WorldWideScience

Sample records for snl mechanical computer

  1. A computer based system for prioritizing pollution prevention opportunity assessments at SNL/NM

    International Nuclear Information System (INIS)

    Custer, M.S.; Leishman, N.L.; Walsh, M.L.; Nelson, J.D.; Davis, R.L.; Bueno, N.C.

    1996-01-01

    Prioritizing waste generators is necessary to determine which are the best candidates for Pollution Prevention Opportunity Assessments (PPOAs). This paper describes the Sandia National Laboratories/New Mexico (SNL/NM) PPOA Ranking System. The system uses a multimedia approach that considers hazardous and radioactive waste disposal data, and hazardous chemical usage data (from which air emissions are extrapolated). Pollution prevention information is included, from the SNL Pollution Prevention Opportunities database that identifies waste streams that have readily apparent pollution prevention opportunities. The system also considers the relative costs of waste management and the chargeback fees paid for waste generation. From these data, organizations are ranked with an algorithm developed in Microsoft Access trademark on a personal computer. The concept could readily be transferred to other facilities needing to decide where to perform PPOAs

  2. Report on the SNL/NSF International Workshop on Joint Mechanics, Arlington, Virginia, 16-18 October 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Ewins, David J. (Imperial College, London England, UK); Bergman, Lawrence A. (University of Illinois, Urbana, IL); Segalman, Daniel Joseph

    2007-11-01

    The NSF/SNL joint mechanics workshop, held in Arlington, Virginia, 16-18 October, 2006, attempted to assess the current state of the art for modeling joint mechanics for the purpose of structural dynamics calculation, to identify the underlying physics issues that must be addressed to advance the field, and to propose a path forward. Distinguished participants from several countries representing research communities that focus on very different length and time scales identified multiple challenges in bridging those scales. Additionally, two complementary points of view were developed for addressing those challenges. The first approach - the 'bottom-up' perspective - attempts to bridge scales by starting from the smallest length scale and working up. The other approach starts at the length scale of application and attempts to deduce mechanics at smaller length scales through reconciliation with laboratory observation. Because interface physics is a limiting element of predictive simulation in defense and transportation, this issue will be of continuing importance for the foreseeable future.

  3. Report on the SNL/AWE/NSF international workshop on joint mechanics, Dartington, United Kingdom, 2729 April 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Ewins, David J. (University of Bristol, UK); Bergman, Lawrence A. (University of Illinois, Urbana, IL); Segalman, Daniel Joseph

    2010-08-01

    The SNL/AWE joint mechanics workshop, held in Dartington Hall, Totnes, Devon, UK 26-29 April 2009 was a follow up to another international joints workshop held in Arlington, Virginia, in October 2006. The preceding workshop focused on identifying what length scales and interactions would be necessary to provide a scientific basis for analyzing and understanding joint mechanics from the atomistic scale on upward. In contrast, the workshop discussed in this report, focused much more on identification and development of methods at longer length scales that can have a nearer term impact on engineering analysis, design, and prediction of the dynamics of jointed structures. Also, the 2009 meeting employed less technical presentation and more break out sessions for developing focused strategies than was the case with the early workshop. Several 'challenges' were identified and assignments were made to teams to develop approaches to address those challenges.

  4. Current Capabilities at SNL for the Integration of Small Modular Reactors onto Smart Microgrids Using Sandia's Smart Microgrid Technology High Performance Computing and Advanced Manufacturing.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, and secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.

  5. SNL/JAEA Collaborations on Sodium Fire Benchmarking.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Andrew Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Takata, Takashi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ohshima, Hiroyuki [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spray experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.

  6. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  7. Computational Continuum Mechanics

    CERN Document Server

    Shabana, Ahmed A

    2011-01-01

    This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.

  8. Quantum mechanics and computation

    International Nuclear Information System (INIS)

    Cirac Sasturain, J. I.

    2000-01-01

    We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs

  9. Integrated experimental and computational methods for structure determination and characterization of a new, highly stable cesium silicotitanate phase, Cs2TiSi6O15 (SNL-A)

    International Nuclear Information System (INIS)

    Nyman D, May; Bonhomme R, Francois; Teter M, David; Maxwell, R.S.; Gu, B.X.; Wang, L.M.; Ewing, R.C.; Nenoff M, Tina

    2000-01-01

    Exploratory hydrothermal synthesis in the system Cs 2 O-SiO 2 -TiO 2 -H 2 O has produced a new polymorph of Cs 2 TiSi 6 O 15 (SNL-A) whose structure was determined using a combination of experimental and theoretical techniques ( 29 Si and 133 Cs NMR, X-ray Rietveld refinement, and Density Functional Theory). SNL-A crystallizes in the monoclinic space-group Cc with unit cell parameters: a = 12.998(2) angstrom, b = 7.5014(3) angstrom, c = 15.156(3) angstrom, η = 105.80(3) degree. The SNL-A framework consists of silicon tetrahedra and titanium octahedra which are linked in 3-, 5-, 6-, 7- and 8-membered rings in three dimensions. SNL-A is distinctive from a previously reported C2/c polymorph of Cs 2 TiSi 6 O 15 by different ring geometries. Similarities and differences between the two structures are discussed. Other characterizations of SNL-A include TGA-DTA, Cs/Si/Ti elemental analyses, and SEM/EDS. Furthermore, the chemical and radiation durability of SNL-A was studied in interest of ceramic waste form applications. These studies show that SNL-A is durable in both radioactive and rigorous chemical environments. Finally, calculated cohesive energies of the two Cs 2 TiSi 6 O 15 polymorphs suggest that the SNL-A phase (synthesized at 200 C) is energetically more favorable than the C2/c polymorph (synthesized at 1,050 C)

  10. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  11. Tumorigenic risk of human induced pluripotent stem cell explants cultured on mouse SNL76/7 feeder cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Mizuna; Mitsui, Youji, E-mail: y-mitsui8310@hb.tp1.jp; Kumazaki, Tsutomu; Kawahara, Yuta; Matsuo, Taira; Takahashi, Tomoko, E-mail: t-takahashi@kph.bunri-u.ac.jp

    2014-10-24

    Highlights: • hiPS cell explants formed malignant tumors when SNL76/7 feeder cells were used. • Multi type tumors developed by interaction of SNL76/7 feeder cells with hiPS cells. • Tumorigenic risk occurs by co-culture of hiPS cells with SNL76/7 feeder cells. - Abstract: The potential for tumor formation from transplanted human induced pluripotent stem cell (hiPSC) derivatives represents a high risk in their application to regenerative medicine. We examined the genetic origin and characteristics of tumors, that were formed when 13 hiPSC lines, established by ourselves, and 201B7 hiPSC from Kyoto University were transplanted into severe combined immune-deficient (SCID) mice. Though teratomas formed in 58% of mice, five angiosarcomas, one malignant solitary fibrous tumor and one undifferentiated pleomorphic sarcoma formed in the remaining mice. Three malignant cell lines were established from the tumors, which were derived from mitomycin C (MMC)-treated SNL76/7 (MMC-SNL) feeder cells, as tumor development from fusion cells between MMC-SNL and hiPSCs was negative by genetic analysis. While parent SNL76/7 cells produced malignant tumors, neither MMC-SNL nor MMC-treated mouse embryo fibroblast (MEF) produced malignant tumors. When MMC-SNL feeder cells were co-cultured with hiPSCs, growing cell lines were generated, that expressed genes similar to the parent SNL76/7 cells. Thus, hiPSCs grown on MMC-SNL feeder cells have a high risk of generating feeder-derived malignant tumors. The possible mechanism(s) of growth restoration and the formation of multiple tumor types are discussed with respect of the interactions between MMC-SNL and hiPSC.

  12. SNL/VNIIEF Storage Monitoring Collaboration

    International Nuclear Information System (INIS)

    Barkanov, Boris P.; Bartberger, Jack C.; Blagin, Sergei V.; Croessmann, C. Dennis; Gruda, Jeffrey D.; Lupsha, Vitali A.; Moroskin, Dimitri V.; Nilsen, Curt A.

    1999-01-01

    Sandia National Laboratories (SNL) and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF)(also know as Arzamas-16) are collaborating on ways to assure the highest standards on safety, security, and international accountability of fissile material. This includes systems used to reduce the need for human access to fissile material, reduce radiation exposure, and provide prompt safety-related information, and provide continuous international accountability information while reducing the need for intrusive, on-site visits. This paper will report on the ongoing SNL/VNIIEF efforts to develop technologies and monitoring systems to meet these goals. Specific topics covered will include: the Smart Bolt tag/seal development, development and testing of electronic sensor platforms (U.S. T-1 ESP and VNIIEF Radio Tag) for monitoring and transportation applications, the ''Magazine-to-Magazine'' remote monitoring system field test, and the ''Facility-to-Facility'' storage monitoring system field trial

  13. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  14. Computational mechanics research at ONR

    International Nuclear Information System (INIS)

    Kushner, A.S.

    1986-01-01

    Computational mechanics is not an identified program at the Office of Naval Research (ONR), but rather plays a key role in the Solid Mechanics, Fluid Mechanics, Energy Conversion, and Materials Science programs. The basic philosophy of the Mechanics Division at ONR is to support fundamental research which expands the basis for understanding, predicting, and controlling the behavior of solid and fluid materials and systems at the physical and geometric scales appropriate to the phenomena of interest. It is shown in this paper that a strong commonalty of computational mechanics drivers exists for the forefront research areas in both solid and fluid mechanics

  15. Computational fluid mechanics

    Science.gov (United States)

    Hassan, H. A.

    1993-01-01

    Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.

  16. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  17. Computing With Quantum Mechanical Oscillators

    National Research Council Canada - National Science Library

    Parks, A

    1991-01-01

    Despite the obvious practical considerations (e.g., stability, controllability), certain quantum mechanical systems seem to naturally lend themselves in a theoretical sense to the task of performing computations...

  18. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  19. Inhibition of Snl6 expression for biofuel production

    Science.gov (United States)

    Bart, Rebecca; Chern, Mawsheng; Ronald, Pamela; Vega-Sanchez, Miguel

    2018-04-03

    The invention provides compositions and methods for inhibiting the expression of the gene Snl6 in plants. Plants with inhibited expression of Snl6 have use in biofuel production, e.g., by increasing the amount of soluble sugar that can be extracted from the plant.

  20. Computational modelling in fluid mechanics

    International Nuclear Information System (INIS)

    Hauguel, A.

    1985-01-01

    The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr

  1. SNL software manual for the ACS Data Analytics Project.

    Energy Technology Data Exchange (ETDEWEB)

    Stearley, Jon R.; McLendon, William Clarence, III; Rodrigues, Arun F.; Williams, Aaron S.; Hooper, Russell Warren; Robinson, David Gerald; Stickland, Michael G.

    2011-10-01

    In the ACS Data Analytics Project (also known as 'YumYum'), a supercomputer is modeled as a graph of components and dependencies, jobs and faults are simulated, and component fault rates are estimated using the graph structure and job pass/fail outcomes. This report documents the successful completion of all SNL deliverables and tasks, describes the software written by SNL for the project, and presents the data it generates. Readers should understand what the software tools are, how they fit together, and how to use them to reproduce the presented data and additional experiments as desired. The SNL YumYum tools provide the novel simulation and inference capabilities desired by ACS. SNL also developed and implemented a new algorithm, which provides faster estimates, at finer component granularity, on arbitrary directed acyclic graphs.

  2. Basic Data Report for Drillhole SNL-1 (C-2953)

    International Nuclear Information System (INIS)

    Powers, Dennis W.

    2005-01-01

    SNL-1 (permitted by the New Mexico State Engineer as C-2953) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation near the margin of dissolution of halite in the upper Permian Salado Formation in the northeast arm of Nash Draw. SNL-1 is located in the northwest quarter of section 16, T21S, R31E, in eastern Eddy County, New Mexico, and it is adjacent to the tailings pile of Mississippi Potash Incorporated (now Intrepid) East mine to test for the presence of shallow zones that might include brine infiltrated from the tailings pile. SNL-1 was drilled to a total depth of 644 ft below ground level (bgl). Below surface wash, SNL-1 encountered, in order, the Mescalero caliche, Dewey Lake, and Rustler Formations.

  3. Basic Data Report for Drillhole SNL-3 (C-2949)

    Energy Technology Data Exchange (ETDEWEB)

    Dennis W. Powers; Washington Regulatory and Environmental Services

    2005-01-20

    SNL-3 (permitted by the New Mexico State Engineer as C-2949) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation within a dissolution reentrant north of the WIPP site and well east of Livingston Ridge. SNL-3 is located in the southeast quarter of section 34, T21S, R31E, in eastern Eddy County, New Mexico. SNL-3 was drilled to a total depth of 970 ft below ground level (bgl). Below surface dune sand, SNL-3 encountered, in order, the Mescalero caliche, Gatuna, Dewey Lake, Rustler, and upper Salado Formations. Two intervals were cored: (1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and (2) from the lower Tamarisk Member through the Culebra Dolomite and Los Meda?os Members and into the uppermost Salado.

  4. Basic Data Report for Drillhole SNL-1 (C-2953)

    Energy Technology Data Exchange (ETDEWEB)

    Dennis W. Powers; Washington Regulatory and Environmental Services

    2005-01-19

    SNL-1 (permitted by the New Mexico State Engineer as C-2953) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation near the margin of dissolution of halite in the upper Permian Salado Formation in the northeast arm of Nash Draw. SNL-1 is located in the northwest quarter of section 16, T21S, R31E, in eastern Eddy County, New Mexico, and it is adjacent to the tailings pile of Mississippi Potash Incorporated (now Intrepid) East mine to test for the presence of shallow zones that might include brine infiltrated from the tailings pile. SNL-1 was drilled to a total depth of 644 ft below ground level (bgl). Below surface wash, SNL-1 encountered, in order, the Mescalero caliche, Dewey Lake, and Rustler Formations.

  5. Report on SNL RCBC control options

    Energy Technology Data Exchange (ETDEWEB)

    Ponciroli, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-30

    The attractive performance of the S-CO2 recompression cycle arises from the thermo-physical properties of carbon dioxide near the critical point. However, to ensure efficient operation of the cycle near the critical point, precise control of the heat removal rate by the Printed Circuit Heat Exchanger (PCHE) upstream of the main compressor is required. Accomplishing this task is not trivial because of the large variations in fluid properties with respect to temperature and pressure near the critical point. The use of a model-based approach for the design of a robust feedback regulator is being investigated to achieve acceptable control of heat removal rate at different operating conditions. A first step in this procedure is the development of a dynamic model of the heat exchanger. In this work, a one-dimensional (1-D) control-oriented model of the PCHE was developed using the General Plant Analyzer and System Simulator (GPASS) code. GPASS is a transient simulation code that supports analysis and control of power conversion cycles based on the S-CO2 Brayton cycle. This modeling capability was used this fiscal year to analyze experiment data obtained from the heat exchanger in the SNL recompression Brayton cycle. The analysis suggested that the error in the water flowrate measurement was greater than required for achieving precise control of heat removal rate. Accordingly, a new water flowmeter was installed, significantly improving the quality of the measurement. Comparison of heat exchanger measurements in subsequent experiments with code simulations yielded good agreement establishing a reliable basis for the use of the GPASS PCHE model for future development of a model-based feedback controller.

  6. Finite element computational fluid mechanics

    International Nuclear Information System (INIS)

    Baker, A.J.

    1983-01-01

    This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows

  7. New directions in computational mechanics

    International Nuclear Information System (INIS)

    Hughes, T.J.R.

    1989-01-01

    A few areas of computation mechanics are identified in which considerable progress has occurred and continued extension and refinement are anticipated. In particular, some recent results are presented of calculations performed with general purpose large-scale nonlinear finite element programs. Recent progress in the development of finite element methods for fluids is described. Examples of adaptive refinement and ''SUPG'' type methods are presented. The ideas emanating from finite elements in fluids are now having some impact on solids and structures. Examples of new element technology for kinematically constrained media and space-time formulations in elastodynamics are presented. (orig.)

  8. Basic Data Report for Drillhole SNL-12 (C-2954)

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dennis W. [Washington Regulatory and Environmental Services (United States)

    2005-01-20

    SNL-12 (permitted by the New Mexico State Engineer as C-2954) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation near the margin of dissolution of halite in the upper part of the Salado south of the Waste Isolation Pilot Plant (WIPP). SNL-12 is located in the southeast quarter of section 20, T23S, R31E, in eastern Eddy County, New Mexico. SNL-12 was drilled to a total depth of 905 ft below the ground level. Below surface dune sand and the Berino soil, SNL-12 encountered, in order, the Mescalero caliche, Gatu?a, Dewey Lake, Rustler, and uppermost Salado Formations. Two intervals were cored: (1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and (2) from the lower Tamarisk Member through the Culebra Dolomite and Los Meda?os Members and into the uppermost Salado Formation. Geophysical logs were acquired from the open hole to total depth, and the drillhole was successfully completed with a screened interval open across the Culebra. At SNL-12, the uppermost Salado cores display displacive halite crystals in clastic-rich units below an amalgamated sulfate at the top of the formation. There is no indication of thinning of the upper Salado due to postdepositional dissolution, and this is consistent with predrilling expectations.

  9. International Conference on Computational Mechanics

    CERN Document Server

    Atluri, Satya

    1986-01-01

    It is often said that these days there are too many conferences on general areas of computational mechanics. mechanics. and numer ical methods. vJhile this may be true. the his tory of scientific conferences is itself quite short. According to Abraham Pais (in "Subtle is the Lord ...• " Oxford University Press. 1982. p.80). the first international scientific conference ever held was the Karlsruhe Congress of Chemists. 3-5 September 1860 in Karlsruhe. Germany. There were 127 chemists in attendance. and the participants came from Austria. Belgium. France. Germany. Great Britain. Italy. Mexico. Poland. Russia. Spain. Sweden. and Switzerland. At the top of the agenda of the points to be discussed at this conference was the question: "Shall a difference be made between the expressions molecule and atom?" Pais goes on to note: "The conference did not at once succeed in bringing chemists closer together ... It is possible that the older men were offended by the impetuous behavior and imposing manner of the younger...

  10. Basic Data Report for Drillhole SNL-2 (C-2948)

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dennis W. [Washington Regulatory and Environmental Services (United States)

    2005-01-19

    SNL-2 was drilled in the northwest quarter of Section 12, T22S, R30E, in eastern Eddy County, New Mexico (Figure 2-1). It is located 574 ft from the north line (fnl) and 859 ft from the west line (fwl) of the section (Figure 2-2). This location places the drillhole east of the Livingston Ridge escarpment among oil wells of the Cabin Lake field. SNL-2 will be used to test hydraulic properties and to monitor ground water levels of the Culebra Dolomite Member of the Permian Rustler Formation. SNL-2 was permitted by the New Mexico State Engineer as C-2948. [Official correspondence regarding permitting and regulatory information must reference this permit number.] In the plan describing the integrated groundwater hydrology program (Sandia National Laboratories, 2003), SNL-2 is also codesignated WTS-1 because the location also satisfies needs for long-term monitoring of water quality and movement in the Culebra Dolomite for RCRA permitting; this program is under the management of Washington TRU Solutions LLC (WTS). In the event that additional wells are established on the SNL-2 drillpad to monitor other hydrological units (e.g., the Magenta Dolomite Member of the Permian Rustler Formation), the current drillhole will likely be referred to as SNL-2C because it is completed in the Culebra. Most drillholes at WIPP have been described after completion to provide an account of the geology, hydrology, or other basic data acquired during drilling and immediate completion of the drillhole. In addition, the basic data report provides an account of the drilling procedures and activities that may be helpful to later interpretations of data or for further work in the drillhole, including test activities and eventual plugging and abandoning activities. The basic data report also provides a convenient means of reporting information about administrative activities necessary to drill the hole.

  11. Site Environmental Report for 2014 SNL/CA

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2014 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2014. General site and environmental program information is also included.

  12. Quantum-mechanical computers and uncomputability

    International Nuclear Information System (INIS)

    Lloyd, S.

    1993-01-01

    The time evolution operator for any quantum-mechanical computer is diagonalizable, but to obtain the diagonal decomposition of a program state of the computer is as hard as actually performing the computation corresponding to the program. In particular, if a quantum-mechanical system is capable of universal computation, then the diagonal decomposition of program states is uncomputable. As a result, in a universe in which local variables support universal computation, a quantum-mechanical theory for that universe that supplies its spectrum cannot supply the spectral decomposition of the computational variables. A ''theory of everything'' can be simultaneously correct and fundamentally incomplete

  13. Computational Mechanics for Heterogeneous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baczewski, Andrew David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lehoucq, Richard B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noble, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierce, Flint [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yarrington, Cole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem

  14. Basic Data Report for Drillhole SNL-9 (C-2950)

    International Nuclear Information System (INIS)

    Powers, Dennis W.

    2005-01-01

    SNL-9 (permitted by the State Engineer as C-2950) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation within a proposed re-entrant of the margin of halite dissolved from the upper part of the Salado near Livingston Ridge. SNL-9 is located in the southeast quarter of section 23, T22S, R30E, in eastern Eddy County, New Mexico. SNL-9 was drilled to a total depth of 845 ft below the ground surface. Below surface dune sand and the Berino soil, SNL-9 encountered, in order, the Mescalero caliche, Gatuna, Dewey Lake, Rustler, and uppermost Salado Formations. Two intervals were cored: (1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and (2) from the lower Tamarisk Member through the Culebra Dolomite and Los Medanos Members and into the uppermost Salado Formation. Geophysical logs were acquired from the open hole to total depth, and the drillhole was successfully completed with a screened interval open across the Culebra.

  15. Basic Data Report for Drillhole SNL-9 (C-2950)

    Energy Technology Data Exchange (ETDEWEB)

    Dennis W. Powers; Washington Regulatory and Environmental Services

    2005-01-19

    SNL-9 (permitted by the State Engineer as C-2950) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation within a proposed re-entrant of the margin of halite dissolved from the upper part of the Salado near Livingston Ridge. SNL-9 is located in the southeast quarter of section 23, T22S, R30E, in eastern Eddy County, New Mexico. SNL-9 was drilled to a total depth of 845 ft below the ground surface. Below surface dune sand and the Berino soil, SNL-9 encountered, in order, the Mescalero caliche, Gatuna, Dewey Lake, Rustler, and uppermost Salado Formations. Two intervals were cored: 1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and 2) from the lower Tamarisk Member through the Culebra Dolomite and Los Meda?os Members and into the uppermost Salado Formation. Geophysical logs were acquired from the open hole to total depth, and the drillhole was successfully completed with a screened interval open across the Culebra.

  16. Basic Data Report for Drillhole SNL-5 (C-3002)

    Energy Technology Data Exchange (ETDEWEB)

    Dennis W. Powers; Washington Regulatory and Environmental Services

    2005-01-18

    SNL-5 (permitted by the New Mexico State Engineer as C-3002) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation in an area north of the Waste Isolation Pilot Plant (WIPP) site where data are sparse and where a pumping or monitoring well for the northern pumping test is needed. SNL-5 is located in the southeast quarter of section 6, T22S, R31E, in eastern Eddy County, New Mexico. SNL-5 was drilled to a total depth of 687 ft below ground level (bgl), based on driller's measurements. Below the caliche pad, SNL-5 encountered the Mescalero caliche, Gatu?a, Dewey Lake, and Rustler Formations. Two intervals of the Rustler were cored: (1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and (2) from the lower Tamarisk Member through the Culebra Dolomite and into the upper Los Meda?os Members. Geophysical logs were acquired from the open hole to a depth of ~672 ft. No water was observed to flow into the open drillhole until the Culebra was penetrated. includes horizontal beds and laminae near the base, and the uppermost part shows some inclined bedding. The mudstone unit shows mostly reddish brown claystone and siltstone with some gray mottling. Clasts or intraclasts are also included in the unit. The upper Tamarisk sulfate is somewhat brecciated near the base.

  17. SNL/CA Facilities Management Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Rabb, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Clark, Eva [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-12-01

    At Sandia National Laboratories in California (SNL/CA), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/CA applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule.

  18. Final report for SNL/NM environmental drilling project

    International Nuclear Information System (INIS)

    Wemple, R.P.; Meyer, R.D.; Staller, G.E.; Layne, R.R.

    1994-11-01

    Concern for the environment and cost reduction are driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. The project has tested a variety of prototype machinery and hardware built by the industrial partner, Charles Machine Works (CMW), and SNL at several sites (Savannah River Site (SRS), Hanford, SNL, Kirtland AFB (KAFB), CMW), successfully installed usable horizontal environmental test wells at SRS and SNL/KAFB, and functioned as a clearing house for information regarding application of existing commercial machinery to a variety of governmental and commercial sites. The project has continued to test and develop machinery in FY 94. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of open-quotes cut/thrust and compact cuttings without adding large quantities of fluidclose quotes to an environmental problem site. This technology will be very cost-effective where applicable. Technology transfer and commercialization by CMW is ongoing and will continue into FY 95. Technology transfer to the private sector is ongoing and reflected in increasing machinery sales to environmental contractors. Education of regulatory agencies resulting in restructuring of appropriate regulatory standards for specification of the horizontal drilling techniques continues to be a long-range goal

  19. Final report for SNL/NM environmental drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Meyer, R.D.; Staller, G.E. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    Concern for the environment and cost reduction are driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. The project has tested a variety of prototype machinery and hardware built by the industrial partner, Charles Machine Works (CMW), and SNL at several sites (Savannah River Site (SRS), Hanford, SNL, Kirtland AFB (KAFB), CMW), successfully installed usable horizontal environmental test wells at SRS and SNL/KAFB, and functioned as a clearing house for information regarding application of existing commercial machinery to a variety of governmental and commercial sites. The project has continued to test and develop machinery in FY 94. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of {open_quotes}cut/thrust and compact cuttings without adding large quantities of fluid{close_quotes} to an environmental problem site. This technology will be very cost-effective where applicable. Technology transfer and commercialization by CMW is ongoing and will continue into FY 95. Technology transfer to the private sector is ongoing and reflected in increasing machinery sales to environmental contractors. Education of regulatory agencies resulting in restructuring of appropriate regulatory standards for specification of the horizontal drilling techniques continues to be a long-range goal.

  20. Elucidating reaction mechanisms on quantum computers

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  1. Elucidating reaction mechanisms on quantum computers

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  2. Elucidating reaction mechanisms on quantum computers.

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  3. Computational Micromodel for Epigenetic Mechanisms

    Science.gov (United States)

    Raghavan, Karthika; Ruskin, Heather J.; Perrin, Dimitri; Goasmat, Francois; Burns, John

    2010-01-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach. PMID:21152421

  4. Computational micromodel for epigenetic mechanisms.

    LENUS (Irish Health Repository)

    Raghavan, Karthika

    2010-11-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  5. Computational structural mechanics for engine structures

    Science.gov (United States)

    Chamis, C. C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.

  6. Institute for Computational Mechanics in Propulsion (ICOMP)

    Science.gov (United States)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    2001-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1999, the Institute's fourteenth year of operation.

  7. Differential equations, mechanics, and computation

    CERN Document Server

    Palais, Richard S

    2009-01-01

    This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.

  8. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  9. Cartoon computation: quantum-like computing without quantum mechanics

    International Nuclear Information System (INIS)

    Aerts, Diederik; Czachor, Marek

    2007-01-01

    We present a computational framework based on geometric structures. No quantum mechanics is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor products and entangled states are not needed-they are replaced by sets of basic shapes. To test the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example that demonstrated the potential power of quantum computation. Each step of the algorithm has a clear geometric interpretation and allows for a cartoon representation. (fast track communication)

  10. Toward exascale computing through neuromorphic approaches.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.

    2010-09-01

    While individual neurons function at relatively low firing rates, naturally-occurring nervous systems not only surpass manmade systems in computing power, but accomplish this feat using relatively little energy. It is asserted that the next major breakthrough in computing power will be achieved through application of neuromorphic approaches that mimic the mechanisms by which neural systems integrate and store massive quantities of data for real-time decision making. The proposed LDRD provides a conceptual foundation for SNL to make unique advances toward exascale computing. First, a team consisting of experts from the HPC, MESA, cognitive and biological sciences and nanotechnology domains will be coordinated to conduct an exercise with the outcome being a concept for applying neuromorphic computing to achieve exascale computing. It is anticipated that this concept will involve innovative extension and integration of SNL capabilities in MicroFab, material sciences, high-performance computing, and modeling and simulation of neural processes/systems.

  11. SNL/CA Environmental Planning and Ecology Annual Program Report for Calendar Year 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-05-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  12. SNL/CA Environmental Planning and Ecology Program Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  13. Updated neutron spectrum characterization of SNL baseline reactor environments

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.; Vehar, D.W.

    1994-04-01

    This document provides SAND-II and MANIPULATE output listings from calculations used to derive the new spectrum-averaged integral parameters that were reported in volume 1. When used in conjunction with volume 1, this document provides an audit trail for the neutron radiation field characterization and supports current quality assurance initiatives. This document provides detailed information on the neutron spectrum characteristics of the primary Sandia National Laboratories' (SNL) reactor environments. The information in this volume is not intended for the casual user of the SNL reactor facilities. This detailed characterization of the neutron and gamma environments at the Sandia Pulsed Reactor (SPR) and the Annular Core Research Reactor (ACRR) is provided to aid the users who wish to convert the information given in the Radiation Metrology Laboratory (RML) dosimetry reports into other (non-silicon) measures of neutron damage. The spectra provided in these appendices can be used as a source term for Monte Carlo radiation transport calculations to study the impact of experimenter's test package on the neutron environment

  14. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  15. Advanced Computational Methods in Bio-Mechanics.

    Science.gov (United States)

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  16. Discrete computational mechanics for stiff phenomena

    KAUST Repository

    Michels, Dominik L.

    2016-11-28

    Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.

  17. Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias.

    Energy Technology Data Exchange (ETDEWEB)

    McCord, Samuel Adam

    2005-12-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

  18. Computational fluid mechanics and heat transfer

    CERN Document Server

    Pletcher, Richard H; Anderson, Dale

    2012-01-01

    ""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t

  19. Interim report for SNL/NM environmental drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Meyer, R.D. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-02-01

    Concern for the environment and cost reduction are the driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. Preliminary activities included surveying the directional drilling access needs of various DOE sites, identifying an existing class of machinery that could be enhanced for environmental work through development, and establishing a mutually beneficial working relationship with an industry partner. Since that time the project has tested a variety of prototype machinery and hardware built by the industrial partner, and SNL. The project continues to test and develop the machinery and technique refinements needed for future applications at DOE, DOD, and private sector sites. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of ``cut/thrust and compact cuttings without adding large quantities of fluid`` to an environmental problem site. Technology transfer to the private sector is ongoing and ultimately should result in commercial availability of the machinery. Education of regulatory agencies resulting in restructuring appropriate regulatory standards for specification of the horizontal drilling techniques will be a final project goal.

  20. Consistent data-driven computational mechanics

    Science.gov (United States)

    González, D.; Chinesta, F.; Cueto, E.

    2018-05-01

    We present a novel method, within the realm of data-driven computational mechanics, to obtain reliable and thermodynamically sound simulation from experimental data. We thus avoid the need to fit any phenomenological model in the construction of the simulation model. This kind of techniques opens unprecedented possibilities in the framework of data-driven application systems and, particularly, in the paradigm of industry 4.0.

  1. Computational Design of Animated Mechanical Characters

    Science.gov (United States)

    Coros, Stelian; Thomaszewski, Bernhard; DRZ Team Team

    2014-03-01

    A factor key to the appeal of modern CG movies and video-games is that the virtual worlds they portray place no bounds on what can be imagined. Rapid manufacturing devices hold the promise of bringing this type of freedom to our own world, by enabling the fabrication of physical objects whose appearance, deformation behaviors and motions can be precisely specified. In order to unleash the full potential of this technology however, computational design methods that create digital content suitable for fabrication need to be developed. In recent work, we presented a computational design system that allows casual users to create animated mechanical characters. Given an articulated character as input, the user designs the animated character by sketching motion curves indicating how they should move. For each motion curve, our framework creates an optimized mechanism that reproduces it as closely as possible. The resulting mechanisms are attached to the character and then connected to each other using gear trains, which are created in a semi-automated fashion. The mechanical assemblies generated with our system can be driven with a single input driver, such as a hand-operated crank or an electric motor, and they can be fabricated using rapid prototyping devices.

  2. Quantum mechanics on the personal computer

    International Nuclear Information System (INIS)

    Brandt, S.; Dahmen, H.D.

    1989-01-01

    'Quantum Mechanics on the PC' presents the most up-to-date access to elementary quantum mechanics. Based on the interactive program Interquanta (included on a 5 1/4'' Floppy Disk, MS-DOS) and its extensive 3D colour graphic features, the book guides its readers through computer experiments on - free particles and wave packets - bound states in various potentials - coherent and squeezed states in time-dependent motion - scattering and resonances - analogies in optics - quantized angular momentum - distinguishable and indistinguishable particles - special functions of mathematical physics. The course with a wide variety of more than 250 detailed, class-tested problems provides students with a unique practical experience of complex probability amplitudes, eigenvalues, scattering cross sections and the like. Lecturers and teachers will find excellent, hands-on classroom demonstrations for their quantum mechanics course. (orig.)

  3. Computational analysis of sequence selection mechanisms.

    Science.gov (United States)

    Meyerguz, Leonid; Grasso, Catherine; Kleinberg, Jon; Elber, Ron

    2004-04-01

    Mechanisms leading to gene variations are responsible for the diversity of species and are important components of the theory of evolution. One constraint on gene evolution is that of protein foldability; the three-dimensional shapes of proteins must be thermodynamically stable. We explore the impact of this constraint and calculate properties of foldable sequences using 3660 structures from the Protein Data Bank. We seek a selection function that receives sequences as input, and outputs survival probability based on sequence fitness to structure. We compute the number of sequences that match a particular protein structure with energy lower than the native sequence, the density of the number of sequences, the entropy, and the "selection" temperature. The mechanism of structure selection for sequences longer than 200 amino acids is approximately universal. For shorter sequences, it is not. We speculate on concrete evolutionary mechanisms that show this behavior.

  4. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  5. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    International Nuclear Information System (INIS)

    Appel, Gordon John

    2016-01-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  6. Introducing Computational Approaches in Intermediate Mechanics

    Science.gov (United States)

    Cook, David M.

    2006-12-01

    In the winter of 2003, we at Lawrence University moved Lagrangian mechanics and rigid body dynamics from a required sophomore course to an elective junior/senior course, freeing 40% of the time for computational approaches to ordinary differential equations (trajectory problems, the large amplitude pendulum, non-linear dynamics); evaluation of integrals (finding centers of mass and moment of inertia tensors, calculating gravitational potentials for various sources); and finding eigenvalues and eigenvectors of matrices (diagonalizing the moment of inertia tensor, finding principal axes), and to generating graphical displays of computed results. Further, students begin to use LaTeX to prepare some of their submitted problem solutions. Placed in the middle of the sophomore year, this course provides the background that permits faculty members as appropriate to assign computer-based exercises in subsequent courses. Further, students are encouraged to use our Computational Physics Laboratory on their own initiative whenever that use seems appropriate. (Curricular development supported in part by the W. M. Keck Foundation, the National Science Foundation, and Lawrence University.)

  7. Computational mechanics of nonlinear response of shells

    Energy Technology Data Exchange (ETDEWEB)

    Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.

  8. Computational mechanics of nonlinear response of shells

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Onate, E.

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs

  9. Early years of Computational Statistical Mechanics

    Science.gov (United States)

    Mareschal, Michel

    2018-05-01

    Evidence that a model of hard spheres exhibits a first-order solid-fluid phase transition was provided in the late fifties by two new numerical techniques known as Monte Carlo and Molecular Dynamics. This result can be considered as the starting point of computational statistical mechanics: at the time, it was a confirmation of a counter-intuitive (and controversial) theoretical prediction by J. Kirkwood. It necessitated an intensive collaboration between the Los Alamos team, with Bill Wood developing the Monte Carlo approach, and the Livermore group, where Berni Alder was inventing Molecular Dynamics. This article tells how it happened.

  10. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Wolff, T.A.

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors

  11. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  12. Computing with networks of nonlinear mechanical oscillators.

    Directory of Open Access Journals (Sweden)

    Jean C Coulombe

    Full Text Available As it is getting increasingly difficult to achieve gains in the density and power efficiency of microelectronic computing devices because of lithographic techniques reaching fundamental physical limits, new approaches are required to maximize the benefits of distributed sensors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural networks, can process information with a high level of parallelism to efficiently solve difficult problems, even when implemented using conventional microelectronic technologies. We describe a mechanical device, which operates in a manner similar to artificial neural networks, to solve efficiently two difficult benchmark problems (computing the parity of a bit stream, and classifying spoken words. The device consists in a network of masses coupled by linear springs and attached to a substrate by non-linear springs, thus forming a network of anharmonic oscillators. As the masses can directly couple to forces applied on the device, this approach combines sensing and computing functions in a single power-efficient device with compact dimensions.

  13. Basic Data Report for Drillhole SNL-3 (C-2949) (Waste Isolation Pilot Plant)

    International Nuclear Information System (INIS)

    Powers, Dennis W.

    2005-01-01

    SNL-3 (permitted by the New Mexico State Engineer as C-2949) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation within a dissolution reentrant north of the WIPP site and well east of Livingston Ridge. SNL-3 is located in the southeast quarter of section 34, T21S, R31E, in eastern Eddy County, New Mexico. SNL-3 was drilled to a total depth of 970 ft below ground level (bgl). Below surface dune sand, SNL-3 encountered, in order, the Mescalero caliche, Gatuna, Dewey Lake, Rustler, and upper Salado Formations. Two intervals were cored: (1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and (2) from the lower Tamarisk Member through the Culebra Dolomite and Los Medanos Members and into the uppermost Salado.

  14. Numerical aspects for efficient welding computational mechanics

    Directory of Open Access Journals (Sweden)

    Aburuga Tarek Kh.S.

    2014-01-01

    Full Text Available The effect of the residual stresses and strains is one of the most important parameter in the structure integrity assessment. A finite element model is constructed in order to simulate the multi passes mismatched submerged arc welding SAW which used in the welded tensile test specimen. Sequentially coupled thermal mechanical analysis is done by using ABAQUS software for calculating the residual stresses and distortion due to welding. In this work, three main issues were studied in order to reduce the time consuming during welding simulation which is the major problem in the computational welding mechanics (CWM. The first issue is dimensionality of the problem. Both two- and three-dimensional models are constructed for the same analysis type, shell element for two dimension simulation shows good performance comparing with brick element. The conventional method to calculate residual stress is by using implicit scheme that because of the welding and cooling time is relatively high. In this work, the author shows that it could use the explicit scheme with the mass scaling technique, and time consuming during the analysis will be reduced very efficiently. By using this new technique, it will be possible to simulate relatively large three dimensional structures.

  15. SNL evaluation of Gigabit Passive Optical Networks (GPON).

    Energy Technology Data Exchange (ETDEWEB)

    Heckart, David G.; Roybal, Glen B.; Walker, Betty R.; Pratt, Thomas Joseph; Gossage, Steven Allen; Trujillo, Sandra M.; Fischer, Bob; Brenkosh, Joseph Peter; Rudolfo, Gerald F.; Dirks, David H.; Schutt, James Alan

    2009-08-01

    Gigabit Passive Optical Networks (GPON) is a networking technology which offers the potential to provide significant cost savings to Sandia National Laboratories in the area of network operations. However, a large scale GPON deployment requires a significant investment in equipment and infrastructure. Before a large scale GPON system was acquired and built, a small GPON system manufactured by Motorola was acquired and tested. The testing performed was to determine the suitability of GPON for use at SNL. This report documents that testing. This report presents test results of GPON system consisting of Motorola and Juniper equipment. The GPON system was tested in areas of data throughput, video conferencing, VOIP, security, and operations and management. The GPON system performed well in almost all areas. GPON will not meet the needs of the low percentage of users requiring a true 1-10 Gbps network connection. GPON will also most likely not meet the need of some servers requiring dedicated throughput of 1-10 Gbps. Because of that, there will be some legacy network connections that must remain. If these legacy network connections can not be reduced to a bare minimum and possibly consolidated to a few locations, any cost savings gained by switching to GPON will be negated by maintaining two networks. A contract has been recently awarded for new GPON equipment with larger buffers. This equipment should improve performance and further reduce the need for legacy network connections. Because GPON has fewer components than a typical hierarchical network, it should be easier to manage. For the system tested, the management was performed by using the AXSVison client. Access to the client must be tightly controlled, because if client/server communications are compromised, security will be an issue. As with any network, the reliability of individual components will determine overall system reliability. There were no failures with the routers, OLT, or Sun Workstation Management

  16. Computational thermofracture mechanics and life prediction

    International Nuclear Information System (INIS)

    Hsu Tairan

    1992-01-01

    This paper will present computational techniques used for the prediction of the thermofracture behaviour of structures subject to either monotonic or cyclic combined thermal and mechanical loadings. Two specific areas will be dealt with in the paper. (1) The Time-invariant thermofracture of leaking pipelines with non-uniform temperature fields; in this case, the induced non-uniform temperature fields near leaking cracks have shown to be significant. The severity of these temperature fields on the thermofracture behaviour of the pipeline will be demonstrated by a numerical example. (2) Thermomechanical creep fracture of structures: Recent developments, including those of the author's own work, on cyclic creep-fracture using damage theory will be presented. Long 'hold' and 'dwell' times, which occur in the actual operations of nuclear power plant components have been shown to have a significant effect on the overall creep-fracture behaviour of the material. Constitutive laws, which include most of these effects, have been incorporated into the existing TEPSAC code for the prediction of crack growth in solids under cyclic creep loadings. The effectiveness of using the damage parameters as fracture criteria, and the presence of plastic deformation in the overall results will be assessed. (orig.)

  17. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  18. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  19. Non-Mechanism in Quantum Oracle Computing

    OpenAIRE

    Castagnoli, Giuseppe

    1999-01-01

    A typical oracle problem is finding which software program is installed on a computer, by running the computer and testing its input-output behaviour. The program is randomly chosen from a set of programs known to the problem solver. As well known, some oracle problems are solved more efficiently by using quantum algorithms; this naturally implies changing the computer to quantum, while the choice of the software program remains sharp. In order to highlight the non-mechanistic origin of this ...

  20. Basic Data Report for Drillhole SNL-12 (C-2954) (Waste Isolation Pilot Plant)

    International Nuclear Information System (INIS)

    Powers, Dennis W.

    2005-01-01

    SNL-12 (permitted by the New Mexico State Engineer as C-2954) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation near the margin of dissolution of halite in the upper part of the Salado south of the Waste Isolation Pilot Plant (WIPP). SNL-12 is located in the southeast quarter of section 20, T23S, R31E, in eastern Eddy County, New Mexico. SNL-12 was drilled to a total depth of 905 ft below the ground level. Below surface dune sand and the Berino soil, SNL-12 encountered, in order, the Mescalero caliche, Gatu?a, Dewey Lake, Rustler, and uppermost Salado Formations. Two intervals were cored: (1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and (2) from the lower Tamarisk Member through the Culebra Dolomite and Los Medanos Members and into the uppermost Salado Formation. Geophysical logs were acquired from the open hole to total depth, and the drillhole was successfully completed with a screened interval open across the Culebra. At SNL-12, the uppermost Salado cores display displacive halite crystals in clastic-rich units below an amalgamated sulfate at the top of the formation. There is no indication of thinning of the upper Salado due to postdepositional dissolution, and this is consistent with predrilling expectations.

  1. Quantum Statistical Mechanics on a Quantum Computer

    NARCIS (Netherlands)

    Raedt, H. De; Hams, A.H.; Michielsen, K.; Miyashita, S.; Saito, K.; Saito, E.

    2000-01-01

    We describe a simulation method for a quantum spin model of a generic, general purpose quantum computer. The use of this quantum computer simulator is illustrated through several implementations of Grover’s database search algorithm. Some preliminary results on the stability of quantum algorithms

  2. Quantum Statistical Mechanics on a Quantum Computer

    OpenAIRE

    De Raedt, H.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.

    1999-01-01

    We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.

  3. Waste minimization/pollution prevention at R ampersand D facilities: Implementing the SNL/NM Process Waste Assessment Program

    International Nuclear Information System (INIS)

    Kjeldgaard, E.A.; Stermer, D.L.; Saloio, J.H. Jr.; Lorton, G.A.

    1993-01-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Process Waste Assessment (PWA) program began formally on November 2, 1992. This program represents the first laboratory-wide attempt to explicitly identify and characterize SNL/NM's waste generating processes for waste minimization purposes. This paper describes the major elements of the SNL/NM PWA program, the underlying philosophy for designing a PWA program at a highly diverse laboratory setting such as SNL/NM, and the experiences and insights gained from five months of implementing this living program. Specifically, the SNL/NM PWA program consists of four major, interrelated phases: (1) Process Definition, (2) Process Characterization, (3) Waste Minimization Opportunity Assessment, and (4) Project Evaluation, Selection, Implementation, and Tracking. This phased approach was developed to Provide a flexible, yet appropriate, level of detail to the multitude of different ''processes'' at SNL/NM. Using a staff infrastructure of approximately 60 Waste Minimization Network Representatives (MinNet Reps) and consulting support, the SNL/NM PWA program has become the linchpin of even more progressive and proactive environmental, safety, and health (ES ampersand H) initiatives such as: (1) cradle-to-grove material/waste tracking, (2) centralized ES ampersand H reporting, and (3) detailed baselining and tracking for measuring multi-media waste reduction goals. Specific examples from the SNL/NM PWA program are provided, including the results from Process Definition, Process Characterization, and Waste Minimization Opportunity Assessments performed for a typical SNL/NM process

  4. Basic Data Report for Drillhole SNL-2 (C-2948) (Waste Isolation Pilot Plant)

    International Nuclear Information System (INIS)

    Powers, Dennis W.

    2005-01-01

    SNL-2 was drilled in the northwest quarter of Section 12, T22S, R30E, in eastern Eddy County, New Mexico (Figure 2-1). It is located 574 ft from the north line (fnl) and 859 ft from the west line (fwl) of the section (Figure 2-2). This location places the drillhole east of the Livingston Ridge escarpment among oil wells of the Cabin Lake field. SNL-2 will be used to test hydraulic properties and to monitor ground water levels of the Culebra Dolomite Member of the Permian Rustler Formation. SNL-2 was permitted by the New Mexico State Engineer as C-2948. [Official correspondence regarding permitting and regulatory information must reference this permit number.] In the plan describing the integrated groundwater hydrology program (Sandia National Laboratories, 2003), SNL-2 is also codesignated WTS-1 because the location also satisfies needs for long-term monitoring of water quality and movement in the Culebra Dolomite for RCRA permitting; this program is under the management of Washington TRU Solutions LLC (WTS). In the event that additional wells are established on the SNL-2 drillpad to monitor other hydrological units (e.g., the Magenta Dolomite Member of the Permian Rustler Formation), the current drillhole will likely be referred to as SNL-2C because it is completed in the Culebra. Most drillholes at WIPP have been described after completion to provide an account of the geology, hydrology, or other basic data acquired during drilling and immediate completion of the drillhole. In addition, the basic data report provides an account of the drilling procedures and activities that may be helpful to later interpretations of data or for further work in the drillhole, including test activities and eventual plugging and abandoning activities. The basic data report also provides a convenient means of reporting information about administrative activities necessary to drill the hole.

  5. Regional cooperation planning. Project planning for JAEA/SNL regional cooperation on remote monitoring

    International Nuclear Information System (INIS)

    Olsen, John

    2006-01-01

    Developing cooperation between the JAEA's NPSTC and the NNCA may take advantage of bilateral activities between those parties and SNL. The merger of JNC and JAERI has affected the schedule for JAEA/SNL cooperation. Also, the evolution of the NNCA as an independent agency has slowed the projected schedule for cooperation between the JAEA and the NNCA. A potential schedule for establishment of a quadrilateral remote monitoring system may include interim activities, securing an agreement of some type, and actual establishment of VPN links. A parallel schedule might exist for informing other regional parties and gaining their interest. (author)

  6. Institute for Computational Mechanics in Propulsion (ICOMP). 10

    Science.gov (United States)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    1996-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and funded under a cooperative agreement by the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOUP during 1995.

  7. Directions for computational mechanics in automotive crashworthiness

    Science.gov (United States)

    Bennett, James A.; Khalil, T. B.

    1993-01-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  8. Foundations of Quantum Mechanics and Quantum Computation

    Science.gov (United States)

    Aspect, Alain; Leggett, Anthony; Preskill, John; Durt, Thomas; Pironio, Stefano

    2013-03-01

    I ask the question: What can we infer about the nature and structure of the physical world (a) from experiments already done to test the predictions of quantum mechanics (b) from the assumption that all future experiments will agree with those predictions? I discuss existing and projected experiments related to the two classic paradoxes of quantum mechanics, named respectively for EPR and Schrödinger's Cat, and show in particular that one natural conclusion from both types of experiment implies the abandonment of the concept of macroscopic counterfactual definiteness.

  9. Calculations of the SNL experiments Sup1 and Sup2 with CONTAIN 2

    International Nuclear Information System (INIS)

    Jacobs, G.; Noebel, R.; Wendlandt, T.

    2000-01-01

    Post-test calculations using the CONTAIN code were performed for the SNL melt dispersal/DCH tests SUP-1 und SUP-2, resulting in a workable input model for future applications to high-temperature melt dispersal experiments as well as for prototypes with tight annular reactor cavity geometries. (orig.) [de

  10. Basic Data Report for Drillhole SNL-5 (C-3002) (Waste Isolation Pilot Plant)

    International Nuclear Information System (INIS)

    Powers, Dennis W.

    2005-01-01

    SNL-5 (permitted by the New Mexico State Engineer as C-3002) was drilled to provide geological data and hydrological testing of the Culebra Dolomite Member of the Permian Rustler Formation in an area north of the Waste Isolation Pilot Plant (WIPP) site where data are sparse and where a pumping or monitoring well for the northern pumping test is needed. SNL-5 is located in the southeast quarter of section 6, T22S, R31E, in eastern Eddy County, New Mexico. SNL-5 was drilled to a total depth of 687 ft below ground level (bgl), based on driller's measurements. Below the caliche pad, SNL-5 encountered the Mescalero caliche, Gatuna, Dewey Lake, and Rustler Formations. Two intervals of the Rustler were cored: (1) from the lower Forty-niner Member through the Magenta Dolomite and into the upper Tamarisk Member; and (2) from the lower Tamarisk Member through the Culebra Dolomite and into the upper Los Medanos Members. Geophysical logs were acquired from the open hole to a depth of ∼672 ft. No water was observed to flow into the open drillhole until the Culebra was penetrated. includes horizontal beds and laminae near the base, and the uppermost part shows some inclined bedding. The mudstone unit shows mostly reddish brown claystone and siltstone with some gray mottling. Clasts or intraclasts are also included in the unit. The upper Tamarisk sulfate is somewhat brecciated near the base.

  11. Resilient workflows for computational mechanics platforms

    International Nuclear Information System (INIS)

    Nguyen, Toan; Trifan, Laurentiu; Desideri, Jean-Antoine

    2010-01-01

    Workflow management systems have recently been the focus of much interest and many research and deployment for scientific applications worldwide. Their ability to abstract the applications by wrapping application codes have also stressed the usefulness of such systems for multidiscipline applications. When complex applications need to provide seamless interfaces hiding the technicalities of the computing infrastructures, their high-level modeling, monitoring and execution functionalities help giving production teams seamless and effective facilities. Software integration infrastructures based on programming paradigms such as Python, Mathlab and Scilab have also provided evidence of the usefulness of such approaches for the tight coupling of multidisciplne application codes. Also high-performance computing based on multi-core multi-cluster infrastructures open new opportunities for more accurate, more extensive and effective robust multi-discipline simulations for the decades to come. This supports the goal of full flight dynamics simulation for 3D aircraft models within the next decade, opening the way to virtual flight-tests and certification of aircraft in the future.

  12. Resilient workflows for computational mechanics platforms

    Science.gov (United States)

    Nguyên, Toàn; Trifan, Laurentiu; Désidéri, Jean-Antoine

    2010-06-01

    Workflow management systems have recently been the focus of much interest and many research and deployment for scientific applications worldwide [26, 27]. Their ability to abstract the applications by wrapping application codes have also stressed the usefulness of such systems for multidiscipline applications [23, 24]. When complex applications need to provide seamless interfaces hiding the technicalities of the computing infrastructures, their high-level modeling, monitoring and execution functionalities help giving production teams seamless and effective facilities [25, 31, 33]. Software integration infrastructures based on programming paradigms such as Python, Mathlab and Scilab have also provided evidence of the usefulness of such approaches for the tight coupling of multidisciplne application codes [22, 24]. Also high-performance computing based on multi-core multi-cluster infrastructures open new opportunities for more accurate, more extensive and effective robust multi-discipline simulations for the decades to come [28]. This supports the goal of full flight dynamics simulation for 3D aircraft models within the next decade, opening the way to virtual flight-tests and certification of aircraft in the future [23, 24, 29].

  13. Computational aspects of nonlinear fracture mechanics

    International Nuclear Information System (INIS)

    Brocks, W.; Cornec, A.; Scheider, I.

    2003-01-01

    The following contribution will essentially restrict to the application of the von Mises theory of incremental plasticity to cracked specimens and components. In particular, the classical parameters of EPFM, J and CTOD, as well as subsequently proposed parameters such as energy dissipation rate and crack-tip opening angle (CTOA) and the related computational aspects will be discussed. Some remarks follow on the 'local approach to fracture' which is based on continuum field quantities, namely stresses and strains, and the damage models of Gurson (1977) and Rousselier (1987), which have now found increasing application, will be briefly addressed in Section 3.03.4. The numerical modeling of decohesion and separation phenomena by 'cohesive elements' will be presented in Section 3.03.5. (orig.)

  14. PREFACE: 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics

    Science.gov (United States)

    Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.

    2010-07-01

    The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with

  15. Incentive mechanisms for Opportunistic Cloud Computing Services

    DEFF Research Database (Denmark)

    Kuada, Eric; Olesen, Henning

    2012-01-01

    to the OCCS platform as well as the efficient usage of these resources. We employ game theory and mechanism design to model and design the incentive schemes. We present two game models and show the existence of a pure strategy Nash equilibrium for both the cooperative and non-cooperative games. Three base...... ever contributing resources. It may also suffer from resource wastage from members or external entities trying to attack the system so that genuine users are deprived of valuable resources. The purpose of this paper is to design incentive schemes that will encourage the contribution of resources...... incentive schemes are presented and two advanced schemes one based on discount factor and the other a stochastic scheme are also presented. We perform analytical evaluation of our incentive schemes and conclude that the schemes meet the desired properties of budget-balance, ex-post individual rationality...

  16. Mechanisms of protection of information in computer networks and systems

    Directory of Open Access Journals (Sweden)

    Sergey Petrovich Evseev

    2011-10-01

    Full Text Available Protocols of information protection in computer networks and systems are investigated. The basic types of threats of infringement of the protection arising from the use of computer networks are classified. The basic mechanisms, services and variants of realization of cryptosystems for maintaining authentication, integrity and confidentiality of transmitted information are examined. Their advantages and drawbacks are described. Perspective directions of development of cryptographic transformations for the maintenance of information protection in computer networks and systems are defined and analyzed.

  17. Thermodynamically consistent data-driven computational mechanics

    Science.gov (United States)

    González, David; Chinesta, Francisco; Cueto, Elías

    2018-05-01

    In the paradigm of data-intensive science, automated, unsupervised discovering of governing equations for a given physical phenomenon has attracted a lot of attention in several branches of applied sciences. In this work, we propose a method able to avoid the identification of the constitutive equations of complex systems and rather work in a purely numerical manner by employing experimental data. In sharp contrast to most existing techniques, this method does not rely on the assumption on any particular form for the model (other than some fundamental restrictions placed by classical physics such as the second law of thermodynamics, for instance) nor forces the algorithm to find among a predefined set of operators those whose predictions fit best to the available data. Instead, the method is able to identify both the Hamiltonian (conservative) and dissipative parts of the dynamics while satisfying fundamental laws such as energy conservation or positive production of entropy, for instance. The proposed method is tested against some examples of discrete as well as continuum mechanics, whose accurate results demonstrate the validity of the proposed approach.

  18. An Introduction to Computational Fluid Mechanics by Example

    CERN Document Server

    Biringen, Sedat

    2011-01-01

    This new book builds on the original classic textbook entitled: An Introduction to Computational Fluid Mechanics by C. Y. Chow which was originally published in 1979. In the decades that have passed since this book was published the field of computational fluid dynamics has seen a number of changes in both the sophistication of the algorithms used but also advances in the computer hardware and software available. This new book incorporates the latest algorithms in the solution techniques and supports this by using numerous examples of applications to a broad range of industries from mechanical

  19. Remote monitoring technologies and applications. JAEA-SNL technical cooperation experience in RM for nuclear transparency

    International Nuclear Information System (INIS)

    Matter, John

    2006-01-01

    In ten years of remote monitoring cooperation, Sandia National Laboratories (SNL) and the JAEA (formerly JNC) have developed technology and demonstrated it at the Joyo Experimental Reactor. The program goals were to develop technology to support international safeguards, help evaluate and standardize the technologies for safeguards uses, and demonstrate them for potential regional cooperation. This paper described three generations of remote monitoring systems at the Joyo Fresh Storage and at one of the Joyo Spent Fuel Ponds. Communications and control methods within the facility and between the facility and the remote viewer have changed rapidly. The current configuration is similar to an international safeguards installation, but provides a foundation for transparency cooperation between the JAEA and SNL. Plans to expand this cooperation to other partners are noted. (author)

  20. An overview of equipment survivability studies at Sandia National Laboratories (SNL)

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Craft, Ch.M.; McCulloch, W.H.; Sebrell, W.A.

    1983-01-01

    The USNRC sponsors a number of programs at Sandia National Laboratories (SNL) specifically addressing safety-related equipment survivability. The major thrust of these programs has been the physical testing of equipment. Test results illustrate the importance of a dedicated equipment design effort giving particular attention to the safety implications of the equipment operation. Several equipment survivability tests here have revealed equipment design and test-related deficiencies

  1. An overview of equipment survivability studies at Sandia National Labs. (SNL): Chapter 3

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Craft, C.M.; McCulloch, W.H.; Sebrell, W.A.

    1983-01-01

    The USNRC sponsors a number of programs at Sandia National Laboratories (SNL) specifically addressing safety-related equipment survivability. The major thrust of these programs has been the physical testing of equipment. Test results illustrate the importance of a dedicated equipment design effort giving particular attention to the safety implications of the equipment operation. Several equipment survivability tests here have revealed equipment design and test-related deficiencies

  2. New values for some 4He I 1snl energy levels, ionization energies, and Lamb shifts

    International Nuclear Information System (INIS)

    Martin, W.C.

    1984-01-01

    Recent experimental determinations of energy separations within the 1snl term system (n = 2--6) have been used to reevaluate 35 levels. Most of the levels have estimated errors less than 0.001 cm -1 relative to the 2 3 P levels. Addition of accurate theoretical term values (ionization energies) available for several 1snl levels to the corresponding experimental level values gives generally consistent values for the principal ionization energy (E/sub I/). The theoretical energies are further confirmed by the agreement of the weighted average of seven of these E/sub I/ values with a value obtained by fitting Ritz formulas to three accurately determined 1snl series; the suggested new E/sub I/ is 198 310.7745(40) cm -1 on an energy scale fixed by the value 171 135.0000 cm -1 for 2 1 P. Lamb shifts are derived for the 2, 3, 4 3 S 1 , 2 1 S 0 , 2 3 P 1 , and 2 1 P 1 levels as differences between experimental term values obtained with the new E/sub I/ and corresponding calculated term values not including Lamb shifts. The experimental and calculated values for the 1s 2 1 S 0 ground level relative to the present 1snl excited-level system are 0.00 +- 0.15 and 0.073 +- 0.009 cm -1 , respectively, so that a approx.20-fold increase in the experimental accuracy would be required to test the calculated ground-level Lamb shift

  3. Control mechanism of double-rotator-structure ternary optical computer

    Science.gov (United States)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  4. A security mechanism based on evolutionary game in fog computing.

    Science.gov (United States)

    Sun, Yan; Lin, Fuhong; Zhang, Nan

    2018-02-01

    Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  5. A security mechanism based on evolutionary game in fog computing

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2018-02-01

    Full Text Available Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  6. Natural computing for mechanical systems research: A tutorial overview

    Science.gov (United States)

    Worden, Keith; Staszewski, Wieslaw J.; Hensman, James J.

    2011-01-01

    A great many computational algorithms developed over the past half-century have been motivated or suggested by biological systems or processes, the most well-known being the artificial neural networks. These algorithms are commonly grouped together under the terms soft or natural computing. A property shared by most natural computing algorithms is that they allow exploration of, or learning from, data. This property has proved extremely valuable in the solution of many diverse problems in science and engineering. The current paper is intended as a tutorial overview of the basic theory of some of the most common methods of natural computing as they are applied in the context of mechanical systems research. The application of some of the main algorithms is illustrated using case studies. The paper also attempts to give some indication as to which of the algorithms emerging now from the machine learning community are likely to be important for mechanical systems research in the future.

  7. Mechanical Design Technology--Modified. (Computer Assisted Drafting, Computer Aided Design). Curriculum Grant 84/85.

    Science.gov (United States)

    Schoolcraft Coll., Livonia, MI.

    This document is a curriculum guide for a program in mechanical design technology (computer-assisted drafting and design developed at Schoolcraft College, Livonia, Michigan). The program helps students to acquire the skills of drafters and to interact with electronic equipment, with the option of becoming efficient in the computer-aided…

  8. Computational Modeling and Analysis of Mechanically Painful Stimulations

    DEFF Research Database (Denmark)

    Manafi Khanian, Bahram

    Cuff algometry is used for quantitative assessment of deep-tissue sensitivity. The main purpose of this PhD dissertation is to provide a novel insight into the intrinsic and extrinsic factors which are involved in mechanically induced pain during cuff pressure algometry. A computational 3D finite...

  9. Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics

    DEFF Research Database (Denmark)

    This book contains the proceedings of the Twenty Second Nordic Seminar on Computational Mechanics (NSCM22), taking event 22-23 October 2009 at Aalborg University, Denmark. The papers presented at the Optimization Seminar in Honour of Niels Olhoff, held 21 October 2009 at Aalborg University, Denmark...

  10. Multiscale methods in computational fluid and solid mechanics

    NARCIS (Netherlands)

    Borst, de R.; Hulshoff, S.J.; Lenz, S.; Munts, E.A.; Brummelen, van E.H.; Wall, W.; Wesseling, P.; Onate, E.; Periaux, J.

    2006-01-01

    First, an attempt is made towards gaining a more systematic understanding of recent progress in multiscale modelling in computational solid and fluid mechanics. Sub- sequently, the discussion is focused on variational multiscale methods for the compressible and incompressible Navier-Stokes

  11. Exploring the mechanisms through which computers contribute to learning.

    NARCIS (Netherlands)

    Karasavvidis, I.; Karasavvidis, I.; Pieters, Julius Marie; Plomp, T.

    2003-01-01

    Even though it has been established that the incorporation of computers into the teaching and learning process enhances student performance, the underlying mechanisms through which this is accomplished have been largely unexplored. The present study aims to shed light on this issue. Two groups of 10

  12. Subglacial sediment mechanics investigated by computer simulation of granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Tulaczyk, Slawek

    The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due to the m......The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due....... The numerical method is applied to better understand the mechanical properties of the subglacial sediment and its interaction with meltwater. The computational approach allows full experimental control and offers insights into the internal kinematics, stress distribution, and mechanical stability. During...

  13. Computer simulations of the mechanical properties of metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales....... Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials...

  14. Continuum mechanical and computational aspects of material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2000-02-10

    The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.

  15. On the Use of Computers for Teaching Fluid Mechanics

    Science.gov (United States)

    Benson, Thomas J.

    1994-01-01

    Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.

  16. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  17. COMPUTER SIMULATION THE MECHANICAL MOVEMENT BODY BY MEANS OF MATHCAD

    Directory of Open Access Journals (Sweden)

    Leonid Flehantov

    2017-03-01

    Full Text Available Here considered the technique of using computer mathematics system MathCAD for computer implementation of mathematical model of the mechanical motion of the physical body thrown at an angle to the horizon, and its use for educational computer simulation experiment in teaching the fundamentals of mathematical modeling. The advantages of MathCAD as environment of implementation mathematical models in the second stage of higher education are noted. It describes the creation the computer simulation model that allows you to comprehensively analyze the process of mechanical movement of the body, changing the input parameters of the model: the acceleration of gravity, the initial and final position of the body, the initial velocity and angle, the geometric dimensions of the body and goals. The technique aimed at the effective assimilation of basic knowledge and skills of students on the basics of mathematical modeling, it provides an opportunity to better master the basic theoretical principles of mathematical modeling and related disciplines, promotes logical thinking development of students, their motivation to learn discipline, improves cognitive interest, forms skills research activities than creating conditions for the effective formation of professional competence of future specialists.

  18. Detection System of Sound Noise Level (SNL) Based on Condenser Microphone Sensor

    Science.gov (United States)

    Rajagukguk, Juniastel; Eka Sari, Nurdieni

    2018-03-01

    The research aims to know the noise level by using the Arduino Uno as data processing input from sensors and called as Sound Noise Level (SNL). The working principle of the instrument is as noise detector with the show notifications the noise level on the LCD indicator and in the audiovisual form. Noise detection using the sensor is a condenser microphone and LM 567 as IC op-amps, which are assembled so that it can detect the noise, which sounds are captured by the sensor will turn the tide of sinusoida voice became sine wave energy electricity (altering sinusoida electric current) that is able to responded to complaints by the Arduino Uno. The tool is equipped with a detector consists of a set indicator LED and sound well as the notification from the text on LCD 16*2. Work setting indicators on the condition that, if the measured noise > 75 dB then sound will beep, the red LED will light up indicating the status of the danger. If the measured value on the LCD is higher than 56 dB, sound indicator will be beep and yellow LED will be on indicating noisy. If the noise measured value <55 dB, sound indicator will be quiet indicating peaceful from noisy. From the result of the research can be explained that the SNL is capable to detecting and displaying noise level with a measuring range 50-100 dB and capable to delivering the notification noise in audiovisual.

  19. FY17 Accomplishments - Testing Facilities and Capabilities at SWiFT, SNL

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The Scaled Wind Farm Technologies (SWiFT) facility operated by Sandia National Laboratories (SNL) has, in support of the Atmosphere to electrons (A2e) research program, acquired measurements of wind turbine wake dynamics under various atmospheric conditions and while interacting with a downstream wind turbine. SNL researchers, in collaboration with National Renewable Energy Laboratory (NREL) researchers, installed a customized LIDAR system created by the Technical University of Denmark (DTU) in one of the SWiFT wind turbines (Figure 1) and operated that turbine with intentional yaw-versus-winddirection misalignment to study the behavior of the turbine wake under numerous combinations of atmospheric conditions and turbine yaw offsets. The DTU-customized LIDAR provided detailed measurements of the wake’s shape and location at many distances downwind of the turbine (Figure 2). These measurements will benefit wind energy researchers looking to understand wind turbine wake behavior and improve modeling and simulation of wake dynamics, including the “wake steering” affect that is observed when turbine yaw offset is controlled. During the test campaign, two SWiFT wind turbines were operated at the same time to observe the influence of the turbines on each other as the wake of the upwind turbine was observed sweeping over and interacting with the downwind turbine.

  20. Radiological Dose Calculations And Supplemental Dose Assessment Data For Neshap Compliance For SNL Nevada Facilities 1996.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity. Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.

  1. Using Computational and Mechanical Models to Study Animal Locomotion

    Science.gov (United States)

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  2. Singularities of robot mechanisms numerical computation and avoidance path planning

    CERN Document Server

    Bohigas, Oriol; Ros, Lluís

    2017-01-01

    This book presents the singular configurations associated with a robot mechanism, together with robust methods for their computation, interpretation, and avoidance path planning. Having such methods is essential as singularities generally pose problems to the normal operation of a robot, but also determine the workspaces and motion impediments of its underlying mechanical structure. A distinctive feature of this volume is that the methods are applicable to nonredundant mechanisms of general architecture, defined by planar or spatial kinematic chains interconnected in an arbitrary way. Moreover, singularities are interpreted as silhouettes of the configuration space when seen from the input or output spaces. This leads to a powerful image that explains the consequences of traversing singular configurations, and all the rich information that can be extracted from them. The problems are solved by means of effective branch-and-prune and numerical continuation methods that are of independent interest in themselves...

  3. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    Science.gov (United States)

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  4. Recent Advances in Computational Mechanics of the Human Knee Joint

    Science.gov (United States)

    Kazemi, M.; Dabiri, Y.; Li, L. P.

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602

  5. Application of computational fluid mechanics to atmospheric pollution problems

    Science.gov (United States)

    Hung, R. J.; Liaw, G. S.; Smith, R. E.

    1986-01-01

    One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.

  6. A three-dimensional computational model of collagen network mechanics.

    Directory of Open Access Journals (Sweden)

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  7. Computer-based mechanical design of overhead lines

    Science.gov (United States)

    Rusinaru, D.; Bratu, C.; Dinu, R. C.; Manescu, L. G.

    2016-02-01

    Beside the performance, the safety level according to the actual standards is a compulsory condition for distribution grids’ operation. Some of the measures leading to improvement of the overhead lines reliability ask for installations’ modernization. The constraints imposed to the new lines components refer to the technical aspects as thermal stress or voltage drop, and look for economic efficiency, too. The mechanical sizing of the overhead lines is after all an optimization problem. More precisely, the task in designing of the overhead line profile is to size poles, cross-arms and stays and locate poles along a line route so that the total costs of the line's structure to be minimized and the technical and safety constraints to be fulfilled.The authors present in this paper an application for the Computer-Based Mechanical Design of the Overhead Lines and the features of the corresponding Visual Basic program, adjusted to the distribution lines. The constraints of the optimization problem are adjusted to the existing weather and loading conditions of Romania. The outputs of the software application for mechanical design of overhead lines are: the list of components chosen for the line: poles, cross-arms, stays; the list of conductor tension and forces for each pole, cross-arm and stay for different weather conditions; the line profile drawings.The main features of the mechanical overhead lines design software are interactivity, local optimization function and high-level user-interface

  8. Developmental Changes in Learning: Computational Mechanisms and Social Influences

    Directory of Open Access Journals (Sweden)

    Florian Bolenz

    2017-11-01

    Full Text Available Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development.

  9. Parallelism in computations in quantum and statistical mechanics

    International Nuclear Information System (INIS)

    Clementi, E.; Corongiu, G.; Detrich, J.H.

    1985-01-01

    Often very fundamental biochemical and biophysical problems defy simulations because of limitations in today's computers. We present and discuss a distributed system composed of two IBM 4341 s and/or an IBM 4381 as front-end processors and ten FPS-164 attached array processors. This parallel system - called LCAP - has presently a peak performance of about 110 Mflops; extensions to higher performance are discussed. Presently, the system applications use a modified version of VM/SP as the operating system: description of the modifications is given. Three applications programs have been migrated from sequential to parallel: a molecular quantum mechanical, a Metropolis-Monte Carlo and a molecular dynamics program. Descriptions of the parallel codes are briefly outlined. Use of these parallel codes has already opened up new capabilities for our research. The very positive performance comparisons with today's supercomputers allow us to conclude that parallel computers and programming, of the type we have considered, represent a pragmatic answer to many computationally intensive problems. (orig.)

  10. Summary of FY 17 Assessments Sandia National Laboratories: Evaluation of FY16 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John

    2017-03-01

    This report is the milestone deliverable M4FT-17SN111102091 “Summary of Assessments Performed FY17 by SNL QA POC” for work package FT-17SN11110209 titled “Quality Assurance – SNL”. This report summarizes the FY17 assessment performed on Fuel Cycle Technologies / Spent Fuel and Waste Disposition efforts.

  11. 76 FR 50212 - Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM)

    Science.gov (United States)

    2011-08-12

    ... Environmental Impact Statement for Sandia National Laboratories, New Mexico (DOE/EIS-0281-SA-04), DOE/NNSA... Environmental Impact Statement for Sandia National Laboratories, New Mexico for the Installation of a Petawatt..., New Mexico Final Supplement Analysis for the Site-Wide Environmental Impact Statement (2006 SNL/NM...

  12. Multi-kanban mechanism for personal computer disassembly

    Science.gov (United States)

    Udomsawat, Gun; Gupta, Surendra M.; Kamarthi, Sagar V.

    2004-12-01

    The use of personal computers (PCs) continues to increase every year. According to a 1999 figure, 50 percent of all US households owned PCs, a figure that continues to rise every year. With continuous development of sophisticated software, PCs are becoming increasingly powerful. In addition, the price of a PC continues to steadily decline. Furthermore, the typical life of a PC in the workplace is approximately two to three years while in the home it is three to five years. As these PCs become obsolete, they are replaced and the old PCs are disposed of. It is estimated that between 14 and 20 million PCs are retired annually in the US. While 20 to 30% of the units may be resold, the others are discarded. These discards represent a significant potential source of lead for the waste stream. In some communities, waste cathode ray tubes (CRTs) represent the second largest source of lead in the waste stream after vehicular lead acid batteries. PCs are, therefore, not suitable for dumping in landfills. Besides, several components of a PC can be reused and then there are other valuable materials that can also be harvested. And with the advent of product stewardship, product recovery is the best solution for manufacturers. Disassembly line is perhaps the most suitable set up for disassembling PCs. However, planning and scheduling of disassembly on a disassembly line is complicated. In this paper, we discuss some of the complications including product arrival, demand arrival, inventory fluctuation and production control mechanisms. We then show how to overcome them by implementing a multi-kanban mechanism in the PC disassembly line setting. The multi-kanban mechanism relies on dynamic routing of kanbans according to the state of the system. We investigate the multi-kanban mechanism using simulation and demonstrate that this mechanism is superior to the traditional push system in terms of controlling the system"s inventory while maintaining a decent customer service level.

  13. Computationally efficient thermal-mechanical modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.

  14. Analysis of sponge zones for computational fluid mechanics

    International Nuclear Information System (INIS)

    Bodony, Daniel J.

    2006-01-01

    The use of sponge regions, or sponge zones, which add the forcing term -σ(q - q ref ) to the right-hand-side of the governing equations in computational fluid mechanics as an ad hoc boundary treatment is widespread. They are used to absorb and minimize reflections from computational boundaries and as forcing sponges to introduce prescribed disturbances into a calculation. A less common usage is as a means of extending a calculation from a smaller domain into a larger one, such as in computing the far-field sound generated in a localized region. By analogy to the penalty method of finite elements, the method is placed on a solid foundation, complete with estimates of convergence. The analysis generalizes the work of Israeli and Orszag [M. Israeli, S.A. Orszag, Approximation of radiation boundary conditions, J. Comp. Phys. 41 (1981) 115-135] and confirms their findings when applied as a special case to one-dimensional wave propagation in an absorbing sponge. It is found that the rate of convergence of the actual solution to the target solution, with an appropriate norm, is inversely proportional to the sponge strength. A detailed analysis for acoustic wave propagation in one-dimension verifies the convergence rate given by the general theory. The exponential point-wise convergence derived by Israeli and Orszag in the high-frequency limit is recovered and found to hold over all frequencies. A weakly nonlinear analysis of the method when applied to Burgers' equation shows similar convergence properties. Three numerical examples are given to confirm the analysis: the acoustic extension of a two-dimensional time-harmonic point source, the acoustic extension of a three-dimensional initial-value problem of a sound pulse, and the introduction of unstable eigenmodes from linear stability theory into a two-dimensional shear layer

  15. Mechanisms of Neurofeedback: A Computation-theoretic Approach.

    Science.gov (United States)

    Davelaar, Eddy J

    2018-05-15

    Neurofeedback training is a form of brain training in which information about a neural measure is fed back to the trainee who is instructed to increase or decrease the value of that particular measure. This paper focuses on electroencephalography (EEG) neurofeedback in which the neural measures of interest are the brain oscillations. To date, the neural mechanisms that underlie successful neurofeedback training are still unexplained. Such an understanding would benefit researchers, funding agencies, clinicians, regulatory bodies, and insurance firms. Based on recent empirical work, an emerging theory couched firmly within computational neuroscience is proposed that advocates a critical role of the striatum in modulating EEG frequencies. The theory is implemented as a computer simulation of peak alpha upregulation, but in principle any frequency band at one or more electrode sites could be addressed. The simulation successfully learns to increase its peak alpha frequency and demonstrates the influence of threshold setting - the threshold that determines whether positive or negative feedback is provided. Analyses of the model suggest that neurofeedback can be likened to a search process that uses importance sampling to estimate the posterior probability distribution over striatal representational space, with each representation being associated with a distribution of values of the target EEG band. The model provides an important proof of concept to address pertinent methodological questions about how to understand and improve EEG neurofeedback success. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Computation of the mechanical behaviour of nuclear reactor components

    International Nuclear Information System (INIS)

    Brosi, S.; Niffenegger, M.; Roesel, R.; Reichlin, K.; Duijvestijn, A.

    1994-01-01

    A possible limiting factor of the service life of a reactor is the mechanical load carrying margin, i.e. the excess of the load carrying capacity over the actual loading, of the central, heavy section components. This margin decreases during service but, for safety reasons, may not fall below a critical value. Therefore, it is essential to check and to control continuously the factors which cause the decrease. The reasons for the decrease are shown at length and in detail in an example relating to the test which almost achieved failure of a pipe emanating from a reactor pressure vessel, weakened by an artificial crack and undergoing a water-hammer loading. The latter was caused by a sudden valve closure supposed to follow upon a break far downstream. The computational and experimental difficulties associated with the simultaneous occurrence of an extreme weakening and an extreme loading in an already rather complicated geometry are explained. It is concluded that available computational tools and present know-how are sufficient to simulate the behaviour under such conditions as would prevail in normal service, and even to analyse departures from them, as long as not all difficulties arise simultaneously. (author) figs., tabs., refs

  17. The history of theoretical, material and computational mechanics mathematics meets mechanics and engineering

    CERN Document Server

    2014-01-01

    This collection of 23 articles is the output of lectures in special sessions on “The History of Theoretical, Material and Computational Mechanics” within the yearly conferences of the GAMM in the years 2010 in Karlsruhe, Germany, 2011 in Graz, Austria, and in 2012 in Darmstadt, Germany; GAMM is the “Association for Applied Mathematics and Mechanics”, founded in 1922 by Ludwig Prandtl and Richard von Mises. The contributions in this volume discuss different aspects of mechanics. They are related to solid and fluid mechanics in general and to specific problems in these areas including the development of numerical solution techniques. In the first part the origins and developments of conservation principles in mechanics and related variational methods are treated together with challenging applications from the 17th to the 20th century. Part II treats general and more specific aspects of material theories of deforming solid continua and porous soils. and Part III presents important theoretical and enginee...

  18. Interactive Quantum Mechanics Quantum Experiments on the Computer

    CERN Document Server

    Brandt, S; Dahmen, H.D

    2011-01-01

    Extra Materials available on extras.springer.com INTERACTIVE QUANTUM MECHANICS allows students to perform their own quantum-physics experiments on their computer, in vivid 3D color graphics. Topics covered include: •        harmonic waves and wave packets, •        free particles as well as bound states and scattering in various potentials in one and three dimensions (both stationary and time dependent), •        two-particle systems, coupled harmonic oscillators, •        distinguishable and indistinguishable particles, •        coherent and squeezed states in time-dependent motion, •        quantized angular momentum, •        spin and magnetic resonance, •        hybridization. For the present edition the physics scope has been widened appreciably. Moreover, INTERQUANTA can now produce user-defined movies of quantum-mechanical situations. Movies can be viewed directly and also be saved to be shown later in any browser. Sections on spec...

  19. Understanding organometallic reaction mechanisms and catalysis experimental and computational tools computational and experimental tools

    CERN Document Server

    Ananikov, Valentin P

    2014-01-01

    Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper

  20. SNL-EFDC Simulations of Tidal Turbine-Related Changes to Hydrodynamics and Flushing

    Science.gov (United States)

    Roberts, J. D.; Johnson, E.; James, S. C.; Barco, J.; Jones, C.

    2012-12-01

    The marine and hydrokinetic (MHK) industry in the United States faces challenges associated with siting, permitting, construction, and operation of pilot- and full-scale facilities that must be addressed to accelerate environmentally sound deployment of these renewable energy technologies. Little is known about the potential effects of MHK device operation in coastal areas, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems. This lack of knowledge affects the actions of regulatory agencies, the opinions of stakeholder groups, and the commitment of energy project developers and investors. Two particularly important factors that can be used as a precursor for MHK-driven environmental changes in estuaries are the effect of decreased tidal range and flushing. For example, tidal-range changes could affect wetland systems that are only wetted under the highest of tides. Significant changes in tidal range could completely change the character of the wetlands through long-term drying. Changes to flushing must also be understood, especially when municipal wastewater and other pollutant sources are discharged into a bay. When MHK operation alters flow rates, decreased flushing of an embayment could yield increased residence times, decreased nutrient and contaminant dispersion, and even the possibility of algal blooms. Small changes to the flow could manifest as noticeable changes to sediment transport and water quality. This work provides example assessments of changes to the physical environment (i.e. currents, tidal ranges, water age, and e-folding time) potentially imposed by the operation of MHK turbine arrays in marine estuary environments using the modeling platform SNL-EFDC. Comparing model results with and without an MHK array facilitates an understanding of how an array of turbines might alter the environment. By using models to simulate water circulation, commensurate changes in water quality, benthic habitat quality, and

  1. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  2. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    International Nuclear Information System (INIS)

    Sutton, M.; Blink, J.A.; Halsey, W.G.

    2011-01-01

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  3. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    International Nuclear Information System (INIS)

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California's waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator's hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia's site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized

  4. Clean-up progress at the SNL/NM Classified Waste Landfill

    International Nuclear Information System (INIS)

    Slavin, P.J.; Galloway, R.B.

    1999-01-01

    The Sandia National Laboratories/New Mexico (SNL/NM)Environmental Restoration Project is currently excavating the Classified Waste Landfill in Technical Area II, a disposal area for weapon components for approximately 40 years until it closed in 1987. Many different types of classified parts were disposed in unlined trenches and pits throughout the course of the landfill's history. A percentage of the parts contain explosives and/or radioactive components or contamination. The excavation has progressed backward chronologically from the last trenches filled through to the earlier pits. Excavation commenced in March 1998, and approximately 75 percent of the site (as defined by geophysical anomalies) has been completed as of November 1999. The material excavated consists primarily of classified weapon assemblies and related components, so disposition must include demilitarization and sanitization. This has resulted in substantial waste minimization and cost avoidance for the project as upwards of 90 percent of the classified materials are being demilitarized and recycled. The project is using field screening and lab analysis in conjunction with preliminary and in-process risk assessments to characterize soil and make waste determinations in a timely a fashion as possible. Challenges in waste management have prompted the adoption of innovative solutions. The hand-picked crew (both management and field staff) and the ability to quickly adapt to changing conditions has ensured the success of the project. The current schedule is to complete excavation in July 2000, with follow-on verification sampling, demilitarization, and waste management activities following

  5. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  6. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  7. COMTA - a computer code for fuel mechanical and thermal analysis

    International Nuclear Information System (INIS)

    Basu, S.; Sawhney, S.S.; Anand, A.K.; Anantharaman, K.; Mehta, S.K.

    1979-01-01

    COMTA is a generalized computer code for integrity analysis of the free standing fuel cladding, with natural UO 2 or mixed oxide fuel pellets. Thermal and Mechanical analysis is done simultaneously for any power history of the fuel pin. For analysis, the fuel cladding is assumed to be axisymmetric and is subjected to axisymmetric load due to contact pressure, gas pressure, coolant pressure and thermal loads. Axial variation of load is neglected and creep and plasticity are assumed to occur at constant volume. The pellet is assumed to be made of concentric annuli. The fission gas release integral is dependent on the temperature and the power produced in each annulus. To calculate the temperature distribution in the fuel pin, the variation of bulk coolant temperature is given as an input to the code. Gap conductance is calculated at every time step, considering fuel densification, fuel relocation and gap closure, filler gas dilution by released fission gas, gap closure by expansion and irradiation swelling. Overall gap conductance is contributed by heat transfer due to the three modes; conduction convection and radiation as per modified Ross and Stoute model. Equilibrium equations, compatibility equations, stress strain relationships (including thermal strains and permanent strains due to creep and plasticity) are used to obtain triaxial stresses and strains. Thermal strain is assumed to be zero at hot zero power conditions. The boundary conditions are obtained for radial stresses at outside and inside surfaces by making these equal to coolant pressure and internal pressure respectively. A multi-mechanism creep model which accounts for thermal and irradiation creep is used to calculate the overall creep rate. Effective plastic strain is a function of effective stress and material constants. (orig.)

  8. Computational Contact Mechanics Geometrically Exact Theory for Arbitrary Shaped Bodies

    CERN Document Server

    Konyukhov, Alexander

    2013-01-01

    This book contains a systematical analysis of geometrical situations  leading to  contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface.  Each contact pair  is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system.  The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a  certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others  are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are  then ready-for-implementation numerical algorithms within the finite e...

  9. Quantum ballistic evolution in quantum mechanics: Application to quantum computers

    International Nuclear Information System (INIS)

    Benioff, P.

    1996-01-01

    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. copyright 1996 The American Physical Society

  10. Parallel algorithms and archtectures for computational structural mechanics

    Science.gov (United States)

    Patrick, Merrell; Ma, Shing; Mahajan, Umesh

    1989-01-01

    The determination of the fundamental (lowest) natural vibration frequencies and associated mode shapes is a key step used to uncover and correct potential failures or problem areas in most complex structures. However, the computation time taken by finite element codes to evaluate these natural frequencies is significant, often the most computationally intensive part of structural analysis calculations. There is continuing need to reduce this computation time. This study addresses this need by developing methods for parallel computation.

  11. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  12. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  13. The SNL/NM Classified Waste Landfill Excavation: Lessons Learned Moving from Planning to Implementation

    International Nuclear Information System (INIS)

    Galloway, Robert B; Slavin, Paula

    1999-01-01

    The Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration Project is halfway through excavating the Classified Waste Landfill in Technical Area II, a disposal area for weapon components for approximately 40 years. While the planning phase of any project is important, it is only a means of getting to the field implementation phase where reality quickly sinks in. Documents outlining the general processes are developed, heavy equipment, supply needs, requisite skills, and staffing levels are anticipated, and contingencies for waste management are put in place. However, the nature of landfill excavation dictates that even the most detailed plans will probably change. This project is proving that trying to account for undefined variables and predicting the total cost of landfill remediation is very difficult if the contents are not well known. In landfill excavation, contingency cannot be minimized. During development of the waste management plan, it was recognized that even the best forecasting could not formulate the perfect cradle-to-grave processes because waste streams are rarely definable before excavation begins. Typically, as excavation progresses and waste streams are generated, new characterization information allows further definition of disposal options which, in turn, modify the generation/management process. A general plan combined with close involvement of waste management personnel to resolve characterization and packaging questions during generation has worked very well. And, as expected, each new pit excavated creates new waste management challenges. The material excavated consists primarily of classified weapon assemblies and related components, so disposition must include demilitarization and sanitization. The demilitarization task at the start of the project was provided by an SNL/NM group that has since lost their funding and operational capability. This project is having to take on the task of disassembly, destruction, and

  14. An application of interactive computer graphics technology to the design of dispersal mechanisms

    Science.gov (United States)

    Richter, B. J.; Welch, B. H.

    1977-01-01

    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.

  15. Computational mechanics - Advances and trends; Proceedings of the Session - Future directions of Computational Mechanics of the ASME Winter Annual Meeting, Anaheim, CA, Dec. 7-12, 1986

    Science.gov (United States)

    Noor, Ahmed K. (Editor)

    1986-01-01

    The papers contained in this volume provide an overview of the advances made in a number of aspects of computational mechanics, identify some of the anticipated industry needs in this area, discuss the opportunities provided by new hardware and parallel algorithms, and outline some of the current government programs in computational mechanics. Papers are included on advances and trends in parallel algorithms, supercomputers for engineering analysis, material modeling in nonlinear finite-element analysis, the Navier-Stokes computer, and future finite-element software systems.

  16. Hierarchical nanoreinforced composites: Computational analysis of damage mechanisms

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Pontefisso, Alessandro; Dai, Gaoming

    2016-01-01

    of distribution, shape, orientation of nanoparticles (carbon nanotube, graphene) in unidirectional polymer matrix composites on the strength and damage resistance of the composites is studied in computational studies. The possible directions of the improvement of nanoreinforced composites by controlling shapes...

  17. Using Computational and Mechanical Models to Study Animal Locomotion

    OpenAIRE

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locom...

  18. Computer-controlled mechanical lung model for application in pulmonary function studies

    NARCIS (Netherlands)

    A.F.M. Verbraak (Anton); J.E.W. Beneken; J.M. Bogaard (Jan); A. Versprille (Adrian)

    1995-01-01

    textabstractA computer controlled mechanical lung model has been developed for testing lung function equipment, validation of computer programs and simulation of impaired pulmonary mechanics. The construction, function and some applications are described. The physical model is constructed from two

  19. Proceedings of the 30th Nordic Seminar on Computational Mechanics (NSCM-30)

    DEFF Research Database (Denmark)

    These proceedings contain the papers presented at the 30th Nordic Seminar on Computational Mechanics (NSCM30), held at The Technical University of Denmark (DTU), 25-27 October 2017.......These proceedings contain the papers presented at the 30th Nordic Seminar on Computational Mechanics (NSCM30), held at The Technical University of Denmark (DTU), 25-27 October 2017....

  20. Algorithmic mechanisms for reliable crowdsourcing computation under collusion.

    Science.gov (United States)

    Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel

    2015-01-01

    We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.

  1. A Survey of Service Composition Mechanisms in Ubiquitous Computing

    DEFF Research Database (Denmark)

    Brønsted, Jeppe; Hansen, Klaus Marius; Ingstrup, Mads

    2007-01-01

    Composition of services, i.e., providing new services by combining existing ones, is a pervasive idea in ubiquitous computing. We surveyed the field by looking at what features are actually present in technologies that support service composition in some form. Condensing this into a list...... of features allowed us to discuss the qualitative merits and drawbacks of various approaches to service composition, focusing in particular on usability, adaptability and efficiency. Moreover, we found that further research is needed into quality-of-service assurance of composites and into contingency...... management for composites—one of the concerns differentiating service composition in ubiquitous computing from its counterpart in less dynamic settings....

  2. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  3. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-01-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  4. Experimental evaluation of the MIT-SNL period-generated minimum time control laws for the rapid adjustment of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Kwok, K.S.; Menadier, P.T.; Thome, F.V.; Wyant, F.J.

    1987-01-01

    The rapid adjustment of reactor neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. Designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws,' these relations are closed-form expressions of general applicability. In particular, if there is no limitation on the available rate of change of reactivity, these laws can be used to achieve virtually any desired power profile including time optimal ones. The innovative aspect of these laws is that the rate of change of reactivity rather than the reactivity itself is used as the control signal. For example, relative to a time-optimal response, these laws function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The response is time-optimal because the power adjustment is continuously made at the maximum allowed rate

  5. A Computational Model for Observation in Quantum Mechanics.

    Science.gov (United States)

    1987-03-16

    Interferometer experiment ............. 17 2.3 The EPR Paradox experiment ................. 22 3 The Computational Model, an Overview 28 4 Implementation 34...40 4.4 Code for the EPR paradox experiment ............... 46 4.5 Code for the double slit interferometer experiment ..... .. 50 5 Conclusions 59 A...particle run counter to fact. The EPR paradox experiment (see section 2.3) is hard to resolve with this class of models, collectively called hidden

  6. Computationally efficient thermal-mechanical modelling of selective laser melting

    NARCIS (Netherlands)

    Yang, Y.; Ayas, C.; Brabazon, Dermot; Naher, Sumsun; Ul Ahad, Inam

    2017-01-01

    The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is

  7. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  8. Tensor Arithmetic, Geometric and Mathematic Principles of Fluid Mechanics in Implementation of Direct Computational Experiments

    Directory of Open Access Journals (Sweden)

    Bogdanov Alexander

    2016-01-01

    Full Text Available The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.

  9. An innovative road marking quality assessment mechanism using computer vision

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Lin

    2016-06-01

    Full Text Available Aesthetic quality acceptance for road marking works has been relied on subjective visual examination. Due to a lack of quantitative operation procedures, acceptance outcome can be biased and results in great quality variation. To improve aesthetic quality acceptance procedure of road marking, we develop an innovative road marking quality assessment mechanism, utilizing machine vision technologies. Using edge smoothness as a quantitative aesthetic indicator, the proposed prototype system first receives digital images of finished road marking surface and has the images processed and analyzed to capture the geometric characteristics of the marking. The geometric characteristics are then evaluated to determine the quality level of the finished work. System is demonstrated through two real cases to show how it works. In the end, a test comparing the assessment results between the proposed system and expert inspection is conducted to enhance the accountability of the proposed mechanism.

  10. Personal Computer (PC) based image processing applied to fluid mechanics

    Science.gov (United States)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  11. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    Science.gov (United States)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  12. Mechanical behavior of nanotwinned materials – experimental and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yavas, Hakan [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nanotwinned materials exhibit high strength combined with excellent thermal stability, making them potentially attractive for numerous applications. When deposited on cold substrates at high rates, for example, silver films can be prepared with a high-density of growth twins with an average twin boundary spacing of less than 10 nm. These films show a very strong {111} texture, with the twin boundaries being perpendicular to the growth direction. The origins of superior mechanical and thermal properties of nanotwinned materials, however, are not yet fully understood and need further improvements.

  13. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El

    2017-06-23

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  14. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El; Mehl, Marco; Pitz, William J.; Mohamed, Samah; Sarathy, Mani

    2017-01-01

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  15. Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2015-01-01

    Computational micromechanical studies of the effect of nanostructuring and nanoengineering of interfaces, phase and grain boundaries of materials on the mechanical properties and strength of materials and the potential of interface nanostructuring to enhance the materials properties are reviewed....

  16. Evidence of nonuniqueness and oscillatory solutions in computational fluid mechanics

    International Nuclear Information System (INIS)

    Nunziato, J.W.; Gartling, D.K.; Kipp, M.E.

    1985-01-01

    We will review some of our recent experiences in computing solutions for nonlinear fluids in relatively simple, two-dimensional geometries. The purpose of this discussion will be to display by example some of the interesting but difficult questions that arise when ill-behaved solutions are obtained numerically. We will consider two examples. As the first example, we will consider a nonlinear elastic (compressible) fluid with chemical reactions and discuss solutions for detonation and detonation failure in a two-dimensional cylinder. In this case, the numerical algorithm utilizes a finite-difference method with artificial viscosity (von Neumann-Richtmyer method) and leads to two, distinctly different, stable solutions depending on the time step criterion used. The second example to be considered involves the convection of a viscous fluid in a rectangular container as a result of an exothermic polymerization reaction. A solidification front develops near the top of the container and propagates down through the fluid, changing the aspect ratio of the region ahead of the front. Using a Galerkin-based finite element method, a numerical solution of the partial differential equations is obtained which tracks the front and correctly predicts the fluid temperatures near the walls. However, the solution also exhibits oscillatory behavior with regard to the number of cells in the fluid ahead of the front and in the strength of the cells. More definitive experiments and analysis are required to determine whether this oscillatory phenomena is a numerical artifact or a physical reality. 20 refs., 14 figs

  17. A Novel Strategy for Mechanism Based Computational Drug Discovery

    Science.gov (United States)

    Subha, Kalyaanamoorthy; Kumar, Gopal Ramesh; Rajalakshmi, Rajasekaran; Aravindhan, Ganesan

    2010-01-01

    Glioma, the common brain tumor, which arises from the glial cells, offers worse prognosis and therapy than any other tumors. Despite the genetic and pathological diversities of malignant gliomas, common signaling pathways that drive cellular proliferation, survival, invasion and angiogenesis have been identified. Very often, various tyrosine kinase receptors are inappropriately activated in human brain tumors and contribute to tumor malignancy. During such tumourous states where multiple pathways are involved, a few of them are responsbile for cell differentiation, proliferation and anti-apoptosis. Computational simulation studies of normal EGFR signaling in glioma together with the mutant EGFR mediated signaling and the MAPK signaling in glioma were carried out. There were no significant cross talks observed between the mutant EGFR and the MAPK pathways and thus from the simulation results, we propose a novel concept of ‘multiple-targeting’ that combines EGFR and Ras targeted therapy thereby providing a better therapeutic value against glioma. Diallyl Disulfide (DADS) that has been commonly used for Ras inhibition in glioma was taken for analyses and the effect of inhibiting the EGFR downstream signaling protein with this DADS was analyzed using the simulation and docking studies. PMID:24179383

  18. A Novel Strategy for Mechanism Based Computational Drug Discovery

    Directory of Open Access Journals (Sweden)

    Kalyaanamoorthy Subha

    2010-01-01

    Full Text Available Glioma, the common brain tumor, which arises from the glial cells, offers worse prognosis and therapy than any other tumors. Despite the genetic and pathological diversities of malignant gliomas, common signaling pathways that drive cellular proliferation, survival, invasion and angiogenesis have been identified. Very often, various tyrosine kinase receptors are inappropriately activated in human brain tumors and contribute to tumor malignancy. During such tumourous states where multiple pathways are involved, a few of them are responsbile for cell differentiation, proliferation and anti-apoptosis. Computational simulation studies of normal EGFR signaling in glioma together with the mutant EGFR mediated signaling and the MAPK signaling in glioma were carried out. There were no significant cross talks observed between the mutant EGFR and the MAPK pathways and thus from the simulation results, we propose a novel concept of ‘multiple-targeting’ that combines EGFR and Ras targeted therapy thereby providing a better therapeutic value against glioma. Diallyl Disulfide (DADS that has been commonly used for Ras inhibition in glioma was taken for analyses and the effect of inhibiting the EGFR downstream signaling protein with this DADS was analyzed using the simulation and docking studies.

  19. Computational Quantum Mechanics for Materials Engineers The EMTO Method and Applications

    CERN Document Server

    Vitos, L

    2007-01-01

    Traditionally, new materials have been developed by empirically correlating their chemical composition, and the manufacturing processes used to form them, with their properties. Until recently, metallurgists have not used quantum theory for practical purposes. However, the development of modern density functional methods means that today, computational quantum mechanics can help engineers to identify and develop novel materials. Computational Quantum Mechanics for Materials Engineers describes new approaches to the modelling of disordered alloys that combine the most efficient quantum-level th

  20. Computational fluid mechanics in R and D on uranium enrichment

    International Nuclear Information System (INIS)

    Soubbaramayer, O.

    1988-01-01

    Uranium enrichment represents an essential link in the cycle of nuclear fuels for power production. There are many processes of uranium enrichment, but three of them dominate the nuclear history as well in the past (Gaseous diffusion and centrifugation) as in the present (Laser process). The important role played by the Numerical Fluid Mechanics in the three processes is pointed out. The type of problem raised by Gaseous Diffusion is Channel Flow with wall suction, by Centrifugation, flow of a Compressible gas in a strongly rotating cylinder (Stewartson and Ekman layers) and by Laser process, Thermocapillary-buoyancy flow of a molten metal in an evaporation crucible. The methods and results in these problems are reviewed. 18 refs, 11 figs

  1. Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation.

    Science.gov (United States)

    Liu, Jun; Zhang, Liqun; Cao, Dapeng; Wang, Wenchuan

    2009-12-28

    Polymer nanocomposites (PNCs) often exhibit excellent mechanical, thermal, electrical and optical properties, because they combine the performances of both polymers and inorganic or organic nanoparticles. Recently, computer modeling and simulation are playing an important role in exploring the reinforcement mechanism of the PNCs and even the design of functional PNCs. This report provides an overview of the progress made in past decades in the investigation of the static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Emphases are placed on exploring the mechanisms at the molecular level for the dispersion of nanoparticles in nanocomposites, the effects of nanoparticles on chain conformation and glass transition temperature (T(g)), as well as viscoelastic and mechanical properties. Finally, some future challenges and opportunities in computer modeling and simulation of PNCs are addressed.

  2. Computationally efficient models of neuromuscular recruitment and mechanics.

    Science.gov (United States)

    Song, D; Raphael, G; Lan, N; Loeb, G E

    2008-06-01

    We have improved the stability and computational efficiency of a physiologically realistic, virtual muscle (VM 3.*) model (Cheng et al 2000 J. Neurosci. Methods 101 117-30) by a simpler structure of lumped fiber types and a novel recruitment algorithm. In the new version (VM 4.0), the mathematical equations are reformulated into state-space representation and structured into a CMEX S-function in SIMULINK. A continuous recruitment scheme approximates the discrete recruitment of slow and fast motor units under physiological conditions. This makes it possible to predict force output during smooth recruitment and derecruitment without having to simulate explicitly a large number of independently recruited units. We removed the intermediate state variable, effective length (Leff), which had been introduced to model the delayed length dependency of the activation-frequency relationship, but which had little effect and could introduce instability under physiological conditions of use. Both of these changes greatly reduce the number of state variables with little loss of accuracy compared to the original VM. The performance of VM 4.0 was validated by comparison with VM 3.1.5 for both single-muscle force production and a multi-joint task. The improved VM 4.0 model is more suitable for the analysis of neural control of movements and for design of prosthetic systems to restore lost or impaired motor functions. VM 4.0 is available via the internet and includes options to use the original VM model, which remains useful for detailed simulations of single motor unit behavior.

  3. Computationally efficient models of neuromuscular recruitment and mechanics

    Science.gov (United States)

    Song, D.; Raphael, G.; Lan, N.; Loeb, G. E.

    2008-06-01

    We have improved the stability and computational efficiency of a physiologically realistic, virtual muscle (VM 3.*) model (Cheng et al 2000 J. Neurosci. Methods 101 117-30) by a simpler structure of lumped fiber types and a novel recruitment algorithm. In the new version (VM 4.0), the mathematical equations are reformulated into state-space representation and structured into a CMEX S-function in SIMULINK. A continuous recruitment scheme approximates the discrete recruitment of slow and fast motor units under physiological conditions. This makes it possible to predict force output during smooth recruitment and derecruitment without having to simulate explicitly a large number of independently recruited units. We removed the intermediate state variable, effective length (Leff), which had been introduced to model the delayed length dependency of the activation-frequency relationship, but which had little effect and could introduce instability under physiological conditions of use. Both of these changes greatly reduce the number of state variables with little loss of accuracy compared to the original VM. The performance of VM 4.0 was validated by comparison with VM 3.1.5 for both single-muscle force production and a multi-joint task. The improved VM 4.0 model is more suitable for the analysis of neural control of movements and for design of prosthetic systems to restore lost or impaired motor functions. VM 4.0 is available via the internet and includes options to use the original VM model, which remains useful for detailed simulations of single motor unit behavior.

  4. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.

    Science.gov (United States)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-07

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt.

  5. Experimental and computational investigation of temperature effects on soot mechanisms

    Directory of Open Access Journals (Sweden)

    Bi Xiaojie

    2014-01-01

    Full Text Available Effects of initial ambient temperatures on combustion and soot emission characteristics of diesel fuel were investigated through experiment conducted in optical constant volume chamber and simulation using phenomenological soot model. There are four difference initial ambient temperatures adopted in our research: 1000 K, 900 K, 800 K and 700 K. In order to obtain a better prediction of soot behavior, phenomenological soot model was revised to take into account the soot oxidation feedback on soot number density and good agreement was observed in the comparison of soot measurement and prediction. Results indicated that ignition delay prolonged with the decrease of initial ambient temperature. The heat release rate demonstrated the transition from mixing controlled combustion at high ambient temperature to premixed combustion mode at low ambient temperature. At lower ambient temperature, soot formation and oxidation mechanism were both suppressed. But finally soot mass concentration reduced with decreasing initial ambient temperature. Although the drop in ambient temperature did not cool the mean in-cylinder temperature during the combustion, it did shrink the total area of local high equivalence ratio, in which soot usually generated fast. At 700 K initial ambient temperature, soot emissions were almost negligible, which indicates that sootless combustion might be achieved at super low initial temperature operation conditions.

  6. Computational implementation of the multi-mechanism deformation coupled fracture model for salt

    International Nuclear Information System (INIS)

    Koteras, J.R.; Munson, D.E.

    1996-01-01

    The Multi-Mechanism Deformation (M-D) model for creep in rock salt has been used in three-dimensional computations for the Waste Isolation Pilot Plant (WIPP), a potential waste, repository. These computational studies are relied upon to make key predictions about long-term behavior of the repository. Recently, the M-D model was extended to include creep-induced damage. The extended model, the Multi-Mechanism Deformation Coupled Fracture (MDCF) model, is considerably more complicated than the M-D model and required a different technology from that of the M-D model for a computational implementation

  7. Computer Aided Synthesis of a Four-Bar Mechanism For Soil Tilling ...

    African Journals Online (AJOL)

    points, circle points, lengths, and the coupler point of interest of the chosen mechanism were altered and the resulting coupler curve plotted. The process was repeated until a suitable coupler curve and acceptable dimensions and fixed points locations were obtained. Keywords: Computer synthesis, four-bar mechanism, ...

  8. A Multi-Scale Computational Study on the Mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic)

    OpenAIRE

    Ion, Bogdan; Kazim, Erum; Gauld, James

    2014-01-01

    Nicotinamidase (Nic) is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic). In particular, density functional theory (DFT), molecular dynamics (MD) and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods have been employed. The o...

  9. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Directory of Open Access Journals (Sweden)

    Gabriel D Puccini

    2007-05-01

    Full Text Available Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  10. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    Science.gov (United States)

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-03

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.

  11. Preface to special issue of selected papers from Theoretical, Experimental, and Computational Mechanics (TECM)

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Sarlak Chivaee, Hamid; Hattel, Jesper Henri

    2017-01-01

    We are pleased to introduce this special issue of the Applied Mathematical Modelling journal with highlights from theTheoretical, Experimental, and Computational Mechanics Symposium (TECM-2015). This special issue consists of four rigorouslyselected papers originally presented at TECM-2015...... as a part of the 13th International Conference of Numerical Analysisand Applied Mathematics 2015 (ICNAAM 2015), which was held on 23-29 September 2015 in Rhodes, Greece.The symposium attracted a broad range of international and local leaders in theoretical, experimental, and computational mechanics across...... various fields and application. The symposium did an excellent job of outlining the current landscape of computational mechanics and its capabilities in solving complex industrial problems in the process industries, and we agree with the editor-in-chief of the journal that it is certainly worthwhile...

  12. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    Science.gov (United States)

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  13. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    König, Gerhard; Mei, Ye; Pickard, Frank C; Simmonett, Andrew C; Miller, Benjamin T; Herbert, John M; Woodcock, H Lee; Brooks, Bernard R; Shao, Yihan

    2016-01-12

    A recently developed MESS-E-QM/MM method (multiple-environment single-system quantum mechanical molecular/mechanical calculations with a Roothaan-step extrapolation) is applied to the computation of hydration free energies for the blind SAMPL4 test set and for 12 small molecules. First, free energy simulations are performed with a classical molecular mechanics force field using fixed-geometry solute molecules and explicit TIP3P solvent, and then the non-Boltzmann-Bennett method is employed to compute the QM/MM correction (QM/MM-NBB) to the molecular mechanical hydration free energies. For the SAMPL4 set, MESS-E-QM/MM-NBB corrections to the hydration free energy can be obtained 2 or 3 orders of magnitude faster than fully converged QM/MM-NBB corrections, and, on average, the hydration free energies predicted with MESS-E-QM/MM-NBB fall within 0.10-0.20 kcal/mol of full-converged QM/MM-NBB results. Out of five density functionals (BLYP, B3LYP, PBE0, M06-2X, and ωB97X-D), the BLYP functional is found to be most compatible with the TIP3P solvent model and yields the most accurate hydration free energies against experimental values for solute molecules included in this study.

  14. Development of the BWR Dry Core Initial and Boundary Conditions for the SNL XR2 Experiments; TOPICAL

    International Nuclear Information System (INIS)

    Ott, L.J.

    1994-01-01

    The objectives of the Boiling Water Reactor Experimental Analysis and Model Development for Severe Accidents (BEAMD) Program at the Oak Ridge National Laboratory (ORNL) are: (1) the development of a sound quantitative understanding of boiling water reactor (BWR) core melt progression; this includes control blade and channel box effects, metallic melt relocation and possible blockage formation under severe accident conditions, and (2) provision of BWR melt progression modeling capabilities in SCDAP/RELAP5 (consistent with the BWR experimental data base). This requires the assessment of current modeling of BWR core melt progression against the expanding BWR data base. Emphasis is placed upon data from the BWR tests in the German CORA test facility and from the ex-reactor experiments[Sandia National Laboratories (SNL)] on metallic melt relocation and blockage formation in BWRs, as well as upon in-reactor data from the Annular Core Research Reactor (ACRR) DF-4 BWR test (conducted in 1986 at SNL). The BEAMD Program is a derivative of the BWR Severe Accident Technology Programs at ORNL. The ORNL BWR programs have studied postulated severe accidents in BWRs and have developed a set of models specific to boiling water reactor response under severe accident conditions. These models, in an experiment-specific format, have been successfully applied to both pretest and posttest analyses of the DF-4 experiment, and the BWR severe fuel damage (SFD) experiments performed in the CORA facility at the Kernforschungszentrum Karlsruhe (KfK) in Germany, resulting in excellent agreement between model prediction and experiment. The ORNL BWR models have provided for more precise predictions of the conditions in the BWR experiments than were previously available. This has provided a basis for more accurate interpretation of the phenomena for which the experiments are performed. The experiment-specific models, as used in the ORNL DF-4 and CORA BWR experimental analyses, also provide a basis

  15. The community project COSA: comparison of geo-mechanical computer codes for salt

    International Nuclear Information System (INIS)

    Lowe, M.J.S.; Knowles, N.C.

    1986-01-01

    Two benchmark problems related to waste disposal in salt were tackled by ten European organisations using twelve rock-mechanics finite element computer codes. The two problems represented increasing complexity with first a hypothetical verification and then the simulation of a laboratory experiment. The project allowed to ascertain a shapshot of the current combined expertise of European organisations in the modelling of salt behaviour

  16. Enriching Elementary Quantum Mechanics with the Computer: Self-Consistent Field Problems in One Dimension

    Science.gov (United States)

    Bolemon, Jay S.; Etzold, David J.

    1974-01-01

    Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)

  17. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  18. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  19. On the potential of computational methods and numerical simulation in ice mechanics

    International Nuclear Information System (INIS)

    Bergan, Paal G; Cammaert, Gus; Skeie, Geir; Tharigopula, Venkatapathi

    2010-01-01

    This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and 'engineering judgment'. However, it is believed that computational mechanics and advanced computer simulations of ice-structure interaction can play an important role in developing safer and more efficient structures, especially for irregular structural configurations. The paper explains the complexity of ice as a material in computational mechanics terms. Some key words here are large displacements and deformations, multi-body contact mechanics, instabilities, multi-phase materials, inelasticity, time dependency and creep, thermal effects, fracture and crushing, and multi-scale effects. The paper points towards the use of advanced methods like ALE formulations, mesh-less methods, particle methods, XFEM, and multi-domain formulations in order to deal with these challenges. Some examples involving numerical simulation of interaction and loads between level sea ice and offshore structures are presented. It is concluded that computational mechanics may prove to become a very useful tool for analysing structures in ice; however, much research is still needed to achieve satisfactory reliability and versatility of these methods.

  20. Microstructure-Based Computational Modeling of Mechanical Behavior of Polymer Micro/Nano Composites

    Science.gov (United States)

    2013-12-01

    automotive, defense, sport, civil, aerospace, health , etc.). Here, a combination of non-linear thermo-viscoelastic (Schapery’s non-linear...2001. Three-dimensional computational micro-mechanical model for woven fabric composites. Composite Structures 54, 489-496. Jacob, G.C., Starbuck

  1. Twenty-first century quantum mechanics Hilbert space to quantum computers mathematical methods and conceptual foundations

    CERN Document Server

    Fano, Guido

    2017-01-01

    This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result...

  2. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  3. Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations.

    Science.gov (United States)

    Giese, Martin A; Rizzolatti, Giacomo

    2015-10-07

    Action recognition has received enormous interest in the field of neuroscience over the last two decades. In spite of this interest, the knowledge in terms of fundamental neural mechanisms that provide constraints for underlying computations remains rather limited. This fact stands in contrast with a wide variety of speculative theories about how action recognition might work. This review focuses on new fundamental electrophysiological results in monkeys, which provide constraints for the detailed underlying computations. In addition, we review models for action recognition and processing that have concrete mathematical implementations, as opposed to conceptual models. We think that only such implemented models can be meaningfully linked quantitatively to physiological data and have a potential to narrow down the many possible computational explanations for action recognition. In addition, only concrete implementations allow judging whether postulated computational concepts have a feasible implementation in terms of realistic neural circuits. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Computation and Communication Evaluation of an Authentication Mechanism for Time-Triggered Networked Control Systems

    Science.gov (United States)

    Martins, Goncalo; Moondra, Arul; Dubey, Abhishek; Bhattacharjee, Anirban; Koutsoukos, Xenofon D.

    2016-01-01

    In modern networked control applications, confidentiality and integrity are important features to address in order to prevent against attacks. Moreover, network control systems are a fundamental part of the communication components of current cyber-physical systems (e.g., automotive communications). Many networked control systems employ Time-Triggered (TT) architectures that provide mechanisms enabling the exchange of precise and synchronous messages. TT systems have computation and communication constraints, and with the aim to enable secure communications in the network, it is important to evaluate the computational and communication overhead of implementing secure communication mechanisms. This paper presents a comprehensive analysis and evaluation of the effects of adding a Hash-based Message Authentication (HMAC) to TT networked control systems. The contributions of the paper include (1) the analysis and experimental validation of the communication overhead, as well as a scalability analysis that utilizes the experimental result for both wired and wireless platforms and (2) an experimental evaluation of the computational overhead of HMAC based on a kernel-level Linux implementation. An automotive application is used as an example, and the results show that it is feasible to implement a secure communication mechanism without interfering with the existing automotive controller execution times. The methods and results of the paper can be used for evaluating the performance impact of security mechanisms and, thus, for the design of secure wired and wireless TT networked control systems. PMID:27463718

  5. The failure mechanisms of HTR coated particle fuel and computer code

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Shao Youlin; Liang Tongxiang; Tang Chunhe

    2010-01-01

    The basic constituent unit of fuel element in HTR is ceramic coated particle fuel. And the performance of coated particle fuel determines the safety of HTR. In addition to the traditional detection of radiation experiments, establishing computer code is of great significance to the research. This paper mainly introduces the structure and the failure mechanism of TRISO-coated particle fuel, as well as a few basic assumptions,principles and characteristics of some existed main overseas codes. Meanwhile, this paper has proposed direction of future research by comparing the advantages and disadvantages of several computer codes. (authors)

  6. Sn-L3 EDGE and Fe K edge XANES spectra of the surface layer of ancient Chinese black mirror Heiqigu

    International Nuclear Information System (INIS)

    Gaowei Mengjia; Liu Yuzhen; Chu Wangsheng; Wu Ziyu; Wang Changsui

    2009-01-01

    The Chinese ancient black mirror known as Heiqigu was studied by x-ray-absorption near-edge structure spectroscopy and results were reported. The Sn-L 3 edge and Fe K edge spectra further confirmed the Schottky-type defect model in the Heiqigu surface system. And it was suggested that the surface layer of the mirror was a combined structure of oxidation of Sn(IV) and Sn(II). (authors)

  7. Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1995-06-01

    The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project

  8. Computationally-optimized bone mechanical modeling from high-resolution structural images.

    Directory of Open Access Journals (Sweden)

    Jeremy F Magland

    Full Text Available Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time, which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM. To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.

  9. Technical basis for environmental qualification of computer-based safety systems in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R.T.; Tanaka, T.J.; Antonescu, C.E.

    1997-01-01

    This paper summarizes the results of research sponsored by the US Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. This research was conducted by the Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL). ORNL investigated potential failure modes and vulnerabilities of microprocessor-based technologies to environmental stressors, including electromagnetic/radio-frequency interference, temperature, humidity, and smoke exposure. An experimental digital safety channel (EDSC) was constructed for the tests. SNL performed smoke exposure tests on digital components and circuit boards to determine failure mechanisms and the effect of different packaging techniques on smoke susceptibility. These studies are expected to provide recommendations for environmental qualification of digital safety systems by addressing the following: (1) adequacy of the present preferred test methods for qualification of digital I and C systems; (2) preferred standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging in qualification testing for equipment that is to be located in mild environments; and (5) determination of an appropriate approach to address smoke in a qualification program

  10. Computational methods for describing the laser-induced mechanical response of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Trucano, T.; McGlaun, J.M.; Farnsworth, A.

    1994-02-01

    Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.

  11. Determining the reaction in kinematic pairs of certain mechanisms using a digital computer

    Energy Technology Data Exchange (ETDEWEB)

    Chifchieva, V N

    1980-01-01

    In Dorr classifiers, walking excavators, conveyors, sieves and other mechanisms, one finds a triad with a sliding pair. An algorithm is proposed for determining reactions in the kinematic connections of a triad with one, two or three sliding pairs. The algorithm is suitable for use in digital computers. It is based on the transfer function method, and has several advantages over the technnique of determining reactions in kinematic pairs of V. Zinovyev. A concrete example is given of calculating reactions in the connections of a crank and lever mechanism of a walking excavator.

  12. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2004-01-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  13. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, H

    2004-02-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  14. A computational environment for creating and testing reduced chemical kinetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, C.J.; Swensen, D.A.; Harding, T.V.; Cremer, M.A.; Bockelie, M.J. [Reaction Engineering International, Salt Lake City, UT (USA)

    2002-02-01

    This paper describes software called computer assisted reduced mechanism problem solving environment (CARM-PSE) that gives the engineer the ability to rapidly set up, run and examine large numbers of problems comparing detailed and reduced (approximate) chemistry. CARM-PSE integrates the automatic chemical mechanism reduction code CARM and the codes that simulate perfectly stirred reactors and plug flow reactors into a user-friendly computational environment. CARM-PSE gives the combustion engineer the ability to easily test chemical approximations over many hundreds of combinations of inputs in a multidimensional parameter space. The demonstration problems compare detailed and reduced chemical kinetic calculations for methane-air combustion, including nitrogen oxide formation, in a stirred reactor and selective non-catalytic reduction of NOx, in coal combustion flue gas.

  15. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions.

    Science.gov (United States)

    Cheng, Gui-Juan; Zhang, Xinhao; Chung, Lung Wa; Xu, Liping; Wu, Yun-Dong

    2015-02-11

    Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.

  16. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    Science.gov (United States)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  17. COMETHE III J a computer code for predicting mechanical and thermal behaviour of a fuel pin

    International Nuclear Information System (INIS)

    Verbeek, P.; Hoppe, N.

    1976-01-01

    The design of fuel pins for power reactors requires a realistic evaluation of their thermal and mechanical performances throughout their irradiation life. This evaluation involves the knowledge of a number of parameters, very intricate and interconnected, for example, the temperature, the restructuring and the swelling rates of the fuel pellets, the dimensions, the stresses and the strains in the clad, the composition and the properties of gases, the inner gas pressure etc. This complex problem can only be properly handled by a computer programme which analyses the fuel pin thermal and mechanical behaviour at successive steps of its irradiation life. This report presents an overall description of the COMETHE III-J computer programme, designed to calculate the integral performance of oxide fuel pins with cylindrical metallic cladding irradiated in thermal or fast flux. (author)

  18. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown

    Science.gov (United States)

    Canadell, Marta; Haro, Àlex

    2017-12-01

    We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.

  19. High-performance computing for structural mechanics and earthquake/tsunami engineering

    CERN Document Server

    Hori, Muneo; Ohsaki, Makoto

    2016-01-01

    Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe.  To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows ...

  20. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  1. RADTRAN 5: A computer code for transportation risk analysis

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Kanipe, F.L.

    1991-01-01

    RADTRAN 5 is a computer code developed at Sandia National Laboratories (SNL) in Albuquerque, NM, to estimate radiological and nonradiological risks of radioactive materials transportation. RADTRAN 5 is written in ANSI Standard FORTRAN 77 and contains significant advances in the methodology for route-specific analysis first developed by SNL for RADTRAN 4 (Neuhauser and Kanipe, 1992). Like the previous RADTRAN codes, RADTRAN 5 contains two major modules for incident-free and accident risk amlysis, respectively. All commercially important transportation modes may be analyzed with RADTRAN 5: highway by combination truck; highway by light-duty vehicle; rail; barge; ocean-going ship; cargo air; and passenger air

  2. Biologically important conformational features of DNA as interpreted by quantum mechanics and molecular mechanics computations of its simple fragments.

    Science.gov (United States)

    Poltev, V; Anisimov, V M; Dominguez, V; Gonzalez, E; Deriabina, A; Garcia, D; Rivas, F; Polteva, N A

    2018-02-01

    Deciphering the mechanism of functioning of DNA as the carrier of genetic information requires identifying inherent factors determining its structure and function. Following this path, our previous DFT studies attributed the origin of unique conformational characteristics of right-handed Watson-Crick duplexes (WCDs) to the conformational profile of deoxydinucleoside monophosphates (dDMPs) serving as the minimal repeating units of DNA strand. According to those findings, the directionality of the sugar-phosphate chain and the characteristic ranges of dihedral angles of energy minima combined with the geometric differences between purines and pyrimidines determine the dependence on base sequence of the three-dimensional (3D) structure of WCDs. This work extends our computational study to complementary deoxydinucleotide-monophosphates (cdDMPs) of non-standard conformation, including those of Z-family, Hoogsteen duplexes, parallel-stranded structures, and duplexes with mispaired bases. For most of these systems, except Z-conformation, computations closely reproduce experimental data within the tolerance of characteristic limits of dihedral parameters for each conformation family. Computation of cdDMPs with Z-conformation reveals that their experimental structures do not correspond to the internal energy minimum. This finding establishes the leading role of external factors in formation of the Z-conformation. Energy minima of cdDMPs of non-Watson-Crick duplexes demonstrate different sequence-dependence features than those known for WCDs. The obtained results provide evidence that the biologically important regularities of 3D structure distinguish WCDs from duplexes having non-Watson-Crick nucleotide pairing.

  3. Mechanical behavior of peripheral stents and stent-vessel interaction: A computational study

    Science.gov (United States)

    Dottori, Serena; Flamini, Vittoria; Vairo, Giuseppe

    2016-05-01

    In this paper stents employed to treat peripheral artery disease are analyzed through a three-dimensional finite-element approach, based on a large-strain and large-displacement formulation. Aiming to evaluate the influence of some stent design parameters on stent mechanics and on the biomechanical interaction between stent and arterial wall, quasi-static and dynamic numerical analyses are carried out by referring to computational models of commercially and noncommercially available versions of both braided self-expandable stents and balloon-expandable stents. Addressing isolated device models, opening mechanisms and flexibility of both opened and closed stent configurations are numerically experienced. Moreover, stent deployment into a stenotic peripheral artery and possible postdilatation angioplasty (the latter for the self-expandable device only) are simulated by considering different idealized vessel geometries and accounting for the presence of a stenotic plaque. Proposed results highlight important differences in the mechanical response of the two types of stents, as well as a significant influence of the vessel shape on the stress distributions arising upon the artery-plaque system. Finally, computational results are used to assess both the stent mechanical performance and the effectiveness of the stenting treatment, allowing also to identify possible critical conditions affecting the risk of stent fracture, tissue damage, and/or pathological tissue response.

  4. Computational contact and impact mechanics fundamentals of modeling interfacial phenomena in nonlinear finite element analysis

    CERN Document Server

    Laursen, Tod A

    2003-01-01

    This book comprehensively treats the formulation and finite element approximation of contact and impact problems in nonlinear mechanics. Intended for students, researchers and practitioners interested in numerical solid and structural analysis, as well as for engineers and scientists dealing with technologies in which tribological response must be characterized, the book includes an introductory but detailed overview of nonlinear finite element formulations before dealing with contact and impact specifically. Topics encompassed include the continuum mechanics, mathematical structure, variational framework, and finite element implementations associated with contact/impact interaction. Additionally, important and currently emerging research topics in computational contact mechanics are introduced, encompassing such topics as tribological complexity, conservative treatment of inelastic impact interaction, and novel spatial discretization strategies.

  5. COMPARISON OF COMPUTED TOMOGRAPHY AND ABDOMINAL RADIOGRAPHY FOR DETECTION OF CANINE MECHANICAL INTESTINAL OBSTRUCTION.

    Science.gov (United States)

    Drost, Wm Tod; Green, Eric M; Zekas, Lisa J; Aarnes, Turi K; Su, Lillian; Habing, Gregory G

    2016-07-01

    Vomiting, often caused by mechanical intestinal obstruction, is common in dogs. Equivocal radiographic signs often necessitate repeat radiographs or additional imaging procedures. For our prospective, case-controlled, accuracy study, we hypothesized the following: (1) using computed tomography (CT), radiologists will be more sensitive and specific for detecting mechanical intestinal obstruction and recommending surgery compared to using radiographs; and (2) using measurements, radiologists will be more sensitive and specific using radiographs or CT for detecting mechanical intestinal obstruction and recommending surgery. Twenty dogs had abdominal radiographs and abdominal CT. Seventeen dogs had abdominal surgery and three dogs were not obstructed based on clinical follow-up. Confidence levels (five-point scale) of three experienced radiologists for mechanical intestinal obstruction and recommending surgery were recorded before and after making selected measurements. Eight dogs had surgically confirmed mechanical intestinal obstruction, and 12 dogs did not have obstruction. For detecting mechanical intestinal obstruction, CT was more sensitive (95.8% vs. 79.2%) and specific (80.6% vs. 69.4%) compared to radiographs, but the difference was not statistically significant. For recommending surgery, radiography was more sensitive (91.7% vs. 83.3%) and specific (83.3% vs. 72.2%) than using CT, but differences were not statistically significant. We reported objective CT measurements for predicting small mechanical intestinal obstruction. By incorporating these objective data, the diagnosis of mechanical intestinal obstruction changed in five of 120 instances (radiographs and CT). In no instance (0/120), did the objective data change the recommendation for surgery. Using CT or abdominal radiographs for the detection of canine mechanical intestinal obstruction is sensitive and specific when evaluated by experienced veterinary radiologists. © 2016 American College of

  6. A multi-scale computational study on the mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic).

    Science.gov (United States)

    Ion, Bogdan F; Kazim, Erum; Gauld, James W

    2014-09-29

    Nicotinamidase (Nic) is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic). In particular, density functional theory (DFT), molecular dynamics (MD) and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods have been employed. The overall mechanism occurs in two stages: (i) formation of a thioester enzyme-intermediate (IC2) and (ii) hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ·mol-1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103) is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.

  7. A Multi-Scale Computational Study on the Mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic

    Directory of Open Access Journals (Sweden)

    Bogdan F. Ion

    2014-09-01

    Full Text Available Nicotinamidase (Nic is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic. In particular, density functional theory (DFT, molecular dynamics (MD and ONIOM quantum mechanics/molecular mechanics (QM/MM methods have been employed. The overall mechanism occurs in two stages: (i formation of a thioester enzyme-intermediate (IC2 and (ii hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ•mol−1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103 is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.

  8. Computational Analysis of Pharyngeal Swallowing Mechanics in Patients with Motor Neuron Disease: A Pilot Investigation.

    Science.gov (United States)

    Garand, K L; Schwertner, Ryan; Chen, Amy; Pearson, William G

    2018-04-01

    Swallowing impairment (dysphagia) is a common sequela in patients with motor neuron disease (MND). The purpose of this retrospective, observational pilot investigation was to characterize how pharyngeal swallowing mechanics are impacted in patients with MND using a comparison with healthy, non-dysphagic control group. Computational analysis of swallowing mechanics (CASM) was used to determine covariate biomechanics of pharyngeal swallowing from videofluoroscopic assessment in 15 patients with MND and 15 age- and sex-matched healthy controls. Canonical variant analysis with post hoc discriminate function analysis (DFA) was performed on coordinate data mapping functional muscle groups underlying pharyngeal swallowing. Differences in swallowing mechanics associated with group (MND; control), motor neuron predominance (upper; lower), onset (bulbar; spinal), and swallow task (thin, pudding) were evaluated and visualized. Pharyngeal swallowing mechanics differed significantly in patients with MND compared with healthy controls (D = 2.01, p mechanics by motor neuron predominance (D = 5.03, p mechanics of patients with MND differ from and are more heterogeneous than healthy controls. These findings suggest patients with MND may compensate reductions in pharyngeal shortening and tongue base retraction by extending the head and neck and increasing hyolaryngeal excursion. This work and further CASM investigations will lead to further insights into development and evaluation of targeted clinical treatments designed to prolong safe and efficient swallowing function in patients with MND.

  9. SNL Abuse Testing Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This report describes recommended abuse testing procedures for rechargeable energy storage systems (RESSs) for electric vehicles. This report serves as a revision to the FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications (SAND2005-3123).

  10. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.

    Science.gov (United States)

    Faheem, Muhammad; Heyden, Andreas

    2014-08-12

    We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.

  11. Use of Computational Modeling to Evaluate Hypotheses About the Molecular and Cellular Mechanisms of Bystander Effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuchao; Conolly, Rory B; Andersen, Melvin E.

    2006-11-21

    This report describes the development of a computational systems biology approach to evaluate the hypotheses of molecular and cellular mechanisms of adaptive response to low dose ionizing radiation. Our concept is that computational models of signaling pathways can be developed and linked to biologically based dose response models to evaluate the underlying molecular mechanisms which lead to adaptive response. For development of quantitatively accurate, predictive models, it will be necessary to describe tissues consisting of multiple cell types where the different types each contribute in their own way to the overall function of the tissue. Such a model will probably need to incorporate not only cell type-specific data but also spatial information on the architecture of the tissue and on intercellular signaling. The scope of the current model was more limited. Data obtained in a number of different biological systems were synthesized to describe a chimeric, “average” population cell. Biochemical signaling pathways involved in sensing of DNA damage and in the activation of cell cycle checkpoint controls and the apoptotic path were also included. As with any computational modeling effort, it was necessary to develop these simplified initial descriptions (models) that can be iteratively refined. This preliminary model is a starting point which, with time, can evolve to a level of refinement where large amounts of detailed biological information are synthesized and a capability for robust predictions of dose- and time-response behaviors is obtained.

  12. A Safety Resource Allocation Mechanism against Connection Fault for Vehicular Cloud Computing

    Directory of Open Access Journals (Sweden)

    Tianpeng Ye

    2016-01-01

    Full Text Available The Intelligent Transportation System (ITS becomes an important component of the smart city toward safer roads, better traffic control, and on-demand service by utilizing and processing the information collected from sensors of vehicles and road side infrastructure. In ITS, Vehicular Cloud Computing (VCC is a novel technology balancing the requirement of complex services and the limited capability of on-board computers. However, the behaviors of the vehicles in VCC are dynamic, random, and complex. Thus, one of the key safety issues is the frequent disconnections between the vehicle and the Vehicular Cloud (VC when this vehicle is computing for a service. More important, the connection fault will disturb seriously the normal services of VCC and impact the safety works of the transportation. In this paper, a safety resource allocation mechanism is proposed against connection fault in VCC by using a modified workflow with prediction capability. We firstly propose the probability model for the vehicle movement which satisfies the high dynamics and real-time requirements of VCC. And then we propose a Prediction-based Reliability Maximization Algorithm (PRMA to realize the safety resource allocation for VCC. The evaluation shows that our mechanism can improve the reliability and guarantee the real-time performance of the VCC.

  13. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    Science.gov (United States)

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples. © 2016 Elsevier Inc. All rights reserved.

  14. Parallel computing in experimental mechanics and optical measurement: A review (II)

    Science.gov (United States)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  15. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Science.gov (United States)

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  16. Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography

    International Nuclear Information System (INIS)

    Veyhl, C.; Belova, I.V.; Murch, G.E.; Fiedler, T.

    2011-01-01

    Research highlights: → Elastic and plastic anisotropy is observed for both materials → Both show qualitatively similar characteristics with quantitative differences → Distinctly higher mechanical properties for closed-cell foam → The 'big' and 'small' models show good agreement for the closed-cell foam. - Abstract: In the present paper, the macroscopic mechanical properties of open-cell M-Pore sponge (porosity of 91-93%) and closed-cell Alporas foam (porosity of 80-86%) are investigated. The complex geometry of these cellular materials is scanned by micro-computed tomography and used in finite element (FE) analysis. The mechanical properties are determined by uni-axial compression simulations in three perpendicular directions (x-, y- and z-direction). M-Pore and Alporas exhibit the same qualitative mechanical characteristics but with quantitative differences. In both cases, strong anisotropy is observed for Young's modulus and the 0.002 offset yield stress. Furthermore, for the investigated relative density range a linear dependence between relative density and mechanical properties is found. Finally, a distinctly higher Young's modulus and 0.002 offset yield stress is observed for Alporas.

  17. Numerical computation of solar neutrino flux attenuated by the MSW mechanism

    Science.gov (United States)

    Kim, Jai Sam; Chae, Yoon Sang; Kim, Jung Dae

    1999-07-01

    We compute the survival probability of an electron neutrino in its flight through the solar core experiencing the Mikheyev-Smirnov-Wolfenstein effect with all three neutrino species considered. We adopted a hybrid method that uses an accurate approximation formula in the non-resonance region and numerical integration in the non-adiabatic resonance region. The key of our algorithm is to use the importance sampling method for sampling the neutrino creation energy and position and to find the optimum radii to start and stop numerical integration. We further developed a parallel algorithm for a message passing parallel computer. By using an idea of job token, we have developed a dynamical load balancing mechanism which is effective under any irregular load distributions

  18. Characterization of cell mechanical properties by computational modeling of parallel plate compression.

    Science.gov (United States)

    McGarry, J P

    2009-11-01

    A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

  19. A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems

    International Nuclear Information System (INIS)

    Bailey, C; Cross, M.; Pericleous, K.

    1998-01-01

    Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)

  20. A visualization environment for supercomputing-based applications in computational mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlakos, C.J.; Schoof, L.A.; Mareda, J.F.

    1993-06-01

    In this paper, we characterize a visualization environment that has been designed and prototyped for a large community of scientists and engineers, with an emphasis in superconducting-based computational mechanics. The proposed environment makes use of a visualization server concept to provide effective, interactive visualization to the user`s desktop. Benefits of using the visualization server approach are discussed. Some thoughts regarding desirable features for visualization server hardware architectures are also addressed. A brief discussion of the software environment is included. The paper concludes by summarizing certain observations which we have made regarding the implementation of such visualization environments.

  1. Adaptation of OCA-P, a probabilistic fracture-mechanics code, to a personal computer

    International Nuclear Information System (INIS)

    Ball, D.G.; Cheverton, R.D.

    1985-01-01

    The OCA-P probabilistic fracture-mechanics code can now be executed on a personal computer with 512 kilobytes of memory, a math coprocessor, and a hard disk. A user's guide for the particular adaptation has been prepared, and additional importance sampling techniques for OCA-P have been developed that allow the sampling of only the tails of selected distributions. Features have also been added to OCA-P that permit RTNDT to be used as an ''independent'' variable in the calculation of P

  2. Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2012-01-01

    Full Text Available Programmed ribosomal frameshifting (PRF serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.

  3. Computational modeling of the mechanical modulation of the growth plate by sustained loading

    Directory of Open Access Journals (Sweden)

    Narváez-Tovar Carlos A

    2012-09-01

    Full Text Available Abstract This paper presents a computational model that describes the growth of the bone as a function of the proliferation and hypertrophy of chondrocytes in the growth plate. We have included the effects of the mechanical loads on the sizes of the proliferative and hypertrophic areas, the number of proliferative chondrocytes and the final size of the hypertrophic chondrocytes. The validation of the model was performed with experimental data published on other investigations about proximal tibia of rats, subjected to sustained axial stresses of 0.1 MPa, 0.0 MPa, -0.1 MPa and −0.2 MPa. Growth was simulated during 23 days, obtaining numerical errors between 2.77% and 3.73% with respect to experimental growth rates. The results obtained show that the model adequately simulates the behavior of the growth plate and the effect of mechanical loads over its cellular activity.

  4. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  5. A review of Green's function methods in computational fluid mechanics: Background, recent developments and future directions

    International Nuclear Information System (INIS)

    Dorning, J.

    1981-01-01

    The research and development over the past eight years on local Green's function methods for the high-accuracy, high-efficiency numerical solution of nuclear engineering problems is reviewed. The basic concepts and key ideas are presented by starting with an expository review of the original fully two-dimensional local Green's function methods developed for neutron diffusion and heat conduction, and continuing through the progressively more complicated and more efficient nodal Green's function methods for neutron diffusion, heat conduction and neutron transport to establish the background for the recent development of Green's function methods in computational fluid mechanics. Some of the impressive numerical results obtained via these classes of methods for nuclear engineering problems are briefly summarized. Finally, speculations are proffered on future directions in which the development of these types of methods in fluid mechanics and other areas might lead. (orig.) [de

  6. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

    2011-12-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability

  7. Utility of cardiac computed tomography for evaluation of pannus in mechanical aortic valve.

    Science.gov (United States)

    Suh, Young Joo; Kim, Young Jin; Lee, Sak; Hong, Yoo Jin; Lee, Hye-Jeong; Hur, Jin; Choi, Byoung Wook; Chang, Byung-Chul

    2015-08-01

    The clinical significance of pannus detected on computed tomography (CT) has not yet been investigated. The purposes of this study were to investigate the clinical significance of pannus detected on cardiac CT in patients who underwent aortic valve replacement (AVR) with mechanical valves, and to determine predictors for pannus severity. A total of 92 patients who underwent cardiac CT and TTE and who had undergone mechanical AVR were included. The geometric orifice area (GOA), the presence of limitation of motion (LOM) and pannus were evaluated on CT. The GOA, presence of LOM, and presence and severity of pannus were compared with echocardiographic parameters. Logistic regression analysis was performed to determine the predictors for pannus severity. The GOA on CT positively correlated with effective orifice area on TTE (r = 0.733, P Pannus was found in 77.2% and LOM in 14.0%. With increasing pannus severity, mean transvalvular pressure gradient (PG) was significantly higher (P pannus, more severe pannus and LOM than patients with normal PG (P pannus (P pannus formation in patients with mechanical aortic valves. Moderate to severe pannus formation frequently occurred in patients with small mechanical valve size, Carbomedics valves, rheumatic heart disease and young age at AVR.

  8. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.

    Science.gov (United States)

    Bobel, A C; Petisco, S; Sarasua, J R; Wang, W; McHugh, P E

    2015-12-01

    Over the last decade, there has been a significant volume of research focussed on the utilization of biodegradable polymers such as poly-L-lactide-acid (PLLA) for applications associated with cardiovascular disease. More specifically, there has been an emphasis on upgrading current clinical shortfalls experienced with conventional bare metal stents and drug eluting stents. One such approach, the adaption of fully formed polymeric stents has led to a small number of products being commercialized. Unfortunately, these products are still in their market infancy, meaning there is a clear non-occurrence of long term data which can support their mechanical performance in vivo. Moreover, the load carry capacity and other mechanical properties essential to a fully optimized polymeric stent are difficult, timely and costly to establish. With the aim of compiling rapid and representative performance data for specific stent geometries, materials and designs, in addition to reducing experimental timeframes, Computational bench testing via finite element analysis (FEA) offers itself as a very powerful tool. On this basis, the research presented in this paper is concentrated on the finite element simulation of the mechanical performance of PLLA, which is a fully biodegradable polymer, in the stent application, using a non-linear viscous material model. Three physical stent geometries, typically used for fully polymeric stents, are selected, and a comparative study is performed in relation to their short-term mechanical performance, with the aid of experimental data. From the simulated output results, an informed understanding can be established in relation to radial strength, flexibility and longitudinal resistance, that can be compared with conventional permanent metal stent functionality, and the results show that it is indeed possible to generate a PLLA stent with comparable and sufficient mechanical performance. The paper also demonstrates the attractiveness of FEA as a tool

  9. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part I: Logarithmic Decrement

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B; Piłat, A

    2012-01-01

    The comparison between different methods used to compute the logarithmic decrement in high-resolution mechanical spectroscopy (HRMS) is analyzed. The performance of parametric OMI method (Optimization in Multiple Intervals) and interpolated discrete Fourier transform (IpDFT) methods are investigated as a function of the sampling frequency used to digitize free decaying oscillations in low-frequency resonant mechanical spectrometers. It is clearly demonstrated that a new Yoshida-Magalas (YM) method is the most powerful IpDFT-based method which outperforms the standard Yoshida (Y) method and other DFT-based methods. Four IpDFT methods and the OMI method are carefully analyzed as a function of the sampling frequency. The results presented in this work clearly show that the relative error in the estimation of the logarithmic decrement depends both on the length of free decaying signal and on the sampling frequency. The effect of the sampling frequency was not yet reported in the literature. The performance of different methods used in the computations of the logarithmic decrement can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the Yoshida-Magalas YMC, and finally (4) the Yoshida Y.

  10. Computational models reveal a passive mechanism for cell migration in the crypt.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.

  11. Rapid, computer vision-enabled murine screening system identifies neuropharmacological potential of two new mechanisms

    Directory of Open Access Journals (Sweden)

    Steven L Roberds

    2011-09-01

    Full Text Available The lack of predictive in vitro models for behavioral phenotypes impedes rapid advancement in neuropharmacology and psychopharmacology. In vivo behavioral assays are more predictive of activity in human disorders, but such assays are often highly resource-intensive. Here we describe the successful application of a computer vision-enabled system to identify potential neuropharmacological activity of two new mechanisms. The analytical system was trained using multiple drugs that are used clinically to treat depression, schizophrenia, anxiety, and other psychiatric or behavioral disorders. During blinded testing the PDE10 inhibitor TP-10 produced a signature of activity suggesting potential antipsychotic activity. This finding is consistent with TP-10’s activity in multiple rodent models that is similar to that of clinically used antipsychotic drugs. The CK1ε inhibitor PF-670462 produced a signature consistent with anxiolytic activity and, at the highest dose tested, behavioral effects similar to that of opiate analgesics. Neither TP-10 nor PF-670462 was included in the training set. Thus, computer vision-based behavioral analysis can facilitate drug discovery by identifying neuropharmacological effects of compounds acting through new mechanisms.

  12. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part II: Resonant Frequency – Young's Modulus

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B

    2012-01-01

    In this paper, we compare the values of the resonant frequency f 0 of free decaying oscillations computed according to the parametric OMI method (Optimization in Multiple Intervals) and nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. The analysis is carried out for free decaying signals embedded in an experimental noise recorded for metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the Agrez' method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the Yoshida-Magalas (YM) and (YM C ) methods developed by the authors are carefully compared for the resonant frequency f 0 = 1.12345 Hz and the logarithmic decrement, δ = 0.0005. Precise estimation of the resonant frequency (Youngs' modulus ∼ f 0 2 ) for real experimental conditions, i.e., for exponentially damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various computing methods are analyzed as a function of the sampling frequency used to digitize free decaying oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant frequency (i.e. Young's modulus) in materials science is emphasized.

  13. Computational comparison of quantum-mechanical models for multistep direct reactions

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1993-01-01

    We have carried out a computational comparison of all existing quantum-mechanical models for multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka-Yoshida-Weidenmueller models, have been implemented in a single computer system. All model calculations thus use the same set of parameters and the same numerical techniques; only one adjustable parameter is employed. The computational results have been compared with experimental energy spectra and angular distributions for several nuclear reactions, namely, 90 Zr(p,p') at 80 MeV, 209 Bi(p,p') at 62 MeV, and 93 Nb(n,n') at 25.7 MeV. In addition, the results have been compared with the Kalbach systematics and with semiclassical exciton model calculations. All quantum MSD models provide a good fit to the experimental data. In addition, they reproduce the systematics very well and are clearly better than semiclassical model calculations. We furthermore show that the calculated predictions do not differ very strongly between the various quantum MSD models, leading to the conclusion that the simplest MSD model (the Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data

  14. Computational method for thermoviscoelasticity with application to rock mechanics. [Ph. D. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C.

    1984-01-01

    Large-scale numerical computations associated with rock mechanics problems have required efficient and economical models for predicting temperature, stress, failure, and deformed structural configuration under various loading conditions. To meet this requirement, the complex dependence of the properties of geological materials on the time and temperature is modified to yield a reduced time scale as a function of time and temperature under the thermorheologically simple material (TSM) postulate. The thermorheologically linear concept is adopted in the finite element formulation by uncoupling thermal and mechanical responses. The thermal responses, based on transient heat conduction or convective-diffusion, are formulated by using the two-point recurrence scheme and the upwinding scheme, respectively. An incremental solution procedure with the implicit time stepping scheme is proposed for the solution of the thermoviscoelastic response. The proposed thermoviscoelastic solution algorithm is based on the uniaxial creep experimental data and the corresponding temperature shift functions, and is intended to minimize computational efforts by allowing large time step size with stable solutions. A thermoelastic fracture formulation is also presented by introducing the degenerate quadratic isoparametric singular element for the thermally-induced line crack problems. The stress intensity factors are computed by use of the displacement method. Efficiency of the presented formulation and solution algorithm is initially demonstrated by comparison with other available solutions for a variety of problems. Subsequent field applications are made to simulate the post-burn and post-repose phases of an underground coal conversion (UCC) experiment and in-situ nuclear waste disposal management problems. 137 references, 48 figures, 6 tables.

  15. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics

    KAUST Repository

    Raj, Abhijeet Dhayal

    2014-04-24

    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot formation in flames. Although the hydrogen abstraction C2H2 addition (HACA) mechanism is believed to be the main contributor to PAH growth, it has been shown to under-predict some of the experimental data on PAHs and soot concentrations in flames. This article presents a submechanism of PAH growth that is initiated by propargyl (C 3H3) addition onto naphthalene (A2) and the naphthyl radical. C3H3 has been chosen since it is known to be a precursor of benzene in combustion and has appreciable concentrations in flames. This mechanism has been developed up to the formation of pyrene (A4), and the temperature-dependent kinetics of each elementary reaction has been determined using density functional theory (DFT) computations at the B3LYP/6-311++G(d,p) level of theory and transition state theory (TST). H-abstraction, H-addition, H-migration, β-scission, and intramolecular addition reactions have been taken into account. The energy barriers of the two main pathways (H-abstraction and H-addition) were found to be relatively small if not negative, whereas the energy barriers of the other pathways were in the range of (6-89 kcal·mol-1). The rates reported in this study may be extrapolated to larger PAH molecules that have a zigzag site similar to that in naphthalene, and the mechanism presented herein may be used as a complement to the HACA mechanism to improve prediction of PAH and soot formation. © 2014 American Chemical Society.

  16. Towards mechanism-based simulation of impact damage using exascale computing

    Science.gov (United States)

    Shterenlikht, Anton; Margetts, Lee; McDonald, Samuel; Bourne, Neil K.

    2017-01-01

    Over the past 60 years, the finite element method has been very successful in modelling deformation in engineering structures. However the method requires the definition of constitutive models that represent the response of the material to applied loads. There are two issues. Firstly, the models are often difficult to define. Secondly, there is often no physical connection between the models and the mechanisms that accommodate deformation. In this paper, we present a potentially disruptive two-level strategy which couples the finite element method at the macroscale with cellular automata at the mesoscale. The cellular automata are used to simulate mechanisms, such as crack propagation. The stress-strain relationship emerges as a continuum mechanics scale interpretation of changes at the micro- and meso-scales. Iterative two-way updating between the cellular automata and finite elements drives the simulation forward as the material undergoes progressive damage at high strain rates. The strategy is particularly attractive on large-scale computing platforms as both methods scale well on tens of thousands of CPUs.

  17. Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice

    Science.gov (United States)

    Sherman, Maxwell A.; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A.; Hämäläinen, Matti S.; Moore, Christopher I.; Jones, Stephanie R.

    2016-01-01

    Human neocortical 15–29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function. PMID:27469163

  18. A computational modeling approach for the characterization of mechanical properties of 3D alginate tissue scaffolds.

    Science.gov (United States)

    Nair, K; Yan, K C; Sun, W

    2008-01-01

    Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.

  19. Rotation, Reflection, and Frame Changes; Orthogonal tensors in computational engineering mechanics

    Science.gov (United States)

    Brannon, R. M.

    2018-04-01

    Whilst vast literature is available for the most common rotation-related tasks such as coordinate changes, most reference books tend to cover one or two methods, and resources for less-common tasks are scarce. Specialized research applications can be found in disparate journal articles, but a self-contained comprehensive review that covers both elementary and advanced concepts in a manner comprehensible to engineers is rare. Rotation, Reflection, and Frame Changes surveys a refreshingly broad range of rotation-related research that is routinely needed in engineering practice. By illustrating key concepts in computer source code, this book stands out as an unusually accessible guide for engineers and scientists in engineering mechanics.

  20. A computational approach to analyze the mechanism of action of the kinase inhibitor bafetinib.

    Directory of Open Access Journals (Sweden)

    Thomas R Burkard

    Full Text Available Prediction of drug action in human cells is a major challenge in biomedical research. Additionally, there is strong interest in finding new applications for approved drugs and identifying potential side effects. We present a computational strategy to predict mechanisms, risks and potential new domains of drug treatment on the basis of target profiles acquired through chemical proteomics. Functional protein-protein interaction networks that share one biological function are constructed and their crosstalk with the drug is scored regarding function disruption. We apply this procedure to the target profile of the second-generation BCR-ABL inhibitor bafetinib which is in development for the treatment of imatinib-resistant chronic myeloid leukemia. Beside the well known effect on apoptosis, we propose potential treatment of lung cancer and IGF1R expressing blast crisis.

  1. Study on Sintering Mechanism of Stainless Steel Fiber Felts by X-ray Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2016-01-01

    Full Text Available The microstructure evolution of Fe-17 wt. % Cr-12 wt. % Ni-2 wt. % Mo stainless steel fiber felts during the fast sintering process was investigated by the synchrotron radiation X-ray computed tomography technique. The equation of dynamics of stable inter-fiber neck growth was established for the first time based on the geometry model of sintering joints of two fibers and Kucsynski’s two-sphere model. The specific evolutions of different kinds of sintering joints were observed in the three-dimensional images. The sintering mechanisms during sintering were proposed as plastic flow and grain boundary diffusion, the former leading to a quick growth of sintering joints.

  2. Traumatic pulmonary pseudocysts after blunt chest trauma: Prevalence, mechanisms of injury, and computed tomography findings.

    Science.gov (United States)

    Cho, Hyun Jin; Jeon, Yang Bin; Ma, Dae Sung; Lee, Jung Nam; Chung, Min

    2015-09-01

    Traumatic pulmonary pseudocyst (TPP) is a rare complication of blunt chest trauma and closely related with severe injury. However, it has been poorly documented. We present a retrospective review of TPP cases treated at our hospital. The medical records and chest computed tomography scans of patients with TPP treated from January 2010 to December 2013 were retrospectively studied. A total of 978 patients underwent chest computed tomography for blunt chest trauma during the study period, and 81 (8.3%) had a total of 150 TPPs. The most common mechanism of injury was being struck by a motorized vehicle (n = 25, 30.9%). The mean (SD) Injury Severity Score (ISS) of the 81 patients was 33.2 (11.4). The prevalence of TPP was higher in younger patients (p = 0.011), but the total number of fractured ribs was significantly lower (p = 0.001). In a subgroup analysis performed according to pseudocyst location, the intraparenchymal group had more severe injuries than the subpleural group (ISS, 23.3 vs. 32.4, p chest Abbreviated Injury Scale [AIS] score, 3.4 vs. 4.0, p chest trauma was 8.3% and was higher in those struck by a vehicle and younger patients. Intraparenchymal pseudocyst was found to be related to more severe injuries. TPP was a self-limiting condition that does not require specific treatment. Prognostic/epidemiologic study, level IV.

  3. The FORCE: A portable parallel programming language supporting computational structural mechanics

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Brehm, Juergen; Ramanan, Aruna

    1989-01-01

    This project supports the conversion of codes in Computational Structural Mechanics (CSM) to a parallel form which will efficiently exploit the computational power available from multiprocessors. The work is a part of a comprehensive, FORTRAN-based system to form a basis for a parallel version of the NICE/SPAR combination which will form the CSM Testbed. The software is macro-based and rests on the force methodology developed by the principal investigator in connection with an early scientific multiprocessor. Machine independence is an important characteristic of the system so that retargeting it to the Flex/32, or any other multiprocessor on which NICE/SPAR might be imnplemented, is well supported. The principal investigator has experience in producing parallel software for both full and sparse systems of linear equations using the force macros. Other researchers have used the Force in finite element programs. It has been possible to rapidly develop software which performs at maximum efficiency on a multiprocessor. The inherent machine independence of the system also means that the parallelization will not be limited to a specific multiprocessor.

  4. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

    KAUST Repository

    Jiang, Hanlun

    2016-12-06

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  5. Computational applications of the many-interacting-worlds interpretation of quantum mechanics.

    Science.gov (United States)

    Sturniolo, Simone

    2018-05-01

    While historically many quantum-mechanical simulations of molecular dynamics have relied on the Born-Oppenheimer approximation to separate electronic and nuclear behavior, recently a great deal of interest has arisen in quantum effects in nuclear dynamics as well. Due to the computational difficulty of solving the Schrödinger equation in full, these effects are often treated with approximate methods. In this paper, we present an algorithm to tackle these problems using an extension to the many-interacting-worlds approach to quantum mechanics. This technique uses a kernel function to rebuild the probability density, and therefore, in contrast with the approximation presented in the original paper, it can be naturally extended to n-dimensional systems. This opens up the possibility of performing quantum ground-state searches with steepest-descent methods, and it could potentially lead to real-time quantum molecular-dynamics simulations. The behavior of the algorithm is studied in different potentials and numbers of dimensions and compared both to the original approach and to exact Schrödinger equation solutions whenever possible.

  6. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches.

    Science.gov (United States)

    Jiang, Hanlun; Zhu, Lizhe; Héliou, Amélie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2017-01-01

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  7. In vitro comparative study of manual and mechanical rotary instrumentation of root canals using computed tomography.

    Science.gov (United States)

    Limongi, Orlando; de Albuquerque, Diana Santana; Baratto Filho, Flares; Vanni, José Roberto; de Oliveira, Elias P Motcy; Barletta, Fernando Branco

    2007-01-01

    This in vitro study compared, using computed tomography (CT), the amount of dentin removed from root canal walls by manual and mechanical rotary instrumentation techniques. Forty mandibular incisors with dental crown and a single canal were selected. The teeth were randomly assigned to two groups, according to the technique used for root canal preparation: Group I - manual instrumentation with stainless steel files; Group II - mechanical instrumentation with RaCe rotary nickel-titanium instruments. In each tooth, root dentin thickness of the buccal, lingual, mesial and distal surfaces in the apical, middle and cervical thirds of the canal was measured (in mm) using a multislice CT scanner (Siemens Emotion, Duo). Data were stored in the SPSS v. 11.5 and SigmaPlot 2001 v. 7.101 softwares. After crown opening, working length was determined, root canals were instrumented and new CT scans were taken for assessment of root dentin thickness. Pre- and post-instrumentation data were compared and analyzed statistically by ANOVA and Tukey's post-hoc test for significant differences (p=0.05). Based on the findings of this study, it may be concluded that regarding dentin removal from root canal walls during instrumentation, neither of the techniques can be considered more effective than the other.

  8. Physical and mechanical metallurgy of zirconium alloys for nuclear applications: a multi-scale computational study

    Energy Technology Data Exchange (ETDEWEB)

    Glazoff, Michael Vasily [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the critical value of 2200°F? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning

  9. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model.

    Directory of Open Access Journals (Sweden)

    Daniel Mellem

    Full Text Available Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.

  10. Progress report of Sandia National Laboratories (SNL) contribu- tion to IAEA CRP F11016 on ?Utilization of ion accelerators for studying and modeling of radiation induced defects in semicon- ductors and insulators? 3rd RCM.

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, Gyorgy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    This report presents the results of Sandia National Laboratories’ (SNL) contribution to IAEA CRP F11016 as mostly raw data. The goal of this CRP is to study the effects of radiation on semiconductors and insulators with the emphasis on the effect of displacement damage due to MeV energy ions on the performance of semiconductor detectors and microelectronic devices. SNL is tasked with performing electrical characterization, irradiation, and IBIC, DLTS, C-­V measurements on devices used in the CRP, as well as calculating damage and ionization profiles for modeling.

  11. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  12. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  13. Building bridges between perceptual and economic decision-making: neural and computational mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher eSummerfield

    2012-05-01

    Full Text Available Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision making (PDM is concerned with how observers detect, discriminate and categorise noisy sensory information. Economic decision making (EDM explores how options are selected on the basis of their reinforcement history. Traditionally, the subfields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both domains, under which an agent has to combine sensory information (what is the stimulus with value information (what is it worth. We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions – the parietal cortex, the basal ganglia, and the orbitofrontal cortex – to perceptual and economic decision-making, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasised the role of the striatum and orbitofrontal cortex in value-guided choices, they may play an important role in categorisation of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move towards a general framework for understanding decision-making in humans and other primates.

  14. Computer-based Creativity Enhanced Conceptual Design Model for Non-routine Design of Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yutong; WANG Yuxin; DUFFY Alex H B

    2014-01-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  15. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    Science.gov (United States)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  16. Conditional bistability, a generic cellular mnemonic mechanism for robust and flexible working memory computations.

    Science.gov (United States)

    Rodriguez, Guillaume; Sarazin, Matthieu; Clemente, Alexandra; Holden, Stephanie; Paz, Jeanne T; Delord, Bruno

    2018-04-30

    Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic reverberation within recurrent networks. However, reverberation models do not robustly explain fundamental dynamics of persistent activity, including high-spiking irregularity, large intertrial variability, and state transitions. While cellular bistability may contribute to persistent activity, its rigidity appears incompatible with persistent activity labile characteristics. Here, we unravel in a cellular model a form of spike-mediated conditional bistability that is robust, generic and provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of the awakened state, conditional bistability generates spiking/bursting episodes, accounting for the irregularity, variability and state transitions characterizing persistent activity. This mechanism has likely been overlooked because of the sub-threshold input it requires and we predict how to assess it experimentally. Our results suggest a reexamination of the role of intrinsic properties in the collective network dynamics responsible for flexible working memory. SIGNIFICANCE STATEMENT This study unravels a novel form of intrinsic neuronal property, i.e. conditional bistability. We show that, thanks of its conditional character, conditional bistability favors the emergence of flexible and robust forms of persistent activity in PFC neural networks, in opposition to previously studied classical forms of absolute bistability. Specifically, we demonstrate for the first time that conditional bistability 1) is a generic biophysical spike-dependent mechanism of layer V pyramidal neurons in the PFC and that 2) it accounts for essential neurodynamical features for the organisation and flexibility of PFC persistent activity (the large irregularity and intertrial variability of the discharge and its organization under discrete stable states), which remain unexplained in a robust fashion by current models

  17. Mechanisms of Dorsal Root Ganglion Stimulation in Pain Suppression: A Computational Modeling Analysis.

    Science.gov (United States)

    Kent, Alexander R; Min, Xiaoyi; Hogan, Quinn H; Kramer, Jeffery M

    2018-04-01

    The mechanisms of dorsal root ganglion (DRG) stimulation for chronic pain remain unclear. The objective of this work was to explore the neurophysiological effects of DRG stimulation using computational modeling. Electrical fields produced during DRG stimulation were calculated with finite element models, and were coupled to a validated biophysical model of a C-type primary sensory neuron. Intrinsic neuronal activity was introduced as a 4 Hz afferent signal or somatic ectopic firing. The transmembrane potential was measured along the neuron to determine the effect of stimulation on intrinsic activity across stimulation parameters, cell location/orientation, and membrane properties. The model was validated by showing close correspondence in action potential (AP) characteristics and firing patterns when compared to experimental measurements. Subsequently, the model output demonstrated that T-junction filtering was amplified with DRG stimulation, thereby blocking afferent signaling, with cathodic stimulation at amplitudes of 2.8-5.5 × stimulation threshold and frequencies above 2 Hz. This amplified filtering was dependent on the presence of calcium and calcium-dependent small-conductance potassium channels, which produced a hyperpolarization offset in the soma, stem, and T-junction with repeated somatic APs during stimulation. Additionally, DRG stimulation suppressed somatic ectopic activity by hyperpolarizing the soma with cathodic or anodic stimulation at amplitudes of 3-11 × threshold and frequencies above 2 Hz. These effects were dependent on the stem axon being relatively close to and oriented toward a stimulating contact. These results align with the working hypotheses on the mechanisms of DRG stimulation, and indicate the importance of stimulation amplitude, polarity, and cell location/orientation on neuronal responses. © 2018 International Neuromodulation Society.

  18. Summary of International Waste Management Programs (LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW)

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Harris R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blink, James A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Halsey, William G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sutton, Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-08-11

    The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned; the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.

  19. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  20. Selective sensation based brain-computer interface via mechanical vibrotactile stimulation.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects' left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ERS. The experiments were carried out on nine subjects (without experience in selective sensation), and six of them showed a discrimination accuracy above 80%, three of them above 95%. Comparative experiments with motor imagery (with and without presence of stimulation) were also carried out, which further showed the feasibility of selective sensation as an alternative BCI task complementary to motor imagery. Specifically there was significant improvement ([Formula: see text]) from near 65% in motor imagery (with and without presence of stimulation) to above 80% in selective sensation on some subjects. The proposed BCI modality might well cooperate with existing BCI modalities in the literature in enlarging the widespread usage of BCI system.

  1. Computational simulation of weld microstructure and distortion by considering process mechanics

    Science.gov (United States)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  2. Computational study on the behaviors of granular materials under mechanical cycling

    International Nuclear Information System (INIS)

    Wang, Xiaoliang; Ye, Minyou; Chen, Hongli

    2015-01-01

    Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal force distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis

  3. Sixty-Four-Section Cardiac Computed Tomography in Mechanical Prosthetic Heart Valve Dysfunction: Thrombus or Pannus.

    Science.gov (United States)

    Gündüz, Sabahattin; Özkan, Mehmet; Kalçik, Macit; Gürsoy, Ozan Mustafa; Astarcioğlu, Mehmet Ali; Karakoyun, Süleyman; Aykan, Ahmet Çağri; Biteker, Murat; Gökdeniz, Tayyar; Kaya, Hasan; Yesin, Mahmut; Duran, Nilüfer Ekşi; Sevinç, Deniz; Güneysu, Tahsin

    2015-12-01

    Distinguishing pannus and thrombus in patients with prosthetic valve dysfunction is essential for the selection of proper treatment. We have investigated the utility of 64-slice multidetector computed tomography (MDCT) in distinguishing between pannus and thrombus, the latter amenable to thrombolysis. Sixty-two (23 men, mean age 44±14 years) patients with suspected mechanical prosthetic valve dysfunction assessed by transesophageal echocardiography were included in this prospective observational trial. Subsequently, MDCT was performed before any treatment was started. Periprosthetic masses were detected by MDCT in 46 patients, and their attenuation values were measured as Hounsfield Units (HU). Patients underwent thrombolysis unless contraindicated, and those with a contraindication or failed thrombolysis underwent surgery. A mass which was completely lysed or surgically detected as a clot was classified as thrombus, whereas a mass which was surgically detected as tissue overgrowth was classified as pannus. A definitive diagnosis could be achieved in 37 patients with 39 MDCT masses (22 thrombus and 17 pannus). The mean attenuation value of 22 thrombotic masses was significantly lower than that in 17 pannus (87±59 versus 322±122; Ppannus from thrombus. Complete lysis was more common for masses with HUpannus overgrowth, whereas a lower value is associated with thrombus formation. A higher attenuation (HU>90) is associated with reduced lysis rates. © 2015 American Heart Association, Inc.

  4. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    Science.gov (United States)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  5. Computer Game Play Reduces Intrusive Memories of Experimental Trauma via Reconsolidation-Update Mechanisms.

    Science.gov (United States)

    James, Ella L; Bonsall, Michael B; Hoppitt, Laura; Tunbridge, Elizabeth M; Geddes, John R; Milton, Amy L; Holmes, Emily A

    2015-08-01

    Memory of a traumatic event becomes consolidated within hours. Intrusive memories can then flash back repeatedly into the mind's eye and cause distress. We investigated whether reconsolidation-the process during which memories become malleable when recalled-can be blocked using a cognitive task and whether such an approach can reduce these unbidden intrusions. We predicted that reconsolidation of a reactivated visual memory of experimental trauma could be disrupted by engaging in a visuospatial task that would compete for visual working memory resources. We showed that intrusive memories were virtually abolished by playing the computer game Tetris following a memory-reactivation task 24 hr after initial exposure to experimental trauma. Furthermore, both memory reactivation and playing Tetris were required to reduce subsequent intrusions (Experiment 2), consistent with reconsolidation-update mechanisms. A simple, noninvasive cognitive-task procedure administered after emotional memory has already consolidated (i.e., > 24 hours after exposure to experimental trauma) may prevent the recurrence of intrusive memories of those emotional events. © The Author(s) 2015.

  6. Efficient Sustainable Operation Mechanism of Distributed Desktop Integration Storage Based on Virtualization with Ubiquitous Computing

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Kim

    2015-06-01

    Full Text Available Following the rapid growth of ubiquitous computing, many jobs that were previously manual have now been automated. This automation has increased the amount of time available for leisure; diverse services are now being developed for this leisure time. In addition, the development of small and portable devices like smartphones, diverse Internet services can be used regardless of time and place. Studies regarding diverse virtualization are currently in progress. These studies aim to determine ways to efficiently store and process the big data generated by the multitude of devices and services in use. One topic of such studies is desktop storage virtualization, which integrates distributed desktop resources and provides these resources to users to integrate into distributed legacy desktops via virtualization. In the case of desktop storage virtualization, high availability of virtualization is necessary and important for providing reliability to users. Studies regarding hierarchical structures and resource integration are currently in progress. These studies aim to create efficient data distribution and storage for distributed desktops based on resource integration environments. However, studies regarding efficient responses to server faults occurring in desktop-based resource integration environments have been insufficient. This paper proposes a mechanism for the sustainable operation of desktop storage (SODS for high operational availability. It allows for the easy addition and removal of desktops in desktop-based integration environments. It also activates alternative servers when a fault occurs within a system.

  7. Selective Sensation Based Brain-Computer Interface via Mechanical Vibrotactile Stimulation

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects’ left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ERS. The experiments were carried out on nine subjects (without experience in selective sensation), and six of them showed a discrimination accuracy above 80%, three of them above 95%. Comparative experiments with motor imagery (with and without presence of stimulation) were also carried out, which further showed the feasibility of selective sensation as an alternative BCI task complementary to motor imagery. Specifically there was significant improvement () from near 65% in motor imagery (with and without presence of stimulation) to above 80% in selective sensation on some subjects. The proposed BCI modality might well cooperate with existing BCI modalities in the literature in enlarging the widespread usage of BCI system. PMID:23762253

  8. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.

    Science.gov (United States)

    Kanat, Burcu; Cömlekoğlu, Erhan M; Dündar-Çömlekoğlu, Mine; Hakan Sen, Bilge; Ozcan, Mutlu; Ali Güngör, Mehmet

    2014-08-01

    The objectives of this study were to evaluate the fracture resistance (FR), flexural strength (FS), and shear bond strength (SBS) of zirconia framework material veneered with different methods and to assess the stress distributions using finite element analysis (FEA). Zirconia frameworks fabricated in the forms of crowns for FR, bars for FS, and disks for SBS (N = 90, n = 10) were veneered with either (a) file splitting (CAD-on) (CD), (b) layering (L), or (c) overpressing (P) methods. For crown specimens, stainless steel dies (N = 30; 1 mm chamfer) were scanned using the labside contrast spray. A bilayered design was produced for CD, whereas a reduced design (1 mm) was used for L and P to support the veneer by computer-aided design and manufacturing. For bar (1.5 × 5 × 25 mm(3) ) and disk (2.5 mm diameter, 2.5 mm height) specimens, zirconia blocks were sectioned under water cooling with a low-speed diamond saw and sintered. To prepare the suprastructures in the appropriate shapes for the three mechanical tests, nano-fluorapatite ceramic was layered and fired for L, fluorapatite-ceramic was pressed for P, and the milled lithium-disilicate ceramics were fused with zirconia by a thixotropic glass ceramic for CD and then sintered for crystallization of veneering ceramic. Crowns were then cemented to the metal dies. All specimens were stored at 37°C, 100% humidity for 48 hours. Mechanical tests were performed, and data were statistically analyzed (ANOVA, Tukey's, α = 0.05). Stereomicroscopy and scanning electron microscopy (SEM) were used to evaluate the failure modes and surface structure. FEA modeling of the crowns was obtained. Mean FR values (N ± SD) of CD (4408 ± 608) and L (4323 ± 462) were higher than P (2507 ± 594) (p mechanical tests, whereas a layering technique increased the FR when an anatomical core design was employed. File splitting (CAD-on) or layering veneering ceramic on zirconia with a reduced framework design may reduce ceramic chipping

  9. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    Science.gov (United States)

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  10. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  11. COMPUTING

    CERN Multimedia

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...

  12. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  13. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  14. Synthesis of radiolabelled aryl azides from diazonium salts: experimental and computational results permit the identification of the preferred mechanism.

    Science.gov (United States)

    Joshi, Sameer M; de Cózar, Abel; Gómez-Vallejo, Vanessa; Koziorowski, Jacek; Llop, Jordi; Cossío, Fernando P

    2015-05-28

    Experimental and computational studies on the formation of aryl azides from the corresponding diazonium salts support a stepwise mechanism via acyclic zwitterionic intermediates. The low energy barriers associated with both transition structures are compatible with very fast and efficient processes, thus making this method suitable for the chemical synthesis of radiolabelled aryl azides.

  15. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non- Heme Iron(III) Complexes

    NARCIS (Netherlands)

    Jastrzebski, Robin; Quesne, Matthew G.; Weckhuysen, Bert M.; de Visser, Sam P.; Bruijnincx, Pieter C. A.

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and nonheme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational

  16. Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanic

    NARCIS (Netherlands)

    Blocken, B.J.E.; Gualtieri, C.

    2012-01-01

    Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution dispersion in urban areas. However, the accuracy

  17. Exsanguination of turbot and the effect on fillet quality measured mechanically by sensory evaluation, and with computer vision

    NARCIS (Netherlands)

    Roth, B.; Schelvis-Smit, A.A.M.; Stien, L.H.; Foss, A.; Nortvedt, R.; Imsland, A.

    2007-01-01

    In order to investigate the impact of blood residues on the end quality of exsanguinated and unbled farmed turbot (Scophthalmus maximus), meat quality was evaluated using mechanical, sensory, and computer imaging techniques. The results show that exsanguination is important for improving the visual

  18. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...

  19. A statistical mechanical approach for the computation of the climatic response to general forcings

    Directory of Open Access Journals (Sweden)

    V. Lucarini

    2011-01-01

    Full Text Available The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing

  20. Efficient Nash Equilibrium Resource Allocation Based on Game Theory Mechanism in Cloud Computing by Using Auction.

    Science.gov (United States)

    Nezarat, Amin; Dastghaibifard, G H

    2015-01-01

    One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer's utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider.

  1. Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Alex Pavlides

    2015-12-01

    Full Text Available In Parkinson's disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN and the external segment of globus pallidus (GPe. Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson's disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.

  2. A study on mechanical errors in Cone Beam Computed Tomography (CBCT) System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yi Seong; Yoo, Eun Jeong; Choi, Kyoung Sik [Dept. of Radiation Oncology, Anyang SAM Hospital, Anyang (Korea, Republic of); Lee, Jong Woo [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of); Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Jeong Koo [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2013-06-15

    This study investigated the rate of setup variance by the rotating unbalance of gantry in image-guided radiation therapy. The equipments used linear accelerator(Elekta Synergy ™, UK) and a three-dimensional volume imaging mode(3D Volume View) in cone beam computed tomography(CBCT) system. 2D images obtained by rotating 360°and 180° were reconstructed to 3D image. Catpan503 phantom and homogeneous phantom were used to measure the setup errors. Ball-bearing phantom was used to check the rotation axis of the CBCT. The volume image from CBCT using Catphan503 phantom and homogeneous phantom were analyzed and compared to images from conventional CT in the six dimensional view(X, Y, Z, Roll, Pitch, and Yaw). The variance ratio of setup error were difference in X 0.6 mm, Y 0.5 mm, Z 0.5 mm when the gantry rotated 360° in orthogonal coordinate. whereas rotated 180°, the error measured 0.9 mm, 0.2 mm, 0.3 mm in X, Y, Z respectively. In the rotating coordinates, the more increased the rotating unbalance, the more raised average ratio of setup errors. The resolution of CBCT images showed 2 level of difference in the table recommended. CBCT had a good agreement compared to each recommended values which is the mechanical safety, geometry accuracy and image quality. The rotating unbalance of gentry vary hardly in orthogonal coordinate. However, in rotating coordinate of gantry exceeded the ±1° of recommended value. Therefore, when we do sophisticated radiation therapy six dimensional correction is needed.

  3. Mesh construction for the 2-dimensional computational fracture mechanics using the I-DEAS

    International Nuclear Information System (INIS)

    Kim, Jong Wook; Kim, Tae Wan; Park, Keun Bae

    2000-09-01

    Recently research activities have been reported regarding the generation of the input data for the crack problems at a minimum of effort utilizing the general characteristics of the finite element modeling technique. Several automatic FE mesh generation methods for the cracked structure of particular geometries and boundary conditions have been proposed by using commercial codes or developing in-house programs. In general, development of software to deal with special crack problem can maximize the efficiency and accuracy for a specific environment. However, applicable range of such scheme is usually very restricted and new program should be formed in each case. On the other hand, commercial codes can be used for the automatic mesh generation of variety of geometries, but with an additional effort to accomodate the singular element for the cracked-body analysis. In the present study, a procedure for the generation of input data for the optimized computational fracture mechanics is developed as a series of effort to establish the structural integrity evaluation procedure of SMART reactor vessel assembly. Input data for the finite element analysis are prepared using the commercial code I-DEAS. The midpoint nodes near the crack front are shifted at the quarter-points. The complete finite element model generated is given to another commercial finite element code ABAQUS for the stress analysis. The stress intensity factors are calculated using the J-integral method. To demonstrate the validation of the present procedure, double-edge crack in a plate subjected to uniform tension is solved, and the effects of mesh construction are discussed in detail. The structural integrity evaluation procedure through the 2-D crack modeling is then established

  4. Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics

    CERN Document Server

    2014-01-01

    Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over t...

  5. A semi-local quasi-harmonic model to compute the thermodynamic and mechanical properties of silicon nanostructures

    International Nuclear Information System (INIS)

    Zhao, H; Aluru, N R

    2007-01-01

    This paper presents a semi-local quasi-harmonic model with local phonon density of states (LPDOS) to compute the thermodynamic and mechanical properties of silicon nanostructures at finite temperature. In contrast to an earlier approach (Tang and Aluru 2006 Phys. Rev. B 74 235441), where a quasi-harmonic model with LPDOS computed by a Green's function technique (QHMG) was developed considering many layers of atoms, the semi-local approach considers only two layers of atoms to compute the LPDOS. We show that the semi-local approach combines the accuracy of the QHMG approach and the computational efficiency of the local quasi-harmonic model. We present results for several silicon nanostructures to address the accuracy and efficiency of the semi-local approach

  6. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  7. COMPUTING

    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  8. COMPUTING

    CERN Multimedia

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...

  9. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...

  10. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...

  11. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  12. COMPUTING

    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  13. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...

  14. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  15. [Interactions of DNA bases with individual water molecules. Molecular mechanics and quantum mechanics computation results vs. experimental data].

    Science.gov (United States)

    Gonzalez, E; Lino, J; Deriabina, A; Herrera, J N F; Poltev, V I

    2013-01-01

    To elucidate details of the DNA-water interactions we performed the calculations and systemaitic search for minima of interaction energy of the systems consisting of one of DNA bases and one or two water molecules. The results of calculations using two force fields of molecular mechanics (MM) and correlated ab initio method MP2/6-31G(d, p) of quantum mechanics (QM) have been compared with one another and with experimental data. The calculations demonstrated a qualitative agreement between geometry characteristics of the most of local energy minima obtained via different methods. The deepest minima revealed by MM and QM methods correspond to water molecule position between two neighbor hydrophilic centers of the base and to the formation by water molecule of hydrogen bonds with them. Nevertheless, the relative depth of some minima and peculiarities of mutual water-base positions in' these minima depend on the method used. The analysis revealed insignificance of some differences in the results of calculations performed via different methods and the importance of other ones for the description of DNA hydration. The calculations via MM methods enable us to reproduce quantitatively all the experimental data on the enthalpies of complex formation of single water molecule with the set of mono-, di-, and trimethylated bases, as well as on water molecule locations near base hydrophilic atoms in the crystals of DNA duplex fragments, while some of these data cannot be rationalized by QM calculations.

  16. Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2014-01-01

    Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.

  17. Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects.

    Directory of Open Access Journals (Sweden)

    Jiwoong Choi

    Full Text Available Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells through interactions with host cells. We explored this with serial inspiratory computed tomography (CT and image matching to assess regional changes in lung expansion.We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05.Lung regions of metastatic sarcoma patients (but not the normal control group demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05. There was also evidence of increased lung "tissue" volume (non-air components in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions.This new quantitative CT (QCT method for linking

  18. Cross-Border Litigation and ADR Mechanisms in Disputes Concerning Mobile Computing in the EU

    DEFF Research Database (Denmark)

    Savin, Andrej

    2011-01-01

    The aim of this paper is to discuss briefly how the EU rules on jurisdiction, choice of law and alternative dispute resolution in civil and commercial matters operate in the context of mobile computing. The article first looks at rules on jurisdiction in commercial disputes, both between businesses...... and between businesses and consumers. It then discusses the choice-of-law issues applicable to mobile computing. Finally, there is an examination of alternative dispute resolution as an alternative to regular courts in transactions involving mobile computing....

  19. Secure authentication mechanisms for the management interface in cloud computing environments

    OpenAIRE

    Soares, Liliana Filipa Baptista

    2013-01-01

    For a handful of years, cloud computing has been a hot catchphrase. The industry has massively adopted it and the academia is focusing on improving the technology, which has been evolving at a quick pace. The cloud computing paradigm consists in adopting solutions provisioned by some cloud providers that are hosted on data centers. Customers are therefore tied to those third-party entities, since they becomes involved in their businesses for being responsible for the Information Technologi...

  20. The Mechanics of Embodiment: A Dialog on Embodiment and Computational Modeling

    Science.gov (United States)

    Pezzulo, Giovanni; Barsalou, Lawrence W.; Cangelosi, Angelo; Fischer, Martin H.; McRae, Ken; Spivey, Michael J.

    2011-01-01

    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamoring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensorimotor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialog between two fictional characters: Ernest, the “experimenter,” and Mary, the “computational modeler.” The dialog consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modeling. PMID:21713184

  1. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes

    Science.gov (United States)

    Jastrzebski, Robin; Quesne, Matthew G; Weckhuysen, Bert M; de Visser, Sam P; Bruijnincx, Pieter C A

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C=O bond formation step. PMID:25322920

  2. URANUS - a computer programme for the thermal and mechanical analysis of the fuel rods in a nuclear reactor

    International Nuclear Information System (INIS)

    Lassmann, K.

    1978-01-01

    The URANUS code, a digital computer programme for the thermal and mechanical analysis of integral fuel rods, is described. With this code the fuel rods found in the majority of power reactors can be analyzed. URANUS is built around a quasi two-dimensional analysis of fuel and cladding. The mechanical analysis can accommodate seven components of strain: elastic, time-independent plastic, creep and thermal strains, as well as strains due to swelling, cracking and densification. The heat generation and temperature distribution, cladding/fuel gap closure, pellet cracking and crack healing, fission-gas release, corrosion, O/M-distribution and plutonium redistribution are modelled. Geometric non-linearities (large displacements) are included; steady state or transient loading (pressure, temperature) is possible. In this paper special attention is paid to a theory for determining crack structures. The present status of the URANUS computer programme and a critical comparison with other fuel rod codes as well as sample analyses are given. (Auth.)

  3. A computer vision system for rapid search inspired by surface-based attention mechanisms from human perception.

    Science.gov (United States)

    Mohr, Johannes; Park, Jong-Han; Obermayer, Klaus

    2014-12-01

    Humans are highly efficient at visual search tasks by focusing selective attention on a small but relevant region of a visual scene. Recent results from biological vision suggest that surfaces of distinct physical objects form the basic units of this attentional process. The aim of this paper is to demonstrate how such surface-based attention mechanisms can speed up a computer vision system for visual search. The system uses fast perceptual grouping of depth cues to represent the visual world at the level of surfaces. This representation is stored in short-term memory and updated over time. A top-down guided attention mechanism sequentially selects one of the surfaces for detailed inspection by a recognition module. We show that the proposed attention framework requires little computational overhead (about 11 ms), but enables the system to operate in real-time and leads to a substantial increase in search efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Validity and Reliability of Orthodontic Loops between Mechanical Testing and Computer Simulation: An Finite Element Method Study

    Directory of Open Access Journals (Sweden)

    Gaurav Sepolia

    2014-01-01

    Full Text Available The magnitude and direction of orthodontic force is one of the essential concerns of orthodontic tooth movements. Excessive force may cause root resorption and mobility of the tooth, whereas low force level may results in prolonged treatment. The addition of loops allows the clinician to more accurately achieve the desired results. Aims and objectives: The purpose of the study was to evaluate the validity and reliability of orthodontic loops between mechanical testing and computer simulation. Materials and methods: Different types of loops were taken and divided into four groups: The Teardrop loop, Opus loop, L loop and T loop. These were artificially activated for multiple lengths and studied using the FEM. Results: The Teardrop loop showed the highest force level, and there is no significant difference between mechanical testing and computer simulation.

  5. COMPUTING

    CERN Multimedia

    2010-01-01

    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...

  6. COMPUTING

    CERN Multimedia

    Contributions from I. Fisk

    2012-01-01

    Introduction The start of the 2012 run has been busy for Computing. We have reconstructed, archived, and served a larger sample of new data than in 2011, and we are in the process of producing an even larger new sample of simulations at 8 TeV. The running conditions and system performance are largely what was anticipated in the plan, thanks to the hard work and preparation of many people. Heavy ions Heavy Ions has been actively analysing data and preparing for conferences.  Operations Office Figure 6: Transfers from all sites in the last 90 days For ICHEP and the Upgrade efforts, we needed to produce and process record amounts of MC samples while supporting the very successful data-taking. This was a large burden, especially on the team members. Nevertheless the last three months were very successful and the total output was phenomenal, thanks to our dedicated site admins who keep the sites operational and the computing project members who spend countless hours nursing the...

  7. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction A large fraction of the effort was focused during the last period into the preparation and monitoring of the February tests of Common VO Computing Readiness Challenge 08. CCRC08 is being run by the WLCG collaboration in two phases, between the centres and all experiments. The February test is dedicated to functionality tests, while the May challenge will consist of running at all centres and with full workflows. For this first period, a number of functionality checks of the computing power, data repositories and archives as well as network links are planned. This will help assess the reliability of the systems under a variety of loads, and identifying possible bottlenecks. Many tests are scheduled together with other VOs, allowing the full scale stress test. The data rates (writing, accessing and transfer¬ring) are being checked under a variety of loads and operating conditions, as well as the reliability and transfer rates of the links between Tier-0 and Tier-1s. In addition, the capa...

  8. COMPUTING

    CERN Multimedia

    Matthias Kasemann

    Overview The main focus during the summer was to handle data coming from the detector and to perform Monte Carlo production. The lessons learned during the CCRC and CSA08 challenges in May were addressed by dedicated PADA campaigns lead by the Integration team. Big improvements were achieved in the stability and reliability of the CMS Tier1 and Tier2 centres by regular and systematic follow-up of faults and errors with the help of the Savannah bug tracking system. In preparation for data taking the roles of a Computing Run Coordinator and regular computing shifts monitoring the services and infrastructure as well as interfacing to the data operations tasks are being defined. The shift plan until the end of 2008 is being put together. User support worked on documentation and organized several training sessions. The ECoM task force delivered the report on “Use Cases for Start-up of pp Data-Taking” with recommendations and a set of tests to be performed for trigger rates much higher than the ...

  9. COMPUTING

    CERN Multimedia

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...

  10. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing operation has been lower as the Run 1 samples are completing and smaller samples for upgrades and preparations are ramping up. Much of the computing activity is focusing on preparations for Run 2 and improvements in data access and flexibility of using resources. Operations Office Data processing was slow in the second half of 2013 with only the legacy re-reconstruction pass of 2011 data being processed at the sites.   Figure 1: MC production and processing was more in demand with a peak of over 750 Million GEN-SIM events in a single month.   Figure 2: The transfer system worked reliably and efficiently and transferred on average close to 520 TB per week with peaks at close to 1.2 PB.   Figure 3: The volume of data moved between CMS sites in the last six months   The tape utilisation was a focus for the operation teams with frequent deletion campaigns from deprecated 7 TeV MC GEN-SIM samples to INVALID datasets, which could be cleaned up...

  11. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...

  12. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    OpenAIRE

    Almasi, Joel N.; Bushnell, Eric A.C.; Gauld, James W.

    2011-01-01

    Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM) ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein...

  13. SNL Yucca Mountain Project data report: Density and porosity data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.

    1990-02-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site in southern Nevada, is being evaluated as a potential site for underground disposal of nuclear wastes. At present, the physical, thermal, and mechanical properties of tuffaceous rocks from Yucca Mountain are being determined as part of the Yucca Mountain Project. This report documents experiment data, which have been obtained by Sandia National Laboratories or its contractors, for the density and porosity of tuffaceous rocks that lie above the water table at Yucca Mountain. 7 refs., 2 figs., 3 tabs

  14. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  15. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Madrid, V.; Singleton, M. J.; Visser, A.; Esser, B.

    2016-01-01

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  16. The evaluation of role of NMDA receptor and spinal microglia on age dependent differences of neuropathic pain in SNL model in male rats

    Directory of Open Access Journals (Sweden)

    Hussain zeinali

    2015-04-01

    Full Text Available Background: Induced neuropathic pain following nerve injury has behavioral signs such as allodynia and hyperalgesia. There are reports about the age dependent differences in severity and incidence and even therapeutic response of this pain. In this study, we have tried to evaluate behavioral differences of this pain in an induced neuropathic model in different ages, according to important role of N-methyl, D-aspartate (NMDA receptor and spinal microglia on induction and maintenance of pain. Material and methods: Male rats were grouped in young (5-6 week and mature (10-11 week. Under general anesthesia, the spinal nerve ligation (SNL surgery was operated on right leg. The effect of different doses of dextromethorphan (NMDA blocker and minocycline (microglia inhibitor on 5th day after surgery was evaluated and compared in two age-groups. Results: In this study, both Minocycline and dextromethorphan diminished neuropathic pain in a dose dependent manner in these two ages. Minocycline in contrast to dextromethorphan was more effective in young rats. The co-administration of ineffective doses of minocycline and dextromethorphan could be effective. Conclusion: Microglia and NMDA receptor function in neuropathic pain is different in different ages and the role of microglia is more evident. On the other hand the inhibition of both microglia and NMDA receptor can be considered for lowering neuropathic pain.

  17. A study of the free vibration of suspension rod based on four-stage arm mechanism by using computer simulation

    Directory of Open Access Journals (Sweden)

    Melnychuk S.V.

    2016-08-01

    Full Text Available We analyze the current state of the prospects and problems of using computer technology to determine the operating parameters of movement of the vehicle. Scientific works related to the study of the properties of the vehicle smooth ride are studied. The following example shows that the modern researches of smooth ride do not pay enough attention to issues associated with the processes that occur in the suspension rod of a vehicle. Scientific works related to the choice of the optimal and simple CAD system for conducting computer simulation tests are overviewed. We developed an animating model of experimental car in SOLIDWORKS environment with the staff suspension rod and the suspension rod based on four-stage arm mechanism, which allows a wide range of tests of components of the vehicle. Methodology and hardware-software complex for testing a car are developed. A test of a vehicle of category N1 is conducted. A computer simulation of the motion of the smooth ride of the car with suspension rod based on four-stage arm mechanism is conducted. The comparative analysis of suspension rod performance based on four-stage arm mechanism is conducted.

  18. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction The Computing Team successfully completed the storage, initial processing, and distribution for analysis of proton-proton data in 2011. There are still a variety of activities ongoing to support winter conference activities and preparations for 2012. Heavy ions The heavy-ion run for 2011 started in early November and has already demonstrated good machine performance and success of some of the more advanced workflows planned for 2011. Data collection will continue until early December. Facilities and Infrastructure Operations Operational and deployment support for WMAgent and WorkQueue+Request Manager components, routinely used in production by Data Operations, are provided. The GlideInWMS and components installation are now deployed at CERN, which is added to the GlideInWMS factory placed in the US. There has been new operational collaboration between the CERN team and the UCSD GlideIn factory operators, covering each others time zones by monitoring/debugging pilot jobs sent from the facto...

  19. Working mechanisms of computer-tailored health education : evidence from smoking cessation

    NARCIS (Netherlands)

    Dijkstra, A.

    2005-01-01

    To further develop tailored interventions, their working mechanisms must be identified. In the present study, three tailored messages that each contained one potential working mechanism-personalization, adaptation or feedback-were compared with a standard information condition. Two hundred and two

  20. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration

  1. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/ USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration. (author)

  2. Review of US Nanocorp - SNL Joint Development of Thermal-Sprayed Thin-Film Cathodes for Thermal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID E.

    2000-11-14

    The use of plasma spray to deposit thin metal-sulfide cathode films is described in this paper. Conventional electroactive stack components in thermal batteries are constructed from pressed-powder parts that are difficult to fabricate in large diameters in thicknesses <0.010. Plasma-sprayed electrodes do not steer from this difficulty, allowing greater energy densities and specific energies to be realized. Various co-spraying agents have been found suitable for improving the mechanical as well as electrochemical properties of plasma-sprayed cathodes for thermal batteries. These electrodes generally show equal or improved performance over conventional pressed-powder electrodes. A number of areas for future growth and development of plasma-spray technology is discussed.

  3. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work

  4. COMPUTING

    CERN Multimedia

    M. Kasemann

    CMS relies on a well functioning, distributed computing infrastructure. The Site Availability Monitoring (SAM) and the Job Robot submission have been very instrumental for site commissioning in order to increase availability of more sites such that they are available to participate in CSA07 and are ready to be used for analysis. The commissioning process has been further developed, including "lessons learned" documentation via the CMS twiki. Recently the visualization, presentation and summarizing of SAM tests for sites has been redesigned, it is now developed by the central ARDA project of WLCG. Work to test the new gLite Workload Management System was performed; a 4 times increase in throughput with respect to LCG Resource Broker is observed. CMS has designed and launched a new-generation traffic load generator called "LoadTest" to commission and to keep exercised all data transfer routes in the CMS PhE-DEx topology. Since mid-February, a transfer volume of about 12 P...

  5. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics

    KAUST Repository

    Raj, Abhijeet Dhayal; Rachidi, Mariam El; Chung, Suk-Ho; Sarathy, Mani

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot

  6. Continuum Mechanics using Mathematica® Fundamentals, Applications and Scientific Computing

    CERN Document Server

    Romano, Antonio; Marasco, Addolorata

    2006-01-01

    This book's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. The book covers essential principles and fundamental applications, and provides a solid basis for a deeper study of more challenging and specialized problems related to elasticity, fluid mechanics, plasticity, materials with memory, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes. Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and two appendices * Recent developments highlighted through coverage of more significant applications to areas such as porous media, electromagnetic fields, and phase transitions Continuum Mechanics using Mathematica® is aimed at advanced undergraduates, graduate students, and researchers in applied mathematics, mathematical physics, and engineering. It may ser...

  7. Computational performance of Free Mesh Method applied to continuum mechanics problems

    Science.gov (United States)

    YAGAWA, Genki

    2011-01-01

    The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753

  8. Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials 2010-2015.

    Energy Technology Data Exchange (ETDEWEB)

    John F. Mandell; Daniel D. Samborsky; David A. Miller; Pancasatya Agastra; Aaron T. Sears

    2016-02-01

    /epoxy laminates in Sectio n 6. The nonlinear fatigue and creep stress - strain and cumulative strain response are characterized in tension and compression as a function of stress level, cycles and cumulative time, using square and sinewave loading over a broad range of frequency. The results are analyzed in terms of the cycles and cumulative time under load. A cumulative strain failure criterion is established, and used to construct shear and tension constant life diagrams (CLD's) with data for nine R - values. The effects of a more duc tile urethne resin are also explored. A previous study of thick adhesives testing is extended to mixed mode fracture mechanics testing in Section 7. Mechanisms of static and fatigue crack extension near the laminate adherend interface are reported in deta il. Data are presented for mixed mode adhesive fracture, compared to mixed mode fracture in ply delamination. Fatigue crack growth exponents are also developed for a mixed mode cracked lap shear coupon. The data for fatigue trends and relative failure stra ins and exponents are compared for various blade component materials in Section 8. The effects of temperature and seawater saturation are considered for selected materials of interest for wind and hydrokinetic turbine blades in Section 9. Section 10 gives detailed conclusions for each section. A cknowledgements The research presented in this report was carried out under Sandia National Laboratories purchase orders 1325028 an d 1543945 between 2010 and 2015, with support from the DOE Wind and Water Technologies Office . In addition to the authors listed, significant contributions were made by Patrick Flaherty, Pancastya Agastra, Michael Schuster, and Michael Voth. Industry m aterials suppliers include Vectorply, Saertex, OCV, AGY, Bayer, Ashland, 3M and Nextel. Industry suppliers with significant contributions to the study were Hexion, PPG, Reichhold, Gurit and NEPTCO. Intentionally Left Blank

  9. Condition Monitoring Using Computational Intelligence Methods Applications in Mechanical and Electrical Systems

    CERN Document Server

    Marwala, Tshilidzi

    2012-01-01

    Condition monitoring uses the observed operating characteristics of a machine or structure to diagnose trends in the signal being monitored and to predict the need for maintenance before a breakdown occurs. This reduces the risk, inherent in a fixed maintenance schedule, of performing maintenance needlessly early or of having a machine fail before maintenance is due either of which can be expensive with the latter also posing a risk of serious accident especially in systems like aeroengines in which a catastrophic failure would put lives at risk. The technique also measures responses from the whole of the system under observation so it can detect the effects of faults which might be hidden deep within a system, hidden from traditional methods of inspection. Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, m...

  10. The Analysis of Visual Motion: From Computational Theory to Neuronal Mechanisms.

    Science.gov (United States)

    1986-12-01

    N00014-85-C-0038 9. PERFORMING ORGA4IXATIOM NAME AMC ADDRESS 10. PROGRAM ELE"WNT. PROJECT, TASK Artificial Inteligence Laboratory AREA & WORK UNIT...7 -AIM 318 THE ANALYSIS OF YISURL NOTION: FROM COMPUTATIONAL 1/1 ITHEORY TO MEUPRONAL MECH . U) MASSRCHUSETTS INST OF TECH I CEISRIDGE ARTIFICIAL ...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and cCENTER FOR BIOLOGICAL INFORMATION PROCESSING 0WHITAKER COLLEGE O A.I. Memo No. 919

  11. Here and now: the intersection of computational science, quantum-mechanical simulations, and materials science

    Science.gov (United States)

    Marzari, Nicola

    The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.

  12. Computational simulation for creep fracture properties taking microscopic mechanism into account

    International Nuclear Information System (INIS)

    Tabuchi, Masaaki

    2003-01-01

    Relationship between creep crack growth rate and microscopic fracture mechanism i.e., wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been investigated. The growth rate of wedge-type and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the cavity-type crack tip accelerated the crack growth rate. Based on the experimental results, FEM code that simulates creep crack growth has been developed by taking the fracture mechanism into account. The effect of creep ductility and void formation ahead of the crack tip on creep crack growth behavior could be simulated. (author)

  13. Development of computational methods to describe the mechanical behavior of PWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Seidl, Marcus; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2016-10-15

    To investigate the static mechanical response of PWR fuel assemblies (FAs) in the reactor core, a structural FA model is being developed using the FEM code ANSYS Mechanical. To assess the capabilities of the model, lateral deflection tests are performed for a reference FA. For this purpose we distinguish between two environments, in-laboratory and in-reactor for different burn-ups. The results are in qualitative agreement with experimental tests and show the stiffness decrease of the FAs during irradiation in the reactor core.

  14. The Use of Model Matching Video Analysis and Computational Simulation to Study the Ankle Sprain Injury Mechanism

    Directory of Open Access Journals (Sweden)

    Daniel Tik-Pui Fong

    2012-10-01

    Full Text Available Lateral ankle sprains continue to be the most common injury sustained by athletes and create an annual healthcare burden of over $4 billion in the U.S. alone. Foot inversion is suspected in these cases, but the mechanism of injury remains unclear. While kinematics and kinetics data are crucial in understanding the injury mechanisms, ligament behaviour measures – such as ligament strains – are viewed as the potential causal factors of ankle sprains. This review article demonstrates a novel methodology that integrates model matching video analyses with computational simulations in order to investigate injury-producing events for a better understanding of such injury mechanisms. In particular, ankle joint kinematics from actual injury incidents were deduced by model matching video analyses and then input into a generic computational model based on rigid bone surfaces and deformable ligaments of the ankle so as to investigate the ligament strains that accompany these sprain injuries. These techniques may have the potential for guiding ankle sprain prevention strategies and targeted rehabilitation therapies.

  15. FEMAXI-III: a computer code for the analysis of thermal and mechanical behavior of fuel rods

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Ichikawa, Michio; Iwano, Yoshihiko; Ito, Kenichi; Saito, Hiroaki; Kashima, Koichi; Kinoshita, Motoyasu; Okubo, Tadatsune.

    1985-12-01

    FEMAXI-III is a computer code to predict the thermal and mechanical behavior of a light water fuel rod during its irradiation life. It can analyze the integral behavior of a whole fuel rod throughout its life, as well as the localized behavior of a small part of fuel rod. The localized mechanical behavior such as the cladding ridge deformation is analyzed by the two-dimensional axisymmetric finite element method. FEMAXI-III calculates, in particular, the temperature distribution, the radial deformation, the fission gas release, and the inner gas pressure as a function of irradiation time and axial position, and the stresses and strains in the fuel and cladding at a small part of fuel rod as a function of irradiation time. For this purpose, Elasto-plasticity, creep, thermal expansion, fuel cracking and crack healing, relocation, densification, swelling, hot pressing, heat generation distribution, fission gas release, and fuel-cladding mechanical interaction are modelled and their interconnected effects are considered in the code. Efforts have been made to improve the accuracy and stability of finite element solution and to minimize the computer memory and running time. This report describes the outline of the code and the basic models involved, and also includes the application of the code and its input manual. (author)

  16. Reduced combustion mechanism for C1-C4 hydrocarbons and its application in computational fluid dynamics flare modeling.

    Science.gov (United States)

    Damodara, Vijaya; Chen, Daniel H; Lou, Helen H; Rasel, Kader M A; Richmond, Peyton; Wang, Anan; Li, Xianchang

    2017-05-01

    Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO 2 ) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C 4 hydrocarbons and soot precursor species (C 2 H 2 , C 2 H 4 , C 6 H 6 ). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. A reduced combustion mechanism containing 50 C 1 -C 4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.

  17. Computational and experimental fluid mechanics. Progress report no. 5 for period January 1. to December 31. 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The general purpose of the program is the development of efficient algorithms, their implementation in codes of Computational Fluid Mechanics (CFD), and the experimental verification of these codes. Flows of both fundamental and applied nature will be investigated, including flows in industrial process equipment, about aerodynamics structures and ships, and flows over bed forms of importance for sediment transport. The experimental work will include the development of improved techniques, emphasizing optical methods. The objectives will be met through a coordinated experimental and theoretical/computational research program, organized in 7 specific projects: 1. CFD-methods and algorithms. 2. Spectral element simulation of ultrafiltration. 3. Turbulent swirling flows. 4. Near-wall models of turbulence. 5. Flow over bed forms. 6. Flow past ship hull. 7. Development of experimental techniques. (EG) 10 refs.

  18. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

    KAUST Repository

    Jiang, Hanlun; Zhu, Lizhe; Hé liou, Amé lie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2016-01-01

    that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms

  19. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    Science.gov (United States)

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  20. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2011-10-01

    Full Text Available Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein environment have been examined via the use of the ONIOM(HF/6-31G(d:AMBER94 and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 methods within the mechanical embedding formulism and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 and ONIOM(MP2/6-311G(d,p//HF/6-31G(d:AMBER94 within the electronic embedding formulism. The results of the present study suggest that saccharopine reductase utilises a substrate-assisted catalytic pathway in which acid/base groups within the cosubstrates themselves facilitate the mechanistically required proton transfers. Thus, the enzyme appears to act most likely by binding the three required reactant molecules glutamate, α-aminoadipate-δ-semialdehyde and NADPH in a manner and polar environment conducive to reaction.

  1. Computational Modeling of Dynamic Failure Mechanisms in Armor/Anti-Armor Materials

    Science.gov (United States)

    1991-02-01

    June 1983. Xavier, Celio; Da Costa, Carlos R.C. Estudo do Comportamento Mecanico de Placas de Alumina Sob Impacto Balistico. (A Study of the Mechanical...best a 5 to 10% improvement in ballis­ tic performance. • Against oblique spaced arrays, DU alloys outper­ form tungsten alloys. A significant

  2. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry.

    Science.gov (United States)

    Matsuo, Yosuke

    2017-01-01

    In recent years, plant polyphenols have attracted great attention due to their wide range of biological activities. Certain kinds of polyphenols have complex structures; therefore, it is difficult to elucidate their total structure, including stereochemistry. In this study, we reinvestigated the stereostructures of two major C-glycosidic ellagitannins contained in Quercus plants, vescalagin and castalagin, and revised their stereostructures based on theoretical calculations of spectroscopic data. We also determined the structures of quercusnins A and B, isolated from the sapwood of Quercus crispula, based on theoretical calculations of NMR data. The oxidation mechanism of polyphenols has not been entirely elucidated. Therefore, we have also studied the oxidation mechanism of tea catechins during black tea production. Our investigation of the oxidation mechanism of black tea pigment theaflavins revealed that the difference in the position of the galloyl ester affords different oxidation products of theaflavins. In addition, oxidation products of pyrogallol-type catechins could be classified into three types-dehydrotheasinensins, theacitrins, and proepitheaflagallins; their detailed production and degradation mechanisms were also examined.

  3. The Antikythera Mechanism: Decoding an astonishing 2000 years old astronomical computer

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    A lecture that attempts to explain the functional details, the operation and the purpose of use of an ancient astronomical mechanism, built about 2000 ago. The Antikythera Mechanism was found by chance, in a shipwreck, close to the small Greek island of Antikythera, in April 1900, by sponge divers. The shipwreck was dated between 86 and 67 BCE (coins from Pergamon). Later the Mechanism was stylistically dated, around the second half of the 2nd century B.C. (200 – 100 BCE). It was a portable (laptop-size), geared mechanism which calculated and displayed, with good precision, the movement of the Sun and the Moon on the sky and the phase of the Moon for a given epoch. It could also calculate the dates of the four-year cycle of the Olympic Games and predict eclipses! Its 30, precisely cut, gears were driven by a manifold, with which the user could select, with the help of a pointer, any particula...

  4. Ultrasonographic and computed tomographic characterization and localization of suspected mechanical gastrointestinal obstruction in dogs.

    Science.gov (United States)

    Winter, Matthew D; Barry, Katie S; Johnson, Matthew D; Berry, Clifford R; Case, J Brad

    2017-08-01

    OBJECTIVE To evaluate the usefulness of noncontrast abdominal CT and abdominal ultrasonography for the detection of mechanical gastrointestinal obstruction in dogs and compare intestinal diameter ratios between dogs with and without obstruction. DESIGN Controlled trial. ANIMALS 16 client-owned dogs with physical and radiographic findings consistent with mechanical gastrointestinal obstruction. PROCEDURES Abdominal ultrasonography and CT were performed for all dogs, followed by laparoscopy and exploratory laparotomy. Time required for image acquisition and presence and location of gastrointestinal obstruction were assessed with both imaging modalities. Findings were compared with those of exploratory surgery. Maximum and minimum intestinal diameters were recorded on CT scans; values were converted to a ratio and compared between dogs with and without obstruction. RESULTS Results of abdominal CT and exploratory surgery for the diagnosis of mechanical obstruction agreed for all 16 dogs; 10 dogs had complete obstruction, 3 had partial obstruction, and 3 had no obstruction. In 1 dog with functional ileus, abdominal ultrasonography resulted in an incorrect diagnosis of mechanical obstruction. Median (interquartile range) image acquisition time for abdominal CT (2.5 minutes [2.0 to 3.8 minutes]) was markedly and significantly shorter than that for ultrasonography (26.0 minutes [22.0 to 35.8 minutes]). In both dorsal and transverse CT planes, dogs with gastrointestinal obstruction (partial or complete) had significantly larger intestinal diameter ratios than dogs without obstruction. CONCLUSIONS AND CLINICAL RELEVANCE Abdominal CT was feasible, rapid, and accurate for the diagnosis of mechanical obstruction in dogs with clinical signs and physical examination findings consistent with partial or complete gastrointestinal obstruction.

  5. Nonlinear Hyperbolic Equations - Theory, Computation Methods, and Applications. Volume 24. Note on Numerical Fluid Mechanics

    Science.gov (United States)

    1989-01-01

    IJ-1_1 - from which we deduce: H U 1/ f II Hu A//- + 2M AtAr , and indeed the expected estimate : // un+l //_ lluo/ + (2MT) Ax since nAt _9 T...the propa- gation of a planar premixed flame with one-step chemistry . In this case, diffusive and reactive terms are added to the energy and species...to use exceedingly fine computational scales, to resolve the chemistry and internal fluid layers fully (which would normally be prohibitive in a large

  6. Use of multidetector-row computed tomography scan to detect pannus formation in prosthetic mechanical aortic valves.

    Science.gov (United States)

    Aladmawi, Mohamed A; Pragliola, Claudio; Vriz, Olga; Galzerano, Domenico

    2017-04-01

    Obstruction of a mechanical aortic valve by pannus formation at the subvalvular level is a major long-term complication of aortic valve replacement (AVR). In fact, pannus is sometime difficult to differentiate from patient-prosthesis mismatch or valve thrombosis. In most cases cine-angiography and echocardiography, either transthoracic or transesophageal, cannot correctly visualize the complication when the leaflets show a normal mobility. Recent technological refinements made this difficult diagnosis possible by ECG-gated computed tomography (CT) scan which shows adequate images in 90% of the cases and can differentiate pannus from fresh and organized thrombus.

  7. Quantum mechanical computations and spectroscopy: from small rigid molecules in the gas phase to large flexible molecules in solution.

    Science.gov (United States)

    Barone, Vincenzo; Improta, Roberto; Rega, Nadia

    2008-05-01

    Interpretation of structural properties and dynamic behavior of molecules in solution is of fundamental importance to understand their stability, chemical reactivity, and catalytic action. While information can be gained, in principle, by a variety of spectroscopic techniques, the interpretation of the rich indirect information that can be inferred from the analysis of experimental spectra is seldom straightforward because of the subtle interplay of several different effects, whose specific role is not easy to separate and evaluate. In such a complex scenario, theoretical studies can be very helpful at two different levels: (i) supporting and complementing experimental results to determine the structure of the target molecule starting from its spectral properties; (ii) dissecting and evaluating the role of different effects in determining the observed spectroscopic properties. This is the reason why computational spectroscopy is rapidly evolving from a highly specialized research field into a versatile and widespread tool for the assignment of experimental spectra and their interpretation in terms of chemical physical effects. In such a situation, it becomes important that both computationally and experimentally oriented chemists are aware that new methodological advances and integrated computational strategies are available, providing reliable estimates of fundamental spectral parameters not only for relatively small molecules in the gas phase but also for large and flexible molecules in condensed phases. In this Account, we review the most significant methodological contributions from our research group in this field, and by exploiting some recent results of their application to the computation of IR, UV-vis, NMR, and EPR spectral parameters, we discuss the microscopic mechanisms underlying solvent and vibrational effects on the spectral parameters. After reporting some recent achievements for the study of excited states by first principle quantum mechanical

  8. Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information.

    Science.gov (United States)

    Kumaran, Dharshan; Banino, Andrea; Blundell, Charles; Hassabis, Demis; Dayan, Peter

    2016-12-07

    Knowledge about social hierarchies organizes human behavior, yet we understand little about the underlying computations. Here we show that a Bayesian inference scheme, which tracks the power of individuals, better captures behavioral and neural data compared with a reinforcement learning model inspired by rating systems used in games such as chess. We provide evidence that the medial prefrontal cortex (MPFC) selectively mediates the updating of knowledge about one's own hierarchy, as opposed to that of another individual, a process that underpinned successful performance and involved functional interactions with the amygdala and hippocampus. In contrast, we observed domain-general coding of rank in the amygdala and hippocampus, even when the task did not require it. Our findings reveal the computations underlying a core aspect of social cognition and provide new evidence that self-relevant information may indeed be afforded a unique representational status in the brain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. On the Design of Energy-Efficient Location Tracking Mechanism in Location-Aware Computing

    Directory of Open Access Journals (Sweden)

    MoonBae Song

    2005-01-01

    Full Text Available The battery, in contrast to other hardware, is not governed by Moore's Law. In location-aware computing, power is a very limited resource. As a consequence, recently, a number of promising techniques in various layers have been proposed to reduce the energy consumption. The paper considers the problem of minimizing the energy used to track the location of mobile user over a wireless link in mobile computing. Energy-efficient location update protocol can be done by reducing the number of location update messages as possible and switching off as long as possible. This can be achieved by the concept of mobility-awareness we propose. For this purpose, this paper proposes a novel mobility model, called state-based mobility model (SMM to provide more generalized framework for both describing the mobility and updating location information of complexly moving objects. We also introduce the state-based location update protocol (SLUP based on this mobility model. An extensive experiment on various synthetic datasets shows that the proposed method improves the energy efficiency by 2 ∼ 3 times with the additional 10% of imprecision cost.

  10. Fuel assemblies mechanical behaviour improvements based on design changes and loading patterns computational analyses

    International Nuclear Information System (INIS)

    Marin, J.; Aullo, M.; Gutierrez, E.

    2001-01-01

    In the past few years, incomplete RCCA insertion events (IRI) have been taking place at some nuclear plants. Large guide thimble distortion caused by high compressive loads together with the irradiation induced material creep and growth, is considered as the primary cause of those events. This disturbing phenomenon is worsened when some fuel assemblies are deformed to the extent that they push the neighbouring fuel assemblies and the distortion is transmitted along the core. In order to better understand this mechanism, ENUSA has developed a methodology based on finite element core simulation to enable assessments on the propensity of a given core loading pattern to propagate the distortion along the core. At the same time, the core loading pattern could be decided interacting with nuclear design to obtain the optimum response under both, nuclear and mechanical point of views, with the objective of progressively attenuating the core distortion. (author)

  11. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong Dong, E-mail: ydliu@bjut.edu.cn; Zhong, Rugang

    2017-01-05

    Highlights: • NDMA formation mechanisms from dimethylamine in chloramination/ozonation were reinvestigated by G4 method. • The reactivity order of halo-/hydroxyl-amines reacting with dimethylamine is NHCl{sub 2} ∼ NHBrCl > NH{sub 2}Cl >> NH{sub 2}OH. • Nitrene compound is an important intermediate to form NDMA in oxidation reaction. • Oxidation of unsymmetrical dimethylhydrazine by O{sub 2} is significantly less feasible compared to that by O{sub 3}. • The amines containing the second nitrogen source are potential NDMA precursors in ozonation. - Abstract: N-nitrosodimethylamine (NDMA) as a disinfection by-product has recently become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, the formation mechanisms of NDMA from dimethylamine (DMA) during chloramination and ozonation were investigated by using the quantum chemical G4 method. The reactivity of haloamines and hydroxylamine reacting with DMA was found in the order: NHCl{sub 2} ∼ NHBrCl (Br{sup -}leaving) > NHBr{sub 2} > NH{sub 2}Cl ∼ NH{sub 2}Br >> NH{sub 2}OH. This offers a theoretical support for the experimentally proposed mechanism that dimethylamine reacts with NHCl{sub 2} rather than NH{sub 2}Cl to form chlorinated unsymmetrical dimethylhydrazine intermediate and the existence of bromochloramine in the presence of bromide during chloramination, and explains the observation that NDMA yield during ozonation is much lower than that during chloramination. Importantly, an N,N-dimethylaminonitrene was found to be a significant intermediate to form NDMA in oxidation reactions by molecular oxygen and ozone. Additionally, results suggest that the amines containing the second nitrogen source directly connecting or close to the N-(CH{sub 3}){sub 2} moiety are potential significant NDMA precursors upon ozonation. The findings of this study are helpful for expanding the knowledge of NDMA formation mechanism, and predicting potential NDMA precursors

  12. Computational modeling predicts the ionic mechanism of late-onset responses in Unipolar Brush Cells

    Directory of Open Access Journals (Sweden)

    Sathyaa eSubramaniyam

    2014-08-01

    Full Text Available Unipolar Brush Cells (UBCs have been suggested to have a strong impact on cerebellar granular layer functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamatergic synaptic responses, a late-onset response (LOR composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013. The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment and axon incorporating biologically realistic representations of ionic currents and a generic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a low-threshold spike sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of delayed bursts, which could take part to the formation of tunable delay-lines in the local microcircuit.

  13. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  14. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  15. Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

    Science.gov (United States)

    Subramaniyam, Sathyaa; Solinas, Sergio; Perin, Paola; Locatelli, Francesca; Masetto, Sergio; D'Angelo, Egidio

    2014-01-01

    Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

  16. Formation mechanism of NDMA from ranitidine, trimethylamine, and other tertiary amines during chloramination: a computational study.

    Science.gov (United States)

    Liu, Yong Dong; Selbes, Meric; Zeng, Chengchu; Zhong, Rugang; Karanfil, Tanju

    2014-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.

  17. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum mechanics. The key computational issues, including the peculiar homogenization technique and treatment of periodical boundary conditions in the non-local continuum model, are clarified. Both models are implemented through a three-dimensional geometric representation of the carbon nanotubes network, which has been detailed in Part I. Numerical results are shown and compared for both models in order to test convergence and sensitivity toward input parameters. It is found that both approaches provide similar results in terms of homogenized quantities but locally can lead to very different microscopic fields. © 2013 Elsevier B.V. All rights reserved.

  18. Diseño de mecanismos de palancas asistido por computadora. // Computer Aided Design of lever mechanisms.

    Directory of Open Access Journals (Sweden)

    J. L. Betancourt Herrera

    2001-07-01

    Full Text Available En la práctica del diseño industrial hay múltiples problemas que requieren de la creación de un mecanismo concaracterísticas de movimiento peculiares. La elección de un método que permita la síntesis estructural, el planteamiento ysolución de las ecuaciones correspondientes, requeridas para el análisis cinemático de los mecanismos de palancas, en unaforma clara y simple, es un problema muy complejo de resolver en sentido general.Tomando como referencia la teoría para la formación de los grupos de Assur, el autor desarrolló el método de los gruposestructurales y sobre esta base el software DSM (Diseño y Simulación de Mecanismos, que es la herramienta de cómputopropuesta para apoyar al diseñador en el proceso de Diseño Cualitativo de Mecanismos de Palancas Asistido porComputadora, que consiste en un proceso iterativo entre síntesis y análisis con el que se pueden obtener los resultados de lavariación de la estructura de un mecanismo y de sus parámetros fundamentales, prácticamente en tiempo real.En el presente trabajo se definen y ejemplifican los conceptos y elementos principales relacionados con el diseñocualitativo de mecanismos de palancas asistido por computadora.Palabras claves: CAD, mecanismos de palancas, diseño industrial, análisis cinemático, síntesis estructural.___________________________________________________________________________AbstractThere are series of problems in industrial design practice that require a mechanism with specific characteristic movement.Selecting a method for achieving a clear and simple structural synthesis and cinematic analysis of lever mechanisms isgenerally understood as a hard-solving problem. Based on Assur´s Group Forming Theory, the author developed theStructural Groups Method and the DSM software (Design and Simulation of Mechanisms. This software is a tool intendedto help designers in the process of Computer Assisted Qualitative Design of Lever Mechanisms. It consists

  19. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models.

    Science.gov (United States)

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-03-01

    Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when

  20. Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

    Science.gov (United States)

    Kaluza, Pablo; Urdapilleta, Eugenio

    2014-10-01

    Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron's computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.

  1. Quantification of ventilated facade efficiency by using computational fluid mechanics techniques

    International Nuclear Information System (INIS)

    Mora Perez, M.; Lopez Patino, G.; Bengochea Escribano, M. A.; Lopez Jimenez, P. A.

    2011-01-01

    In some countries, summer over-heating is a big problem in a buildings energy balance. Ventilated facades are a useful tool when applied to building design, especially in bio climatic building design. A ventilated facade is a complex, multi-layer structural solution that enables dry installation of the covering elements. The objective of this paper is to quantify the efficiency improvement in the building thermal when this sort of facade is installed. These improvements are due to convection produced in the air gap of the facade. This convection depends on the air movement inside the gap and the heat transmission in this motion. These quantities are mathematically modelled by Computational Fluid Dynamics (CFD) techniques using a commercial code: STAR CCM+. The proposed method allows an assessment of the energy potential of the ventilated facade and its capacity for cooling. (Author) 23 refs.

  2. Premonitory urges and tics in Tourette syndrome: computational mechanisms and neural correlates.

    Science.gov (United States)

    Conceição, Vasco A; Dias, Ângelo; Farinha, Ana C; Maia, Tiago V

    2017-10-01

    Tourette syndrome is characterized by open motor behaviors - tics - but another crucial aspect of the disorder is the presence of premonitory urges: uncomfortable sensations that typically precede tics and are temporarily alleviated by tics. We review the evidence implicating the somatosensory cortices and the insula in premonitory urges and the motor cortico-basal ganglia-thalamo-cortical loop in tics. We consider how these regions interact during tic execution, suggesting that the insula plays an important role as a nexus linking the sensory and emotional character of premonitory urges with their translation into tics. We also consider how these regions interact during tic learning, integrating the neural evidence with a computational perspective on how premonitory-urge alleviation reinforces tics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A computational study on the influence of insect wing geometry on bee flight mechanics

    Directory of Open Access Journals (Sweden)

    Jeffrey Feaster

    2017-12-01

    Full Text Available Two-dimensional computational fluid dynamics (CFD is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics.

  4. Computed tomography is not justified in every pediatric blunt trauma patient with a suspicious mechanism of injury.

    Science.gov (United States)

    Hershkovitz, Yehuda; Zoarets, Itai; Stepansky, Albert; Kozer, Eran; Shapira, Zahar; Klin, Baruch; Halevy, Ariel; Jeroukhimov, Igor

    2014-07-01

    Computed tomography (CT) has become an important tool for the diagnosis of intra-abdominal and chest injuries in patients with blunt trauma. The role of CT in conscious asymptomatic patients with a suspicious mechanism of injury remains controversial. This controversy intensifies in the management of pediatric blunt trauma patients, who are much more susceptible to radiation exposure. The objective of this study was to evaluate the role of abdominal and chest CT imaging in asymptomatic pediatric patients with a suspicious mechanism of injury. Forty-two pediatric patients up to 15 years old were prospectively enrolled. All patients presented with a suspicious mechanism of blunt trauma and multisystem injury. They were neurologically intact and had no signs of injury to the abdomen or chest. Patients underwent CT imaging of the chest and abdomen as part of the initial evaluation. Thirty-one patients (74%) had a normal CT scan. Two patients of 11 with an abnormal CT scan required a change in management and were referred for observation in the Intensive Care Unit. None of the patients required surgical intervention. The routine use of CT in asymptomatic pediatric patients with a suspicious mechanism of blunt trauma injury is not justified. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The role of electrostatics in TrxR electron transfer mechanism: A computational approach.

    Science.gov (United States)

    Teixeira, Vitor H; Capacho, Ana Sofia C; Machuqueiro, Miguel

    2016-12-01

    Thioredoxin reductase (TrxR) is an important enzyme in the control of the intracellular reduced redox environment. It transfers electrons from NADPH to several molecules, including its natural partner, thioredoxin. Although there is a generally accepted model describing how the electrons are transferred along TrxR, which involves a flexible arm working as a "shuttle," the molecular details of such mechanism are not completely understood. In this work, we use molecular dynamics simulations with Poisson-Boltzmann/Monte Carlo pKa calculations to investigate the role of electrostatics in the electron transfer mechanism. We observed that the combination of redox/protonation states of the N-terminal (FAD and Cys59/64) and C-terminal (Cys497/Selenocysteine498) redox centers defines the preferred relative positions and allows for the flexible arm to work as the desired "shuttle." Changing the redox/ionization states of those key players, leads to electrostatic triggers pushing the arm into the pocket when oxidized, and pulling it out, once it has been reduced. The calculated pKa values for Cys497 and Selenocysteine498 are 9.7 and 5.8, respectively, confirming that the selenocysteine is indeed deprotonated at physiological pH. This can be an important advantage in terms of reactivity (thiolate/selenolate are more nucleophilic than thiol/selenol) and ability to work as an electrostatic trigger (the "shuttle" mechanism) and may be the reason why TrxR uses selenium instead of sulfur. Proteins 2016; 84:1836-1843. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    Science.gov (United States)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  7. Computational study of hydrogen shifts and ring-opening mechanisms in α-pinene ozonolysis products

    DEFF Research Database (Denmark)

    Kurtén, Theo; Rissanen, Matti P.; Mackeprang, Kasper

    2015-01-01

    , sterically unhindered) H-shifts of all four peroxy radicals formed in the ozonolysis of α-pinene using density functional (ωB97XD) and coupled cluster [CCSD(T)-F12] theory. In contrast to the related but chemically simpler cyclohexene ozonolysis system, none of the calculated H-shifts have rate constants...... products in the α-pinene ozonolysis system, additional ring-opening reaction mechanisms breaking the cyclobutyl ring are therefore needed. We further investigate possible uni- and bimolecular pathways for opening the cyclobutyl ring in the α-pinene ozonolysis system....

  8. Uncovering stability mechanisms in microbial ecosystems - combining microcosm experiments, computational modelling and ecological theory in a multidisciplinary approach

    Science.gov (United States)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Kästner, Matthias; Miltner, Anja; Thullner, Martin; Wick, Lukas

    2015-04-01

    Although bacterial degraders in soil are commonly exposed to fluctuating environmental conditions, the functional performance of the biodegradation processes can often be maintained by resistance and resilience mechanisms. However, there is still a gap in the mechanistic understanding of key factors contributing to the stability of such an ecosystem service. Therefore we developed an integrated approach combining microcosm experiments, simulation models and ecological theory to directly make use of the strengths of these disciplines. In a continuous interplay process, data, hypotheses, and central questions are exchanged between disciplines to initiate new experiments and models to ultimately identify buffer mechanisms and factors providing functional stability. We focus on drying and rewetting-cycles in soil ecosystems, which are a major abiotic driver for bacterial activity. Functional recovery of the system was found to depend on different spatial processes in the computational model. In particular, bacterial motility is a prerequisite for biodegradation if either bacteria or substrate are heterogeneously distributed. Hence, laboratory experiments focussing on bacterial dispersal processes were conducted and confirmed this finding also for functional resistance. Obtained results will be incorporated into the model in the next step. Overall, the combination of computational modelling and laboratory experiments identified spatial processes as the main driving force for functional stability in the considered system, and has proved a powerful methodological approach.

  9. Molecular models of zinc phthalocyanines: semi-empirical molecular orbital computations and physicochemical properties studied by molecular mechanics simulations

    International Nuclear Information System (INIS)

    Gantchev, Tsvetan G.; van Lier, Johan E.; Hunting, Darel J.

    2005-01-01

    To build 3D-molecular models of Zinc-phthalocyanines (ZnPc) and to study their diverse chemical and photosensitization properties, we performed quantum mechanical molecular orbital (MO) semi-empirical (AM1) computations of the ground, excited singlet and triplet states as well as free radical (ionic) species. RHF and UHF (open shell) geometry optimizations led to near-perfect symmetrical ZnPc. Predicted ionization potentials (IP), electron affinities (EA) and lowest electronic transitions of ZnPc are in good agreement with the published experimental and theoretical data. The computation-derived D 4h /D 2h -symmetry 3D-structures of ground and excited states and free radicals of ZnPc, together with the frontier orbital energies and Mulliken electron population analysis enabled us to build robust molecular models. These models were used to predict important chemical-reactivity entities such as global electronegativity (χ), hardness (η) and local softness based on Fukui-functions analysis. Examples of molecular mechanics (MM) applications of the 3D-molecular models are presented as approaches to evaluate solvation free energy (ΔG 0 ) solv and to estimate ground- and excited- state oxidation/reduction potentials as well as intermolecular interactions and stability of ground and excited state dimers (exciplexes) and radical ion-pairs

  10. FRAPCON-2: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.

  11. Nonlinear mechanics of non-rigid origami: an efficient computational approach

    Science.gov (United States)

    Liu, K.; Paulino, G. H.

    2017-10-01

    Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.

  12. SATURN-FS 1: A computer code for thermo-mechanical fuel rod analysis

    International Nuclear Information System (INIS)

    Ritzhaupt-Kleissl, H.J.; Heck, M.

    1993-09-01

    The SATURN-FS code was written as a general revision of the SATURN-2 code. SATURN-FS is capable to perform a complete thermomechanical analysis of a fuel pin, with all thermal, mechanical and irradiation-based effects. Analysis is possible for LWR and for LMFBR fuel pins. The thermal analysis consists of calculations of the temperature profile in fuel, gap and in the cladding. Pore migration, stoichiometry change of oxide fuel, gas release and diffusion effects are taken into account. The mechanical modeling allows the non steady-state analysis of elastic and nonelastic fuel pin behaviour, such as creep, strain hardening, recovery and stress relaxation. Fuel cracking and healing is taken into account as well as contact and friction between fuel and cladding. The modeling of the irradiation effects comprises swelling and fission gas production, Pu-migration and irradiation induced creep. The code structure, the models and the requirements for running the code are described in the report. Recommendations for the application are given. Program runs for verification and typical examples of application are given in the last part of this report. (orig.) [de

  13. Computational study on the inhibition mechanism of cruzain by nitrile-containing molecules.

    Science.gov (United States)

    Méndez-Lucio, Oscar; Romo-Mancillas, Antonio; Medina-Franco, José L; Castillo, Rafael

    2012-05-01

    Cysteine proteases from parasites as well as from mammals are promising drug targets for parasitic infections and systemic human diseases, respectively. Many reversible and irreversible inhibitors of this very large class of proteins have been designed. Among others, molecules with a nitrile moiety, which is a group that is susceptible to a nucleophilic attack by the enzyme, have been identified as good inhibitors. Although it is known that the nitrile group binds covalently to Cys25, there are no reports about the energetics involved in the mechanism of this process. Herein, density functional theory and quantum semi-empirical calculations were conducted in order to study the molecular recognition of cysteine proteases by nitrile-containing molecules. Results reported in this paper suggest an interaction that starts with a nucleophilic attack from the Cys25 to the inhibitor followed by a proton transfer from His162. Only one transition state was detected; however, we found the existence of an energy plateau in the potential energy surface. Based on the proposed mechanism, some structural features that could improve the biological activity of nitrile-containing molecules toward cysteine proteases are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism

    Science.gov (United States)

    Liao, Jielou

    2004-03-01

    Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.

  15. The mechanical design of a transfemoral prosthesis using computational tools and design methodology

    Directory of Open Access Journals (Sweden)

    John Sánchez Otero

    2012-09-01

    Full Text Available Artificial limb replacement with lower limb prostheses has been widely reported in current scientific literature. There are many lower limb prosthetic designs ranging from a single-axis knee mechanism to complex mechanisms involving microcontrollers, made from many materials ranging from lightweight, high specific strength ones (e.g., carbon fibre to traditional forms (e.g., stainless steel. However, the challenge is to design prostheses whose movement resembles the human body’s natural movement as closely as possible. Advances in prosthetics have enabled many amputees to return to their everyday activities; however, such prostheses are expensive, some costing as much as $60,000. Many of the affected population in Colombia have scarce economic resources; there is therefore a need to develop affordable functional prostheses.The Universidad del Norte’s Materials, Processes and Design Research Group and the Robotics and Intelligent Systems Group have been working on this line of research to develop modular prostheses which can be adjusted to each patient’s requirements. This research represents an initial methodological approach to developing a prosthesis in which software tools have been used (the finite element method with a criteria relationship matrix for selecting the best alternative while considering different aspects such as mod-ularity, cost, stiffness and weight.

  16. Cell-biomaterial mechanical interaction in the framework of tissue engineering: insights, computational modeling and perspectives.

    Science.gov (United States)

    Sanz-Herrera, Jose A; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.

  17. Environmental Mechanisms Shaping the Nature of Dwarf Spheroidal Galaxies: The View of Computer Simulations

    Directory of Open Access Journals (Sweden)

    Lucio Mayer

    2010-01-01

    cosmic ultraviolet ionizing flux was much higher than today, and was thus able to keep the gas in the dwarfs warm and diffuse, were rapidly stripped of their baryons via ram pressure and tidal forces, producing very dark-matter-dominated objects with truncated star-formation histories, such as the Draco dSph. The low star-formation efficiency expected in such low-metallicity objects prior to their infall was crucial for keeping their disks gas dominated until stripping took over. Therefore gas stripping along with inefficient star-formation provides a new feedback mechanism, alternative to photoevaporation or supernovae feedback, playing a crucial role in dwarf galaxy formation and evolution. We also discuss how the ultra-faint dSphs belong to a different population of lower-mass dwarf satellites that were mostly shaped by reionization rather than by environmental mechanisms (“reionization fossils”. Finally, we scrutinize the various caveats in the current understanding of environmental effects as well as other recent ideas on the origin of Local Group dSphs.

  18. Computational studies on non-succinimide-mediated stereoinversion mechanism of aspartic acid residues assisted by phosphate

    Science.gov (United States)

    Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Takahashi, Ohgi; Oda, Akifumi

    2018-03-01

    Although nearly all of the amino acids that constitute proteins are l-amino acids, d-amino acid residues in human proteins have been recently reported. d-amino acid residues cause a change in the three-dimensional structure of proteins, and d-aspartic acid (Asp) residues are considered to be one of the causes of age-related diseases. The stereoinversion of Asp residues in peptides and proteins is thought to proceed via a succinimide intermediate; however, it has been reported that stereoinversion can occur even under conditions where a succinimide intermediate cannot be formed. In order to elucidate the non-succinimide-mediated stereoinversion pathway, we investigated the stereoinversion of l-Asp to d-Asp catalysed by phosphate and estimated the activation barrier using B3LYP/6-31+G(d,p) density functional theory (DFT) calculations. For the DFT calculations, a model compound in which the Asp residue is capped with acetyl and methyl-amino groups on the N- and C-termini, respectively, was used. The calculated activation barrier was not excessively high for the stereoinversion to occur in vivo. Therefore, this stereoinversion mechanism may compete with the succinimide-mediated mechanism.

  19. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution.

    Directory of Open Access Journals (Sweden)

    Frédéric Boudon

    2015-01-01

    Full Text Available The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.

  20. Quality of abdominal computed tomography angiography: hand versus mechanical intravenous contrast administration in children

    Energy Technology Data Exchange (ETDEWEB)

    Ayyala, Rama S.; Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Zurakowski, David [Boston Children' s Hospital and Harvard Medical School, Departments of Anesthesiology and Surgery, Boston, MA (United States)

    2015-11-15

    Abdominal CT angiography has been increasingly used for evaluation of various conditions related to abdominal vasculature in the pediatric population. However, no direct comparison has evaluated the quality of abdominal CT angiography in children using hand versus mechanical administration of intravenous (IV) contrast agent. To compare hand versus mechanical administration of IV contrast agent in the quality of abdominal CT angiography in the pediatric population. We retrospectively reviewed the electronic medical record to identify pediatric patients (≤18 years) who had abdominal CT angiography between August 2012 and August 2013. The information obtained includes: (1) type of administration of IV contrast agent (hand [group 1] versus mechanical [group 2]), (2) size (gauge) of IV catheter, (3) amount of contrast agent administered and (4) rate of contrast agent administration (ml/s). Two reviewers independently performed qualitative and quantitative evaluation of abdominal CT angiography image quality. Qualitative evaluation of abdominal CT angiography image quality was performed by visual assessment of the degree of contrast enhancement in the region of interest (ROI) based on a 4-point scale. Quantitative evaluation of each CT angiography examination was performed by measuring the Hounsfield unit (HU) using an ROI within the abdominal aorta at two levels (celiac axis and the inferior mesenteric artery) for each child. Analysis of variance (ANOVA) using the F-test was applied to compare contrast enhancement within the abdominal aorta at two levels (celiac axis and inferior mesenteric artery) between hand administration and mechanical administration of IV contrast methods with adjustment for age. We identified 46 pediatric patients (24 male, 22 female; mean age 7.3 ± 5.5 years; range 5 weeks to 18 years) with abdominal CT angiography performed during the study period. Of these patients, 16 (35%; 1.7 ± 2.2 years; range 5 weeks to 5 years) had hand

  1. Quality of abdominal computed tomography angiography: hand versus mechanical intravenous contrast administration in children

    International Nuclear Information System (INIS)

    Ayyala, Rama S.; Lee, Edward Y.; Zurakowski, David

    2015-01-01

    Abdominal CT angiography has been increasingly used for evaluation of various conditions related to abdominal vasculature in the pediatric population. However, no direct comparison has evaluated the quality of abdominal CT angiography in children using hand versus mechanical administration of intravenous (IV) contrast agent. To compare hand versus mechanical administration of IV contrast agent in the quality of abdominal CT angiography in the pediatric population. We retrospectively reviewed the electronic medical record to identify pediatric patients (≤18 years) who had abdominal CT angiography between August 2012 and August 2013. The information obtained includes: (1) type of administration of IV contrast agent (hand [group 1] versus mechanical [group 2]), (2) size (gauge) of IV catheter, (3) amount of contrast agent administered and (4) rate of contrast agent administration (ml/s). Two reviewers independently performed qualitative and quantitative evaluation of abdominal CT angiography image quality. Qualitative evaluation of abdominal CT angiography image quality was performed by visual assessment of the degree of contrast enhancement in the region of interest (ROI) based on a 4-point scale. Quantitative evaluation of each CT angiography examination was performed by measuring the Hounsfield unit (HU) using an ROI within the abdominal aorta at two levels (celiac axis and the inferior mesenteric artery) for each child. Analysis of variance (ANOVA) using the F-test was applied to compare contrast enhancement within the abdominal aorta at two levels (celiac axis and inferior mesenteric artery) between hand administration and mechanical administration of IV contrast methods with adjustment for age. We identified 46 pediatric patients (24 male, 22 female; mean age 7.3 ± 5.5 years; range 5 weeks to 18 years) with abdominal CT angiography performed during the study period. Of these patients, 16 (35%; 1.7 ± 2.2 years; range 5 weeks to 5 years) had hand

  2. Quality of abdominal computed tomography angiography: hand versus mechanical intravenous contrast administration in children.

    Science.gov (United States)

    Ayyala, Rama S; Zurakowski, David; Lee, Edward Y

    2015-11-01

    Abdominal CT angiography has been increasingly used for evaluation of various conditions related to abdominal vasculature in the pediatric population. However, no direct comparison has evaluated the quality of abdominal CT angiography in children using hand versus mechanical administration of intravenous (IV) contrast agent. To compare hand versus mechanical administration of IV contrast agent in the quality of abdominal CT angiography in the pediatric population. We retrospectively reviewed the electronic medical record to identify pediatric patients (≤18 years) who had abdominal CT angiography between August 2012 and August 2013. The information obtained includes: (1) type of administration of IV contrast agent (hand [group 1] versus mechanical [group 2]), (2) size (gauge) of IV catheter, (3) amount of contrast agent administered and (4) rate of contrast agent administration (ml/s). Two reviewers independently performed qualitative and quantitative evaluation of abdominal CT angiography image quality. Qualitative evaluation of abdominal CT angiography image quality was performed by visual assessment of the degree of contrast enhancement in the region of interest (ROI) based on a 4-point scale. Quantitative evaluation of each CT angiography examination was performed by measuring the Hounsfield unit (HU) using an ROI within the abdominal aorta at two levels (celiac axis and the inferior mesenteric artery) for each child. Analysis of variance (ANOVA) using the F-test was applied to compare contrast enhancement within the abdominal aorta at two levels (celiac axis and inferior mesenteric artery) between hand administration and mechanical administration of IV contrast methods with adjustment for age. We identified 46 pediatric patients (24 male, 22 female; mean age 7.3 ± 5.5 years; range 5 weeks to 18 years) with abdominal CT angiography performed during the study period. Of these patients, 16 (35%; 1.7 ± 2.2 years; range 5 weeks to 5 years) had hand

  3. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  4. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanpeng [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Fang, Hansun [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ji, Yuemeng; Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2014-08-15

    Graphical abstract: - Highlights: • Computational approach is effective to reveal the transformation mechanism of MPB. • MPB degradation was more dependent on the [{sup •} OH] than temperature during AOPs. • O{sub 2} could enhance MPB degradation, but more harmful products were formed. • The risks of MPB products in natural waters should be considered seriously. • The risks of MPB products can be overlooked in AOPs due to short half-time. - Abstract: Hydroxyl radicals ({sup •} OH) are strong oxidants that can degrade organic pollutants in advanced oxidation processes (AOPs). The mechanisms, kinetics, and toxicity assessment of the {sup •} OH-initiated oxidative degradation of the phenolic preservative, methylparaben (MPB), were systematically investigated using a computational approach, as the supplementary information for experimental data. Results showed that MPB can be initially attacked by {sup •} OH via OH-addition and H-abstraction routes. Among these routes, the {sup •} OH addition to the C atom at the ortho-position of phenolic hydroxyl group was the most significant route. However, the methyl-H-abstraction route also cannot be neglected. Further, the formed transient intermediates, OH-adduct ({sup •} MPB-OH{sub 1}) and dehydrogenated radical ({sup •} MPB(-H)α), could be easily transformed to several stable degradation products in the presence of O{sub 2} and {sup •} OH. To better understand the potential toxicity of MPB and its products to aquatic organisms, both acute and chronic toxicities were assessed computationally at three trophic levels. Both MPB and its products, particularly the OH-addition products, are harmful to aquatic organisms. Therefore, the application of AOPs to remove MPB should be carefully performed for safe water treatment.

  5. Some properties of the resonant state in quantum mechanics and its computation

    International Nuclear Information System (INIS)

    Hatano, Naomichi; Sasada, Keita; Nakamura, Hiroaki; Petrosky, Tomio

    2007-08-01

    The resonant state of the open quantum system is studied from the viewpoint of the outgoing momentum flux. We show that the number of particles is conserved for a resonant state, it we use an expanding volume of integration in order to take account of the outgoing momentum flux; the number of particles would decay exponentially in a fixed volume of integration. Moreover, we introduce new numerical methods of treating the resonant state with the use of the effective potential. We first give a numerical method of finding a resonance pole in the complex energy plane. The method seeks an energy eigenvalue iteratively. We found that our method leads to a super-convergence, the convergence exponential with respect to the iteration step. The present method is completely independent of commonly used complex scaling. We also give a numerical trick for computing the time evolution of the resonant state in limited spatial area. Since the wave function of the resonant state is diverging away from the scattering potential, it has been previously difficult to follow its time evolution numerically in a finite area. (author)

  6. Computer Simulation Study of the Stability Mechanism of Thermophile, MJ0305

    Science.gov (United States)

    Song, Hyundeok; Beck, Thomas

    2011-04-01

    Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered in a 2600m-deep Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is MJ's chloride channel protein. The structure of MJ0305 was built by homology modeling. We compared the stability of MJ0305 with mesophilic Ecoli at 300K, 330K, and 360K by computer simulation to test the effects of temperature. Our results show that high temperatures significantly affect the number of salt bridges and hydrogen bonds. High temperatures decreased the average number of hydrogen bonds for Ecoli and MJ0305. Increased salt bridges at 330K make MJ0305 more stable. Network analysis of MJ0305 showed an increase in the number of hubs at high temperatures. In contrast, the number of hubs of Ecoli was decreased at high temperatures. Calculated network entropy is proportional to the number of hubs. Increased network entropy of MJ0305 at 330K implies increased robustness.

  7. Mechanism of extractive/oxidative desulfurization using the ionic liquid inimidazole acetate: a computational study.

    Science.gov (United States)

    Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin

    2017-02-01

    The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.

  8. Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator

    International Nuclear Information System (INIS)

    Martin, K; Esguerra, J; Dodson, C; Razani, A

    2015-01-01

    In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing.In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations. (paper)

  9. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    Science.gov (United States)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most

  10. Development of antipsychotic medications with novel mechanisms of action based on computational modeling of hippocampal neuropathology.

    Directory of Open Access Journals (Sweden)

    Peter J Siekmeier

    Full Text Available A large number of cellular level abnormalities have been identified in the hippocampus of schizophrenic subjects. Nonetheless, it remains uncertain how these pathologies interact at a system level to create clinical symptoms, and this has hindered the development of more effective antipsychotic medications. Using a 72-processor supercomputer, we created a tissue level hippocampal simulation, featuring multicompartmental neuron models with multiple ion channel subtypes and synaptic channels with realistic temporal dynamics. As an index of the schizophrenic phenotype, we used the specific inability of the model to attune to 40 Hz (gamma band stimulation, a well-characterized abnormality in schizophrenia. We examined several possible combinations of putatively schizophrenogenic cellular lesions by systematically varying model parameters representing NMDA channel function, dendritic spine density, and GABA system integrity, conducting 910 trials in total. Two discrete "clusters" of neuropathological changes were identified. The most robust was characterized by co-occurring modest reductions in NMDA system function (-30% and dendritic spine density (-30%. Another set of lesions had greater NMDA hypofunction along with low level GABA system dysregulation. To the schizophrenic model, we applied the effects of 1,500 virtual medications, which were implemented by varying five model parameters, independently, in a graded manner; the effects of known drugs were also applied. The simulation accurately distinguished agents that are known to lack clinical efficacy, and identified novel mechanisms (e.g., decrease in AMPA conductance decay time constant, increase in projection strength of calretinin-positive interneurons and combinations of mechanisms that could re-equilibrate model behavior. These findings shed light on the mechanistic links between schizophrenic neuropathology and the gamma band oscillatory abnormalities observed in the illness. As such, they

  11. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC. Quarterly report January through March 2011. Year 1 Quarter 2 progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S. A.; Kulak, R. F.; Bojanowski, C. (Energy Systems)

    2011-05-19

    This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.

  12. Mechanical Behavior of Nanostructured and Ultrafine Grained Materials under Shock Wave Loadings. Experimental Data and Results of Computer Simulation.

    Science.gov (United States)

    Skripnyak, Vladimir

    2011-06-01

    Features of mechanical behavior of nanostructured (NS) and ultrafine grained (UFG) metal and ceramic materials under quasistatic and shock wave loadings are discussed in this report. Multilevel models developed within the approach of computational mechanics of materials were used for simulation mechanical behavior of UFG and NS metals and ceramics. Comparisons of simulation results with experimental data are presented. Models of mechanical behavior of nanostructured metal alloys takes into account a several structural factors influencing on the mechanical behavior of materials (type of a crystal lattice, density of dislocations, a size of dislocation substructures, concentration and size of phase precipitation, and distribution of grains sizes). Results show the strain rate sensitivity of the yield stress of UFG and polycrystalline alloys is various in a range from 103 up to 106 1/s. But the difference of the Hugoniot elastic limits of a UFG and coarse-grained alloys may be not considerable. The spall strength, the yield stress of UFG and NS alloys are depend not only on grains size, but a number of factors such as a distribution of grains sizes, a concentration and sizes of voids and cracks, a concentration and sizes of phase precipitation. Some titanium alloys with grain sizes from 300 to 500 nm have the quasi-static yield strength and the tensile strength twice higher than that of coarse grained counterparts. But the spall strength of the UFG titanium alloys is only 10 percents above than that of coarse grained alloys. At the same time it was found the spall strength of the bulk UFG aluminium and magnesium alloys with precipitation strengthening is essentially higher in comparison of coarse-grained counterparts. The considerable decreasing of the strain before failure of UFG alloys was predicted at high strain rates. The Hugoniot elastic limits of oxide nanoceramics depend not only on the porosity, but also on sizes and volume distribution of voids.

  13. Computational issues in the simulation of two-dimensional discrete dislocation mechanics

    Science.gov (United States)

    Segurado, J.; LLorca, J.; Romero, I.

    2007-06-01

    The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.

  14. Analytical and Computational Modeling of Mechanical Waves in Microscale Granular Crystals: Nonlinearity and Rotational Dynamics

    Science.gov (United States)

    Wallen, Samuel P.

    Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing

  15. Limitations of using micro-computed tomography to predict bone-implant contact and mechanical fixation.

    Science.gov (United States)

    Liu, S; Broucek, J; Virdi, A S; Sumner, D R

    2012-01-01

    Fixation of metallic implants to bone through osseointegration is important in orthopaedics and dentistry. Model systems for studying this phenomenon would benefit from a non-destructive imaging modality so that mechanical and morphological endpoints can more readily be examined in the same specimens. The purpose of this study was to assess the utility of an automated microcomputed tomography (μCT) program for predicting bone-implant contact (BIC) and mechanical fixation strength in a rat model. Femurs in which 1.5-mm-diameter titanium implants had been in place for 4 weeks were either embedded in polymethylmethacrylate (PMMA) for preparation of 1-mm-thick cross-sectional slabs (16 femurs: 32 slabs) or were used for mechanical implant pull-out testing (n= 18 femurs). All samples were scanned by μCT at 70 kVp with 16 μm voxels and assessed by the manufacturer's software for assessing 'osseointegration volume per total volume' (OV/TV). OV/TV measures bone volume per total volume (BV/TV) in a 3-voxel-thick ring that by default excludes the 3 voxels immediately adjacent to the implant to avoid metal-induced artefacts. The plastic-embedded samples were also analysed by backscatter scanning electron microscopy (bSEM) to provide a direct comparison of OV/TV with a well-accepted technique for BIC. In μCT images in which the implant was directly embedded within PMMA, there was a zone of elevated attenuation (>50% of the attenuation value used to segment bone from marrow) which extended 48 μm away from the implant surface. Comparison of the bSEM and μCT images showed high correlations for BV/TV measurements in areas not affected by metal-induced artefacts. In addition for bSEM images, we found that there were high correlations between peri-implant BV/TV within 12 μm of the implant surface and BIC (correlation coefficients ≥0.8, p implant pull-out strength (r= 0.401, p= 0.049) and energy to failure (r= 0.435, p= 0.035). Thus, the need for the 48-μm-thick exclusion

  16. Experimental and computational studies on the DNA translocation mechanism of the T4 viral packaging motor

    Science.gov (United States)

    Migliori, Amy; Arya, Gaurav; Smith, Douglas E.

    2012-10-01

    Bacteriophage T4 is a double stranded DNA virus that infects E.coli by injecting the viral genome through the cellular wall of a host cell. The T4 genome must be ejected from the viral capsid with sufficient force to ensure infection. To generate high ejection forces, the genome is packaged to high density within the viral capsid. A DNA translocation motor, in which the protein gp17 hydrolyzes ATP and binds to the DNA, is responsible for translocating the genome into the capsid during viral maturation of T4. This motor generates forces in excess of 60 pN and packages DNA at rates exceeding 2000 base pairs/second (bp/s)1. Understanding these small yet powerful motors is important, as they have many potential applications. Though much is known about the activity of these motors from bulk and single molecule biophysical techniques, little is known about their detailed molecular mechanism. Recently, two structures of gp17 have been obtained: a high-resolution X-ray crystallographic structure showing a monomeric compacted form of the enzyme, and a cryo-electron microscopic structure of the extended form of gp17 in complex with actively packaging prohead complexes. Comparison of these two structures indicates several key differences, and a model has been proposed to explain the translocation action of the motor2. Key to this model are a set of residues forming ion pairs across two domains of the gp17 molecule that are proposed to be involved in force generation by causing the collapse of the extended form of gp17. Using a dual optical trap to measure the rates of DNA packaging and the generated forces, we present preliminary mutational data showing that these several of these ion pairs are important to motor function. We have also performed preliminary free energy calculations on the extended and collapsed state of gp17, to confirm that these interdomain ion pairs have large contributions to the change in free energy that occurs upon the collapse of gp17 during the

  17. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos.

    Directory of Open Access Journals (Sweden)

    Karen A Roddy

    2011-02-01

    Full Text Available Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint.

  18. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    Science.gov (United States)

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  19. Comparison of the key mechanisms leading to rollovers in Liquefied Natural Gas using Computational Fluid Dynamics

    Science.gov (United States)

    Hubert, Antoine; Dadonau, Maksim; Dembele, Siaka; Denissenko, Petr; Wen, Jennifer

    2017-11-01

    Growing demand for the LNG fosters growth of the number of production sites with varying composition and density. Combining different sources of LNG may result in a stably stratified system, in which heat and mass transfer between the layers is limited. Heating of the LNG due to wall thermal conductivity leads to formation of convection cells confined within the layers. While the upper layer can release the extra energy via preferential methane boil-off, the bottom layer cannot and hence becomes superheated. Gradual density equilibration reduces stratification and may eventually lead to a sudden mixing event called ``rollover'', accompanied by violent evaporation of the superheated LNG. Three phenomena are potentially responsible for density equilibration. The first is the growing difference in thermal expansion of the layers due to the reduced ability of the bottom layer to reject heat. The second is the penetration of the heated near-wall boundary layer into the upper layer. The third is the ``entrainment mixing'' occurring at the contact surface between the two layers. The present study uses CFD to compare these mechanisms. Boussinesq approximation and an extended version of the k- ɛ model is used. The code is validated by comparison with a large-scale LNG rollover experiment.

  20. EXPERIMENTAL AND COMPUTATIONAL STUDIES OF THE FORMATION MECHANISM OF PROTONATED INTERSTELLAR DIAZINES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe-Chen; Cole, Callie A.; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 (United States); Snow, Theodore P., E-mail: zhwa4666@colorado.edu [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-01-10

    Studies of interstellar chemistry have grown in number and complexity by both observations and laboratory measurements, and nitrogen-containing aromatics have been implicated as important interstellar molecules. In this paper, the gas-phase collision induced dissociation (CID) processes of protonated pyridazine (1,2-diazine), pyrimidine (1,3-diazine), and pyrazine (1,4-diazine) cations (C{sub 4}H{sub 5}N{sub 2} {sup +}) are investigated in detail both experimentally and theoretically. The major neutral loss for all three CID processes is HCN, leading to the formation of C{sub 3}H{sub 4}N{sup +} isomers; our density functional theory (DFT) calculations support and elucidate our experimental results. The formation of C{sub 3}H{sub 4}N{sup +} isomers from the reaction of abundant interstellar acrylonitrile (CH{sub 2}CHCN) and H{sup +}is also studied employing DFT calculations. Our results lead to a novel mechanism for interstellar protonated diazine formation from the consecutive reactions of CH{sub 2}CHCN+ H{sup +} + HCN. Moreover, our results motivate the continuing search for interstellar C{sub 3}H{sub 4}N{sup +} isomers as well as polycyclic aromatic N-containing hydrocarbons (PANHs)

  1. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.

    Science.gov (United States)

    Gulam Razul, M S; Hendry, J G; Kusalik, P G

    2005-11-22

    In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.

  2. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  3. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches.

    Science.gov (United States)

    Rehman, Md Tabish; Shamsi, Hira; Khan, Asad U

    2014-06-02

    The mechanism of interaction between imipenem and HSA was investigated by various techniques like fluorescence, UV.vis absorbance, FRET, circular dichroism, urea denaturation, enzyme kinetics, ITC, and molecular docking. We found that imipenem binds to HSA at a high affinity site located in subdomain IIIA (Sudlow's site I) and a low affinity site located in subdomain IIA.IIB. Electrostatic interactions played a vital role along with hydrogen bonding and hydrophobic interactions in stabilizing the imipenem.HSA complex at subdomain IIIA, while only electrostatic and hydrophobic interactions were present at subdomain IIA.IIB. The binding and thermodynamic parameters obtained by ITC showed that the binding of imipenem to HSA was a spontaneous process (ΔGD⁰(D)= -32.31 kJ mol(-1) for high affinity site and ΔGD⁰(D) = -23.02 kJ mol(-1) for low affinity site) with binding constants in the range of 10(4)-10(5) M(-1). Spectroscopic investigation revealed only one binding site of imipenem on HSA (Ka∼10(4) M(-1)). FRET analysis showed that the binding distance between imipenem and HSA (Trp-214) was optimal (r = 4.32 nm) for quenching to occur. Decrease in esterase-like activity of HSA in the presence of imipenem showed that Arg-410 and Tyr-411 of subdomain IIIA (Sudlow's site II) were directly involved in the binding process. CD spectral analysis showed altered conformation of HSA upon imipenem binding. Moreover, the binding of imipenem to subdomain IIIA (Sudlow's site II) of HSA also affected its folding pathway as clear from urea-induced denaturation studies.

  4. Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System

    Science.gov (United States)

    Abdul-Kreem, Luma Issa; Neumann, Heiko

    2015-01-01

    The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells. PMID:26554589

  5. Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System.

    Directory of Open Access Journals (Sweden)

    Luma Issa Abdul-Kreem

    Full Text Available The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields. In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells.

  6. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    Science.gov (United States)

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular

  7. The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash

    International Nuclear Information System (INIS)

    Chen, Goong; Wang, Yi-Ching; Gu, Cong; Perronnet, Alain; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O

    2017-01-01

    Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics . This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not

  8. The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash

    Science.gov (United States)

    Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.

    2017-03-01

    Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not

  9. Investigating the gas sorption mechanism in an rht -metal-organic framework through computational studies

    KAUST Repository

    Pham, Tony T.

    2014-01-09

    experimental results for the two groups are quantitatively different, the sorption mechanisms (for both crystal structures and sorbates) are broadly similar and not inconsistent with either set of experimental data; the theoretical sorption isotherms themselves resemble those by Eddaoudi et al. © 2013 American Chemical Society.

  10. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  11. Upregulation of EMMPRIN (OX47 in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Qun Wang

    2015-01-01

    Full Text Available Matrix metalloproteinases (MMPs are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR, and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.

  12. Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and smectite clays via a comparative computational study.

    Science.gov (United States)

    Kang, Fuxing; Ge, Yangyang; Hu, Xiaojie; Goikavi, Caspar; Waigi, Michael Gatheru; Gao, Yanzheng; Ling, Wanting

    2016-12-15

    In current adsorption studies of biotoxins to phyllosilicate clays, multiply weak bonding types regarding these adsorptions are not well known; the major attractive forces, especially for kaolinite and illite, are difficult to be identified as compared to smectite with exchangeable cations. Here, we discriminated the bonding types of aflatoxin B1 (AFB1) contaminant to these clays by combined batch experiment with model computation, expounded their bonding mechanisms which have been not quantitatively described by researchers. The observed adsorbent-to-solution distribution coefficients (K d ) of AFB1 presented in increasing order of 18.5-37.1, 141.6-158.3, and 354.6-484.7L/kg for kaolinite, illite, and smectite, respectively. Normalization of adsorbent-specific surface areas showed that adsorption affinity of AFB1 is mainly dependent on the outside surfaces of clay aggregates. The model computation and test of ionic effect further suggested that weakly electrostatic attractions ((Si/Al-OH) 2 ⋯(OC) 2 ) are responsible for AFB1-kaolinite adsorption (K d , 18.5-37.1L/kg); a moderate electron-donor-acceptor attraction ((CO) 2 ⋯K + ⋯(O-Al) 3 ) is related to AFB1-illite adsorption (K d , 141.6-158.3L/kg); a strong calcium-bridging linkage ((CO) 2 ⋯Ca 2+ ⋯(O-Si) 4 ) is involved in AFB1-smectite adsorption (K d , 354.6-484.7L/kg). Changes in Gibbs free energy (ΔG°) suggested that the computed result is reliable, providing a good reproduction of AFB1-clay interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. PBDOWN - a computer code for simulating core material discharge and thermal to mechanical energy conversion in LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Royl, P.

    1981-01-01

    PBDOWN is a computer code that simulates the blowdown of confined boiling materials ('pools') into a colder upper coolant plenum as time dependent ejection and expansion with consideration of a few selected exchange processes. Its application is restricted to situations resulting from hypothetical loss of flow (LOF) accidents in LMFBR's, where enough voiding has occured, that in core sodium vapor pressures become negligible. PBDOWN considers one working fluid for the discharge process (either fuel or steel) and a maximum of two working fluids (either fuel and sodium or steel and sodium) for the expansion process in the upper coolant plenum. Entrainment of sodium at the accelerated bubble liquid interfaces is mechanistically calculated by a Taylor instability entrainment model. Simulation of a hemispherical expansion form together with this mechanistic entrainment model gives a new integrated calculation of the time dependent sodium mass in the bubble. The paper summarizes the basic equations and assumptions of this computer model. Sample results compare different heat transfer and Na entrainment models during steel and fuel driven discharge processes. Mechanistic sodium entrainment simulation for SNR-type reactors coupled with a realistic heat transfer model is shown to reduce the integral mechanical work potential by a factor of 1.3 to 2.0 over the isentropic energy of the discharge working fluids. (orig.)

  14. Computational methods in the exploration of the classical and statistical mechanics of celestial scale strings: Rotating Space Elevators

    Science.gov (United States)

    Knudsen, Steven; Golubovic, Leonardo

    2015-04-01

    With the advent of ultra-strong materials, the Space Elevator has changed from science fiction to real science. We discuss computational and theoretical methods we developed to explore classical and statistical mechanics of rotating Space Elevators (RSE). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a motion which is nearly a superposition of two rotations: geosynchronous rotation around the Earth, and yet another faster rotational motion of the string which goes on around a line perpendicular to the Earth at its equator. Strikingly, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth (starting point) whereas the other one is deeply in the outer space. The RSE concept thus solves a major problem in space elevator science which is how to supply energy to the climbers moving along space elevator strings. The exploration of the dynamics of a floppy string interacting with objects sliding along it has required development of novel finite element algorithms described in this presentation. We thank Prof. Duncan Lorimer of WVU for kindly providing us access to his computational facility.

  15. Preliminary results of very fast computation of Moment Magnitude and focal mechanism in the context of tsunami warning

    Science.gov (United States)

    Schindelé, François; Roch, Julien; Rivera, Luis

    2015-04-01

    Various methodologies were recently developed to compute the moment magnitude and the focal mechanism, thanks to the real time access to numerous broad-band seismic data. Several methods were implemented at the CENALT, in particular the W-Phase method developed by H. Kanamori and L. Rivera. For earthquakes of magnitudes in the range 6.5-9.0, this method provides accurate results in less than 40 minutes. The context of the tsunami warning in Mediterranean, a small basin impacted in less than one hour, and with small sources but some with high tsunami potential (Boumerdes 2003), a comprehensive tsunami warning system in that region should include very fast computation of the seismic parameters. The results of the values of Mw, the focal depth and the type of fault (reverse, normal, strike-slip) are the most relevant parameters expected for the tsunami warning. Preliminary results will be presented using data in the North-eastern and Mediterranean region for the recent period 2010-2014. This work is funded by project ASTARTE - - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839

  16. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    Science.gov (United States)

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and

  17. Experimental Study and Computational Simulations of Key Pebble Bed Thermo-mechanics Issues for Design and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua; Ougouag, Abderrafi

    2014-07-08

    An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escape from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.

  18. Insights into the molecular mechanisms of Polygonum multiflorum Thunb-induced liver injury: a computational systems toxicology approach.

    Science.gov (United States)

    Wang, Yin-Yin; Li, Jie; Wu, Zeng-Rui; Zhang, Bo; Yang, Hong-Bin; Wang, Qin; Cai, Ying-Chun; Liu, Gui-Xia; Li, Wei-Hua; Tang, Yun

    2017-05-01

    An increasing number of cases of herb-induced liver injury (HILI) have been reported, presenting new clinical challenges. In this study, taking Polygonum multiflorum Thunb (PmT) as an example, we proposed a computational systems toxicology approach to explore the molecular mechanisms of HILI. First, the chemical components of PmT were extracted from 3 main TCM databases as well as the literature related to natural products. Then, the known targets were collected through data integration, and the potential compound-target interactions (CTIs) were predicted using our substructure-drug-target network-based inference (SDTNBI) method. After screening for hepatotoxicity-related genes by assessing the symptoms of HILI, a compound-target interaction network was constructed. A scoring function, namely, Ascore, was developed to estimate the toxicity of chemicals in the liver. We conducted network analysis to determine the possible mechanisms of the biphasic effects using the analysis tools, including BiNGO, pathway enrichment, organ distribution analysis and predictions of interactions with CYP450 enzymes. Among the chemical components of PmT, 54 components with good intestinal absorption were used for analysis, and 2939 CTIs were obtained. After analyzing the mRNA expression data in the BioGPS database, 1599 CTIs and 125 targets related to liver diseases were identified. In the top 15 compounds, seven with Ascore values >3000 (emodin, quercetin, apigenin, resveratrol, gallic acid, kaempferol and luteolin) were obviously associated with hepatotoxicity. The results from the pathway enrichment analysis suggest that multiple interactions between apoptosis and metabolism may underlie PmT-induced liver injury. Many of the pathways have been verified in specific compounds, such as glutathione metabolism, cytochrome P450 metabolism, and the p53 pathway, among others. Hepatitis symptoms, the perturbation of nine bile acids and yellow or tawny urine also had corresponding pathways

  19. Heterogeneities in metallic glasses. Atomistic computer simulations on the structure and mechanical properties of copper-zirconium alloys and composites

    International Nuclear Information System (INIS)

    Brink, Tobias

    2017-01-01

    The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the

  20. The Basilar Artery on Computed Tomography Angiography Score for Acute Basilar Artery Occlusion Treated with Mechanical Thrombectomy.

    Science.gov (United States)

    Yang, Haihua; Ma, Ning; Liu, Lian; Gao, Feng; Mo, Dapeng; Miao, Zhongrong

    2018-06-01

    Recently, the Basilar Artery on Computed Tomography Angiography (BATMAN) score predicts clinical outcome of acute basilar artery occlusion (BAO), yet there is no extensive external validation. The purpose of this study was to validate the prognostic value of BATMAN scoring system for the prediction of clinical outcome in patients with acute BAO treated with endovascular mechanical thrombectomy by using cerebral digital subtraction angiography (DSA). We analyzed the clinical and angiographic data of consecutive patients with acute BAO from March 2012 to November 2016. The BATMAN scoring system was used to assess the collateral status and thrombus burden. Thrombolysis in Cerebral Infarction (TICI) score 2b-3 was defined as successful recanalization. Receiver operating characteristic (ROC) curve was used to determine the area under the curve (AUC) and the optimum cutoff value. Multivariate regression analysis was used to identify the predictor of clinical outcome. This study included 63 patients with acute BAO who underwent mechanical thrombectomy. Of these patients, 90.5% (57/63) achieved successful recanalization (TICI, 2b-3) and 34.9% (22/63) had a favorable outcome (modified Rankin Scale score 0-2). ROC analysis indicated that the AUC of the BATMAN score was .722 (95% confidence interval [CI], .594-.827), and the optimal cutoff value was 3 (sensitivity = 72.73, specificity = 63.41). In multivariate logistic regression analysis, the BATMAN score higher than 3 was associated with favorable outcome (odds ratio, 5.214; 95% CI, 1.47-18.483; P = .011). The BATMAN score on DSA seems to predict the functional outcome in patients of acute BAO treated with mechanical thrombectomy. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Heterogeneities in metallic glasses. Atomistic computer simulations on the structure and mechanical properties of copper-zirconium alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Brink, Tobias

    2017-07-01

    The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the

  2. Low Frequency Electroacupuncture Alleviated Spinal Nerve Ligation Induced Mechanical Allodynia by Inhibiting TRPV1 Upregulation in Ipsilateral Undamaged Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yong-Liang Jiang

    2013-01-01

    Full Text Available Neuropathic pain is an intractable problem in clinical practice. Accumulating evidence shows that electroacupuncture (EA with low frequency can effectively relieve neuropathic pain. Transient receptor potential vanilloid type 1 (TRPV1 plays a key role in neuropathic pain. The study aimed to investigate whether neuropathic pain relieved by EA administration correlates with TRPV1 inhibition. Neuropathic pain was induced by right L5 spinal nerve ligation (SNL in rats. 2 Hz EA stimulation was administered. SNL induced mechanical allodynia in ipsilateral hind paw. SNL caused a significant reduction of TRPV1 expression in ipsilateral L5 dorsal root ganglia (DRG, but a significant up-regulation in ipsilateral L4 and L6 DRGs. Calcitonin gene-related peptide (CGRP change was consistent with that of TRPV1. EA alleviated mechanical allodynia, and inhibited TRPV1 and CGRP overexpressions in ipsilateral L4 and L6 DRGs. SNL did not decrease pain threshold of contralateral hind paw, and TRPV1 expression was not changed in contralateral L5 DRG. 0.001, 0.01 mg/kg TRPV1 agonist 6′-IRTX fully blocked EA analgesia in ipsilateral hind paw. 0.01 mg/kg 6′-IRTX also significantly decreased pain threshold of contralateral paw. These results indicated that inhibition of TRPV1 up-regulation in ipsilateral adjacent undamaged DRGs contributed to low frequency EA analgesia for mechanical allodynia induced by spinal nerve ligation.

  3. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Jacopo Biasetti

    2017-10-01

    Full Text Available Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  4. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study.

    Science.gov (United States)

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  5. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  6. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  7. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  8. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator

    International Nuclear Information System (INIS)

    Sharpe, Michael B.; Moseley, Douglas J.; Purdie, Thomas G.

    2006-01-01

    The geometric accuracy and precision of an image-guided treatment system were assessed. Image guidance is performed using an x-ray volume imaging (XVI) system integrated with a linear accelerator and treatment planning system. Using an amorphous silicon detector and x-ray tube, volumetric computed tomography images are reconstructed from kilovoltage radiographs by filtered backprojection. Image fusion and assessment of geometric targeting are supported by the treatment planning system. To assess the limiting accuracy and precision of image-guided treatment delivery, a rigid spherical target embedded in an opaque phantom was subjected to 21 treatment sessions over a three-month period. For each session, a volumetric data set was acquired and loaded directly into an active treatment planning session. Image fusion was used to ascertain the couch correction required to position the target at the prescribed iso-center. Corrections were validated independently using megavoltage electronic portal imaging to record the target position with respect to symmetric treatment beam apertures. An initial calibration cycle followed by repeated image-guidance sessions demonstrated the XVI system could be used to relocate an unambiguous object to within less than 1 mm of the prescribed location. Treatment could then proceed within the mechanical accuracy and precision of the delivery system. The calibration procedure maintained excellent spatial resolution and delivery precision over the duration of this study, while the linear accelerator was in routine clinical use. Based on these results, the mechanical accuracy and precision of the system are ideal for supporting high-precision localization and treatment of soft-tissue targets

  9. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  10. Mechanism to induce scoliosis in Duchenne muscular dystrophy; A study of paraspinal muscle by X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Noriaki; Fujimoto, Yasuyo (National Nishinara Hosital, Nara (Japan)); Takayanagi, Tetsuya; Mano, Yukio

    1992-09-01

    We studied the mechanism to induce scoliosis in Duchenne muscular dystrophy (DMD) by use of X-ray computed tomography (CT) of paraspinal muscles. CT examination of paraspinal muscles was performed on 15 DMD patients at the following six levels: (1) Th3 vertebrae (upper thoracic spine level); (2) Th6 vertebrae (middle thoracic spine level); (3) Th10 vertebrae (lower thoracic spine level); (4) L1 vertebrae (upper lumbar spine level); (5) L3 vertebrae (middle lumbar spine level); (6) L5 vertebrae (lower lumbar spine level). We evaluated the degeneration of paraspinal muscle by a decrese in ratio-density of the muscle which indicates infiltration of fatty tissue. The degeneration of the lateral portion of paraspinal muscle was more marked than that of the medial portion. The muscle was most severely affected at the middle lumbar spine level, showing a tendency to increase degeneration at the lower level of the spine. In cases showing laterality of the degeneration of paraspinal muscle, the less affected muscle on CT was located at the convex site of scoliosis. We speculate that the scoliosis occurs when DMD patients have asymmetrical paraspinal muscle degeneration, leading them to take compensatory posture. (author).

  11. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods.

    Directory of Open Access Journals (Sweden)

    Bashir A Akhoon

    Full Text Available The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falciparum (P. falciparum. In this study, we examined the resistance mechanism against ATQ in P. falciparum through computational methods. Here, we reported a reliable protein model of Cyt bc1 complex containing Cyt b and the Iron-Sulphur Protein (ISP of P. falciparum using composite modeling method by combining threading, ab initio modeling and atomic-level structure refinement approaches. The molecular dynamics simulations suggest that Y268S mutation causes ATQ resistance by reducing hydrophobic interactions between Cyt bc1 protein complex and ATQ. Moreover, the important histidine contact of ATQ with the ISP chain is also lost due to Y268S mutation. We noticed the induced mutation alters the arrangement of active site residues in a fashion that enforces ATQ to find its new stable binding site far away from the wild-type binding pocket. The MM-PBSA calculations also shows that the binding affinity of ATQ with Cyt bc1 complex is enough to hold it at this new site that ultimately leads to the ATQ resistance.

  12. Investigations to the suitability of a computer-aided design system for mechanical construction in the ZAT of KFA Juelich

    International Nuclear Information System (INIS)

    Schoerner, M.; Koch, R.; Cordewiner, H.J.; Bachner, E.

    1983-06-01

    There is an extensive range of CAD systems in the marketplace which have been developed by various institutions for different types of applications and for different products, in some cases linked to specific hardware. Apart from such obvious features like prices, rates of sale and computer performance, other criteria such as documentation, ease of adaption and expansion, which are, as a rule, difficult to judge and quantify, play a decisive role. As an optimal CAD system does not exist in respect of every type of application the intended usage must be taken seriously into consideration when selecting a CAD system. On the basis of fundamental investigations of the suitability of CAD for the department for mechanical construction of ZAT at the KFA Juelich, the requirements and special needs of the construction process in the ZAT have been examined. In a short survey of the available CAD-systems a pre choice on the basis of some definitive musts has been made. The performance profile of the remaining systems has been thouroughly investigated and compared with the requirements of the ZAT. Thus the necessary decisions can be made on the basis of documented assessments. (orig.) [de

  13. Cone-beam computed tomography analysis of the apical third of curved roots after mechanical preparation with different automated systems

    International Nuclear Information System (INIS)

    Oliveira, Cesar Augusto Pereira; Pascoalato, Cristina; Meurer, Maria Ines; Silva, Silvio Rocha Correa

    2009-01-01

    The present study evaluated by cone-beam computed tomography (CBCT) the apical canal transportation and centralizing ability of different automated systems after root canal preparation. The mesiobuccal canals of maxillary first molars (n=10 per group) were prepared with: GI - reciprocating system with K-Flexofile; GII - reciprocating system with NiTiFlex files; GIII - rotary system with K3 instruments; GIV - rotary system with RaCe instruments. CBCT scans were taken before and after biomechanical preparation up to a 40.02 diameter. Canal transportation was determined by measuring the smallest distance between the inner canal walls and the mesial and distal sides of the root. The centralization ability corresponded to the difference between the measurements from transportation evaluation, using the linear voxel to voxel method of analysis. The mean transportation was 0.06 ± 0.14 mm, with a tendency to deviate to the mesial side of the root (n=22), with no statistically significant difference among the groups (p=0.4153). The mean centralization index was 0.15 ± 0.65 also without statistically significant difference among the groups (p=0.0881). It may be concluded that apical canal transportation and centralization ability were not influenced by the type of mechanical movement and instruments used. (author)

  14. CASTEM: a system of finite element computer programs for elastic and inelastic analysis of mechanical structures of reactors

    International Nuclear Information System (INIS)

    Hoffmann, A.; Livolant, M.; Roche, R.

    1978-01-01

    The nuclear research center at Saclay has developed the system of computer program CASTEM for the analysis of mechanical structures of reactors. This finite element system is designed specially to deal with nonlinear problems concerning both the material (plasticity, thermoplasticity, creep) and the geometry (nonlinear relationships between displacement and strain, buckling). Furthermore, a special effort has been devoted to the processing of dynamic problems (vibrations, natural modes, earthquakes, shock phenomena, etc..). The CASTEM system includes a large number of elementary modules corresponding to a total of over 80,000 Fortran instructions. Allowing the calculation of various structural geometries, including: axisymmetrical shells and liquids (with non axisymmetrical loading); pipes and frames; two-dimensional massive structures; three-dimensional shells; three-dimensional massive structures. Complex dynamic analysis can be made by combination of substructures natural mode shapes. Pre and post processors: automatic meshing, plotting of results, direct comparison of stresses to ASME limits make the use of the system easy and time saving

  15. Cone-beam computed tomography analysis of the apical third of curved roots after mechanical preparation with different automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cesar Augusto Pereira; Pascoalato, Cristina [University of Southern Santa Catarina (UNISUL), Tubarao, SC (Brazil); Meurer, Maria Ines [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil); Silva, Silvio Rocha Correa, E-mail: silvio@foar.unesp.b [Sao Paulo State University (UNESP), Araraquara, SP (Brazil)

    2009-07-01

    The present study evaluated by cone-beam computed tomography (CBCT) the apical canal transportation and centralizing ability of different automated systems after root canal preparation. The mesiobuccal canals of maxillary first molars (n=10 per group) were prepared with: GI - reciprocating system with K-Flexofile; GII - reciprocating system with NiTiFlex files; GIII - rotary system with K3 instruments; GIV - rotary system with RaCe instruments. CBCT scans were taken before and after biomechanical preparation up to a 40.02 diameter. Canal transportation was determined by measuring the smallest distance between the inner canal walls and the mesial and distal sides of the root. The centralization ability corresponded to the difference between the measurements from transportation evaluation, using the linear voxel to voxel method of analysis. The mean transportation was 0.06 +- 0.14 mm, with a tendency to deviate to the mesial side of the root (n=22), with no statistically significant difference among the groups (p=0.4153). The mean centralization index was 0.15 +- 0.65 also without statistically significant difference among the groups (p=0.0881). It may be concluded that apical canal transportation and centralization ability were not influenced by the type of mechanical movement and instruments used. (author)

  16. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    International Nuclear Information System (INIS)

    Smith, J.A.; Salzbrenner, D.; Sorenson, K.; McConnell, P.

    1998-04-01

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL's extensive research and development program, funded primarily by the U. S. Department of Energy's Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed

  17. A study on the validity of a computer-based game to assess cognitive processes, reward mechanisms, and time perception in children aged 4-8 years

    NARCIS (Netherlands)

    Peijnenborgh, J.C.A.W.; Hurks, P.M.; Aldenkamp, A.P.; van der Spek, E.D.; Rauterberg, G.W.M.; Vles, J.S.H.; Hendriksen, J.G.M.

    2016-01-01

    BACKGROUND: A computer-based game, named Timo's Adventure, was developed to assess specific cognitive functions (eg, attention, planning, and working memory), time perception, and reward mechanisms in young school-aged children. The game consists of 6 mini-games embedded in a story line and includes

  18. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs.

    Science.gov (United States)

    Holzapfel, Gerhard A; Stadler, Michael; Gasser, Thomas C

    2005-02-01

    Clinical studies have identified factors such as the stent design and the deployment technique that are one cause for the success or failure of angioplasty treatments. In addition, the success rate may also depend on the stenosis type. Hence, for a particular stenotic artery, the optimal intervention can only be identified by studying the influence of factors such as stent type, strut thickness, geometry of the stent cell, and stent-artery radial mismatch with the wall. We propose a methodology that allows a set of stent parameters to be varied, with the aim of evaluating the difference in the mechanical environment within the wall before and after angioplasty with stenting. Novel scalar quantities attempt to characterize the wall changes inform of the contact pressure caused by the stent struts, and the stresses within the individual components of the wall caused by the stent. These quantities are derived numerically and serve as indicators, which allow the determination of the correct size and type of the stent for each individual stenosis. In addition, the luminal change due to angioplasty may be computed as well. The methodology is demonstrated by using a full three-dimensional geometrical model of a postmortem specimen of a human iliac artery with a stenosis using imaging data. To describe the material behavior of the artery, we considered mechanical data of eight different vascular tissues, which formed the stenosis. The constitutive models for the tissue components capture the typical anisotropic, nonlinear and dissipative characteristics under supra-physiological loading conditions. Three-dimensional stent models were parametrized in such a way as to enable new designs to be generated simply with regard to variations in their geometric structure. For the three-dimensional stent-artery interaction we use a contact algorithm based on smooth contact surfaces of at least C-continuity, which prevents numerical problems known from standard facet-based contact

  19. Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans.

    Science.gov (United States)

    Wiputra, Hadi; Lai, Chang Quan; Lim, Guat Ling; Heng, Joel Jia Wei; Guo, Lan; Soomar, Sanah Merchant; Leo, Hwa Liang; Biwas, Arijit; Mattar, Citra Nurfarah Zaini; Yap, Choon Hwai

    2016-12-01

    There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts. Copyright © 2016 the American Physiological Society.

  20. The effect of heart failure and left ventricular assist device treatment on right ventricular mechanics: a computational study.

    Science.gov (United States)

    Park, Jun I K; Heikhmakhtiar, Aulia Khamas; Kim, Chang Hyun; Kim, Yoo Seok; Choi, Seong Wook; Song, Kwang Soup; Lim, Ki Moo

    2018-05-22

    Although it is important to analyze the hemodynamic factors related to the right ventricle (RV) after left ventricular assist device (LVAD) implantation, previous studies have focused only on the alteration of the ventricular shape and lack quantitative analysis of the various hemodynamic parameters. Therefore, we quantitatively analyzed various hemodynamic parameters related to the RV under normal, heart failure (HF), and HF incorporated with continuous flow LVAD therapy by using a computational model. In this study, we combined a three-dimensional finite element electromechanical model of ventricles, which is based on human ventricular morphology captured by magnetic resonance imaging (MRI) with a lumped model of the circulatory system and continuous flow LVAD function in order to construct an integrated model of an LVAD implanted-cardiovascular system. To induce systolic dysfunction, the magnitude of the calcium transient function under HF condition was reduced to 70% of the normal value, and the time constant was reduced by 30% of the normal value. Under the HF condition, the left ventricular end systolic pressure decreased, the left ventricular end diastolic pressure increased, and the pressure in the right atrium (RA), RV, and pulmonary artery (PA) increased compared with the normal condition. The LVAD therapy decreased the end-systolic pressure of the LV by 41%, RA by 29%, RV by 53%, and PA by 71%, but increased the right ventricular ejection fraction by 52% and cardiac output by 40%, while the stroke work was reduced by 67% compared with the HF condition without LVAD. The end-systolic ventricular tension and strain decreased with the LVAD treatment. LVAD enhances CO and mechanical unloading of the LV as well as those of the RV and prevents pulmonary hypertension which can be induced by HF.

  1. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.

    Science.gov (United States)

    Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin

    2015-11-01

    In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Computer code SICHTA-85/MOD 1 for thermohydraulic and mechanical modelling of WWER fuel channel behaviour during LOCA and comparison with original version of the SICHTA code

    International Nuclear Information System (INIS)

    Bujan, A.; Adamik, V.; Misak, J.

    1986-01-01

    A brief description is presented of the expansion of the SICHTA-83 computer code for the analysis of the thermal history of the fuel channel for large LOCAs by modelling the mechanical behaviour of fuel element cladding. The new version of the code has a more detailed treatment of heat transfer in the fuel-cladding gap because it also respects the mechanical (plastic) deformations of the cladding and the fuel-cladding interaction (magnitude of contact pressure). Also respected is the change in pressure of the gas filling of the fuel element, the mechanical criterion is considered of a failure of the cladding and the degree is considered of the blockage of the through-flow cross section for coolant flow in the fuel channel. The LOCA WWER-440 model computation provides a comparison of the new SICHTA-85/MOD 1 code with the results of the original 83 version of SICHTA. (author)

  3. COMPUTER SIMULATION IN MECHANICS TEACHING AND LEARNING: A CASE STUDY ON STUDENTS’ UNDERSTANDING OF FORCE AND MOTION

    Directory of Open Access Journals (Sweden)

    Dyah Permata Sari

    2015-12-01

    Full Text Available The objective of this research was to develop a force and motion simulation based on the open-source Easy Java Simulation. The process of computer simulation development was done following the ADDIE model. Based on the Analysis and Design phases, the Development phase used the open-source Easy Java Simulation (EJS to develop a computer simulation with physics content that was relevant to the subtopic. Computing and communication technology continue to make an increasing impact on all aspects of education. EJS is a powerful didactic resource that gives us the ability to focus our students’ attention on the principles of physics. Using EJS, a computer simulation was created through which the motion of a particle under the action of a specific force can be studied. The implementation phase is implemented the computer simulation in the teaching and learning process. To describe the improvements in the students’ understanding of the force and motion concepts, we used a t-test to evaluate each of the four phases. These results indicated that the use of the computer simulation could improve students’ force and motion conceptual competence regarding Newton's second law of motion.

  4. Computer modelling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2009-01-01

    Purpose: This paper presents Neuro-Lab. It is an authorship programme, which use algorithms of artificial intelligence for structural steels mechanical properties estimation.Design/methodology/approach: On the basis of chemical composition, parameters of heat and mechanical treatment and elements of geometrical shape and size this programme has the ability to calculate the mechanical properties of examined steel and introduce them as raw numeric data or in graphic as influence charts. Possibl...

  5. Structural and quantum mechanical computations to elucidate the altered binding mechanism of metal and drug with pyrazinamidase from Mycobacterium tuberculosis due to mutagenicity.

    Science.gov (United States)

    Rasool, Nouman; Iftikhar, Saima; Amir, Anam; Hussain, Waqar

    2018-03-01

    Pyrazinamide is known to be the most effective treatment against tuberculosis disease and is known to have bacteriostatic action. By targeting the bacterial spores, this drug reduces the chances for the progression of the infection in organisms. In recent years, increased instances of the drug resistance of bacterial strains are reported. Pyrazinamidase, activator for pyrazinamide, leads to resistance against the drug due to mutagenicity across the world. The present study aimed at the quantum mechanistic analysis of mutations in pyrazinamidase to gain insights into the mechanism of this enzyme. Quantum mechanical calculations were performed to analyse the effect of mutations at the metal coordination site using ORCA software program. Moreover, conformational changes in PZase binding cavity has also been analysed due to mutations of binding pocket residues using CASTp server. In order to elucidate the behaviour of the mutant pyrazinamidase, docking of PZA in the binding pocket of PZase was performed using AutoDock Vina. Analysis of results revealed that iron showed weak binding with the metal coordination site of the mutant proteins due to alteration in electron transfer mechanism. The binding cavity of the mutant PZase has undergone major conformational changes as the volume of pocket increased due to bulky R-chains of mutated amino acids. These conformational changes lead to weak binding of the drug at binding cavity of PZase and reduce the drug activation mechanism leading to increased drug resistance in the bacterial strains. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A study on the validity of a computer-based game to assess cognitive processes, reward mechanisms, and time perception in children aged 4-8 years

    OpenAIRE

    Peijnenborgh, Janneke; Hurks, PM Petra; Aldenkamp, AP Albert; Spek, van der, ED Erik; Rauterberg, GWM Matthias; Vles, JSH Johan; Hendriksen, JGM

    2016-01-01

    Background A computer-based game, named Timo?s Adventure, was developed to assess specific cognitive functions (eg, attention, planning, and working memory), time perception, and reward mechanisms in young school-aged children. The game consists of 6 mini-games embedded in a story line and includes fantasy elements to enhance motivation. Objective The aim of this study was to investigate the validity of Timo?s Adventure in normally developing children and in children with attention-deficit/hy...

  7. FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup

    International Nuclear Information System (INIS)

    Berna, G.A.; Beyer, G.A.; Davis, K.L.; Lanning, D.D.

    1997-12-01

    FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes' integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6)

  8. A multi-scale computational scheme for anisotropic hydro-mechanical couplings in saturated heterogeneous porous media

    NARCIS (Netherlands)

    Mercatoris, B.C.N.; Massart, T.J.; Sluys, L.J.

    2013-01-01

    This contribution discusses a coupled two-scale framework for hydro-mechanical problems in saturated heterogeneous porous geomaterials. The heterogeneous nature of such materials can lead to an anisotropy of the hydro-mechanical couplings and non-linear effects. Based on an assumed model of the

  9. Evaluating the Amount of Tooth Movement and Root Resorption during Canine Retraction with Friction versus Frictionless Mechanics Using Cone Beam Computed Tomography.

    Science.gov (United States)

    Makhlouf, Mohamed; Aboul-Ezz, Amr; Fayed, Mona Salah; Hafez, Hend

    2018-02-15

    The current study was carried out to compare the amount of tooth movement during canine retraction comparing two different retraction mechanics; friction mechanics represented by a NiTi closed coil spring versus frictionless mechanics represented by T - loop, and their effect on root resorption using Cone Beam Computed Tomography (CBCT). Ten patients were selected in a split-mouth study design that had a malocclusion that necessitates the extraction of maxillary first premolars and retraction of maxillary canines. The right maxillary canines were retracted using T - loops fabricated from 0.017 X 0.025 TMA wires. The left maxillary canines received NiTi coil spring with 150 gm of retraction force. Pre retraction and post retraction Cone Beam Computed Tomography were taken to evaluate the amount of tooth movement and root resorption using three-dimensional planes. T - loop side showed statistically significant higher mean anteroposterior measurement than NiTi coil spring side, indicating a lower amount of canine movement pre and post a canine retraction. Concerning the root resorption, there was no statistically significant change in the mean measurements of canine root length post retraction. The NiTi coil spring side showed more distal movement more than the T-loop side. Both retraction mechanics with controlled retraction force, do not cause root resorption.

  10. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianfeng; Law, Chung K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2008-09-15

    A criterion based on computational singular perturbation (CSP) is proposed to effectively distinguish the quasi steady state (QSS) species from the fast species induced by reactions in partial equilibrium. Together with the method of directed relation graph (DRG), it was applied to the reduction of GRI-Mech 3.0 for methane oxidation, leading to the development of a 19-species reduced mechanism with 15 lumped steps, with the concentrations of the QSS species solved analytically for maximum computational efficiency. Compared to the 12-step and 16-species augmented reduced mechanism (ARM) previously developed by Sung, Law and Chen, three species, namely O, CH{sub 3}OH, and CH{sub 2}CO, are now excluded from the QSS species list. The reduced mechanism was validated with a variety of phenomena including perfectly stirred reactors, auto-ignition, and premixed and non-premixed flames, with the worst-case error being less than 10% over a wide range of parameters. This mechanism was then supplemented with the reactions involving NO formation, followed by validations in both homogeneous and diffusive systems. (author)

  11. Structural and Thermodynamic Properties of the Argon Dimer: A Computational Chemistry Exercise in Quantum and Statistical Mechanics

    Science.gov (United States)

    Halpern, Arthur M.

    2010-01-01

    Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…

  12. Reaction of formaldehyde at the ortho- and para-positions of phenol: exploration of mechanisms using computational chemistry.

    Science.gov (United States)

    Anthony H. Conner; Melissa S. Reeves

    2001-01-01

    Computational chemistry methods can be used to explore the theoretical chemistry behind reactive systems, to compare the relative chemical reactivity of different systems, and, by extension, to predict the reactivity of new systems. Ongoing research has focused on the reactivity of a wide variety of phenolic compounds with formaldehyde using semi-empirical and ab...

  13. Computer Aided Design in FE. Some Suggestions on the Inclusion of CAD Topics in Mechanical Engineering Courses. An Occasional Paper.

    Science.gov (United States)

    Ingham, P. C.

    This report investigates the feasibility of including computer aided design (CAD) materials in engineering courses. Section 1 briefly discusses the inevitability of CAD being adopted widely by British industry and the consequent need for its inclusion in engineering syllabi at all levels. A short description of what is meant by CAD follows in…

  14. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  15. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  16. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics

  17. Understanding the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets in activated carbon using a quantum mechanics/molecular mechanics computational approach.

    Science.gov (United States)

    Ha, Nguyen Ngoc; Cam, Le Minh; Ha, Nguyen Thi Thu; Goh, Bee-Min; Saunders, Martin; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z; El-Harbawi, Mohanad; Yin, Chun-Yang

    2017-06-07

    The prevalence of global arsenic groundwater contamination has driven widespread research on developing effective treatment systems including adsorption using various sorbents. The uptake of arsenic-based contaminants onto established sorbents such as activated carbon (AC) can be effectively enhanced via immobilization/impregnation of iron-based elements on the porous AC surface. Recent suggestions that AC pores structurally consist of an eclectic mix of curved fullerene-like sheets may affect the arsenic adsorption dynamics within the AC pores and is further complicated by the presence of nano-sized iron-based elements. We have therefore, attempted to shed light on the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets by using hybridized quantum mechanics/molecular mechanics (QMMM) calculations and microscopy characterization. It is found that, subsequent to optimization, chemisorption between HAsO 4 2- and the AC carbon sheet (endothermic process) is virtually non-existent - this observation is supported by experimental results. Conversely, the incorporation of iron nanoparticles (FeNPs) into the AC carbon sheet greatly facilitates chemisorption of HAsO 4 2- . Our calculation implies that iron carbide is formed at the junction between the iron and the AC interface and this tightly chemosorbed layer prevents detachment of the FeNPs on the AC surface. Other aspects including electronic structure/properties, carbon arrangement defects and rate of adsorptive interaction, which are determined using the Climbing-Image NEB method, are also discussed.

  18. An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses

    Science.gov (United States)

    Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye

    2018-06-01

    Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.

  19. Cone-beam computed tomography analysis of curved root canals after mechanical preparation with three nickel-titanium rotary instruments

    Science.gov (United States)

    Elsherief, Samia M.; Zayet, Mohamed K.; Hamouda, Ibrahim M.

    2013-01-01

    Cone beam computed tomography is a 3-dimensional high resolution imaging method. The purpose of this study was to compare the effects of 3 different NiTi rotary instruments used to prepare curved root canals on the final shape of the curved canals and total amount of root canal transportation by using cone-beam computed tomography. A total of 81 mesial root canals from 42 extracted human mandibular molars, with a curvature ranging from 15 to 45 degrees, were selected. Canals were randomly divided into 3 groups of 27 each. After preparation with Protaper, Revo-S and Hero Shaper, the amount of transportation and centering ability that occurred were assessed by using cone beam computed tomography. Utilizing pre- and post-instrumentation radiographs, straightening of the canal curvatures was determined with a computer image analysis program. Canals were metrically assessed for changes (surface area, changes in curvature and transportation) during canal preparation by using software SimPlant; instrument failures were also recorded. Mean total widths and outer and inner width measurements were determined on each central canal path and differences were statistically analyzed. The results showed that all instruments maintained the original canal curvature well with no significant differences between the different files (P = 0.226). During preparation there was failure of only one file (the protaper group). In conclusion, under the conditions of this study, all instruments maintained the original canal curvature well and were safe to use. Areas of uninstrumented root canal wall were left in all regions using the various systems. PMID:23885273

  20. Static and dynamic buckling of large thin shells. (Design procedure, computation tools. Physical understanding of the mechanisms)

    International Nuclear Information System (INIS)

    Combescure, A.

    1986-04-01

    During the last ten years, the French Research Institute for Nuclear Energy (Commissariat a l'Energie Atomique) achieved many theoretical as well as experimental studies for designing the first large size pool type fast breeder reactor. Many of the sensitive parts of this reactor are thin shells subjected to high temperatures and loads. Special care has been given to buckling, because it often governs design. Most of the thin shells structures of the french breeder reactor are axisymmetric. However, imperfections have to be accounted for. In order to keep the advantage of an axisymmetric analysis (low computational costs), a special element has been implemented and used with considerable success in the recent years. This element (COMU) is described in the first chapter, its main features are: either non axisymmetric imperfection or non axisymmetric load, large displacement, non linear material behaviour, computational costs about ten times cheaper than the equivalent three dimensional analysis. This paper based on a careful comparison between experimental and computational results, obtained with the COMU, will analyse three problems: First: design procedure against buckling of thin shells structures subjected to primary loads; Second: static post buckling; Third: buckling under seismic loads [fr

  1. Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study

    Science.gov (United States)

    Kouza, Maksim; Co, Nguyen Truong; Li, Mai Suan; Kmiecik, Sebastian; Kolinski, Andrzej; Kloczkowski, Andrzej; Buhimschi, Irina Alexandra

    2018-06-01

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite much progress in the understanding of the protein aggregation process, the factors governing fibril formation rates and fibril stability have not been fully understood. Using lattice models, we have shown that the fibril formation time is controlled by the kinetic stability of the fibril state but not by its energy. Having performed all-atom explicit solvent molecular dynamics simulations with the GROMOS43a1 force field for full-length amyloid beta peptides Aβ40 and Aβ42 and truncated peptides, we demonstrated that kinetic stability can be accessed via mechanical stability in such a way that the higher the mechanical stability or the kinetic stability, the faster the fibril formation. This result opens up a new way for predicting fibril formation rates based on mechanical stability that may be easily estimated by steered molecular dynamics.

  2. Unconventional Quantum Computing Devices

    OpenAIRE

    Lloyd, Seth

    2000-01-01

    This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.

  3. Computer-aided study of key factors determining high mechanical properties of nanostructured surface layers in metal-ceramic composites

    Science.gov (United States)

    Konovalenko, Igor S.; Shilko, Evgeny V.; Ovcharenko, Vladimir E.; Psakhie, Sergey G.

    2017-12-01

    The paper presents the movable cellular automaton method. It is based on numerical models of surface layers of the metal-ceramic composite NiCr-TiC modified under electron beam irradiation in inert gas plasmas. The models take into account different geometric, concentration and mechanical parameters of ceramic and metallic components. The authors study the contributions of key structural factors in mechanical properties of surface layers and determine the ranges of their variations by providing the optimum balance of strength, strain hardening and fracture toughness.

  4. Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity.

    Science.gov (United States)

    Yang, Yun-Fang; Cheng, Gui-Juan; Liu, Peng; Leow, Dasheng; Sun, Tian-Yu; Chen, Ping; Zhang, Xinhao; Yu, Jin-Quan; Wu, Yun-Dong; Houk, K N

    2014-01-08

    Density functional theory investigations have elucidated the mechanism and origins of meta-regioselectivity of Pd(II)-catalyzed C-H olefinations of toluene derivatives that employ a nitrile-containing template. The reaction proceeds through four major steps: C-H activation, alkene insertion, β-hydride elimination, and reductive elimination. The C-H activation step, which proceeds via a concerted metalation-deprotonation (CMD) pathway, is found to be the rate- and regioselectivity-determining step. For the crucial C-H activation, four possible active catalytic species-monomeric Pd(OAc)2, dimeric Pd2(OAc)4, heterodimeric PdAg(OAc)3, and trimeric Pd3(OAc)6-have been investigated. The computations indicated that the C-H activation with the nitrile-containing template occurs via a Pd-Ag heterodimeric transition state. The nitrile directing group coordinates with Ag while the Pd is placed adjacent to the meta-C-H bond in the transition state, leading to the observed high meta-selectivity. The Pd2(OAc)4 dimeric mechanism also leads to the meta-C-H activation product but with higher activation energies than the Pd-Ag heterodimeric mechanism. The Pd monomeric and trimeric mechanisms require much higher activation free energies and are predicted to give ortho products. Structural and distortion energy analysis of the transition states revealed significant effects of distortions of the template on mechanism and regioselectivity, which provided hints for further developments of new templates.

  5. Computational and experimental fluid mechanics. Draft version of annex to final report for period January 1st 1993 to December 31st 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The general purpose of the program has been the development of efficient algorithms, their implementation in codes of Computational Fluid Mechanics (CFD), and the experimental verification of these codes. Flows of both fundamental and applied nature has been investigated, including flows in industrial process equipment, about aerodynamics structures and ships, and flows over bed forms of importance for sediment transport. The experimental work has included the development of improved techniques, emphasizing optical methods. The objectives were realized through a coordinated experimental and theoretical/computation research program, organized in 6 specific projects: 1. CFD-methods and algorithms. 2. Special element simulation of ultrafiltration. 3. Turbulent swirling flows; 4. Near-wall models of turbulence and development of experimental techniques. 5. Flow over bed forms. 6. Flow past ship hull. (au)

  6. Analogous Mechanisms of Selection and Updating in Declarative and Procedural Working Memory: Experiments and a Computational Model

    Science.gov (United States)

    Oberauer, Klaus; Souza, Alessandra S.; Druey, Michel D.; Gade, Miriam

    2013-01-01

    The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a…

  7. Diastereoselective Addition of α-Metalated Sulfoxides to Imines Revisited: Mechanism, Computational Studies, and the Effect of External Chiral Ligands

    DEFF Research Database (Denmark)

    Pedersen, Brian; Rein, Tobias; Søtofte, Inger

    2003-01-01

    six-membered "flat chair") was probed by quantum mechanical calculations, which underpinned the idea of using external chiral ligands to enhance the diastereoselectivity of otherwise moderately selective reactions. In this way, the diastereomeric ratio of the product 3a could be raised from (84 : 16...

  8. OCENER, a one-dimensional computer code for the numerical simulation of the mechanical effects of peaceful underground nuclear explosions in rocks

    International Nuclear Information System (INIS)

    Gupta, S.C.; Sikka, S.K.; Chidambaram, R.

    1979-01-01

    An account is given of a one-dimensional spherical symmetric computer code for the numerical simulation of the effects of peaceful underground nuclear explosions in rocks (OCENER). In the code, the nature of the stress field and response of the medium to this field are modelled numerically by finite difference form of the laws of continuum mechanics and the constitutive relations of the rock medium in which the detonation occurs. It enables to approximate well the cavity growth and fracturing of the surrounding rock for contained explosions and the events upto the time the spherical symmetry is valid for cratering-type explosions. (auth.)

  9. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite

    Science.gov (United States)

    2015-04-27

    MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is...Henmi, C. and Kusachi, I. Monoclinic tobermorite from fuka, bitchu-cho, Okoyama Perfecture. Japan J. Min. Petr. Econ . Geol. (1989)84:374-379. [22...31] Liu, Y. et al. First principles study of the stability and mechanical properties of MC (M=Ti, V, Zr, Nb, Hf and Ta) compounds. Journal of Alloys and Compounds. (2014) 582:500-504. 10

  10. Study of Propagation Mechanisms in Dynamical Railway Environment to Reduce Computation Time of 3D Ray Tracing Simulator

    Directory of Open Access Journals (Sweden)

    Siham Hairoud

    2013-01-01

    Full Text Available In order to better assess the behaviours of the propagation channel in a confined environment such as a railway tunnel for subway application, we present an optimization method for a deterministic channel simulator based on 3D ray tracing associated to the geometrical optics laws and the uniform theory of diffraction. This tool requires a detailed description of the environment. Thus, the complexity of this model is directly bound to the complexity of the environment and specifically to the number of facets that compose it. In this paper, we propose an algorithm to identify facets that have no significant impact on the wave propagation. This allows us to simplify the description of the geometry of the modelled environment by removing them and by this way, to reduce the complexity of our model and therefore its computation time. A comparative study between full and simplified environment is led and shows the impact of this proposed method on the characteristic parameters of the propagation channel. Thus computation time obtained from the simplified environment is 6 times lower than the one of the full model without significant degradation of simulation accuracy.

  11. Insights into the activation mechanism of calcium ions on the sericite surface: A combined experimental and computational study

    Science.gov (United States)

    Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li

    2018-01-01

    The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.

  12. Computer simulation of migration atomic mechanism and substitutional impurity interaction with screw dislocation core in bcc lattice

    International Nuclear Information System (INIS)

    Klyavin, O.V.; Likhodedov, N.P.; Orlov, A.N.

    1986-01-01

    Distribution and migration of substitutional impurity atoms (He and C) in the screw dislocation core of the 1/2 type is studied in α-Fe. The atomic mechanism of impurity atom diffusion over screw dislocation core, consisting in the fact that impurity migration proceeds in a screw trajectory, is discovered and analyzed. It is shown that tubular He diffusion over screw dislocation may proceed at T <= 300 K

  13. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

    OpenAIRE

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into ...

  14. Development of a computer code 'CRACK' for elastic and elastoplastic fracture mechanics analysis of 2-D structures by finite element technique

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kakodkar, A.; Maiti, S.K.

    1986-01-01

    The fracture mechanics analysis of nuclear components is required to ensure prevention of sudden failure due to dynamic loadings. The linear elastic analysis near to a crack tip shows presence of stress singularity at the crack tip. The simulation of this singularity in numerical methods enhance covergence capability. In finite element technique this can be achieved by placing mid nodes of 8 noded or 6 noded isoparametric elements, at one fourth ditance from crack tip. Present report details this characteristic of finite element, implementation of this element in a code 'CRACK', implementation of J-integral to compute stress intensity factor and solution of number of cases for elastic and elastoplastic fracture mechanics analysis. 6 refs., 6 figures. (author)

  15. Computational Modeling | Bioenergy | NREL

    Science.gov (United States)

    cell walls and are the source of biofuels and biomaterials. Our modeling investigates their properties . Quantum Mechanical Models NREL studies chemical and electronic properties and processes to reduce barriers Computational Modeling Computational Modeling NREL uses computational modeling to increase the

  16. Added value of cardiac computed tomography for evaluation of mechanical aortic valve: Emphasis on evaluation of pannus with surgical findings as standard reference.

    Science.gov (United States)

    Suh, Young Joo; Lee, Sak; Im, Dong Jin; Chang, Suyon; Hong, Yoo Jin; Lee, Hye-Jeong; Hur, Jin; Choi, Byoung Wook; Chang, Byung-Chul; Shim, Chi Young; Hong, Geu-Ru; Kim, Young Jin

    2016-07-01

    The added value of cardiac computed tomography (CT) with transesophageal echocardiography (TEE) for evaluating mechanical aortic valve (AV) dysfunction has not yet been investigated. The purposes of this study were to investigate the added value of cardiac CT for evaluation of mechanical AVs and diagnoses of pannus compared to TEE, with surgical findings of redo-aortic valve replacement (AVR) used as a standard reference. 25 patients who underwent redo-AVR due to mechanical AV dysfunction and cardiac CT before redo-AVR were included. The presence of pannus, encroachment ratio by pannus, and limitation of motion (LOM) were evaluated on CT. The diagnostic performance of pannus detection was compared using TEE, CT, and CT+TEE, with surgical findings as a standard reference. The added value of CT for diagnosing the cause of mechanical AV dysfunction was assessed compared to TTE+TEE. In two patients, CT analysis was not feasible due to severe metallic artifacts. On CT, pannus and LOM were found in 100% (23/23) and 60.9% (14/23). TEE identified pannus in 48.0% of patients (12/25). CT, TEE, and CT+TEE correctly identified pannus with sensitivity of 92.0%, 48.0%, and 92.0%, respectively (P=0.002 for CT vs. TEE). In 11 of 13 cases (84.6%) with inconclusive or negative TEE results for pannus, CT detected the pannus. Among 13 inconclusive cases of TTE+TEE for the cause of mechanical AV dysfunction, CT suggested 6 prosthetic valve obstruction (PVO) by pannus, 4 low-flow low-gradient PVO, and one LOM without significant PVO. Cardiac CT showed added diagnostic value with TEE in the detection of pannus as the cause of mechanical AV dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol.

    Science.gov (United States)

    Khemani, Robinder G; Sward, Katherine; Morris, Alan; Dean, J Michael; Newth, Christopher J L

    2011-11-01

    Although pediatric intensivists claim to embrace lung protective ventilation for acute lung injury (ALI), ventilator management is variable. We describe ventilator changes clinicians made for children with hypoxemic respiratory failure, and evaluate the potential acceptability of a pediatric ventilation protocol. This was a retrospective cohort study performed in a tertiary care pediatric intensive care unit (PICU). The study period was from January 2000 to July 2007. We included mechanically ventilated children with PaO(2)/FiO(2) (P/F) ratio less than 300. We assessed variability in ventilator management by evaluating actual changes to ventilator settings after an arterial blood gas (ABG). We evaluated the potential acceptability of a pediatric mechanical ventilation protocol we adapted from National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) Acute Respiratory Distress Syndrome (ARDS) Network protocols by comparing actual practice changes in ventilator settings to changes that would have been recommended by the protocol. A total of 2,719 ABGs from 402 patients were associated with 6,017 ventilator settings. Clinicians infrequently decreased FiO(2), even when the PaO(2) was high (>68 mmHg). The protocol would have recommended more positive end expiratory pressure (PEEP) than was used in actual practice 42% of the time in the mid PaO(2) range (55-68 mmHg) and 67% of the time in the low PaO(2) range (ventilator rate (VR) when the protocol would have recommended a change, even when the pH was greater than 7.45 with PIP at least 35 cmH(2)O. There may be lost opportunities to minimize potentially injurious ventilator settings for children with ALI. A reproducible pediatric mechanical ventilation protocol could prompt clinicians to make ventilator changes that are consistent with lung protective ventilation.

  18. Computation of disordered system from the first principles of classical mechanics and ℕℙ hard problem

    Energy Technology Data Exchange (ETDEWEB)

    Gevorkyan, A. S., E-mail: g-ashot@sci.am; Sahakyan, V. V. [National Academy of Sciences of the Republic of Armenia, Institute for Informatics and Automation Problems (Armenia)

    2017-03-15

    We study the classical 1D Heisenberg spin glasses in the framework of nearest-neighboring model. Based on the Hamilton equations we obtained the system of recurrence equations which allows to perform node-by-node calculations of a spin-chain. It is shown that calculations from the first principles of classical mechanics lead to ℕℙ hard problem, that however in the limit of the statistical equilibrium can be calculated by ℙ algorithm. For the partition function of the ensemble a new representation is offered in the form of one-dimensional integral of spin-chains’ energy distribution.

  19. Nonlinear Hamiltonian mechanics applied to molecular dynamics theory and computational methods for understanding molecular spectroscopy and chemical reactions

    CERN Document Server

    Farantos, Stavros C

    2014-01-01

    This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.

  20. Ab initio computational study of reaction mechanism of peptide bond formation on HF/6-31G(d,p) level

    Science.gov (United States)

    Siahaan, P.; Lalita, M. N. T.; Cahyono, B.; Laksitorini, M. D.; Hildayani, S. Z.

    2017-02-01

    Peptide plays an important role in modulation of various cell functions. Therefore, formation reaction of the peptide is important for chemical reactions. One way to probe the reaction of peptide synthesis is a computational method. The purpose of this research is to determine the reaction mechanism for peptide bond formation on Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine by ab initio computational approach. The calculations were carried out by theory and basis set HF/6-31G(d,p) for four mechanisms (path 1 to 4) that proposed in this research. The results show that the highest of the rate determining step between reactant and transition state (TS) for path 1, 2, 3, and 4 are 163.06 kJ.mol-1, 1868 kJ.mol-1, 5685 kJ.mol-1, and 1837 kJ.mol-1. The calculation shows that the most preferred reaction of Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine are on the path 1 (initiated with the termination of H+ in proline amino acid) that produce Ac-PV-NH2.