WorldWideScience

Sample records for sod1 monomer formation

  1. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    Science.gov (United States)

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  2. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    Science.gov (United States)

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  3. Prognostic role of ‘prion-like propagation’ in SOD1-linked familial ALS: an alternative view

    Directory of Open Access Journals (Sweden)

    Keizo eSugaya

    2014-10-01

    Full Text Available ‘Prion-like propagation’ has recently been proposed for disease spread in Cu/Zn superoxide dismutase 1 (SOD1-linked familial amyotrophic lateral sclerosis (ALS. Pathological SOD1 conformers are presumed to propagate via cell-to-cell transmission. In this model, the risk-based kinetics of neuronal cell loss over time appears to be represented by a sigmoidal function that reflects the kinetics of intercellular transmission. Here, we describe an alternative view of prion-like propagation in SOD1-linked ALS−its relation to disease prognosis under the protective-aggregation hypothesis. Nucleation-dependent polymerization has been widely accepted as the molecular mechanism of prion propagation. If toxic species of misfolded SOD1, as soluble oligomers, are formed as on-pathway intermediates of nucleation-dependent polymerization, further fibril extension via sequential addition of monomeric mutant SOD1 would be protective against neurodegeneration. This is because the concentration of unfolded mutant SOD1 monomers, which serve as precursor of nucleation and toxic species of mutant SOD1, would decline in proportion to the extent of aggregation. The nucleation process requires that native conformers exist in an unfolded state that may result from escaping the cellular protein quality control machinery. However, prion-like propagation−SOD1 aggregated form self-propagates by imposing its altered conformation on normal SOD1−appears to antagonize the protective role of aggregate growth. The cross-seeding reaction with normal SOD1 would lead to a failure to reduce the concentration of unfolded mutant SOD1 monomers, resulting in continuous nucleation and subsequent generation of toxic species, and influence disease prognosis. In this alternative view, the kinetics of neuronal loss appears to be represented by an exponential function, with decreasing risk reflecting the protective role of aggregate and the potential for cross-seeding reactions between

  4. Monomer-dependent secondary nucleation in amyloid formation.

    Science.gov (United States)

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  5. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants.

    Science.gov (United States)

    Luchinat, Enrico; Barbieri, Letizia; Banci, Lucia

    2017-12-12

    Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.

  6. Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells.

    Directory of Open Access Journals (Sweden)

    Edward Pokrishevsky

    Full Text Available Mutant Cu/Zn superoxide dismutase (SOD1 can confer its misfolding on wild-type SOD1 in living cells; the propagation of misfolding can also be transmitted between cells in vitro. Recent studies identified fluorescently-tagged SOD1G85R as a promiscuous substrate that is highly prone to aggregate by a variety of templates, in vitro and in vivo. Here, we utilized several SOD1-GFP reporter proteins with G37R, G85R, or G93A mutations in SOD1. We observed that human spinal cord homogenates prepared from SOD1 familial ALS (FALS can induce significantly more intracellular reporter protein aggregation than spinal cord homogenates from sporadic ALS, Alzheimer's disease, multiple system atrophy or healthy control individuals. We also determined that the induction of reporter protein aggregation by SOD1-FALS tissue homogenates can be attenuated by incubating the cells with the SOD1 misfolding-specific antibody 3H1, or the small molecule 5-fluorouridine. Our study further implicates SOD1 as the seeding particle responsible for the spread of SOD1-FALS neurodegeneration from its initial onset site(s, and demonstrates two potential therapeutic strategies for SOD1-mediated disease. This work also comprises a medium-throughput cell-based platform of screening potential therapeutics to attenuate propagated aggregation of SOD1.

  7. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice.

    Science.gov (United States)

    Le Pecheur, Marie; Bourdon, Emmanuel; Paly, Evelyne; Farout, Luc; Friguet, Bertrand; London, Jacqueline

    2005-07-04

    Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.

  8. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  9. Pulse radiolysis study of monomer and dimer cations of styrene, 1-methylstyrene and 1,1'-diphenylethylene

    International Nuclear Information System (INIS)

    Mehnert, R.; Helmstreit, W.; Boes, J.; Brede, O.

    1977-01-01

    In pulse-irradiated solutions of styrene, 1-methylstyrene and 1,1'-diphenylethylene, the decay kinetics of the olefin monomer cations and the formation kinetics of the corresponding dimer cations have been studied at room temperature. The solutions were irradiated with 15-nsec 15-ampere pulses of 1-MeV electrons from an Elit-type accelerator. The total dose per pulse was approximately 10 krad. The monomer cations were generated with rate constants of about 10 11 M -1 sec -1 . From the time decay of the monomer light absorption and the growth in time of the dimer absorption rate constants for the dimer formation between 0.8x10 10 and 1.2x10 10 M -1 sec -1 have been determined. (T.I.)

  10. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    Science.gov (United States)

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  12. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.

    Science.gov (United States)

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-11-01

    Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.

  13. APP/SOD1 overexpressing mice present reduced neuropathic pain sensitivity.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Olakowska, Edyta; Lewin-Kowalik, Joanna; London, Jacqueline

    2011-07-15

    There are controversies regarding pain expression in mentally disabled people, including Down syndrome patients. The aim of this study was to examine neuropathic pain-related behavior and peripheral nerve regeneration in mouse model of Down syndrome. Sciatic nerves of double transgenic mice, overexpressing both amyloid precursor protein (APP) and Cu/Zn superoxide dismutase (SOD1) genes, and FVB/N wild type mice were transected and immediately resutured. Evaluation of autotomy and functional recovery was carried out during 4-week follow-up. We found markedly less severe autotomy in transgenic animals, although the onset of autotomy was significantly delayed in control mice. Interestingly, neuroma formation at the injury site was significantly more prominent in transgenic animals. Sciatic function index outcome was better in transgenic mice than in wild-type group. Histological evaluation revealed no statistically significant differences in the number of GAP-43-positive growth cones and macrophages in the distal stump of the transected nerve between groups. However, in transgenic animals, the regenerating axons were arranged more chaotically. The number of Schwann cells in the distal stump of the transected nerves was significantly lower in transgenic mice. The number of surviving motoneurons was markedly decreased in transgenic group. We measured also the atrophy of denervated muscles and found it decreased in APP/SOD1 overexpressing mice. Taken together, in this model of Down syndrome, we observed increased neuroma formation and decreased autotomy after peripheral nerve injury. Our findings suggest that APP/SOD1 overexpressing mice are less sensitive for neuropathic pain associated with neuroma. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Defining SOD1 ALS natural history to guide therapeutic clinical trial design.

    Science.gov (United States)

    Bali, Taha; Self, Wade; Liu, Jingxia; Siddique, Teepu; Wang, Leo H; Bird, Thomas D; Ratti, Elena; Atassi, Nazem; Boylan, Kevin B; Glass, Jonathan D; Maragakis, Nicholas J; Caress, James B; McCluskey, Leo F; Appel, Stanley H; Wymer, James P; Gibson, Summer; Zinman, Lorne; Mozaffar, Tahseen; Callaghan, Brian; McVey, April L; Jockel-Balsarotti, Jennifer; Allred, Peggy; Fisher, Elena R; Lopate, Glenn; Pestronk, Alan; Cudkowicz, Merit E; Miller, Timothy M

    2017-02-01

    Understanding the natural history of familial amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (ALS SOD1 ) will provide key information for optimising clinical trials in this patient population. To establish an updated natural history of ALS SOD1 . Retrospective cohort study from 15 medical centres in North America evaluated records from 175 patients with ALS with genetically confirmed SOD1 mutations, cared for after the year 2000. Age of onset, survival, ALS Functional Rating Scale (ALS-FRS) scores and respiratory function were analysed. Patients with the A4V (Ala-Val) SOD1 mutation (SOD1 A4V ), the largest mutation population in North America with an aggressive disease progression, were distinguished from other SOD1 mutation patients (SOD1 non-A4V ) for analysis. Mean age of disease onset was 49.7±12.3 years (mean±SD) for all SOD1 patients, with no statistical significance between SOD1 A4V and SOD1 non-A4V (p=0.72, Kruskal-Wallis). Total SOD1 patient median survival was 2.7 years. Mean disease duration for all SOD1 was 4.6±6.0 and 1.4±0.7 years for SOD1 A4V . SOD1 A4V survival probability (median survival 1.2 years) was significantly decreased compared with SOD1 non-A4V (median survival 6.8 years; p<0.0001, log-rank). A statistically significant increase in ALS-FRS decline in SOD1 A4V compared with SOD1 non-A4V participants (p=0.02) was observed, as well as a statistically significant increase in ALS-forced vital capacity decline in SOD1 A4V compared with SOD1 non-A4V (p=0.02). SOD1 A4V is an aggressive, but relatively homogeneous form of ALS. These SOD1-specific ALS natural history data will be important for the design and implementation of clinical trials in the ALS SOD1 patient population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Analysis of Serum Cytokines and Single-Nucleotide Polymorphisms of SOD1, SOD2, and CAT in Erysipelas Patients

    Directory of Open Access Journals (Sweden)

    Charles C. Emene

    2017-01-01

    Full Text Available Increased free radical production had been documented in group A (β-hemolytic streptococcus infection cases. Comparing 71 erysipelas patients to 55 age-matched healthy individuals, we sought for CAT, SOD1, and SOD2 single polymorphism mutation (SNPs interactions with erysipelas’ predisposition and serum cytokine levels in the acute and recovery phases of erysipelas infection. Whereas female patients had a higher predisposition to erysipelas, male patients were prone to having a facial localization of the infection. The presence of SOD1 G7958, SOD2 T2734, and CAT C262 alleles was linked to erysipelas’ predisposition. T and C alleles of SOD2 T2734C individually were linked to patients with bullous and erythematous erysipelas, respectively. G and A alleles of SOD1 G7958A individually were associated with lower limbs and higher body part localizations of the infection, respectively. Serum levels of IL-1β, CCL11, IL-2Rα, CXCL9, TRAIL, PDGF-BB, and CCL4 were associated with symptoms accompanying the infection, while IL-6, IL-9, IL-10, IL-13, IL-15, IL-17, G-CSF, and VEGF were associated with predisposition and recurrence of erysipelas. While variations of IL-1β, IL-7, IL-8, IL-17, CCL5, and HGF were associated with the SOD2 T2734C SNP, variations of PDFG-BB and CCL2 were associated with the CAT C262T SNP.

  16. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna eGajowiak

    2016-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS and associated with mutations, frequently in the superoxide dismutase 1 (SOD1 gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

  17. Effects of monomer shape on the formation of aggregates from a power law monomer distribution

    International Nuclear Information System (INIS)

    Perry, J; Kimery, J; Matthews, L S; Hyde, T W

    2013-01-01

    The coagulation of dust aggregates is an important process in many physical systems such as the Earth's upper atmosphere, comet tails and protoplanetary discs. Numerical models which study the aggregation in these systems typically involve spherical monomers. There is evidence, however, via the polarization of sunlight in the interstellar medium, as well as optical and LIDAR observations of high-altitude particles in Earth's atmosphere (70–100 km), which indicate that dust monomers may not necessarily be spherical. This study investigates the influence of different ellipsoidal monomer shapes on the morphology of aggregates given various distributions of monomer sizes. Populations of aggregates are grown from a single monomer using a combination of ballistic particle–cluster aggregation and ballistic cluster–cluster aggregation regimes incorporating the rotation of monomers and aggregates. The resulting structures of the aggregates are then compared via the compactness factor, geometric cross-section and friction time. (paper)

  18. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS

    Directory of Open Access Journals (Sweden)

    Pamela Milani

    2011-01-01

    Full Text Available Copper-zinc superoxide dismutase (SOD1 is a detoxifying enzyme localized in the cytosol, nucleus, peroxisomes, and mitochondria. The discovery that mutations in SOD1 gene cause a subset of familial amyotrophic lateral sclerosis (FALS has attracted great attention, and studies to date have been mainly focused on discovering mutations in the coding region and investigation at protein level. Considering that changes in SOD1 mRNA levels have been associated with sporadic ALS (SALS, a molecular understanding of the processes involved in the regulation of SOD1 gene expression could not only unravel novel regulatory pathways that may govern cellular phenotypes and changes in diseases but also might reveal therapeutic targets and treatments. This review seeks to provide an overview of SOD1 gene structure and of the processes through which SOD1 transcription is controlled. Furthermore, we emphasize the importance to focus future researches on investigating posttranscriptional mechanisms and their relevance to ALS.

  19. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  20. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis

    Directory of Open Access Journals (Sweden)

    Melissa S Rotunno

    2013-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s of sporadic ALS, which accounts for approximately 90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1 protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a toxic conformation that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS.

  1. Oligonucleotides with 1,4-dioxane-based nucleotide monomers

    DEFF Research Database (Denmark)

    Madsen, Andreas S; Wengel, Jesper

    2012-01-01

    An epimeric mixture of H-phosphonates 5R and 5S has been synthesized in three steps from known secouridine 1. Separation of the epimers has been accomplished by RP-HPLC, allowing full characterization and incorporation of monomers X and Y into 9-mer oligonucleotides using H-phosphonates building...... blocks 5R and 5S, respectively. A single incorporation of either monomer X or monomer Y in the central position of a DNA 9-mer results in decreased thermal affinity toward both DNA and RNA complements (ΔT(m) = -3.5 °C/-3.5 °C for monomer X and ΔT(m) = -11.0 °C/-6.5 °C for monomer Y). CD measurements do...

  2. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    Directory of Open Access Journals (Sweden)

    Shaheen Akhtar

    Full Text Available Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02 and Sod1 (P<0.0001 suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  3. Structures of the G85R Variant of SOD1 in Familial Amyotrophic Lateral Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaohang; Antonyuk, Svetlana V.; Seetharaman, Sai V.; Whitson, Lisa J.; Taylor, Alexander B.; Holloway, Stephen P.; Strange, Richard W.; Doucette, Peter A.; Valentine, Joan Selverstone; Tiwari, Ashutosh; Hayward, Lawrence J.; Padua, Shelby; Cohlberg, Jeffrey A.; Hasnain, S. Samar; Hart, P. John (Texas-HSC); (Cal. State); (UMASS, MED); (UCLA); (Daresbury)

    2008-07-21

    Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.

  4. Step growth of an AB2 monomer, with cycle formation

    DEFF Research Database (Denmark)

    Cameron, Colin; Fawcett, Allan H.; Hetherington, Cecil R.

    1998-01-01

    A computer-based lattice model of the step growth reaction of an AB2 monomer, the next elaborate system after an AB monomer, has been devised that allows the simultaneous and explicit occurrence of inter- and intramolecular reactions of A and B groups of the flexible and moving molecules according...... with fractal characteristics. Growth stops when each molecule contains a cycle. For the model explored, in which six lattice sites are used for each monomer, the limiting value of the number average degree of polymerization, 〈x〉n,∞, is 14.6(±0.3) (after infinite time). The occurrence within the system of rings...... of m residues (m=1,2,3,...) is found to depend upon m and the extent of reaction of the A groups, pa, according to Rm=C0pm am-2.71, the constant C0 reflecting the structure of the lattice and the monomer, and being shown to determine the final degree of polymerization. The exponent of the integers m...

  5. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    International Nuclear Information System (INIS)

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-01-01

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  6. Comprehensive analysis to explain reduced or increased SOD1 enzymatic activity in ALS patients and their relatives.

    Science.gov (United States)

    Keskin, Isil; Birve, Anna; Berdynski, Mariusz; Hjertkvist, Karin; Rofougaran, Reza; Nilsson, Torbjörn K; Glass, Jonathan D; Marklund, Stefan L; Andersen, Peter M

    2017-08-01

    To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72 HRE . In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.

  7. Radioimmunoassay of serum SOD-1 in the elderly

    International Nuclear Information System (INIS)

    Ren Yu'an; Lin Baoyuan

    1995-01-01

    A RIA for serum SOD-1 was performed in 168 aged subjects including 47 aged healthy subjects and 121 aged patients as well as in 35 healthy young and adult cases serving as control. The measuring results are as follows: serum SOD-1 value of 47 aged healthy subjects are 279.42 +- 89.38 μg/l, 121 aged patients are 405.10 +- 181.29 μg/l, and 35 young and adult cases are 185.80 +- 56.44 μg/l. It shows the obvious difference between the aged group and control group. It also shows the obvious difference between the aged healthy subjects and aged patients. In addition, the clinical evaluation is also discussed

  8. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  9. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    Science.gov (United States)

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  10. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Directory of Open Access Journals (Sweden)

    Karl F. Braun

    2011-01-01

    Full Text Available Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS. The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO- 1 and superoxide-dismutase- (SOD- 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

  11. TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies.

    Science.gov (United States)

    Kumar, Vijay; Prakash, Amresh; Pandey, Preeti; Lynn, Andrew M; Hassan, Md Imtaiyaz

    2018-05-18

    Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  13. Evaluation of level of impregnation monomers in hydrotalcite

    International Nuclear Information System (INIS)

    Carmo, Danieli M. do; Machado, Jacson S.C.; Oliveira, Marcelo F.L.; Oliveira, Marcia G.; Soares, Bluma G.

    2011-01-01

    To evaluate the impregnation degree of 1,6-hexamethylene diisocyanate and 1,4-butanediol monomers in hydrotalcite clays it was prepared dispersions with mixing ratio 1:100 (clay/monomer), using the Ultraturrax and Ultrasound. Subsequently the samples were characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Swelling tests and Tyndall effect were used to illustrate the different dispersions. The results indicated a strong interaction between the hydrotalcite with 1,6-hexamethylene diisocyanate, favoring the formation of intercalated structures. (author)

  14. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  15. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.

    Science.gov (United States)

    Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas

    2013-12-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.

  16. Delayed Disease Onset and Extended Survival in the SOD1G93A Rat Model of Amyotrophic Lateral Sclerosis after Suppression of Mutant SOD1 in the Motor Cortex

    Science.gov (United States)

    Thomsen, Gretchen M.; Gowing, Genevieve; Latter, Jessica; Chen, Maximus; Vit, Jean-Philippe; Staggenborg, Kevin; Avalos, Pablo; Alkaslasi, Mor; Ferraiuolo, Laura; Likhite, Shibi; Kaspar, Brian K.

    2014-01-01

    Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3–5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1G93A rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1G93A rats through targeted delivery of AAV9–SOD1–shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease. PMID:25411487

  17. In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress.

    Science.gov (United States)

    Klöppel, Christine; Michels, Christine; Zimmer, Julia; Herrmann, Johannes M; Riemer, Jan

    2010-12-03

    The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1(G93A) becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1(G85R). Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. SOD1 aggregation in ALS mice shows simplistic test tube behavior.

    Science.gov (United States)

    Lang, Lisa; Zetterström, Per; Brännström, Thomas; Marklund, Stefan L; Danielsson, Jens; Oliveberg, Mikael

    2015-08-11

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.

  19. Resveratrol Derivative-Rich Melinjo Seed Extract Attenuates Skin Atrophy in Sod1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Kenji Watanabe

    2015-01-01

    Full Text Available The oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD enzymes play a pivotal role in the antioxidant system and they also catalyze superoxide radicals. Since the loss of cytoplasmic SOD (SOD1 resulted in aging-like phenotypes in several types of murine tissue, SOD1 is essential for the maintenance of tissue homeostasis. Melinjo (Gnetum gnemon Linn seed extract (MSE contains trans-resveratrol (RSV and resveratrol derivatives, including gnetin C, gnemonoside A, and gnemonoside D. MSE intake also exerts no adverse events in human study. In the present studies, we investigated protective effects of MSE on age-related skin pathologies in mice. Orally MSE and RSV treatment reversed the skin thinning associated with increased oxidative damage in the Sod1−/− mice. Furthermore, MSE and RSV normalized gene expression of Col1a1 and p53 and upregulated gene expression of Sirt1 in skin tissues. In vitro experiments revealed that RSV significantly promoted the viability of Sod1−/− fibroblasts. These finding demonstrated that RSV in MSE stably suppressed an intrinsic superoxide generation in vivo and in vitro leading to protecting skin damages. RSV derivative-rich MSE may be a powerful food of treatment for age-related skin diseases caused by oxidative damages.

  20. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na+-Activated K+ Channels in Aplysia Neurons.

    Science.gov (United States)

    Zhang, Yalan; Ni, Weiming; Horwich, Arthur L; Kaczmarek, Leonard K

    2017-02-22

    Mutations that alter levels of Slack (KCNT1) Na + -activated K + current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica , a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na + from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na + -activated K + channels in neurons. SIGNIFICANCE STATEMENT Slack Na + -activated K + channels (KCNT1, K Na 1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal

  1. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  2. Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations.

    Science.gov (United States)

    Lange, Dale J; Shahbazi, Mona; Silani, Vincenzo; Ludolph, Albert C; Weishaupt, Jochen H; Ajroud-Driss, Senda; Fields, Kara G; Remanan, Rahul; Appel, Stanley H; Morelli, Claudia; Doretti, Alberto; Maderna, Luca; Messina, Stefano; Weiland, Ulrike; Marklund, Stefan L; Andersen, Peter M

    2017-06-01

    Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1-transgenic animal models. Pyrimethamine produces dose-dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). A multicenter (5 sites), open-label, 9-month-duration, dose-ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale-Revised, and McGill Quality of Life Single-Item Scale were measured at screening, visit 6, and visit 9. We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p < 0.001) with a mean reduction of 13.5% (95% confidence interval [CI] = 8.4-18.5) and at visit 9 (p < 0.001) with a mean reduction of 10.5% (95% CI = 5.2-15.8). Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long-term studies are warranted to assess clinical efficacy. Ann Neurol 2017;81:837-848. © 2017 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  3. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Sari Fouad

    2012-12-01

    Full Text Available We reported in this work that the cationic copolymerization in one step takes place between carbon–carbon double-bond monomer styrene with cyclic monomer tetrahydrofuran. The comonomers studied belong to different families: vinylic and cyclic ether. The reaction is initiated with maghnite-H+ an acid exchanged montmorillonite as acid solid ecocatalyst. Maghnite-H+ is already used as catalyst for polymerization of many vinylic and heterocyclic monomers. The oxonium ion of tetrahydrofuran and carbonium ion of styrene propagated the reaction of copolymerization. The acetic anhydride is essential for the maintenance of the ring opening of tetrahydrofuran and the entry in copolymerization. The temperature was kept constant at 40°C in oil bath heating for 6 hours. A typical reaction product was analyzed by 1H-NMR, 13C-NMR and IR and the formation of the copolymer was confirmed. The reaction was proved by matched with analysis. The maghnite-H+ allowed us to obtain extremely pure copolymer in good yield by following a simples operational conditions. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 29th October 2012; Revised: 29th November 2012; Accepted: 29th November 2012[How to Cite: S. Fouad, M.I. Ferrahi, M. Belbachir. (2012. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 165-171. (doi:10.9767/bcrec.7.2.4074.165-171][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4074.165-171 ] | View in 

  4. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    Science.gov (United States)

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  5. Transduced human copper chaperone for Cu,Zn-SOD (PEP-1-CCS) protects against neuronal cell death.

    Science.gov (United States)

    Choi, Soo Hyun; Kim, Dae Won; Kim, So Young; An, Jae Jin; Lee, Sun Hwa; Choi, Hee Soon; Sohn, Eun Jung; Hwang, Seok-Il; Won, Moo Ho; Kang, Tae-Cheon; Kwon, Hyung Joo; Kang, Jung Hoon; Cho, Sung-Woo; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2005-12-31

    Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

  6. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  7. PGC-1 silencing compounds the perturbation of mitochondrial function caused by mutant SOD1 in skeletal muscle of ALS mouse model

    Directory of Open Access Journals (Sweden)

    Yan eQi

    2015-10-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal neurodegenerative disease causing death of motor neurons. This study investigated the roles of energy metabolism in the pathogenesis of ALS in the SOD1(G93A transgenic mouse model. Control and SOD1(G93A mice were administered with shcontrol or shPGC-1α in combination with PBS or TZD for 8 weeks. Gene expression was analyzed by quantitative real-time PCR and western blot. ROS and fibrosis were assessed with a colorimetric kit and Sirius staining respectively. Inflammatory cytokines were measured using ELISA kits. The levels of tissue ROS and serum inflammatory cytokines were significantly higher in SOD1(G93A mice compared to control mice, and knocking down PGC-1α drastically increased cytokine levels in both control and SOD1(G93A mice. Muscle fibrosis was much severer in SOD1(G93A mice, and worsened by silencing PGC-1α and attenuate d by TZD. The expression levels of PGC-1α, SOD1, UCP2, and cytochrome C were substantially reduced by shPGC-1α and increased by TZD in muscle of both control and SOD1(G93A mice whereas the level of NF-B was significantly elevated in SOD1(G93A mice, which was further increased by PGC-1α silencing. These data indicated that disruption of energy homeostasis would exacerbate the pathological changes caused by SOD1 mutations to promote the pathogenesis of ALS.

  8. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  9. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    Science.gov (United States)

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  10. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    Science.gov (United States)

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  11. Step growth of two flexible ABf monomers

    DEFF Research Database (Denmark)

    Cameron, Colin; Fawcett, Allan H.; Hetherington, Cecil R.

    2000-01-01

    A three-dimensional lattice model was used to simulate the competition between the growth of hyperbranched structures and cycle formation that occurs when flexible ABf monomers undergo step growth. The monomers in the model are mapped onto several lattice sites. The effect of functionality...

  12. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    Science.gov (United States)

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1 G93A . Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 G93A on mitochondrial network and dynamics, indicating that SOD1 G93A likely promotes

  13. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    Science.gov (United States)

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Science.gov (United States)

    Bernard, Kristine E.; Parkes, Tony L.; Merritt, Thomas J. S.

    2011-01-01

    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain. PMID

  15. Determining the Effect of Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry Combined with Optical Spectroscopy

    Science.gov (United States)

    Zhao, Bing; Zhuang, Xiaoyu; Pi, Zifeng; Liu, Shu; Liu, Zhiqiang; Song, Fengrui

    2018-02-01

    The aggregation of Cu,Zn-superoxide dismutase (SOD1) plays an important role in the etiology of amyotrophic lateral sclerosis (ALS). For the disruption of ALS progression, discovering new drugs or compounds that can prevent SOD1 aggregation is important. In this study, ESI-MS was used to investigate the interaction of catechins and SOD1. The noncovalent complex of catechins that interact with SOD1 was found and retained in the gas phase under native ESI-MS condition. The conformation changes of SOD1 after binding with catechins were also explored via traveling wave ion mobility (IM) spectrometry. Epigallocatechin gallate (EGCG) can stabilize SOD1 conformation against unfolding in three catechins. To further evaluate the efficacy of EGCG, we monitored the fluorescence changes of dimer E2,E2,-SOD1(apo-SOD1, E:empty) with and without ligands under denaturation conditions, and found that EGCG can inhibit apo-SOD1 aggregation. In addition, the circular dichroism spectra of the samples showed that EGCG can decrease the β-sheet content of SOD1, which can produce aggregates. These results indicated that orthogonal separation dimension in the gas-phase IM coupled with ESI-MS (ESI-IM-MS) can potentially provide insight into the interaction between SOD1 and small molecules. The advantage is that it dramatically decreases the analysis time. Meantime, optical spectroscopy techniques can be used to confirm ESI-IM-MS results. [Figure not available: see fulltext.

  16. Association SOD2 Polymorphism(-9C/T and Senile Cataract

    Directory of Open Access Journals (Sweden)

    A.R. Nakhaee

    2017-01-01

    Full Text Available Introduction: One of the most common causes of blindness around the world is cataract, which is a multifactorial eye disease and a major cause the loss lens transparency in the aging population. Oxidative stress is a major factor that often leads to cataract formation. Oxidative stress is defined as a disturbance in the balance of reactive oxygen species (ROS production  and antioxidant defenses, including enzymatic and non-enzymatic systems. One of the defense systems against free radicals is superoxide dismutase II (Mn SOD enzyme. SOD enzyme catalyses the dismutation of superoxide anion to O2 and H2O2. Several polymorphism  have been found associated with SOD2 gene. Present study has been done to evaluaet effects of genetic polymorphism, including SOD2 C/T polymorphism in the -9 position in senile cataract patiens and normal individuals. Material and methods: in this case- control study, there are 120 patients with senile cataract and 104 healthy people. We collected 2ml of whole blood in tubes containing EDTA, and then DNA extraction was performed. Polymorphisms were detected by PCR–RFLP technique. Findings: The distribution of CC, CT, TT genotypes of SOD2 gene were 28.3%, 43.3% and 28.3% in the patient group and 24%, 48.1% and 27.9% in the healthy group, respectively. Conclusion: No significant difference in the distribution SOD2 C/T polymorphism was observed between cases and controls. 

  17. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI.

    Science.gov (United States)

    Agosta, Federica; Spinelli, Edoardo Gioele; Marjanovic, Ivan V; Stevic, Zorica; Pagani, Elisabetta; Valsasina, Paola; Salak-Djokic, Biljana; Jankovic, Milena; Lavrnic, Dragana; Kostic, Vladimir S; Filippi, Massimo

    2018-02-20

    To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase ( SOD1 ) gene compared with sporadic ALS. Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls ( p = 0.001-0.02) and SOD1-related ALS ( p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS ( p ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies. © 2018 American Academy of Neurology.

  18. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  19. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    International Nuclear Information System (INIS)

    Smietana, Michael J.; Arruda, Ellen M.; Faulkner, John A.; Brooks, Susan V.; Larkin, Lisa M.

    2010-01-01

    Research highlights: → Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. → Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. → Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1 -/- mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1 -/- mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm 2 ) and strength (MPa) is diminished in Sod1 -/- compared to WT mice. Femurs were obtained from male and female WT and Sod1 -/- mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1 -/- mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1 -/- mice compared to WT as well as between genders. These data indicate that increased oxidative stress

  20. Computing Stability Effects of Mutations in Human Superoxide Dismutase 1

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data......, and physiological importance. In this work, stability changes of SOD1 mutations were computed with five methods, CUPSAT, I-Mutant2.0, I-Mutant3.0, PoPMuSiC, and SDM, with emphasis on structural sensitivity as a potential issue in structure-based protein calculation. The large correlation between experimental...... literature data of SOD1 dimers and monomers (r = 0.82) suggests that mutations in separate protein monomers are mostly additive. PoPMuSiC was most accurate (typical MAE ∼ 1 kcal/mol, r ∼ 0.5). The relative performance of the methods was not very structure-dependent, and the more accurate methods also...

  1. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A

    Energy Technology Data Exchange (ETDEWEB)

    Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.; Antonyuk, Svetlana V.; Narayana, Narendra; Taylor, Alexander B.; Schuermann, Jonathan P.; Holloway, Stephen P.; Hasnain, S.Samar; Hart, P. John; (Texas-HSC); (Liverpool)

    2010-07-19

    Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here we report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.

  2. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Liyu Chen

    2017-08-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disease affecting the upper and lower motor neurons in the motor cortex and spinal cord. Abnormal accumulation of mutant superoxide dismutase I (SOD1 in motor neurons is a pathological hallmark of some forms of the disease. We have shown that the orderly progression of the disease may be explained by misfolded SOD1 cell-to-cell propagation, which is reliant upon its active endogenous synthesis. Reducing the levels of SOD1 is therefore a promising therapeutic approach. Antisense oligonucleotides (ASOs can efficiently silence proteins with gain-of-function mutations. However, naked ASOs have a short circulation half-life and are unable to cross the blood brain barrier (BBB warranting the use of a drug carrier for effective delivery. In this study, calcium phosphate lipid coated nanoparticles (CaP-lipid NPs were developed for delivery of SOD1 ASO to motor neurons. The most promising nanoparticle formulation (Ca/P ratio of 100:1, had a uniform spherical core–shell morphology with an average size of 30 nm, and surface charge (ζ-potential of −4.86 mV. The encapsulation efficiency of ASO was 48% and stability studies found the particle to be stable over a period of 20 days. In vitro experiments demonstrated that the negatively charged ASO-loaded CaP-lipid NPs could effectively deliver SOD1-targeted ASO into a mouse motor neuron-like cell line (NSC-34 through endocytosis and significantly down-regulated SOD1 expression in HEK293 cells. The CaP-lipid NPs exhibited a pH-dependant dissociation, suggesting that that the acidification of lysosomes is the likely mechanism responsible for facilitating intracellular ASO release. To demonstrate tissue specific delivery and localization of these NPs we performed in vivo microinjections into zebrafish. Successful delivery of these NPs was confirmed for the zebrafish brain, the blood stream, and the spinal cord. These results suggest that Ca

  3. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons

    Directory of Open Access Journals (Sweden)

    Agavni Petrosyan

    2015-03-01

    Full Text Available Mutation of the human gene superoxide dismutase (hSOD1 is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease. Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF as a function of age (5 to 50 days. Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking behavior in late life when flies had lost the ability to fly (age ≥ 60 d. hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.

  4. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Bercier, Valérie; Lissouba, Alexandra; Liao, Meijiang; Brustein, Edna; Rouleau, Guy A; Drapeau, Pierre

    2011-08-01

    Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.

  5. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Edor Kabashi

    2011-08-01

    Full Text Available Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS. Recently, mutations in the Fused in sarcoma gene (FUS were identified in familial (FALS ALS cases and sporadic (SALS patients. Similarly to TDP-43 (coded by TARDBP gene, FUS is an RNA binding protein. Using the zebrafish (Danio rerio, we examined the consequences of expressing human wild-type (WT FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C and FUS (R521H or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A. Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.

  6. Multiple routes and milestones in the folding of HIV-1 protease monomer.

    Directory of Open Access Journals (Sweden)

    Massimiliano Bonomi

    Full Text Available Proteins fold on a time scale incompatible with a mechanism of random search in conformational space thus indicating that somehow they are guided to the native state through a funneled energetic landscape. At the same time the heterogeneous kinetics suggests the existence of several different folding routes. Here we propose a scenario for the folding mechanism of the monomer of HIV-1 protease in which multiple pathways and milestone events coexist. A variety of computational approaches supports this picture. These include very long all-atom molecular dynamics simulations in explicit solvent, an analysis of the network of clusters found in multiple high-temperature unfolding simulations and a complete characterization of free-energy surfaces carried out using a structure-based potential at atomistic resolution and a combination of metadynamics and parallel tempering. Our results confirm that the monomer in solution is stable toward unfolding and show that at least two unfolding pathways exist. In our scenario, the formation of a hydrophobic core is a milestone in the folding process which must occur along all the routes that lead this protein towards its native state. Furthermore, the ensemble of folding pathways proposed here substantiates a rational drug design strategy based on inhibiting the folding of HIV-1 protease.

  7. Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.

    Science.gov (United States)

    Kostrominova, Tatiana Y

    2010-11-30

    In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Overexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via down-regulation of Sar1 activity

    Science.gov (United States)

    Liu, Xiaofeng; Zhou, Mi; Yang, Yanling; Wu, Jing; Peng, Qisheng

    2018-01-01

    Brucella Cu-Zn superoxide dismutase (Cu-Zn SOD) is a periplasmic protein, and immunization of mice with recombinant Cu-Zn SOD protein confers protection against Brucella abortus infection. However, the role of Cu-Zn SOD during the process of Brucella infection remains unknown. Here, we report that Cu-Zn SOD is secreted into culture medium and is translocated into host cells independent of type IV secretion systems (T4SS). Furthermore, co-immunoprecipitation and immunofluorescence studies reveal that Brucella abortus Cu-Zn SOD interacts with the small GTPase Sar1. Overexpression of Cu-Zn SOD in Brucella abortus inhibits bacterial intracellular growth by abolishing Sar1 activity in a manner independent of reactive oxygen species (ROS) production. PMID:29515756

  9. Graft copolymers of polypropylene films. 1. radiation induced grafting of mixed monomers. Vol. 3

    International Nuclear Information System (INIS)

    El-Salmawi, K.M.; El-Naggar, A.M.; Said, H.M.; Zahran, A.H.

    1996-01-01

    Radiation graft copolymerization of co monomer mixtures of acrylic acid (AAC), and styrene (S) onto polypropylene (PP) film by mutual method has been investigated. The effects of different factors that may affect the grafting yield such as inhibitor concentration (Mohr's salt), solvent composition (MeOH and H 2 O), radiation dose and dose rate were considered. It was found that the role of Mohr's salt is very effective when the ratio of AAC in the co monomer mixtures was at lower values. However, the addition of 1.25 Wt% of Mohr's salt reduced the homo polymer formation and enhances the grafting process. Graft copolymerization in presence of solvent mixture composed of methanol and water was found to afford higher grafting than in pure methanol regardless of the composition of the co monomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H 2 O:80%MeOH and a co monomer mixture of 20%AAC:80%sty. An attempt was made to determine each PAAC and PS fractions in the total graft yield obtained. Two methods of analysis based on using the reactivity ratios reported in literature, elemental analysis and IR spectroscopy. The determination of poly (acrylic acid) and polystyrene fractions by elemental analysis is believed more accurate than these by reactivity ratio. The precise results obtained by elemental analysis with respect to the chemical structure of known polymer prepared under identical conditions. The results obtained by IR measurements go well with that obtained with the reactivity ratio methods. 5 figs., 3 tabs

  10. Peripheral motor axons of SOD1(G127X) mutant mice are susceptible to activity-dependent degeneration

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Calin, A; Graffmo, K S

    2013-01-01

    -onset, fast-progression SOD1(G127X) mouse model of amyotrophic lateral sclerosis to long-lasting, high-frequency repetitive activity. Tibial nerves were stimulated at ankle in 7 to 8-month-old SOD1(G127X) mice when they were clinically indistinguishable from wild-type (WT) mice. The evoked compound muscle......-concentrations. It is possible that in SOD1(G127X) there is inadequate energy-dependent Na(+)/K(+) pumping, which may lead to a lethal Na(+) overload....

  11. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  12. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK.

    Science.gov (United States)

    Wang, T H; Wang, S Y; Wang, X D; Jiang, H Q; Yang, Y Q; Wang, Y; Cheng, J L; Zhang, C T; Liang, W W; Feng, H L

    2018-05-21

    Oxidative stress exhibits a central role in the course of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease commonly found to include a copper/zinc superoxide dismutase (SOD1) gene mutation. Fisetin, a natural antioxidant, has shown benefits in varied neurodegenerative diseases. The possible effect of fisetin in ALS has not been clarified as of yet. We investigated whether fisetin affected mutant hSOD1 ALS models. Three different hSOD1-related mutant models were used: Drosophila expressing mutant hSOD1 G85R , hSOD1 G93A NSC34 cells, and transgenic mice. Fisetin treatment provided neuroprotection as demonstrated by an improved survival rate, attenuated motor impairment, reduced ROS damage and regulated redox homeostasis compared with those in controls. Furthermore, fisetin increased the expression of phosphorylated ERK and upregulated antioxidant factors, which were reversed by MEK/ERK inhibition. Finally, fisetin reduced the levels of both mutant and wild-type hSOD1 in vivo and in vitro, as well as the levels of detergent-insoluble hSOD1 proteins. The results indicate that fisetin protects cells from ROS damage and improves the pathological behaviors caused by oxidative stress in disease models related to SOD1 gene mutations probably by activating ERK, thereby providing a potential treatment for ALS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Neuroprotective Effect of Bexarotene in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, María; Berciano, María T.; Berciano, José; Lafarga, Miguel

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1G93A mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations. PMID:26190974

  14. The effect of amyotrophic lateral sclerosis-linked exogenous SOD1-G93A on electrophysiological properties and intracellular calcium in cultured rat astrocytes.

    Science.gov (United States)

    Milošević, Milena; Bataveljić, Danijela; Nikolić, Ljiljana; Bijelić, Dunja; Andjus, Pavle

    2016-01-01

    Over 150 mutations in the SOD1 gene that encodes Cu/Zn superoxide dismutase (SOD1) cause 20-25% of familial ALS, albeit without a known gain-of-function mechanism. ALS is also non-cell-autonomous, the interactions between motor neurons and their glial neighbours being implicated in disease progression. The aim here was to investigate the biophysical effects of the exogenous human mutant SOD1-G93A on rat astrocytes in culture. Primary cortical astrocyte cultures were treated with recombinant human apo- mSOD1-G93A vs. wild-type control (wtSOD1) and recorded by patch-clamp and calcium imaging. Results showed that exogenous mSOD1 as well as wtSOD1 induced a decrease of membrane resistance, the effect being persistent (up to 13 min) only for the mutant form. Similarly, whole-cell inward currents in astrocytes were augmented by both wt and mSOD1, but the effect was twice larger and only progressed continuously for the latter. Both forms of SOD1 also induced a rise in intracellular Ca(2+) activity, the effect being dependent on external Ca(2+) and again only persisted with mSOD1, becoming significantly different from wtSOD1 only at longer times (14 min). In conclusion, this study points to membrane permeability and Ca(2+) signalling as processes affected by SOD1-G93A that presents the humoral factor triggering the role of astrocytes in ALS pathophysiology.

  15. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  16. Inhibition of Protein Tyrosine Phosphatase 1B by Aurintricarboxylic Acid and Methylenedisalicylic Acid: Polymer versus Monomer

    International Nuclear Information System (INIS)

    Shrestha, Suja; Lee, Keun Hyeung; Cho, Hyeong Jin

    2004-01-01

    In this study, we examined whether the in vitro inhibitory activity of ATA against PTPases resides in the monomer or high molecular weight components. Not to mention commercial ATA, the ATA sample synthesized according to the method previously reported to produce monomer was also found to contain polymeric materials as described below. Therefore, monomeric component of ATA was prepared absolutely free of polymer. Also synthesized in a pure form was methylenedisalicylic acid (MDSA), one of the low molecular weight components formed in the conventional preparation of ATA. Commercial MDSA was also proved to contain polymeric substances. The inhibitory potency of ATA and MDSA synthesized in a polymer-free form was evaluated against human protein tyrosine phosphatase 1B (PTP1B). Commercial ATA, however, contains significant amounts of polymeric materials schematically represented as. In general, ATA is prepared by condensation of salicylic acid with formaldehyde and the branching reaction results in the formation of polymers of molecular weights up to several thousands Dalton

  17. Graft copolymers of polypropylene films. 1. radiation induced grafting of mixed monomers. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Salmawi, K M; El-Naggar, A M; Said, H M; Zahran, A H [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Radiation graft copolymerization of co monomer mixtures of acrylic acid (AAC), and styrene (S) onto polypropylene (PP) film by mutual method has been investigated. The effects of different factors that may affect the grafting yield such as inhibitor concentration (Mohr`s salt), solvent composition (MeOH and H{sub 2} O), radiation dose and dose rate were considered. It was found that the role of Mohr`s salt is very effective when the ratio of AAC in the co monomer mixtures was at lower values. However, the addition of 1.25 Wt% of Mohr`s salt reduced the homo polymer formation and enhances the grafting process. Graft copolymerization in presence of solvent mixture composed of methanol and water was found to afford higher grafting than in pure methanol regardless of the composition of the co monomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H{sub 2} O:80%MeOH and a co monomer mixture of 20%AAC:80%sty. An attempt was made to determine each PAAC and PS fractions in the total graft yield obtained. Two methods of analysis based on using the reactivity ratios reported in literature, elemental analysis and IR spectroscopy. The determination of poly (acrylic acid) and polystyrene fractions by elemental analysis is believed more accurate than these by reactivity ratio. The precise results obtained by elemental analysis with respect to the chemical structure of known polymer prepared under identical conditions. The results obtained by IR measurements go well with that obtained with the reactivity ratio methods. 5 figs., 3 tabs.

  18. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  19. A 50 bp deletion in the SOD1 promoter lowers enzyme expression but is not associated with ALS in Sweden.

    Science.gov (United States)

    Ingre, Caroline; Wuolikainen, Anna; Marklund, Stefan L; Birve, Anna; Press, Rayomand; Andersen, Peter M

    2016-01-01

    Mutations in the superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). A 50 base pair (bp) deletion of SOD1 has been suggested to reduce transcription and to be associated with later disease onset in ALS. This study was aimed to reveal if the 50 bp deletion influenced SOD1 enzymatic activity, occurrence and phenotype of the disease in a Swedish ALS/control cohort. Blood samples from 512 Swedish ALS patients and 354 Swedish controls without coding SOD1 mutations were analysed for the 50 bp deletion allele. The enzymatic activity of SOD1 in erythrocytes was analysed and genotype-phenotype correlations were assessed. Results demonstrated that the genotype frequencies of the 50 bp deletion were all found to be in Hardy-Weinberg equilibrium. No significant differences were found for age of onset, disease duration or site of onset. SOD1 enzymatic activity showed a statistically significant decreasing trend in the control group, in which the allele was associated with a 5% reduction in SOD1 activity. The results suggest that the 50 bp deletion has a moderate reducing effect on SOD1 synthesis. No modulating effects, however, were found on ALS onset, phenotype and survival in the Swedish population.

  20. A radiation-sensitive monomer of 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) in PVA as a radiochromic film dosimeter

    Science.gov (United States)

    Soliman, Yasser S.; Abdel-Fattah, A. A.; Hamed, A. A.; Bayomi, A. M. M.

    2018-03-01

    A conjugated monomer 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) (HDTU) was synthesized. Thereafter, it was incorporated into polyvinyl alcohol (PVA), and coated on self-adhesive sheet, thus to prepare film dosimeters. The monomer and films were analyzed using X-ray diffraction (XRD), FTIR spectroscopy and specular reflectance colorimetry. This monomer polymerizes in the films by radiation and turns progressively blue in proportion to absorbed dose, indicating the formation of π-conjugated colored poly-HDTU. Color development was investigated at 480 nm and 610 nm for dose monitoring ranging from 10 Gy to 15 kGy. HDTU in PVA film is highly ordered and crystalline and, upon irradiation, it forms a semi-crystalline polymer with nearly the same interplanar distances as the monomer, indicating the occurrence of topochemical polymerization. During irradiation, polymerization of the monomer is nearly independent of humidity in the range of 0-53% and temperature in the range of 25-45 °C. The uncertainty of this system is 5.16% at 95% confidence level.

  1. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    Wate, Reika; Ito, Hidefumi; Kusaka, Hirofumi; Takahashi, Sentaro; Kubota, Yoshihisa; Suetomi, Katsutoshi; Sato, Hiroshi; Okayasu, Ryuichi

    2005-01-01

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  2. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Harrigan, Daniel J; Mitchell, Gordon S

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms

  3. ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ.

    Science.gov (United States)

    Jang, Ja-Young; Cho, Hyungmin; Park, Hye-Yoon; Rhim, Hyangshuk; Kang, Seongman

    2017-11-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons. Aggregation of ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial ALS (fALS). Recently, intracellular amyloid-β (Aβ) is detected in motor neurons of both sporadic and familial ALS. We have previously shown that intracellular Aβ specifically interacts with G93A, an ALS-linked SOD1 mutant. However, little is known about the pathological and biological effect of this interaction in neurons. In this study, we have demonstrated that the Aβ-binding region is exposed on the SOD1 surface through the conformational changes due to misfolding of SOD1. Interestingly, we found that the intracellular aggregation of Aβ is enhanced through the direct interaction of Aβ with the Aβ-binding region exposed to misfolded SOD1. Ultimately, increased Aβ aggregation by this interaction promotes neuronal cell death. Consistent with this result, Aβ aggregates was three-fold higher in the brains of G93A transgenic mice than those of non Tg. Our study provides the first direct evidence that Aβ, an AD-linked factor, is associated to the pathogenesis of ALS and provides molecular clues to understand common aggregation mechanisms in the pathogenesis of neurodegenerative diseases. Furthermore, it will provide new insights into the development of therapeutic approaches for ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Milanese, Marco; Giribaldi, Francesco; Melone, Marcello; Bonifacino, Tiziana; Musante, Ilaria; Carminati, Enrico; Rossi, Pia I A; Vergani, Laura; Voci, Adriana; Conti, Fiorenzo; Puliti, Aldamaria; Bonanno, Giambattista

    2014-04-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated that the activation of Group I metabotropic Glu autoreceptors, belonging to both type 1 and type 5 receptors (mGluR1 and mGluR5), at glutamatergic spinal cord nerve terminals, produces excessive Glu release in mice over-expressing human superoxide-dismutase carrying the G93A point mutation (SOD1(G93A)), a widely used animal model of human ALS. To establish whether these receptors are implicated in ALS, we generated mice expressing half dosage of mGluR1 in the SOD1(G93A) background (SOD1(G93A)Grm1(crv4/+)), by crossing the SOD1(G93A) mutant mouse with the Grm1(crv4/+) mouse, lacking mGluR1 because of a spontaneous recessive mutation. SOD1(G93A)Grm1(crv4/+) mice showed prolonged survival probability, delayed pathology onset, slower disease progression and improved motor performances compared to SOD1(G93A) mice. These effects were associated to reduction of mGluR5 expression, enhanced number of MNs, decreased astrocyte and microglia activation, normalization of metallothionein and catalase mRNA expression, reduced mitochondrial damage, and decrease of abnormal Glu release in spinal cord of SOD1(G93A)Grm1(crv4/+)compared to SOD1(G93A) mice. These results demonstrate that a lower constitutive level of mGluR1 has a significant positive impact on mice with experimental ALS, thus providing the rationale for future pharmacological approaches to ALS by selectively blocking Group I metabotropic Glu receptors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation

    Science.gov (United States)

    Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie

    2018-05-01

    Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.

  6. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Synthesis and characterization of copolymers from hindered amines and vinyl monomers

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2014-01-01

    Full Text Available New copolymers from hindered amines and vinyl monomers were synthesized by radical chain polymerization. To obtain polymeric HALS, acrylamide-(1ATP and acrylate-(4ATP monomers, derivatives from 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidinol were synthesized. The radical chain polymerization of 1ATP with styrene (Sty using 1-butanethiol (BTN resulted in a copolymer with 95 units of Sty and 15 units of 1ATP. The radical chain polymerization of 1ATP and vinyl acetate (VAc has produced only 1ATP homopolymer. In the chain polymerization of 4ATP with Sty or VAc, the hydrogen atom bonded to the nitrogen of 4ATP is labile enough to originate another radical at this site. The steric hindrance imposed by methyl groups on this bonding site hampers its reaction with other propagating species and the formation of a copolymer or network structure will be dependent on the size of the pendent group in the vinyl monomer.

  8. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    International Nuclear Information System (INIS)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill; Thomas, Zachary; Pingali, Sai Venkatesh; Urban, Volker S.; Liu, Yun; Porcar, Lionel; Pinkhassik, Eugene

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.

  9. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  10. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    International Nuclear Information System (INIS)

    Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, K.I.; Narang, H.; Krishna, M.

    2008-01-01

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of γ-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K m and V max values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H 2 O 2 and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  11. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Kunwar, A; Mishra, B; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India); Narang, H; Krishna, M [Radiation Biology and Health Sciences Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of {gamma}-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K{sub m} and V{sub max} values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H{sub 2}O{sub 2} and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  12. Inhibitors of SOD1 Interaction as an Approach to Slow the Progressive Spread of ALS Symptoms

    Science.gov (United States)

    2016-07-01

    the progression of ALS caused by mutations in this protein . To accomplish this goal, we developed an assay that is based on the observation that the...force. In our assay , this force is the normal interaction that occurs when 2 individual SOD1 proteins come together to form a normal active enzyme...Using recombinant DNA, we create fusion proteins of SOD1 and each half of the luciferase enzyme. In the past year, we have characterized and optimized

  13. Immunoreactive Cu-SOD and Mn-SOD in lymphocytes sub-populations from normal and trisomy 21 subjects according to age

    International Nuclear Information System (INIS)

    Baeteman, M.A.; Baret, A.; Courtiere, A.; Rebuffel, P.; Mattei, J.F.

    1983-01-01

    Copper and manganese superoxide dismutases (Cu-SOD and Mn-SOD) were measured by radioimmunoassay in B and T lymphocytes and macrophages, in patients with trisomy 21 and in matched controls. In the controls, Cu-SOD was present in greater amounts than Mn-SOD and there were quantitative differences in the distribution in the three cellular sub-populations. In trisomy 21, levels of Cu-SOD were raised, with no change in levels of Mn-SOD, supporting the theory of a gene dosage effect. There were significant positive and negative correlations between age and Cu-SOD levels in controls, and a correlation approaching significance for Mn-SOD. In trisomy 21, there was no correlation between age and Cu-SOD levels, and the only significant correlation for Mn-SOD was for B lymphocytes

  14. Effect of nitrogen fertilization, grass species and cultivar on sod production on Valkeasuo peat bog - a case study

    Directory of Open Access Journals (Sweden)

    Perttu Virkajärvi

    1997-09-01

    Full Text Available As part of a research project concerning the agricultural utilization of cut-away peat bogs, a sod production experiment was conducted at Valkeasuo, Tohmajärvi, in 1990-1993. The aim of the experiment was to study the effect of nitrogen and choice of cultivar on sod production and sod quality on peat bogs. The N fertilization rates were 50, 100 and 150kg ha-1. The Poa pratensis cultivars were ‘Conni’, ‘Cynthia’, ‘Haga’ and ‘Julia’, the Festuca rubra cultivars were ‘Center’, ‘Juliska’, ‘Koket’ and ‘Näpsä’ and the Agrostis capillaris cultivar was ‘Rasti’. Two mixtures of P. pratensis/F. rubra and one of A. capillaris/F. rubra imitated commercial sod products. Increasing of N fertilization from 50 kg up to 150 kg ha-1 a had positive effect on general the quality of sod as well as on the green cover before and after transplanting. It increased the thatch formation. The positive effect of N on the number of tillers and green cover in the year following transplanting was dependent on the species and the cultivar. Species and cultivar affected all measured variables excluding thatch formation. Generally, the P. pratensis cultivars tested suited better for sod production than cultivars of F. rubra, but there were clear differences between cultivars within species as well. Although the soil was infertile, the contents of Ca, K, Mg, P, Cu, Fe, Mn, Mo and Zn in the herbage samples were within normal range. The botanical purity was high, which supports the hypothesis that the absence of seed bank of weeds on peat bogs immediately after harvesting the peat can be utilized.

  15. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  16. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    International Nuclear Information System (INIS)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  17. Assembly of one-dimensional supramolecular objects: From monomers to networks

    Science.gov (United States)

    Sayar, Mehmet; Stupp, Samuel I.

    2005-07-01

    One-dimensional supramolecular aggregates can form networks at exceedingly low concentrations. Recent experiments in several laboratories, including our own, have demonstrated the formation of gels by these systems at concentrations well under 1% by weight. The systems of interest in our laboratory form either cylindrical nanofibers or ribbons as a result of strong noncovalent interactions among monomers. The stiffness and interaction energies among these thread-like objects can vary significantly depending on the chemical structure of the monomers used. We have used Monte Carlo simulations to study the structure of the threads and their ability to form networks through bundle formation. The persistence length of the threads was found to be strongly affected not only by stiffness, but also by the strength of attractive two-body interactions among thread segments. The relative values of stiffness and attractive two-body interaction strength determine if threads collapse or create bundles. Only in the presence of sufficiently long threads and bundle formation can these systems assemble into networks of high connectivity.

  18. Muscle Expression of SOD1G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta.

    Science.gov (United States)

    Dobrowolny, Gabriella; Martini, Martina; Scicchitano, Bianca Maria; Romanello, Vanina; Boncompagni, Simona; Nicoletti, Carmine; Pietrangelo, Laura; De Panfilis, Simone; Catizone, Angela; Bouchè, Marina; Sandri, Marco; Rudolf, Rüdiger; Protasi, Feliciano; Musarò, Antonio

    2018-04-20

    Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1 G93A in transgenic MLC/SOD1 G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1 G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1 G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.

  19. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Bonifacino, Tiziana; Cattaneo, Luca; Gallia, Elena; Puliti, Aldamaria; Melone, Marcello; Provenzano, Francesca; Bossi, Simone; Musante, Ilaria; Usai, Cesare; Conti, Fiorenzo; Bonanno, Giambattista; Milanese, Marco

    2017-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to loss of upper and lower motor neurons (MNs). The mechanisms of neuronal death are largely unknown, thus prejudicing the successful pharmacological treatment. One major cause for MN degeneration in ALS is represented by glutamate(Glu)-mediated excitotoxicity. We have previously reported that activation of Group I metabotropic Glu receptors (mGluR1 and mGluR5) at glutamatergic spinal cord nerve terminals produces abnormal Glu release in the widely studied SOD1 G93A mouse model of ALS. We also demonstrated that halving mGluR1 expression in the SOD1 G93A mouse had a positive impact on survival, disease onset, disease progression, and on a number of cellular and biochemical readouts of ALS. We generated here SOD1 G93A mice with reduced expression of mGluR5 (SOD1 G93A Grm5 -/+ ) by crossing the SOD1 G93A mutant mouse with the mGluR5 heterozigous Grm5 -/+ mouse. SOD1 G93A Grm5 -/+ mice showed prolonged survival probability and delayed pathology onset. These effects were associated to enhanced number of preserved MNs, decreased astrocyte and microglia activation, reduced cytosolic free Ca 2+ concentration, and regularization of abnormal Glu release in the spinal cord of SOD1 G93A Grm5 -/+ mice. Unexpectedly, only male SOD1 G93A Grm5 -/+ mice showed improved motor skills during disease progression vs. SOD1 G93A mice, while SOD1 G93A Grm5 -/+ females did not. These results demonstrate that a lower constitutive level of mGluR5 has a significant positive impact in mice with ALS and support the idea that blocking Group I mGluRs may represent a potentially effective pharmacological approach to the disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling.

    Science.gov (United States)

    Madji Hounoum, Blandine; Mavel, Sylvie; Coque, Emmanuelle; Patin, Franck; Vourc'h, Patrick; Marouillat, Sylviane; Nadal-Desbarats, Lydie; Emond, Patrick; Corcia, Philippe; Andres, Christian R; Raoul, Cédric; Blasco, Hélène

    2017-04-01

    The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605. © 2017 Wiley Periodicals, Inc.

  1. A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies

    OpenAIRE

    Laslo, Mara; Sun, Xiaoping; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige

    2012-01-01

    Superoxide dismutase 1 (SOD1), a critical enzyme against oxidative stress, is implicated in aging and degenerative diseases. We previously showed that a nutraceutical containing freeze-dried açai pulp promotes survival of flies fed a high-fat diet or sod1 knockdown flies fed a standard diet. Here, we investigated the effect of açai supplementation initiated at the early or late young adulthood on lifespan, physiological function, and oxidative damage in sod1 knockdown flies. We found that Aça...

  2. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Roberts, Blaine R; Lim, Nastasia K H; McAllum, Erin J; Donnelly, Paul S; Hare, Dominic J; Doble, Philip A; Turner, Bradley J; Price, Katherine A; Lim, Sin Chun; Paterson, Brett M; Hickey, James L; Rhoads, Timothy W; Williams, Jared R; Kanninen, Katja M; Hung, Lin W; Liddell, Jeffrey R; Grubman, Alexandra; Monty, Jean-Francois; Llanos, Roxana M; Kramer, David R; Mercer, Julian F B; Bush, Ashley I; Masters, Colin L; Duce, James A; Li, Qiao-Xin; Beckman, Joseph S; Barnham, Kevin J; White, Anthony R; Crouch, Peter J

    2014-06-04

    Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1. Copyright © 2014 the authors 0270-6474/14/348021-11$15.00/0.

  3. Monomers and Monomer Mixtures Used in Impregnation of Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    Some important properties of monomers and polymers in relation to their use for reinforcement of fibrous materials are listed. Some monomers and their properties important in impregnation of fibrous materials are also listed. In general it is not advantageous to use a pure monomer for impregnation but rather a mixture of monomers or a mixture of a monomer and a low molecular weight polymer such as unsaturated polyester. Some of these mixtures which have been well studied in connection with WPC are listed together with some of their properties when used in WPC. Other monomer mixtures may well come in question and other monomers can probably be used. For instance, it is reported from Japan that the cheap monomer ethyleneoxide, which cannot be polymerized by gamma radiation as such, can be polymerized (in bulk) as a mixture with methylmethacrylate. Good results with WPC have generally been obtained without swelling agents but more is grafted if some swelling agent is used, and it is possible that a swelling agent might be useful in the case of fibre-boards. Solvents, plasticizers, crosslinkable natural resins, aromatic chlorinated hydrocarbons, and retardants can be added, and with their use the properties of WPC can be widely modified. For example, a chlorinated wax can act as retardant, can reduce the total dose of radiation and can increase the flame resistance simultaneously.

  4. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats

    Science.gov (United States)

    Satriotomo, Irawan; Grebe, Ashley M.

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p phrenic motor neurons (p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. PMID:28500219

  5. Evaluation of level of impregnation monomers in hydrotalcite; Avaliacao do grau de impregnacao de monomeros em hidrotalcita

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Danieli M. do, E-mail: danielimcarmo@hotmail.com [Instituto de Macromoleculas Professora Eloisa Mano - IMA, Universidade Federal do Rio de Janeiro - UFRJ, RJ (Brazil); Machado, Jacson S.C.; Oliveira, Marcelo F.L.; Oliveira, Marcia G. [Instituto Nacional de Tecnologia - INT, Rio de Janeiro, RJ (Brazil); Soares, Bluma G. [Instituto de Macromoleculas Professora Eloisa Mano - IMA, Universidade Federal do Rio de Janeiro - UFRJ, RJ (Brazil)

    2011-07-01

    To evaluate the impregnation degree of 1,6-hexamethylene diisocyanate and 1,4-butanediol monomers in hydrotalcite clays it was prepared dispersions with mixing ratio 1:100 (clay/monomer), using the Ultraturrax and Ultrasound. Subsequently the samples were characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Swelling tests and Tyndall effect were used to illustrate the different dispersions. The results indicated a strong interaction between the hydrotalcite with 1,6-hexamethylene diisocyanate, favoring the formation of intercalated structures. (author)

  6. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.

    Directory of Open Access Journals (Sweden)

    Chynna N Broxton

    Full Text Available In eukaryotes, the Cu/Zn superoxide dismutase (SOD1 is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a copper starvation response, C. albicans represses SOD1 and induces the non-copper alternative SOD3. While both SOD1 and SOD3 are predicted to exist in the same cytosolic compartment, their potential role in mitochondrial oxidative stress had yet to be investigated. We show here that under copper replete conditions, a fraction of the Cu/Zn containing SOD1 localizes to the mitochondrial IMS to guard against mitochondrial superoxide. However in copper starved cells, localization of the manganese containing SOD3 is restricted to the cytosol leaving the mitochondrial IMS devoid of SOD. We observe that during copper starvation, an alternative oxidase (AOX form of respiration is induced that is not coupled to ATP synthesis but maintains mitochondrial superoxide at low levels even in the absence of IMS SOD. Surprisingly, the copper-dependent cytochrome c oxidase (COX form of respiration remains high with copper starvation. We provide evidence that repression of SOD1 during copper limitation serves to spare copper for COX and maintain COX respiration. Overall, the complex copper starvation response of C. albicans involving SOD1, SOD3 and AOX minimizes mitochondrial oxidative damage whilst maximizing COX respiration essential for fungal pathogenesis.

  7. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  8. Association of the SOD2 polymorphism (Val6Ala and SOD activity with vaso-occlusive crisis and acute splenic sequestration in children with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Isabela Cristina Cordeiro Farias

    2018-02-01

    Full Text Available The SOD2 polymorphism Val16Ala TàC influences the antioxidative response. This study investigated the association of the SOD2 polymorphism and superoxide dismutase (SOD activity with vaso-occlusive crisis (VOC and acute splenic sequestration (ASS in children with sickle cell anemia (SCA. One hundred ninety-five children aged 1-9 years old were analyzed. The TC and CC genotypes were associated with lower SOD activity compared with the TT genotype (p=0.0321; p=0.0253, respectively. Furthermore, TC/CC were more frequent in patients with VOC or ASS (p=0.0285; p=0.0090, respectively. These results suggest that the SOD2 polymorphism associated with low SOD activity could be involved in SCA physiopathology.

  9. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    DEFF Research Database (Denmark)

    Pasternak, Anna; Hernandez, Frank J; Rasmussen, Lars Melholt

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA...... that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties......, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation....

  10. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS

    Science.gov (United States)

    De Rose, Francescaelena; Marotta, Roberto; Talani, Giuseppe; Catelani, Tiziano; Solari, Paolo; Poddighe, Simone; Borghero, Giuseppe; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2017-01-01

    The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms. PMID:28102336

  11. Differential motor neuron impairment and axonal regeneration in sporadic and familiar amyotrophic lateral sclerosis with SOD-1 mutations: lessons from neurophysiology.

    Science.gov (United States)

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O(-2)) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females) were enrolled in the study and examined basally (T0) and every 4 months (T1, T2, and T3). Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females). We used Macro-EMG and Motor Unit Number Estimation (MUNE) in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  12. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    Directory of Open Access Journals (Sweden)

    Tommaso Bocci

    2011-12-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1 gene. SOD-1 catalyses the superoxide radical (O−2 into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females were enrolled in the study and examined basally (T0 and every 4 months (T1, T2, and T3. Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females. We used Macro-EMG and Motor Unit Number Estimation (MUNE in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. Results and Discussion: SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  13. Effect of pH and Monomer Dosing Rate in the Anionic Polymerization of Ethyl Cyanoacrylate in Semicontinuous Operation

    Directory of Open Access Journals (Sweden)

    Hened Saade

    2015-01-01

    Full Text Available Nanoparticles of poly(ethyl cyanoacrylate with more than 10% solids content were prepared by semicontinuous heterophase polymerization at monomer-starved conditions varying the initial pH in the interval of 11.75 and at two monomer dosing rates. Measurements by scanning-transmission electron microscopy allowed us to identify an inverse dependence of particle size on pH. Furthermore, all the polymerizations conducted at the slower monomer dosing rate rendered two particle populations, with the larger one formed from the aggregation of a fraction of the smaller particles. It was believed that the so slow addition of the monomer caused the formation of very small but instable particles, thereby a fraction of which aggregated to reduce the total interface particles-aqueous phase, increasing the latex stability. An increase in the monomer dosing rate led to larger and more stable particles in such way that only one population of nanoparticles with around 40 nm in average diameter was obtained.

  14. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units

    International Nuclear Information System (INIS)

    Melinte, Violeta; Buruiana, Tinca; Aldea, Horia; Matiut, Simona; Silion, Mihaela; Buruiana, Emil C.

    2014-01-01

    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063–0.088 s −1 ) were lower than those determined in the monomer combinations (0.116–0.158 s −1 ) incorporating phosphate diacrylate (11 wt.%), BisGMA (33 wt.%), TEGDMA (10 wt.%), UDMA (10 wt.%) and HEMA (15 wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65–57.02 μg/mm 3 ) and water solubility (3.51–13.38 μg/mm 3 ), and the contact angle was dependent on the presence of CO-DAP (θ F1 : 66.67°), TMP-DAP (θ F2 : 55.05°) or AMP-P (θ F3 : 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θ F4 : 82.14°). The scanning electron microscopy image of the dentin–resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20 s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1 wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer. - Highlights: • Synthesis of photopolymerizable phosphate acrylate

  15. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  16. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF

    Science.gov (United States)

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2015-01-01

    Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS. PMID:25653590

  17. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF.

    Directory of Open Access Journals (Sweden)

    Alexandre eHenriques

    2015-01-01

    Full Text Available ABSTRACTBackgroundAmyotrophic lateral sclerosis (ALS is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. ResultsMotoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age, when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age. Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12.ConclusionsOur data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.

  18. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF.

    Science.gov (United States)

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1(G93A) mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Motoneurons from SOD1(G93A) mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1(G93A) motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1(G93A) motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.

  19. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  20. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers contg. self-complementary quadruple H groups by copolymg. monomers contg. a quadruple H bonding group with ³1 monomers of choice. The resulting polymers show unique new characteristics due to the presence of addnl. phys. interactions between the

  1. Influence of genetic variations in the SOD1 gene on the development of ascites and spontaneous bacterial peritonitis in decompensated liver cirrhosis

    DEFF Research Database (Denmark)

    Schwab, Sebastian; Lehmann, Jennifer; Lutz, Philipp

    2017-01-01

    BACKGROUND: The balance between generation and elimination of reactive oxygen species by superoxide dismutase (SOD) is crucially involved in the pathophysiology of liver cirrhosis. Reactive oxygen species damage cells and induce inflammation/fibrosis, but also play a critical role in immune defense...... in carriers of rs1041740. In this cohort, rs1041740 was not associated with survival. CONCLUSION: These data suggest a complex role of SOD1 in different processes leading to complications of liver cirrhosis. rs1041740 might be associated with the development of ascites and possibly plays a role in SBP once...... from pathogens. As both processes are involved in the development of liver cirrhosis and its complications, genetic variation of the SOD1 gene was investigated. PATIENTS AND METHODS: Two SOD1 single nucleotide polymorphisms (rs1041740 and rs3844942) were analyzed in 49 cirrhotic patients undergoing...

  2. Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply

    Science.gov (United States)

    Nozawa, Koh; Delville, Marie-Hélène; Ushiki, Hideharu; Panizza, Pascal; Delville, Jean-Pierre

    2005-07-01

    In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

  3. A density functional theory study on the conversion of ethylene to carbon monomer on PdAu(1 0 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minhua; Yang, Bing [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The successive decomposition of ethylene on PdAu(1 0 0) was studied with DFT method. • The C−H, C−C bond scission and a hydrogen-shift process were investigated. • The alloying of Au with Pd affects the studied reactions on PdAu(1 0 0) greatly. - Abstract: Calculations based on the first-principles density functional theory (DFT) were performed to study the possible transformation pathways of ethylene on PdAu(1 0 0) surface to investigate the effect of Au atom alloying with Pd on the formation of CHx (x = 0–2), which may eventually form carbon monomer and lead to the deactivation of catalysts. The energetic properties of reactions including the scission of the C−H, C−C bond and a hydrogen-shift process were determined. The C−H bond scission is confirmed to be prone to happen on the studied surface, while it is difficult for the C−C bond scission to occur due to relatively high barriers, the values of which are as high as 2.72–4.62 eV. The activation barriers for all related reactions except for the dehydrogenation of vinyl, vinylidene and acetenyl demonstrate that it is harder for the conversion of ethylene to occur on PdAu(1 0 0) surface than on Pd(1 0 0) surface, especially for the C−C bond scission. All the results indicate that the alloying of Au atom with pure Pd catalyst can prevent the formation of carbon monomer, which may notably affect properties of catalysts.

  4. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deng, Han-Xiang; Zhai, Hong; Bigio, Eileen H; Yan, Jianhua; Fecto, Faisal; Ajroud, Kaouther; Mishra, Manjari; Ajroud-Driss, Senda; Heller, Scott; Sufit, Robert; Siddique, Nailah; Mugnaini, Enrico; Siddique, Teepu

    2010-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant FUS-mediated ALS and potential roles of FUS in non-FUS ALS remain to be investigated. Immunostaining was performed on postmortem spinal cords from 78 ALS cases, including SALS (n = 52), ALS with dementia (ALS/dementia, n = 10), and FALS (n = 16). In addition, postmortem brains or spinal cords from 22 cases with or without frontotemporal lobar degeneration were also studied. In total, 100 cases were studied. FUS-immunoreactive inclusions were observed in spinal anterior horn neurons in all SALS and FALS cases, except for those with SOD1 mutations. The FUS-containing inclusions were also immunoreactive with antibodies to TDP43, p62, and ubiquitin. A fraction of tested FUS antibodies recognized FUS inclusions, and specific antigen retrieval protocol appeared to be important for detection of the skein-like FUS inclusions. Although mutations in FUS account for only a small fraction of FALS and SALS, our data suggest that FUS protein may be a common component of the cellular inclusions in non-SOD1 ALS and some other neurodegenerative conditions, implying a shared pathogenic pathway underlying SALS, non-SOD1 FALS, ALS/dementia, and related disorders. Our data also indicate that SOD1-linked ALS may have a pathogenic pathway distinct from SALS and other types of FALS.

  5. Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study.

    Science.gov (United States)

    Lefaix, J L; Delanian, S; Leplat, J J; Tricaud, Y; Martin, M; Nimrod, A; Baillet, F; Daburon, F

    1996-05-01

    To establish how far liposomal copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD), respectively, reduce radiation-induced fibrosis (RIF), using a well-characterized pig model of RIF permitting the design of a controlled laboratory experiment. In this model of acute localized gamma irradiation simulating accidental overexposure in humans, three groups of five large white pigs were irradiated using a collimated 192Ir source to deliver a single dose of 160 Gy onto the skin surface (100%) of the outer side of the thigh. A well-defined block of subcutaneous fibrosis involving skin and skeletal muscle developed 6 months after irradiation. One experimental group of five pigs was then injected i.m. with 10 mg/10 kg b.wt. of Cu/Zn-SOD, twice a week for 3 weeks, and another experimental group of five was injected with 10 mg/10 kg b.wt. of Mn-SOD, three times a week for 3 weeks. Five irradiated control pigs were injected with physiological serum. Animals were assessed for changes in the density of the palpated fibrotic block and in the dimensions of the projected cutaneous surface. Block depth was determined by ultrasound. Physical and sonographic findings were confirmed by autopsy 12-14 weeks after completing SOD injections. The density, length, width, and depth of the fibrotic block, and the areas and volume of its projected cutaneous surface were compared before treatment, 1, 3, and 6 weeks thereafter, and at autopsy, 12-14 weeks after treatment ended. The experimental animals exhibited no change in behavior and no abnormal clinical or anatomic signs. Whether they were given Cu/Zn- or Mn-SOD, significant and roughly equivalent softening and shrinking of the fibrotic block were noted in all treated animals between the first week after treatment ended and autopsy, when mean regression was 45% for length and width, 30% for depth, and 70% for area and volume. Histologic examination showed completely normal muscle and subcutaneous tissue

  6. Molecular Cloning, Characterization and Predicted Structure of a Putative Copper-Zinc SOD from the Camel, Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    Ajamaluddin Malik

    2012-01-01

    Full Text Available Superoxide dismutase (SOD is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1 was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively. The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100% followed by testis (45%, kidney (13%, lung (11% and spleen (10%, using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%, Sus scrofa (88%, Cavia porcellus (88%, Mus musculus (88%, Macaca mulatta (87%, Pan troglodytes (87%, Homo sapiens (87%, Canis familiaris (86%, Bos taurus (86%, Pongo abelii (85% and Equus caballus (82%. Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The

  7. Molecular cloning, characterization and predicted structure of a putative copper-zinc SOD from the camel, Camelus dromedarius.

    Science.gov (United States)

    Ataya, Farid S; Fouad, Dalia; Al-Olayan, Ebtsam; Malik, Ajamaluddin

    2012-01-01

    Superoxide dismutase (SOD) is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius) is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1) was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively). The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis) was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100%) followed by testis (45%), kidney (13%), lung (11%) and spleen (10%), using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%), Sus scrofa (88%), Cavia porcellus (88%), Mus musculus (88%), Macaca mulatta (87%), Pan troglodytes (87%), Homo sapiens (87%), Canis familiaris (86%), Bos taurus (86%), Pongo abelii (85%) and Equus caballus (82%). Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The

  8. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hang; Ma, Wen [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Han, Wei [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  9. 1-O-vinyl glycosides via Tebbe olefination, their use as chiral auxiliaries and monomers.

    Science.gov (United States)

    Yuan, Jialong; Lindner, Kristof; Frauenrath, Holger

    2006-07-21

    A series of anomerically pure 1-O-formyl glycosides 1 was prepared and converted into the corresponding 1-O-vinyl glycosides 2 by Tebbe olefination. The unsubstituted vinyl glycosides were obtained as anomerically pure compounds in good yields, and the method of preparation was compatible with the presence of a variety of functional groups. Remarkably, the anomeric formate group was regioselectively converted into the corresponding olefin in the presence of acetate and benzoate protecting groups. With the perspective to use the 1-O-vinyl glycosides as monomers for the preparation of glycosylated poly(vinyl alcohol) derivatives with controlled tacticity, their scope as chiral auxiliaries for a stereodifferentiation in addition reactions to the olefin function was investigated by using the [2+2] cycloaddition to dichloroketene as a model reaction. In particular, vinyl 2,3,4,6-tetra-O-benzoyl-alpha-d-mannopyranoside (2i) exhibited excellent diastereoselectivity. Finally, the 1-O-vinyl glycosides were successfully subjected to radical homopolymerization in bulk or used as electron-rich comonomers in radical copolymerizations with maleic anhydride, yielding alternating, glycosylated poly(vinyl alcohol-alt-maleic anhydride).

  10. Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice

    Directory of Open Access Journals (Sweden)

    Stalleicken Dirk

    2006-11-01

    Full Text Available Abstract Background Chronic therapy with nitroglycerin (GTN results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS. According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2 play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT and heterozygous manganese superoxide dismutase mice (Mn-SOD+/- with ethanolic solution of GTN (12.5 μg/min/kg for 4 d. For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2 activity was measured in isolated heart mitochondria. Results Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh, increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD+/- mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD+/- mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. Conclusion Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance.

  11. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation

    Directory of Open Access Journals (Sweden)

    Qi Min

    2006-01-01

    Full Text Available Abstract Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1 associated with familial amyotrophic lateral sclerosis (ALS demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2 and leukotriene B4 (LTB4; inducible nitric oxide synthase (iNOS and •NO (indexed by nitrite release into the culture medium; and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.

  12. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units

    Energy Technology Data Exchange (ETDEWEB)

    Melinte, Violeta [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Buruiana, Tinca, E-mail: tbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, Iasi (Romania); Matiut, Simona [Praxis Medical Investigations, 33 Independence, 700102 Iasi (Romania); Silion, Mihaela; Buruiana, Emil C. [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania)

    2014-01-01

    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063–0.088 s{sup −1}) were lower than those determined in the monomer combinations (0.116–0.158 s{sup −1}) incorporating phosphate diacrylate (11 wt.%), BisGMA (33 wt.%), TEGDMA (10 wt.%), UDMA (10 wt.%) and HEMA (15 wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65–57.02 μg/mm{sup 3}) and water solubility (3.51–13.38 μg/mm{sup 3}), and the contact angle was dependent on the presence of CO-DAP (θ{sub F1}: 66.67°), TMP-DAP (θ{sub F2}: 55.05°) or AMP-P (θ{sub F3}: 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θ{sub F4}: 82.14°). The scanning electron microscopy image of the dentin–resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20 s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1 wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer. - Highlights: • Synthesis of

  13. 1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy

    Science.gov (United States)

    Pernici, Mario

    2017-08-01

    Using a 1 / n expansion, that is an expansion in descending powers of n, for the number of matchings in regular graphs with 2 n vertices, we study the monomer-dimer entropy for two classes of graphs. We study the difference between the extensive monomer-dimer entropy of a random r-regular graph G (bipartite or not) with 2 n vertices and the average extensive entropy of r-regular graphs with 2 n vertices, in the limit n → ∞. We find a series expansion for it in the numbers of cycles; with probability 1 it converges for dimer density p diverges as |ln(1-p)| for p → 1. In the case of regular lattices, we similarly expand the difference between the specific monomer-dimer entropy on a lattice and the one on the Bethe lattice; we write down its Taylor expansion in powers of p through the order 10, expressed in terms of the number of totally reducible walks which are not tree-like. We prove through order 6 that its expansion coefficients in powers of p are non-negative.

  14. Binding interactions between suberin monomer components and pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Olivella, M.À., E-mail: angels.olivella@udg.edu [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain); Bazzicalupi, C.; Bianchi, A. [Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino (Italy); Río, J.C. del [Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 1052, 41080 Seville (Spain); Fiol, N.; Villaescusa, I. [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain)

    2015-09-15

    Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the sorption mechanisms and making an accurate assessment of the environmental fate of pollutants. The knowledge of the sorption properties of the different constituents of these biomacromolecules may furnish a significant contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one representing only the mixture of suberin monomers used in the sorption study, and the second one including glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and oxamyl sorbed by the main suberin components to a lesser extent (3% and < 1%, respectively). In addition to van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin monomer. In the case of methomyl and oxamyl only weak van der Waals interactions stabilize the pesticide–sorbent adducts. The presence of glycerol in the model provoked significant changes in the interactions with isoproturon and methomyl. - Highlights: • Suberin has low affinity to retain pesticides of aliphatic character. • Suberin has a moderate affinity to adsorb isoproturon. • Modeling calculations show that apolar portion of suberin interacts with isoproturon.

  15. Binding interactions between suberin monomer components and pesticides

    International Nuclear Information System (INIS)

    Olivella, M.À.; Bazzicalupi, C.; Bianchi, A.; Río, J.C. del; Fiol, N.; Villaescusa, I.

    2015-01-01

    Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the sorption mechanisms and making an accurate assessment of the environmental fate of pollutants. The knowledge of the sorption properties of the different constituents of these biomacromolecules may furnish a significant contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one representing only the mixture of suberin monomers used in the sorption study, and the second one including glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and oxamyl sorbed by the main suberin components to a lesser extent (3% and < 1%, respectively). In addition to van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin monomer. In the case of methomyl and oxamyl only weak van der Waals interactions stabilize the pesticide–sorbent adducts. The presence of glycerol in the model provoked significant changes in the interactions with isoproturon and methomyl. - Highlights: • Suberin has low affinity to retain pesticides of aliphatic character. • Suberin has a moderate affinity to adsorb isoproturon. • Modeling calculations show that apolar portion of suberin interacts with isoproturon.

  16. Core sequence of PAPf39 amyloid fibrils and mechanism of pH-dependent fibril formation: the role of monomer conformation.

    Science.gov (United States)

    French, Kinsley C; Makhatadze, George I

    2012-12-21

    PAPf39, a 39-residue peptide fragment from human prostatic acidic phosphatase, has been shown to form amyloid fibrils in semen (SEVI), which increase HIV infectivity by up to 5 orders of magnitude. The sequence of the PAPf39 fibrillar core was identified using hydrogen-deuterium exchange (HDX) mass spectrometry and protease protection assays. The central and C-terminal regions are highly protected from HDX and proteolytic cleavage and, thus, are part of the fibrillar core. Conversely, the N-terminal region is unprotected from HDX and proteolytic cleavage, suggesting that it is exposed and not part of the fibrillar core. This finding was tested using two N-terminal truncated variants, PAPf39Δ1-8 and PAPf39Δ1-13. Both variants formed amyloid fibrils at neutral pH. However, these variants showed a markedly different pH dependence of fibril formation versus that of PAPf39. PAPf39 fibrils can form at pH 7.7, but not at pH 5.5 or 2.5, while both N-terminally truncated variants can form fibrils at these pH values. Thus, the N-terminal region is not necessary for fibril formation but modulates the pH dependence of PAPf39 fibril formation. PAPf39Δ1-8 and PAPf39Δ1-13 are capable of seeding PAPf39 fibril formation at neutral pH, suggesting that these variants are structurally compatible with PAPf39, yet no mixed fibril formation occurs between the truncated variants and PAPf39 at low pH. This suggests that pH affects the PAPf39 monomer conformational ensemble, which is supported by far-UV circular dichroism spectroscopy. A conceptual model describing the pH dependence of PAPf39 aggregation is proposed and provides potential biological implications.

  17. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.

    Directory of Open Access Journals (Sweden)

    Bankanidhi Sahoo

    Full Text Available Expansion of the polyglutamine (polyQ track of the Huntingtin (HTT protein above 36 is associated with a sharply enhanced risk of Huntington's disease (HD. Although there is general agreement that HTT toxicity resides primarily in N-terminal fragments such as the HTT exon1 protein, there is no consensus on the nature of the physical states of HTT exon1 that are induced by polyQ expansion, nor on which of these states might be responsible for toxicity. One hypothesis is that polyQ expansion induces an alternative, toxic conformation in the HTT exon1 monomer. Alternative hypotheses posit that the toxic species is one of several possible aggregated states. Defining the nature of the toxic species is particularly challenging because of facile interconversion between physical states as well as challenges to identifying these states, especially in vivo. Here we describe the use of fluorescence correlation spectroscopy (FCS to characterize the detailed time and repeat length dependent self-association of HTT exon1-like fragments both with chemically synthesized peptides in vitro and with cell-produced proteins in extracts and in living cells. We find that, in vitro, mutant HTT exon1 peptides engage in polyQ repeat length dependent dimer and tetramer formation, followed by time dependent formation of diffusible spherical and fibrillar oligomers and finally by larger, sedimentable amyloid fibrils. For expanded polyQ HTT exon1 expressed in PC12 cells, monomers are absent, with tetramers being the smallest molecular form detected, followed in the incubation time course by small, diffusible aggregates at 6-9 hours and larger, sedimentable aggregates that begin to build up at 12 hrs. In these cell cultures, significant nuclear DNA damage appears by 6 hours, followed at later times by caspase 3 induction, mitochondrial dysfunction, and cell death. Our data thus defines limits on the sizes and concentrations of different physical states of HTT exon1 along the

  18. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Del Prete, Zaccaria

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1(G93A) transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1(G93A) animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1(G93A) neuromuscular junctions.

  19. Production of Human Cu,Zn SOD with Higher Activity and Lower Toxicity in E. coli via Mutation of Free Cysteine Residues

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2017-01-01

    Full Text Available Although, as an antioxidant enzyme, human Cu,Zn superoxide dismutase 1 (hSOD1 can mitigate damage to cell components caused by free radicals generated by aerobic metabolism, large-scale manufacturing and clinical use of hSOD1 are still limited by the challenge of rapid and inexpensive production of high-quality eukaryotic hSOD1 in recombinant forms. We have demonstrated previously that it is a promising strategy to increase the expression levels of soluble hSOD1 so as to increase hSOD1 yields in E. coli. In this study, a wild-type hSOD1 (wtSOD1 and three mutant SOD1s (mhSOD1s, in which free cysteines were substituted with serine, were constructed and their expression in soluble form was measured. Results show that the substitution of Cys111 (mhSOD1/C111S increased the expression of soluble hSOD1 in E. coli whereas substitution of the internal Cys6 (mhSOD1/C6S decreased it. Besides, raised levels of soluble expression led to an increase in hSOD1 yields. In addition, mhSOD1/C111S expressed at a higher soluble level showed lower toxicity and stronger whitening and antiradiation activities than those of wtSOD1. Taken together, our data demonstrate that C111S mutation in hSOD1 is an effective strategy to develop new SOD1-associated reagents and that mhSOD1/C111S is a satisfactory candidate for large-scale production.

  20. Bee Venom Acupuncture Augments Anti-Inflammation in the Peripheral Organs of hSOD1G93A Transgenic Mice.

    Science.gov (United States)

    Lee, Sun-Hwa; Choi, Sun-Mi; Yang, Eun Jin

    2015-07-29

    Amyotrophic lateral sclerosis (ALS) includes progressively degenerated motor neurons in the brainstem, motor cortex, and spinal cord. Recent reports demonstrate the dysfunction of multiple organs, including the lungs, spleen, and liver, in ALS animals and patients. Bee venom acupuncture (BVA) has been used for treating inflammatory diseases in Oriental Medicine. In a previous study, we demonstrated that BV prevented motor neuron death and increased anti-inflammation in the spinal cord of symptomatic hSOD1G93A transgenic mice. In this study, we examined whether BVA's effects depend on acupuncture point (ST36) in the organs, including the liver, spleen and kidney, of hSOD1G93A transgenic mice. We found that BV treatment at ST36 reduces inflammation in the liver, spleen, and kidney compared with saline-treatment at ST36 and BV injected intraperitoneally in symptomatic hSOD1G93A transgenic mice. Those findings suggest that BV treatment combined with acupuncture stimulation is more effective at reducing inflammation and increasing immune responses compared with only BV treatment, at least in an ALS animal model.

  1. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    OpenAIRE

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O−2) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS pa...

  2. Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khandadash, Raz; Machtey, Victoria [Bar Ilan University, Department of Chemistry (Israel); Shainer, Inbal [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences (Israel); Gottlieb, Hugo E. [Bar Ilan University, Department of Chemistry (Israel); Gothilf, Yoav [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience (Israel); Ebenstein, Yuval [Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry (Israel); Weiss, Aryeh [Bar Ilan University, School of Engineering (Israel); Byk, Gerardo, E-mail: gerardo.byk@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2014-12-15

    Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.

  3. Monomers capable of forming four hydrogen bridges and supramolecular polymers formed by copolymerization of these monomers with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  4. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Allen, Latoya L; Grebe, Ashley M; Mitchell, Gordon S

    2017-06-14

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model ( SOD1 G93A ), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1 G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: G q -protein-coupled 5-HT 2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: G s -protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male S OD1 G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1 G93A rats (∼30% survival; p phrenic motor neurons ( p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. Copyright © 2017 the authors 0270-6474/17/375834-12$15.00/0.

  5. Formation of trans-2-[4-(Dimethylamino)Styryl]-3-Ethyl-1,3-Benzothiazolium Perchlorate Dimers in the Presence of Sodium Polystyrene Sulfonate

    Science.gov (United States)

    Lavysh, A. V.; Maskevich, A. A.; Lugovskii, A. A.; Voropai, E. S.; Sulatskaya, A. I.; Kuznetsova, I. M.; Turoverov, K. K.

    2017-01-01

    The spectral properties of a novel thioflavin T derivative, trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate (DMASEBT), were studied in aqueous solutions in the presence of sodium polystyrene sulfonate (SPS). It was shown that SPS either could interact with dye monomers or initiate the formation of non-fluorescent dye dimers depending on the concentration ratio of dye and polyelectrolyte. DMASEBT dimer formation in the presence of SPS produced a hypsochromic shift by 40 nm in the absorption spectrum and quenched fluorescence. A bathochromic shift of the absorption spectrum and an increase of the fluorescence intensity by an order of magnitude were observed if DMASEBT monomers interacted with SPS. Quantum-chemical analysis found that sandwich dimers (H-aggregates) were most stable. A comparison of DMASEBT spectra in the presence of SPS and amyloid fibrils showed that DMASEBT molecules were incorporated into amyloid fibrils as monomers. The spectral changes associated with this incorporation could not be explained by the formation of dye aggregates.

  6. Structural similarity between β(3)-peptides synthesized from β(3)-homo-amino acids and aspartic acid monomers.

    Science.gov (United States)

    Ahmed, Sahar; Sprules, Tara; Kaur, Kamaljit

    2014-07-01

    Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β(3)-hexapeptides synthesized from L-aspartic acid monomers (β(3)-peptides 1, 5a, and 6) or homologated β(3)-amino acids (β(3)-peptide 2), fold into similar stable 14-helical secondary structures in solution, except that the former form right-handed 14-helix and the later form left-handed 14-helix. β(3)-Peptides from L-Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β(3)-peptide from L-Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side-chain interactions. These results suggest that the β(3)-peptides derived from L-Asp are promising peptide-mimetics that can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical conformation of these β(3)-peptides (such as 1 and 6) may prove beneficial in the design of mimics for right-handed α-helix of α-peptides. © 2014 Wiley Periodicals, Inc.

  7. A single nucleotide change affects fur-dependent regulation of sodB in H. pylori.

    Directory of Open Access Journals (Sweden)

    Beth M Carpenter

    Full Text Available Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur in the absence of iron (apo-Fur regulation [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter.

  8. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet; Zulfiqar, Sonia; Edhaim, Fatimah; Ruiperez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  9. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  10. The stability and formation of native proteins from unfolded monomers is increased through interactions with unrelated proteins.

    Directory of Open Access Journals (Sweden)

    Claudia Rodríguez-Almazán

    Full Text Available The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins.

  11. Influence of Monomer Concentration on the Morphologies and Electrochemical Properties of PEDOT, PANI, and PPy Prepared from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Shalini Kulandaivalu

    2016-01-01

    Full Text Available Poly(3,4-ethylenedioxyhiophene (PEDOT, polyaniline (PANI, and polypyrrole (PPy were prepared on indium tin oxide (ITO substrate via potentiostatic from aqueous solutions containing monomer and lithium perchlorate. The concentration of monomers was varied between 1 and 10 mM. The effects of monomer concentration on the polymers formation were investigated and compared by using Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, scanning electron microscopy (SEM, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS measurements. FTIR and Raman spectra showed no changes in the peaks upon the increment of the concentration. Based on the SEM images, the increment in monomer concentration gives significant effect on morphologies and eventually affects the electrochemical properties. PEDOT electrodeposited from 10 mM solution showed excellent electrochemical properties with the highest specific capacitance value of 12.8 mF/cm2.

  12. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  13. The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type.

    Directory of Open Access Journals (Sweden)

    Katie Richardson

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. Substantial evidence implicates oxidative stress and mitochondrial dysfunction as early events in disease progression. Our aim was to ascertain whether mutation of the SOD1 protein increases metabolic functional susceptibility to oxidative stress. Here we used a motor neuron-like cell line (NSC34 stably transfected with various human mutant SOD1 transgenes (G93A, G37R, H48Q to investigate the impact of oxidative stress on cell viability and metabolic function within intact cells. NSC34 cells expressing mutant SOD1 showed a dose dependent reduction in cell viability when exposed to oxidative stress induced by hydrogen peroxide, with variation between mutations. The G93A transfectants showed greater cell death and LDH release compared to cells transfected with the other SOD1 mutations, and H48Q showed an accelerated decline at later time points. Differences in mitochondrial bioenergetics, including mitochondrial respiration, coupling efficiency and proton leak, were identified between the mutations, consistent with the differences observed in viability. NSC34 cells expressing G93A SOD1 displayed reduced coupled respiration and mitochondrial membrane potential compared to controls. Furthermore, the G93A mutation had significantly increased metabolic susceptibility to oxidative stress, with hydrogen peroxide increasing ROS production, reducing both cellular oxygen consumption and glycolytic flux in the cell. This study highlights bioenergetic defects within a cellular model of ALS and suggests that oxidative stress is not only detrimental to oxygen consumption but also glycolytic flux, which could lead to an energy deficit in the cell.

  14. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down

  15. Differential survival among sSOD-1* genotypes in Chinook Salmon

    Science.gov (United States)

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  16. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    Directory of Open Access Journals (Sweden)

    Jianguo eZhu

    2011-11-01

    Full Text Available Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD in a recombinant strain of RB51 (strain RB51SOD significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte (CTL activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS. Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  17. Molecular Cloning and Expression Analysis of Cu/Zn SOD Gene from Gynura bicolor DC.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-01-01

    Full Text Available Superoxide dismutase is an important antioxidant enzyme extensively existing in eukaryote, which scavenges reactive oxygen species (ROS and plays an essential role in stress tolerance of higher plants. A full-length cDNA encoding Cu/Zn SOD was cloned from leaves of Gynura bicolor DC. by rapid amplification of cDNA ends (RACE. The full-length cDNA of Cu/Zn SOD is 924 bp and has a 681 bp open reading frame encoding 227 amino acids. Bioinformatics analysis revealed that belonged to the plant SOD super family. Cu/Zn SODs of the Helianthus annuus, Mikania micrantha, and Solidago canadensis var. scabra all have 86% similarity to the G. bicolor Cu/Zn SOD. Analysis of the expression of Cu/Zn SOD under different treatments revealed that Cu/Zn SOD was a stress-responsive gene, especially to 1-MCP. It indicates that the Cu/Zn SOD gene would be an important gene in the resistance to stresses and will be helpful in providing evidence for future research on underlying molecular mechanism and choosing proper postharvest treatments for G. bicolor.

  18. Photoligation of self-assembled DNA constructs containing anthracene-functionalized 2'-amino-LNA monomers

    DEFF Research Database (Denmark)

    Pasternak, Karol; Pasternak, Anna; Gupta, Pankaj

    2011-01-01

    Efficient synthesis of a novel anthracene-functionalized 2'-amino-LNA phosphoramidite derivative is described together with its incorporation into oligodeoxynucleotides. Two DNA strands with the novel 2'-N-anthracenylmethyl-2'-amino-LNA monomers can be effectively cross-linked by photoligation...... at 366nm in various types of DNA constructs. Successful application of three differently functionalized 2'-amino-LNA monomers in self-assembled higher ordered structures for simultaneous cross-linking and monitoring of assembly formation is furthermore demonstrated....

  19. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  20. Elution of Monomers from Provisional Composite Materials

    Directory of Open Access Journals (Sweden)

    Simon Daniel Schulz

    2015-01-01

    Full Text Available The aim of this study was to evaluate the elution of substances from different materials used for the manufacturing of temporary indirect restorations, after storage in saliva and ethanol 75%. 10 samples of three chemically cured materials (Protemp 3 Garant, Systemp.c&b, and Trim and one light-cured material (Clip F were stored in saliva and ethanol 75% for 24 h, 7, and days 28 days. From the storage media at each time period, samples were prepared and analysed by LC-MS/MS, in order to access the elution of monomers. The results differed among the materials (P ≤ 0.05. No monomers were detected in the samples of Protemp 3 Garant and Clip F. Substances were detected only in ethanol samples of Systemp.c&b and Trim. The amount of BisGMA, TEGDMA, and UDMA 2 released from Systemp.c&b was higher compared to Trim. Storage time affected the release of substances (P ≤ 0.05. The highest release was observed within the first 24 h. It can be concluded that provisional resin composite materials do not show high release of monomers and this release is material dependent. However, the detection of additional peaks during the analysis, suggesting the formation of by-products of the eluted substances, may not be in favour of these materials with respect to their toxicity.

  1. Stability of Seven Days Sample Storage of Erythrocyte’s SOD and Blood’s GPx

    Directory of Open Access Journals (Sweden)

    Miswar Fattah

    2012-12-01

    Full Text Available The research was about SOD erythrocyte activities at day 0, 1, 3, 5, and 7 which centrifuged at room temperature (22.5 0C and storage temperature (-80 0C, SOD activities at day-0 which centrifuged at 4 0C, SOD whole blood activities with one day incubated at 2-8 0C and GPx activities at day 0, 1, 3, 5, and 7 with 2–8 0C storage temperature. Laboratory analysis were performed by using reagent from Randox Laboratories, and Hitachi 917 analyzer from Boehringer Mannheim. SOD activities were measured at 505 nm absorbance meanwhile 340 nm absorbance is used to measure GPx. Data was analyzed by using t-test method and showed that SOD activities at day 0, 1, 3, 5, and 7 with room temperature centrifuged had no significant differences. Significant differences are found at day-0 with centrifuged at 4 0C and one day incubated whole blood at 2–8 0C. GPx activities at day- 3 had no significant differences. Significant differences are found at day-0,1, 5 and 7 after storage.

  2. The effects of 3% diquafosol sodium eye drop application on meibomian gland and ocular surface alterations in the Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice.

    Science.gov (United States)

    Ikeda, Keisuke; Simsek, Cem; Kojima, Takashi; Higa, Kazunari; Kawashima, Motoko; Dogru, Murat; Shimizu, Takahiko; Tsubota, Kazuo; Shimazaki, Jun

    2018-04-01

    The purpose of the study is to investigate the effect of 3% diquafosol sodium eye drops on meibomian gland and ocular surface alterations in the superoxide dismutase-1 (Sod1 -/- ) mice in comparison to the wild-type mouse. Three percent diquafosol sodium eye drop was instilled to 20 eyes of 10 50-week-old male Sod1 -/- mice and 22 eyes of 11 C57BL/6 strain 50-week-old wild-type (WT) male mice six times a day for 2 weeks. Aqueous tear secretion quantity was measured with phenol red-impregnated cotton threads without anesthesia. Tear film stability and corneal epithelial damage were assessed by fluorescein and lissamine green staining. We also performed oil red O (ORO) lipid staining to evaluate the lipid changes in the meibomian glands. Meibomian gland specimens underwent hematoxylin and eosin staining to examine histopathological changes and meibomian gland acinar unit density after sacrifice. Immunohistochemistry staining was performed using cytokeratin 4, cytokeratin 13, and transglutaminase-1 antibodies. Quantitative real-time polymerase chain reaction for cytokeratin 4, cytokeratin 13, and transglutaminase-1 mRNA expression was also performed. The aqueous tear quantity, the mean tear film breakup time, and the number of lipid droplets significantly improved in the Sod1 -/- mice with treatment. The mean meibomian acinar unit density did not change in the Sod1 -/- mice and WT mice after treatment. Application of 3% diquafosol sodium eye drop significantly decreased the corneal fluorescein and lissamine green staining scores in the Sod1 -/- mice after 2 weeks. We showed a notable increase in cytokeratin 4, cytokeratin 13 immunohistochemistry staining, and cytokeratin 4, cytokeratin 13 mRNA expressions with a marked decrease in immunohistochemistry staining and significant decline in mRNA expression of transglutaminase-1 after 3% diquafosol sodium treatment. Topical application of 3% diquafosol sodium eye drop improved the number of lipid droplets, tear stability

  3. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  4. Coal combustion by-product (CCB) utilization in turfgrass sod production

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Miller, W.P. [University of Georgia, Athens, GA (United States). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) are produced nationwide, generating 101 Mg of waste annually. Though varied, the majority of CCB are crystalline alumino-silicate minerals. Both disposal costs of CCB and interest in alternative horticultural/agricultural production systems have increased recently. Field studies assessed the benefit of CCB and organic waste/product mixtures as supplemental soil/growth media for production of hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod. Growth media were applied at depths of 2 to 4 cm (200 to 400 m{sup 3}{center_dot}ha{sup -1}) and vegetatively established by sprigging. Cultural practices typical of commercial methods were employed over 99- or 114-day growth periods. Sod was monitored during these propagation cycles, then harvested, evaluated, and installed offsite in a typical lawn-establishment method. Results showed mixtures of CCB and biosolids as growth media increased yield of biomass, with both media and tissue having greater nutrient content than the control media. Volumetric water content of CCB-containing media significantly exceeded that of control media and soil included with a purchased bermudagrass sod. Once installed, sod grown on CCB-media did not differ in rooting strength from control or purchased sod. When applied as described, physicochemical characteristics of CCB-media are favorable and pose little environmental risk to soil or water resources.

  5. The SOD gene family in tomato: identification, phylogenetic relationships and expression patterns

    Directory of Open Access Journals (Sweden)

    kun feng

    2016-08-01

    Full Text Available Superoxide dismutases (SODs are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L. is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  6. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge

    2017-04-01

    Full Text Available Summary: Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. : In this article, Bhinge, Stanton, and colleagues use genome editing of patient-derived iPSCs to model ALS phenotypic defects in vitro. Transcriptomic analysis of disease MNs reveals activation of MAPK, AP1, WNT, cell-cycle, and p53 signaling in ALS MNs. Pharmacological screening uncovers activated ERK and JNK signaling as therapeutic targets in ALS. Keywords: ALS, SOD1, FUS, CRISPR-Cas9, p38, ERK, JNK, WNT, TP53, JUN

  7. Molecular identification of Nocardia species using the sodA gene: Identificación molecular de especies de Nocardia utilizando el gen sodA.

    Science.gov (United States)

    Sánchez-Herrera, K; Sandoval, H; Mouniee, D; Ramírez-Durán, N; Bergeron, E; Boiron, P; Sánchez-Saucedo, N; Rodríguez-Nava, V

    2017-09-01

    Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sod A gene (encoding the enzyme superoxide dismutase) has had good results in identifying species of other Actinomycetes. In this study the sod A gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sod A gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp), hsp 65 (401 bp), sec A1 (494 bp), gyr B (1195 bp) and rpo B (401 bp). The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sod A genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sod A gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  8. Polymerization of Polar Monomers from a Theoretical Perspective

    KAUST Repository

    Alghamdi, Miasser

    2016-10-11

    Density functional theory calculations have been used to investigate catalytic mechanism of polymer formation containing polar groups, from the synthesis of the monomer to the synthesis of the macromolecule. In the spirit of a sustainable and green chemistry, we initially focused attention on the coupling of CO2 as economically convenient and recyclable C1 source with C2H4 to form acrylate and/or butirro-lactone, two important polar monomers. In this process formation of a mettallolactone via oxidative coupling of CO2 and C2H4 is an important intermediate. Given this background, we explored in detail (chapter-3) several Ni based catalysts for CO2 coupling with C2H4 to form acrylate. In this thesis we report on the competitive reaction mechanisms (inner vs outer sphere) for the oxidative coupling of CO2 and ethylene for a set of 11 Ni-based complexes containing bisphosphine ligands. In another effort, considering incorporation of a C=C bond into a metal-oxygen-Functional-Group moiety is a challenging step in several polymerization reactions, we explored the details of this reaction (chapter4) using two different catalysts that are capable to perform this reaction in the synthesis of heterocycles. Specifically, the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-Bis-diphenylphosphino-propane), and the [Pd]/BPh3 intramolecular alkoxyfunctionalizations. Rest of the thesis we worked on understanding the details of the polymerization of polar monomers using organocatalysts based on N-heterocyclic carbenes (NHC) or N-heterocyclic olefins (NHO). In particular (chapter-5) we studied the polymerization of N-methyl N-carboxy- anhydrides, towards cyclic poly(N-substituted glycine)s, promoted by NHC catalysts. In good agreement with the experimental findings, we demonstrated that NHC promoted ring opening polymerization of N-Me N-Carboxyanhydrides may proceed via two different catalytic pathways. In a similar effort we studied polymerization of

  9. Comparison of dendritic calcium transients in juvenile wild type and SOD1G93A mouse lumbar motoneurons

    Directory of Open Access Journals (Sweden)

    Katharina Ann Quinlan

    2015-04-01

    Full Text Available Previous studies of spinal motoneurons in the SOD1 mouse model of amyotrophic lateral sclerosis have shown alterations long before disease onset, including increased dendritic branching, increased persistent Na+ and Ca2+ currents, and impaired axonal transport. In this study dendritic Ca2+ entry was investigated using 2 photon excitation fluorescence microscopy and whole-cell patch-clamp of juvenile (P4-11 motoneurons. Neurons were filled with both Ca2+ Green-1 and Texas Red dextrans, and line scans performed throughout. Steps were taken to account for different sources of variability, including 1 dye filling and laser penetration, 2 dendritic anatomy, and 3 the time elapsed from the start of recording. First, Ca2+ Green-1 fluorescence was normalized by Texas Red; next, neurons were reconstructed so anatomy could be evaluated; finally, time was recorded. Customized software detected the largest Ca2+ transients (area under the curve from each line scan and matched it with parameters above. Overall, larger dendritic diameter and shorter path distance from the soma were significant predictors of larger transients, while time was not significant up to 2 hours (data thereafter was dropped. However, Ca2+ transients showed additional variability. Controlling for previous factors, significant variation was found between Ca2+ signals from different processes of the same neuron in 3/7 neurons. This could reflect differential expression of Ca2+ channels, local neuromodulation or other variations. Finally, Ca2+ transients in SOD1G93A motoneurons were significantly smaller than in non-transgenic motoneurons. In conclusion, motoneuron processes show highly variable Ca2+ transients, but these transients are smaller overall SOD1G93A motoneurons.

  10. Repair effects of exogenous SOD on Bacillus subtilis against gamma radiation exposure

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Zhang, E.; Fang, Liu; Zhang, Jianguo; Zhu, Jie; He, Wei; Luo, Xuegang

    2013-01-01

    Superoxide dismutase (SOD) is an enzyme that removes free radicals from cells in many organisms. In order to further characterize these repair effects and their mechanism when subjected to radiation, Bacillus subtilis cells were exposed to gamma radiation and the cell survival rate, intracellular SOD activity, and DNA double-strand breakage were investigated. Vegetative cells of B. subtilis were irradiated by 60 Co gamma radiation at varying doses and subsequently exposed to varying levels of exogenous SOD. Standard plate-count, xanthine oxidase, and pulsed-field gel electrophoresis (PFGE) methods were employed to investigate the repair effects. The results showed that the exogenous SOD could significantly improve cell survival rate and intracellular SOD activity after gamma radiation. The cell survival rate was elevated 30–87 times above levels observed in control samples. Adding exogenous SOD into gamma irradiated cells may dramatically increase intracellular SOD activity (p 60 Co γ radiation and exposed to exogenous SOD. • Adding exogenous SOD into γ-irradiated cells may dramatically increase cell survival rate. • DNA strand scission may be prevented by addition of SOD. • Exogenous SOD may have the ability to repair cell damage after γ-rays radiation

  11. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F.; Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B.; Moreira, Otavio M.

    2009-01-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  12. The specific monomer/dimer equilibrium of the corticotropin-releasing factor receptor type 1 is established in the endoplasmic reticulum.

    Science.gov (United States)

    Teichmann, Anke; Gibert, Arthur; Lampe, André; Grzesik, Paul; Rutz, Claudia; Furkert, Jens; Schmoranzer, Jan; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2014-08-29

    G protein-coupled receptors (GPCRs) represent the most important drug targets. Although the smallest functional unit of a GPCR is a monomer, it became clear in the past decades that the vast majority of the receptors form dimers. Only very recently, however, data were presented that some receptors may in fact be expressed as a mixture of monomers and dimers and that the interaction of the receptor protomers is dynamic. To date, equilibrium measurements were restricted to the plasma membrane due to experimental limitations. We have addressed the question as to where this equilibrium is established for the corticotropin-releasing factor receptor type 1. By developing a novel approach to analyze single molecule fluorescence cross-correlation spectroscopy data for intracellular membrane compartments, we show that the corticotropin-releasing factor receptor type 1 has a specific monomer/dimer equilibrium that is already established in the endoplasmic reticulum (ER). It remains constant at the plasma membrane even following receptor activation. Moreover, we demonstrate for seven additional GPCRs that they are expressed in specific but substantially different monomer/dimer ratios. Although it is well known that proteins may dimerize in the ER in principle, our data show that the ER is also able to establish the specific monomer/dimer ratios of GPCRs, which sheds new light on the functions of this compartment. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1–42 fibril formation

    Science.gov (United States)

    Peng, Jian; Xiong, Yunjing; Lin, Zhiqin; Sun, Liping; Weng, Jian

    2015-01-01

    Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer’s disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi2Se3 in aqueous solution. Then we separated few-layer Bi2Se3 with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ1-42 aggregation. The results show that smaller and thinner few-layer Bi2Se3 had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi2Se3 and Aβ1-42 monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi2Se3 for Aβ1−42 monomers. Few-layer Bi2Se3 also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi2Se3 in the biomedical field. PMID:26018135

  14. Bermudagrass sod growth and metal uptake in coal combustion by-product-amended media

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Vanags, C.P.; Miller, W.P. [University of Georgia, Athens, GA (USA). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) include fly ash and bottom ash and are generated nationally at rates of 10{sup 8} Mg yr{sup -1}. Land applications of CCB have improved physicochemical properties of soil, yet inherent bulkiness and trace metal content of CCB often limit their use. Likewise, utilization of biosolids and manure as fertilizer can be problematic due to unfavorable nutrient ratios. A 2-yr field study evaluated environmental and technical parameters associated with CCB-organic waste utilization as growth media in turfgrass sod production. Experimental growth media formulated with CCB and organic waste and a sand-compost control mixture were uniformly spread at rates from 200 to 400 m{sup 3} ha{sup -1} and sprigged with hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy). Leaf clippings were collected and analyzed for total elemental content each year. In Year 2, growth media samples were collected during establishment 47 and 84 days after planting (DAP) and viable Escherichia coli organisms were quantified. At harvest (99 or 114 DAP), sod biomass and physicochemical properties of the growth media were measured. During sod propagation, micronutrient and metal content in leaf clippings varied by growth media and time. After 47 d of typical sod field management, viable E. coli pathogens were detected in only one biosolids-amended plot. No viable E. coli were measured at 84 DAP. In both years, sod biomass was greatest in media containing biosolids and fly ash. Following installation of sod, evaluations did not reveal differences by media type or application volume. Using CCB-organic waste mixes at the rates described herein is a rapid and environmentally safe method of bermudagrass sod production.

  15. Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Mead, Richard J; Bennett, Ellen J; Kennerley, Aneurin J; Sharp, Paul; Sunyach, Claire; Kasher, Paul; Berwick, Jason; Pettmann, Brigitte; Battaglia, Guiseppe; Azzouz, Mimoun; Grierson, Andrew; Shaw, Pamela J

    2011-01-01

    The human SOD1(G93A) transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1(G93A) transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  16. A Quick Phenotypic Neurological Scoring System for Evaluating Disease Progression in the SOD1-G93A Mouse Model of ALS.

    Science.gov (United States)

    Hatzipetros, Theo; Kidd, Joshua D; Moreno, Andy J; Thompson, Kenneth; Gill, Alan; Vieira, Fernando G

    2015-10-06

    The SOD1-G93A transgenic mouse is the most widely used animal model of amyotrophic lateral sclerosis (ALS). At ALS TDI we developed a phenotypic screening protocol, demonstrated in video herein, which reliably assesses the neuromuscular function of SOD1-G93A mice in a quick manner. This protocol encompasses a simple neurological scoring system (NeuroScore) designed to assess hindlimb function. NeuroScore is focused on hindlimb function because hindlimb deficits are the earliest reported neurological sign of disease in SOD1-G93A mice. The protocol developed by ALS TDI provides an unbiased assessment of onset of paresis (slight or partial paralysis), progression and severity of paralysis and it is sensitive enough to identify drug-induced changes in disease progression. In this report, the combination of a detailed manuscript with video minimizes scoring ambiguities and inter-experimenter variability thus allowing for the protocol to be adopted by other laboratories and enabling comparisons between studies taking place at different settings. We believe that this video protocol can serve as an excellent training tool for present and future ALS researchers.

  17. N-Heterocyclic Olefins as Initiators for the Polymerization of (Meth)Acrylic Monomers: A Combined Experimental and Theoretical Approach

    KAUST Repository

    Naumann, Stefan

    2017-08-25

    The zwitterionic organopolymerization of four different acrylic monomers (N,N-dimethylacrylamide, methyl acrylate, methyl methacrylate and tert-butyl methacrylate) based on neutral initiators, so-called N-heterocyclic olefins (NHOs), is presented. Scope and underlying (deactivation-)mechanisms where studied in a combined experimental and computational effort. From a range of differently structured NHOs it emerged that imidazole-, in contrast to imidazoline- and benzimidazole-derivatives, readily polymerize the selected monomers. While the additive-free reactions proceed with a relatively low degree of control to yield largely atactic material, for the acrylamide the addition of LiCl as µ-type ligand has been shown to result in a rapid and quantitative monomer consumption. The thus generated poly(N,N-dimethyl acrylamide) was found to be highly isotactic (>90% isotactic dyads) with high molecular weight (Mn = 250 000 – 650 000 g/mol, ÐM = 1.3- 1.6). Complementing DFT calculations considered the zwitterionic chain growth with respect to competing side reactions, namely spirocycles and enamine formation. It was found that NHOs with unsaturated backbone better support the zwitterionic chain growth, with the spirocycles acting as dormant species that slow down but do not quench the polymerization process. Contrasting this, enamine formation irreversibly terminates the polymerization and is found to be energetically favored. This pathway can be blocked by introduction of substituents on the exocyclic carbon of the NHO, resulting in structures like 2-isopropylidene-1,3,4,5-tetramethylimidazoline (4) which consequently deliver the most controlled polymerizations. Finally, a good correlation of the initiation energy barrier with the buried volume (%VBur) and the Parr electrophilicity index is described, allowing for a quick and reliable screening of potential monomers based on these two readily accessible parameters.

  18. Maximization and handling of sod peat loading. Final report; Palaturpeen kuormituksen maksimointi ja kaesittely. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Nurmi, H.; Paappanen, T.; Frilander, P.

    1996-11-01

    The objective of this two year (1994-1995) project was to improve especially the efficiency of sod peat production, carried out using spreading wagon method, by increasing the sod peat load set for the field to value 20 kgDgm{sup 2} (original value 10-14 kgDgm{sup 2}), and by studying and developing a collection method for ridging and ridge processing, suitable for high-loads. The research was emphasized to laboratory tests, but some field test were also made. Laboratory test equipment, to be mounted to peat machine simulator, were constructed, and picking-up of sod peat was tested in laboratory. It was possible to increase the sod peat load most accurately to 20 kgDgm{sup 2} by using wave-like sod peat. The picking device of the ridger consisted of a grid, standing the sod up, moving on the field. Above this there is a rotating truncheon coil which transfers the sod along the grid to further processing. The share of the fines by weight, loosened from the field during picking up of the sod was 0.5 % of the sod-mass, and the losses were 11 % of the number of the sod. At the driving speed 2.9 km/h the suitable coil rotation speed was about 20 r/min, hence the rotation speed of the truncheons was twice as high as the driving speed. A picking device, which consisted of two vertical truncheon-coils rotating into opposite directions, was constructed for collection of sod in the ridge. The operation of the device appeared to be good. While picking-up the sod in the ridge on the average 1.3 % of fines was loosened from the field with respect to the sod-mass. 41 % of the fines mixed with the ridge was sieved. The losses were on the average 3.9 % of the sod-mass. The highest measured power demand was 12 kW as the driving speed was 3.0 km/h. Collection method developed within this project, requires more field tests before commercial use

  19. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples.

    Science.gov (United States)

    Sonoda, T; Ona, T; Yokoi, H; Ishida, Y; Ohtani, H; Tsuge, S

    2001-11-15

    Detailed quantitative analysis of lignin monomer composition comprising p-coumaryl, coniferyl, and sinapyl alcohol and p-coumaraldehyde, coniferaldehyde, and sinapaldehyde in plant has not been studied from every point mainly because of artifact formation during the lignin isolation procedure, partial loss of the lignin components inherent in the chemical degradative methods, and difficulty in the explanation of the complex spectra generally observed for the lignin components. Here we propose a new method to quantify lignin monomer composition in detail by pyrolysis-gas chromatography (Py-GC) using acetylated lignin samples. The lignin acetylation procedure would contribute to prevent secondary formation of cinnamaldehydes from the corresponding alcohol forms during pyrolysis, which are otherwise unavoidable in conventional Py-GC process to some extent. On the basis of the characteristic peaks on the pyrograms of the acetylated sample, lignin monomer compositions in various dehydrogenative polymers (DHP) as lignin model compounds were determined, taking even minor components such as cinnamaldehydes into consideration. The observed compositions by Py-GC were in good agreement with the supplied lignin monomer contents on DHP synthesis. The new Py-GC method combined with sample preacetylation allowed us an accurate quantitative analysis of detailed lignin monomer composition using a microgram order of extractive-free plant samples.

  20. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Tobias eMühling

    2014-11-01

    Full Text Available Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS, a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs from a common ALS mouse model, endstage superoxide dismutase SOD1G93A transgenic mice, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT positive hMNs from wildtype (WT and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1 and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na2+/Ca2+exchanger NCX1 was also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a novel neuroprotective strategy for ALS.

  1. The Effects of Bee Venom Acupuncture on the Central Nervous System and Muscle in an Animal hSOD1G93A Mutant

    Directory of Open Access Journals (Sweden)

    MuDan Cai

    2015-03-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM, including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA, also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p. with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.

  2. REGENERASI DAN PERBANYAKAN RUMPUT LAUT Kappaphycus alvarezii HASIL TRANSFORMASI GEN SUPEROKSIDA DISMUTASE (MaSOD

    Directory of Open Access Journals (Sweden)

    Emma Suryati

    2017-01-01

    Full Text Available Transformasi gen superoxide dismutase (MaSOD pada rumput laut Kappaphycus alvarezii menggunakan Agrobacterium tumefacient telah dilakukan secara in vitro. Transformasi gen MaSOD ke dalam genom rumput laut diharapkan dapat mengurangi cekaman oksidatif terutama yang disebabkan oleh perubahan suhu, salinitas, dan cemaran logam di perairan. Penelitian ini bertujuan untuk regenerasi rumput laut hasil introduksi gen MaSOD dan non-transgenik pada labu kultur. Regenerasi dan perbanyakan rumput laut hasil transformasi gen MaSOD dilakukan di laboratorium pada labu kultur yang diletakkan dalam “culture chamber” yang dilengkapi dengan aerasi menggunakan media kultur yang diperkaya dengan pupuk PES, Grund, Conwy, dan SSW sebagai kontrol, salinitas 20, 25, 30, 35, dan 40 g/L, pH 4, 5, 6, 7, dan 8. Intensitas cahaya antara 500-2.000 lux dengan fotoperiode terang dan gelap 8:16; 12:12; dan 16:8. Untuk merangsang pertumbuhan eksplan dilakukan pemeliharaan dengan penambahan hormon tumbuh IAA dan BAP dengan perbandingan 1:1, 1:2, dan 2:1. Penelitian dilakukan secara bertahap. Evaluasi transgenik dilakukan menggunakan teknik PCR. Hasil penelitian memperlihatkan bahwa sintasan yang paling tinggi diperoleh menggunakan media PES (94%, salinitas 30 g/L (90%, pH 7 (96%, intensitas cahaya pada 1.500 lux (80%, fotoperiode 12:12 (84%, komposisi ZPT dengan campuran IAA dan BAP dengan perbandingan 2:1. Hasil analisis PCR memperlihatkan K. alvarezii transgenik putatif mengandung transgen MaSOD sebanyak 78% dari hasil transformasi. Superoxide dismutase transformation (MaSOD gene of seaweed Kappaphycus alvarezii mediated by Agrobacterium tumefacient has been successfully done in vitro. MaSOD genes introduced into the seaweed genome is expected to reduce oxidative stress caused by environmental conditions such as changes in temperature, salinity and metal contamination of the water. This study aimed to regenerate both the MaSOD transformed seaweed and non-transgenic in a

  3. Kinetics of monomer biodegradation in soil.

    Science.gov (United States)

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A Cystine-Rich Whey Supplement (Immunocal® Delays Disease Onset and Prevents Spinal Cord Glutathione Depletion in the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Erika K. Ross

    2014-12-01

    Full Text Available Depletion of the endogenous antioxidant, glutathione (GSH, underlies progression of the devastating neurodegenerative disease, amyotrophic lateral sclerosis (ALS. Thus, strategies aimed at elevating GSH may yield new therapeutics for ALS. Here, we investigated the effects of a unique non-denatured whey protein supplement, Immunocal®, in the transgenic Gly position 93 to Ala (G93A mutant hSOD1 (hSOD1G93A mouse model of ALS. Immunocal® is rich in the GSH precursor, cystine, and is therefore capable of bolstering GSH content. Transgenic hSOD1G93A mice receiving Immunocal® displayed a significant delay in disease onset compared to untreated hSOD1G93A controls. Additionally, Immunocal® treatment significantly decreased the rate of decline in grip strength and prevented disease-associated reductions in whole blood and spinal cord tissue GSH levels in end-stage hSOD1G93A mice. However, Immunocal® did not extend survival, likely due to its inability to preserve the mitochondrial GSH pool in spinal cord. Combination treatment with Immunocal® and the anti-glutamatergic compound, riluzole, delayed disease onset and extended survival in hSOD1G93A mice. These findings demonstrate that sustaining tissue GSH with Immunocal® only modestly delays disease onset and slows the loss of skeletal muscle strength in hSOD1G93A mice. Moreover, the inability of Immunocal® to rescue mitochondrial GSH in spinal cord provides a possible mechanism for its lack of effect on survival and is a limiting factor in the potential utility of this supplement as a therapeutic for ALS.

  5. Molecular and expression analysis of manganese superoxide dismutase (Mn-SOD) gene under temperature and starvation stress in rotifer Brachionus calyciflorus.

    Science.gov (United States)

    Yang, Jianghua; Dong, Siming; Zhu, Huanxi; Jiang, Qichen; Yang, Jiaxin

    2013-04-01

    Superoxide dismutase (SOD) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species. We cloned cDNA encoding SOD activated with manganese (Mn-SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of Mn-SOD was 1,016 bp and had a 669 bp open reading frame encoding 222 amino acids. The deduced amino acid sequence of B. calyciflorus Mn-SOD showed 89.1, 71.3, and 62.1 % similarity with the Mn-SOD of the marine rotifer Brachionus plicatilis, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, respectively. The phylogenetic tree constructed based on the amino acid sequences of Mn-SODs from B. calyciflorus and other organisms revealed that this rotifer is closely related to nematodes. Analysis of the mRNA expression of Mn-SOD under different conditions revealed that expression was enhanced 5.6-fold (p 0.05). Moderate starvation promoted Mn-SOD mRNA expression (p 12 < 0.01, p 36 < 0.05), which reached a maximum value (15.3 times higher than control, p 24 < 0.01) at 24 h. SOD and CAT activities also elevated at the 12 h-starved group. These results indicate that induction of Mn-SOD expression by stressors likely plays an important role in aging of B. calyciflorus.

  6. Maximization of the sod peat load and treatment; Palaturpeen kuormituksen maksimointi ja kaesittely

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Nurmi, H.; Paappanen, T.; Frilander, P.

    1996-12-31

    The objective of this two year (1994-1995) project was to improve especially the efficiency of sod peat production, carried out using a spreading wagon, by increasing the sod peat load set for the field to value 20 kgDS/m{sup 2} (original value 10-14 kgDS/m{sup 2}), and by studying and developing a collection method for ridging and ridge processing, suitable for high-loads. The research was emphasized to laboratory tests, but some field test were also made. It was possible to increase the sod peat load most accurately to 20 kgDS/m{sup 2} by using wave-like sod peat. The drying speeds of horizontal and vertical wave-like sod peats were near to each other. The functioning of active-sod was rendered by the unevenness of the field. Production of active-sod requires less energy than production of wave-like sod. Horizontal wave-like sod was scaled using Malkov`s drying model, adjusted in cooperation with the researchers of the Russian research centre NIITP to suit better for wave-like sod peat. The best dimensions for wave were calculated for the horizontal wave-like sod using long-term weather conditions data (Pudasjaervi 1971-1990). The picking device of the ridger, developed using laboratory tests, consisted of a grid moving on the field, standing the sod up, above which there is a rotating truncheon coil which transfers the sod along the grid for further processing. The share of the fines by weight, loosened from the field during picking up the sod was 0.5 % of the sod-mass, and the losses were 11 % of the number of the sod. At the driving speed 2.9 km/h the suitable coil rotation speed was about 20 r/min, hence the rotation speed of the truncheons was twice as high as the driving speed

  7. Dimer formation enhances structural differences between amyloid β-protein (1-40 and (1-42: an explicit-solvent molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Bogdan Barz

    Full Text Available Amyloid β-protein (Aβ is central to the pathology of Alzheimer's disease. A 5% difference in the primary structure of the two predominant alloforms, Aβ(1-40 and Aβ(1-42, results in distinct assembly pathways and toxicity properties. Discrete molecular dynamics (DMD studies of Aβ(1-40 and Aβ(1-42 assembly resulted in alloform-specific oligomer size distributions consistent with experimental findings. Here, a large ensemble of DMD-derived Aβ(1-40 and Aβ(1-42 monomers and dimers was subjected to fully atomistic molecular dynamics (MD simulations using the OPLS-AA force field combined with two water models, SPCE and TIP3P. The resulting all-atom conformations were slightly larger, less compact, had similar turn and lower β-strand propensities than those predicted by DMD. Fully atomistic Aβ(1-40 and Aβ(1-42 monomers populated qualitatively similar free energy landscapes. In contrast, the free energy landscape of Aβ(1-42 dimers indicated a larger conformational variability in comparison to that of Aβ(1-40 dimers. Aβ(1-42 dimers were characterized by an increased flexibility in the N-terminal region D1-R5 and a larger solvent exposure of charged amino acids relative to Aβ(1-40 dimers. Of the three positively charged amino acids, R5 was the most and K16 the least involved in salt bridge formation. This result was independent of the water model, alloform, and assembly state. Overall, salt bridge propensities increased upon dimer formation. An exception was the salt bridge propensity of K28, which decreased upon formation of Aβ(1-42 dimers and was significantly lower than in Aβ(1-40 dimers. The potential relevance of the three positively charged amino acids in mediating the Aβ oligomer toxicity is discussed in the light of available experimental data.

  8. Molecular identification of Nocardia species using the sodA gene

    Directory of Open Access Journals (Sweden)

    K. Sánchez-Herrera

    2017-09-01

    Full Text Available Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sodA gene (encoding the enzyme superoxide dismutase has had good results in identifying species of other Actinomycetes. In this study the sodA gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sodA gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp, hsp65 (401 bp, secA1 (494 bp, gyrB (1195 bp and rpoB (401 bp. The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sodA genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sodA gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  9. Effects of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Lu Yanda

    2001-01-01

    Objective: To study the effect of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in the tumor-bearing mice. Methods: Kunming strain male mice were implanted with S 180 sarcoma cells in the right inguen subcutaneously as an experimental in situ animal model. Six hours before implantation the mice were given 75 mG whole-body X-ray irradiation and tumor-formation rate was counted 5 days late. From then, every two days the tumor volume was measured to draw a tumor growth curve. Fifteen days later, all mice were killed to measure the tumor weight, observe the necrosis area and the tumor-infiltration lymphoreticular cells (TIL) in the tumor pathologically. At the same time, erythrocyte immune function and activity of SOD were tested. Results: (1) The mice pre-exposed to low dose radiation had a lower tumor formation rate than those without a pre-exposed (P < 0.05). (2) The tumor growth slowed down significantly in mice receiving a low does irradiation; The average tumor weight in mice receiving a low dose irradiation was lighter too (P < 0.05). (3) The tumor necrosis areas were larger and TILs were more in the irradiation group than those of the control group. (4) The erythrocyte immune function and activity of SOD in the irradiation group were all higher significantly than those of the control group ( P < 0.05). Conclusion: Low dose radiation could markedly increase anti-tumor ability of the organism and improve the erythrocyte immune function and activity of SOD in red cells, suggesting it could be useful in clinical cancer treatment

  10. Thermodynamics of monomer partitioning in polymer latices: effect of molar volume of the monomers

    NARCIS (Netherlands)

    Schoonbrood, H.A.S.; German, A.L.

    1994-01-01

    A model of the thermodn. of partitioning of moderately water-sol. monomers in polymer latex systems is developed to show deviations that occur when the molar vols. of the monomers are not similar. The model, as well as expts. with Me acrylate and cyclohexyl methacrylate in polystyrene latex systems,

  11. Optimised and rapid pre-clinical screening in the SOD1(G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Richard J Mead

    Full Text Available The human SOD1(G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS. In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6 SOD1(G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  12. Article Expression, Purification, and Characterization of Cu/ZnSOD from Panax Ginseng

    Directory of Open Access Journals (Sweden)

    Dayong Ding

    2014-06-01

    Full Text Available Superoxide dismutase (SOD has a strong antioxidant effect, but the traditional SOD extraction method is not the most efficient method of SOD amplification. In this study, we report the cloning of the Cu/ZnSOD gene from Panax ginseng into a temperature-regulated expression plasmid, pBV220. Cu/ZnSOD inclusion bodies were expressed in E. coli at a high level. Then, the inclusion bodies were purified by ion-exchange chromatography and molecular sieve chromatography. Finally, we obtained stable SOD in the bacterial broth, with a protein content of 965 mg/L and enzyme specific activity of 9389.96 U/mg. These results provide a foundation for future studies on the antioxidant mechanisms of ginseng and the development and application of ginseng Cu/ZnSOD.

  13. A fused selenium-containing protein with both GPx and SOD activities

    International Nuclear Information System (INIS)

    Yu, Huijun; Ge, Yan; Wang, Ying; Lin, Chi-Tsai; Li, Jing; Liu, Xiaoman; Zang, Tianzhu; Xu, Jiayun; Liu, Junqiu; Luo, Guimin; Shen, Jiacong

    2007-01-01

    As a safeguard against oxidative stress, the balance between the main antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) was believed to be more important than any single one, for example, dual-functional SOD/CAT enzyme has been proved to have better antioxidant ability than either single enzyme. By combining traditional fusion protein technology with amino acid auxotrophic expression system, we generated a bifunctional enzyme with both GPx and SOD activities. It displayed better antioxidant ability than GPx or SOD. Such dual-functional enzymes could facilitate further studies of the cooperation of GPx and SOD and generation of better therapeutic agents

  14. Effect of irradiation on sod activity and selenium content in garlic

    International Nuclear Information System (INIS)

    Xu Weimin; Zheng Anjian; Yan Jianmin; Cao Qingsui; Wu Haihong; Cao Shifeng

    2006-01-01

    The effects of irradiation at 0.1 kGy, 1.0 kGy on SOD activity and the content of total selenium, inorganic selenium, organic selenium in garlic (Allium sativum L.) stored at 10 degree C or 25 degree C were investigated. The results indicated that irradiation treatment with 0.1 kGy, 1 kGy significantly slowed the reduction of SOD activities in garlic stored at 10 degree C or 25 degree C, while the treatment irradiation had no influence on the content of all kinds of selenium. But the garlic stored at 25 degree C had higher content of total selenium, inorganic selenium, organic selenium than that in garlic stored at 10 degree C. (authors)

  15. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis.

    Science.gov (United States)

    Parone, Philippe A; Da Cruz, Sandrine; Han, Joo Seok; McAlonis-Downes, Melissa; Vetto, Anne P; Lee, Sandra K; Tseng, Eva; Cleveland, Don W

    2013-03-13

    Mitochondria have been proposed as targets for toxicity in amyotrophic lateral sclerosis (ALS), a progressive, fatal adult-onset neurodegenerative disorder characterized by the selective loss of motor neurons. A decrease in the capacity of spinal cord mitochondria to buffer calcium (Ca(2+)) has been observed in mice expressing ALS-linked mutants of SOD1 that develop motor neuron disease with many of the key pathological hallmarks seen in ALS patients. In mice expressing three different ALS-causing SOD1 mutants, we now test the contribution of the loss of mitochondrial Ca(2+)-buffering capacity to disease mechanism(s) by eliminating ubiquitous expression of cyclophilin D, a critical regulator of Ca(2+)-mediated opening of the mitochondrial permeability transition pore that determines mitochondrial Ca(2+) content. A chronic increase in mitochondrial buffering of Ca(2+) in the absence of cyclophilin D was maintained throughout disease course and was associated with improved mitochondrial ATP synthesis, reduced mitochondrial swelling, and retention of normal morphology. This was accompanied by an attenuation of glial activation, reduction in levels of misfolded SOD1 aggregates in the spinal cord, and a significant suppression of motor neuron death throughout disease. Despite this, muscle denervation, motor axon degeneration, and disease progression and survival were unaffected, thereby eliminating mutant SOD1-mediated loss of mitochondrial Ca(2+) buffering capacity, altered mitochondrial morphology, motor neuron death, and misfolded SOD1 aggregates, as primary contributors to disease mechanism for fatal paralysis in these models of familial ALS.

  16. Polymerization of impregnated monomer in wood by microwave irradiation

    International Nuclear Information System (INIS)

    Kawase, Kaoru; Hayakawa, Kiyoshi

    1976-01-01

    The manufacturing of a wood-plastic combination (WPC) by irradiation of microwave (2,450 and 915 +- 50 MHz) or gamma-ray was carried out. After the impregnation of dry woods (Hinoki: Chamaecyparis obtusa Endl., Buna: Acer mono Maxim., and Kaede: Fagus crenata Blume) with the mixture of the vinyl monomers and chemical reagents, the monomer in wood was polymerized by irradiation. In case of polymerization with microwave (2,450 MHz) the effect of oxygen was not recognized, but in the case of gamma-ray the rate of polymerization remarkably decreased in the presence of oxygen. The polymerization of various monomers was carried out also in the air, and the conversions of styrene, methyl-, ethyl-, n-propyl-, and n-butyl-methacrylate were 51.8 -- 89.1%, but that of vinyl acetate was lower (4.3 -- 8.2%). The conversion of monomers with irradiation of 915 MHz microwave was very low (2.6 -- 33.5%). The conversion of monomers increased when toluylene diisocyanate was added in the monomers. The percentage of extraction with hot benzene of WPC (chip) decreased by the addition of toluylene diisocyanate. It was concluded from C.H.N. analyses that the reaction took place among the wood, toluylene diisocyanate and methyl methacrylate. (auth.)

  17. Decreased serum Ou/Zn sOD in children with Autism

    Directory of Open Access Journals (Sweden)

    A.J. Russo

    2009-01-01

    Full Text Available Aim To assess serum Cu/Zn SOD (Superoxide Dismutase concentration in autistic children and evaluate its possible relationship to GI Symptoms. Subjects and Methods Serum from 50 autistic children (31 with chronic digestive disease (most with ileo-colonic lymphoid nodular hyperplasia (LNH and inflammation of the colorectal, small bowel and/or stomach and 19 autistic children without GI disease, and 29 non autistic controls (20 age matched non autistic children with no GI disease and 9 age matched non autistic children with GI disease were tested for Cu/Zn SOD using ELISAs. Results Serum Cu/Zn SOD levels of autistic children were significantly lower than all non autistic controls (p < 0.0001. Serum Cu/Zn SOD of autistic children with severe GI disease was significantly lower than autistic children with no GI disease (p < 0.0001, non autistic children without GI disease (<0.0001 and non autistic children with GI disease (p = 0.0003. Discussion These results suggest an association between Cu/Zn SOD serum levels and autism, particularly autistic children with GI disease, and that the concentration of serum Cu/Zn SOD may be a useful biomarker for autistic children with severe GI disease.

  18. A Novel Iron Chelator-Radical Scavenger Ameliorates Motor Dysfunction and Improves Life Span and Mitochondrial Biogenesis in SOD1G93A ALS Mice.

    Science.gov (United States)

    Golko-Perez, Sagit; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H; Weinreb, Orly

    2017-02-01

    The aim of the present study was to evaluate the therapeutic effect of the novel neuroprotective multitarget brain permeable monoamine oxidase inhibitor/iron chelating-radical scavenging drug, VAR10303 (VAR), co-administered with high-calorie/energy-supplemented diet (ced) in SOD1 G93A transgenic amyotrophic lateral sclerosis (ALS) mice. Administration of VAR-ced was initiated after the appearance of disease symptoms (at day 88), as this regimen is comparable with the earliest time at which drug therapy could start in ALS patients. Using this rescue protocol, we demonstrated in the current study that VAR-ced treatment provided several beneficial effects in SOD1 G93A mice, including improvement in motor performance, elevation of survival time, and attenuation of iron accumulation and motoneuron loss in the spinal cord. Moreover, VAR-ced treatment attenuated neuromuscular junction denervation and exerted a significant preservation of myofibril regular morphology, associated with a reduction in the expression levels of genes related to denervation and atrophy in the gastrocnemius (GNS) muscle in SOD1 G93A mice. These effects were accompanied by upregulation of mitochondrial DNA and elevated activities of complexes I and II in the GNS muscle. We have also demonstrated that VAR-ced treatment upregulated the mitochondrial biogenesis master regulator, peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and increased PGC-1α-targeted metabolic genes and proteins, such as, PPARγ, UCP1/3, NRF1/2, Tfam, and ERRα in GNS muscle. These results provide evidence of therapeutic potential of VAR-ced in SOD1 G93A mice with underlying molecular mechanisms, further supporting the importance role of multitarget iron chelators in ALS treatment.

  19. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan); Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-0293 (Japan); Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Hospital, Sendai, Miyaki 980-8574 (Japan); Pinlaor, Somchai [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and

  20. The mutual diffusion coefficient for (meth)acrylate monomers as determined with a nuclear microprobe

    International Nuclear Information System (INIS)

    Leewis, Christian M.; Mutsaers, Peter H.A.; Jong, Arthur M. de; Ijzendoorn, Leo J. van; Voigt, Martien J.A. de; Ren, Min Q.; Watt, Frank; Broer, Dirk J.

    2004-01-01

    The value of the mutual diffusion coefficient D V of two acrylic monomers is determined with nuclear microprobe measurements on a set of polymer films. These films have been prepared by allowing the monomers to diffuse into each other for a certain time and subsequently applying fast ultraviolet photo-polymerization, which freezes the concentration profile. The monomer diffusion profiles are studied with a scanning 2.1 MeV proton microprobe. Each monomer contains a marker element, e.g., Cl and Si, which are easily detected with proton induced x-ray emission. From the diffusion profiles, it is possible to determine the mutual diffusion coefficient. The mutual diffusion coefficient is dependent of concentration, which is concluded from the asymmetry in the Cl- and Si-profiles. A linear dependence of the mutual diffusion coefficient on the composition is used as a first order approximation. The best fits are obtained for a value of b=(0.38±0.15), which is the ratio of the diffusion coefficient of 1,3-bis(3-methacryloxypropyl)-1, 1,3,3-tetramethyldisiloxane in pure 2-chloroethyl acrylate and the diffusion coefficient of 2-chloroethyl acrylate in pure 1,3-bis(3-methacryloxypropyl)-1,1,3,3-tetramethyldisiloxane. Under the assumption of a linear dependence of the mutual diffusion coefficient D V on monomer composition, it follows that D V =(2.9±0.6)·10 -10 m 2 /s at a 1:1 monomer ratio. With Flory-Huggins expressions for the monomer chemical potentials, one can derive approximate values for the individual monomer diffusion coefficients

  1. Low-temperature radiation-induced polymerization of vinyl monomers in the crystal matrix of polydimethyl siloxane

    International Nuclear Information System (INIS)

    Mujdinov, M.R.; Kiryukhin, D.P.; Barkalov, I.M.; Gol'danskij, V.I.

    1979-01-01

    It is shown that in the process of the slow cooling of vinyl monomer solution in dimethyl siloxane rubber (SKT mark) crystallization of SKT takes place, at that, considerable part of vinyl monomers (up to 70 wt. % of rubber) is sorbed in the pores of crystal matrix and it does not form its proper crystal phase. Slight anomalies in heat capacity in the 120-140 K range, the melting of non-sorbed part of MA and the melting of SKT + MA ''complex'' have been observed on the calorimetric curve at the SKT - methylacrylate (MA) system heating. In the process of heating such samples, irradiated at 77 K by γ-rays of 60 Co, heat evolution connected with sorbed monomer polarization, has been observed starting from 125-130 K. In the 140-200 K range already before MA and SKT melting intense polymerization takes place, which results in practically full monomer consumption and formation of graft copolymer. Radiation-chemical yield of monomer reduction reaches G(-M) approximately equal to 2x10 5 molecules for 100 eV, radiation yield of postpolymerization of crystal MA does not exceed G(-M) approximately equal to 50 molecules for 100 eV

  2. Seeking homeostasis: Temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice

    Directory of Open Access Journals (Sweden)

    Cameron W Irvin

    2015-07-01

    Full Text Available Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous amyotrophic lateral sclerosis (ALS experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular ATP, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2’dG, MDA are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40-80 days (pre-onset, followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the cause of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.

  3. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models.

    Directory of Open Access Journals (Sweden)

    Marcelo R Vargas

    Full Text Available The nuclear factor erythroid 2-related factor 2 (Nrf2 governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1 cause familial forms of amyotrophic lateral sclerosis (ALS, a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.

  4. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  5. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans

    Directory of Open Access Journals (Sweden)

    Vandesompele Jo

    2008-01-01

    Full Text Available Abstract Background In the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans. Results Real-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16 in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae. Conclusion Our findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.

  6. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    Science.gov (United States)

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  7. Determination of Monomers Reactivity Ratios in Ethyl Acrylate-Methacrylic Acid Copolymerization by Off-Line 1H NMR

    Directory of Open Access Journals (Sweden)

    Samaneh Ashenagar

    2017-03-01

    Full Text Available The physical, chemical and mechanical properties of polymer systems depend on the micro-structural characteristics of their macromolecular chains. Along with the most characteristic kinetic parameters in copolymerization reactions are the reactivity ratios, which give a clear idea of the average composition and the monomer sequence distribution in copolymer systems. This research studies the solution radical copolymerization of methacrylic acid (MAA-ethyl acrylate (EA system at low conversion with 2,2'-azobisisobutyronitrile (AIBN as thermal initiator at 60°C in deuterated dimethyl sulfoxide (DMSO-d6 as a reaction solvent. In this case, the monomer reactivity ratios were determined using linear off-line 1H nuclear magnetic resonance spectroscopy (1H NMR methods such as Mayo-Louis, Finemann-Ross, Inverted Finemann-Ross , Ezrielev-Brokhina-Roskin, Joshi-Joshi, Kelen-Tudos, extended Kelen- Tudos, Mao-Huglin at low and high conversions. The next estimation process in off-line 1H NMR methods were performed by applying techniques based on ordinary least square (OLS and generalized least square (GLS. The results showed that the GLS approach compared to the OLS increased regression coefficients (R2 and the order of magnitude of parameter variances obtained from GLS was many times lower than that obtained from OLS. In addition, the monomer reactivity ratios obtained by the Mao-Huglin method and the GLS approach showed the best linear estimation.

  8. Noziegums un sods Grama Svifta romānā "Dienas gaisma" un Fjodora Dostojevska romānā "Noziegums un sods"

    OpenAIRE

    Hohlova, Marija

    2008-01-01

    Šis bakalaura darbs pēta nozieguma un soda tēmu Fjodora Dostojevska romānā "Noziegums un sods" un Grema Svifta romānā "Dienas gaisma". Darbs sastāv no četrām nodaļām. Pirmajā nodaļā, kura pamatīgi aplūko nozieguma folozofiju, autore piemin integrēto pieeju nozieguma parādībai folozofijas skatījumā, kā arī analīzē nozieguma metafiziskās un socioloģiskās īpatnības uz Fjodora Dostojevska romāna "Noziegums un sods" pamata. Otrā nodaļa apraksta Fjodora Dostojevska romāna "Noziegums un sods" un Gre...

  9. Copolymerization parameters of N-Methacryloyloxy tetrabromophthalimide with different vinyl monomers

    International Nuclear Information System (INIS)

    Mahmoud, A.A.

    2005-01-01

    N-Methacryloyloxytetrabromophthalimide (NMTP) was synthesized by the reaction of N-hydroxytetrabromophthalimide with either methacryloyl chloride or methacrylic acid in the presence of triethylamine or N, Ndicyclohexylcarbodiimide respectively. Binary copolymerization reactions of the prepared monomer with ethyl acrylate (EA), n-butyl methacrylate (n.BMA), tertiary butylacrylate (t.BA) and vinyl acetate (VA) were performed in methylene chloride at 65 degree C using 1 mol % azobisisobutylronitrile (AIBN) as initiator. The structure of the prepared monomer was investigated by IR and 1H NMR spectroscopy. The copolymer compositions were determined from bromine analysis. Copolymerization parameters for each system were calculated by the Fineman-Ross and Kelen-Tudos methods. The monomer reactivity ratios for the systems NMTP-EA, NMTP-n.BMA, NMTP-t.BA and NMTP-VA were found to be r1 0.180, r2 = 0.893, r1 = 0.025, r2 = 0.680, r1 0.014, r2 0.956 and r1 1.002, r2 1.004 respectively

  10. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  11. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways.

    Science.gov (United States)

    Celic, T; Španjol, J; Bobinac, M; Tovmasyan, A; Vukelic, I; Reboucas, J S; Batinic-Haberle, I; Bobinac, D

    2014-12-01

    Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive

  12. Cationic Organochalcogen with Monomer/Excimer Emissions for Dual-Color Live Cell Imaging and Cell Damage Diagnosis.

    Science.gov (United States)

    Chao, Xi-Juan; Wang, Kang-Nan; Sun, Li-Li; Cao, Qian; Ke, Zhuo-Feng; Cao, Du-Xia; Mao, Zong-Wan

    2018-04-25

    Studies on the development of fluorescent organic molecules with different emission colors for imaging of organelles and their biomedical application are gaining lots of focus recently. Here, we report two cationic organochalcogens 1 and 2, both of which exhibit very weak green emission (Φ 1 = 0.12%; Φ 2 = 0.09%) in dilute solution as monomers, but remarkably enhanced green emission upon interaction with nucleic acids and large red-shifted emission in aggregate state by the formation of excimers at high concentration. More interestingly, the monomer emission and excimer-like emission can be used for dual color imaging of different organelles. Upon passively diffusing into cells, both probes selectively stain nucleoli with strong green emission upon 488 nm excitation, whereas upon 405 nm excitation, a completely different stain pattern by staining lysosomes (for 1) or mitochondria (for 2) with distinct red emission is observed because of the highly concentrated accumulation in these organelles. Studies on the mechanism of the accumulation in lysosomes (for 1) or mitochondria (for 2) found that the accumulations of the probes are dependent on the membrane permeabilization, which make the probes have great potential in diagnosing cell damage by sensing lysosomal or mitochondrial membrane permeabilization. The study is demonstrative, for the first time, of two cationic molecules for dual-color imaging nucleoli and lysosomes (1)/mitochondria (2) simultaneously in live cell based on monomer and excimer-like emission, respectively, and more importantly, for diagnosing cell damage.

  13. Tempol moderately extends survival in a hSOD1(G93A ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A forms.

    Directory of Open Access Journals (Sweden)

    Edlaine Linares

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS.

  14. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  15. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    Science.gov (United States)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  16. Monomer-dimer control of the ColE1 P(cer) promoter.

    Science.gov (United States)

    Chatwin, H M; Summers, D K

    2001-11-01

    XerCD-mediated recombination at cer converts multimers of plasmid ColE1 to monomers, maximizing the number of independently segregating molecules and minimizing the frequency of plasmid loss. In addition to XerCD, recombination requires the accessory factors ArgR and PepA. The promoter P(cer), located centrally within cer, is also required for stable plasmid maintenance. P(cer) is active in plasmid multimers and directs transcription of a short RNA, Rcd, which appears to inhibit cell division. It has been proposed that Rcd is part of a checkpoint which ensures that multimer resolution is complete before the cell divides. This study has shown that ArgR does not act as a transcriptional repressor of P(cer) in plasmid monomers. P(cer) is unusual in that the -35 and -10 hexamers are separated by only 15 bp and this study has demonstrated that increasing this to a more conventional spacing results in elevated activity. An increase to 17 bp resulted in a 10- to 20-fold increase in activity, while smaller effects were seen when the spacer was increased to 16 bp or 18 bp. These observations are consistent with the hypothesis that P(cer) activation involves realignment of the -35 and -10 sequences within a recombinational synaptic complex. This predicts that a 17 bp spacer promoter derivative should be down-regulated by plasmid multimerization, and this is confirmed experimentally.

  17. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  18. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao; Schmitt, Meghan L.; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian

    2013-01-01

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  19. Preparation of unsaturated acrylic prepolymer and electron beam curing of its mixture with vinyl monomers

    International Nuclear Information System (INIS)

    Pyun, H.C.; Park, W.B.; Kim, K.Y.; Sung, K.Y.

    1980-01-01

    Electron beam curable prepolymers were prepared by the addition reaction of methyl methacrylate-glycidyl methacrylate copolymer with methacrylic acid, and electron beam curing was studied for the prepolymer and their mixtures of several kind of vinyl monomers. When the reaction was carried out in the presence of triethylbenzyl ammonium chloride in N,N-dimethyl formamide solution, the rate of addition reaction obeyed first-order kinetics. In the electron beam curing, the rate of gel formation of the prepolymer was slower than that of the mixtures of prepolymer and monomers. In the curing of mixtures of prepolymer with polyethyleneglycol dimethacrylates, the rate of gel formation increased with the increase in the degree of polymerization of polyethylene oxide fraction of polyethyleneglycol dimethacrylate, and decreased with the increase the polyethyleneglycol dimethacrylate content. The properties of cured coatings were also examined. (author)

  20. Interference of functional monomers with polymerization efficiency of adhesives.

    Science.gov (United States)

    Hanabusa, Masao; Yoshihara, Kumiko; Yoshida, Yasuhiro; Okihara, Takumi; Yamamoto, Takatsugu; Momoi, Yasuko; Van Meerbeek, Bart

    2016-04-01

    The degree of conversion (DC) of camphorquinone/amine-based adhesives is affected by acidic functional monomers as a result of inactivation of the amine co-initiator through an acid-base reaction. During bonding, functional monomers of self-etch adhesives chemically interact with hydroxyapatite (HAp). Here, we tested in how far the latter interaction of functional monomers with HAp counteracts the expected reduction in DC of camphorquinone/amine-based adhesives. The DC of three experimental adhesive formulations, containing either of the two functional monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) or 4-methacryloxyethyl trimellitic acid anhydride (4-META)] or no functional monomer (no-FM; control), was measured with and without HAp powder added to the adhesive formulations. Both the variables 'functional monomer' and 'HAp' were found to be significant, with the functional monomer reducing the DC and HAp counteracting this effect. It is concluded that the functional monomers 10-MDP and 4-META interfere with the polymerization efficiency of adhesives. This interference is less prominent in the presence of HAp, which would clinically correspond to when these two functional monomers of the adhesive simultaneously interact with HAp in tooth tissue. © 2016 Eur J Oral Sci.

  1. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  2. Thermal and Optical Properties of CdS Nanoparticles in Thermotropic Liquid Crystal Monomers

    Directory of Open Access Journals (Sweden)

    Marc Alnot

    2010-03-01

    Full Text Available Two new mesogenic monomers, namely 3,3’-dimethoxy-4,4’-di(hydroxyhexoxy-N-benzylidene-o-Tolidine (Ia and 4,4’-di(6-hydroxyhexoxy-N-benzylidene-o-Tolidine (IIa, were reacted with cadmium sulfide (CdS via an in situ chemical precipitation method in ethanol to produce CdS nanocomposites. A series of different mass compositions of CdS with Ia and IIa ranging from 0.1:1.0 to 1.0:1.0 (w/w were prepared and characterized using X-ray Diffraction (XRD, Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR, Transmission Electron Microscopy (TEM, Polarizing Optical Microscopy (POM and Differential Scanning Calorimetry (DSC, X-ray Photoelectron Spectroscopy (XPS and Photoluminescence Spectroscopy (PL. XRD showed that the broad peaks are ascribed to the formation of cubic CdS nanoparticles in both Ia and IIa. The average particle size for both nanocomposites was less than 5 nm with a narrower size distribution when compared with pure CdS nanoparticles. The analyses from POM and DSC demonstrated that mass composition from 0.1:1.0 up to 0.5:1.0 of CdS:Ia nanocomposites showed their enantiotropic nematic phase. On the other hand, polarizing optical microscopy (POM for IIa nanocomposites showed that the liquid crystal property vanished completely when the mass composition was at 0.2:1.0. PL emissions for CdS: Ia or IIa nanocomposites indicated deep trap defects occurred in these both samples. The PL results revealed that addition of CdS to Ia monomers suppressed the photoluminescence intensity of Ia. However, the introduction of CdS to IIa monomers increased the photoluminescence and was at a maximum when the mass composition was 0.3:1.0, then decreased in intensity as more CdS was added. The XPS results also showed that the stoichiometric ratios of S/Cd were close to 1.0:1.0 for both types of nanocomposites for a mass composition of 1.0:1.0 (CdS:matrix.

  3. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  4. Additive contributions of two manganese-cored superoxide dismutases (MnSODs to antioxidation, UV tolerance and virulence of Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Xue-Qin Xie

    Full Text Available The biocontrol potential of entomopathogenic fungi against arthropod pests depends on not only their virulence to target pests but tolerance to outdoor high temperature and solar UV irradiation. Two Beauveria bassiana superoxide dismutases (SODs, BbSod2 and BbSod3, were characterized as cytosolic and mitochondrial manganese-cored isoenzymes (MnSODs dominating the total SOD activity of the fungal entomopathogen under normal growth conditions. To probe their effects on the biocontrol potential of B. bassiana, ΔBbSod2, ΔBbSod3, and three hairpin RNA-interfered (RNAi mutants with the transcripts of both BbSod2 and BbSod3 being suppressed by 91-97% were constructed and assayed for various phenotypic parameters in conjunction with ΔBbSod2/BbSod2, ΔBbSod3/BbSod3 and wild-type (control strains. In normal cultures, the knockout and RNAi mutants showed significant phenotypic alterations, including delayed sporulation, reduced conidial yields, and impaired conidial quality, but little change in colony morphology. Their mycelia or conidia became much more sensitive to menadione or H(2O(2-induced oxidative stress but had little change in sensitivity to the hyperosmolarity of NaCl and the high temperature of 45°C. Accompanied with the decreased antioxidative capability, conidial tolerances to UV-A and UV-B irradiations were reduced by 16.8% and 45.4% for ΔBbSod2, 18.7% and 44.7% for ΔBbSod3, and ∼33.7% and ∼63.8% for the RNAi mutants, respectively. Their median lethal times (LT(50s against Myzus persicae apterae, which were topically inoculated under a standardized spray, were delayed by 18.8%, 14.5% and 37.1%, respectively. Remarkably, the effects of cytosolic BbSod2 and mitochondrial BbSod3 on the phenotypic parameters important for the fungal bioncontrol potential were additive, well in accordance with the decreased SOD activities and the increased superoxide levels in the knockout and RNAi mutants. Our findings highlight for the first time that

  5. Synthesis and characterization of novel organotin carboxylate maleimide monomers and copolymers

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Two novel tributyltin carboxylate maleimide monomers, tributyltin(maleimidoacetate and tributyltin(4-maleimidobenzoate, were synthesized by condensation reaction of maleimidoacetic acid or 4-maleimidobenzoic acid with bis(tributyltin oxide. Copolymerization of these monomers with styrene was carried in dioxane at 70°C using asobisisobutyronitrile as free radical initiator. The structures of monomers and copolymers were confirmed by FT-IR (Fourier Transform Infrared, 1H and 13C NMR (nuclear magnetic resonance spectroscopy and elemental analysis. The copolymers were characterized by solubility and thermal analysis.

  6. The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes

    DEFF Research Database (Denmark)

    Möllsten, A; Jorsal, Anders; Lajer, Maria Stenkil

    2009-01-01

    on the development of cardiovascular disease. METHODS: Type 1 diabetes patients attending the Steno Diabetes Center, Gentofte, Denmark, between 1993 and 2001 were enrolled in this study. A total of 441 cases with diabetic nephropathy (albumin excretion > or =300 mg/24 h) and 314 controls with persistent....... The hazard ratio was 1.6 (95% CI 1.0-2.5). CONCLUSIONS/INTERPRETATION: The MnSOD V16A polymorphism is involved in the development of nephropathy caused by type 1 diabetes and seems to predict cardiovascular disease during follow-up....... affects the localisation of MnSOD and therefore its ability to scavenge superoxide radicals. In a Danish cohort of type 1 diabetes patients, we sought to confirm previous findings of association between the V allele and the risk of diabetic nephropathy and to investigate the influence of this polymorphism...

  7. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    '-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  8. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions.

    Science.gov (United States)

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  10. Modeling the structure and vibrational spectra for oxouranium dichloride monomer and dimer

    Science.gov (United States)

    Umreiko, D. S.; Shundalau, M. B.; Trubina, O. V.

    2010-11-01

    Structural models are designed and spectral characteristics are computed for the monomer and dimer of the oxouranium dichloride (UOCl2) molecule based on ab initio calculations. The calculations were carried out in the LANL2DZ effective core potential approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). A close-to-planar Y-shaped equilibrium configuration with Cs symmetry is obtained for the UOCl2 monomer. The formation of the dimer is accompanied by both significant changes in the structure of the monomeric fragments and the actual loss of their identities. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and qualitative agreement between calculation and experiment are demonstrated.

  11. SOD activity in cam plant kalanchoe daigremontiana exposed to S02

    Directory of Open Access Journals (Sweden)

    Zbigniew Miszalski

    2014-01-01

    Full Text Available The Kalanchoe daigremontiana CAM plants exhibit very low sensitivity to the action of sulphite dioxide. Fumigation for a week with 3 ppm SO2 leads to an increase in the dismutation rate of the oxygen radical expressed in units of SOD activity and an increase in SOD activity itself. This strong increase disappears 100 h after fumigation. A transient increase in SOD activity represents an adaptation mechanism to oxidative stress caused by SO2.

  12. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  13. Preparation and Characterization of Nanoparticles Made from Co-Incubation of SOD and Glucose

    Directory of Open Access Journals (Sweden)

    Liping Cai

    2017-12-01

    Full Text Available The attractive potential of natural superoxide dismutase (SOD in the fields of medicine and functional food is limited by its short half-life in circulation and poor permeability across the cell membrane. The nanoparticle form of SOD might overcome these limitations. However, most preparative methods have disadvantages, such as complicated operation, a variety of reagents—some of them even highly toxic—and low encapsulation efficiency or low release rate. The aim of this study is to present a simple and green approach for the preparation of SOD nanoparticles (NPs by means of co-incubation of Cu/Zn SOD with glucose. This method was designed to prepare nanoscale aggregates based on the possible inhibitory effect of Maillard reaction on heating-induced aggregation during the co-incubation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE results indicated that the Maillard reaction occurred during the co-incubation process. It was found that enzymatically active NPs of Cu/Zn SOD were simultaneously generated during the reaction, with an average particle size of 175.86 ± 0.71 nm, and a Zeta potential of −17.27 ± 0.59 mV, as established by the measurement of enzymatic activity, observations using field emission scanning electron microscope, and analysis of dynamic light scattering, respectively. The preparative conditions for the SOD NPs were optimized by response surface design to increase SOD activity 20.43 fold. These SOD NPs showed storage stability for 25 days and better cell uptake efficacy than natural SOD. Therefore, these NPs of SOD are expected to be a potential drug candidate or functional food factor. To our knowledge, this is the first report on the preparation of nanoparticles possessing the bioactivity of the graft component protein, using the simple and green approach of co-incubation with glucose, which occurs frequently in the food industry during thermal processing.

  14. Improved i-motif thermal stability by insertion of anthraquinone monomers

    DEFF Research Database (Denmark)

    Gouda, Alaa S; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA...... loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends...... unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T10 enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A6 and T16 were modified...

  15. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.

    Science.gov (United States)

    Zang, Dandan; Wang, Chao; Ji, Xiaoyu; Wang, Yucheng

    2015-06-01

    Zinc finger proteins (ZFPs) are a large family that play important roles in various biological processes, such as signal transduction, RNA binding, morphogenesis, transcriptional regulation, abiotic or biotic stress response. However, the functions of ZFPs involved in abiotic stress are largely not known. In the present study, we cloned and functionally characterized a ZFP gene, ThZFP1, from Tamarix hispida. The expression of ThZFP1 is highly induced by NaCl, mannitol or ABA treatment. To study the function of ThZFP1 involved in abiotic stress response, transgenic T. hispida plants with overexpression or knockdown of ThZFP1 were generated using a transient transformation system. Gain- and loss-of-function studies of ThZFP1 suggested that ThZFP1 can induce the expression of a series of genes, including delta-pyrroline-5-carboxylate synthetase (P5CS), peroxidase (POD) and superoxide dismutase (SOD), leading to accumulation of proline and enhanced activities of SOD and POD. These physiological changes enhanced proline content and reactive oxygen species (ROS) scavenging capability when exposed to salt or osmotic stress. All the results obtained from T. hispida plants were further confirmed by analyses of the transgenic Arabidopsis plants overexpressing ThZFP1. These data together suggested that ThZFP1 positively regulates proline accumulation and activities of SOD and POD under salt and osmotic stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. High performance dental resin composites with hydrolytically stable monomers.

    Science.gov (United States)

    Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun

    2018-02-01

    The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in

  17. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD, a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.

  18. Highly Efficient Synthesis of Allopurinol Locked Nucleic Acid Monomer by C6 Deamination of 8-Aza-7-bromo-7-deazaadenine Locked Nucleic Acid Monomer

    DEFF Research Database (Denmark)

    Kosbar, Tamer Reda El-Saeed; Sofan, M.; Abou-Zeid, L.

    2013-01-01

    An allopurinol locked nucleic acid (LNA) monomer was prepared by a novel strategy through C6 deamination of the corresponding 8-aza-7-bromo-7-deazaadenine LNA monomer with aqueous sodium hydroxide. An 8-aza-7-deazaadenine LNA monomer was also synthesized by a modification of the new synthetic...... the required LNA monomers....

  19. The decreasing effect of exogenous SOD on damage of mice irradiated with 5 Gy 60Co-γ rays

    International Nuclear Information System (INIS)

    Liu Fenju; Jiang Jiagui; Yi Jian

    1999-01-01

    The author presents a report on the activity of Superoxide Dismutase (SOD) and the content of LPO measured in tissue of Liver, heart and brain of mice irradiated by 60 Co-γ rays 5 Gy 1, 3, 5 and 8 days after irradiation respectively. After radiation exogenous SOD was immediately i.p. injected into mice. The variation of LPO content in the above mentioned three kinds of tissue has been observed. The result of the measurement shows that after radiation at a dose of 5 Gy 60 Co-γ rays, the LPO content and SOD activity of mice organs varied with radiation time. The LPO content varied earliest in liver, while the variation of LPO content in heart and cerebrum took place 8 days after radiation, meanwhile the activity of SOD in the tissues significantly decreased in comparison with that the control group (P<0.01). After injection with SOD, the LPO content and SOD activity of the organs irradiated for different time significantly decreased and increased in comparison with that in the control group. This shows that the enzyme of SOD is of significant anti-radiation effect

  20. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.

  1. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jiou Wang

    2009-01-01

    Full Text Available The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking.

  2. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin.

    Science.gov (United States)

    Jankovic, Aleksandra; Ferreri, Carla; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Stancic, Ana; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2016-11-01

    Setting the correct ratio of superoxide anion (O 2 •- ) and nitric oxide ( • NO) radicals seems to be crucial in restoring disrupted redox signaling in diabetic skin and improvement of • NO physiological action for prevention and treatment of skin injuries in diabetes. In this study we examined the effects of L-arginine and manganese(II)-pentaazamacrocyclic superoxide dismutase (SOD) mimic - M40403 in diabetic rat skin. Following induction of diabetes by alloxan (blood glucose level ≥12 mMol l  -1 ) non-diabetic and diabetic male Mill Hill hybrid hooded rats were divided into three subgroups: (i) control, and receiving: (ii) L-arginine, (iii) M40403. Treatment of diabetic animals started after diabetes induction and lasted for 7 days. Compared to control, lower cutaneous immuno-expression of endothelial NO synthase (eNOS), heme oxygenase 1 (HO1), manganese SOD (MnSOD) and glutathione peroxidase (GSH-Px), in parallel with increased NFE2-related factor 2 (Nrf2) and nitrotyrosine levels characterized diabetic skin. L-arginine and M40403 treatments normalized alloxan-induced increase in nitrotyrosine. This was accompanied by the improvement/restitution of eNOS and HO1 or MnSOD and GSH-Px protein expression levels in diabetic skin following L-arginine, i.e. SOD mimic treatments, respectively. The results indicate that L-arginine and M40403 stabilize redox balance in diabetic skin and suggest the underlying molecular mechanisms. Restitution of skin redox balance by L-arginine and M40403 may represent an effective strategy to ameliorate therapy of diabetic skin.

  3. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    Science.gov (United States)

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion

  4. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  5. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  6. Influence of monomer on structure, processing and application characteristics of UV curable urethane acrylate composite coatings

    International Nuclear Information System (INIS)

    Grigale-Sorocina, Z; Kalnins, M; Gross, K A

    2016-01-01

    Increased interest in the esthetical natural nail coatings have encouraged more in-depth studies particularly of UV curable coatings: their formation, processing, structure, characteristics and removing. Typical requirement for nail coatings is good adhesion, but preferably for the short time of functioning (usual 2-4 weeks). This study investigated the impact of four different monomers (tertiobutyl cyclohexyl acrylate (TBCHA), ethylene glycol dimethacrylate (EGDMA), tetrahydrofurfuryl acrylate (THFA), hydroxypropyl methacrylate (HPMA)) to viscosity of uncured mixture and degree of conversion, mechanical properties, surface gloss, micro hardness and adhesion loss for cured films. Specific coating application requires comparatively high coating flexibility and stability of deformation characteristics. This can be achieved with composition containing 30% of monomer TBCHA, what shows ultimate elongation ε B = 0,23 - 0,24, modulus of elasticity E = 670-710 MPa and comparatively constant properties in 72 hours (ΔE = 1.3%, Δε B =6.0%). A composition with 40% of TBCHA shows the fastest coating destruction achieving adhesion loss within 3 min. (paper)

  7. Casting of organic glass by radiation-induced polymerization of glass-forming monomers at low temperature. II. Optical strain of remaining stress type

    International Nuclear Information System (INIS)

    Okubo, H.; Yoshii, F.; Kaetsu, I.; Honda, S.

    1978-01-01

    Previously it was found that casting could be carried out efficiently without strain formation by radiation-induced polymerization of glass-forming monomers. Two types of strain were observed in casting: thermal stream type, which was studied previously, and remained stress type. In this report, the effect of various factors on the formation of remaining stress-type strain in radiation-induced casting polymerization was studied. It was found that the molecular weight of prepolymer did not affect strain formation, while prepolymer concentration and viscosity of the system had a serious influence on strain formation. It could be deduced that this type of strain formed as a result of remaining inner stress due to poor relaxation of the shrinking stress. It was realized that less volume shrinkage of glass-forming monomers accompanying casting polymerization reduced the strain formation of this type in radiation-induced casting polymerization at low temperatures

  8. SOD1 Gene +35A/C (exon3/intron3 Polymorphism in Type 2 Diabetes Mellitus among South Indian Population

    Directory of Open Access Journals (Sweden)

    K. Nithya

    2016-01-01

    Full Text Available Superoxide dismutase is an antioxidant enzyme that is involved in defence mechanisms against oxidative stress. Cu/Zn SOD is a variant that is located in exon3/intron3 boundary. The aim of the present study was to investigate whether the Cu/Zn SOD (+35A/C gene polymorphism is associated with the susceptibility to type 2 diabetes mellitus among south Indian population. The study included patients with type 2 diabetes mellitus (n=100 and healthy controls (n=75. DNA was isolated from the blood and genotyping of Cu/Zn SOD gene polymorphism was done by polymerase chain reaction based restriction fragment length polymorphism method. Occurrence of different genotypes and normal (A and mutant (C allele frequencies were determined. The frequency of the three genotypes of the total subjects was as follows: homozygous wild-type A/A (95%, heterozygous genotype A/C (3%, and homozygous mutant C/C (2%. The mutant (C allele and the mutant genotypes (AC/CC were found to be completely absent among the patients with type 2 diabetes mellitus. Absence of mutant genotype (CC shows that the Cu/Zn SOD gene polymorphism may not be associated with the susceptibility to type 2 diabetes mellitus among south Indian population.

  9. Combined proteomic and molecular approaches for cloning and characterization of copper-zinc superoxide dismutase (Cu, Zn-SOD2) from garlic (Allium sativum).

    Science.gov (United States)

    Hadji Sfaxi, Imen; Ezzine, Aymen; Coquet, Laurent; Cosette, Pascal; Jouenne, Thierry; Marzouki, M Nejib

    2012-09-01

    Superoxide dismutases (SODs; EC 1.15.1.1) are key enzymes in the cells protection against oxidant agents. Thus, SODs play a major role in the protection of aerobic organisms against oxygen-mediated damages. Three SOD isoforms were previously identified by zymogram staining from Allium sativum bulbs. The purified Cu, Zn-SOD2 shows an antagonist effect to an anticancer drug and alleviate cytotoxicity inside tumor cells lines B16F0 (mouse melanoma cells) and PAE (porcine aortic endothelial cells). To extend the characterization of Allium SODs and their corresponding genes, a proteomic approach was applied involving two-dimensional gel electrophoresis and LC-MS/MS analyses. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 456 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 152 residues. The deduced amino acid sequence showed high identity (82-87%) with sequences of Cu, Zn-SODs from other plant species. Molecular analysis was achieved by a protein 3D structural model.

  10. Thermodynamics of swelling of latex particles with two monomers

    NARCIS (Netherlands)

    Maxwell, I.A.; Kurja, J.; van Doremaele, G.H.J.; German, A.L.

    1992-01-01

    The partitioning of 2 monomers between the latex particle, monomer droplet, and aq. phases of an emulsion polymer latex are measured at satn. swelling of the latex particle phase (corresponding to intervals I and II of an emulsion polymn.). The monomer (Me acrylate, Bu acrylate, styrene) and polymer

  11. FDIC Summary of Deposits (SOD) Download File

    Data.gov (United States)

    Federal Deposit Insurance Corporation — The FDIC's Summary of Deposits (SOD) download file contains deposit data for branches and offices of all FDIC-insured institutions. The Federal Deposit Insurance...

  12. Molecular recognition at methyl methacrylate/n-butyl acrylate (MMA/nBA) monomer unit boundaries of phospholipids at p-MMA/nBA copolymer surfaces.

    Science.gov (United States)

    Yu, Min; Urban, Marek W; Sheng, Yinghong; Leszczynski, Jerzy

    2008-09-16

    Lipid structural features and their interactions with proteins provide a useful vehicle for further advances in membrane proteins research. To mimic one of potential lipid-protein interactions we synthesized poly(methyl methacrylate/ n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by phospholipid (PLs). Upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities are capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the monomer interface. By utilizing attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab initio calculations, studies were conducted that identified the origin of SLICs as well as their structural features formed on the surface of p-MMA/nBA copolymer films stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PL. Specific entities responsible for SLIC formation are selective noncovalent bonds of anionic phosphate and cationic quaternary ammonium segments of DLPC that interact with two neighboring carbonyl groups of nBA and MMA monomers of the p-MMA/nBA polymer backbone. To the best of our knowledge this is the first example of molecular recognition facilitated by coalescence of copolymer colloidal particles and the ability of PLs to form SLICs at the boundaries of the neighboring MMA and nBA monomer units of the p-MMA/nBA chain. The dominating noncovalent bonds responsible for the molecular recognition is a combination of H-bonding and electrostatic interactions.

  13. Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes.

    Science.gov (United States)

    Mohammedi, Kamel; Bellili-Muñoz, Naïma; Marklund, Stefan L; Driss, Fathi; Le Nagard, Hervé; Patente, Thiago A; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Marre, Michel; Velho, Gilberto

    2015-01-15

    Oxidative stress is involved in development of diabetes complications. Extracellular superoxide dismutase (EC-SOD, SOD3) is a major extracellular antioxidant enzyme and is highly expressed in arterial walls. Advanced oxidation protein products (AOPP) and 8-iso-prostaglandin (isoprostane) are markers of oxidative stress. We investigated association of SOD3 gene variants, plasma concentrations of EC-SOD, AOPP and isoprostane with myocardial infarction and mortality in diabetic patients. We studied three cohorts designed to evaluate the vascular complications of diabetes: the GENEDIAB study (469 participants with type 1 diabetes at baseline; follow-up data for 259 participants), the GENESIS study (603 participants with type 1 diabetes at baseline; follow-up data for 525 participants) and the DIABHYCAR study (3137 participants with type 2 diabetes at baseline and follow-up). Duration of follow-up was 9, 5, and 5 years, respectively. Main outcome measures were incidence of myocardial infarction, and cardiovascular and total mortality during follow-up. Six single nucleotide polymorphisms in the SOD3 locus were genotyped in the three cohorts. Plasma concentrations of EC-SOD, AOPP, and isoprostane were measured in baseline samples of GENEDIAB participants. In GENEDIAB/GENESIS pooled cohorts, the minor T-allele of rs2284659 variant was inversely associated with the prevalence at baseline (Odds Ratio 0.48, 95% CI 0.29-0.78, p = 0.004) and the incidence during follow-up of myocardial infarction (Hazard Ratio 0.58, 95% CI 0.40-0.83, p = 0.003) and with cardiovascular (HR 0.33, 95% CI 0.08-0.74, p = 0.004) and all-cause mortality (HR 0.44, 95% CI 0.21-0.73, p = 0.0006). The protective allele was associated with higher plasma EC-SOD and lower plasma AOPP concentrations in GENEDIAB. It was also inversely associated with incidence of myocardial infarction (HR 0.75, 95% CI 0.59-0.94, p = 0.01) and all-cause mortality (HR 0.87, 95% CI 0.79-0.97, p = 0

  14. Higher levels of serum fibrin-monomer reflect hypercoagulable state and thrombus formation in the left atrial appendage in patients with acute ischemic stroke.

    Science.gov (United States)

    Okuyama, Hidenobu; Hirono, Osamu; Liu, Ling; Takeishi, Yasuchika; Kayama, Takamasa; Kubota, Isao

    2006-08-01

    It is sometimes difficult to make a diagnosis of cardioembolic stroke in the stroke care unit, because of the splashing and vanishing of the intracardiac source of the emboli on transesophageal echocardiography. Serum fibrin-monomer (FM) is a new marker for coagulation activity that is useful for identifying older individuals at increased risk of ischemic stroke. Two hundred and four patients with acute ischemic stroke were examined for serum coagulation and fibrinolytic activity on admission, and underwent transesophageal echocardiography within 7 days of onset. Serum levels of FM was significantly higher in patients with left atrial appendage (LAA) thrombus formation (n=24) than in those with no thrombus (88+/-52 vs 14+/-9 microg/ml, pvs 8+/-5 microg/ml, pstroke.

  15. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS.

    Science.gov (United States)

    Kunze, Anja; Lengacher, Sylvain; Dirren, Elisabeth; Aebischer, Patrick; Magistretti, Pierre J; Renaud, Philippe

    2013-07-24

    Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. ALS is believed to be a non-cell autonomous condition, as other cell types, including astrocytes, have been implicated in disease pathogenesis. Hence, to facilitate the development of therapeutics against ALS, it is crucial to better understand the interactions between astrocytes and neural cells. Furthermore, cell culture assays are needed that mimic the complexity of cell to cell communication at the same time as they provide control over the different microenvironmental parameters. Here, we aim to validate a previously developed microfluidic system for an astrocyte-neuron cell culture platform, in which astrocytes have been genetically modified to overexpress either a human wild-type (WT) or a mutated form of the super oxide dismutase enzyme 1 (SOD1). Cortical neural cells were co-cultured with infected astrocytes and studied for up to two weeks. Using our microfluidic device that prevents direct cell to cell contact, we could evaluate neural cell response in the vicinity of astrocytes. We showed that neuronal cell density was reduced by about 45% when neurons were co-cultured with SOD-mutant astrocytes. Moreover, we demonstrated that SOD-WT overexpressing astrocytes reduced oxidative stress on cortical neurons that were in close metabolic contact. In contrast, cortical neurons in metabolic contact with SOD-mutant astrocytes lost their synapsin protein expression after severe glutamate treatment, an indication of the toxicity potentiating effect of the SOD-mutant enzyme.

  16. New monomers for high performance polymers

    Science.gov (United States)

    Gratz, Roy F.

    1993-01-01

    This laboratory has been concerned with the development of new polymeric materials with high thermo-oxidative stability for use in the aerospace and electronics industries. Currently, there is special emphasis on developing matrix resins and composites for the high speed civil transport (HSCT) program. This application requires polymers that have service lifetimes of 60,000 hr at 350 F (177 C) and that are readily processible into void-free composites, preferably by melt-flow or powder techniques that avoid the use of high boiling solvents. Recent work has focused on copolymers which have thermally stable imide groups separated by flexible arylene ether linkages, some with trifluoromethyl groups attached to the aromatic rings. The presence of trifluoromethyl groups in monomers and polymers often improves their solubility and processibility. The goal of this research was to synthesize several new monomers containing pendant trifluoromethyl groups and to incorporate these monomers into new imide/arylene ether copolymers. Initially, work was begun on the synthesis of three target compounds. The first two, 3,5-dihydroxybenzo trifluoride and 3-amino 5-hydroxybenzo trifluoride, are intermediates in the synthesis of more complex monomers. The third, 3,5-bis (3-amino-phenoxy) benzotrifluoride, is an interesting diamine that could be incorporated into a polyimide directly.

  17. The radiation grafting of vinyl monomers to cotton fabrics

    International Nuclear Information System (INIS)

    Shiraishi, N.; Williams, J.L.; Stannett, V.

    1982-01-01

    Cobalt 60 γ and electron beam radiation were used to graft diethylphosphatoethyl methacrylate, pure and in 90:10 methanol solution, to cotton cloth. This monomer, with an 11.64% phosphorus content, was especially developed by the Scott Paper Co. to develop fire retardancy. A simple pad and squeeze application followed by direct irradiation under a nitrogen atmosphere was used. Although excess monomer could be removed by washing with water, no solvent for the polymer was found so only the total 'add-ons' could be measured. With 60 Co irradiation, total polymerization was obtained with more than 1 Mrad but with electron beam irradiation only about 50% conversion was obtained even with 10 Mrad. No acceleration in the rates could be achieved with the viscous pure monomer as opposed to in solution. Yields adequate to impart reasonable fire retardancy could, however, be obtained with about 3 Mrad with electrons. No noticeable degradation of the polymer occurred at the doses used. (author)

  18. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films

    International Nuclear Information System (INIS)

    Thombare, J. V.; Fulari, V. J.; Rath, M. C.; Han, S. H.

    2013-01-01

    Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultraviolet—visible (UV—vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV. (semiconductor materials)

  19. pKa value and buffering capacity of acidic monomers commonly used in self-etching primers.

    Science.gov (United States)

    Salz, Ulrich; Mücke, Angela; Zimmermann, Jörg; Tay, Franklin R; Pashley, David H

    2006-06-01

    The aim of this investigation was to characterize acidic monomers used in self-etching primers/adhesives by determination of their pKa values and by calculation of their calcium dissolving capacity in comparison with phosphoric and hydrochloric acid. The following acidic monomers were included in this study: 4-methacryloyloxyethyl trimellitate anhydride (4-META), 10-methacryloyloxydecyl dihydrogen phosphate (MDP), dimethacryloyloxyethyl hydrogen phosphate (di-HEMA-phosphate), ethyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate (EAEPA), 2-[4-(dihydroxyphosphoryl)-2-ox-abutyl]acrylic acid (HAEPA), and 2,4,6 trimethylphenyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate (MAEPA). The pKa values were obtained by titration with 0.1 mol/l NaOH in aqueous solution. The inflection points of the resulting potentiometric titration curve were determined as pKa values. In the case of the sparingly water-soluble acidic monomers MAEPA and 4-META, the co-solvent method using different water/ethanol ratios for MAEPA or water/acetone ratios for 4-META was used. The dissolving capacity of each acidic monomer is defined as the amount of hydroxyapatite (HA) dissolved by 1 g of acid. For each monomer, the HA dissolving capacity was calculated bythe corresponding pKa value and the molecular weight. To confirm the calculated dissolving capacities, increasing amounts of HA powder (100 mg portions) were slowly added to 15 mmol/l aqueous solutions of the monomers to determine how much HA could be dissolved in the acidic solutions. For all the investigated acidic monomers, pKal values between 1.7 to 2.5 were observed. The pKa2 values for the phosphate/phosphonate derivatives are between 7.0 and 7.3, and are comparable to phosphoric acid. For dicarboxylic acid derivatives, the pKa2 values are in the range of 4.2 to 4.5. Due to their comparable molecular weights and pKal values, the three tested acids di-HEMA phosphate, MDP and 4-META all possess comparable dissolving capacities for HA (ie, 0

  20. SOD2 Activity Is not Impacted by Hyperoxia in Murine Neonatal Pulmonary Artery Smooth Muscle Cells and Mice

    Directory of Open Access Journals (Sweden)

    Anita Gupta

    2015-03-01

    Full Text Available Pulmonary hypertension (PH complicates bronchopulmonary dysplasia (BPD in 25% of infants. Superoxide dismutase 2 (SOD2 is an endogenous mitochondrial antioxidant, and overexpression protects against acute lung injury in adult mice. Little is known about SOD2 in neonatal lung disease and PH. C57Bl/6 mice and isogenic SOD2+/+ and SOD2−/+ mice were placed in room air (control or 75% O2 (chronic hyperoxia, CH for 14 days. Right ventricular hypertrophy (RVH was assessed by Fulton’s index. Medial wall thickness (MWT and alveolar area were assessed on formalin fixed lung sections. Pulmonary artery smooth muscle cells (PASMC were placed in 21% or 95% O2 for 24 h. Lung and PASMC protein were analyzed for SOD2 expression and activity. Oxidative stress was measured with a mitochondrially-targeted sensor, mitoRoGFP. CH lungs have increased SOD2 expression, but unchanged activity. SOD2−/+ PASMC have decreased expression and activity at baseline, but increased SOD2 expression in hyperoxia. Hyperoxia increased mitochondrial ROS in SOD2+/+ and SOD2−/+ PASMC. SOD2+/+ and SOD2−/+ CH pups induced SOD2 expression, but not activity, and developed equivalent increases in RVH, MWT, and alveolar area. Since SOD2−/+ mice develop equivalent disease, this suggests other antioxidant systems may compensate for partial SOD2 expression and activity in the neonatal period during hyperoxia-induced oxidative stress.

  1. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  2. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    Directory of Open Access Journals (Sweden)

    Josef eBrandauer

    2015-03-01

    Full Text Available The mitochondrial protein deacetylase sirtuin (SIRT 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS handling. We determined the requirement of AMP-activated protein kinase (AMPK for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p<0.01 and superoxide dismutase 2 (MnSOD; p<0.05 protein abundance in quadriceps muscle of wild-type (WT; n=13-15, but not AMPK α2 kinase dead (KD; n=12-13 mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p=0.051; n=6. To further elucidate a role for AMPK in mediating these effects, we treated WT (n=7-8 and AMPK α2 KD (n=7-9 mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR. Four weeks of daily AICAR injections (500 mg/kg resulted in AMPK-dependent increases in SIRT3 (p<0.05 and MnSOD (p<0.01 in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n=9-10. Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p<0.01 and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p<0.05. Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122 or oligomycin-sensitivity conferring protein (OSCP; K139 was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.

  3. Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives.

    Science.gov (United States)

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2014-09-01

    The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA, 45/55, w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt% water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. Published by Elsevier Ltd.

  4. In-vitro transdentinal diffusion of monomers from adhesives.

    Science.gov (United States)

    Putzeys, Eveline; Duca, Radu Corneliu; Coppens, Lieve; Vanoirbeek, Jeroen; Godderis, Lode; Van Meerbeek, Bart; Van Landuyt, Kirsten L

    2018-06-01

    Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp. Accurate knowledge of the quantity of monomers reaching the pulp is important to determine potential side effects. The aim of this study was to assess the transdentinal diffusion of residual monomers from dental adhesive systems using an in-vitro pulp chamber model. Dentin disks with a thickness of 300 µm were produced from human third molars. These disks were fixed between two open-ended glass tubes, representing an in-vitro pulp chamber. The etch-and-rinse adhesive OptiBond FL and the self-etch adhesive Clearfil SE Bond were applied to the dentin side of the disks, while on in the pulpal side, the glass tube was filled with 600 µL water. The transdentinal diffusion of different monomers was quantified using ultra-performance liquid chromatography-tandem mass spectrometry. The monomers HEMA, CQ, BisGMA, GPDM, 10-MDP and UDMA eluted from the dental materials and were able to diffuse through the dentin disks to a certain extent. Compounds with a lower molecular weight (uncured group: HEMA 7850 nmol and CQ 78.2 nmol) were more likely to elute and diffuse compared to monomers with a higher molecular weight (uncured group: BisGMA 0.42 nmol). When the adhesives were left uncured, diffusion was up to 10 times higher compared to the cured conditions. This in-vitro research resulted in the quantification of various monomers able to diffuse through dentin and therefore contributes to a more detailed understanding about the potential exposure of the dental pulp to monomers from dental adhesives. Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp, where tubular density and diameter are greatest. Copyright © 2018. Published by Elsevier Ltd.

  5. The effect of monomer molecular weight on grafting reaction

    International Nuclear Information System (INIS)

    Wu Minghong; Ding Zhongli; Ma Zueteh

    1995-01-01

    In this paper, some condensed ethylene glycol acrylate monomers with different molecular weight being grafted to the PE film by means of pre-irradiation is reported. The effect of molecular weight of monomer on grafting reaction and the hydrophilicity of grafting sample have been discussed. The experimental results show: molar degrees of grafting decreased non-linearly with the increasement of molecular weight of monomer, the grafting reaction of polymer is greater effected by the swelling degree of PE film, the greater the swelling degree of grafting material, the higher the grating degree grafting is, the initial rate of grafting reaction decreased with the increasement of molecular weight of monomer. (author)

  6. Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells

    International Nuclear Information System (INIS)

    Hosoki, Ayaka; Yonekura, Shin-Ichiro; Zhao, Qing-Li

    2012-01-01

    Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSox TM Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation. (author)

  7. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Degenerative myelopathy in German Shepherd Dog: comparison of two molecular assays for the identification of the SOD1:c.118G>A mutation.

    Science.gov (United States)

    Capucchio, Maria Teresa; Spalenza, Veronica; Biasibetti, Elena; Bottero, Maria Teresa; Rasero, Roberto; Dalmasso, Alessandra; Sacchi, Paola

    2014-02-01

    Degenerative myelopathy (DM) is a late-onset, slowly progressive degeneration of spinal cord white matter which is reported primarily in large breed dogs. The missense mutation SOD1:c.118G>A is associated with this pathology in several dog breeds, including the German Shepherd Dog (GSD). The aims of the present study were to develop a tool for the rapid screening of the SOD1 mutation site in dogs and to evaluate the association of the polymorphism with DM in the German Shepherd breed. Two different techniques were compared: a minisequencing test and a real-time pcr allelic discrimination assay. Both approaches resulted effective and efficient. A sample of 47 dogs were examined. Ten subjects presented the symptoms of the illness; for one of them the diagnosis was confirmed by postmortem investigations and it resulted to be an A/A homozygote. In another clinically suspected dog, heterozygote A/G, the histopathological examination of the medulla showed moderate axon and myelin degenerative changes. GSD shows a frequency of the mutant allele equal to 0.17, quite high being a high-risk allele. Because canine DM has a late onset in adulthood and homozygous mutant dogs are likely as fertile as other genotypes, the natural selection is mild and the mutant allele may reach high frequencies. A diagnostic test, easy to implement, may contribute to control the gene diffusion in populations. The SOD1:c.118G>A mutation could be a useful marker for breeding strategies intending to reduce the incidence of DM.

  9. Synthesis of phosphate monomers and bonding to dentin: esterification methods and use of phosphorus pentoxide.

    Science.gov (United States)

    Ogliari, Fabrício Aulo; da Silva, Eduardo de Oliveira; Lima, Giana da Silveira; Madruga, Francine Cardozo; Henn, Sandrina; Bueno, Márcia; Ceschi, Marco Antônio; Petzhold, Cesar Liberato; Piva, Evandro

    2008-03-01

    The aim of this study was to synthesize an acidic monomer using an alternative synthetic pathway and to evaluate the influence of the acidic monomer concentration on the microtensile bond strength to dentin. The intermediary 5-hydroxypentyl methacrylate (HPMA) was synthesized through methacrylic acid esterification with 1,5-pentanediol, catalyzed by p-toluenesulfonic acid. To displace the reaction balance, the water generated by esterification was removed by three different methods: anhydrous sodium sulfate; molecular sieves or azeotropic distillation. In the next step, a phosphorus pentoxide (4.82 mmol) slurry was formed in cold acetone and 29 mmol of HPMA was slowly added by funnel addition. After the reaction ended, solvent was evaporated and the product was characterized by 1HNMR and FTIR. The phosphate monomer was introduced in a self-etch primer at concentrations of 0, 15, 30, 50, 70 and 100 wt%. Clearfil SE Bond was used as commercial reference. Microtensile bond strength to dentin was evaluated 24h after the bonding procedures, followed by fracture analysis (n=20). Data was submitted to ANOVA and Tukey's post hoc test. The highest yield was obtained (62%) when azeotropic distillation was used, while the reaction with molecular sieves was not feasible. The phosphoric moiety attachment to the monomer was successfully performed with a quantitative yield that reached around 100%. The acidic monomer concentration significantly affected the bond strength and the highest mean (55.1+/-12.8 MPa) was obtained when 50% of acidic monomer was used. The synthesis pathways described in the present study appear to be a viable alternative for developing phosphate monomers.

  10. Age-Related Hearing Loss in Mn-SOD Heterozygous Knockout Mice

    Directory of Open Access Journals (Sweden)

    Makoto Kinoshita

    2013-01-01

    Full Text Available Age-related hearing loss (AHL reduces the quality of life for many elderly individuals. Manganese superoxide dismutase (Mn-SOD, one of the antioxidant enzymes acting within the mitochondria, plays a crucial role in scavenging reactive oxygen species (ROS. To determine whether reduction in Mn-SOD accelerates AHL, we evaluated auditory function in Mn-SOD heterozygous knockout (HET mice and their littermate wild-type (WT C57BL/6 mice by means of auditory brainstem response (ABR. Mean ABR thresholds were significantly increased at 16 months when compared to those at 4 months in both WT and HET mice, but they did not significantly differ between them at either age. The extent of hair cell loss, spiral ganglion cell density, and thickness of the stria vascularis also did not differ between WT and HET mice at either age. At 16 months, immunoreactivity of 8-hydroxydeoxyguanosine was significantly greater in the SGC and SV in HET mice compared to WT mice, but that of 4-hydroxynonenal did not differ between them. These findings suggest that, although decrease of Mn-SOD by half may increase oxidative stress in the cochlea to some extent, it may not be sufficient to accelerate age-related cochlear damage under physiological aging process.

  11. Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS

    NARCIS (Netherlands)

    Ruegsegger, Céline; Maharjan, Niran; Goswami, Anand; Filézac de L'Etang, Audrey; Weis, Joachim; Troost, Dirk; Heller, Manfred; Gut, Heinz; Saxena, Smita

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron

  12. Photopolymerizable silicone monomers, oligomers, and resins

    International Nuclear Information System (INIS)

    Jacobine, A.F.; Nakos, S.T.

    1992-01-01

    The purpose of this chapter is to acquaint the general photopolymer researcher with the historical development of the chemistry and technology of photopolymerizable silicone monomers, fluids, and resins. The current status of research in these areas is assessed. The focus of this chapter is not only on the polymer chemistry and application of this technology, but also on important aspects of the synthetic chemistry involved in the preparation of UV-curable silicone monomers, oligomers, and resins. 236 refs., 6 tabs

  13. Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Kim, J.; Yang, D.A.; Ahn, W.S. [Inha University, Inchon (Republic of Korea). Dept. of Chemical Engineering

    2011-04-15

    Zeolite-like metal organic framework (ZMOF) materials having rho and sod topologies were experimentally investigated as CO{sub 2} adsorbents for the first time. As-prepared ZMOF materials showed reasonably high CO{sub 2} adsorption capacities (ca. 51 and 53 mg/g(adsorbent) for rho- and sod-ZMOF, respectively) and high CO{sub 2}/N{sub 2} selectivity (> 20) at 298 K and 1 bar. The latter showed a higher heat of adsorption (27-45 kJ/mol). These ZMOFs exhibited better CO{sub 2} adsorption than ZIF-8, a commonly investigated zeolitic imidazolate framework (ZIF) material having the same sod topology but in a neutral framework. Partially ion-exchanged sod-ZMOFs by alkali-metals resulted in improved CO{sub 2} adsorption performance compared with the as-prepared ZMOF. The highest CO{sub 2} adsorption was obtained with K{sup +}-exchanged sod-ZMOF (61 mg/g(adsorbent)), representing a ca. 15% increase in adsorption capacity. Complete desorption of CO{sub 2} in the K{sup +}-sod-ZMOF was attained at mild conditions (40{sup o}C, He purging), and reversible and sustainable CO{sub 2} adsorption performance was demonstrated in 5 sets of recycling runs.

  14. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    Science.gov (United States)

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.

  16. Influence of template/functional monomer/cross‐linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

    DEFF Research Database (Denmark)

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Chronakis, Ioannis S.

    2012-01-01

    A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and templat...... tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012...

  17. Structure of human insulin monomer in water/acetonitrile solution

    International Nuclear Information System (INIS)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta; Tarnowska, Anna; Kawecki, Robert; Kozerski, Lech

    2008-01-01

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H 2 O/CD 3 CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER V C), or including a generalized Born solvent model (AMBER G B)

  18. Partial swelling of latex particles by two monomers

    NARCIS (Netherlands)

    Noel, E.F.J.; Maxwell, I.A.; German, A.L.

    1993-01-01

    The swelling of polymeric latex particles with solvent and monomer is of great importance for the emulsion polymn. process in regard to compn. drift and rate of polymn. For the monomer combination, Me acrylate-vinyl acetate, both satn. and partial swelling were detd. exptl. Theories for satn.

  19. Effect of N+ beam exposure on the activities of Mn-SOD and catalase in deinococcus radiodurans

    International Nuclear Information System (INIS)

    Song Daojun; Chen Ruolei; Wu Lifang; Li Hong; Yao JIanming; Shao Chunlin; Wu Lijun; Yu Zengliang

    2000-01-01

    Though the radiation-resistant bacteria Deinococcus radiodurans (D. radiodurans) have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. The superoxide dismutase (SOD) and catalase (CAT) activities produced in bacteria (D. radiodurans AS1.633) and their change caused by 20 keV N'+ beam exposure were examined. Results showed that the activities of the enzymes were increased in the case of N + beam exposure from 8 x 10 14 ions/cm 2 to 6 x 10 15 ions/cm 2 . In addition, the treatment of H 2 O 2 and [CHCl 3 + CH 3 CH 2 OH] and the measurement of absorption spectrum showed that the increase of whole SOD activity resulted from inducible activities of Mn-SOD in (a sub-type) D. radiodurans AS1.633. These results suggested that these bacteria possess inducible defense mechanisms against the deleterious effects of oxidization

  20. Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee

    2017-09-01

    Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determination of unreacted monomers in restorative dental resins based on dimethacrylate by NMR hydrogen

    International Nuclear Information System (INIS)

    Correa, Ivo Carlos; Miranda Junior, Walter G.; Tavares, Maria Ines B.

    2001-01-01

    The presence of unreacted monomers after photo-activation of dental composites causes mechanical and biological properties to decrease and could be detected by NMR analysis. The aim of this study was to evaluate the percentage of leachable monomers of light-cured composites under the effect of variations of exposure time of photo activation by nuclear magnetic resonance of hydrogen in solution (NMR 1 H). The composite resins tested Z250 and Fill Magic obtained similar values of unreacted monomers (%) at photo curing time suggested by the manufacturer and values were also lower than Durafill and A110 concentrations. From the NMR results, one day extractable time was efficient to quantify the amount of residual monomers in the dental composites tested, unless for Durafill composite. (author)

  2. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    Science.gov (United States)

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  3. Radiation damage, treatment of tumor and acute benzene toxicosis effects of superoxide dismutase (SOD)

    International Nuclear Information System (INIS)

    Jiang Jiagui; Lin Xingcheng; Zhu Yuyu

    1987-09-01

    The protective effects of SOD on irradiated-mice were studied by white cell counts, determination of taurine in urine, and survival of irradiated-animals. The enzyme was protective against radiation-induced inhibition of lymphocyte blastogenesis. The protective effect of SOD on patients suffered from cancer was also studied by white cell counts. The effect of SOD on white cell counts in mice of benzene toxicosis was also discussed

  4. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress

    OpenAIRE

    Gao, Jing; Feng, Zhihui; Wang, Xueqiang; Zeng, Mengqi; Liu, Jing; Han, Shujun; Xu, Jie; Chen, Lei; Cao, Ke; Long, Jiangang; Li, Zongfang; Shen, Weili; Liu, Jiankang

    2017-01-01

    Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by in...

  5. Administration of 4-(α-L-Rhamnosyloxy-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Maria Galuppo

    2015-01-01

    Full Text Available 4-(α-L-Rhamnosyloxy-benzyl glucosinolate (glucomoringin, GMG is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy-benzyl isothiocyanate (GMG-ITC. The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg bioactivated with myrosinase (20 µL/rat via intraperitoneal (i.p. injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.

  6. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats

    Directory of Open Access Journals (Sweden)

    Antunes Edson

    2008-05-01

    Full Text Available Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD; trained (TR; sedentary diet (SDD and trained diet (TRD groups. Run training (RT was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max. Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx- were measured. Concentration-response curves to acetylcholine (ACh and sodium nitroprusside (SNP were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1 was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl. Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml. On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl. Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM. Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%, but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups or mesenteric rings (10%, for TR and 17%, to TRD groups that was accompanied by up-regulation of SOD-1

  7. Changes of blood levels of LPO, SOD and GSH-Px after endovenous laser treatment of varicose greater saphenous vein

    International Nuclear Information System (INIS)

    Han Li'na; Gu Ying; Liu Fanguang

    2004-01-01

    Objective: To investigate the changes of the blood levels of lipid peroxide (LPO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) after treatment of varicose greater saphenous vein with either endovenous laser or conventional surgery (high ligation plus stripping). Methods: Thirty-seven patients with varicose greater saphenous vein were treated with endovenous laser and another 33 patients were treated with conventional surgery. Levels of LPO (serum, with TBA fluorescein), SOD (whole blood, with RIA) and GSH-Px (whole blood, with direct DTNB) were determined in these patients both before and 1, 3, 5, 7, 10, 15 days after treatment. Levels in 30 controls were also measured. Results: The levels of LPO were higher and levels of SOD, GSH-Px lower in the patients than those in the controls. After either form of therapy, the levels LPO rose and levels of SOD, GSH-Px dropped immediately but gradually approached the control values by the 15 th day (slower with SOD and GSH-Px). However, the early increase of LPO levels were less and recovery sooner in the group of patients treated with laser. Conclusion: Changes of levels of LPO, SOD and GSH-Px were closely related to the degree of stress and recovery condition after the treatment

  8. Correlation of serum GP73, SOD and GPC3 contents with cell proliferation and angiogenesis in liver cancer lesion

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-11-01

    Full Text Available Objective: To study the correlation of serum GP73, SOD and GPC3 contents with cell proliferation and angiogenesis in liver cancer lesion. Methods: Patients who were diagnosed with primary liver cancer in Jianghan Oilfield General Hospital between June 2014 and February 2017 were selected as liver cancer group, and healthy subjects who received physical examination in Jianghan Oilfield General Hospital during the same period were selected as control group. Serum was collected from two groups of subjects to determine the contents of GP73, SOD and GPC3; liver cancer lesion and adjacent lesion were collected from liver cancer group to determine the expression of cell proliferation molecules and angiogenesis molecules. Results: Serum GP73 and GPC3 levels of liver cancer group were obviously higher than those of control group while SOD content was obviously lower than that of control group; DNMT3B, STC2, SIRT6, LETM1, EphB4, SULT2B1, HIF-1α, VEGF, Ang-2, HGF and TGF-β1 protein expression levels in liver cancer lesion of liver cancer group were significantly higher than those in adjacent lesion; DNMT3B, STC2, SIRT6, LETM1, EphB4, SULT2B1, HIF-1α, VEGF, Ang-2, HGF and TGF-β1 protein expression levels in liver cancer lesion of liver cancer group were positively correlated with serum GP73 and GPC3 levels, and negatively correlated with serum SOD level. Conclusion: The changes of GP73, SOD and GPC3 levels in the serum of patients with liver cancer are closely related to the cell proliferation and angiogenesis in liver cancer lesion.

  9. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of Cellular Pathway Disturbances on Misfolded Superoxide Dismutase-1 in Fibroblasts Derived from ALS Patients.

    Directory of Open Access Journals (Sweden)

    Isil Keskin

    Full Text Available Mutations in superoxide dismutase-1 (SOD1 are a common known cause of amyotrophic lateral sclerosis (ALS. The neurotoxicity of mutant SOD1s is most likely caused by misfolded molecular species, but disease pathogenesis is still not understood. Proposed mechanisms include impaired mitochondrial function, induction of endoplasmic reticulum stress, reduction in the activities of the proteasome and autophagy, and the formation of neurotoxic aggregates. Here we examined whether perturbations in these cellular pathways in turn influence levels of misfolded SOD1 species, potentially amplifying neurotoxicity. For the study we used fibroblasts, which express SOD1 at physiological levels under regulation of the native promoter. The cells were derived from ALS patients expressing 9 different SOD1 mutants of widely variable molecular characteristics, as well as from patients carrying the GGGGCC-repeat-expansion in C9orf72 and from non-disease controls. A specific ELISA was used to quantify soluble, misfolded SOD1, and aggregated SOD1 was analysed by western blotting. Misfolded SOD1 was detected in all lines. Levels were found to be much lower in non-disease control and the non-SOD1 C9orf72 ALS lines. This enabled us to validate patient fibroblasts for use in subsequent perturbation studies. Mitochondrial inhibition, endoplasmic reticulum stress or autophagy inhibition did not affect soluble misfolded SOD1 and in most cases, detergent-resistant SOD1 aggregates were not detected. However, proteasome inhibition led to uniformly large increases in misfolded SOD1 levels in all cell lines and an increase in SOD1 aggregation in some. Thus the ubiquitin-proteasome pathway is a principal determinant of misfolded SOD1 levels in cells derived both from patients and controls and a decline in activity with aging could be one of the factors behind the mid-to late-life onset of inherited ALS.

  11. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study.

    Science.gov (United States)

    Niketíc, V; Stojanović, S; Nikolić, A; Spasić, M; Michelson, A M

    1999-11-01

    The effect of NO treatment in vitro on structural and functional alterations of Cu/Zn, Mn, and Fe type of SODs was studied. Significant difference in response to NO of Cu/ZnSOD compared to the Mn and Fe types was demonstrated. Cu/ZnSOD was shown to be stable with respect to NO: even on prolonged exposure, NO produced negligible effect on its structure and activity. In contrast, both Mn and Fe types were found to be NO-sensitive: exposure to NO led to their fast and extensive inactivation, which was accompanied by extensive structural alterations, including (in some of the samples tested) the cleavage of enzyme polypeptide chains, presumably at His residues of the enzyme metal binding sites. The generation of nitrosonium (NO+) and nitroxyl (NO-) ions in NO treated Mn and FeSODs, which produce enzyme modifications and inactivation, was demonstrated. The physiological and biomedical significance of described findings is briefly discussed.

  12. Polyfunctional monomers as additives for enhancing the radiation copolymerization of styrene with polyethylene, polypropylene, and PVC

    International Nuclear Information System (INIS)

    Ang, C.H.; Garnett, J.L.; Levot, R.; Long, M.A.

    1982-01-01

    Additives which can increase the yield in the radiation grafting of monomers to polymers are useful. The use of polyfunctional monomers as additives (approx. = 1% v/v) are shown to enhance significantly the copolymerization yields of styrene in methanol to films of polyethylene and polypropylene under certain radiation conditions. The results obtained when the polyolefins are replaced by PVC as backbone polymer in these accelerated grafting reactions are reported. Divinylbenzene (DVB) and trimethylolpropane triacrylate (TMPTA) were used as representative polyfunctional monomers for the enhancement effect. When polypropylene was used as backbone polymer, the inclusion of DVB significantly enhanced the radiation grafting of styrene in methanol at all monomer concentrations studied above 35%. At certain monomer concentrations (50% , 60%), the yield of graft copolymer was almost doubled by the addition of DVB. 3 tables. (DP)

  13. One-pot synthesis of hybrid gel by use of tributylstannyl ester of polymeric silicic acid, chlorosilane and organic monomer; Keisan no toribuchiru sutanniru esuteru kobuntai, kuroroshiran oyobi yuki monoma wo mochiita haiburiddo geru no ichidankai gosei

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, O. [National Defense Academy, Kanagawa (Japan). Dept. of Chemistry; Sugisaki, T. [Lintec Co. Ltd., Saitama (Japan); Tomono, M.; Oikawa, M.; Kageyama, T. [Kanto-Gakuin Univ., Kanagawa (Japan)

    1999-12-10

    Organic-inorganic hybrid gels were obtained efficiently by one-pot procedure from tributylstannyl ester of polymeric silicic acid (PTBS), chloro (3-methacryloyloxypropyl) dimethylsilane (1a), and common monomers such as styrene, acrylonitrile, and methyl methacrylate. In the reaction system, substitution of tributylstannyl groups of PTBS by silyl groups of 1a and copolymerization of methacryloyloxy group of 1a with a monomer proceeded simultaneously under UV irradiation at room temperature. The resulting gel should be consisted of covalently bonded three components an regarded as a nanocomposite material The use of another chlorosilane 1b, which had cyanopropyl group, with 1a led to formation of a multifunctional hybrid gel. (author)

  14. Structure of human insulin monomer in water/acetonitrile solution

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta [National Medicines Institute (Poland); Tarnowska, Anna; Kawecki, Robert [Institute of Organic Chemistry Polish Academy of Sciences (Poland); Kozerski, Lech [National Medicines Institute (Poland)], E-mail: lkoz@icho.edu.pl

    2008-01-15

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H{sub 2}O/CD{sub 3}CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER{sub V}C), or including a generalized Born solvent model (AMBER{sub G}B)

  15. Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells

    DEFF Research Database (Denmark)

    Li, Wei; Guo, Xiaoxia; Aili, David

    2015-01-01

    . A series of sulfonated copolyimides (SPI) are prepared via random copolymerizatio of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) with a new diamine monomer with pendant benzimidazole groups, 2,2'-bis(4-(1H-benzo[d]imidazol-2-yl)phenoxy)benzidine (BIPOB), and a sulfonated diamine monomer 4,4'-bis...

  16. Radiation-initiated emulsion copolymerization of styrene and carboxylic acid monomers

    International Nuclear Information System (INIS)

    Egusa, S.; Makuuchi, K.

    1982-01-01

    The emulsion copolymerization of styrene and carboxylic acid monomers such as acrylic, methacrylic, and itaconic acids (AAc, MAAc, IAc) was studied by using 60 Co γ-rays as initiator and sodium dodecylsulfate as emulsifier. The polymerization behavior of these acid monomers was followed by simultaneous conductometric and potentiometric titrations for a latex sample taken in polymerization. The polymerization rate of these acid monomers increases in the following order of hydrophobicity: IAc < AAc < MAAc; this suggests that their polymerization sites are mainly the surface and/or subsurface regions of latex particles. The copolymerization rate of styrene and acid monomer increases with an increase in the acid monomer content for AAc and MAAc, whereas for IAc the rate decreases. The particle sizes determined by the stopped-flow method reveal that this variation of copolymerization rate cannot be explained by the number of growing particles and should be attributed to another factor; for instance, the transfer rate of styrene molecules from oil droplets to growing particles

  17. Use of Monomer Fraction Data in the Parametrization of Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Tsivintzelis, Ioannis; von Solms, Nicolas

    2010-01-01

    the monomer fraction of hydrogen bonding compounds and their mixtures. Monomer fraction data are obtained from spectroscopic measurements and they are available for a few compounds such as pure water and alcohols as well as for some alcohol–alkane and similar mixtures. These data are useful...... “improved” model parameters can be obtained if monomer fraction data are included in the parameter estimation together with vapor pressures and liquid densities. The expression “improved” implies parameters which can represent several pure compound properties as well as monomer fraction data for pure......, liquid densities and monomer fractions of water and alcohols. The 4C scheme is the best choice for water, while for methanol there is small difference between the 2B and 3B association schemes....

  18. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  19. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress.

    Directory of Open Access Journals (Sweden)

    Qingjie Guan

    Full Text Available The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841 was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR. The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline-sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67% and yield traits (average grain weight 20.6 > 18.15 g. This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity of reactive oxygen species in O. sativa and reduces salt-induced oxidative damage. We also revealed the regulatory mechanism of OsCu/Zn-SOD enzyme in saline-sodic stress resistance in O. sativa. Moreover, we provided an experimental foundation for studying the mechanism of OsCu/Zn-SOD enzymes in the chloroplast.

  20. Residual monomer content determination in some acrylic denture base materials and possibilities of its reduction

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2009-01-01

    Full Text Available Background/Aim. Polymethyl methacrylate is used for producing a denture basis. It is a material made by the polymerization process of methyl methacrylate. Despite of the polymerization type, there is a certain amount of free methyl methacrylate (residual monomer incorporated in the denture, which can cause irritation of the oral mucosa. The aim of this study was to determine the amount of residual monomer in four different denture base acrylic resins by liquid chromatography and the possibility of its reduction. Methods. After the polymerization, a postpolymerization treatment was performed in three different ways: in boiling water for thirty minutes, with 500 W microwaves for three minutes and in steam bath at 22º C for one to thirty days. Results. The obtained results showed that the amount of residual monomer is significantly higher in cold polymerizing acrylates (9.1-11%. The amount of residual monomer after hot polymerization was in the tolerance range (0.59- 0.86%. Conclusion. The obtained results denote a low content of residual monomer in the samples which have undergone postpolymerization treatment. A lower percent of residual monomer is established in samples undergone a hot polymerization.

  1. Disulfide scrambling in superoxide dismutase 1 reduces its cytotoxic effect in cultured cells and promotes protein aggregation.

    Directory of Open Access Journals (Sweden)

    Lina Leinartaitė

    Full Text Available Mutations in the gene coding for superoxide dismutase 1 (SOD1 are associated with familiar forms of the neurodegenerative disease amyotrophic lateral sclerosis (ALS. These mutations are believed to result in a "gain of toxic function", leading to neuronal degeneration. The exact mechanism is still unknown, but misfolding/aggregation events are generally acknowledged as important pathological events in this process. Recently, we observed that demetallated apoSOD1, with cysteine 6 and 111 substituted for alanine, is toxic to cultured neuroblastoma cells. This toxicity depended on an intact, high affinity Zn(2+ site. It was therefor contradictory to discover that wild-type apoSOD1 was not toxic, despite of its high affinity for Zn(2+. This inconsistency was hypothesized to originate from erroneous disulfide formation involving C6 and C111. Using high resolution non-reducing SDS-PAGE, we have in this study demonstrated that the inability of wild-type apoSOD1 to cause cell death stems from formation of non-native intra-molecular disulfides. Moreover, monomeric apoSOD1 variants capable of such disulfide scrambling aggregated into ThT positive oligomers under physiological conditions without agitation. The oligomers were stabilized by inter-molecular disulfides and morphologically resembled what has in other neurodegenerative diseases been termed protofibrils. Disulfide scrambling thus appears to be an important event for misfolding and aggregation of SOD1, but may also be significant for protein function involving cysteines, e.g. mitochondrial import and copper loading.

  2. The effect of the spaceship carrying on the biological characters and sod activity of eggplant

    International Nuclear Information System (INIS)

    Wang Shiheng; Zhang Ya; Zhu Shuijin; Wang Yanfan

    2004-01-01

    The effects of the space shuttle carrying on the growth and biological characters of eggplant SP 1 population were studied. The results showed that the effect of space shuttle carrying on the growth and development of eggplant SP 1 were very significant on the characters such as the plant height, reproductive development, leaf size, fruit length, fruit quality and fruiting rate etc, especially on the plant development and the fruit size, and it is hopeful to select some good eggplant germplasm or cultivars from the population. The SOD activity showed that the SOD level in the mutant-1 plant was one time more than that in control plant, indicating that the space shuttle carrying may increase the expression of some genes and lead to the great change in morphological characters

  3. An ionic force-field study of monomers, dimers and higher polymers in pentafluoride vapors

    Energy Technology Data Exchange (ETDEWEB)

    Cicek Onem, Z. [Department of Physics, Istanbul University, Istanbul (Turkey); Akdeniz, Z. [Department of Physics, Istanbul University, Istanbul (Turkey); Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa (Italy)], E-mail: zakdeniz@istanbul.edu.tr; Tosi, M.P. [Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa (Italy)], E-mail: tosim@sns.it

    2008-08-01

    Pentafluoride compounds such as NbF{sub 5} and TaF{sub 5} have been reported in the literature to admit various states of polymerization coexisting with monomers in their vapor phase, in relative concentrations that vary with temperature and pressure. We construct a microscopic interionic force-field model for the molecular monomer of these compounds (including VF{sub 5}, SbF{sub 5} and MoF{sub 5} in addition to NbF{sub 5} and TaF{sub 5}), the stable form of the monomer being in the shape of a D{sub 3h} trigonal bipyramid in all cases. The model emulates chemical bonds by allowing for electrical and short-range overlap polarizabilities of the fluorines, and is used to evaluate the structure and the stability of (MF{sub 5}){sub n} molecules with n running from 2 to 6. The dimer is formed by two distorted edge-sharing octahedral, while the trimer and the higher polymers can form rings of distorted corner-sharing octahedra. A chain-like configuration is also found for the trimer of NbF{sub 5}, which consists of a seven-fold coordinated Nb bonded to two distorted octahedra via edge sharing. Comparison of calculated vibrational frequencies and bond lengths with experimental data is made whenever possible. We find that there is a small net gain of energy in the formation of a dimer, while otherwise the static energy of the n-mer is very close to that of n separated monomers. High sensitivity of the state of molecular aggregation to the thermodynamic conditions of the vapor is clearly indicated by our calculations.

  4. In situ polymerization of vinyl monomers in polyester yarns

    International Nuclear Information System (INIS)

    Avny, Y.; Rebenfeld, L.; Weigmann, H.D.

    1978-01-01

    The effects of a pretreatment of polyester (PET) yarns with a strongly interacting solvent such as dimethylformamide (DMF) on vinyl monomer incorporation were investigated. When the DMF pretreatment is carried out at high temperatures (above 120 0 C), the swollen PET structure is stabilized by solvent-induced secondary crystallization. This substrate is highly suitable for the incorporation of vinyl monomers. In situ polymerization of vinyl monomers in DMF-treated PET was investigated using chemical and γ-irradiation polymerization techniques, both in the presence and in the absence of excess monomer outside the PET fibers. When polymerization was carried out in a system in which a constant supply of free radicals was available from the outside of the PET fibers, lower initiator concentrations and smaller γ-irradiation doses were necessary. These results are attributed to a low efficiency of the initiator inside the PET fiber due to mobility restrictions. Water uptake and moisture regain of PET yarns containing poly(hydroxyethyl methacrylate) and poly(acrylic acid) were also investigated. When most of the vinyl polymer was inside the PET fiber, water absorption was limited. The changes in mechanical properties of the PET yarns resulting from the DMF pretreatment were partially reversed by in situ polymerization of vinyl monomers

  5. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard [Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, CNRS UMR5084, Universite Bordeaux 1, Chemin du Solarium, F-33175 Gradignan cedex (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, F-91192 Gif-sur-Yvette cedex, Saint-Aubin (France); Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis, E-mail: ortega@cenbg.in2p3.f [FAME, ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble cedex (France)

    2009-11-15

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  6. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Science.gov (United States)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  7. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    International Nuclear Information System (INIS)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard; Solari, Pier Lorenzo; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis

    2009-01-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  8. Base-catalyzed depolymerization of lignin : separation of monomers

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States); Chornet, E. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; National Renewable Energy Laboratory, Golden, CO (United States)

    2007-12-15

    Biofuels produced from residual lignocellulosic biomass range from ethanol to biodiesel. The use of lignin for the production of alternate biofuels and green chemicals has been studied with particular emphasis on the structure of lignin and its oxyaromatic nature. In an effort to fractionate lignocellulosic biomass and valorize specific constitutive fractions, the authors developed a strategy for the separation of 12 added value monomers produced during the hydrolytic base catalyzed depolymerization (BCD) of a Steam Exploded Aspen Lignin. The separation strategy was similar to vanillin purification to obtain pure monomers, but combining more steps after the lignin depolymerization such as acidification, batch liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. The purpose was to develop basic data for an industrial size process flow diagram, and to evaluate both the monomer losses during the separation and the energy requirements. Experimentally testing of LLE, vacuum distillation and flash LC in the laboratory showed that batch vacuum distillation produced up to 4 fractions. Process simulation revealed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, of which 3 require further chromatography and crystallization operations for purification. 22 refs., 4 tabs., 8 figs.

  9. Studies on curing effect of phosphite monomer by EB radiation in the air

    International Nuclear Information System (INIS)

    Xiao, B.; Zhou, Y.; Li, S.; Luo, M.; Wang, X.; Zhao, P.

    2000-01-01

    A new type phosphite active monomer was synthesized. The resisting oxygen inhibition effect of this monomer and the effects of irradiation dose and concentration of phosphite active monomer on curing were studied. At the same time, curing results were analysed, through gel content and IR spectrum. The excellent resisting oxygen inhibition result of this phosphite active monomer was shown by experiments. EB radiation curing in the air was successfully carried out by the phosphite active monomer. (author)

  10. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum.

    Science.gov (United States)

    Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu

    2016-12-01

    The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4].

  11. A Manganese Superoxide Dismutase (SOD2 Gene Polymorphism in Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Flemming Pociot

    1993-01-01

    Full Text Available Interleukin I (lL-I is selectively cytotoxic to the insulin producing beta cell of pancreatic islets. This effect may be due to IL-I induced generation of reactive oxygen species and nitric oxide. Since beta cells contain low amounts of the superoxide radical scavenger enzyme manganese superoxide dismutase (MnSOD, this may leave beta cells more susceptible to IL-I than other cell types. Genetic variation in the MnSOD locus could reflect differences in scavenger potential. We, therefore, studied possible restriction fragment length polymorphisms (RFLPs of this locus in patients with insulin-dependent diabetes mellitus (100M (n= 154 and control individuals (n=178, Taql revealed a double diallelic RFLP in patients as well as in controls. No overall difference in allelic or genotype frequencies were observed between 100M patients and control individuals (p=0.11 and no significant association of any particular RFLP pattern with 100M was found. Structurally polymorphic MnSOD protein variants with altered activities have been reported. If genetic variation results in MnSOD variants with reduced activities, the MnSOD locus may still be a candidate gene for 100M susceptibility. Whether the RFLPs reported in this study reflects differences in gene expression level, protein level and/or specific activity of the protein is yet to be studied.

  12. Effect of N+ beam exposure on superoxide dismutase and catalase activities and induction of Mn-SOD in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Song Daojun; Chen Ruolei; Shao Chunlin; Wu Lijun; Yu Zengliang

    2000-01-01

    Though bacteria of the radiation-resistant Deinococcus radiodurans have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. The superoxide dismutase (SOD) and catalase (CAT) activities produced by these bacteria were measured, and the change of SOD and CAT activities by 20 keV N + beam exposure was examined. Their activities were increased by N + beam exposure from 8 x 10 14 ions/cm 2 to 6 x 10 15 ions/cm 2 . The treatment of H 2 O 2 and [CHCl 3 + CH 3 CH 2 OH] and the measurement of absorption spectrum showed that the increase in SOD activity was resulted from inducible activities of Mn-SOD in D. radiodurans AS1.633 by N + beam exposure. These results suggested that this bacteria possess inducible defense mechanisms against the deleterious effects of oxidisation

  13. PENINGKATAN AKTIVITAS ENZIM SOD SERUM DAN KELUHAN KESEHATAN TERHADAP PAPARAN ASAP PEMBAKARAN KAYU PADA PEKERJA

    Directory of Open Access Journals (Sweden)

    Fitri Rokhmalia

    2016-04-01

    Full Text Available The chronic exposure of nitrogen dioxide and formaldehyde gases effected cellular influence enzymes activity SOD. This study aim to analyze the effect of exposure to nitrogen dioxide and formaldehyde gases against SOD and health complaint of worker in home industry petis. The method of this study was analytical observation with prospective longitudinal study with design study cross-week. Research sites of home industry petis and government Sekardangan office. The population was 2 population that were the workers of home industry petis and the administration worker of government sekardangan office in Desa Sekardangan Kabupaten Sidoarjo with some criteria that worked at male, not getting sickness asma and willing to participate in this study. Sample size had 24 persons that was taken by simple random sampling, 12 persons from each workers home industry petis and administratif worker in government sekardangan office. The analysis result shown that nitrogen dioxide and formaldehyde gases in air effected of enzymes SOD difference before and after exposure working group and not exposed (p<0,05 using paired t-test. The effect of nitrogen dioxide and formaldehyde gases in air effected enzymes activity SOD (p<0,05 using linear regression, but health complaint was effected by enzymes activity SOD (p<0,05 using logistic regression. The conclusion of this study was exposure of nitrogen dioxide and formaldehyde gases effect increasing of enzymes activity SOD of worker at home industry petis. Otherwise, there is effect of exposure of nitrogen dioxide and formaldehyde gases to health complaints. Keywords: nitrogen dioxide, formaldehyde gases, wood burning smoke, SOD, health complaints

  14. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    International Nuclear Information System (INIS)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-01-01

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  15. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Yang, Hongying, E-mail: yanghongying@suda.edu.cn [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Institute of Radiotherapy & Oncology, Soochow University (China)

    2015-10-15

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  16. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Maria D Esteve-Gassent

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat. HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348 exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560, and outer surface protein A (OspA, BBA15 were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC, Decorin binding protein A (DbpA, fibronectin binding protein (BBK32, RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of

  17. The Effect of Seaweed Eucheuma cottonii on Superoxide Dismutase (SOD Liver of Hypercholesterolemic Rats

    Directory of Open Access Journals (Sweden)

    TUTIK WRESDIYATI

    2008-09-01

    Full Text Available Intracellular antioxidant superoxide dismutase (SOD was reported decreased in the liver and kidney of hypercholesterolemic rats. This study was conducted to observe the effect of seaweed Eucheuma cottonii powder on the profile of blood cholesterol and the level of SOD in liver tissues of hypercholesterolemic rats by using immunohistochemical technique. Twenty male Wistar rats were used for this study. Those rats were divided into four groups; (i negative control group (A, (ii hypercholesterolemia group treated by 5% seaweed powder (B, (iii hypercholesterolemia group treated by 10% seaweed powder (C, and (iv Positive control group or hypercholesterolemia group (D. The experiment was carried out for 35 days. Hypercholesterolemia condition (> 130 mg/dl, except group A, was achieved by feeding the rats with commercial diet containing 1% cholesterol. Drinking water was given ad libitum for 40 days. The results showed that seaweed powder decreased the total cholesterol, low density lipoprotein (LDL, triglyceride, and increased the level of high density lipoprotein (HDL and SOD status in the liver tissues of hypercholesterolemic rats. The treatment of 10% seaweed powder gave better results than that of 5%. These results suggested that dietary fiber such in the seaweed powder has antioxidant activity.

  18. Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma

    International Nuclear Information System (INIS)

    Liu, Xiqiang; Crowe, David L; Zhou, Xiaofeng; Wang, Anxun; Muzio, Lorenzo Lo; Kolokythas, Antonia; Sheng, Shihu; Rubini, Corrado; Ye, Hui; Shi, Fei; Yu, Tianwei

    2010-01-01

    Lymph node metastasis is a critical event in the progression of tongue squamous cell carcinoma (TSCC). The identification of biomarkers associated with the metastatic process would provide critical prognostic information to facilitate clinical decision making. Previous studies showed that deregulation of manganese superoxide dismutase (SOD2) expression is a frequent event in TSCC and may be associated with enhanced cell invasion. The purpose of this study is to further evaluate whether the expression level of SOD2 is correlated with the metastatic status in TSCC patients. We first examined the SOD2 expression at mRNA level on 53 TSCC and 22 normal control samples based on pooled-analysis of existing microarray datasets. To confirm our observations, we examined the expression of SOD2 at protein level on an additional TSCC patient cohort (n = 100), as well as 31 premalignant dysplasias, 15 normal tongue mucosa, and 32 lymph node metastatic diseases by immunohistochemistry (IHC). The SOD2 mRNA level in primary TSCC tissue is reversely correlated with lymph node metastasis in the first TSCC patient cohort. The SOD2 protein level in primary TSCC tissue is also reversely correlated with lymph node metastasis in the second TSCC patient cohort. Deregulation of SOD2 expression is a common event in TSCC and appears to be associated with disease progression. Statistical analysis revealed that the reduced SOD2 expression in primary tumor tissue is associated with lymph node metastasis in both TSCC patient cohorts examined. Our study suggested that the deregulation of SOD2 in TSCC has potential predictive values for lymph node metastasis, and may serve as a therapeutic target for patients at risk of metastasis

  19. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    McGown, Alexander; Shaw, Dame Pamela J; Ramesh, Tennore

    2016-07-26

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2-3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well suited for the study of diseasepathophysiology and also for high throughput (HT) drug screening. The mutant sod1 zebrafish model of ALS mimics the hallmark features of ALS. Using a fluorescence based readout of neuronal stress, we developed a high throughput (HT) screen to identify neuroprotective compounds. Here we show that the zebrafish screen is a robust system that can be used to rapidly screen thousands ofcompounds and also demonstrate that riluzole is capable of reducing neuronal stress in this model system. The screen shows optimal quality control, maintaining a high sensitivity and specificity withoutcompromising throughput. Most importantly, we demonstrate that many compounds previously failed in human clinical trials, showed no stress reducing activity in the zebrafish assay. We conclude that HT drug screening using a mutant sod1 zebrafish is a reliable model system which supplemented with secondary assays would be useful in identifying drugs with potential for neuroprotective efficacy in ALS.

  20. Quest for anionic MOF membranes: Continuous sod -ZMOF membrane with Co2 adsorption-driven selectivity

    KAUST Repository

    Almaythalony, Bassem

    2015-02-11

    We report the fabrication of the first continuous zeolite-like metal-organic framework (ZMOF) thin-film membrane. A pure phase sod-ZMOF, sodalite topology, membrane was grown and supported on a porous alumina substrate using a solvothermal crystallization method. The absence of pinhole defects in the film was confirmed and supported by the occurrence of quantifiable time-lags, for all studied gases, during constant volume/variable pressure permeation tests. For both pure and mixed gas feeds, the sod-ZMOF-1 membrane exhibits favorable permeation selectivity toward carbon dioxide over relevant industrial gases such as H2, N2, and CH4, and it is mainly governed by favorable CO2 adsorption.

  1. Enzyme-catalyzed hydrolysis of dentin adhesives containing a new urethane-based trimethacrylate monomer

    Science.gov (United States)

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Spencer, Paulette

    2009-01-01

    A new trimethacrylate monomer with urethane-linked groups, 1,1,1-tri-[4-(methacryloxyethylamino-carbonyloxy)-phenyl]ethane (MPE), was synthesized, characterized, and used as a co-monomer in dentin adhesives. Dentin adhesives containing 2-hydroxyethyl methacrylate (HEMA, 45% w/w) and 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA, 30% w/w) in addition to MPE (25% w/w) were formulated with H2O at 0 (MPE0), 8 (MPE8) and 16 wt % water (MPE16) to simulate the wet demineralized dentin matrix and compared with controls [HEMA/BisGMA, 45/55 w/w, at 0 (C0), 8 (C8) and 16 wt% water (C16)]. The new adhesive showed a degree of double bond conversion and mechanical properties comparable with control, with good penetration into the dentin surface and a uniform adhesive/dentin interface. On exposure to porcine liver esterase, the net cumulative methacrylic acid (MAA) release from the new adhesives was dramatically (P < 0.05) decreased relative to the control, suggesting that the new monomer improves esterase resistance. PMID:19582843

  2. Betel Leaf Extract (Piper betle L. Antihyperuricemia Effect Decreases Oxidative Stress by Reducing the Level of MDA and Increase Blood SOD Levels of Hyperuricemia Wistar Rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    I Made Sumarya

    2016-06-01

    Full Text Available Background: Betel leaf extracts (Piper betle L. antioxidant activity and enzyme inhibitors of XO. Hyperuricemia cause oxidative stress by increasing the formation of reactive oxygen species (ROS cause lipid peroxidation and oxygenation of low-density lipoprotein cholesterol (LDLc. Objective: The aim of this research was to determine the betel leaf extract as an anti hyperuricemia that can lower the blood uric acid levels and oxidative stress by lowering the levels of MDA and increase the SOD of hyperuricemia of the rat’s blood. Method: Experimental research was conducted with the design of The Randomized Post Test Only Control Group Design, on normal Wistar rats (Rattus norvegicus, administered with oxonic potassium (hyperuricemia and the hyperuricemia rats either given betel leaf extract and allopurinol. After the experiment of uric acid levels, MDA and SOD in rat blood determined. Results: The results showed that the betel leaf extract significantly (p <0.05 lower uric acid levels, MDA and increase levels of SOD in rat blood. There is a positive correlation between the levels of uric acid with MDA levels and a negative correlation, although not significantly with SOD (p >0.05. Conclusion: It can be concluded that the betel leaf extract as an anti-hyperuricemia can lower the uric acid levels and decreases oxidative stress by lowering the levels of MDA and increasing the SOD.

  3. In situ polymerization of monomers for polyphenylquinoxaline-graphite fiber composites

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    In situ polymerization of monomers was used to prepare graphite-fiber-reinforced polyphenylquinoxaline composites. Six different monomer combinations were investigated. Composite mechanical property retention characteristics were determined at 316 C (600 F) over an extended time period.

  4. Do the monomers release from the composite resins after artificial aging?

    Science.gov (United States)

    Tokay, Ugur; Koyuturk, Alp Erdin; Aksoy, Abdurrahman; Ozmen, Bilal

    2015-04-01

    The aim of this study is to measure the effect of thermal cycling on the amount of monomer released from three different composite materials by HPLC analysis method. Three different composite materials, inlay composite, posterior composite and micro-hybrid composite were used. Sixty cylinder specimens each with a dimension of approximately 1 cm width and 3 mm depth, were prepared before experiments were carried out. Inlay composite material was polymerized according to manufacturers' instructions. Thermal cycling device was used to simulate thermal differences which occur in the mouth media. Monomers were analyzed using HPLC technic after thermal cycling process. The amount of ethoxylated Bis-GMA and urethane dimethacrylate (UDMA) in inlay composite material, the amount of ethoxylated Bis-GMA in posterior composite material, the amount of ethoxylated Bis-GMA and triethyleneglycol dimethacrylate (TEGDMA) in micro-hybrid composite material were investigated. Monomer release of thermal cycles levels showed a linear increase in UDMA and TEGDMA (P < 0.05). In terms of thermal cycles levels, Bis-EMA released from posterior composite showed a cubic change (P < 0.001). It was observed that use of additional polymerization processes might have positive effect on the decrease of residual monomer. In the light of the results, we suggest that indirect composite resins have more outstanding features than direct composite resins in terms of biocompatibility. © 2015 Wiley Periodicals, Inc.

  5. Distinct Internalization Pathways of Human Amylin Monomers and Its Cytotoxic Oligomers in Pancreatic Cells

    Science.gov (United States)

    Trikha, Saurabh; Jeremic, Aleksandar M.

    2013-01-01

    Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin’s molecular forms, thereby serving a cyto-protective role in these cells. PMID:24019897

  6. Probing the mechanism of insulin fibril formation with insulin mutants.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Brange, J; Uversky, V N; Fink, A L

    2001-07-27

    The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation

  7. Restoration of wet dune slacks on the Dutch Wadden Sea islands : Recolonization after large-scale sod cutting

    NARCIS (Netherlands)

    Grootjans, AP; Everts, H; Bruin, K; Fresco, L; Grootjans, Ab P.

    The effects of sod cutting were studied in a dune area on the Dutch Wadden Sea Island of Texel. Sod cutting was carried out in a range of different dune slacks in order to restore dune slack vegetation with many endangered Red List species. Sod cutting removed approximately 96% of the soil seed

  8. Restoration of Wet Dune Slacks on the Dutch Wadden Sea Islands: Recolonization After Large-Scale Sod Cutting

    NARCIS (Netherlands)

    Grootjans, A.P.; Everts, H.; Bruin, K.; Fresco, L.

    2011-01-01

    The effects of sod cutting were studied in a dune area on the Dutch Wadden Sea Island of Texel. Sod cutting was carried out in a range of different dune slacks in order to restore dune slack vegetation with many endangered Red List species. Sod cutting removed approximately 96% of the soil seed

  9. The LOMOsup(R) process: a solution for residual monomers

    International Nuclear Information System (INIS)

    Derbyshire, R.L.

    1979-01-01

    Regulatory activity over the last several years has addressed the potential problems associated with the migration of residual monomers from a number of commodity food packages. Regardless of the outcome of current debates, it will always be desirable to reduce monomer levels to as low a level as economically practicable so that they do not become indirect additives. The LOMO process is a body of technology inclusive of an ionizing radiation treatment which can result in sharp reduction of residual monomer levels in commodity plastic resins. The process may be applicable to factory intermediates, raw resins, or finished articles. Depending upon the individual system and its monomers, LOMO treatment can result in reductions to levels which press today's analytical test capability. Industrial radiation processing is normally accomplished with electron beam accelerators. Electron beam processing continues to gain in understanding and acceptance as one of the very few basic methods by which energy can be imparted to an industrial process system. Typically, whole factories are constructed around one accelerator. (author)

  10. Synthesis and ATRP of novel fluorinated aromatic monomer with pendant sulfonate group

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Novel, fluorinated monomer with pendant sulfonate group was synthesized utilizing a two-step derivatization of 2,3,4,5,6-pentafluorostyrene (FS). The first step was a nucleophilic substitution of the fluorine atom in para position by hydroxyl group followed by sulfopropylation. The monomer...... was polymerized under aqueous ATRP conditions to yield phenyl-fluorinated aromatic homopolymer bearing pendant sulfonates on each repeating unit. Furthermore, this polymer was used as macroinitiator for the ATRP of poly(ethylene glycol) methacrylate. The polymers were characterized by 1H NMR, SEC and FTIR...

  11. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE); Estudo comparativo da enxertia dos monomeros: etileno, acetileno, 1,3-butadieno e estireno na matriz de politetrafluoroetileno (PTFE) reciclado

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil); Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B., E-mail: hferreto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Moreira, Otavio M. [Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil)

    2009-07-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  12. High monomer content batch microemulsion polymerization of butyl acrylate initiated with gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jun [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: chjun04@mail.ustc.edu.cn; Zhang Zhicheng [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: zczhang@ustc.edu.cn

    2007-05-15

    Radiation polymerization of butyl acrylate was performed in a microemulsion stabilized with a mixture of sodium of 12-acryloxy-9-octadecenoic acid and sodium dodecyl sulfate in a weight ratio of 2 at room temperature. BA content in microemulsion can be successfully improved up to 40 wt% with low surfactant concentration (lower than 10 wt%). The resulted stable, translucent microlatex contain particles with average diameter from 28.1 to 38.1 nm with different monomer content. Particle size depends on the dose rate and surfactant concentration. Effects of monomer content and dose rate on the maximum polymerization rate are discussed.

  13. Silyl Ketene Acetals/B(C6F53 Lewis Pair-Catalyzed Living Group Transfer Polymerization of Renewable Cyclic Acrylic Monomers

    Directory of Open Access Journals (Sweden)

    Lu Hu

    2018-03-01

    Full Text Available This work reveals the silyl ketene acetal (SKA/B(C6F53 Lewis pair-catalyzed room-temperature group transfer polymerization (GTP of polar acrylic monomers, including methyl linear methacrylate (MMA, and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL and α-methylene-γ-butyrolactone (MBL as well. The in situ NMR monitored reaction of SKA with B(C6F53 indicated the formation of Frustrated Lewis Pairs (FLPs, although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C6F53-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C6F53-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C6F53 is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS. Moreover, using this method, we have successfully synthesized well-defined PMMBL-b-PMBL, PMMBL-b-PMBL-b-PMMBL and random copolymers with the predicated molecular weights (Mn and narrow molecular weight distribution (MWD.

  14. Solubility of mixed monomers of tetrafluoroethylene and propylene in water and latex

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro

    1978-03-01

    For kinetical analysis of the emulsion copolymerization of tetrafluoroethylene with propylene and selection of the optimum reaction conditions, the monomer concentrations and composition of the polymer particle were measured and the relations with reaction conditions were determined. Solubilities of tetrafluoroethylene and propylene in water increase with pressure. solubility of propylene is larger than that of tetrafluoroethylene. Solubility of the mixed monomers in water and latex increases with pressure and propylene concentration and decreases with temperature. Propylene concentration in the dissolved monomers is dependent on its concentration in the gas phase and independent of pressure and temperature. The monomer concentrations and the composition were estimated from measurements. Under propylene concentration in the gas phase of 0 to 40 wt % at 30 Kg/cm 2 G and 40 0 C, the monomer concentration and propylene fraction of the polymer particle are 17 -- 27% and 0 -- 62% respectively. The amount of propylene in the particle increases with its fraction in the gas phase, but the amount of tetrafluoroethylene is independent of its fraction in the gas phase. Monomer composition of the polymer particle is dependent on monomer composition of the gas phase and independent of temperature and pressure. The concentration in the polymer particle is 17% at propylene concentration 10 mole % in the gas phase. (auth.)

  15. Thermodynamics of swelling of latex particles with two monomers: a sensitivity analysis

    NARCIS (Netherlands)

    Maxwell, I.A.; Noel, E.F.J.; Schoonbrood, H.A.S.; German, A.L.

    1993-01-01

    A sensitivity anal. is performed to det. at what conditions the simplified model for swelling of latex particles by two monomers or two solvents is valid. This model proposes that, inter alia, the fractions of two monomers in the latex particles and in the monomer droplets are equal. The model is a

  16. Characteristic features of heterophase polymerisation of styrene with simultaneous formation of surfactants at the interface

    International Nuclear Information System (INIS)

    Prokopov, Nikolai I; Gritskova, Inessa A

    2001-01-01

    Data on the heterophase polymerisation of styrene under conditions of surfactant formation at the monomer-water interface are generalised. A new, in principle, approach is proposed the essence of which is to obtain a monomer emulsion simultaneously with the synthesis of an emulsifier at the monomer-water interface and with initiation of the polymerisation in the interfacial layer. The preparation of surfactants at the interface allows one to control efficiently the degree of dispersion and the stability of the emulsions formed. By varying the nature of the acid and the metal counter-ion used in the surfactant synthesis at the interface, it is possible to change the interfacial tension, to influence the microemulsification, disintegration of the monomer, and the formation of structure of interfacial adsorption layers. The mechanism of formation of polymer-monomeric particles as well as their diameter and size distribution depend substantially on the solubility of the resulting surfactants in water. The bibliography includes 47 references.

  17. Characteristic features of heterophase polymerisation of styrene with simultaneous formation of surfactants at the interface

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, Nikolai I; Gritskova, Inessa A [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2001-09-30

    Data on the heterophase polymerisation of styrene under conditions of surfactant formation at the monomer-water interface are generalised. A new, in principle, approach is proposed the essence of which is to obtain a monomer emulsion simultaneously with the synthesis of an emulsifier at the monomer-water interface and with initiation of the polymerisation in the interfacial layer. The preparation of surfactants at the interface allows one to control efficiently the degree of dispersion and the stability of the emulsions formed. By varying the nature of the acid and the metal counter-ion used in the surfactant synthesis at the interface, it is possible to change the interfacial tension, to influence the microemulsification, disintegration of the monomer, and the formation of structure of interfacial adsorption layers. The mechanism of formation of polymer-monomeric particles as well as their diameter and size distribution depend substantially on the solubility of the resulting surfactants in water. The bibliography includes 47 references.

  18. Permeability of different types of medical protective gloves to acrylic monomers.

    Science.gov (United States)

    Lönnroth, Emma-Christin; Wellendorf, Hanne; Ruyter, Eystein

    2003-10-01

    Dental personnel and orthopedic surgeons are at risk when manually handling products containing methyl methacrylate (MMA). Dental products may also contain cross-linking agents such as ethylene glycol dimethacrylate (EGDMA) or 1,4-butanediol dimethacrylate (1,4-BDMA). Skin contact with monomers can cause hand eczema, and the protection given by gloves manufactured from different types of material is not well known. The aim of this study was to determine the breakthrough time (BTT, min) as a measure of protection (according to the EU standard EN-374-3) for a mixture consisting of MMA, EGDMA and 1,4-BDMA. Fifteen different gloves representing natural rubber latex material, synthetic rubber material (e.g. nitrile rubbers), and synthetic polymer material were tested. The smallest monomer MMA permeated within 3 min through all glove materials. A polyethylene examination glove provided the longest protection period to EGDMA and 1, 4-BDMA (> 120 min and 25.0 min), followed by the surgical glove Tactylon (6.0 min and 8.7 min) and the nitrile glove Nitra Touch (5.0 min and 8.7 min). This study showed that the breakthrough time (based on permeation rate) cannot be regarded as a 'safe limit'. When the permeation rate is low, monomers may have permeated before BTT can be determined. Using double gloves with a synthetic rubber inner glove and a natural rubber outer glove provided longer protection when the inner glove was rinsed in water before placing the outer glove on top.

  19. Net expansion of dried demineralized dentin matrix produced by monomer/alcohol saturation and solvent evaporation.

    Science.gov (United States)

    Agee, Kelli A; Becker, Thomas D; Joyce, Anthony P; Rueggeberg, Frederick A; Borke, James L; Waller, Jennifer L; Tay, Franklin R; Pashley, David H

    2006-11-01

    The purpose of this work was to determine if nonaqueous methacrylate monomer/alcohol mixtures could expand dried collapsed demineralized dentin matrix. Thin disks (ca. 200 microm) of human dentin were demineralized and placed in wells beneath contact probes of linear variable differential transformers. The probes were placed on water-saturated expanded matrices to record the shrinkage associated with drying. Monomer mixtures containing hydroxyethyl methacrylate, 2,2-bis[4-(2-hydroxy-3 methacryloyloxy)propoxyphenyl] propane, or triethyleneglycol dimethacrylate were mixed with methanol or ethanol at alcohol/monomer mass fraction % of 90/10, 70/30, 50/50, or 30/70. They were randomly applied to the dried matrices to determine the rate and magnitude of expansion; then shrinkage was recorded during evaporation of the alcohols. The results indicated that matrix expansion was positively correlated with the Hoy's solubility parameters for hydrogen bonding forces (delta(h)) of the monomer/solvent mixtures (p methanol-containing than with ethanol-containing monomer mixtures. For the test solutions, triethyleneglycol dimethacrylate-containing mixtures produced the slowest rate of matrix expansion and hydroxyethyl methacrylate-containing mixtures the most rapid expansion. When the solvents were evaporated, the matrix shrank in proportion to the solvent content and the delta(h) of the monomer-solvent mixtures. The results indicate that expansion of dried, collapsed dentin matrices requires that the delta(h) of the mixtures be larger than 17 (J/cm(3))(1/2). The greater the delta(h) of the monomer solutions, the greater the rate and extent of expansion.

  20. Molecularly imprinted polymers for corticosteroids: impact of polymer format on recognition behaviour

    International Nuclear Information System (INIS)

    Fitzhenry, Laurence; Duggan, Patrick; McLoughlin, Peter; Manesiotis, Panagiotis

    2013-01-01

    A comparative study was performed on different polymeric formats for targeting corticosteroids, focusing on the use of bulk monolith and precipitation polymerisation strategies. Hydrocortisone-17-butyrate was selected as the template and methacrylic acid as the functional monomer, following 1 H NMR investigation of the pre-polymerisation mixture. Three different cross-linkers were tested, ranging from moderate to highly hydrophobic. The synthesised bulk and precipitated imprinted polymers were physically characterised by nitrogen sorption and evaluated by means of HPLC and frontal chromatography against a range of template analogues. While some degree of selectivity for the template was achieved for all tested polymers, the ones based on the tri-functional cross-linking monomer trimethylolpropane trimethacrylate exhibited the longest retention for all corticosteroids, especially in the precipitated format, which suggested broader group selectivity. (author)

  1. Pengaruh variasi pemberian Snack bar ubi jalar kedelai hitam terhadap Kadar Superoksida Dismutase (SOD darah

    Directory of Open Access Journals (Sweden)

    Fitriyono Ayustaningwarno

    2014-12-01

    Full Text Available Background: Snack bar from sweet potatoes and black soybeans is low GI, fat and calorie snack which haveantioxidant content, such as β-carotene, anthocyanin, isoflavone, and antioxidant activity, so can be an alternativesnack for patients with DM type 2. Antioxidants intake can prevent the oxidative stress that lead micro- and macrovascularcomplications in DM type 2. Antioxidant intake may preserve endogen antioxidant capacity, which is can bedetermined by analyzing SOD concentration.Objective: analyze effect variety of Snack bar from sweet potatoes and black soybeans consume to SOD concentration.Methods: experimental post-pretest research used 3 varieties of sweet potato’s color (red, yellow, and purpleinterventions. SOD concentration was analyzed by colorimetric. Statistic data was analyzed by dependent t-test andOne Way Anova.Results: No different between groups interventions Snack bar from purple, yellow or red sweet potatoes (p=0,122.Group with snack bar from purple sweet potatoes intervention has lowest SOD decreasing percentage among otherintervention groups.Conclusion: Consume snack bar form purple sweet potatoes and black soybeans can preserve SOD concentrationbetter than consume snack bar form yellow or red sweet potatoes and black soybeans

  2. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    Science.gov (United States)

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies. © 2015 International Society for Neurochemistry.

  3. Radiation Induced Grafting of Acrylate onto Waste Rubber: The Effect of Monomer Type

    Directory of Open Access Journals (Sweden)

    Shirajuddin Siti Salwa M.

    2017-01-01

    Full Text Available The effect of three different acrylate group monomers, namely n-butyl acrylate, methacrylic acid and tripropylene glycol diacrylate of radiation induced grafting onto waste rubber was studied. The electron beam accelerator operated at voltage of 2MeV was used to irradiate the waste rubber at 10 kGy and 100 kGy absorbed radiation dose, respectively. The formation of grafting was observed from the increase in the grafting yield and confirmed by Transformed Infra-Red Spectroscopy results. According to the result obtained, only tripropylene glycol diacrylate was selected to graft onto waste rubber. The carbonyl bond from acrylate groups was seen at 1726 cm-1 band which confirmed the presence of TPGDA in the polymer matrix. This indicates the successful preparation of the TPGDA-grafted waste rubber via radiation induced grafting techniques.

  4. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes.

    Science.gov (United States)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-10-01

    Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects, overexpression of SOD2 abolished the bystander oxidative stress and DNA damage, indicating that SOD2 was critical to the induction of RIBEs. Moreover, we found that miR-21 regulated SOD2, suggesting that miR-21 might mediate bystander responses through its regulation on SOD2. In conclusion, this study revealed a profound role of miR-21-regulated SOD2 of unirradiated WS1

  5. Superior PSZ-SOD Gap-Fill Process Integration Using Ultra-Low Dispensation Amount in STI for 28 nm NAND Flash Memory and Beyond

    Directory of Open Access Journals (Sweden)

    Chun Chi Lai

    2015-01-01

    Full Text Available The gap-fill performance and process of perhydropolysilazane-based inorganic spin-on dielectric (PSZ-SOD film in shallow trench isolation (STI with the ultra-low dispensation amount of PSZ-SOD solution have been investigated in this study. A PSZ-SOD film process includes liner deposition, PSZ-SOD coating, and furnace curing. For liner deposition, hydrophilic property is required to improve the contact angle and gap-fill capability of PSZ-SOD coating. Prior to PSZ-SOD coating, the additional treatment on liner surface is beneficial for the fluidity of PSZ-SOD solution. The superior film thickness uniformity and gap-fill performance of PSZ-SOD film are achieved due to the improved fluidity of PSZ-SOD solution. Following that up, the low dispensation rate of PSZ-SOD solution leads to more PSZ-SOD filling in the trenches. After PSZ-SOD coating, high thermal curing process efficiently promotes PSZ-SOD film conversion into silicon oxide. Adequate conversion from PSZ-SOD into silicon oxide further increases the etching resistance inside the trenches. Integrating the above sequence of optimized factors, void-free gap-fill and well-controlled STI recess uniformity are achieved even when the PSZ-SOD solution dispensation volume is reduced 3 to 6 times compared with conventional condition for the 28 nm node NAND flash and beyond.

  6. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection.

    Science.gov (United States)

    Fenlon, Luke A; Slauch, James M

    2017-12-15

    Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment inside host

  7. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity.

    Science.gov (United States)

    Chen, Hainan; Li, Xiaoyan; Epstein, Paul N

    2005-05-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources of ROS. MnSOD or catalase conferred protection against streptozotocin (STZ)-induced beta-cell injury. Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ. To determine the potential effect of these antioxidants on cytokine-induced toxicity, we exposed isolated islets to a cytokine mixture, including interleukin-1beta and interferon-gamma. Cytokine toxicity was measured as reduced metabolic activity after 6 days and reduced insulin secretion after 1 day. Cytokines increased ROS production, and both antioxidants were effective in reducing cytokine-induced ROS. However, MnSOD and/or catalase provided no protection against cytokine-induced injury. To understand this, the nuclear factor-kappaB (NF-kappaB) signaling cascade was investigated. Antioxidants reduced NF-kappaB activation by ROS, but none of the antioxidants altered activation by cytokines, as measured by inhibitor of kappaB phosphorylation, NF-kappaB translocation, inducible NO synthase activation, and NO production. Our data agree with previous reports that antioxidants benefit beta-cell survival against ROS damage, but they are not consistent with reports that antioxidants reduce cytokine toxicity. ROS appear to have no role in cytokine toxicity in primary beta-cells.

  8. The Off-rate of Monomers Dissociating from Amyloid-β Protofibrils*

    Science.gov (United States)

    Grüning, Clara S. R.; Klinker, Stefan; Wolff, Martin; Schneider, Mario; Toksöz, Küpra; Klein, Antonia N.; Nagel-Steger, Luitgard; Willbold, Dieter; Hoyer, Wolfgang

    2013-01-01

    The interconversion of monomers, oligomers, and amyloid fibrils of the amyloid-β peptide (Aβ) has been implicated in the pathogenesis of Alzheimer disease. The determination of the kinetics of the individual association and dissociation reactions is hampered by the fact that forward and reverse reactions to/from different aggregation states occur simultaneously. Here, we report the kinetics of dissociation of Aβ monomers from protofibrils, prefibrillar high molecular weight oligomers previously shown to possess pronounced neurotoxicity. An engineered binding protein sequestering specifically monomeric Aβ was employed to follow protofibril dissociation by tryptophan fluorescence, precluding confounding effects of reverse or competing reactions. Aβ protofibril dissociation into monomers follows exponential decay kinetics with a time constant of ∼2 h at 25 °C and an activation energy of 80 kJ/mol, values typical for high affinity biomolecular interactions. This study demonstrates the high kinetic stability of Aβ protofibrils toward dissociation into monomers and supports the delineation of the Aβ folding and assembly energy landscape. PMID:24247242

  9. Elucidation of the Corrosion Inhibition of Mild Steel in 1.0 M HCl by Catechin Monomers from Commercial Green Tea Extracts

    Science.gov (United States)

    Nofrizal, S.; Rahim, Afidah A.; Saad, Bahruddin; Bothi Raja, P.; Shah, Affaizza M.; Yahya, S.

    2012-04-01

    The inhibitive action of commercial green tea extracts on mild steel (MS) in a 1.0 M hydrochloric acid solution was investigated by weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). A high-performance liquid chromatographic (HPLC) analysis showed conclusively that of the eight catechin monomers and caffeine found in the original extracts, only four components were responsible for the inhibition of MS. The decreasing adsorption capacity of monomers on MS is related to the stereochemistry of molecules and the number of phenolic groups, and it is as follows: epigallocatechin gallate > epicatechin gallate > epigallocatechin > epicatechin. Adsorption of green tea extract constituent was found to follow Langmuir adsorption isotherm and the calculated Gibb's free energy values indicated the physisorption of inhibitor over MS surface. Physisorption was supported well by the potential zero charge (PZC) and molecular surface energy-level calculations.

  10. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  11. Effect of Laser-assisted and Conventional In-office Bleaching on Monomer Release from Microhybrid and Nanohybrid Composite.

    Science.gov (United States)

    Omrani, Ladan Ranjbar; Farjadfar, Shayan; Pedram, Parham; Sadray, Sima; Kamangar, Sedighe Sadat Hashemi; Chiniforoush, Nasim

    2017-06-30

    Bleaching might affect structural properties of composite materials, and lead to monomer release. This study aimed to evaluate the effect of Laser-assisted and conventional in-office bleaching on the release of BIS-GMA, TEGDMA, and UDMA monomers from a nanohybrid and a microhybrid BIS-GMA based composite. 32 samples of each composite, were divided into 4 subgroups; subgroup 1: Conventional in-office bleaching (CIB) with the Opalescence Boost PF 38% gel, subgroup 2: Laser-assisted bleaching (LBO) with the Opalescence Boost PF 38% gel, subgroup 3: Laser-assisted bleaching (LBH) with the JW Power bleaching gel, subgroup 4: (CO) control without bleaching. All the samples were immersed in tubes of 2cc Ethanol 75% medium. The released monomers were analyzed using the high performance liquid chromatography (HPLC) method 24 h, 7, and 28 days. Data's were analyzed by Univariate Analysis of Variance test followed by Tukeys HSD. The amount of TEGDMA monomer released was not significant. However, nanohybrid composites showed significantly more monomer release than microhybrid composites (P Bleaching by laser with JW Power Bleaching gel led to more monomer release in nanohybrid composite.

  12. Lewis pair polymerization by classical and frustrated Lewis pairs: Acid, base and monomer scope and polymerization mechanism

    KAUST Repository

    Zhang, Yuetao

    2012-01-01

    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C 6F 5) 3 with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl- α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C 6F 5) 3-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C 6F 5) 3, can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P tBu 3), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P 4- tBu). The P 4- tBu/Al(C 6F 5) 3 pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10 4 h -1 (0.125 mol% catalyst, 100% MMA conversion in 30 s, M n = 2.12 × 10 5 g mol -1, PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P γMMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C 6F 5) 3 adduct with P tBu 3 and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the tBu 3P/ Al(C 6F 5) 3 pair is zero-order in monomer concentration after an initial induction period, and the polymerization

  13. Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease

    Directory of Open Access Journals (Sweden)

    Zippelius Annette

    2009-06-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons (MN in the brain stem and spinal cord. Intracellular disruptions of cytosolic and mitochondrial calcium have been associated with selective MN degeneration, but the underlying mechanisms are not well understood. The present evidence supports a hypothesis that mitochondria are a target of mutant SOD1-mediated toxicity in familial amyotrophic lateral sclerosis (fALS and intracellular alterations of cytosolic and mitochondrial calcium might aggravate the course of this neurodegenerative disease. In this study, we used a fluorescence charged cool device (CCD imaging system to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations in individual cells in an established cellular model of ALS. Results To gain insights into the molecular mechanisms of SOD1G93A associated motor neuron disease, we simultaneously monitored cytosolic and mitochondrial calcium concentrations in individual cells. Voltage – dependent cytosolic Ca2+ elevations and mitochondria – controlled calcium release mechanisms were monitored after loading cells with fluorescent dyes fura-2 and rhod-2. Interestingly, comparable voltage-dependent cytosolic Ca2+ elevations in WT (SH-SY5YWT and G93A (SH-SY5YG93A expressing cells were observed. In contrast, mitochondrial intracellular Ca2+ release responses evoked by bath application of the mitochondrial toxin FCCP were significantly smaller in G93A expressing cells, suggesting impaired calcium stores. Pharmacological experiments further supported the concept that the presence of G93A severely disrupts mitochondrial Ca2+ regulation. Conclusion In this study, by fluorescence measurement of cytosolic calcium and using simultaneous [Ca2+]i and [Ca2+]mito measurements, we are able to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations

  14. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .1. Synthesis and characterization of the monomers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    New azobenzene-based (az.b.) monomers with CO2H (acid) or N(CH3)(2) (basic) substituents were synthesized. For some of these compounds new synthetic routes had to be developed, especially for the az.b. monomers with a CO2H substituent (azoacids) where their synthesis, purification and (thermal)

  15. CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration.

    Science.gov (United States)

    Suazo, Miriam; Olivares, Felipe; Mendez, Marco A; Pulgar, Rodrigo; Prohaska, Joseph R; Arredondo, Miguel; Pizarro, Fernando; Olivares, Manuel; Araya, Magdalena; González, Mauricio

    2008-04-01

    The limits of copper homeostatic regulation in humans are not known, making it difficult to define the milder effects of early copper excess. Furthermore, a robust assay to facilitate the detection of early stages of copper excess is needed. To address these issues, we assessed changes in relative mRNA abundance of methallothionein 2A (MT2A), prion (PrP), amyloid precursor-like protein 2 (APLP2), Cu/Zn superoxide dismutase (SOD1) and its copper chaperone (CCS) in peripheral mononuclear cells (PMNCs) from healthy adults representing the 5% highest and lowest extremes in the distribution curve of serum ceruloplasmin (Cp) concentrations of 800 individuals. The intracellular Cu content was also determined. PMNCs were isolated from individuals before and after exposure to a single daily dose of 10 mg Cu (as CuSO(4)) for 2 months. Results showed that although there were fluctuations in serum Cp values of the samples assessed before copper exposure, no significant differences were observed in cell copper content or in the relative abundance of MT2A, PrP and APLP2 transcripts in PMNCs. Also, these values were not modified after copper supplementation. However, CCS and SOD1 mRNA levels were reduced in PMNCs after copper supplementation in the individuals with the high Cp values, suggesting that they should be further explored as biomarkers of moderate copper overload in humans.

  16. Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended

    Science.gov (United States)

    Alston, William B.; Scheiman, Daniel A.

    2000-01-01

    PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.

  17. Fluorescent oligonucleotides containing a novel perylene 2′-amino-α-L-LNA monomer: Synthesis and analytical potential

    DEFF Research Database (Denmark)

    Astakhova, Irina; Kumar, Santhosh T.; Wengel, Jesper

    2011-01-01

    efficiency of the resulting perylene-2'-amino-alpha-L-LNA monomer (T*) into synthetic oligonucleotides was significantly improved by replacement of the typically used 1H-tetrazole activator with pyridine hydrochloride. Generally, oligonucleotides containing monomer T* showed high binding affinity towards...... incorporations of monomers T* was quenched (quantum yield Phi(F) = 0.21) relative to duplexes of this probe with complementary DNA and RNA (Phi(F) = 0.42 and 0.35, respectively). On the contrary, a strong fluorescence quenching upon target binding was demonstrated by two short oligonucleotides of analogues...... sequences containing monomers T* at 5'- and 3'-terminal positions. We explain the hybridization-induced light-up effect observed for double-labeled probe by a reduction of fluorescence quenching due to precise positioning of the fluorophores within the double-stranded complexes. Furthermore, we propose...

  18. Investigation on physical behavior of styrene wood-polymer in different concentrations of monomer

    Directory of Open Access Journals (Sweden)

    maryam ghorbani

    2016-09-01

    Full Text Available This research was conducted to study the effect of different concentrations of styrene lumen monomer on the physical properties of beech wood. Physical test samples were prepared according to ASTM-D1037 standard and treated with vacuum-pressure method at five concentration levels; 0, 40, 60, 80 and 100 percent of soluble monomer. For polymerization, treated samples were heated in oven for two 24-hour period at 90 and 103ºC respectively. Monomer and polymer absorption, density variation, water absorption, swelling and anti-swelling efficiency (ASE were determined. According to the results, Monomer and polymer absorption were increment by monomer concentration increase, and they were reported 38.2% and 26% in highest level. With polymer absorption enhancement, density of wood increased from 0/63g/cm³ in control to 0/91g/cm³ in the highest monomer concentration level that reduces pores in wood-polymer structure. Absorbed polymer enhancement decreased hydrophilicity and dimensional changes of treated samples, so that water absorption and swelling volume of the samples saturated with 100% concentration of monomer were decreased 64% and 45.3% after the longest immersion time. Highest Anti-swelling efficiency of Styrene-saturated samples was determined 56.15% in the maximum concentration level of treatment.

  19. Bioaccumulation study of acrylate monomers in algae (Chlorella Kessleri) by PY-GC and PY-GC/MS

    International Nuclear Information System (INIS)

    Halas, L.; Orinak, A.; Adamova, M.; Ladomersky, J.

    2004-01-01

    Acrylate monomers methylmethacrylate (MMA) and cyclohexylmethacrylate (CHMA) bioaccumulation has been determined in aquatic organism, algae (Chlorella kessleri). Algae were collected in amount of 0.4 mg and directly injected to the paralytic cell. In algae bodies accumulated monomers were analysed by pyrolysis gas chromatography (Py-GC) and pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS). Traces of the accumulated monomers in algae body can be determined after 1-, 2 -, 3-weeks of incubation. Maximum content of MMA was determined after 3-week of experiment, contrariwise in the case of CHMA after 2-week exposition. Relationship with pyrolysis temperature has also been studied. (authors)

  20. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects

    International Nuclear Information System (INIS)

    Bernini, S; Leporini, D

    2016-01-01

    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t −1/2 , becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours. (paper)

  1. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: Influential factors to grafting efficiency and particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: pstwmz@ustc.edu.cn; Ge Xuewu [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: xwge@ustc.edu.cn

    2009-02-15

    Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 deg. C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by {gamma}-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer (G{sub PU/monomer}) was calculated from {sup 1}H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. G{sub PU/monomer} varied as G{sub PU/styrene}(37%)>G{sub PU/butyl} {sub acrylate} {sub (BA)}(21%)>G{sub PU/methyl} {sub methacrylate} {sub (MMA)}(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.

  2. Investigation of the Hydantoin Monomer and its Interaction with Water Molecules

    Science.gov (United States)

    Gruet, Sébastien; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    Hydantoin (Imidazolidine-2,4-dione, C_3H_4N_2O_2) is a five-membered heterocyclic compound of astrobiological interest. This molecule has been detected in carbonaceous chondrites [1], and its formation can rise from the presence of glycolic acid and urea, two prebiotic molecules [2]. The hydrolysis of hydantoin under acidic conditions can also produce glycine [3], an amino acid actively searched for in the interstellar medium. Spectroscopic data of hydantoin is very limited and mostly dedicated to the solid phase. The high resolution study in gas phase is restricted to the work recently published by Ozeki et al. reporting the pure rotational spectra of the ground state and two vibrational states of the molecule in the millimeter-wave region (90-370 GHz)[4]. Using chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, we recorded the jet-cooled rotational spectra of hydantoin with water between 2 to 8 GHz. We observed the ground state of hydantoin monomer and several water complexes with one or two water molecules. All the observed species exhibit a hyperfine structure due to the two nitrogen atoms present in the molecule, which were fully resolved and analyzed. Additional experiments with a ^{18}O enriched water sample were realized to determine the oxygen-atom positions of the water monomers. These experiments yielded accurate structural information on the preferred water binding sites. The observed complexes and the interactions that hold them together, mainly strong directional hydrogen bonds, will be presented and discussed. [1] Shimoyama, A. and Ogasawara, R., Orig. Life Evol. Biosph., 32, 165-179, 2002. DOI:10.1023/A:1016015319112. [2] Menor-Salván, C. and Marín-Yaseli, M.R., Chem. Soc. Rev., 41(16), 5404-5415, 2012. DOI:10.1039/c2cs35060b. [3] De Marcellus P., Bertrand M., Nuevo M., Westall F. and Le Sergeant d'Hendecourt L., Astrobiology. 11(9), 847-854, 2011. DOI:10.1089/ast.2011.0677. [4] Ozeki, H., Miyahara R., Ihara H., Todaka S., Kobayashi

  3. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami; Deng, Shuo; Ganesan, Pugalenthi; Kumar, Alan Prem; Lim, Kiat Hon; Yang, Henry; Hooi, Shing Chuan; Goh, Yaw Chong; Maciver, Sutherland K.; Pervaiz, Shazib; Yap, Celestial T.

    2016-01-01

    , and this is mediated via gelsolin's effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained

  4. Self-assembly of actin monomers into long filaments: Brownian Dynamics simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2009-01-01

    Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the freemonomers and the relatively slow....../detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. Theresults also show that the waiting time is governed by...

  5. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.

    Science.gov (United States)

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.

  6. Effect of mineral acid on polymer produced during radiation-induced grafting of styrene monomer

    International Nuclear Information System (INIS)

    Garnett, J.L.; Jankiewicz, S.V.; Sangster, D.F.

    1982-01-01

    The inclusion of mineral acid in a solution of styrene in methanol subjected to 60 Co γ irradiation markedly enhances the yield of monomer grafted to cellulose and other radiation grafting systems. Results were reported from a preliminary investigation into the mechanism of this acid effect through a study of the action of acid during the solution polymerization process. It was found that the presence of acid in a monomer solution such as styrene in 1, 4-dioxan led to an enhancement in the homopolymer yield of styrene; and it was showed that the acid also effected the number-average molecular weight of this homopolymer. 1 figure, 4 tables

  7. Photokopolimerisasi monomer akrilat degan kulit kras sapi

    Directory of Open Access Journals (Sweden)

    Dwi Wahini Nurhajati

    1997-06-01

    Full Text Available The research on photocopolymerization of acrylate monomer with cow crust hide had object to observe the resulted copolymer onto cow crust hide. Crust hides, saturated with aqueous emulsions containing 25 wt % of n-butyl acrylate (n-BA or tripropylene glycol diacrylate (TPGDA were irradiated by cobalt – 60 gamma rays with doses ranges from 5 to 25 kGy. The irradiated hides were washed with water, dried in air and extracted in soxhlet apparatus for 48 hours to remove homopolymer. The highest yield of photocopolymerization of n – butyl acrylate monomer with crust hides was found 17,7878% at dose 25 kGy, and for photocopolymerization of tripropylene glycol diacrylate with crust hides was found 39,4245% at dose 20 kGy.

  8. Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF

    KAUST Repository

    Shi, Yanshu; Cairns, Amy; Liu, Yunling; Belmabkhout, Youssef; Cai, Xuechao; Pang, Maolin; Eddaoudi, Mohamed

    2017-01-01

    In this report, indium-based rho-and sod-ZMOFs with different morphologies and sizes were prepared. Simultaneous morphology evolution and phase transformation from porous rho-to nonporous sod-ZMOFs were reported for the first time by simply varying the concentration of structure directing agents (SDAs).

  9. Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF

    KAUST Repository

    Shi, Yanshu

    2017-06-23

    In this report, indium-based rho-and sod-ZMOFs with different morphologies and sizes were prepared. Simultaneous morphology evolution and phase transformation from porous rho-to nonporous sod-ZMOFs were reported for the first time by simply varying the concentration of structure directing agents (SDAs).

  10. Radical copolymerization in homogenous medium and emulsion system monomers acrylonitrile/styrene

    Directory of Open Access Journals (Sweden)

    Boussehel H.

    2013-09-01

    Full Text Available This study examines the radical copolymerization in homogeneous and emulsion of the monomer system acrylonitrile/styrene. These copolymers are of great interest to the plastics industry, because they combine the good mechanical properties and implementation provided by the styrene units in the very high solvent resistance and extreme gas impermeability provided by the acrylonitrile units. The properties of a copolymer are directly related to its composition and distribution of monomer units in its macromolecular chains. Based on the reports of the couple reactivity's of monomers (AN/S found in the literature, the objective of the work is to provide theoretical simulation (by analytical and numerical integration of the equation of copolymerization: The kinetics of the reaction copolymerization of AN/S in a homogeneous medium and emulsion (drift composition, azeotropic and the microstructure (distribution of monomer sequences and the glass transition property of the macromolecular chains instant formed throughout the copolymerization reaction.

  11. Conformational alteration in alpha-toxin from Staphylococcus aureus concomitant with the transformation of the water-soluble monomer to the membrane oligomer.

    Science.gov (United States)

    Ikigai, H; Nakae, T

    1985-07-16

    The membrane-damaging alpha-toxin aggregate of Staphylococcus aureus was characterized physicochemically. The aggregate weight of the toxin formed by various methods appeared to be 6 times higher than the molecular weight of the monomer as determined by the laser light scattering technique, suggesting the presence of a hexamer in the membrane. The aggregates fluoresced 20 to 50% more than the monomer at 336 nm. Circular dichroism measurements revealed that both the monomer and the oligomer showed essentially beta-sheet structure with the maximum ellipticity about -8,400 deg.cm2.dmol-1 at 215 nm. Circular dichroism spectrum of the oligomers showed ellipticity difference of -6,600, -44 and +84 deg.cm2.dmol-1, at 200, 250 and 280 nm, respectively, compared with the monomer. All these results suggest that the conformational change in the toxin molecule occurs concomitant with the transformation of the water-soluble monomer to the membrane-embedded hexamer.

  12. On-line measurement of residual monomer during polymerisation of acrylamide using ultrasonics

    International Nuclear Information System (INIS)

    Ponraju, D.; Sebastian, Letha; Viswanathan, S.; Natarajan, A.; Palanichamy, P.; Jayakumar, T.; Baldev Raj

    1996-01-01

    An ultrasonic technique for the estimation of residual acrylamide monomer during the polymerization of aqueous acrylamide solution has been investigated. Polyacrylamide gel medium serves as a sensitive medium for detection and dosimetry of fast and thermal neutrons. This technique is based on the fact that the velocity of ultrasonic wave increases with the increase in elasticity due to polymerization. The percentage of residual acrylamide monomer is estimated using ultraviolet spectrophotometric analysis. The ultrasonic velocity is correlated with the residual monomer concentration

  13. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes.

    Science.gov (United States)

    Turkseven, Saadet; Kruger, Adam; Mingone, Christopher J; Kaminski, Pawel; Inaba, Muneo; Rodella, Luigi F; Ikehara, Susumu; Wolin, Michael S; Abraham, Nader G

    2005-08-01

    Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.

  14. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules

    KAUST Repository

    Chambers, Stuart D.

    2011-12-15

    Monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) and poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns, which incorporate the new monomer [6,6]-phenyl-C 61-butyric acid 2-hydroxyethyl methacrylate ester, have been prepared and their chromatographic performance have been tested for the separation of small molecules in the reversed phase. While addition of the C60-fullerene monomer to the glycidyl methacrylate-based monolith enhanced column efficiency 18-fold, to 85 000 plates/m at a linear velocity of 0.46 mm/s and a retention factor of 2.6, when compared to the parent monolith, the use of butyl methacrylate together with the carbon nanostructured monomer afforded monolithic columns with an efficiency for benzene exceeding 110 000 plates/m at a linear velocity of 0.32 mm/s and a retention factor of 4.2. This high efficiency is unprecedented for separations using porous polymer monoliths operating in an isocratic mode. Optimization of the chromatographic parameters affords near baseline separation of 6 alkylbenzenes in 3 min with an efficiency of 64 000 plates/m. The presence of 1 wt % or more of water in the polymerization mixture has a large effect on both the formation and reproducibility of the monoliths. Other factors such as nitrogen exposure, polymerization conditions, capillary filling method, and sonication parameters were all found to be important in producing highly efficient and reproducible monoliths. © 2011 American Chemical Society.

  15. Effect of monomer concentration on the kinetics of emulsifier-free emulsion polymerization of Vinyl Acetate and Methyl Acrylate

    International Nuclear Information System (INIS)

    Mohammad Beigi, H. R.

    2001-01-01

    The effect of monomer concentration on the kinetics of the emulsifier-free emulsion polymerization of vinyl acetate and methyl acrylate were studied. The polymerizations were carried out using potassium persulfate as the initiator. Form the electron micrographs of the resulting lattices, monodisperse PVAc and PMA lattices with particle diameters varying between 149-443 mm and 112-497 nm, respectively were processed. Uniformity of particle size indicated that nucleation of stable particle occurs early in the polymerization process. The polymerization rate was found to be proportional to the 0.88 and 1.5 power of the initial monomer concentration of vinyl acetate and methyl acrylate, respectively. Higher monomer concentration results in fewer particles and larger final particle diameter. With increasing monomer solubility in water the size of particle decreases and its distribution broadens

  16. Comparison and Analysis of 3,4 dihydrocylmandelic acid (DHMA) and noremetanephrine (NMN) on Amyloid-Beta 40 Monomer for treatment of Alzheimer's Disease using Molecular Dynamics Simulation

    Science.gov (United States)

    Choi, Woosung; Jee, Sang Eun; Jang, Seung Soon

    Alzheimer's disease (AD) is type of degenerative dementia caused memory loss and behavior problem. Main reason of AD is Amyloid-Beta 40(A β) mostly composed of α -helix form misfolds to insoluble fibrils and soluble oilgomer. This insoluble fibrils aggregate with beta sheet structure and form the plaque which is caused nurotoxicity in brain. Both 3,4 dihydrocylmandelic acid (DHMA) and noremetanephrine (NMN) are the metabolite of norepinephrine in brain . Also these are inhibit the changing formation of fibrils and maintain the α -helix structure. In this computational modeling study, both NMN and DHMA molecules were modified and analyzed for specific effect on the A β-monomer using molecular dynamics simulation. Using molecular dynamic simulation, NMN and DHMA act as modulator on three A β-monomer batches and could observe the conformational changing of these A β-monomer under the physiologocal condition. This computational experiment is designed to compare and analyze both of chemicals for determining which chamecal would be more effective on the conformation of A β 40 monomer.

  17. High-resolution structure of a retroviral protease folded as a monomer

    Czech Academy of Sciences Publication Activity Database

    Gilski, M.; Kazmierczyk, M.; Krzywda, S.; Zábranská, Helena; Cooper, S.; Popovic, Z.; Khatíb, F.; Dímaio, F.; Thompson, J.; Baker, D.; Pichová, Iva; Jaskolski, M.

    D67, č. 11 (2011), s. 907-914 ISSN 0907-4449 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : M-PMV protease * crystal structure * monomer * dimerization inhibitors Subject RIV: CE - Biochemistry Impact factor: 12.619, year: 2011

  18. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether Monomers Initiated by Ruthenium Carbenes

    Directory of Open Access Journals (Sweden)

    Guzmán Pablo E.

    2016-03-01

    Full Text Available The Ring-Opening Metathesis Polymerization (ROMP of second-generation dendronized monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex [(H2IMes(pyr2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa are efficiently synthesized with low dispersities (Ð = 1.01-1.17. This study highlights the power of the metathesis approach toward polymer synthesis in a context where monomer structure can significantly impede polymerization.

  19. Influence of radiation damage repair inhibitor on superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in different sensitive crops

    International Nuclear Information System (INIS)

    Song Daojun; Xu Dengyi; Wan Zhaoliang; He Shoulin

    1997-01-01

    The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were affected remarkably by 60 Co γ-ray irradiation and radiation damage repair inhibitor (Caf, EDTA). SOD, CAT and POD activities showed the similar change pattern in both soybean (sensitive to radiation) and Brassica napus L. (resistant to radiation) seedlings in all treatments. After reaching the maximum value, SOD activity decreased with the increase of doses. CAT activity had the same change pattern as that of SOD in soybean, while with Brassica napus L., CAT activity remained relatively steady from 300 Gy to 1000 Gy. And POD activity increased with the increase of doses. Compared with H 2 O-treatments, CaF, EDAT post-treatments obviously enhanced SOD, CAT and POD activities. With all the treatments, the three enzyme activities were higher in Brassica napus L. than those in soybean seedlings

  20. Radiation curing of mixtures of diallylphthalate prepolymer and vinyl monomer, 9

    International Nuclear Information System (INIS)

    Gotoda, Masao; Kitada, Yoshinori.

    1975-01-01

    Radiation curing, mainly by electron beams was studied with mixtures of low molecular weight diallylphthalate prepolymer (DAPsub(p).L) and vinyl monomers with special reference to their workability. Among the vinyl monomers, acrylonitrile gave a solution of low viscosity and methyl acrylate gave a solution of low dose curing. Radiation curing of DAPsub(p).L/vinyl monomer mixtures impregnated in wood was also tried. To obtain uniform wood-polymer composites, γ-irradiation after impregnation at 10 kg/cm 2 was found to be required for thick plate (110 mm), while electron beam irradiation after impregnation at normal pressure was sufficient for thin plate. (author)

  1. Effect of monomer composition on the properties of high temperature polymer concretes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.; Kukacka, L.E.; Carciello, N.

    1980-01-01

    The effects of organic monomer composition on the thermomechanical properties of polymer concrete (PC) containing sand-cement mixtures as an agregate filler were investigated. The effects of various monomer mixtures on compressive strength and hydrolytic stability are discussed. Composites were fabricated in the same way as ordinary concrete, with monomer solutions of various compositions and concentrations used to bind the sand-cement mixture. The compressive strengths of th composites before and after exposure to air and to brine solutions at 240/sup 0/C are discussed.

  2. Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives.

    Science.gov (United States)

    Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet

    2015-10-16

    The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.

  3. Initial Reactivity of Linkages and Monomer Rings in Lignin Pyrolysis Revealed by ReaxFF Molecular Dynamics.

    Science.gov (United States)

    Zhang, Tingting; Li, Xiaoxia; Guo, Li

    2017-10-24

    The initial conversion pathways of linkages and their linked monomer units in lignin pyrolysis were investigated comprehensively by ReaxFF MD simulations facilitated by the unique VARxMD for reaction analysis. The simulated molecular model contains 15 920 atoms and was constructed on the basis of Adler's softwood lignin model. The simulations uncover the initial conversion ratio of various linkages and their linked aryl monomers. For linkages and their linked monomer aryl rings of α-O-4, β-O-4 and α-O-4 & β-5, the C α /C β ether bond cracking dominates the initial pathway accounting for at least up to 80% of their consumption. For the linkage of β-β & γ-O-α, both the C α -O ether bond cracking and its linked monomer aryl ring opening are equally important. Ring-opening reactions dominate the initial consumption of other 4-O-5, 5-5, β-1, β-2, and β-5 linkages and their linked monomers. The ether bond cracking of C α -O and C β -O occurs at low temperature, and the aryl ring-opening reactions take place at relatively high temperature. The important intermediates leading to the stable aryl ring opening are the phenoxy radicals, the bridged five-membered and three-membered rings and the bridged six-membered and three-membered rings. In addition, the reactivity of a linkage and its monomer aryl ring may be affected by other linkages. The ether bond cracking of α-O-4 and β-O-4 linkages can activate its neighboring linkage or monomer ring through the formed phenoxy radicals as intermediates. The important intermediates revealed in this article should be of help in deepening the understanding of the controlling mechanism for producing aromatic chemicals from lignin pyrolysis.

  4. In situ polymerization of monomers for polyphenylquinoxaline/graphite

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  5. Chemo-enzymatic Synthesis of Clickable Xylo-oligosaccharide Monomers from Hardwood 4-O-Methylglucuronoxylan.

    Science.gov (United States)

    MacCormick, Benjamin; Vuong, Thu V; Master, Emma R

    2018-02-12

    A chemo-enzymatic pathway was developed to transform 4-O-methylglucuronic acid (MeGlcpA) containing xylo-oligosaccharides from beechwood into clickable monomers capable of polymerizing at room temperature and in aqueous conditions to form unique polytriazoles. While the gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum was used to oxidize C6-propargylated oligosaccharides, the acid-amine coupling reagents 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDAC) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) were employed and compared for their ability to append click functionalities to carboxylic acid groups of enzyme-treated oligosaccharides. While DMT-MM was a superior coupling reagent for this application, a triazine side product was observed during C-1 amidation. Resulting bifunctional xylo-oligosaccharide monomers were polymerized using a Cu(I) catalyst, forming a soft gel which was characterized by 1 H NMR, confirming the triazole product.

  6. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.

  7. A comment on water’s structure using monomer fraction data and theories

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Maribo-Mogensen, Bjørn; Tsivintzelis, Ioannis

    2016-01-01

    Monomer fraction data for water (and other compounds) can provide useful information about their structure and can be used in “advanced” equations of state, which account explicitly for association phenomena. Recent findings about the performance of association theories in representing the monomer...... fraction of water are reviewed. Three such theories are considered and all of them perform qualitatively similar. They can all represent phase equilibria for water solutions qualitatively well but with parameters which are not in good agreement with Luck’s famous monomer fraction data. While this could set...... the theoretical basis of these theories in doubt, we also show in this work that the findings with these association models are in agreement with a recently presented theory which links monomer fraction to dielectric constants. This new theory, like the three thermodynamic models, predicts more hydrogen bonding...

  8. Screening of a clinically and biochemically diagnosed SOD patient ...

    African Journals Online (AJOL)

    The disease follows an autosomal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and ...

  9. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    Science.gov (United States)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  10. The difference of acrylic resin residual monomer levels with various polymerization method

    Directory of Open Access Journals (Sweden)

    Sherman Salim

    2011-12-01

    Full Text Available Background: After polymerization process, heat cured acrylic resin denture base actually still contains residual monomers that can become potential irritants later in oral cavity. Polymerization process is essential to obtain acrylic resin which can meet the requirements of the biocompatible and good physical properties. To meet the requirements, there are several methods of polymerization process used. Purpose: The purpose of this study was to determine the differences of the residual monomer levels of acrylic resin processed by various polymerization methods. Methods: Acrylic resin powder and liquid were mixed based on the rules of factory, and sample was made with size of 30 mm × 50 mm × 3 mm and then polymerized by using microwave at 70° C for 24 hours based on the methods of Japan Industrial Standard (JIS. Each group of samples was cut with weight of ± 0.2 g, dissolved in 5 ml of methyl ethyl ketone in test tubes, and then stored at ± 5° C for four days. Residual monomer level was conducted by using gas chromatograph mass spectrometer. Data obtained were then analyzed by using One-Way ANOVA test with p < 0.05. Results: After the level of polymerizing residual monomer with JIS method was compared to that at 70° C for 24 hours using microwave, it is known that there were significant differences (p < 0.05. Conclusion: The highest level of residual monomer of acrylic resin was that polymerized at 70° C for 24 hours.Latar belakang: Basis gigi tiruan yang berbahan dasar resin akrilik jenis heat cured setelah proses polimerisasi selesai masih mengandung monomer sisa yang berpotensi sebagai bahan iritan dalam rongga mulut. Proses polimerisasi sangat penting untuk mendapatkan resin akrilik yang memenuhi persyaratan biokompatibilitas dan fisik yang baik. Untuk persyaratan tersebut digunakan berbagai macam proses polimerisasi. Tujuan: Penelitian ini bertujuan untuk menentukan kadar monomer sisa resin akrilik yang diproses dengan metode

  11. Effect of food simulating liquids on release of monomers from two dental resin composites

    Directory of Open Access Journals (Sweden)

    Ghavam M

    2010-06-01

    Full Text Available "nBackground and Aims: The elution of residual monomers from cured dental composites to oral cavity has a harmful effect on human health and can affect their clinical durability. The purpose of this study was to evaluate the amount of eluted monomers (Bis-GMA, TEGDMA, UDMA from two types of composites (Gradia and P60 after exposure to food simulating liquids such as ethanol (25, 50, 75 % and heptane 50 % for 24 hours and 7 days. "nMaterials and Methods: Forty specimens of each composite were prepared. Equal numbers of each composite were immersed in tubes containing 2cc volumes of 25, 50, 75 % ethanole and 50 % heptane. The amount of eluted monomers in standard condition such as Bis-GMA, TEGDMA and UDMA was measured by GC/MS (Gas Chromatography/Mass Spectroscopy and results were statistically analysed by three way and one way ANOVA. P<0.05 was considered as the level of significancy. "nResults: The results showed that Gradia released more TEGDMA than P60. In assessing the effect of environment, the result showed that ethanol caused releasing monomers more than heptane and the concentration rate of 75 % ethanole resulted in most releasing of monomers. In assessing the effect of time, the observation showed that more monomers were released 7 days compared to 24 hours. Bis-GMA and UDMA were not detected in any solutions in these conditions. "nConclusion: Ethanole caused more release of monomers than heptane and 75 % ethanole released the most amount of monomers. Gradia released more amount of TEGDMA than P60.

  12. Computational Modeling and Theoretical Calculations on the Interactions between Spermidine and Functional Monomer (Methacrylic Acid in a Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Yujie Huang

    2015-01-01

    Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.

  13. Valve seat pores sealed with thermosetting monomer

    Science.gov (United States)

    Olmore, A. B.

    1966-01-01

    Hard anodic coating provides a smooth wear resistant value seating surface on a cast aluminum alloy valve body. Vacuum impregnation with a thermosetting monomer, diallyl phthalate, seals the pores on the coating to prevent galvanic corrosion.

  14. Genetic Polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) Enzymes Are Associated with Increased Body Fat Percentage and Visceral Fat in an Obese Population from Central Mexico.

    Science.gov (United States)

    Hernández-Guerrero, César; Hernández-Chávez, Paulina; Romo-Palafox, Inés; Blanco-Melo, Grecia; Parra-Carriedo, Alicia; Pérez-Lizaur, Ana

    2016-07-01

    Oxidative disturbance is an important factor involved in the etiology of comorbidities associated with obesity. Genetic polymorphisms such as SOD1 -251A>G, SOD2 47 C>T, CAT -21A>T and CAT -262 C>T have been described to alter the activity of antioxidant enzymes. The aim of the present work was to analyze the association of the mentioned SNPs with obesity and their relationship with anthropometric and clinical variables in this group. The study included 416 Mexican women (208 normal weight, NW and 208 subjects with obesity, OB). Dietary intake, anthropometric, biochemical and clinical features were evaluated and then analyzed in function of the genotypes. The mutated carriers (GA+GG) of SOD -251 were significantly higher in the OB group (0.24) compared to the NW group (0.08). The other SNPs showed no differences compared with control group. When comparing carrier mutated subjects with obesity vs. wild-type obese participants with the SNPs SOD1 -251, SOD2 47 and CAT -262, the carriers showed a significantly (p G is associated with obesity independent of the presence of diabetes or dyslipidemia. Mutated obese carries of SOD1 -251, SOD2 47 and CAT -262 are associated with a higher distribution of fat in comparison with obese wild-type carriers. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Monomer conversion, dimensional stability, strength, modulus, surface apatite precipitation and wear of novel, reactive calcium phosphate and polylysine-containing dental composites.

    Directory of Open Access Journals (Sweden)

    Kanokrat Kangwankai

    Full Text Available The aim was to assess monomer conversion, dimensional stability, flexural strength / modulus, surface apatite precipitation and wear of mono / tri calcium phosphate (CaP and polylysine (PLS-containing dental composites. These were formulated using a new, high molecular weight, fluid monomer phase that requires no polymerisation activator.Urethane and Polypropylene Glycol Dimethacrylates were combined with low levels of an adhesion promoting monomer and a light activated initiator. This liquid was mixed with a hybrid glass containing either 10 wt% CaP and 1 wt% PLS (F1 or 20 wt% CaP and 2 wt% PLS (F2. Powder to liquid mass ratio was 5:1. Commercial controls included Gradia Direct Posterior (GD and Filtek Z250 (FZ. Monomer conversion and polymerisation shrinkage were calculated using Fourier Transform Infrared (FTIR. Subsequent volume increases in water over 7 weeks were determined using gravimetric studies. Biaxial flexural strength (BFS / modulus (BFM reduction and surface apatite precipitation upon 1 and 4 weeks immersion in water versus simulated body fluid (SBF were assessed using a mechanical testing frame and scanning electron microscope (SEM. Mass / volume loss and surface roughness (Ra following 7 weeks water immersion and subsequent accelerated tooth-brush abrasion were examined using gravimetric studies and profilometer.F1 and F2 exhibited much higher monomer conversion (72% than FZ (54% and low calculated polymerization shrinkage (2.2 vol%. Final hygroscopic expansions decreased in the order; F2 (3.5 vol% > F1 (1.8 vol% ~ Z250 (1.6 vol% > Gradia (1.0 vol%. BFS and BFM were unaffected by storage medium type. Average BFS / BFM upon 4 weeks immersion reduced from 144 MPa / 8 GPa to 107 MPa / 5 GPa for F1 and 105 MPa / 6 GPa to 82 MPa / 4 GPa for F2. Much of this change was observed in the first week of immersion when water sorption rate was high. Surface apatite layers were incomplete at 1 week, but around 2 and 15 micron thick for F1 and

  16. Copolymers of N-cyclohexylacrylamide and n-butyl acrylate: synthesis, characterization, monomer reactivity ratios and mean sequence length

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Copolymerization of N-cyclohexylacrylamide (NCHA and n-butyl acrylate (BA was carried out in dimethylformamide at 55±1°C using azobisisobutyronitrile as a free radical initiator. The copolymers were characterized by 1H-NMR spectroscopy and the copolymer compositions were determined by 1H-NMR analysis. The reactivity ratios of the monomers were determined by both linear and non-linear methods. The reactivity ratios of monomers determined using linear methods like Fineman-Ross (r1 = 0.37 and r2 = 1.77 , Kelen-Tudos (r1 = 0.38 and r2 = 1.77, ext. Kelen-Tudos (r1 = 0.37 and r2 = 1.75 Yezrieler-Brokhina-Roskin (r1 = 0.37 and r2 = 1.77 and non-linear methods like Tidwell-Mortimer (r1 = 0.37 and r2 = 1.76, ProCop (r1 = 0.36 and r2 = 1.82. The Q and e values for NCHA are 0.67 and 0.68 respectively. Mean sequence lengths of copolymers are estimated from r1 and r2 values. It shows that the BA units increases in a linear fashion in the polymer chain as the concentration of BA increases in the monomer feed.

  17. Effect of oral preparation of astragalus membranaceous on serum SOD levels in aged patients with chronic bronchial asthma

    International Nuclear Information System (INIS)

    Sun Zhiyong

    2005-01-01

    Objective: To investigate the therapeutic effect of oral liquid preparation of astragalus membranaceous in aged patients with chronic bronchial asthma with special reference on the serum SOD levels. Methods: Serum SOD levels were measured with RIA in 42 aged patients with chronic bronchial asthma both before and after a course of treatment with oral liquid preparation of astragalus membranaceous (10ml b. i. d for 3 months) as well as in 35 controls. Results: The patients general condition was greatly improved after the treatment. Before treatment, the serum SOD levels in the patients were significantly lower than those in controls (P 0.05). Conclusion: Oral liquid preparation of astragalus membranaceous was therapeutically useful for chronic bronchial asthma in aged patients with correction of the serum SOD levels. (authors)

  18. Do CAD/CAM dentures really release less monomer than conventional dentures?

    Science.gov (United States)

    Steinmassl, Patricia-Anca; Wiedemair, Verena; Huck, Christian; Klaunzer, Florian; Steinmassl, Otto; Grunert, Ingrid; Dumfahrt, Herbert

    2017-06-01

    Computer-aided design (CAD)/computer-aided manufacturing (CAM) dentures are assumed to have more favourable material properties than conventionally fabricated dentures, among them a lower methacrylate monomer release. The aim of this study was to test this hypothesis. CAD/CAM dentures were generated from ten different master casts by using four different CAD/CAM systems. Conventional, heat-polymerised dentures served as control group. Denture weight and volume were measured; the density was calculated, and the denture surface area was assessed digitally. The monomer release after 7 days of water storage was measured by high-performance liquid chromatography. Whole You Nexteeth and Wieland Digital Dentures had significantly lower mean volume and weight than conventional dentures. Baltic Denture System and Whole You Nexteeth had a significantly increased density. Baltic Denture System had a significantly smaller surface area. None of the CAD/CAM dentures released significantly less monomer than the control group. All tested dentures released very low amounts of methacrylate monomer, but not significantly less than conventional dentures. A statistically significant difference might nevertheless exist in comparison to other, less recommendable denture base materials, such as the frequently used autopolymerising resins. CAD/CAM denture fabrication has numerous advantages. It enables the fabrication of dentures with lower resin volume and lower denture weight. Both could increase the patient comfort. Dentures with higher density might exhibit more favourable mechanical properties. The hypothesis that CAD/CAM dentures release less monomer than conventional dentures could, however, not be verified.

  19. Mechanism for Controlling the Dimer-Monomer Switch and Coupling Dimerization to Catalysis of the Severe Acute Respiratory Syndrome Coronavirus 3C-Like Protease

    Energy Technology Data Exchange (ETDEWEB)

    Shi,J.; Sivaraman, J.; Song, J.

    2008-01-01

    Unlike 3C protease, the severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CLpro) is only enzymatically active as a homodimer and its catalysis is under extensive regulation by the unique extra domain. Despite intense studies, two puzzles still remain: (i) how the dimer-monomer switch is controlled and (ii) why dimerization is absolutely required for catalysis. Here we report the monomeric crystal structure of the SARS-CoV 3CLpro mutant R298A at a resolution of 1.75 Angstroms . Detailed analysis reveals that Arg298 serves as a key component for maintaining dimerization, and consequently, its mutation will trigger a cooperative switch from a dimer to a monomer. The monomeric enzyme is irreversibly inactivated because its catalytic machinery is frozen in the collapsed state, characteristic of the formation of a short 310-helix from an active-site loop. Remarkably, dimerization appears to be coupled to catalysis in 3CLpro through the use of overlapped residues for two networks, one for dimerization and another for the catalysis.

  20. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation

    NARCIS (Netherlands)

    Vlug, Angela S; Teuling, Eva; Haasdijk, Elize D; French, Pim; Hoogenraad, Casper C; Jaarsma, Dick

    2005-01-01

    To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription

  1. Non-invasive assessment of animal exercise stress: real-time PCR of GLUT4, COX2, SOD1 and HSP70 in avalanche military dog saliva.

    Science.gov (United States)

    Diverio, S; Guelfi, G; Barbato, O; Di Mari, W; Egidi, M G; Santoro, M M

    2015-01-01

    Exercise has been shown to increase mRNA expression of a growing number of genes. The aim of this study was to assess if mRNA expression of the metabolism- and oxidative stress-related genes GLUT4 (glucose transporter 4), COX2 (cyclooxygenase 2), SOD1 (superoxide dismutase 1) and HSP70 (heat shock protein 70) in saliva changes following acute exercise stress in dogs. For this purpose, 12 avalanche dogs of the Italian Military Force Guardia di Finanza were monitored during simulation of a search for a buried person in an artificial avalanche area. Rectal temperature (RT) and saliva samples were collected the day before the trial (T0), immediately after the descent from a helicopter at the onset of a simulated avalanche search and rescue operation (T1), after the discovery of the buried person (T2) and 2 h later (T3). Expressions of GLUT4, SOD1, COX2 and HSP70 were measured by real-time PCR. The simulated avalanche search and rescue operation was shown to exert a significant effect on RT, as well as on the expression of all metabolism- and oxidative stress-related genes investigated, which peaked at T2. The observed expression patterns indicate an acute exercise stress-induced upregulation, as confirmed by the reductions in expression at T3. Moreover, our findings indicate that saliva is useful for assessing metabolism- and oxidative stress-related genes without the need for restraint, which could affect working dog performance.

  2. Early energy metabolism-related molecular events in skeletal muscle of diabetic rats: The effects of l-arginine and SOD mimic.

    Science.gov (United States)

    Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2017-06-25

    Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    Science.gov (United States)

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Resveratrol rescues cadmium-induced mitochondrial injury by enhancing transcriptional regulation of PGC-1α and SOD2 via the Sirt3/FoxO3a pathway in TCMK-1 cells

    International Nuclear Information System (INIS)

    Fu, Beibei; Zhao, Jiamin; Peng, Wei; Wu, Haibo; Zhang, Yong

    2017-01-01

    Resveratrol has been reported to ameliorate Cd-induced nephrotoxicity. However, the beneficial effects of resveratrol on Cd-induced nephrotoxicity and the underlying mechanisms of this protection remain unclear. Here, we showed that mouse renal tubular epithelial (TCMK-1) cells exposed to Cd experienced significantly increased mitochondrial reactive oxygen species (mROS) production, as well as decreased mitochondrial biogenesis and function. Cd exposure dramatically decreased Sirt3 protein expression and activity and promoted the acetylation of forkhead box O3 (FoxO3a). Moreover, Cd exposure led to a decreased binding affinity of FoxO3a to the promoters of both peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α and superoxide dismutase 2 (SOD2), powerful and broad regulators of mitochondrial biogenesis and mROS metabolism. Meanwhile, resveratrol remarkably reduced mROS generation by promoting Sirt3 enrichment within the mitochondria and subsequent upregulation of FoxO3a-mediated mitochondria gene expression of PGC-1α and SOD2. Importantly, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by Cd, resveratrol suppressed Cd-induced apoptosis in mice kidney. Taken together, our data suggest a novel mechanism of action for resveratrol-attenuated Cd-induced cellular damage, which, in part, was mediated through the activation of the Sirt3/FoxO3a signaling pathway. - Highlights: • Resveratrol alleviates Cd-induced mitochondrial damage and improves mitochondrial biogenesis. • Mitochondrial-protective effect of resveratrol on Cd-induced nephrotoxicity is through a Sirt3-FoxO3a-dependent mechanism. • Resveratrol suppresses Cd-induced apoptosis through ERK1/2 in vivo.

  5. Redesign of the monomer-monomer interface of Cre recombinase yields an obligate heterotetrameric complex.

    Science.gov (United States)

    Zhang, Chi; Myers, Connie A; Qi, Zongtai; Mitra, Robi D; Corbo, Joseph C; Havranek, James J

    2015-10-15

    Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a homotetramer in its functional state, and the symmetry of the protein complex enforces a pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool for many researchers. However, broader application of the system is limited by the fixed sequence preferences of Cre, which are determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre monomers. As a first step toward achieving recombination at arbitrary asymmetric target sites, we have broken the symmetry of the Cre tetramer assembly. Using a combination of computational and rational protein design, we have engineered an alternative interface between Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are functional in isolation, but which can form an active heterotetramer when combined. When these distinct mutants possess different DNA specificities, control over complex assembly directly discourages recombination at unwanted half-site combinations, enhancing the specificity of asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a variety of contexts, including mammalian cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Effect of radiation combined with Chinese medicinal monomers on Me180 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xu Bo; Li Hongyan; Chen Zhihua; Xia Qisheng; Xu Mei; Liu Xuan; Xiang Qing; Liu Yufeng

    2009-01-01

    Objective: To observe the effect of radiation treatment combined with Chinese medicinal monomers on the proliferation function, telomerase activity, expressions of apoptosis- and proliferation-related genes of Me180 cells. Methods: Me180 cells were cultured in the medium with oleanolic acid, curcumin and allicin. The survival rates of cells were detected by the methods of MTT, the telomerase activity by the method of telomeric repeat amplification protocol (TRAP) and the apoptosis -and proliferation-related genes by the method of reverse transeriptase-PCR. Me180 cells were cultured in the medium with Chinese medicinal monomers, and exposed to X-ray irradiation and the survival rates were detected. Results: The results of MTY showed that survival rates of tumor cells exposed to X rays in combination with oleanolic acid, curcumin and allicin were decreased significantly(t=2.81, 4.16, and 3.42, P<0.05). Chinese medicinal monomers inhibited the telomerase activity of MelS0 cells and the inhibiting function changed with time. At 16 h, the telomerase activities of MelS0 cells administered with oleanolic acid and allicin were reduced markedly (t=5.11 and 5.29, P<0.05). After 48 h, the telomerase activities returned to the normal level. The gene expressions of p21 and p16 in Me180 cells treated with oleanolic acid were 2.43 and 2.78 times higher than the control, respectively, while those of cyclin D1 and CDK4 were 56% and 41% of the control, respectively. Conclusions: Chinese medicinal monomers could effectively kill tumor cells, inhibit the telomerase activity and the expression of proliferation-related genes, and enhance the radiosensitivity of tumor cells. (authors)

  7. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain

    International Nuclear Information System (INIS)

    Robb, Ellen L.; Winkelmolen, Lieke; Visanji, Naomi; Brotchie, Jonathan; Stuart, Jeffrey A.

    2008-01-01

    trans-Resveratrol (3,4',5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo

  8. New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based AB-type monomer

    KAUST Repository

    Ghanem, Bader

    2016-08-15

    A new solution-processable ladder polymer (PSBI-AB) of intrinsic microporosity with dibenzodioxane linkages and bis(phenazine) units was designed and synthesized by self-polymerization of an AB-type monomer containing both catechol and aromatic dichloride groups. Such polymerization is an effective way to synthesize high molecular weight polymers and has a significant advantage over AA-BB polycondensation due to the lack of the requirement for strict control over stoichiometric balance. This protocol can be used to prepare a variety of phenazine-containing ladder type PIMs from their aromatic tetramethoxy precursors. The obtained polymer had high average molecular mass, excellent thermal stability, a high BET surface area of 705 m(2) g(-1) and good solubility in some organic solvents such as chloroform, m-cresol and dichlorobenzene. Gas permeation measurements showed comparable results to the previously reported analogous PIM-7 for films made under the same formation protocol.

  9. Use of sodC versus ctrA for real-time polymerase chain reaction-based detection of Neisseria meningitidis in sterile body fluids

    Directory of Open Access Journals (Sweden)

    Fábio Takenori Higa

    2013-04-01

    Full Text Available We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.

  10. Synthesis and characterisation of new Schiff base monomers containing N-(alkyl and phenyl) pyrrole moieties

    Science.gov (United States)

    Amer, Ahcene Ait; Ilikti, Hocine; Maschke, Ulrich

    2017-11-01

    This article deals with the synthesis and characterisation of seven new functional Schiff base monomers, such as: M1: 1-(3-Pyrrole-1-yl-propylimino-methyl)-naphtalen-2-ol; M2: 2-(3-Pyrrole-1-yl-phenylimino-methyl)-phenol; M3: 1-(3-Pyrrole-1-yl-phenylimino-methyl)-naphtalen-2-ol; M4: N-(pyridin-2-yl-methylene)-2-(pyrrol-1-yl)-benzenamine; M5: N-(pyridin-2-yl-methylene)-3-(pyrrol-1-yl)-propan-1-amine; M6: 2-(3-pyrrol-1-yl-propylimino-methyl)-quinolin-8-ol; M7: 2-(3-pyrrol-1-yl-phenylimino-methyl)-quinolin-8-ol. Two series of compounds emerged from this study, N-propyl pyrrole derivatives (M1, M5, M6) and N-phenyl pyrrole compounds (M2, M3, M4, M7). All monomers were elaborated by condensation reactions between appropriate amines and aldehydes, and their molecular structures were confirmed by spectroscopic analysis methods like FT-IR, 1H NMR, 13C NMR, and GC-MS.

  11. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention.

    Science.gov (United States)

    Hernández-Guerrero, César; Parra-Carriedo, Alicia; Ruiz-de-Santiago, Diana; Galicia-Castillo, Oscar; Buenrostro-Jáuregui, Mario; Díaz-Gutiérrez, Carmen

    2018-01-01

    Genetic polymorphisms of antioxidant enzymes CAT, GPX, and SOD are involved in the etiology of obesity and its principal comorbidities. The aim of the present study was to analyze the effect of aforementioned SNPs over the output of several variables in people with obesity after a nutritional intervention. The study included 92 Mexican women, which received a dietary intervention by 3 months. Participants were genotyped and stratified into two groups: (1) carriers; mutated homozygous plus heterozygous (CR) and (2) homozygous wild type (WT). A comparison between CR and WT was done in clinical (CV), biochemical (BV), and anthropometric variables (AV), at the beginning and at the end of the intervention. Participants ( n  = 92) showed statistically significant differences ( p  T GPX1 (rs1050450), - 251A>G SOD1 (rs2070424), and - 262C>T CAT (rs1001179). (B) Only CR showed statistically changes ( p  T CAT (rs7943316) and 47C>T SOD2 (rs4880). The dietary intervention effect was statistically significantly between the polymorphisms of 47C>T SOD2 and BMI, SBP, TBARS, total cholesterol, and C-LCL ( p  T CAT (rs7943316) and SBP, DBP, total cholesterol, and atherogenic index ( p  CAT enzymes.

  12. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Zadrąg-Tęcza, Renata; Bednarska, Sabina; Bartosz, Grzegorz

    2015-04-01

    The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.

  13. Guidelines To Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group

    KAUST Repository

    Falivene, Laura; Cavallo, Luigi

    2017-01-01

    be tuned by the hindrance of the NHC and the nature of the monomer. In addition to rationalize existing systems, the 45 NHC/monomer combinations we examined can be used as a guideline to predict the behavior of a new NHC/monomer combination.

  14. Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof

    KAUST Repository

    Ghanem, Bader Saleh

    2017-04-13

    Described herein are ortho-dimethyl-substituted and tetramethyi-substituted triptycene-containing diamine monomers and microporous triptycene-based poiyimides and poiyamides, and methods of making the monomers and polymers.

  15. Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof

    KAUST Repository

    Ghanem, Bader Saleh; Pinnau, Ingo

    2017-01-01

    Described herein are ortho-dimethyl-substituted and tetramethyi-substituted triptycene-containing diamine monomers and microporous triptycene-based poiyimides and poiyamides, and methods of making the monomers and polymers.

  16. Comparing of Cu/Zn SOD Gene Expression of Lymphocyte Cell and Malondialdehyde Level in Active Men and Women after Physical Training

    Directory of Open Access Journals (Sweden)

    Bakhtiar Tartibian

    2012-07-01

    Full Text Available Background: The purpose of this study is to compare Cu/Zn SOD mRNA and MDA level as a result of a session incremental exercise in active women and men. Materials and Methods: This research is a quasi-experimental study with repeated measurements in which 14 active female and 13 male subjects with age range 22-24 participated voluntarily. Then, blood was taken from brachial vein of the subjects in three stages before and after GXT (Graded exercise test and 3 hours after that and SYBER Green PCR Master mix reagent Kit and Real time-PCR were used to measure Cu/Zn SOD mRNA and spectrophotometer was used to measure MDA level.Results: MDA levels increased significantly in men during the recovery stage and after the exercise (p1=0.012 and p2 =0.014, but it did not increase significantly in active women. Also, MDA difference between the two genders was not reported significant in any of the exercise stages. Cu/Zn SOD gene expression did not increase significantly in either sex.Conclusion: The risk of injury from free radicals is more probable in active men than active women and vigorous physical activity does not significantly increase the Cu/Zn SOD gene expression.

  17. Synthesis and characterization of the monomer 2,2'-dialylbisphenol-A (ABFA) for production of proton exchange membranes based on sulphonated poly(arylene ether sulphone)s reticulated

    International Nuclear Information System (INIS)

    Souza, Julio C.; Souza, Carlos H.F.B.; Silva, Maria Elisa S.R.; Sousa, Ricardo G.; Freitas, Roberto F.S.; Silva, Claudio Homero F.

    2011-01-01

    In the present work, a methodology of synthesis and characterization of the monomer 2,2'- dialylbisphenol A was developed, aiming at getting a precursor, with adequate purity, for obtaining cross-linked membranes based on sulfonated poly(arylene ether sulfone)s. The monomer 2,2'- dialylbisphenol A was obtained through Claisen rearrangement of the 2,2-Bis(4-alyloxiphenyl)propane, synthesized from Bisphenol A. All the products and reagents were characterized by Fourier Transform infrared spectroscopy, Thermo-gravimetric analysis and High-performance liquid chromatography. The thermal Claisen rearrangement process was conducted by using Differential Scanning Calorimetry technique, from a factorial experiment planning, with temperature and time being the variables. The above cited techniques were used for monitoring the Claisen rearrangement and for the characterization of the final product. The best results yield an ABFA purity between 85 and 90%. The obtained results suggest that, in the studied range, polymerization and degradation of the monomer ABFA occur, simultaneously to its formation. (author)

  18. Daintain/AIF-1 Plays Roles in Coronary Heart Disease via Affecting the Blood Composition and Promoting Macrophage Uptake and Foam Cell Formation

    Directory of Open Access Journals (Sweden)

    Junhan Wang

    2013-07-01

    Full Text Available Background: Daintain/AIF-1 is an inflammatory polypeptide factor/allograft inflammatory factor 1 derived from macrophages. It is characterized in APOE-/- mice as a novel inflammatory factor associated with atherosclerosis. The purpose of this study was to characterize its function in human atherosclerosis. Methods: Immunohistochemistry was used to identify the expression of daintain/AIF-1 in vessel segments within and far from atherosclerotic plaques; High-performance liquid chromatography (HPLC was used to display the effects of daintain/AIF-1 on C-reactive protein (CRP, oxidative capacity and superoxide dismutase (SOD in vivo; Oil Red O Staining was used to show the effects of daintain/AIF-1 on uptake of oxidized low density lipoprotein (ox-LDL into U937 cells, a macrophage line; Western Blot was used to test scavenger receptor A (SRA expression. Results: A high density of daintain/AIF-1 was observed in the tunica intima and media of coronary artery with atherosclerotic plaque, and fewer daintain/AIF-1 in the vessels without atherosclerotic plaque; Daintain/AIF-1 injected intravenously into BALB/c mice boosted oxidative capacity, significantly impaired SOD activities and augmented the CRP level in blood. According to the oil red O test, daintain/AIF-1 profoundly facilitated the uptake of ox-LDL in U937 macrophages and formation of foam cells in the endothelium. We also found that the molecular mechanisms are effective by promoting overexpression of SRA on macrophages. Conclusion: These findings implicate that the inflammatory factor daintain/AIF-1 is closely associated with atherogenesis, and could be further characterized as a novel risk factor for atherosclerosis

  19. Oligodeoxynucleotides containing 2'-amino-LNA nucleotides as constrained morpholino phosphoramidate and phosphorodiamidate monomers

    DEFF Research Database (Denmark)

    Kristensen, Kim Vejlegaard; Paul, Sibasish; Kosbar, Tamer

    2017-01-01

    Incorporation in a 2'→5' direction of a phosphorodiamidite 2'-amino-LNA-T nucleotide as the morpholino phosphoramidate and N,N-dimethylamino phosphorodiamidate monomers into six oligonucleotides is reported. Thermal denaturation studies showed that the novel 2'-amino-LNA-based morpholino monomers...

  20. Monomer-Polymer Chemistry and the Impregnation Process

    Energy Technology Data Exchange (ETDEWEB)

    Stannett, V. [North Carolina State University, Raleigh, NC (United States)

    1968-10-15

    A brief outline of early polymerization techniques is followed by a description of polymerization process chemistry, impregnation and polymerization methods and criteria for the choice of monomer. General considerations, including the effects of polymerization inhibitors, swelling agents, radiation dose rate and sample thickness, are enumerated. (author)

  1. Inverse opal pH sensors with various protic monomers copolymerized with polyhydroxyethylmethacrylate hydrogel

    International Nuclear Information System (INIS)

    Shin, Jinsub; Han, Sung Gu; Lee, Wonmok

    2012-01-01

    Highlights: ► We polymerized four different inverse opal pH sensors by using vinyl monomers containing acidic or basic substituents. ► Stepwise swelling response from polyprotic acid sensor was investigated. ► Opposite color changing responses were obtained for acidic and basic sensors. ► Composite pH sensor with wide pH sensing range was fabricated by mixing different monomers. ► Both acid and base sensors show the response time as fast as ∼10 s. - Abstract: pH sensitive inverse opal sensors were synthesized using various vinyl monomers containing acidic or basic substituents. Acrylic acid (AA), vinylphosphonic acid (VPA), vinylimidazole (VI), and dimethylaminoethylmethacrylic acid (DMAEMA) were respectively copolymerized with hydroxyethylmethacrylate (HEMA), the building block monomer of the hydrogel via UV-initiated photopolymerization. Opal templating and subsequent template removal enabled the fabrication of four inverse opal (IO) hydrogel colorimetric sensors, which responded to pH in different fashions. pH-dependent swelling of the IO hydrogel induced the red-shift of the diffracted color. The sensors containing AA or VPA, the proton donating monomers showed the color shifts from green to red with pH increase due to the increased concentration of carboxylate anions bound to the hydrogel. Diprotic VPA sensor exhibited two-step increases of diffracted wavelengths at its pK a1 and pK a2 respectively. The sensors containing proton acceptors, VI and DMAEMA showed the pH-dependent color changes in an opposite way to the AA sensor and the VPA sensor since their ionizations take place by lowering pH due to the protonation at the amino groups. The shapes of pH response curves of VI and DMAEMA sensors were similar but pK b s were different from each other. Optical diffraction responses of four sensors were compared with the calculated concentration ratios of the ionized species to the total monomer with pH variation, and a deswelling effect in the

  2. Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol)-acrylate monomer blends

    International Nuclear Information System (INIS)

    Koshiba, M.; Yamaoka, T.; Tsunoda, T.

    1983-01-01

    Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol) (PVA)-monoacrylate blends were investigated by measuring dynamic shear modulus G' and loss tangent, tan delta. The dynamic mechanical properties of the blends before being exposed to UV irradiation were governed by the weight percent of the monomers which act as plasticizers. On the other hand, the UV-irradiated blends seemed to be typical two-phase materials since they revealed two tan delta maxima whose positions were independent of the monomer content. Those two maxima were assigned to PVA and photopolymerized acrylates with reference to the dynamic mechanical data of PVA and a PVA-polyacrylamide polyblend. Those dynamic mechanical data suggested that insolubilization of the blend type photopolymers should be caused by a decrease in solubility due to graft polymerization of acrylate monomers onto PVA. 9 figures, 3 tables

  3. Macroradical initiated polymerisation of acrylic and methacrylic monomers.

    Science.gov (United States)

    Mijangos, Irene; Guerreiro, António; Piletska, Elena; Whitcombe, Michael J; Karim, Kal; Chianella, Iva; Piletsky, Sergey

    2009-10-01

    An approach has been developed for the grafting of monomers onto poly(trimethylolpropane trimethacrylate) (polyTRIM) particles using 2,2-diethyl dithiocarbamic acid benzyl ester (DDCABE) as an initiator. A set of polymers was prepared with this technique over different lengths of time and the kinetics of the reaction studied experimentally. It was found that the grafting of initiator to the polymeric support followed a second order reaction, while the subsequent addition of monomers from solution into the polyTRIM macroradicals followed a first order reaction. The living nature of the iniferter modified macroradicals permits easy consecutive grafting of multiple polymeric layers, allowing straightforward functionalisation of particles. However, the effectiveness of the grafted initiator decreased with each cycle of polymerisation. This technique can be used for a wide range of applications in analytical and biochemistry.

  4. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography.

    Science.gov (United States)

    Alshali, Ruwaida Z; Salim, Nesreen A; Sung, Rehana; Satterthwaite, Julian D; Silikas, Nick

    2015-12-01

    The aim of this study was to assess monomer elution from bulk-fill and conventional resin-composites stored in different media using high performance liquid chromatography (HPLC) for up to 3 months. Six bulk-fill (SureFil SDR, Venus Bulk Fill, X-tra base, Filtek Bulk Fill flowable, Sonic Fill, and Tetric EvoCeram Bulk Fill) and eight conventional resin-composites (Grandioso Flow, Venus Diamond Flow, X-Flow, Filtek Supreme XTE, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested. Cylindrical samples (n=5) were immersed in water, 70% ethanol/water solution (70% E/W), and artificial saliva and stored at 37°C for 24h, 1 month, and 3 months. The storage solutions were analysed with HPLC. Data were analysed with repeated measures ANOVA, one-way ANOVA, and Tukey post hoc test at α=0.05. Monomers detected in water and artificial saliva were TEGDMA, DEGDMA, UDMA, and TCD-DI-HEA. No eluted monomers were detected from X-tra base and Sonic fill in these media. All monomers showed a variable extent of elution into 70% E/W with significantly higher amounts than those detected in water and artificial saliva. Significantly higher elution was detected from UDMA-BisEMA based composites compared to BisGMA and BisGMA-BisEMA based systems in 70% E/W. The rate of elution into different media varied between different monomers and was highly dependent on the molecular weight of the eluted compounds. Elution from bulk-fill resin-composites is comparable to that of conventional materials despite their increased increment thickness. Monomer elution is highly dependent on the hydrophobicity of the base monomers and the final network characteristics of the resin-matrix. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Guidelines To Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group

    KAUST Repository

    Falivene, Laura

    2017-02-13

    We report on the DFT stability of zwitterion and spirocycle adducts of five polar monomers with nine N-heterocyclic carbenes (NHC), covering the most typical classes of monomers and NHCs used in organopolymerization. Results indicate that the relative stability of the two adducts is dominated by the singlet-triplet energy gap of the free NHC, with low energy gaps favoring the spirocycle adduct, while high energy gaps favor the zwitterionic adduct. This basic structure/property relationship can be tuned by the hindrance of the NHC and the nature of the monomer. In addition to rationalize existing systems, the 45 NHC/monomer combinations we examined can be used as a guideline to predict the behavior of a new NHC/monomer combination.

  6. Reactivity of vinyl ethers and vinyl ribosides in UV-initiated free radical copolymerization with acceptor monomers.

    Science.gov (United States)

    Pichavant, Loic; Guillermain, Céline; Coqueret, Xavier

    2010-09-13

    The reactivity of various vinyl ethers and vinyloxy derivatives of ribose in the presence of diethyl fumarate or diethyl maleate was investigated for evaluating the potential of donor-acceptor-type copolymerization applied to unsaturated monomers derived from renewable feedstock. The photochemically induced polymerization of model monomer blends in the bulk state was monitored by infrared spectroscopy. The method allowed us to examine the influence of monomer pair structure on the kinetic profiles. The simultaneous consumption of both monomers was observed, supporting an alternating copolymerization mechanism. A lower reactivity of the blends containing maleates compared with fumarates was confirmed. The obtained kinetic data revealed a general correlation between the initial polymerization rate and the Hansen parameter δ(H) associated with the H-bonding aptitude of the donor monomer.

  7. Radiation cured and monomer modified silicon elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1979-01-01

    A method is described for the production of a tear resistant silicone elastomer, which has improved elongation properties. This elastomer is the radiation induced reaction product of a noncured methyl vinyl silicone resin (VMQ) and uniformly dispersed therein a blend of a polyfunctional acrylic crosslinking monomer and a filler

  8. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition...

  9. Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis.

    Science.gov (United States)

    Sánchez-Moreno, M; Gómez-Contreras, F; Navarro, P; Marín, C; Ramírez-Macías, I; Rosales, M J; Campayo, L; Cano, C; Sanz, A M; Yunta, M J R

    2015-07-01

    The in vitro leishmanicidal activity of a series of imidazole-containing phthalazine derivatives 1-4 was tested on Leishmania infantum, Leishmania braziliensis and Leishmania donovani parasites, and their cytotoxicity on J774·2 macrophage cells was also measured. All compounds tested showed selectivity indexes higher than that of the reference drug glucantime for the three Leishmania species, and the less bulky monoalkylamino substituted derivatives 2 and 4 were clearly more effective than their bisalkylamino substituted counterparts 1 and 3. Both infection rate measures and ultrastructural alterations studies confirmed that 2 and 4 were highly leishmanicidal and induced extensive parasite cell damage. Modifications to the excretion products of parasites treated with 2 and 4 were also consistent with substantial cytoplasmic alterations. On the other hand, the most active compounds 2 and 4 were potent inhibitors of iron superoxide dismutase enzyme (Fe-SOD) in the three species considered, whereas their impact on human CuZn-SOD was low. Molecular modelling suggests that 2 and 4 could deactivate Fe-SOD due to a sterically favoured enhanced ability to interact with the H-bonding net that supports the antioxidant features of the enzyme.

  10. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Directory of Open Access Journals (Sweden)

    Susana Guzman-Puyol

    Full Text Available Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic acid and tomato fruit cutin monomers (a mixture of mainly 9(10,16-dihydroxypalmitic acid (85%, w/w and 16-hydroxyhexadecanoic acid (7.5%, w/w with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  11. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Science.gov (United States)

    Guzman-Puyol, Susana; Benítez, José Jesús; Domínguez, Eva; Bayer, Ilker Sefik; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio; Heredia-Guerrero, José Alejandro

    2015-01-01

    Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG) surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  12. Association between single nucleotide polymorphisms in the antioxidant genes CAT, GR and SOD1, erythrocyte enzyme activities, dietary and life style factors and breast cancer risk in a Danish, prospective cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Vogel, Ulla; Dragsted, Lars Ove

    2017-01-01

    Exposure to estrogens and alcohol consumption - the two only well-established risk factors for breast cancer - are capable of causing oxidative stress, which has been linked to progression of breast cancer. Here, five functional polymorphisms in the antioxidant genes SOD1, CAT and GSR were...

  13. Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS.

    Science.gov (United States)

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; McGuire, William P; Poklepovic, Andrew; Dent, Paul

    2016-04-05

    We determined whether the myelofibrosis drug ruxolitinib, an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could interact with the multiple sclerosis drug dimethyl-fumarate (DMF) to kill tumor cells; studies used the in vivo active form of the drug, mono-methyl fumarate (MMF). Ruxolitinib interacted with MMF to kill brain, breast, lung and ovarian cancer cells, and enhanced the lethality of standard of care therapies such as paclitaxel and temozolomide. MMF also interacted with other FDA approved drugs to kill tumor cells including Celebrex® and Gilenya®. The combination of [ruxolitinib + MMF] inactivated ERK1/2, AKT, STAT3 and STAT5; reduced expression of MCL-1, BCL-XL, SOD2 and TRX; increased BIM expression; decreased BAD S112 S136 phosphorylation; and enhanced pro-caspase 3 cleavage. Expression of activated forms of STAT3, MEK1 or AKT each significantly reduced drug combination lethality; prevented BAD S112 S136 dephosphorylation and decreased BIM expression; and preserved TRX, SOD2, MCL-1 and BCL-XL expression. The drug combination increased the levels of reactive oxygen species in cells, and over-expression of TRX or SOD2 prevented drug combination tumor cell killing. Over-expression of BCL-XL or knock down of BAX, BIM, BAD or apoptosis inducing factor (AIF) protected tumor cells. The drug combination increased AIF : HSP70 co-localization in the cytosol but this event did not prevent AIF : eIF3A association in the nucleus.

  14. The R213G polymorphism in SOD3 protects against allergic airway inflammation

    DEFF Research Database (Denmark)

    Gaurav, Rohit; Varasteh, Jason T; Weaver, Michael R

    2017-01-01

    ) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers...... by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s....

  15. Functionalized Nanoporous Polymer Membranes with Well-Defined Pore Architectures via Lyotropic Liquid-Crystalline Monomers

    National Research Council Canada - National Science Library

    Gin, Douglas

    1997-01-01

    .... Two lyotropic liquid-crystalline monomer platforms have been synthesized. The interchannel separations in the polymerizable materials can be varied in the 30-40 A range by the choice of counterion on the ionic headgroup of the monomers...

  16. The effect of nano-TiO2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH.

    Science.gov (United States)

    Zheng, Wen; Zou, Hai-Feng; Lv, Shao-Wu; Lin, Yan-Hong; Wang, Min; Yan, Fei; Sheng, Ye; Song, Yan-Hua; Chen, Jie; Zheng, Ke-Yan

    2017-09-01

    Security issues of nanoparticles on biological toxicity and potential environmental risk have attracted more and more attention with the rapid development and wide applications of nanotechnology. In this work, we explored the effect and probable mechanism of nano-TiO 2 on antioxidant activity of copper, zinc superoxide dismutase (Cu, Zn-SOD) under natural light and mixed light at physiological pH. Nano-TiO 2 was prepared by sol-hydrothermal method, and then characterized by X-ray Diffraction (XRD) and Transmission electron micrographs (TEM). The Cu, Zn-SOD was purified by sephadex G75 chromatography and qualitatively analyzed by sodium dodecyl sulfate polypropylene amide gel electrophoresis (SDS-PAGE). The effect and mechanism were elucidated base on Fourier Transform Infrared Spectrometer (FT-IR), Circular Dichroism (CD), zeta potential, and electron spin resonance (ESR) methods. Accompanying the results of FT-IR, CD and zeta potential, it could be concluded that nano-TiO 2 had no effect on the antioxidant activity of Cu, Zn-SOD by comparing the relative activity under natural light at physiological pH. But the relative activity of Cu, Zn-SOD significantly decreased along with the increase of nano-TiO 2 concentration under the mixed light. The results of ESR showed the cause of this phenomenon was the Cu(II) in the active site of Cu, Zn-SOD was reduced to Cu(I) by H 2 O 2 and decreased the content of active Cu, Zn-SOD. The reduction can be inhibited by catalase. Excess O 2 ·- produced by nano-TiO 2 photocatalysis under mixed light accumulated a mass of H 2 O 2 through disproportionation reaction in this experimental condition. The results show that nano-TiO 2 cannot affect the antioxidant activity of Cu, Zn-SOD in daily life. The study on the effect of nano-TiO 2 on Cu, Zn-SOD will provide a valid theory support for biological safety and the toxicological effect mechanism of nanomaterials on enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vatanpour, Vahid, E-mail: vahidvatanpour@khu.ac.ir; Zoqi, Naser

    2017-02-28

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  18. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Vatanpour, Vahid; Zoqi, Naser

    2017-01-01

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  19. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  20. Inhibition of odontogenic differentiation of human dental pulp cells by dental resin monomers.

    Science.gov (United States)

    Kwon, Ji Hyun; Park, Hee Chul; Zhu, Tingting; Yang, Hyeong-Cheol

    2015-01-01

    Dental resin monomers that are leached from the resin matrix due to incomplete polymerization can affect the viability and various functions of oral tissues and cells. In this study, the effects of triethylene glycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) on odontogenic differentiation of human dental pulp cells (HDPCs) were examined. To mimic clinical situations, dental pulp cells were treated with resin monomers for 24 h prior to the analysis of alkaline phosphatase (ALP) activity and mRNA expression of genes related to pulp cell differentiation. To elucidate the underlying signaling pathways, regulation of mitogen-activated protein (MAP) kinases by resin monomers was also investigated. The ALP activity of HDPCs was reduced by TEGDMA and HEMA at noncytotoxic concentrations. The mRNA expression of dentin sialophosphoprotein (DSPP), osteocalcin (OCN), and osteopontin (OPN) was also downregulated by resin monomers. However, DSPP expression was not affected by hydrogen peroxide (H2O2). Among the MAP kinases examined, ERK activation (ERK phosphorylation) was not affected by either resin monomers or H2O2, whereas JNK was phosphorylated by TEGDMA and HEMA. Phospho-p38 was upregulated by HEMA, while TEGDMA and H2O2 suppressed p38 phosphorylation. Exposure to TEGDMA and HEMA for a limited period suppresses differentiation of HDPCs via different signaling pathways.

  1. Triptycene-based ladder monomers and polymers, methods of making each, and methods of use

    KAUST Repository

    Pinnau, Ingo; Ghanem, Bader; Swaidan, Raja

    2015-01-01

    Embodiments of the present disclosure provide for a triptycene-based A-B monomer, a method of making a triptycene-based A-B monomer, a triptycene-based ladder polymer, a method of making a triptycene-based ladder polymers, a method of using

  2. Gaharu Leaf Extract Water Reduce MDA and 8-OHdG Levels and Increase Activities SOD and Catalase in Wistar Rats Provided Maximum Physical Activity

    Directory of Open Access Journals (Sweden)

    I Made Oka Adi Parwata

    2016-09-01

    Full Text Available Background: Oxidative stress occurs due to an imbalance of the number of free radicals by the number of endogenous antioxidant produced by the body i.e. Superoxide Dismutase (SOD, Gluthathione Peroxidase (GPx, and Catalase. The imbalance between the number of free radicals and antioxidants can be overcome with the endogenous antioxidant intake that exogenous oxidative stress can be reduced. One of exogenous antioxidants is natural Gaharu leaf water extract. Objective: This research focus on the effect of Gaharu leaf water extract in reducing MDA and 8-OHdG and increase the activity of SOD and Catalase. Methods: This study was an experimental with post only controls group design. Experiment was divided  into 5 groups of wistar rats, each consisting of 5 animals, i.e. negative control group without extract [K (-], treatment 1 treated 50 mg/kg BW/day of the extract (T1, treatment 2 treated 100 mg/kg BW/day of the extract (T2, treatment 3 treated 200 mg/ kg BW/day of the extract (T3, and positive control group [K (+] treated with vitamin Cat a dose 50 mg/kg BW/day. All groups treated for 10 weeks. Every day, before treatment, each group was given a maximum swimming activity for 1.5 hours for 10 weeks. ELISA was used to measure MDA, 8-OHdG, SOD, and Catalase activities. Result: The research results showed that treatment of extract of  leaves of Gaharu with an higher dose from 50 mg/kg BW up to 200 mg/ kg BW significantly decline (p <0.05 levels of MDA with the average ranging from 6.37±0.23, 5,56±0.27 and 4.32±0.27, 8-OHdG with a mean of 1.64±0.11, 1.26±0.46, and 1.09±0.17. On the other hand the treatment also increase SOD activity with less ranging from 12.15±1.04, 15.70±2.02, and 18.84±1.51, and Catalase ranging from 6,68±0.63, 8.20±1.14 and 9.29±0,79 in the blood of Wistar rats were given a maximum activity compared to the negative control group. This is probably higher phenol compounds (bioflavonoids quantity content of the extract

  3. Testing of residual monomer content reduction possibility on acrilic resins quality

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2011-01-01

    Full Text Available Poly (methyl methacrylate (PMMA is material widely used in dentistry. Despite the various methods used to initiate the polymerization of acrylic resins, the conversion of monomer to polymer is not complete thus leaving some unreacted methyl methacrylate (MMA, known as residual monomer (RM, in denture structure. RM in dental acrylic resins has deleterious effects on their mechanical properties and their biocompatibility. The objective of the work was to test the residual monomer reduction possibility by applying the appropriate postpolymerization treatment as well as to determine the effects of this reduction on pressure yields stress and surface structure characteristics of the acrylic resins. Postpolymerization treatments and water storage induced reduction of RM amount in cold-polymerized acrylic resins improved their mechanical properties and the homogenized surface structure. After the polymerization of heat-polymerized acrylic resins the post-polymerization treatments for improving the quality of this material type are not necessary.

  4. Study on the clinical significance of changes of serum SOD, LPO and GSH-PX levels in patients with leukemia after chemotherapy

    International Nuclear Information System (INIS)

    Li Xiumei; He Haoming; Teng Yuexin; Zhu Guihua; Han Xiuhua

    2002-01-01

    Objective: To explore the changes of serum SOD, LPO and GSH-PX levels after chemotherapy in patients with leukemia. Methods: Levels of serum SOD were determined by RIA, LPO, GSH-PX were determined by biochemical methods in 42 cases of leukemia both before and after chemotherapy and 30 normal controls. Results: The results showed that in patients with leukemia the SOD, GSH-PX levels were significantly lower than those in normal controls (p < 0.01) and LPO levels were higher than those in normal control (p<0.01) before, six months after chemotherapy, SOD, LPO, GSH-PX levels remained abnormal in the patients with recurrence but returned to normal in patients without relapse. Conclusion: Changes in these factors are closely related to prognosis of leukemia

  5. Visualization of monomer and polymer inside porous stones by using X-ray tomography

    International Nuclear Information System (INIS)

    Brunetti, Antonio; Princi, Elisabetta; Vicini, Silvia; Pincin, Silvia; Bidali, Simone; Mariani, Alberto

    2004-01-01

    Estimate of sorption of liquid materials inside porous stones is an important parameter in industrial material testing and cultural heritage conservation. In the latter case, a suitable polymer can be used for both consolidation and conservation, it being applied either in the final form or as its parent monomer, which is subsequently allowed to polymerize in situ by the classical method or by frontal polymerization. However, the sorption of such materials through the stone is often difficult because of their viscosity and/or stone porosity. For this reason, the amount of monomer (or polymer) is a parameter of great interest in order to determine the extent of protection reachable by the treatment. In this paper a new methodology based on X-ray tomography is presented. The methodology makes use of a contrast agent added to the monomer that does not interact with its propagation inside the stone and allows to increase the absorption coefficient and so to observe the monomer inside the sample, which is finally frontally polymerized

  6. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  7. Superoxide dismutase (SOD) in boar spermatozoa: purification, biochemical properties and changes in activity during semen storage (16°C) in different extenders.

    Science.gov (United States)

    Orzołek, Aleksandra; Wysocki, Paweł; Strzeżek, Jerzy; Kordan, Władysław

    2013-03-01

    The antioxidant system in semen is composed of enzymes, low-molecular weight antioxidants and seminal plasma proteins. Loss of enzymatic activity of superoxide dismutase (SOD) during semen preservation may cause insufficient antioxidant defense of boar spermatozoa. The aim of this study was to isolate and characterize SOD molecular forms from spermatozoa and to describe changes in SOD activity in boar sperm during preservation at 16°C. Sperm extracts were prepared from fresh or diluted semen and used for SOD purification or activity measurement. Ion-exchange chromatography and gel filtration was used to purify SOD molecular forms. BTS, Dilu Cell, M III and Vitasem were used as diluents for 5-day storage of semen at +16°C. The molecular form of SOD released from spermatozoa after cold shock and homogenization had a molecular weight of approximately 67kDa. The activity of the SOD form was the highest at pH 10 within the temperature range between 20 and 45°C. The enzymatic activity of form released after cold shock was inhibited by H2O2 and diethyldithiocarbamate (DDC; by 65 and 40%, respectively). The SOD form released by homogenization was inhibited by H2O2 and DDC (40%). The molecular form released after urea treatment was a 30kDa protein with maximum activity at 20°C and pH 10. Enzymatic activity of this form was inhibited by H2O2 by 35%, DDC by 80% and 2-mercaptoethanol by 15%. The antigenic determinants of SOD isolated from boar seminal plasma and spermatozoa were similar to each other. Susceptibility of spermatozoa to cold shock increased during storage, but the differences between extenders were statistically non-significant. Copyright © 2013 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis

    OpenAIRE

    McGown, Alexander; Shaw, Dame Pamela J.; Ramesh, Tennore

    2016-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2?3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well ...

  9. Detection of novel key residues of MnSOD enzyme and its role in ...

    Indian Academy of Sciences (India)

    avoidance mechanism and morphological changes (Flowers ... The MnSOD proteins of different species available in salinity condition with their uniprot IDs and domain information ...... relative Lycopersicon pennellii to salt-dependent oxidative.

  10. CuZnSOD gene expression and its relationship with anti-oxidative ...

    African Journals Online (AJOL)

    ... and the minimum in the LY. The proportion of gene expression was positively correlated with the anti-oxidative capacity in muscle. The expression of the CuZnSOD gene was positively correlated with meat colour and tenderness; and negatively correlated with marbling score, drip loss, cooking loss and intramuscular fat.

  11. High-speed atomic force microscopy reveals structural dynamics of α -synuclein monomers and dimers

    Science.gov (United States)

    Zhang, Yuliang; Hashemi, Mohtadin; Lv, Zhengjian; Williams, Benfeard; Popov, Konstantin I.; Dokholyan, Nikolay V.; Lyubchenko, Yuri L.

    2018-03-01

    α-Synuclein (α-syn) is the major component of the intraneuronal inclusions called Lewy bodies, which are the pathological hallmark of Parkinson's disease. α-Syn is capable of self-assembly into many different species, such as soluble oligomers and fibrils. Even though attempts to resolve the structures of the protein have been made, detailed understanding about the structures and their relationship with the different aggregation steps is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. Here we report the structural flexibility of α-syn monomers and dimers in an aqueous solution environment as probed by single-molecule time-lapse high-speed AFM. In addition, we present the molecular basis for the structural transitions using discrete molecular dynamics (DMD) simulations. α-Syn monomers assume a globular conformation, which is capable of forming tail-like protrusions over dozens of seconds. Importantly, a globular monomer can adopt fully extended conformations. Dimers, on the other hand, are less dynamic and show a dumbbell conformation that experiences morphological changes over time. DMD simulations revealed that the α-syn monomer consists of several tightly packed small helices. The tail-like protrusions are also helical with a small β-sheet, acting as a "hinge". Monomers within dimers have a large interfacial interaction area and are stabilized by interactions in the non-amyloid central (NAC) regions. Furthermore, the dimer NAC-region of each α-syn monomer forms a β-rich segment. Moreover, NAC-regions are located in the hydrophobic core of the dimer.

  12. Two Populations Mean-Field Monomer-Dimer Model

    Science.gov (United States)

    Alberici, Diego; Mingione, Emanuele

    2018-04-01

    A two populations mean-field monomer-dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.

  13. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    Energy Technology Data Exchange (ETDEWEB)

    Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw (Poland); Co, Nguyen Truong [Department of Physics, Institute of Technology, National University of HCM City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam); Nguyen, Phuong H. [Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  14. Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein

    Directory of Open Access Journals (Sweden)

    Brian J. McMillan

    2016-08-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7 or humans (CHMP4B, is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins.

  15. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of pcomposites (pcomposite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1 Mice

    Directory of Open Access Journals (Sweden)

    Gotkine Marc

    2013-01-01

    Full Text Available Objective. Previous research suggests that acetylcholinesterase (AChE may be involved in ALS pathogenesis. AChE enzyme inhibitors can upregulate AChE transcription which in certain contexts can have deleterious (noncatalytic effects, making them theoretically harmful in ALS, whilst AChE antisense-oligonucleotides (mEN101, which downregulate AChE may be beneficial. Our aim was to investigate whether downregulation of AChE using mEN101 is beneficial in an ALS mouse model. Methods. ALS (G93A-SOD1 mice received saline, mEN101, inverse-EN101, or neostigmine. Treatments were administered from 5 weeks. Disease-onset and survival were recorded. Additional mice were sacrificed for pathological analysis at 15 weeks of age. In a follow-up experiment treatment was started at the symptomatic stage at a higher dose. Results. mEN101 given at the presymptomatic (but not symptomatic stage prolonged survival and attenuated motor-neuron loss in ALS mice. In contrast, neostigmine exacerbated the clinical parameters. Conclusions. These results suggest that AChE may be involved in ALS pathogenesis. The accelerated disease course with neostigmine suggests that any beneficial effects of mEN101 occur through a non-catalytic rather than cholinergic mechanism.

  17. Considerably Unfolded Transthyretin Monomers Preceed and Exchange with Dynamically Structured Amyloid Protofibrils

    DEFF Research Database (Denmark)

    Groenning, Minna; Campos, Raul I; Hirschberg, Daniel

    2015-01-01

    describe an unexpectedly dynamic TTR protofibril structure which exchanges protomers with highly unfolded monomers in solution. The protofibrils only grow to an approximate final size of 2,900 kDa and a length of 70 nm and a comparative HXMS analysis of native and aggregated samples revealed a much higher...... average solvent exposure of TTR upon fibrillation. With SAXS, we reveal the continuous presence of a considerably unfolded TTR monomer throughout the fibrillation process, and show that a considerable fraction of the fibrillating protein remains in solution even at a late maturation state. Together......, these data reveal that the fibrillar state interchanges with the solution state. Accordingly, we suggest that TTR fibrillation proceeds via addition of considerably unfolded monomers, and the continuous presence of amyloidogenic structures near the protofibril surface offers a plausible explanation...

  18. In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  19. Calculation of vibrational spectra for dioxouranium monochloride monomer and dimers

    Science.gov (United States)

    Umreiko, D. S.; Shundalau, M. B.; Zazhogin, A. P.; Komyak, A. I.

    2010-09-01

    Structural models were built and spectral characteristics were calculated based on ab initio calculations for the monomer and dimers of dioxouranium monochoride UO2Cl. The calculations were carried out in the effective core potential LANL2DZ approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). The monomer UO2Cl was found to possess an equilibrium planar (close to T-shaped) configuration with C2v symmetry. The obtained spectral characteristics were analyzed and compared with experimental data. The adequacy of the proposed models and the qualitative agreement between calculation and experiment were demonstrated.

  20. Unlike physical exercise, modified environment increases the lifespan of SOD1G93A mice however both conditions induce cellular changes.

    Directory of Open Access Journals (Sweden)

    Yannick N Gerber

    Full Text Available Amyotrophic lateral sclerosis (ALS is characterized by a gradual muscular paralysis resulting from progressive motoneurons death. ALS etiology remains unknown although it has been demonstrated to be a multifactorial disease involving several cellular partners. There is currently no effective treatment. Even if the effect of exercise is under investigation for many years, whether physical exercise is beneficial or harmful is still under debate.We investigated the effect of three different intensities of running exercises on the survival of SOD1(G93A mice. At the early-symptomatic stage (P60, males were isolated and randomly assigned to 5 conditions: 2 sedentary groups ("sedentary" and "sedentary treadmill" placed on the inert treadmill, and 3 different training intensity groups (5 cm/s, 10 cm/s and 21 cm/s; 15 min/day, 5days/week. We first demonstrated that an appropriate "control" of the environment is of the utmost importance since comparison of the two sedentary groups evidenced an 11.6% increase in survival in the "sedentary treadmill" group. Moreover, we showed by immunohistochemistry that this increased lifespan is accompanied with motoneurons survival and increased glial reactivity in the spinal cord. In a second step, we showed that when compared with the proper control, all three running-based training did not modify lifespan of the animals, but result in motoneurons preservation and changes in glial cells activation.We demonstrate that increase in survival induced by a slight daily modification of the environment is associated with motoneurons preservation and strong glial modifications in the lumbar spinal cord of SOD1(G93A. Using the appropriate control, we then demonstrate that all running intensities have no effect on the survival of ALS mice but induce cellular modifications. Our results highlight the critical importance of the control of the environment in ALS studies and may explain discrepancy in the literature regarding the

  1. Carbohydrate-dependent binding of langerin to SodC, a cell wall glycoprotein of Mycobacterium leprae.

    Science.gov (United States)

    Kim, Hee Jin; Brennan, Patrick J; Heaslip, Darragh; Udey, Mark C; Modlin, Robert L; Belisle, John T

    2015-02-01

    Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Association Between Free Fatty Acid (FFA and Insulin Resistance: The Role of Inflammation (Adiponectin and high sensivity C-reactive Protein/hs-CRP and Stress Oxidative (Superoxide Dismutase/SOD in Obese Non-Diabetic Individual

    Directory of Open Access Journals (Sweden)

    Indriyanti Rafi Sukmawati

    2009-12-01

    Full Text Available BACKGROUND: Obesity is highly related to insulin resistance, therefore, the increased number of obesity is followed by the increased prevalence of type 2 Diabetes Melitus. Obesity is associated with increased of reactive oxygen species (ROS in muscle, liver and endothelial cells. The increase of ROS would lead to insulin resistance (IR and increased pro-inflammatory protein. FFA plays an important role in IR by inhibiting muscle glucose transport and oxidation via effects on serine/threonine phosphorylation of IRS-1. The aim of this study was discover the existence of SOD, hs-CRP and and adiponectin levels towards the occurrence of insulin resistance which was caused by elevated level of FFA and to discover the interaction between SOD, hs-CRP and adiponectin in non diabetic obese adult male. METHODS: This was observational study with cross sectional design. There were 65 obese male non diabetic subjects and 45 non obese male non diabetic subjects who met the criteria. In this study, measurements were done on body mass index (BMI, fasting glucose, insulin, adiponectin, hs-CRP and SOD. Obese was defined as BMI >25 kg/m2, normal weight was defined as BMI 18.5-23 kh/m2 and Insulin Resistance was defined as HOMA-IR >1. RESULTS: This study showed that Hypoadiponectinemia condition, decreased SOD level and high level of hs-CRP is associated with insulin resistance in obese non diabetic subject. Adiponectin and SOD were correlated negatively with insulin resistance in obese non diabetic (Adiponectin, r=-0.455, p<0.001; SOD, r=-0.262, p=0.003, hs-CRP was positively correlated with insulin resistance in obese non diabetic (r=0.592, p<0.001. FFA levels was increased in obese insulin resistance compared with non obese non insulin resistance. The Odds Ratio of Adiponectin, hs-CRP and SOD in this study was analyzed by logistic binary. The OR for SOD 3.6 (p=0.001, hs-CRP 9.1 (p<0.001 and Adiponectin 7.2 (p<0.001. CONCLUSIONS: This study suggested that FFA

  3. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.

  4. Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death.

    Science.gov (United States)

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-01-01

    Antimycin A (AMA) is an inhibitor of the electron transport chain in mitochondria. In this study, we investigated the anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), superoxide dismutase (SOD) or catalase on AMA-induced HeLa cell death in relation to the cell cycle. Treatment with Z-VAD, SOD or catalase rescued some HeLa cells from AMA-induced apoptosis, but did not prevent the growth inhibition of HeLa cells by AMA. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S-phase arrest of the cell cycle at 72 h. Interestingly, Z-VAD, SOD and catalase intensified S-phase arrest in AMA-treated cells. In conclusion, treatment with Z-VAD, SOD or catalase decreased apoptotic levels in AMA-treated cells, which was associated with the enhancement of the S-phase arrest of the cell cycle in these cells.

  5. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)*

    Science.gov (United States)

    Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  6. DFT approach to (benzylthio)acetic acid: Conformational search, molecular (monomer and dimer) structure, vibrational spectroscopy and some electronic properties

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna

    2018-01-01

    The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.

  7. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Monomer-dimer problem on random planar honeycomb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Haizhen [School of Mathematical Sciences, Xiamen University, Xiamen 361005, Fujian (China); Department of Mathematics, Qinghai Normal University, Xining 810008, Qinghai (China); Zhang, Fuji; Qian, Jianguo, E-mail: jqqian@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005, Fujian (China)

    2014-02-15

    We consider the monomer-dimer (MD) problem on a random planar honeycomb lattice model, namely, the random multiple chain. This is a lattice system with non-periodic boundary condition, whose generating process is inspired by the growth of single walled zigzag carbon nanotubes. By applying algebraic and combinatorial techniques we establish a calculating expression of the MD partition function for bipartite graphs, which corresponds to the permanent of a matrix. Further, by using the transfer matrix argument we show that the computing problem of the permanent of high order matrix can be converted into some lower order matrices for this family of lattices, based on which we derive an explicit recurrence formula for evaluating the MD partition function of multiple chains and random multiple chains. Finally, we analyze the expectation of the number of monomer-dimer arrangements on a random multiple chain and the asymptotic behavior of the annealed MD entropy when the multiple chain becomes infinite in width and length, respectively.

  9. Effect of solubility parameter of monomers on electron beam induced graft-polymerization onto polyethylene films

    International Nuclear Information System (INIS)

    Mori, Koji; Koshiishi, Kenji; Masuhara, Ken-ichi

    1991-01-01

    Electron beam induced graft-polymerization by the mutual irradiation technique of monomers with different solubility parameters δ onto low density polyethylene films (LDPE) and high density polyethylene films (HDPE) were investigated at high dose rates (25 Mrad per second). Graft-polymerization mechanisms were discussed on the basis of grafting rates, surface tensions, atomic ratios of surface by XPS, and SEM images of the grafted films. Grafting rates decreased with increasing δ of monomers, and grafting rates onto LDPE were larger than those onto HDPE. Graft chain contents on surface, which were evaluated in terms of surface tensions and atomic ratios of the surface, increased with increasing δ of monomers, and graft chain contents on surface of HDPE were higher than those of LDPE. It is assumed that mutual solubility of PE and monomers, i.e., infiltration of monomers into PE during graft-polymerization influence grafting rates and graft sites in films. In case of high mutual solubility, grafting rates were large and graft sites spread from the surface into bulk. On the other hand, in case of low mutual solubility, grafting rates were small and graft sites localized on the surface of films. (author)

  10. A novel antibacterial orthodontic cement containing a quaternary ammonium monomer dimethylaminododecyl methacrylate

    Science.gov (United States)

    Melo, Mary A.S.; Wu, Junling; Weir, Michael D.; Xu, Hockin H. K.

    2015-01-01

    Demineralized lesions in tooth enamel around orthodontic brackets are caused by acids from cariogenic biofilm. This study aimed to develop a novel antibacterial orthodontic cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM) into a commercial orthodontic cement, and to investigate the effects on microcosm biofilm response and enamel bond strength. DMADDM, a recently-synthetized antibacterial monomer, was incorporated into orthodontic cement at 0%, 1.5%, 3% and 5% mass fractions. Bond strength of brackets to enamel was measured. A microcosm biofilm model was used to measure metabolic activity, lactic acid production, and colony-forming units (CFU) on orthodontic cements. Shear bond strength was not reduced at 3% DAMDDM (p > 0.1), but was slightly reduced at 5% DMADDM, compared to 0% DMADDM. Biofilm viability was substantially inhibited when in contact with orthodontic cement containing 3% DMADDM. Biofilm metabolic activity, lactic acid production, and CFU were much lower on orthodontic cement containing DMADDM than control cement (p orthodontic cement containing 3% DMADDM inhibited oral biofilms without compromising the enamel bond strength, and is promising to reduce or eliminate demineralization in enamel around orthodontic brackets. PMID:25035230

  11. Study on grafting of different types of acrylic monomers onto natural rubber by γ-rays

    International Nuclear Information System (INIS)

    Dafader, N.C.; Haque, M.E.; Akhtar, F.; Ahmad, M.U.

    2006-01-01

    A comparative study of various acrylic monomers for grafting onto natural rubber was done. The stability of natural rubber latex (NRL) against coagulum with monomer, mechanical properties of grafted rubbers and percent of grafting were investigated. The NRL with monomers, methylacrylate (MA), ethylacrylate (EA) and n-butylacrylate (n-BA), is unstable but it is stable with methyl methacrylate (MMA), n-butyl methacrylate (BMA) and cyclohexyl methacrylate (CHMA). The mechanical properties and degree of grafting attained a maximum at a total radiation dose of 4 kGy. The values of tensile properties of MMA and CHMA grafted rubbers are almost similar, and higher than those of BMA grafted rubbers. On the other hand, the degree of grafting for CHMA is higher than those of MMA and BMA grafted rubbers. The infrared (IR) spectra of monomer grafted natural rubber were also studied

  12. Effect of reactive monomer on PS-b-P2VP film.

    Science.gov (United States)

    Kim, H J; Shin, D M

    2014-08-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 52 kg/mol-b-57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, were obtained by exposing the spin coated film under chloroform vapor. The lamellar films were quaternized with 5 wt% of iodomethane diluted by n-hexane. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. As a result the photonic gel film with RM had more clear color. The lamellar films were swollen by DI water, ethanol (aq) and calcium carbonate solution. The band gaps of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution. And the lamellar films were shifted to shorter wave length swollen by ethanol. So each lamellar film showed different color.

  13. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  14. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    Science.gov (United States)

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  15. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Borges, Karin

    2018-01-01

    Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.

  16. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  17. 21 CFR 864.7300 - Fibrin monomer paracoagulation test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fibrin monomer paracoagulation test. 864.7300 Section 864.7300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7300 Fibrin...

  18. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women.

    Science.gov (United States)

    Kakkoura, Maria G; Demetriou, Christiana A; Loizidou, Maria A; Loucaides, Giorgos; Neophytou, Ioanna; Malas, Simon; Kyriacou, Kyriacos; Hadjisavvas, Andreas

    2016-06-01

    Oxidative stress arises due to a cellular imbalance in oxidants and antioxidants and/or due to an altered activity of antioxidant enzymes, caused by SNPs. Oxidative stress increases susceptibility to breast cancer (BC) risk, and we previously showed that the Mediterranean diet (MD), which is rich in antioxidants, reduces BC risk in Greek-Cypriot women. Here, we investigated the effect of MnSOD (p.Val16Ala, rs4880) and CAT (-262C>T, rs1001179) SNPs on the association between the MD and BC risk in the case-control study of BC MASTOS in Cyprus. Dietary intake data were obtained using a 32-item food frequency questionnaire, from which a dietary pattern was previously derived, using principal component analysis. This pattern included high loadings of vegetables, fruit, legumes and fish, a combination that closely resembles the MD and was used as our dietary variable. High vegetable intake lowered BC risk in women with at least one MnSOD Val allele (ORHigh vs. Low for Val/Val = 0.56, 95 % CI 0.35-0.88, for Val/Ala = 0.57, 95 % CI 0.39-0.82), or one CAT -262C allele (ORHigh vs. Low for -262CC = 0.66, 95 % CI 0.47-0.92, for -262CT = 0.53, 95 % CI 0.35-0.81). High fish intake conferred a decreased BC risk of CAT -262CC women (ORQ4 vs. Q1 0.66, 95 % CI 0.47-0.92) compared with the CAT -262TT women and low fish intake (ORQ2 vs. Q1 2.79, 95 % CI 1.08-7.17). Additionally, high fish intake reduced BC risk in MnSOD Val/Val women (ORQ4 vs. Q1 0.63, 95 % CI 0.40-0.98). p interaction values were, however, not statistically significant. Our results demonstrate that the antioxidative effects of the MD against BC risk may be enhanced by the wild-type alleles of the MnSOD or CAT SNPs among Greek-Cypriot women.

  19. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Lu, Yi; Tang, Chunyan; Zhu, Lei; Li, Jiao; Liang, Huiting; Zhang, Jie; Xu, Renshi

    2016-01-01

    The recent investigation suggested that the TDP-43 protein was closely related to the motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the pathogenesis contributed to motor neuron degeneration largely remained unknown. Therefore, we detected the alteration of TDP-43 expression and distribution in the adult spinal cord of the SOD1 G93A transgenic mouse model for searching the possible pathogenesis of ALS. We examined the TDP-43 expression and distribution in the different anatomic regions, segments and neural cells in the adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic model by the fluorescent immunohistochemical technology. We revealed that the amount of TDP-43 positive cell was cervical>lumbar>thoracic segment, that in the ventral horn was more than that in the dorsal horn, a few of TDP-43 protein sparsely expressed and distributed in the other regions, the TDP-43 protein weren't detected in the white matter and the central canal. The TDP-43 protein was mostly expressed and distributed in the nuclear of neuron cells and the cytoplasm of oligodendrocyte cells of the gray matter surrounding the central canal of spinal cord by the granular shape in the SOD1 wild-type and G93A transgenic mice. The amount of TDP-43 positive cell significantly increased at the onset and progression stages of ALS following with the increase of neuron death in spinal cord, particularly in the ventral horn of cervical segment at the progression stage. Our results suggested that the overexpression of TDP-43 protein in the neuron and oligodendrocyte cell causes the progressive motor neuron degeneration in the ALS-like mouse model.

  20. Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition.

    Science.gov (United States)

    Dai, Yu; Lambert, Lynette; Yuan, Zhiguo; Keller, Jurg

    2008-03-20

    Polyhydroxyalkanoate (PHA) copolymers comprising the four monomers 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylvalerate (3HMV) and 3-hydroxy-2-methylbutyrate (3HMB) were generated using the recently discovered Defluviicoccus vanus-related glycogen accumulating organisms (DvGAOs) under anaerobic conditions without applying any nutrient limitations. The composition could be manipulated in a defined range by modifying the ratio of propionate and acetate provided in the feed stream. The PHAs produced were characterised as random copolymers (from propionate alone) or a mixture of random copolymers (from mixture of propionate and acetate) through microstructure analysis using 13C NMR spectroscopy. The sequence distribution of all eight comonomer pairs in the carbonyl region of 3HB and 3HV was identified and assigned with confidence utilising two-dimensional heteronuclear multiple bond coherence (HMBC) spectroscopy. Weight average molecular weights were in the range 390-560 kg/mol. Differential scanning calorimetry (DSC) traces showed that the melting temperature (Tm) varied between 70 and 161 degrees C and glass transition temperature (Tg) ranged from -8 to 0 degrees C. The incorporation of considerable amounts of 3HMV and 3HMB monomer units introduced additional "defects" into the PHBV copolymer structure and hence greatly lowered the crystallinity. The data indicate the potential of these four-monomer PHAs to be employed for practical applications, considering their favourable properties and the cost-effective production process using a mixed culture and simple carbon sources.

  1. Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolism

    Directory of Open Access Journals (Sweden)

    Devin G. Barrett

    2009-10-01

    Full Text Available Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, α-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.

  2. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture.

    Science.gov (United States)

    Huang, Chien-Hsun; Jayakumar, Thanasekaran; Chang, Chao-Chien; Fong, Tsorng-Harn; Lu, Shing-Hwa; Thomas, Philip Aloysius; Choy, Cheuk-Sing; Sheu, Joen-Rong

    2015-09-25

    Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP)-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1-5 μM) increased the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in melanoma cells. Also, hinokitiol (2-10 µM) concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH·) formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF), collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.

  3. Syntheses of monomers in the reaction of hexamethylolmelamine with 2-hydroxyethyl acrylate and their photocuring

    International Nuclear Information System (INIS)

    Huhui Houlianbo Hufei

    1999-01-01

    A process has been developed for the syntheses of monomers from 2-hydroxyethyl acrylate and hexamethylolmelamine. Their structure were identified by IR and sub 1H-NMR. The photocuring characteristics of these compound and properties of the UV-cured films have been studied

  4. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis?

    Science.gov (United States)

    Kabashi, Edor; Valdmanis, Paul N; Dion, Patrick; Rouleau, Guy A

    2007-12-01

    The identification in 1993 of superoxide dismutase-1 (SOD1) mutations as the cause of 10 to 20% of familial amyotrophic lateral sclerosis cases, which represents 1 to 2% of all amyotrophic lateral sclerosis (ALS) cases, prompted a substantial amount of research into the mechanisms of SOD1-mediated toxicity. Recent experiments have demonstrated that oxidation of wild-type SOD1 leads to its misfolding, causing it to gain many of the same toxic properties as mutant SOD1. In vitro studies of oxidized/misfolded SOD1 and in vivo studies of misfolded SOD1 have indicated that these protein species are selectively toxic to motor neurons, suggesting that oxidized/misfolded SOD1 could lead to ALS even in individuals who do not carry an SOD1 mutation. It has also been reported that glial cells secrete oxidized/misfolded mutant SOD1 to the extracellular environment, where it can trigger the selective death of motor neurons, offering a possible explanation for the noncell autonomous nature of mutant SOD1 toxicity and the rapid progression of disease once the first symptoms develop. Therefore, considering that sporadic (SALS) and familial ALS (FALS) cases are clinically indistinguishable, the toxic properties of mutated SOD1 are similar to that of oxidized/misfolded wild-type SOD1 (wtSOD1), and secreted/extracellular misfolded SOD1 is selectively toxic to motor neurons, we propose that oxidized/misfolded SOD1 is the cause of most forms of classic ALS and should be a prime target for the design of ALS treatments.

  5. Jellium-model calculation for monomer and dimer decays of some potassium clusters

    International Nuclear Information System (INIS)

    Saito, Susumu; Cohen, M.L.; Lawrence Berkeley Lab., CA

    1989-01-01

    We have studied several decay processes of potassium clusters and found that a dimer-decay mechanism can explain the observed lowest abundance of K 10 in the K n mass spectra. Total-energy curves for decay processes are calculated using a jellium-background model for positive-ion cores and the local-spin-density-functional approximation for valence electrons. The energy-barrier height for a dimer decay of K 10 from the energy-minimum point is found to be 0.18 eV, which is a reasonable magnitude for the decay to take place thermally in the experiment. The monomer decay of K 9 and the dimer decay of K 11 , which are expected to be the most favorable decays of K 9 and K 11 , are found to have high barriers. Monomer and dimer decays of K 8 are also studied and the monomer decay is found to be more favorable, in accord with the high-nozzle-temperature mass spectrum. (orig.)

  6. Design, synthesis and characterization of a highly luminescent Eu-complex monomer featuring thenoyltrifluoroacetone and 5-acryloxyethoxymethyl-8-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Xu Cunjin [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China); College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Li Bogeng, E-mail: bgli@zju.edu.cn [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China); Wan Jintao; Bu Zhiyang [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-08-15

    A multi-functional ligand, 5-acryloxyethoxymethyl-8-hydroxyquinoline (Hamq), was synthesized, which contained a polymerizable C=C double bond for the copolymerization with other vinyl monomers and acted as photon antenna able to transfer energy to Eu{sup 3+} ions effectively. The triplet state energy of Hamq was determined to be 22,370 cm{sup -1} via the phosphorescence spectra of Hamq and its gadolinium complex. The title complex monomer Eu(tta){sub 2}(amq) was prepared by coordination reaction of Hamq with europium isopropoxide and 2-thenoyltrifluoroacetone (Htta) in dry organic solvents under argon atmosphere and characterized by elemental analysis and IR spectrum. The photophysical properties of the complex were studied in detail with UV-vis, luminescence spectra, luminescence lifetime and quantum yield. The complex exhibited nearly monochromatic red emission at 612 nm, a remarkable luminescence quantum yield at room temperature (30.6%) upon ligand excitation and a long {sup 5}D{sub 0} lifetime (389 {mu}s), which indicated that the ligand Hamq could sensitize the luminescence of Eu(III) ion efficiently in Eu(tta){sub 2}(amq), resulting in a strong luminescence of its copolymer poly[MMA-co-Eu(TTA){sub 2}(amq)] under UV excitation. The excellent luminescence properties of the complex made it not only a promising light-conversion molecular device but also an excellent luminescent monomer. - Highlights: >iWe designed and synthesized a highly luminescent Eu-complex monomer. > Quantum yield and lifetime of the complex are 30.6% and 389 {mu}s, respectively. > Excellent luminescence of the complex made it an excellent luminescent monomer.

  7. Conformationally locked aryl C-nucleosides: synthesis of phosphoramidite monomers and incorporation into single-stranded DNA and LNA (locked nucleic acid)

    DEFF Research Database (Denmark)

    Babu, B. Ravindra; Prasad, Ashok K.; Trikha, Smriti

    2002-01-01

    . The phosphoramidite approach was used for automated incorporation of the LNA-type beta-configured C-aryl monomers 17a-17e into short DNA and 2'-OMe-RNA/LNA strands. It is shown that universal hybridization can be obtained with a conformationally restricted monomer as demonstrated most convincingly for the pyrene LNA...... monomer 17d, both in a DNA context and in an RNA-like context. Increased binding affinity of oligonucleotide probes for universal hybridization can be induced by combining the pyrene LNA monomer 17d with affinity-enhancing 2'-OMe-RNA/LNA monomers....

  8. Modulation of i-motif thermodynamic stability by the introduction of UNA (unlocked nucleic acid) monomers

    DEFF Research Database (Denmark)

    Pasternak, Anna; Wengel, Jesper

    2011-01-01

    The influence of acyclic RNA derivatives, UNA (unlocked nucleic acid) monomers, on i-DNA thermodynamic stability has been investigated. The 22 nt human telomeric fragment was chosen as the model sequence for stability studies. UNA monomers modulate i-motif stability in a position-depending manner...

  9. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    Science.gov (United States)

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular

  10. Process for recovering oil from subterranean formations

    International Nuclear Information System (INIS)

    Knight, B.; Gogarty, W.B.

    1978-01-01

    Improved flooding of oil-bearing formations is obtained by injecting and displacing through the formation a saline solution containing a water-soluble, substantially linear, high molecular weight polymer obtained by irradiating an aqueous solution of an ethylenically unsaturated monomer and a water-soluble salt under controlled conditions of concentration, radiation intensity, conversion, and total radiation dose. The saline water can contain at least 15,000 ppm of TDS (total dissolved solids) and at least 50 ppm and preferably 300 ppm of polyvalent cations. (Auth.)

  11. Penelitian penggunaan monomer n-butil akrilat untuk peningkatan mutu kulit secara iradiasi

    OpenAIRE

    Dwi Wahini Nurhajati; Suliestiyah Wiryodiningrat; Kadarijah Kadarijah; Penny Setyowati

    1996-01-01

    Research on the utilization of n-butyl acrylate monomer for quality improvement leather by irradiation cobalt-60 gamma-rays is carried out as follows: Javanese crust hide was impregnated with water emulsions of n-butyl acrylate monomer for 2 hours, packed in to poly ethylene bags, sealed, then irradiated by cobalt-60 gamma rays (doses : 5 to 25 kGy). The irradiated leather was washed by water, dried and then physical tested. The results of physical test of leather modified with n-butyl acryl...

  12. Kinetics study of antimony adsorption on Si(1 1 1)

    International Nuclear Information System (INIS)

    Lapena, L.; Mueller, P.; Quentel, G.; Guesmi, H.; Treglia, G.

    2003-01-01

    In this paper, we use mass spectrometry (MS) and reflection high-energy electron (RHEED) to study the kinetics of adsorption of Sb on Si(1 1 1) surface and its relation to the corresponding surface structure. At high temperature (T>800 deg. C) all the impinging Sb 4 molecules completely dissociate at the silicon surface and a 2D gas of Sb monomers reversibly adsorbs on the (1x1) surface. At low temperature (T 4 molecules act as precursors and can be partially reflected or desorbed while a 2D stable layer of Sb monomers irreversibly adsorbs. The surface continuously shifts from a blurred (7x7) surface to a (1x1) structure near completion of the 2D layer. In the intermediate range (600 deg. C< T<800 deg. C) provided that the coverage is large enough (θ ∼ 2/3) the condensation of the 2D gas leads to a 2D (5√3 x 5√3) reconstruction. We show that introducing the formation of a condensed phase in a kinetics model allows us to reproduce our experimental data. Finally, we determine the adsorption geometry from ab initio calculations: Sb is adsorbed on top positions, somewhat passivating the Si surface dangling bonds

  13. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    DEFF Research Database (Denmark)

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper

    2013-01-01

    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger....... ONs modified with pyrene-functionalized 2'-amino-α-l-LNA adenine monomers X-Z display greatly increased affinity toward DNA targets (ΔTm/modification up to +14 °C). Results from absorption and fluorescence spectroscopy suggest that the duplex stabilization is a result of pyrene intercalation...

  14. A study on radiation-induced graft copolymerization of monomer onto natural silk fabric

    International Nuclear Information System (INIS)

    Xiang Zhengyu; Wan Dairong; He Qian

    1995-02-01

    In order to improve the properties of natural silk fabric, the mechanism and method of the radiation induced graft copolymerization of monomers onto natural silk fabric were studied. Three monomers, acrylamide, methylacrylamide and hydroxymethyl acrylamide, were selected for grafting test according to requirements of graft processing. The processing conditions of monomer infusion were studied. The properties of grafted samples were measured. The results are as follows: the rate of weight increasing is 10%∼29%; the rate of thickness increasing is 5%∼20%; the abrupt elasticity rose by 30%; the retarded elasticity rose by 12%; wet elasticity rose by 40%; and the brightness of colour and lustre were improved. It is concluded that while the radiation grafted silk kept its natural characteristics, other properties were improved. It became even chubby and thicker. (4 refs., 3 figs., 3 tabs.)

  15. Radiation grafting of hydrophilic monomers on to plasticized poly(vinyl chloride) sheets: Pt. 1

    International Nuclear Information System (INIS)

    Kalliyana Krishnan, V.; Jayakrishnan, A.; Francis, J.D.

    1990-01-01

    Medical-grade plasticized polyvinyl chloride (PVC) sheets were surface modified using gamma-radiation grafting of a combination of hydrophilic monomers based on 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP). The properties of the modified surfaces were evaluated using contact angle measurements, phase-contrast photomicroscopy and scanning electron microscopy. Surface energy calculations indicated that the surfaces became highly hydrophilic when grafted with even a 1% (v/v) solution of HEMA-NVP combination in the presence of 0.005 M CuSO 4 . Migration of the plasticizer di(2-ethylhexyl phthalate) from the grafted sheets was examined in hydrocarbon solvents such as n-hexane, n-heptane and n-octane and in extractant media such as cotton seed oil and polyethylene glycol-400 (PEG-400). The migration was found to be 0 C over a period of 5 h. Accelerated leaching studies in cotton seed oil and PEG-400 demonstrated that virtually no plasticizer migrated out in the former over a period of 96 h whereas the rate of migration in the latter medium showed only a mild reduction. The migration behaviour was Fickian in nature for grafted sheets. The method described may be useful as a simple, versatile technique for preventing plasticizer migration from plasticized PVC for medical applications. (author)

  16. Radiation crosslinking of PVC with polyfunctional monomers

    International Nuclear Information System (INIS)

    Dobo, J.; Takacs, E.; Csato, P.

    1984-01-01

    The radiation crosslinking of PVC in the presence of ethylene glycol dimethacrylate (EGDM) and of trimethylol propane trimethacrylate (TMPTM) was investigated. The effect of PVC powders of different types on the polymerization rate of these monomers was studied by a Calvet-type microcalorimeter. In the milled PVC sheets containing 50 part EGDM a high concentration of trapped free radicals was found by ESR after 16 months storage. (author)

  17. Solid-support Electron Paramagnetic Resonance (EPR) Studies of Aβ40 Monomers Reveal a Structured State with Three Ordered Segments*

    Science.gov (United States)

    Gu, Lei; Ngo, Sam; Guo, Zhefeng

    2012-01-01

    Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14–18, 29–30, and 38–40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation. PMID:22277652

  18. Inhibition of odontogenic differentiation of human dental pulp cells by dental resin monomers

    OpenAIRE

    Kwon, Ji Hyun; Park, Hee Chul; Zhu, Tingting; Yang, Hyeong-Cheol

    2015-01-01

    Background Dental resin monomers that are leached from the resin matrix due to incomplete polymerization can affect the viability and various functions of oral tissues and cells. In this study, the effects of triethylene glycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) on odontogenic differentiation of human dental pulp cells (HDPCs) were examined. To mimic clinical situations, dental pulp cells were treated with resin monomers for 24?h prior to the analysis of alkaline p...

  19. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer

    International Nuclear Information System (INIS)

    Lee, Yoon-Sung; Kim, Dong-Won

    2013-01-01

    Highlights: • Gel polymer electrolytes were synthesized by in situ polymerization of ionic liquid in the lithium polymer cells. • Flammability of the electrolyte was significantly reduced by polymerizing electrolyte containing a non-flammable ionic liquid monomer. • The cells assembled with polymeric ionic liquid-based electrolytes exhibited reversible cycling behavior with good capacity retention. -- Abstract: Lithium polymer cells composed of a lithium negative electrode and a LiCoO 2 positive electrode were assembled with a gel polymer electrolyte obtained by in situ polymerization of an electrolyte solution containing an ionic liquid monomer with vinyl groups. The polymerization of the electrolyte solution containing the non-flammable ionic liquid monomer resulted in a significant reduction of the flammability of the gel polymer electrolytes. The lithium polymer cell assembled with the stable gel polymer electrolyte delivered a discharge capacity of 134.3 mAh g −1 at ambient temperature and exhibited good capacity retention

  20. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyung; Barron, Lindsey; Hinck, Cynthia S.; Petrunak, Elyse M.; Cano, Kristin E.; Thangirala, Avinash; Iskra, Brian; Brothers, Molly; Vonberg, Machell; Leal, Belinda; Richter, Blair; Kodali, Ravindra; Taylor, Alexander B.; Du, Shoucheng; Barnes, Christopher O.; Sulea, Traian; Calero, Guillermo; Hart, P. John; Hart, Matthew J.; Demeler, Borries; Hinck, Andrew P. (Texas-HSC); (NRCC); (Pitt)

    2017-02-22

    The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor required for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.