidar Data

    Science.gov (United States)

    Spore, N.; Brodie, K. L.; Swann, C.

    2014-12-01

    Foredune morphology is often described in storm impact prediction models using the elevation of the dune crest and dune toe and compared with maximum runup elevations to categorize the storm impact and predicted responses. However, these parameters do not account for other foredune features that may make them more or less erodible, such as alongshore variations in morphology, vegetation coverage, or compaction. The goal of this work is to identify other descriptive features that can be extracted from terrestrial lidar data that may affect the rate of dune erosion under wave attack. Daily, mobile-terrestrial lidar surveys were conducted during a 6-day nor'easter (Hs = 4 m in 6 m water depth) along 20km of coastline near Duck, North Carolina which encompassed a variety of foredune forms in close proximity to each other. This abstract will focus on the tools developed for the automated extraction of the morphological features from terrestrial lidar data, while the response of the dune will be presented by Brodie and Spore as an accompanying abstract. Raw point cloud data can be dense and is often under-utilized due to time and personnel constraints required for analysis, since many algorithms are not fully automated. In our approach, the point cloud is first projected into a local coordinate system aligned with the coastline, and then bare earth points are interpolated onto a rectilinear 0.5 m grid creating a high resolution digital elevation model. The surface is analyzed by identifying features along each cross-shore transect. Surface curvature is used to identify the position of the dune toe, and then beach and berm morphology is extracted shoreward of the dune toe, and foredune morphology is extracted landward of the dune toe. Changes in, and magnitudes of, cross-shore slope, curvature, and surface roughness are used to describe the foredune face and each cross-shore transect is then classified using its pre-storm morphology for storm-response analysis.

  4. EARLINET: towards an advanced sustainable European aerosol lidar network

    Science.gov (United States)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-03-01

    The European Aerosol Research Lidar Network, EARLINET was founded in 2000 as a research project for establishing a quantitative, comprehensive and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET is continuing to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last thirteen years. Since 2000, EARLINET has strongly developed in terms of number of stations and spatial distribution, from 17 stations in 10 countries in 2000, to 27 stations in 16 countries in 2013. EARLINET has strongly developed also in terms of technological advances with the spread of advanced multi-wavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing and dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase of the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions and for model evaluation and satellite data validation and integration. Future plans are in the direction of continuous measurements and near real time data delivery in close cooperation with other ground-based networks, as in the ACTRIS research infrastructure, and with the modelling and satellite community, bridging the research community with the

  5. EARLINET: towards an advanced sustainable European aerosol lidar network

    Science.gov (United States)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-08-01

    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite

  6. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    the evaluation of LIDAR-based wind measurement systems to validate the accuracy of remotely measured wind data in marine applications. Specifically, the test-bed will be utilized to systematically evaluate the capability of emerging scanning LIDAR and buoy mounted vertically profiling LIDAR by: (1) Evaluating a fixed scanning LIDAR against land-based 50 and 60 meter high meteorological masts fitted with research quality cup-vane and/or sonic anemometers; (2) Evaluating a buoy mounted vertically profiling LIDAR fixed on land and floating in a sheltered bay against a co-located 60 meter high meteorological mast fitted with a research quality cup-vane and/or sonic anemometers and the fixed scanning LIDAR; and (3) Offshore field evaluation of both LIDAR platforms through a comparison of the fixed scanning LIDAR data and data obtained by the buoy mounted LIDAR located 10 miles offshore. The proposed research will systematically validate Light Detection and Ranging (LIDAR) based wind measurement systems and assess the temporal and spatial variability of the offshore wind resource in the Mid-Atlantic east of New Jersey. The goal of the proposed project is to address the technical and commercial challenges of the offshore wind energy industry by validating and assessing cost-effective, over ocean wind resource characterization technologies. The objective is to systematically evaluate the capability of both scanning and vertically profiling LIDARs to accurately measure 3D wind fields through comparison with fixed met masts and intercomparison among LIDAR platforms. Once validated, data collected by both buoy mounted vertically profiling LIDARs and shore-based, pulsed horizontally scanning LIDARs can be used to accurately assess offshore wind resources and to quantify the spatial and temporal variability in the offshore wind fields. One of the fundamental research questions to be addressed in phase 1 is the assessment of various measurement and data processing schemes to

  7. Mapping elevations of tidal wetland restoration sites in San Francisco Bay: Comparing accuracy of aerial lidar with a singlebeam echosounder

    Science.gov (United States)

    Athearn, N.D.; Takekawa, John Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.

    2010-01-01

    The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.

  8. QUALITY ASSESSMENT AND CONTROL OF OUTPUTS OF A NATIONWIDE AGRICULTURAL LAND COVER MAPPING PROGRAM USING LIDAR: PHIL-LIDAR 2 PARMAP EXPERIENCE

    Directory of Open Access Journals (Sweden)

    H. M. Pagkalinawan

    2017-11-01

    Full Text Available The Agricultural Resources Extraction from LiDAR Surveys (PARMAP project component of the Nationwide Detailed Resources Assessment using LiDAR (Phil-LiDAR 2 Program aims to produce detailed agricultural maps using LiDAR. Agricultural land cover at crop level was classified through object based image analysis using Support Vector Machine as classifier and LiDAR derivatives from point cloud (2 points per sq.m. and orthophoto (0.5-meter resolution as inputs. An accuracy of at least 90 %, assessed using validation points from the field and through image interpretation, was required before proceeding to post-processing and map lay-out. Knowledge sharing and capacity development facilitated by the University of the Philippines Diliman (UPD enabled partner universities across the Philippines to produce outputs for their assigned region. Considering output layers were generated by multiple teams working on different landscape complexities with some degree of data quality variability, quality checking is crucial to ensure accuracy standards were met. UPD PARMap devised a centralized and end-to-end scheme divided into four steps – land classification, GIS post-processing, schema application, and map lay-out. At each step, a block is reviewed and, subsequently, either approved or returned with documentation on required revisions. Turnaround time of review is at least one block (area ranging from 10 to 580 sq. km. per day. For coastal municipalities, an additional integration process to incorporate mapped coastal features was applied. Common problems observed during quality checking include misclassifications, gaps between features, incomplete attributes and missing map elements. Some issues are particular to specific blocks such as problematic LiDAR derivatives. UPD addressed these problems through discussion and mentoring visits to partner universities. As of March 2017, a total of 336 municipal agricultural maps have been turned-over to various

  9. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  10. Sodium safety manual

    International Nuclear Information System (INIS)

    Hayes, D.J.; Gardiner, R.L.

    1980-09-01

    The sodium safety manual is based upon more than a decade of experience with liquid sodium at Berkeley Nuclear Laboratories (BNL). It draws particularly from the expertise and experience developed in the course of research work into sodium fires and sodium water reactions. It draws also on information obtained from the UKAEA and other sodium users. Many of the broad principles will apply to other Establishments but much of the detail is specific to BNL and as a consequence its application at other sites may well be limited. Accidents with sodium are at best unpleasant and at worst lethal in an extremely painful way. The object of this manual is to help prevent sodium accidents. It is not intended to give detailed advice on specific precautions for particular situations, but rather to set out the overall strategy which will ensure that sodium activities will be pursued safely. More detail is generally conveyed to staff by the use of local instructions known as Sodium Working Procedures (SWP's) which are not reproduced in this manual although a list of current SWP's is included. Much attention is properly given to the safe design and operation of larger facilities; nevertheless evidence suggests that sodium accidents most frequently occur in small-scale work particularly in operations associated with sodium cleaning and special care is needed in all such cases. (U.K.)

  11. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  12. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  13. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  14. Applications of KHZ-CW Lidar in Ecological Entomology

    Science.gov (United States)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  15. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Cherukuru N. W.

    2016-01-01

    As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  16. Charactering lidar optical subsystem using four quadrants method

    Science.gov (United States)

    Tian, Xiaomin; Liu, Dong; Xu, Jiwei; Wang, Zhenzhu; Wang, Bangxin; Wu, Decheng; Zhong, Zhiqing; Xie, Chenbo; Wang, Yingjian

    2018-02-01

    Lidar is a kind of active optical remote sensing instruments , can be applied to sound atmosphere with a high spatial and temporal resolution. Many parameter of atmosphere can be get by using different inverse algorithm with lidar backscatter signal. The basic setup of a lidar consist of a transmitter and a receiver. To make sure the quality of lidar signal data, the lidar must be calibrated before being used to measure the atmospheric variables. It is really significant to character and analyze lidar optical subsystem because a well equiped lidar optical subsystem contributes to high quality lidar signal data. we pay close attention to telecover test to character and analyze lidar optical subsystem.The telecover test is called four quadrants method consisting in dividing the telescope aperture in four quarants. when a lidar is well configured with lidar optical subsystem, the normalized signal from four qudrants will agree with each other on some level. Testing our WARL-II lidar by four quadrants method ,we find the signals of the four basically consistent with each other both in near range and in far range. But in detail, the signals in near range have some slight distinctions resulting from overlap function, some signals distinctions are induced by atmospheric instability.

  17. Fractal properties and denoising of lidar signals from cirrus clouds

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Driesenaar, M.L.; Lerou, R.J.L.

    2000-01-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by

  18. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  19. 3D pulsed chaos lidar system.

    Science.gov (United States)

    Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi

    2018-04-30

    We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.

  20. Atmospheric Turbulence Estimates from a Pulsed Lidar

    Science.gov (United States)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  1. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  2. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar

    Directory of Open Access Journals (Sweden)

    Andrew Clifton

    2018-03-01

    Full Text Available IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.

  3. Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors: project overview and strong Wind PRA methodology - 15031

    International Nuclear Information System (INIS)

    Yamano, H.; Nishino, H.; Kurisaka, K.; Okano, Y.; Sakai, T.; Yamamoto, T.; Ishizuka, Y.; Geshi, N.; Furukawa, R.; Nanayama, F.; Takata, T.; Azuma, E.

    2015-01-01

    This paper describes mainly strong wind probabilistic risk assessment (PRA) methodology development in addition to the project overview. In this project, to date, the PRA methodologies against snow, tornado and strong wind were developed as well as the hazard evaluation methodologies. For the volcanic eruption hazard, ash fallout simulation was carried out to contribute to the development of the hazard evaluation methodology. For the forest fire hazard, the concept of the hazard evaluation methodology was developed based on fire simulation. Event sequence assessment methodology was also developed based on plant dynamics analysis coupled with continuous Markov chain Monte Carlo method in order to apply to the event sequence against snow. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or out-take in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6*10 -9 /year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system. (authors)

  4. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  5. A Raman Lidar as Operational Tool for Long-Term Water Vapor, Temperature and Aerosol Profiling in the Swiss Meteorological Office

    Science.gov (United States)

    Simeonov, Dr; Dinoev, Dr; Serikov, Dr; Calpini, Dr; Bobrovnikov, Dr; Arshinov, Dr; Ristori, Dr; van den Bergh, Dr; Parlange, Dr

    2010-09-01

    To satisfy the rising demands on the quality and frequency of atmospheric water vapor, temperature and aerosol measurements used for numerical weather prediction models, climate change observations and special events (volcanoes, dust and smoke transport) monitoring, MeteoSwiss decided to implement a lidar at his main aerological station in Payerne. The instrument is narrow field of view, narrowband UV Raman lidar designed for continuous day and night operational profiling of tropospheric water vapor, aerosol and temperature The lidar was developed and built by the Swiss Federal Institute of Technology- Lausanne (EPFL) within a joint project with MeteoSwiss. To satisfy the requirements for operational exploitation in a meteorological network the lidar had to satisfy a number of criteria, the most important of which are: accuracy and precision, traceability of the measurement, long-term data consistency, long-term system stability, automated operation, requiring minimal maintenance by a technician, and eye safety. All this requirements were taken into account during the design phase of the lidar. After a ten months test phase of the lidar at Payerne it has been in regular operation since August 2008. Selected data illustrating interesting atmospheric phenomena captured by the lidar as well as long-term intercomparison with collocated microwave radiometer, GPS, radiosonding and an airborne DIAL will be presented and discussed. The talk will address also the technical availability, alignment and calibration stabilities of the instrument.

  6. Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements

    Science.gov (United States)

    Piccone, A. N.; Lautenbach, J.

    2017-12-01

    Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.

  7. Excess noise in Lidar Thomson scattering methods

    International Nuclear Information System (INIS)

    Smith, R J; Drake, L A P; Lestz, J B

    2012-01-01

    Fundamental detection limits for the Lidar Thomson scattering technique and in particular pulsed polarimetry are presented for the first time for the long wavelength limit of incoherent Thomson scattering. Pulsed polarimetry generalizes Lidar Thomson scattering to include local magnetic field sensing. The implication for these techniques is explored for two experimental regimes where shot limited detection no longer applies: tokamaks of ITER size and cm-size wire Z pinch plasmas of High Energy Density (HED) science. The utility and importance of developing Lidar Thomson scattering at longer wavelengths for the magnetic fusion program is illustrated by a study of sightline (local) polarimetry measurements on a 15MA ITER scenario. Polarimetric measurements in the far infrared regime are shown to reach sensitivities that are instructive and useful but with a complex behaviour that make spatially resolved measurements all but mandatory.

  8. Atmospheric lidar: Legal, scientific and technological aspects

    International Nuclear Information System (INIS)

    Barbini, R.; Colao, F.; Fiorani, L.; Palucci, A.

    2000-01-01

    The Atmospheric Lidar is one of the systems of the Mobile Laboratory of Laser Remote Sensing under development at the ENEA Research Center of Frascati. This technical report addresses the legislative, scientific and technological aspects that are the basis for the identification of the requirements, the definition of the architecture and the fixation of the specifications of the Atmospheric Lidar. The problems of air pollution are introduced in section 2. A summary of the Italian laws on that topic is then given. Section 4 provides a survey of the atmospheric measurements that can be achieved with the lidar. The sensitivity in the monitoring of pollutants is discussed in section 5. The other systems of the Mobile Laboratory of Laser Remote Sensing are shortly described in section 6. The last section is devoted to conclusions and perspectives [it

  9. Conically scanning lidar error in complex terrain

    Directory of Open Access Journals (Sweden)

    Ferhat Bingöl

    2009-05-01

    Full Text Available Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error is measured by collocating a meteorological mast and a lidar at two Greek sites, one hilly and one mountainous. The maximum error for the sites investigated is of the order of 10 %. In order to predict the error for various wind directions the flows at both sites are simulated with the linearized flow model, WAsP Engineering 2.0. The measurement data are compared with the model predictions with good results for the hilly site, but with less success at the mountainous site. This is a deficiency of the flow model, but the methods presented in this paper can be used with any flow model.

  10. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  11. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    Science.gov (United States)

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  12. Complex Urban LiDAR Data Set

    OpenAIRE

    Jeong, Jinyong; Cho, Younggun; Shin, Young-Sik; Roh, Hyunchul; Kim, Ayoung

    2018-01-01

    This paper presents a Light Detection and Ranging (LiDAR) data set that targets complex urban environments. Urban environments with high-rise buildings and congested traffic pose a significant challenge for many robotics applications. The presented data set is unique in the sense it is able to capture the genuine features of an urban environment (e.g. metropolitan areas, large building complexes and underground parking lots). Data of two-dimensional (2D) and threedimensional (3D) LiDAR, which...

  13. LIDAR, Point Clouds, and their Archaeological Applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Devin A [ORNL

    2013-01-01

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

  14. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  15. Wind Lidar Activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer; St. Pe, Alexandra; Iungo, G. Valerio; Wharton, Sonia; Herges, Tommy; Filippelli, Matthew; Pontbriand, Philippe; Osler, Evan

    2017-06-28

    IEA Wind Task 32 seeks to identify and mitigate the barriers to the adoption of lidar for wind energy applications. This work is partly achieved by sharing experience across researchers and practitioners in the United States and worldwide. This presentation is a short summary of some wind lidar-related activities taking place in the country, and was presented by Andrew Clifton at the Task 32 meeting in December 2016 in his role as the U.S. Department of Energy-nominated country representative to the task.

  16. Development of atmospheric polarization LIDAR System

    International Nuclear Information System (INIS)

    Ghalumyan, A.S.; Ghazaryan, V.R.

    2016-01-01

    LIDAR (Light Detection And Ranging) system sensitive to the polarization of the backscattered signal is being developed in Yerevan Physics Institute. The system is designed primarily for remote sensing of the atmospheric electric fields. At present, the system is being tuned for measuring vertical atmospheric backscatter profiles of aerosols and hydrometeors, analyze the depolarization ratio of elastic backscattered laser beams and investigate the influence of external factors on the beam polarization. In this paper, we describe the complete LIDAR system – the laser transmitter, receiving telescope and the polarization separator. The data acquisition and processing techniques are also described. (author)

  17. Development of a Dynamic Lidar Uncertainty Framework

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, Andrew [WindForS; Bonin, Timothy [CIRES/NOAA ESRL; Choukulkar, Aditya [CIRES/NOAA ESRL; Brewer, W. Alan [NOAA ESRL; Delgado, Ruben [University of Maryland Baltimore County

    2017-08-07

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing consider uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict

  18. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Science.gov (United States)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  19. From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations

    Science.gov (United States)

    Chun, K.; Kemeny, J.

    2017-12-01

    Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.

  20. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  1. Sodium aerosol recovering device

    International Nuclear Information System (INIS)

    Fujimori, Koji; Ueda, Mitsuo; Tanaka, Kazuhisa.

    1997-01-01

    A main body of a recovering device is disposed in a sodium cooled reactor or a sodium cooled test device. Air containing sodium aerosol is sucked into the main body of the recovering device by a recycling fan and introduced to a multi-staged metal mesh filter portion. The air about against each of the metal mesh filters, and the sodium aerosol in the air is collected. The air having a reduced sodium aerosol concentration circulates passing through a recycling fan and pipelines to form a circulation air streams. Sodium aerosol deposited on each of the metal mesh filters is scraped off periodically by a scraper driving device to prevent clogging of each of the metal filters. (I.N.)

  2. [Sodium intake during pregnancy].

    Science.gov (United States)

    Delemarre, F M; Franx, A; Knuist, M; Steegers, E A

    1999-10-23

    International studies have yielded contradictory results on efficacy of a sodium-restricted diet during pregnancy in preventing and curing hypertension of pregnancy. In the Netherlands three studies have been performed to investigate the value of dietary sodium restriction in pregnancy; they concerned epidemiology, prevention and treatment. Midwives often prescribed this dietary intervention. Urinary sodium excretion was not related to blood pressure changes in pregnancy. Dietary sodium restriction from the third month of pregnancy onwards did not reduce the incidence of pregnancy-induced hypertension. Maternal side effects were a decreased intake of nutrients, decreased maternal weight gain, lowered plasma volume and stimulation of the renin-angiotensin-aldosterone system. A dietary sodium restriction in women with early symptoms of pregnancy-induced hypertension showed no therapeutic effect on blood pressure. There is no place for dietary sodium restriction in the prevention or treatment of hypertension in pregnancy.

  3. Sodium fire protection

    International Nuclear Information System (INIS)

    Raju, C.; Kale, R.D.

    1979-01-01

    Results of experiments carried out with sodium fires to develop extinguishment techniques are presented. Characteristics, ignition temperature, heat evolution and other aspects of sodium fires are described. Out of the powders tested for extinguishment of 10 Kg sodium fires, sodium bi-carbonate based dry chemical powder has been found to be the best extinguisher followed by large sized vermiculite and then calcium carbonate powders distributed by spray nozzles. Powders, however, do not extinguish large fires effectively due to sodium-concrete reaction. To control large scale fires in a LMFBR, collection trays with protective cover have been found to cause oxygen starvation better than flooding with inert gas. This system has an added advantage in that there is no damage to the sodium facilities as has been in the case of powders which often contain chlorine compounds and cause stress corrosion cracking. (M.G.B.)

  4. Parabrachial and hypothalamic interaction in sodium appetite

    Science.gov (United States)

    Dayawansa, S.; Peckins, S.; Ruch, S.

    2011-01-01

    Rats with bilateral lesions of the lateral hypothalamus (LH) fail to exhibit sodium appetite. Lesions of the parabrachial nuclei (PBN) also block salt appetite. The PBN projection to the LH is largely ipsilateral. If these deficits are functionally dependent, damaging the PBN on one side and the LH on the other should also block Na appetite. First, bilateral ibotenic acid lesions of the LH were needed because the electrolytic damage used previously destroyed both cells and axons. The ibotenic LH lesions produced substantial weight loss and eliminated Na appetite. Controls with ipsilateral PBN and LH lesions gained weight and displayed robust sodium appetite. The rats with asymmetric PBN-LH lesions also gained weight, but after sodium depletion consistently failed to increase intake of 0.5 M NaCl. These results dissociate loss of sodium appetite from the classic weight loss after LH damage and prove that Na appetite requires communication between neurons in the LH and the PBN. PMID:21270347

  5. Laser remote sensing of water vapor: Raman lidar development

    International Nuclear Information System (INIS)

    Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.; Melfi, S.H.; Whiteman, D.N.; Ferrare, R.A.; Evans, K.D.

    1994-01-01

    The goal of this research is the development of a critical design for a Raman lidar system optimized to match ARM Program needs for profiling atmospheric water vapor at CART sites. This work has emphasized the development of enhanced daytime capabilities using Raman lidar techniques. This abstract touches briefly on the main components of the research program, summarizing results of the efforts. A detailed Raman lidar instrument model has been developed to predict the daytime and nighttime performance capabilities of Raman lidar systems. The model simulates key characteristics of the lidar system, using realistic atmospheric profiles, modeled background sky radiance, and lidar system parameters based on current instrument capabilities. The model is used to guide development of lidar systems based on both the solar-blind concept and the narrowband, narrow field-of-view concept for daytime optimization

  6. Lidar Inter-Comparison Exercise Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Protat, A [Australian Bureau of Meterology; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  7. 2000 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Kitsap Peninsula, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 1,146 square miles and covers part...

  8. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Snohomish County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 167 square miles and covers a...

  9. 2011 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Rattlesnake

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on six days between September 15th and November 5th, and from November 6th - 13th,...

  10. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lower Columbia River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint, on behalf of multiple agencies, collected topographic lidar of the Lower Columbia River area. Field data collection took place between the dates of...

  11. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 100 square miles and covers part of...

  12. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  13. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Upper Naches River, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Upper Naches River Valley and Nile Slide area of interest on September 30th,...

  14. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Entiat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the...

  15. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  16. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  17. Wind field re-construction of 3D Wake measurements from a turbine-installed scanning lidar

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, Tommy; Astrup, Poul

    High-resolution wake flow measurements obtained from a turbine-mounted scanning lidar have been obtained from 1D to 5D behind a V27 test turbine. The measured line-of-sight projected wind speeds have, in connection with a fast CFD wind field reconstruction model, been used to generate 3D wind fie...

  18. Sodium fill of FFTF

    International Nuclear Information System (INIS)

    Waldo, J.B.; Greenwell, R.K.; Keasling, T.A.; Collins, J.R.; Klos, D.B.

    1980-02-01

    With construction of the Fast Flux Test Facility (FFTF) completed, the first major objective in the startup program was to fill the sodium systems. A sodium fill sequence was developed to match construction completion, and as systems became available, they were inerted, preheated, and filled with sodium. The secondary sodium systems were filled first while dry refueling system testing was in progress in the reactor vessel. The reactor vessel and the primary loops were filled last. This paper describes the methods used and some of the key results achieved for this major FFTF objective

  19. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  20. KML-Based Access and Visualization of High Resolution LiDAR Topography

    Science.gov (United States)

    Crosby, C. J.; Blair, J. L.; Nandigam, V.; Memon, A.; Baru, C.; Arrowsmith, J. R.

    2008-12-01

    the user as a KML groundoverlay. The KML product enables users to quickly and easily visualize the DEMs in Google Earth. By combining internet-based LiDAR data processing with KML visualization products, users are able to execute computationally intensive data sub-setting, processing and visualization without having local access to computing resources, GIS software, or data processing expertise. Finally, GEON has partnered with the US Geological Survey to generate region-dependant network linked KML visualizations for large volumes of LiDAR derived hillshades of the Northern San Andreas fault system. These data, acquired by the NSF-funded GeoEarthScope project, offer an unprecedented look at active faults in the northern portion of the San Andreas system. Through the region-dependant network linked KML, users can seamlessly access 1 meter hillshades (both 315 and 45 degree sun angles) for the full 1400 square kilometer dataset, without downloading huge volumes of data. This type of data access has great utility for users ranging from earthquake scientists to K-12 educators who wish to introduce cutting edge real world data into their earth science lessons.

  1. Urban Classification Techniques Using the Fusion of LiDAR and Spectral Data

    Science.gov (United States)

    2012-09-01

    37 D. MASK CREATION .......................................................................................39 viii 1. LiDAR-based Masks...in Quick Terrain Modeler 2. WorldView-2 The image used in this project was collected by WorldView-2 on November 8, 2011 at Zulu time 19:34:42...OBSERVATIONS A. PROCESS OVERVIEW The focus of this thesis was to create a robust technique for fusing LiDAR and spectral imagery for creation of a

  2. Assessing Accuracy in Varying LIDAR Data Point Densities in Digital Elevation Maps

    Science.gov (United States)

    2008-09-01

    describes the project undertaken for delimiting the data collected on the regions and outlines the statistical methodology used to assess research...not hydrologically corrected (to enforce flow- direction) • Generated contours not aesthetically appealing • Lidar returns on water are unreliable...and ground “bottom” returns. In his 21 1984 paper, Krabill concluded that the results of the test over the Wolf River Basin “were sufficient to

  3. Validation of long-range scanning lidars deployed around the Høvsøre Test Station

    DEFF Research Database (Denmark)

    Lea, Guillaume; Courtney, Michael

    This report describes validation tests performed on the long-range scanning lidars prior to deployment in the RUNE campaign. Position and speed accuracy tests have been performed at a range of 5km from the Høvsøre met mast. This range is typical of ranges for near-coastal resource measurements....... The accuracy of the beam positioning was checked by comparing the predicted position to the position found from hard-target returns from the mast. Radial speeds measured by the lidar were also found to be in close agreement with the mast measured wind speeds projected in the line of sight direction....

  4. Optics of the ozone lidar ELSA

    Science.gov (United States)

    Porteneuve, J.

    1992-01-01

    In order to study the ozone layer in the Arctic, we have to define a new optical concept for a lidar. It was necessary to build a transportable system with a large collecting surface in a minimum of volume. It was too useful to have a multichannel receptor. A description of the Emettor Receptor System, collecting system, and analysis system is provided.

  5. Airborne Lidar Surface Topography (LIST) Simulator

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  6. Lidar Architecture for Harsh Environment Applications

    Directory of Open Access Journals (Sweden)

    Church Philip

    2016-01-01

    Full Text Available An overview is provided of the obscurantpenetrating OPAL lidar sensor developed for harsh environments, including poor visibility conditions. The underlying technology, hardware and software architecture of the sensor are presented along with some examples of its software modules’ applications. The paper also discusses the performance of the OPAL in the presence of various types of obscurants.

  7. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  8. 2008 FEMA Lidar: South Oneida County (NY)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — For Oneida County, NY, there were two types of elevation datasets. The first type is LiDAR and the second one is Auto-correlation DEM. Auto-correlation DEM data was...

  9. Field test of a lidar wind profiler

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Wind speeds and wind directions are measured remotely using an incoherent backscatter lidar system operating at a wavelength of 1.06 mm with a maximum repetition rate of 13 Hz. The principle of the measurements is based on following detectable atmospheric structures, which are transported by the

  10. 2009 USGS Potato Creek Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR collected for the upper portion of the Flint River in central georgia. 237.6 sqmiles collected between May 1st and May 4th, 2009. The data contains 1 meter...

  11. Water Mapping Using Multispectral Airborne LIDAR Data

    Science.gov (United States)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  12. Voxel-Based LIDAR Analysis and Applications

    Science.gov (United States)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  13. Observations of peculiar sporadic sodium structures and their relation with wind variations

    Science.gov (United States)

    Sridharan, S.; Prasanth, P. Vishnu; Kumar, Y. Bhavani; Ramkumar, Geetha; Sathishkumar, S.; Raghunath, K.

    2009-04-01

    Resonance lidar observations of sodium density in the upper mesosphere region over Gadanki (13.5°N, 79.2°E) rarely show complex structures with rapid enhancements of sodium density, completely different from normal sporadic sodium structures. The hourly averaged meteor radar zonal winds over Trivandrum (8.5°N, 76.5°E) show an eastward shear with altitude during the nights, when these events are formed. As suggested by Kane et al. [2001. Joint observations of sodium enhancements and field-aligned ionospheric irregularities. Geophysical Research Letters 28, 1375-1378], our observations show that the complex structures may be formed due to Kelvin-Helmholtz instability, which can occur in the region of strong wind shear.

  14. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Science.gov (United States)

    Hauchecorne, Alain; Keckhut, Philippe; Mariscal, Jean-François; d'Almeida, Eric; Dahoo, Pierre-Richard; Porteneuve, Jacques

    2016-06-01

    A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  15. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Directory of Open Access Journals (Sweden)

    Hauchecorne Alain

    2016-01-01

    Full Text Available A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  16. Modeling and analysis of Off-beam lidar returns from thick clouds, snow, and sea ice

    International Nuclear Information System (INIS)

    Varnai, T.; Cahalan, R. F.

    2009-01-01

    A group of recently developed lidar (laser ranging and detection) systems can detect signals returning from several wide field-of-views, allowing them to observe the way laser pulses spread in thick media. The new capability enabled accurate measurements of cloud geometrical thickness and promises improved measurements of internal cloud structure as well as snow and sea ice thickness. This paper presents a brief overview of radiation transport simulation techniques and data analysis methods that were developed for multi-view lidar applications and for and considering multiple scattering effects in single-view lidar data. In discussing methods for simulating the three-dimensional spread of lidar pulses, we present initial results from Phase 3 of the Intercomparison of 3-D Radiation Codes (I3RC) project. The results reveal some differences in the capabilities of participating models, while good agreement among several models provides consensus results suitable for testing future models. Detailed numerical results are available at the I3RC web site at http://i3rc.gsfc.nasa. gov. In considering data analysis methods, we focus on the Thickness from Off-beam Returns (THOR) lidar. THOR proved successful in measuring the geometrical thickness of optically thick clouds; here we focus on its potential for retrieving the vertical profile of scattering coefficient in clouds and for measuring snow thickness. Initial observations suggest considerable promise but also reveal some limitations, for example that the maximum retrievable snow thickness drops from about 0.5 m in pristine areas to about 0.15 m in polluted regions. (authors)

  17. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  18. Visibility in sodium fume

    International Nuclear Information System (INIS)

    Hughes, G.W.; Anderson, N.R.

    1971-01-01

    The appearance of sodium fume of unknown concentration and the effects of short term exposure on unprotected workers is described. The molecular extinction coefficient of sodium fume is calculated from which light transmission data, and a rapid method for the estimation of the fume concentration is proposed. (author)

  19. Sodium outleakage detection

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Effective detection of outleakage from sodium facilities permits timely intervention capable of limiting the consequences of such leakage. Two types of detection systems are described: local and overall detection. The use of two independent systems in sodium facilities is recommended. (author)

  20. Annular sodium flowsensor

    International Nuclear Information System (INIS)

    Kaiser, W.C.; Brewer, J.; Forster, G.A.

    1983-01-01

    This paper describes a unique eddy-current type liquid sodium flowsensor, designed as a joint effort between Argonne National Laboratory and Kaman Instrumentation Corp. Test results are included for operation of the flowsensor mounted on a sodium test loop whose configuration simulates the actual operating conditions, except for the magnetic field of the ALIP

  1. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    Science.gov (United States)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how

  2. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    Science.gov (United States)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    unmanaged areas, using high point density lidar collected over transmission line corridors. The lidar metric of quadratic mean height guided our selection of field plots spanning the full range from low to high levels of aboveground biomass across the study region. Before model selection, we minimized two of the major sources of errors in lidar calibration: variance in tree allometry across landscapes and plot edge effects (spatial mismatch between field measurements and lidar points). We tested an assortment of model selection techniques and goodness of fit measures for deriving forest structural metrics of interest. For example, we obtained an R-squared value for aboveground biomass (Mg/ha) of 0.9 using stepwise regression. The forest metrics obtained are being used in the next stage of the project to parameterize biogeochemical models linking terrestrial carbon pools and atmospheric greenhouse gas exchanges.

  3. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR

    Directory of Open Access Journals (Sweden)

    J. Jubanski

    2013-06-01

    Full Text Available Quantification of tropical forest above-ground biomass (AGB over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+ projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia through correlating airborne light detection and ranging (LiDAR to forest inventory data. Two LiDAR height metrics were analysed, and regression models could be improved through the use of LiDAR point densities as input (R2 = 0.88; n = 52. Surveying with a LiDAR point density per square metre of about 4 resulted in the best cost / benefit ratio. We estimated AGB for 600 km of LiDAR tracks and showed that there exists a considerable variability of up to 140% within the same forest type due to varying environmental conditions. Impact from logging operations and the associated AGB losses dating back more than 10 yr could be assessed by LiDAR but not by multispectral satellite imagery. Comparison with a Landsat classification for a 1 million ha study area where AGB values were based on site-specific field inventory data, regional literature estimates, and default values by the Intergovernmental Panel on Climate Change (IPCC showed an overestimation of 43%, 102%, and 137%, respectively. The results show that AGB overestimation may lead to wrong greenhouse gas (GHG emission estimates due to deforestation in climate models. For REDD+ projects this leads to inaccurate carbon stock estimates and consequently to significantly wrong REDD+ based compensation payments.

  4. Total-body sodium and sodium excess

    International Nuclear Information System (INIS)

    Aloia, J.F.; Cohn, S.H.; Abesamis, C.; Babu, T.; Zanzi, I.; Ellis, K.

    1980-01-01

    Total-body levels of sodium (TBNa), chlorine (TBCI), calcium (TBCa), and potassium (TBK) were measured by neutron activation and analysis of results by whole body counting in 66 postmenopausal women. The relationship between TBNa, and TBCl, TBK, and TBCa on the one hand, and height and weight on the other, were found to compare with those previously reported. The hypothesis that TBNa and TBCl are distributed normally could not be rejected. The sodium excess (Na/sub es/) is defined as the sodium that is present in excess of that associated with the extracellular fluid (chlorine) space; the Na/sub es/ approximates nonexchangeable bone sodium. In these 66 postmenopausal women, and in patients with different endocrinopathies previously described, the values on Na/sub es/ did not differ from the normal values except in the thyrotoxicosis patients, where they were decreased. A close relationship between Na/sub es/ and TBCa was maintained in the endocrinopathies studied. This relationship was found in conditions accompanied by either an increment or a loss of skeletal mass. It appears that the NA/sub es/ value is primarily dependent upon the calcium content of bone

  5. Binary nucleation of water and sodium chloride

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Palmer, A.

    2006-01-01

    Roč. 124, č. 4 (2006), 0445091-0445096 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA101/05/2536 Institutional research plan: CEZ:AV0Z20760514 Keywords : binary nucleation * sodium chloride * water Subject RIV: BJ - Thermodynamics Impact factor: 3.166, year: 2006

  6. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  7. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    Science.gov (United States)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  8. 2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (New Jersey)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS New Jersey CMGP Sandy Lidar 0.7 Meter NPS LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No....

  9. Standards – An Important Step for the (Public Use of Lidars

    Directory of Open Access Journals (Sweden)

    Althausen Dietrich

    2016-01-01

    Full Text Available Lidar standards are needed to ensure quality and lidar product control at the interface between lidar manufacturers and lidar users. Meanwhile three lidar standards have been published by German and international standardization organizations. This paper describes the cooperation between the lidar technique inventors, lidar instrument constructors, and lidar product users to establish useful standards. Presently a backscatter lidar standard is elaborated in Germany. Key points of this standard are presented here. Two German standards were already accepted as international standards by the International Organization for Standardization (ISO. Hence, German and international organizations for the establishment of lidar standards are introduced to encourage a cooperative work on lidar standards by lidar scientists.

  10. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Silva

    2017-10-01

    Full Text Available Airborne lidar is a technology well-suited for mapping many forest attributes, including aboveground biomass (AGB stocks and changes in selective logging in tropical forests. However, trade-offs still exist between lidar pulse density and accuracy of AGB estimates. We assessed the impacts of lidar pulse density on the estimation of AGB stocks and changes using airborne lidar and field plot data in a selectively logged tropical forest located near Paragominas, Pará, Brazil. Field-derived AGB was computed at 85 square 50 × 50 m plots in 2014. Lidar data were acquired in 2012 and 2014, and for each dataset the pulse density was subsampled from its original density of 13.8 and 37.5 pulses·m−2 to lower densities of 12, 10, 8, 6, 4, 2, 0.8, 0.6, 0.4 and 0.2 pulses·m−2. For each pulse density dataset, a power-law model was developed to estimate AGB stocks from lidar-derived mean height and corresponding changes between the years 2012 and 2014. We found that AGB change estimates at the plot level were only slightly affected by pulse density. However, at the landscape level we observed differences in estimated AGB change of >20 Mg·ha−1 when pulse density decreased from 12 to 0.2 pulses·m−2. The effects of pulse density were more pronounced in areas of steep slope, especially when the digital terrain models (DTMs used in the lidar derived forest height were created from reduced pulse density data. In particular, when the DTM from high pulse density in 2014 was used to derive the forest height from both years, the effects on forest height and the estimated AGB stock and changes did not exceed 20 Mg·ha−1. The results suggest that AGB change can be monitored in selective logging in tropical forests with reasonable accuracy and low cost with low pulse density lidar surveys if a baseline high-quality DTM is available from at least one lidar survey. We recommend the results of this study to be considered in developing projects and national

  11. Initial Results from the Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Ginoux, Paul; Starr, David OC. (Technical Monitor)

    2001-01-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for full time monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the Gobi desert, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data products.

  12. Initial Results From The Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Spinhirne, J. D.; Ginoux, P.

    2001-12-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for fulltime monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the desert regions of China, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data

  13. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    resources. Datasets hosted by other organizations, as well as lidar-specific software, can be registered into the OpenTopography catalog, providing users a "one-stop shop" for such information. With several thousand active users, OpenTopography is an excellent example of a mature Spatial Data Infrastructure system that is enabling access to challenging data for research, education and outreach. Ongoing OpenTopography design and development work includes the archive and publication of datasets using digital object identifiers (DOIs); creation of a more flexible and scalable high-performance environment for processing of large datasets; expanded support for satellite and terrestrial lidar; and creation of a "pluggable" infrastructure for third-party programs and algorithms. OpenTopography has successfully created a facility for sharing lidar data. In the project's next phase, we are working to enable equally easy and successful sharing of services for processing and analysis of these data.

  14. Underwater lidar system: design challenges and application in pollution detection

    Science.gov (United States)

    Gupta, Pradip; Sankolli, Swati; Chakraborty, A.

    2016-05-01

    The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.

  15. Spaceborne Lidar in the Study of Marine Systems.

    Science.gov (United States)

    Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A

    2018-01-03

    Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  16. Spaceborne Lidar in the Study of Marine Systems

    Science.gov (United States)

    Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.

    2018-01-01

    Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  17. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    Science.gov (United States)

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  18. The marbll experiment: towards a martian wind lidar

    Directory of Open Access Journals (Sweden)

    Määttänen Anni

    2018-01-01

    Full Text Available Operating a lidar on Mars would fulfill the need of accessing wind and aerosol profiles in the atmospheric boundary layer. This is the purpose of the MARs Boundary Layer Lidar (MARBLL instrument. We report recent developments of this compact direct-detection wind lidar designed to operate from the surface of Mars. A new laser source has been developed and an azimuthal scanning capability has been added. Preliminary results of a field campaign are presented.

  19. A cloud masking algorithm for EARLINET lidar systems

    Science.gov (United States)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  20. Theoretical assessment of particle generation from sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M., E-mail: monica.gmartin@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Herranz, L.E., E-mail: luisen.herranz@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Kissane, M.P., E-mail: Martin.KISSANE@oecd.org [Nuclear Safety Technology and Regulation Division, OECD Nuclear Energy Agency (NEA), 46 quai Alphonse Le Gallo, 92100 Boulogne-Billancourt (France)

    2016-12-15

    Highlights: • Development of particle generation model for sodium-oxides aerosol formation. • Development of partially validated numerical simulations to build up maps of saturation ratio. • Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools. • Prediction of high concentrations of primary particles in the combustion zone. - Abstract: Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.

  1. Lidar research in South Africa

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-01-01

    Full Text Available . They are similar in operation and specifications, thus permitting simultaneous measurements. The Durban device is operated at the University of KwaZulu-Natal, as a collaborative project with Reunion University and the Service d'Aéronomie of the Centre National de...

  2. Sodium intake among persons aged >=2 years – United States, 2013-2014

    Science.gov (United States)

    High sodium consumption can increase hypertension, a major risk factor for cardiovascular diseases. Reducing sodium intake can reduce blood pressure, and population-wide reductions of 40% over 10 years are projected to save at least 280,000 lives. Average U.S. sodium intake remains in excess of He...

  3. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  4. The Esmeralda project

    International Nuclear Information System (INIS)

    Sophy, Y.

    1979-01-01

    This paper discusses the Esmeralda Project for studying extensive fires involving up to 70 metric tons of sodium. The design objectives and major features of the project are presented. The need for sodium fire testing on such a scale, results from problems of similitude arising from the extrapolation of previous results to fires liable to occur in large fast neutron reactors such as Super-Phenix. (author)

  5. LIDAR and atmosphere remote sensing [DST Space Science Initiatives

    CSIR Research Space (South Africa)

    Venkataraman, S

    2009-04-01

    Full Text Available Energy Source included in the measurement. Slide 2 © CSIR 2008 www.csir.co.za The observer can control the source Eg. Radar, Lidar, Sodar, Sonar etc. (b) Passive remote sensors. Energy source is not included in the measurement... Instrument Passive Slide 3 © CSIR 2008 www.csir.co.za Active LiDAR Principle • LIDAR (Light Detection and Ranging) • LiDAR employs a laser as a source of pulsed energy • Lasers are advantageous because – checkbld Monochromatic...

  6. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  7. NASA ESTO Lidar Technologies Investment Strategy: 2016 Decadal Update

    Science.gov (United States)

    Valinia, Azita; Komar, George J.; Tratt, David M.; Lotshaw, William T.; Gaab, Kevin M.

    2017-01-01

    The NASA Earth Science Technology Office (ESTO) recently updated its investment strategy in the area of lidar technologies as it pertains to NASA's Earth Science measurement goals in the next decade. The last ESTO lidar strategy was documented in 2006. The current (2016) report assesses the state-of-the-art in lidar technologies a decade later. Lidar technology maturation in the past decade has been evaluated, and the ESTO investment strategy is updated and laid out in this report according to current NASA Earth science measurement needs and new emerging technologies.

  8. Large Scale Landform Mapping Using Lidar DEM

    Directory of Open Access Journals (Sweden)

    Türkay Gökgöz

    2015-08-01

    Full Text Available In this study, LIDAR DEM data was used to obtain a primary landform map in accordance with a well-known methodology. This primary landform map was generalized using the Focal Statistics tool (Majority, considering the minimum area condition in cartographic generalization in order to obtain landform maps at 1:1000 and 1:5000 scales. Both the primary and the generalized landform maps were verified visually with hillshaded DEM and an orthophoto. As a result, these maps provide satisfactory visuals of the landforms. In order to show the effect of generalization, the area of each landform in both the primary and the generalized maps was computed. Consequently, landform maps at large scales could be obtained with the proposed methodology, including generalization using LIDAR DEM.

  9. Measuring Oscillating Walking Paths with a LIDAR

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2011-05-01

    Full Text Available This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk.

  10. Coaxial direct-detection lidar-system

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a coaxial direct-detection LIDAR system for measuring velocity, temperature and/or particulate density. The system comprises a laser source for emitting a laser light beam having a lasing center frequency along an emission path. The system further comprises an optical....... Finally, the system comprises a detector system arranged to receive the return signal from the optical delivery system, the detector system comprising a narrowband optical filter and a detector, the narrowband optical filter having a filter center frequency of a pass-band, wherein the center lasing...... frequency and/or the center filter frequency may be scanned. The invention further relates to an aircraft airspeed measurement device, and a wind turbine airspeed measurement device comprising the LIDAR system....

  11. Sodium oxide aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  12. Sodium oxide aerosol filtration

    International Nuclear Information System (INIS)

    Duverger de Cuy, G.

    1979-01-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  13. Sodium distiller II

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Castro, P.M. e; Torres, A.R.; Correa, S.M.

    1990-01-01

    A sodium distiller allows the evaluation of the sodium purity, contained in plants and circuits of Fast Reactors. The sodium distillers of the IEN Reactor's Department was developed initially as a prototype, for the testing of the distillation process and in a second step, as a equipment dedicated to attendance the operation of these circuits. This last one was build in stainless steel, with external heat, rotating crucible of nickel for four samples, purge system for pipe cleaning and a sight glass that permits the observation of the distillation during all the operation. The major advantage of this equipment is the short time to do a distillation operation, which permits its routine utilization. As a consequence of the development of the distillers and its auxiliary systems an important amount of new information was gathered concerning components and systems behaviour under high temperature, vacuum and sodium. (author)

  14. Sodium hypochlorite poisoning

    Science.gov (United States)

    ... that can cause choking and serious breathing problems. Symptoms of sodium hypochlorite poisoning may include: Burning, red eyes Chest pain Coma Coughing (from the fumes) Delirium Gagging sensation Low blood pressure Pain in the ...

  15. The LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Salzmann, H.; Gadd, A.

    1989-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density can be measured with a single set of detectors for all spatial points. This approach considerably simplifies the collection optics required for measuring a spatial profile. The system is described and examples of measurements are given and compared with the results of other diagnostics. (author)

  16. Lidar Cloud Detection with Fully Convolutional Networks

    Science.gov (United States)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  17. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  18. Liquid sodium oxygenmeter

    International Nuclear Information System (INIS)

    Jakes, D.; Fresl, M.; Svoboda, V.

    1979-02-01

    The results of test runs of two design varieties of liquid sodium oxygenmeter in sodium loops are described. The accuracy and sensitivity are discussed reached using this instrument within 1 and 10 p.p.m. of oxygen concentration. A change in the used reference system is proposed based on practical experiences and thermochemical calculations. Ceramic electrolyte corrosion is analysed and the possible interpretation of the corrosion effect on the galvanic cell electromotive force is suggested. (author)

  19. Too Much Sodium

    Centers for Disease Control (CDC) Podcasts

    This podcast is based on the February 2012 CDC Vital Signs report. Ninety percent of Americans age two and older eat too much sodium which can increase your risk for high blood pressure and often leads to heart disease and stroke, two leading causes of death in the US. Learn several small steps you can take to reduce the amount of sodium in your diet.

  20. Atmospheric lidar: legislative, scientific and technological aspects; Lidar atmosferico. Aspetti legislativi, scientifici e tecnologici

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Fiorani, L.; Palucci, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy)

    2000-07-01

    The Atmospheric Lidar is one of the systems of the Mobile Laboratory of Laser Remote Sensing under development at the ENEA Research Center of Frascati. This technical report addresses the legislative, scientific and technological aspects that are the basis for the identification of the requirements, the definition of the architecture and the fixation of the specifications of the Atmospheric Lidar. The problems of air pollution are introduced in section 2. A summary of the Italian laws on that topic is then given. Section 4 provides a survey of the atmospheric measurements that can be achieved with the lidar. The sensitivity in the monitoring of pollutants is discussed in section 5. The other systems of the Mobile Laboratory of Laser Remote Sensing are shortly described in section 6. The last section is devoted to conclusions and perspectives. [Italian] Il lidar atmosferico e' uno dei sistemi del Laboratorio Mobile di Telerilevamento Laser in corso di realizzazione presso il Centro Ricerche di Frascati dell'ENEA. Questo rapporto tecnico discute gli aspetti legislativi, scientifici, tecnologici che sono alla base dell'individuazione dei requisiti, della definizione dell'architettura e della fissazione delle specifiche del Lidar atmosferico. La problematica dell'inquinamento dell'aria e' introdotta nella sezione 2. Segue un riassunto della legislazione italiana su tale tematica. La sezione 4 offre una panoramica delle misure atmosferiche realizzabili con il Lidar. La sensibilita' nel monitoraggio di inquinanti e' discussa nella sezione 5. Gli altri sistemi del Laboratorio Mobile di Telerilevamento Laser sono descritti brevemente nella sezione 6. L'ultima sezione e' dedicata alle conclusioni e alle prospettive.

  1. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  2. The design, development, and test of balloonborne and groundbased lidar systems. Volume 1: Balloonborne coherent CO2 lidar system

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Rappaport, S. A.

    1991-06-01

    This is Volume 1 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 2 describes the flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2, which successfully made atmospheric density backscatter measurements during a flight over White Sands Missile Range. Volume 3 describes groundbased lidar development and measurements, including the design of a telescope dome lidar installation, the design of a transportable lidar shed for remote field sites, and field measurements of atmospheric and cloud backscatter from Ascension Island during SABLE 89 and Terciera, Azores during GABLE 90. In this volume, Volume 1, the design and fabrication of a balloonborne CO2 coherent lidar payload are described. The purpose of this payload is to measure, from altitudes greater than 20 km, the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Minor modifications to the lidar would provide for aerosol velocity measurements to be made. The lidar and payload system design was completed, and major components were fabricated and assembled. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  3. Lidar signal-to-noise ratio improvements: Considerations and techniques

    Science.gov (United States)

    Hassebo, Yasser Y.

    The primary objective of this study is to improve lidar signal-to-noise ratio (SNR) and hence extend attainable lidar ranges through reduction of the sky background noise (BGP), which dominates other sources of noise in daytime operations. This is particularly important for Raman lidar techniques where the Raman backscattered signal of interest is relatively weak compared with the elastic backscatter lidars. Two approaches for reduction of sky background noise are considered: (1) Improvements in lidar SNR by optimization of the design of the lidar receiver were examined by a series of simulations. This part of the research concentrated on biaxial lidar systems, where overlap between laser beam and receiver field of view (FOV) is an important aspect of noise considerations. The first optimized design evolved is a wedge shaped aperture. While this design has the virtue of greatly reducing background light, it is difficult to implement practically, requiring both changes in area and position with lidar range. A second more practical approach, which preserves some of the advantages of the wedge design, was also evolved. This uses a smaller area circular aperture optimally located in the image plane for desired ranges. Simulated numerical results for a biaxial lidar have shown that the best receiver parameters selection is one using a small circular aperture (field stop) with a small telescope focal length f, to ensure the minimum FOV that accepts all return signals over the entire lidar range while at the same time minimizing detected BGP and hence maximizing lidar SNR and attainable lidar ranges. The improvement in lidar SNR was up to 18%. (2) A polarization selection technique was implemented to reduce sky background signal for linearly polarized monostatic elastic backscatter lidar measurements. The technique takes advantage of naturally occurring polarization properties in scattered sky light, and then ensures that both the lidar transmitter and receiver track and

  4. Turbulence estimation from a continuous-wave scanning lidar (SpinnerLidar)

    DEFF Research Database (Denmark)

    Barnhoorn, J.G.; Sjöholm, Mikael; Mikkelsen, Torben Krogh

    2017-01-01

    out, and 2) the mixing of velocity covariances from other components into the line-of-sight variance measurements. However, turbulence measurements based on upwind horizontal rotor plane scanning of the line-of-sight variance measurements combined with ensemble-averaged Doppler spectra width...... deviations averaged over 10-min sampling periods are compared. Lidar variances are inherently more prone to noise which always yields a positive bias. The 5.3 % higher turbulence level measured by the SpinnerLidar relative to the cup anemometer may equally well be attributed to truncation of turbulent...

  5. An assessment of the viability of storing FFTF sodium in tank cars

    International Nuclear Information System (INIS)

    Young, M.W.; Burke, T.M.

    1995-01-01

    Current FFTF Transition Project plans call for construction of a Sodium Storage Facility to store the plant sodium until it is processed either as product or waste. This report evaluates an alternative concept which would store the sodium in rail tank cars. It is concluded that utilizing a simple facility for offloading the FFTF sodium to standard industrial tank cars is not technically viable. Mitigation of potential radioactive sodium spills requires that the offload facility incorporate many of the features of the sodium storage facility. With these mitigation features incorporated, there is no significant cost or schedule advantage for the option of storing the FFTF sodium in tank cars when compared to the currently planned SSF. In addition, it is believed that the tank car option results in higher risk to project success because of unknowns associated with technical, regulatory, and public perception issues. It is therefore recommended that the project proceed with definitive design of the SSF

  6. Sodium fires and its extinguishment

    International Nuclear Information System (INIS)

    Mikhedov, V.G.

    1979-01-01

    The fire safety problems of NPP with sodium coolants in USSR are presented. The design of sodium reactors is made with premises with sodium coolants being hermetic and filled with nitrogen. Some engineering solutions of fire safety including design, elaboration and choice of construction and protection materials are presented. Some theoretical aspects of sodium burning are presented as well as methods of sodium fire extinguishing methods including the use of powder

  7. Topographic lidar survey of Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana, July 12-14, 2013

    Science.gov (United States)

    Guy, Kristy K.; Plant, Nathaniel G.

    2014-01-01

    This Data Series Report contains lidar elevation data collected on July 12 and 14, 2013, for Dauphin Island, Alabama, and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. Classified point cloud data—data points described in three dimensions—in lidar data exchange format (LAS) and bare earth digital elevation models (DEMs) in ERDAS Imagine raster format (IMG) are available as downloadable files. Photo Science, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were acquired at a horizontal spacing (or nominal pulse spacing) of 1 meter (m) or less. The USGS surveyed points within the project area from July 14–23, 2013, for use in ground control and accuracy assessment. Photo Science, Inc., calculated a vertical root mean square error (RMSEz) of 0.012 m by comparing 10 surveyed points to an interpolated elevation surface of unclassified lidar data. The USGS also checked the data using 80 surveyed points and unclassified lidar point elevation data and found an RMSEz of 0.073 m. The project specified an RMSEz of 0.0925 m or less. The lidar survey was acquired to document the short- and long-term changes of several different barrier island systems. Specifically, this survey supports detailed studies of Chandeleur and Dauphin Islands that resolve annual changes in beaches, berms and dunes associated with processes driven by storms, sea-level rise, and even human restoration activities. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

  8. Increasing the Impact of High-Resolution Lidar Topography Through Online Data Access and Processing

    Science.gov (United States)

    Crosby, C. J.; Nandigam, V.; Baru, C.; Arrowsmith, R.

    2013-12-01

    ) project, collaborative research funded by the NASA ACCESS program, that makes NASA airborne and space based laser altimetry data (GLAS and LVIS) available through OT using federated web services. With several thousand active users, OT is an excellent example of a cyberinfrastructure-based airborne science data system that is enabling access to challenging data for research, education and outreach. OT has demonstrated that by democratizing access to lidar topography, the impact of these expensive research datasets is greatly increased, through reused in research, education, and commercial applications beyond their original scope. This presentation will highlight the OT system and lessons learned during its development. We will also highlight ongoing work related to creation of a more flexible and scalable high-performance environment for processing of large datasets; creation of a 'pluggable' infrastructure for third-party programs and algorithms to be run against the OT data holdings; and interoperability of OT with other earth science data systems.

  9. Intercomparison of aerosol measurements performed with multi-wavelength Raman lidars, automatic lidars and ceilometers in the framework of INTERACT-II campaign

    Science.gov (United States)

    Madonna, Fabio; Rosoldi, Marco; Lolli, Simone; Amato, Francesco; Vande Hey, Joshua; Dhillon, Ranvir; Zheng, Yunhui; Brettle, Mike; Pappalardo, Gelsomina

    2018-04-01

    Following the previous efforts of INTERACT (INTERcomparison of Aerosol and Cloud Tracking), the INTERACT-II campaign used multi-wavelength Raman lidar measurements to assess the performance of an automatic compact micro-pulse lidar (MiniMPL) and two ceilometers (CL51 and CS135) in providing reliable information about optical and geometric atmospheric aerosol properties. The campaign took place at the CNR-IMAA Atmospheric Observatory (760 m a. s. l. ; 40.60° N, 15.72° E) in the framework of ACTRIS-2 (Aerosol Clouds Trace gases Research InfraStructure) H2020 project. Co-located simultaneous measurements involving a MiniMPL, two ceilometers and two EARLINET multi-wavelength Raman lidars were performed from July to December 2016. The intercomparison highlighted that the MiniMPL range-corrected signals (RCSs) show, on average, a fractional difference with respect to those of CNR-IMAA Atmospheric Observatory (CIAO) lidars ranging from 5 to 15 % below 2.0 km a.s.l. (above sea level), largely due to the use of an inaccurate overlap correction, and smaller than 5 % in the free troposphere. For the CL51, the attenuated backscatter values have an average fractional difference with respect to CIAO lidars performance is similar to the CL51 below 2.0 km a. s. l. , while in the region above 3 km a. s. l. the differences are about ±40 %. The variability of the CS135 normalization constant is within ±47 %.Finally, additional tests performed during the campaign using the CHM15k ceilometer operated at CIAO showed the clear need to investigate the CHM15k historical dataset (2010-2016) to evaluate potential effects of ceilometer laser fluctuations on calibration stability. The number of laser pulses shows an average variability of 10 % with respect to the nominal power which conforms to the ceilometer specifications. Nevertheless, laser pulses variability follows seasonal behavior with an increase in the number of laser pulses in summer and a decrease in winter. This contributes to

  10. Lessons Learned From Community-Based Approaches to Sodium Reduction

    Science.gov (United States)

    Kane, Heather; Strazza, Karen; Losby PhD, Jan L.; Lane, Rashon; Mugavero, Kristy; Anater, Andrea S.; Frost, Corey; Margolis, Marjorie; Hersey, James

    2017-01-01

    Purpose This article describes lessons from a Centers for Disease Control and Prevention initiative encompassing sodium reduction interventions in six communities. Design A multiple case study design was used. Setting This evaluation examined data from programs implemented in six communities located in New York (Broome County, Schenectady County, and New York City); California (Los Angeles County and Shasta County); and Kansas (Shawnee County). Subjects Participants (n = 80) included program staff, program directors, state-level staff, and partners. Measures Measures for this evaluation included challenges, facilitators, and lessons learned from implementing sodium reduction strategies. Analysis The project team conducted a document review of program materials and semi structured interviews 12 to 14 months after implementation. The team coded and analyzed data deductively and inductively. Results Five lessons for implementing community-based sodium reduction approaches emerged: (1) build relationships with partners to understand their concerns, (2) involve individuals knowledgeable about specific venues early, (3) incorporate sodium reduction efforts and messaging into broader nutrition efforts, (4) design the program to reduce sodium gradually to take into account consumer preferences and taste transitions, and (5) identify ways to address the cost of lower-sodium products. Conclusion The experiences of the six communities may assist practitioners in planning community-based sodium reduction interventions. Addressing sodium reduction using a community-based approach can foster meaningful change in dietary sodium consumption. PMID:24575726

  11. Lessons learned from community-based approaches to sodium reduction.

    Science.gov (United States)

    Kane, Heather; Strazza, Karen; Losby, Jan L; Lane, Rashon; Mugavero, Kristy; Anater, Andrea S; Frost, Corey; Margolis, Marjorie; Hersey, James

    2015-01-01

    This article describes lessons from a Centers for Disease Control and Prevention initiative encompassing sodium reduction interventions in six communities. A multiple case study design was used. This evaluation examined data from programs implemented in six communities located in New York (Broome County, Schenectady County, and New York City); California (Los Angeles County and Shasta County); and Kansas (Shawnee County). Participants (n = 80) included program staff, program directors, state-level staff, and partners. Measures for this evaluation included challenges, facilitators, and lessons learned from implementing sodium reduction strategies. The project team conducted a document review of program materials and semistructured interviews 12 to 14 months after implementation. The team coded and analyzed data deductively and inductively. Five lessons for implementing community-based sodium reduction approaches emerged: (1) build relationships with partners to understand their concerns, (2) involve individuals knowledgeable about specific venues early, (3) incorporate sodium reduction efforts and messaging into broader nutrition efforts, (4) design the program to reduce sodium gradually to take into account consumer preferences and taste transitions, and (5) identify ways to address the cost of lower-sodium products. The experiences of the six communities may assist practitioners in planning community-based sodium reduction interventions. Addressing sodium reduction using a community-based approach can foster meaningful change in dietary sodium consumption.

  12. Development of sodium technology

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τ c = δ·g -0.83 ·10 (3570/T Na -3.34) , in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and

  13. Development of sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Nam, H Y; Choi, Y D [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  14. On the detectability of internal waves by an imaging lidar

    NARCIS (Netherlands)

    Magalhaes, J.M.; da Silva, J.C.B.; Batista, M.; Gostiaux, L.; Gerkema, T.; New, A.L.; Jeans, D.R.G.

    2013-01-01

    The first results of a multisensor airborne survey conducted off the western Iberian Coast are presented (including visible, lidar, and infrared imagery) and reveal the presence of internal solitary waves (ISWs) propagating into the nearshore region. For the first time, two-dimensional lidar imagery

  15. 2013 Suwannee River Water Management District Lidar: Greenville (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G12PD00242 1.0 Meter LiDAR Survey Area 3, Classified Point Cloud, in north-central...

  16. 2014 Suwannee River Water Management District Lidar: Cooks Hammock (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River G14PD00206 0.7 Meter LiDAR Survey in central Florida and encompasses 571 square...

  17. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  18. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    Science.gov (United States)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  19. 2013 Suwannee River Water Management District Lidar: Bell (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G13PD00141 1.0 Meter LiDAR Survey Area 4, Classified Point Cloud, in north-central...

  20. Alternative method for determining the constant offset in lidar signal

    Science.gov (United States)

    Vladimir A. Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao

    2009-01-01

    We present an alternative method for determining the total offset in lidar signal created by a daytime background-illumination component and electrical or digital offset. Unlike existing techniques, here the signal square-range-correction procedure is initially performed using the total signal recorded by lidar, without subtraction of the offset component. While...

  1. 2013 Suwannee River Water Management District Lidar: Mayo (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G12PD00242 1.0 Meter LiDAR Survey Area 4, Classified Point Cloud, in north-central...

  2. Analysis of inflow parameters using LiDARs

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2014-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technique for wind resource assessment and oncoming wind prediction in wind energy. The validation of LiDAR measurements and comparisons with other sensing elements thus, is of high importance for further

  3. 2006 OSIP OGRIP: Upland Counties LiDAR Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2006 OSIP digital LiDAR data was collected during the months of March and May (leaf-off conditions). The LiDAR covers the entire land area of the northern tier...

  4. Mechanical design of a lidar system for space applications - LITE

    Science.gov (United States)

    Crockett, Sharon K.

    1990-01-01

    The Lidar In-Space Technology Experiment (LITE) is a Shuttle experiment that will demonstrate the first use of a lidar system in space. Its design process must take into account not only the system design but also the unique design requirements for spaceborne experiment.

  5. Turbulence characterization from a forward-looking nacelle lidar

    DEFF Research Database (Denmark)

    Peña, Alfredo; Mann, Jakob; Dimitrov, Nikolay Krasimirov

    2017-01-01

    of lidars were installed on the nacelle of a wind turbine. Comparison of the lidar-based along-wind unfiltered variances with those from a cup anemometer installed on a meteorological mast close to the turbine shows a bias of just 2 %. The ratios of the unfiltered and filtered radial velocity variances...

  6. 2013 USGS-NRCS Lidar: Maine (Cumberland, Kennebec and York)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NRCS Maine 0.7M NPS LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00954 Woolpert Order No....

  7. LiDAR utility for natural resource managers

    Science.gov (United States)

    Andrew Thomas Hudak; Jeffrey Scott Evans; Alistair Mattthew Stuart. Smith

    2009-01-01

    Applications of LiDAR remote sensing are exploding, while moving from the research to the operational realm. Increasingly, natural resource managers are recognizing the tremendous utility of LiDAR-derived information to make improved decisions. This review provides a cross-section of studies, many recent, that demonstrate the relevance of LiDAR across a suite of...

  8. Toepassingen van de LIDAR-meettechniek in atmosferisch onderzoek

    NARCIS (Netherlands)

    Salemink; H.W.M.; Maanen; E.A.van*

    1985-01-01

    De ontwikkeling van de menglaaghoogte kan zeer wel met lidar gevolgd worden. De resultaten komen overeen met die verkregen met een klassieke acdar-opstelling. Het nadeel van acdar is echter dat deze de menglaaghoogte tot maximaal 600 m kan volgen, terwijl lidar een bereik van 3 km ruimschoots

  9. Dickinson County, MI LIDAR_LAS_1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Dickinson County, MI LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G12PD00721 Woolpert...

  10. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...

  11. 2013 Suwannee River Water Management District Lidar: Obrien (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G13PD00141 1.0 Meter LiDAR Survey Area 1, Classified Point Cloud, in north-central...

  12. Wind speed errors for LIDARs and SODARs in complex terrain

    International Nuclear Information System (INIS)

    Bradley, S

    2008-01-01

    All commercial LIDARs and SODARs are monostatic and hence sample distributed volumes to construct wind vector components. We use an analytic potential flow model to estimate errors arising for a range of LIDAR and SODAR configurations on hills and escarpments. Wind speed errors peak at a height relevant to wind turbines and can be typically 20%

  13. Wind speed errors for LIDARs and SODARs in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S [Physics Department, The University of Auckland, Private Bag 92019, Auckland (New Zealand) and School of Computing, Science and Engineering, University of Salford, M5 4WT (United Kingdom)], E-mail: s.bradley@auckland.ac.nz

    2008-05-01

    All commercial LIDARs and SODARs are monostatic and hence sample distributed volumes to construct wind vector components. We use an analytic potential flow model to estimate errors arising for a range of LIDAR and SODAR configurations on hills and escarpments. Wind speed errors peak at a height relevant to wind turbines and can be typically 20%.

  14. 2013 Suwannee River Water Management District (SRWMD) Lidar: Ichetucknee (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River G12PD00242 1.0 Meter LiDAR Survey area 2 in north-central Florida and encompasses...

  15. Suwannee River Water Management District Lidar: Falmouth (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River G12PD00242 1.0 Meter LiDAR Survey area 5 in north-central Florida and encompasses...

  16. 2013 Suwannee River Water Management District Lidar: Ocean Pond (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G13PD00141 1.0 Meter LiDAR Survey Area 3, Classified Point Cloud, in north-central...

  17. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  18. Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis

    Science.gov (United States)

    Zolkos, S. G.; Goetz, S. J.; Dubayah, R.

    2012-12-01

    Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.

  19. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar

    Directory of Open Access Journals (Sweden)

    Juan Carlos Fernandez-Diaz

    2016-11-01

    Full Text Available In this paper we present a description of a new multispectral airborne mapping light detection and ranging (lidar along with performance results obtained from two years of data collection and test campaigns. The Titan multiwave lidar is manufactured by Teledyne Optech Inc. (Toronto, ON, Canada and emits laser pulses in the 1550, 1064 and 532 nm wavelengths simultaneously through a single oscillating mirror scanner at pulse repetition frequencies (PRF that range from 50 to 300 kHz per wavelength (max combined PRF of 900 kHz. The Titan system can perform simultaneous mapping in terrestrial and very shallow water environments and its multispectral capability enables new applications, such as the production of false color active imagery derived from the lidar return intensities and the automated classification of target and land covers. Field tests and mapping projects performed over the past two years demonstrate capabilities to classify five land covers in urban environments with an accuracy of 90%, map bathymetry under more than 15 m of water, and map thick vegetation canopies at sub-meter vertical resolutions. In addition to its multispectral and performance characteristics, the Titan system is designed with several redundancies and diversity schemes that have proven to be beneficial for both operations and the improvement of data quality.

  20. AN EFFICIENT METHOD FOR AUTOMATIC ROAD EXTRACTION BASED ON MULTIPLE FEATURES FROM LiDAR DATA

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-06-01

    Full Text Available The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1 road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2 local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3 hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for “Urban Classification and 3D Building Reconstruction” project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.