WorldWideScience

Sample records for small working robot

  1. Posture manipulation for rescue activity via small traction robots

    Iwano, Yuki; Osuka, Koichi; Amano, Hisanori

    2006-01-01

    We discuss a conceptual design of rescue robots against nuclear-power plant accidents. We claim that the rescue robots in nuclear-power plants should have the following properties. (1) The size is small. (2) The structure is simple. (3) The number of the robots is large. This paper studies the rescue robots to rescue people in an area polluted with radioactive leakage in nuclear power institutions. In particular, we propose a rescue system which consists of a group of small mobile robots. First, small traction robots set the posture of the fainted victims to carry easily, and carry them to the safety space with the mobile robots for the stretcher composition. In this paper, we describe the produced small traction robots. And, we confirm that the robots can manipulate a 40 kg dummy doll's posture. We also examine the optimal number of robots from a perspective of working efficiency in the assumption spot. (author)

  2. Robots at Work

    Graetz, Georg; Michaels, Guy

    2015-01-01

    Despite ubiquitous discussions of robots' potential impact, there is almost no systematic empirical evidence on their economic effects. In this paper we analyze for the first time the economic impact of industrial robots, using new data on a panel of industries in 17 countries from 1993-2007. We find that industrial robots increased both labor productivity and value added. Our panel identification is robust to numerous controls, and we find similar results instrumenting increased robot use wi...

  3. Characterization Of Robot Work Cell

    Anderson, Ronald R.; Paternoster, Vincent Y.; Guthmiller, Wayne A.

    1990-01-01

    Iterative process of measurement and computation used to characterize work cell of robot, increasing accuracy of mathematical model of work cell. Characterization needed because model used in off-line programming (OLP) to compute paths to control motion of robot. Increases accuracies of model and paths.

  4. Automation of microfactories: towards using small industrial robots

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Mazzola, Stefano

    2005-01-01

    with tweezers under a microscope. This is tedious work for the operators and it is very hard to keep an even quality. This process would be excellent to automate, for example by using small industrial robots. There are mainly two properties that are significant for selecting a robot for micro...

  5. Robots could assist scientists working in Greenland

    Showstack, Randy

    2011-07-01

    GREENLAND—Tom Lane and Suk Joon Lee, recent graduates of Dartmouth University's Thayer School of Engineering, in Hanover, N. H., are standing outside in the frigid cold testing an autonomous robot that could help with scientific research and logistics in harsh polar environments. This summer, Lane, Lee, and others are at Summit Station, a U.S. National Science Foundation (NSF)-sponsored scientific research station in Greenland, fine-tuning a battery-powered Yeti robot as part of a team working on the NSF-funded Cool Robot project. The station, also known as Summit Camp, is located on the highest point of the Greenland Ice Sheet (72°N, 38°W, 3200 meters above sea level) near the middle of the island. It is a proving ground this season for putting the approximately 68-kilogram, 1-cubic-meter robot through its paces, including improving Yeti's mobility capabilities and field-testing the robot. (See the electronic supplement to this Eos issue for a video of Yeti in action (http://www.agu.org/eos_elec/).) During field-testing, plans call for the robot to collect data on elevation and snow surface characteristics, including accumulation. In addition, the robot will collect black carbon and elemental carbon particulate matter air samples around Summit Camp's power generator to help study carbon dispersion over snow.

  6. Small-scale soft-bodied robot with multimodal locomotion

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  7. Working with Robots: The Real Story.

    Fey, Carol

    1986-01-01

    Looks at some of the realities of life with robots: robots aren't replacing entire shifts of workers; a robot is just a tool; regular plant personnel maintain robots; and job category and seniority dictate who is trained to maintain robots. (CT)

  8. A bio-inspired electrocommunication system for small underwater robots.

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  9. The Effect of Foot Structure on Locomotion of a Small Biped Robot

    Nguyen Tinh

    2017-01-01

    Full Text Available This paper is a presentation of a work that consists of considering a novel foot structure for biped robot inspired by human foot. The specific objective is to develop a foot mechanism with human-like toes for a small biped robot. The chosen architecture to present the biped includes ten degrees of freedom (DoF on ten articulations between eleven links. Our study considers the effect of varying foot structure on a walking process of the robot in simulation by ADAMS (MSC software, USA through gait generation method. In toe mechanism, aiming to reduce the energy consumption, the passive joint was selected as the toe joint. The center of gravity (CoG point trajectories of the robot with varying toe is compared with each other in normal motion on flat terrain to determine the most consistent toe mechanism. The result shows that the selected foot structure enables the robot to walk stably and naturally.

  10. Performance of Very Small Robotic Fish Equipped with CMOS Camera

    Yang Zhao

    2015-10-01

    Full Text Available Underwater robots are often used to investigate marine animals. Ideally, such robots should be in the shape of fish so that they can easily go unnoticed by aquatic animals. In addition, lacking a screw propeller, a robotic fish would be less likely to become entangled in algae and other plants. However, although such robots have been developed, their swimming speed is significantly lower than that of real fish. Since to carry out a survey of actual fish a robotic fish would be required to follow them, it is necessary to improve the performance of the propulsion system. In the present study, a small robotic fish (SAPPA was manufactured and its propulsive performance was evaluated. SAPPA was developed to swim in bodies of freshwater such as rivers, and was equipped with a small CMOS camera with a wide-angle lens in order to photograph live fish. The maximum swimming speed of the robot was determined to be 111 mm/s, and its turning radius was 125 mm. Its power consumption was as low as 1.82 W. During trials, SAPPA succeeded in recognizing a goldfish and capturing an image of it using its CMOS camera.

  11. Development of the Research Platform of Small Autonomous Blimp Robot

    Takaya, Toshihiko; Kawamura, Hidenori; Yamamoto, Masahito; Ohuchi, Azuma

    A blimp robot is attractive as an small flight robot and can float in the air by buoyancy and realize safe to the crash small flight with low energy and can movement for a long time compared with other flight robots with low energy and can movement for a long time compared with other flight robots. However, control of an airplane robot is difficult for the nonlinear characteristic exposed to inertia by the air flow in response to influence. Therefore, the applied research which carried out the maximum use of such in recent years a blimp robot's feature is prosperous. In this paper, we realized development of blimp robot for research which can be used general-purpose by carrying out clue division of the blimp robot body at a unit, and constituting and building for research of blimp robot, and application development. On the other hand, by developing a general-purpose blimp robot research platform, improvement in the research efficiency of many researchers can be attained, and further, research start of blimp robot becomes easy and contributes to development of research. We performed the experiments for the above-mentioned proof. 1. Checked basic keeping position performance and that various orbital operation was possible. And the unit exchange ease of software unit was checked by the experiment which exchanges the control layer of software for learning control from PID control, and carries out comparison of operation. 2. In order to check the exchange ease of hardware unit, the sensor was exchanged for the microphon from the camera, and control of operation was checked. 3. For the unit addition ease, the microphon which carries out sound detection with the picture detection with a camera was added, and control of operation was verified. 4. The unit exchange was carried out for the check of a function addition and the topological map generation experiment by addition of an ultrasonic sensor was conducted. Developed blimp robot for research mounted the exchange ease

  12. Micro Robotics Lab

    Federal Laboratory Consortium — Our research is focused on the challenges of engineering robotic systems down to sub-millimeter size scales. We work both on small mobile robots (robotic insects for...

  13. Developing concepts for improved efficiency of robot work preparation

    Essers, M.S.; Vaneker, Thomas H.J.

    2013-01-01

    SInBot[1] is a large research project that focuses on maximizing the efficient use of mobile industrial robots during medium sized production runs. The system that will be described in this paper will focusses on the development and validation of concepts for efficient work preparation for cells of intelligent mobile robots that execute medium sized production runs. For a wide range of products, the machining tasks will be defined on an appropriate level, enabling control over the robots beha...

  14. Development of Live-working Robot for Power Transmission Lines

    Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui

    2017-07-01

    Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.

  15. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    Noble, Robert; /SLAC; Sykes, Mark V.; /PSI, Tucson

    2012-02-15

    The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  16. Work organisation and quality control in a welding robotic cell

    Moniz, António

    1993-01-01

    In this paper is analyzed the work organization and the forms of quality control in a robotic welding station in a company of office equipment and metal components manufacturing. The robotic cell is recent and works in two shifts. Quality and production rationalization implied in this firms the adoption of a strategy of organization of teamwork, and it is supported the collaborative tools to decrease the possibilities for errors and to improve means and methods of manufacturing. The analysis ...

  17. Industrial Robots Join the Work Force.

    Martin, Gail M.

    1982-01-01

    Robots--powerful, versatile, and easily adapted to new operations--may usher in a new industrial age. Workers throughout the labor force could be affected, as well as the nature of the workplace, skill requirements of jobs, and concomitant shifts in vocational education. (SK)

  18. A mobile robot for precision work in hostile environments

    Malick, F.S.; Saluja, J.

    1987-01-01

    The programmable industrial robot on wheels which was built for use in the decontamination of the West Valley nuclear fuel reprocessing facility was further developed to be useful for remote maintenance. The vehicle is supported at the work site by screwjack outriggers to provide the stable base needed for precision work. The robot using a position sensor feels its position at the work site and sets up in its computer a rectilinear coordinate axis frame which is precisely aligned with the work site. It is then able to make precise movements with respect to the work site regardless of inaccuracies in the positioning of the vehicle. When using the robot as a manipulator, the operator can quickly call for a sequence of programmed moves to perform a repetitive part of a work task at a higher speed, with greater precision, with fewer errors and with less operator fatigue

  19. Automated platform for designing multiple robot work cells

    Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.

    2017-06-01

    Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.

  20. Robonaut: a robot designed to work with humans in space

    Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby

    2003-01-01

    The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.

  1. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  2. Developing concepts for improved efficiency of robot work preparation

    Essers, M.S.; Vaneker, Thomas H.J.

    2013-01-01

    SInBot[1] is a large research project that focuses on maximizing the efficient use of mobile industrial robots during medium sized production runs. The system that will be described in this paper will focusses on the development and validation of concepts for efficient work preparation for cells of

  3. Modelling of robotic work cells using agent based-approach

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  4. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    organized the SKGs into four broad themes: 1) Identify human mission targets; 2) Understand how to work on and interact with the small body surface; 3) Understand the small body environment and its potential risk/benefit to crew, systems, and operational assets; and 4) Understand the small body resource potential. Each of these themes were then further subdivided into categories to address specific SKG issues. Robotic Precursor Contributions to SKGs: Robotic reconnaissance missions should be able to address specific aspects related to SKG themes 1 through 4. Theme 1 deals with the identification of human mission targets within the NEA population. The current guideline indicates that human missions to fastspinning, tumbling, or binary asteroids may be too risky to conduct successfully from an operational perspective. However, no spacecraft mission has been to any of these types of NEAs before. Theme 2 addresses the concerns about interacting on the small body surface under microgravity conditions, and how the surface and/or sub-surface properties affect or restrict the interaction for human exploration. The combination of remote sensing instruments and in situ payloads will provide good insight into the asteroid's surface and subsurface properties. SKG theme 3 deals with the environment in and around the small body that may present a nuisance or hazard to any assets operating in close proximity. Impact and surface experiments will help address issues related to particle size, particle longevity, internal structure, and the near-surface mechanical stability of the asteroid. Understanding or constraining these physical characteristics are important for mission planning. Theme 4 addresses the resource potential of the small body. This is a particularly important aspect of human exploration since the identification and utilization of resources is a key aspect for deep space mission architectures to the Martian system (i.e., Phobos and Deimos). Conclusions: Robotic reconnaissance

  5. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  6. Exploratorium: Robots.

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  7. Robotics

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  8. Working Safely with Robot Workers: Recommendations for the New Workplace

    Murashov, Vladimir; Hearl, Frank; Howard, John

    2016-01-01

    The increasing use of robots in performing tasks alongside or together with human coworkers raises novel occupational safety and health issues. The new 21st century workplace will be one in which occupational robotics plays an increasing role. This paper describes the increasing complexity of robots and proposes a number of recommendations for the practice of safe occupational robotics. PMID:26554511

  9. Working safely with robot workers: Recommendations for the new workplace.

    Murashov, Vladimir; Hearl, Frank; Howard, John

    2016-01-01

    The increasing use of robots in performing tasks alongside or together with human co-workers raises novel occupational safety and health issues. The new 21st century workplace will be one in which occupational robotics plays an increasing role. This article describes the increasing complexity of robots and proposes a number of recommendations for the practice of safe occupational robotics.

  10. What Pupils Can Learn from Working with Robotic Direct Manipulation Environments

    Slangen, Lou; van Keulen, Hanno; Gravemeijer, Koeno

    2011-01-01

    This study investigates what pupils aged 10-12 can learn from working with robots, assuming that understanding robotics is a sign of technological literacy. We conducted cognitive and conceptual analysis to develop a frame of reference for determining pupils' understanding of robotics. Four perspectives were distinguished with increasing…

  11. What pupils can learn from working with robotic direct manipulation environments

    Lou Slangen; Hanno van Keulen; Koeno Gravemeijer

    2011-01-01

    This study investigates what pupils aged 10-12 can learn from working with robots, assuming that understanding robotics is a sign of technological literacy. We conducted cognitive and conceptual analysis to develop a frame of reference for determining pupils' understanding of robotics. Four

  12. What pupils can learn from working with robotic direct manipulation environments

    Lou Slangen; Hanno van Keulen; Koeno Gravemeijer

    2010-01-01

    This study investigates what pupils aged 10-12 can learn from working with robots, assuming that understanding robotics is a sign of technological literacy. We conducted cognitive and conceptual analysis to develop a frame of reference for determining pupils' understanding of robotics. Four

  13. Robot Work Platform for Large Hot Cell Deactivation

    BITTEN, E.J.

    2000-01-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  14. From an Idea to a Working Robot Prototype: Distributing Knowledge of Robotics through Science Museum Workshops

    Polishuk, Alexander; Verner, Igor; Mir, Ronen

    This paper presents our experience of teaching robotics to primary and middle school students at the Gelfand Center for Model Building, Robotics & Communication which is part of the Israel National Museum of Science, Technology and Space (MadaTech). The educational study examines the value and characteristics of students’ teamwork in the museum robotics workshops.

  15. Balancing Theory and Practical Work in a Humanoid Robotics Course

    Wolff, Krister; Wahde, Mattias

    2010-01-01

    In this paper, we summarize our experiences from teaching a course in humanoid robotics at Chalmers University of Technology in Goteborg, Sweden. We describe the robotic platform used in the course and we propose the use of a custom-built robot consisting of standard electronic and mechanical components. In our experience, by using standard…

  16. Identifying Factors Reinforcing Robotization: Interactive Forces of Employment, Working Hour and Wage

    Joonmo Cho

    2018-02-01

    Full Text Available Unlike previous studies on robotization approaching the future based on the cutting-edge technologies and adopting a framework where robotization is considered as an exogenous variable, this study considers that robotization occurs endogenously and uses it as a dependent variable for an objective examination of the effect of robotization on the labor market. To this end, a robotization indicator is created based on the actual number of industrial robots currently deployed in workplaces, and a multiple regression analysis is performed using the robotization indicator and labor variables such as employment, working hours, and wage. The results using the multiple regression considering the triangular relationship of employment–working-hours–wages show that job destruction due to robotization is not too remarkable yet that use. Our results show the complementary relation between employment and robotization, but the substituting relation between working hour and robotization. The results also demonstrate the effects of union, the size of the company and the proportion of production workers and simple labor workers etc. These findings indicate that the degree of robotization may vary with many factors of the labor market. Limitations of this study and implications for future research are also discussed.

  17. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Hwa Jen Yap

    Full Text Available Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell, consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL and VR-based Robot Teaching System (VR-RoT. VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  18. Virtual Reality Based Support System for Layout Planning and Programming of an Industrial Robotic Work Cell

    Yap, Hwa Jen; Taha, Zahari; Md Dawal, Siti Zawiah; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell. PMID:25360663

  19. Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals

    Polverino, G; Abaid, N; Kopman, V; Porfiri, M; Macrì, S

    2012-01-01

    Recently developed bioinspired robots imitate their live counterparts in both aspect and functionality. Nevertheless, whether these devices can be integrated within the ecological niche inspiring their design is seldom tested experimentally. An elemental research question concerns the feasibility of modulating spontaneous behaviour of animal systems through bioinspired robotics. The following study explores the possibility of engineering a robotic fish capable of influencing the behaviour of live zebrafish (Danio rerio) in a dichotomous preference test. While we observe that the preference for the robotic fish never exceeds the preference for a conspecific, our data show that the robot is successful in attracting both isolated individuals and small shoals and that such capability is influenced by its bioinspired features. In particular, we find that the robot's undulations enhance its degree of attractiveness, despite the noise inherent in the actuation system. This is the first experimental evidence that live zebrafish behaviour can be influenced by engineered robots. Such robotic platforms may constitute a valuable tool to investigate the bases of social behaviour and uncover the fundamental determinants of animal functions and dysfunctions. (paper)

  20. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  1. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  2. Visual SLAM and Moving-object Detection for a Small-size Humanoid Robot

    Yin-Tien Wang

    2010-09-01

    Full Text Available In the paper, a novel moving object detection (MOD algorithm is developed and integrated with robot visual Simultaneous Localization and Mapping (vSLAM. The moving object is assumed to be a rigid body and its coordinate system in space is represented by a position vector and a rotation matrix. The MOD algorithm is composed of detection of image features, initialization of image features, and calculation of object coordinates. Experimentation is implemented on a small-size humanoid robot and the results show that the performance of the proposed algorithm is efficient for robot visual SLAM and moving object detection.

  3. An integrated multimodality image-guided robot system for small-animal imaging research

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  4. Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms

    National Aeronautics and Space Administration — Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots,...

  5. Robotics

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  6. Sprint: The first flight demonstration of the external work system robots

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  7. Robots and Humans in Planetary Exploration: Working Together?

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  8. Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders

    Terada, S.; Kobayashi, H.; Sengoku, H.; Kato, Y.; Hara, K.; Honma, F.; Ikegami, Y.; Iwata, Y.; Kohriki, T.; Kondo, T.; Nakano, I.; Takashima, R.; Tanaka, R.; Ujiie, N.; Unno, Y.; Yasuda, S.

    2005-01-01

    More than 2000 silicon modules need to be placed and fastened on the ATLAS SCT barrel tracker. A semi-automatic pick-and-place work robot was designed and developed to cope with the module placement for the SCT barrel assembly. We found that this robot could place modules to a mechanical precision of better than 25 μm

  9. Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders

    Terada, S; Honma, F; Ikegami, Y; Iwata, Y; Kato, Y; Kobayashi, H; Kohriki, T; Kondo, T; Nakano, I; Sengoku, H; Takashima, R; Tanaka, R; Ujiie, N; Unno, Y; Yasuda, S

    2005-01-01

    More than 2000 silicon modules need to be placed and fastened on the ATLAS SCT barrel tracker. A semi-automatic pick-and-place work robot was designed and developed to cope with the module placement for the SCT barrel assembly. We found that this robot could place modules to a mechanical precision of better than 25 mum.

  10. Robotically assisted small intestinal strictureplasty in dogs: a survival study involving 16 Heineke-Mikulicz strictureplasties.

    Sonoda, T; Lee, S; Whelan, R L; Le, D; Foglia, C; Venturero, M; Hunt, D; Nakajima, K; Milsom, J W

    2007-12-01

    Robotically assisted surgery offers the advantages of improved dexterity and elimination of tremor over conventional laparoscopic surgery. There have been few studies to date, however, examining the role of robotics in intestinal surgery. This study was undertaken to determine the feasibility and safety of using a robotic surgical system in the performance of intracorporeal small bowel strictureplasties in dogs. Using a robotic surgical system, a total of 16 strictureplasties were performed in the small bowel of eight dogs (two strictureplasties per dog). Using only intracorporeal robotic surgery, a 2.5 cm enterotomy was made longitudinally in the small bowel, and then closed in a Heineke-Mikulicz configuration with a one-layer running 3-0 braided absorbable suture (strictureplasty). All animals were allowed to survive for 7 days with prospective monitoring of bowel movements, level of activity, oral intake, and abdominal examination. After 7 days, necropsy was performed, examining all strictureplasty sites for signs of sepsis. The endpoints of the study were recovery of normal intestinal function (bowel movements), intraoperative and postoperative complications, and the appearance of the anastomoses at necropsy. There was no intraoperative morbidity or mortality. All eight dogs survived 7 days and recovered well. All dogs had a bowel movement on the first postoperative day, and appeared healthy throughout the study period. Necropsy revealed that all 16 strictureplasty sites were healing without signs of sepsis. The median time per strictureplasty was 65 min (range, 45-110 min). One dog developed a superficial wound infection at a trocar site. A robotic surgical system can successfully be employed in the performance of intestinal strictureplasties in dogs. This study supports further investigation into the role of robotics in intestinal surgery in humans.

  11. Small Stirling dynamic isotope power system for robotic space missions

    Bents, D.J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the US Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established

  12. Effective Human-Robot Collaborative Work for Critical Missions

    National Aeronautics and Space Administration — The objective of this project is to improve human-robot interaction (HRI) in order to enhance the capability of NASA critical missions. This research will focus two...

  13. Interdisciplinary technology assessment of service robots: the psychological/work science perspective.

    Fischer, Martin

    2012-12-01

    The article sheds light on psychological and work science aspects of the design and utilization of service robots. An initial presentation of the characteristics of man-robot interaction is followed by a discussion of the principles of the division of functions between human beings and robots in service area work systems. The following aspects are to be considered: (1) the organisation of societal work (such as the different employment and professional profiles of service employees), (2) the work tasks to be performed by humans and robots (such as handling, monitoring or decision-making tasks), (3) the possibilities and the limitations of realizing such tasks by means of information technology (depending, for example, on the motoric capabilities, perception and cognition of the robot). Consideration of these three design perspectives gives rise to criteria of usability. Current debate focuses on the (work science) principles of man-machine communication, though in future these should be supplemented with robot-specific criteria such as "motoric capabilities" or "relationship quality." The article concludes by advocating the convergence and combination of work science criteria with ideas drawn from participative design approaches in the development and utilization of service robots.

  14. Robotics

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  15. Event detection and localization for small mobile robots using reservoir computing.

    Antonelo, E A; Schrauwen, B; Stroobandt, D

    2008-08-01

    Reservoir Computing (RC) techniques use a fixed (usually randomly created) recurrent neural network, or more generally any dynamic system, which operates at the edge of stability, where only a linear static readout output layer is trained by standard linear regression methods. In this work, RC is used for detecting complex events in autonomous robot navigation. This can be extended to robot localization tasks which are solely based on a few low-range, high-noise sensory data. The robot thus builds an implicit map of the environment (after learning) that is used for efficient localization by simply processing the input stream of distance sensors. These techniques are demonstrated in both a simple simulation environment and in the physically realistic Webots simulation of the commercially available e-puck robot, using several complex and even dynamic environments.

  16. Basic maneuvers for an inspection robot for small diameter gas distribution mains

    Dertien, Edwin Christian; Stramigioli, Stefano

    2011-01-01

    This video shows the design of a mechanical structure of a miniature pipe inspection robot (MPR) capable of moving trough very small pipes (up to 41 mm inner diameter) as well as a wide range of diameters (63 to 125 mm outer diameter). The requirement to negotiate bends, T-joints and steep

  17. Development of robot for light repairing work of nuclear power plants

    Katayanagi, Hiroshi; Shoji, Yoshito; Tamura, Kimiyoshi; Yamashita, Shigeru.

    1990-01-01

    When leakage occurs in the primary cooling system and auxiliary machinery system of nuclear reactors, in order to limit the leakage to outside to minimum, and prevent the escalation to accidents and troubles, the retightening of valve glands, the repair of leakage at piping flanges and so on become necessary. For the labor saving and the reduction of radiation exposure of workers, the development of a robot which can carry out these repair works by remote operation has been performed from 1985 to 1989. At the time of the development, the working areas in nuclear power stations were surveyed, the objects of application were narrowed down, and the development of elementary technologies and job analysis were carried out, thereafter, a robot was manufactured for trial. Subsequently, it was confirmed by using the mock-up facilities that the robot can do remote repair. The robot for light repairing works which was developed is described in this report. The functional features of the robot, the course of its development and the results of the mock-up test are reported. Hereafter, the expansion of the range of repair works and to make the robot intelligent are intended to make it into a practical robot. (K.I.)

  18. Pose estimation for mobile robots working on turbine blade

    Ma, X.D.; Chen, Q.; Liu, J.J.; Sun, Z.G.; Zhang, W.Z. [Tsinghua Univ., Beijing (China). Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Dept. of Mechanical Engineering

    2009-03-11

    This paper discussed a features point detection and matching task technique for mobile robots used in wind turbine blade applications. The vision-based scheme used visual information from the robot's surrounding environment to match successive image frames. An improved pose estimation algorithm based on a scale invariant feature transform (SIFT) was developed to consider the characteristics of local images of turbine blades, pose estimation problems, and conditions. The method included a pre-subsampling technique for reducing computation and bidirectional matching for improving precision. A random sample consensus (RANSAC) method was used to estimate the robot's pose. Pose estimation conditions included a wide pose range; the distance between neighbouring blades; and mechanical, electromagnetic, and optical disturbances. An experimental platform was used to demonstrate the validity of the proposed algorithm. 20 refs., 6 figs.

  19. Development of small size wall decontamination robot systems in nuclear power plants

    Fujita, Tsuneaki; Takahashi, Tsuyosi

    2004-01-01

    This paper describes the development of wall decontamination robot systems for nuclear power plants. In nuclear power plants, it is required to reduce maintenance costs, including annual inspection, repairs and so on. Most of such maintenance activities are actually performed after decontamination processes are completed. In particular, the decontamination process of reactor wells is very important for reducing the radiation exposure of human workers. In the past, decontamination of reactor wells used to be done by extra large machine and tools, which caused long working hours and tiresome works. It was one of the reasons maintenance costs couldn't have been easily reduced. There are narrow spaces in the reactor wells that have to be decontaminated by human workers. In order to minimize the radiation exposure to humans, wall decontamination robot systems have been developed. The decontamination robots have rolled brushes and suction mechanisms and are capable of removing contaminants attached to the wall surface of the reactor wells. By making the robots smaller, it is possible to work in narrower spaces. In this paper, the effectiveness of decontamination by the developed robots is shown through experiments in the actual nuclear power plants. (author)

  20. Robot engineering

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  1. Robot engineering

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  2. Shape memory alloy-based small crawling robots inspired by C. elegans

    Yuk, Hyunwoo; Kim, Daeyeon; Shin, Jennifer H [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Honggu; Jo, Sungho, E-mail: shjo@kaist.ac.kr, E-mail: j_shin@kaist.ac.kr [Department of Computer Science, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2011-12-15

    Inspired by its simple musculature, actuation and motion mechanisms, we have developed a small crawling robot that closely mimics the model organism of our choice: Caenorhabditis elegans. A thermal shape memory alloy (SMA) was selected as an actuator due to the similarities of its properties to C. elegans muscles. Based on the anatomy of C. elegans, a 12-unit robot was designed to generate a sinusoidal undulating motion. Each body unit consisting of a pair of SMA actuators is serially connected by rigid links with an embedded motion control circuit. A simple binary operation-based motion control mechanism was implemented using a microcontroller. The assembled robot can execute C. elegans-like motion with a 0.17 Hz undulation frequency. Its motion is comparable to that of a real worm.

  3. An automated robot arm system for small animal tissue biopsy under dual-image modality

    Huang, Y.H.; Wu, T.H.; Lin, M.H.; Yang, C.C.; Guo, W.Y.; Wang, Z.J.; Chen, C.L.; Lee, J.S.

    2006-01-01

    The ability to non-invasively monitor cell biology in vivo is one of the most important goals of molecular imaging. Imaging procedures could be inter-subject performed repeatedly at different investigating stages; thereby need not sacrifice small animals during the entire study period. Thus, the ultimate goal of this study was to design a stereotactic image-guided system for small animals and integrated it with an automatic robot arm for in vivo tissue biopsy analysis. The system was composed of three main parts, including one small animal stereotactic frame, one imaging-fusion software and an automatic robot arm system. The system has been thoroughly evaluated with three components; the robot position accuracy was 0.05±0.02 mm, the image registration accuracy was 0.37±0.18 mm and the system integration was satisfactorily within 1.20±0.39 mm of error. From these results, the system demonstrated sufficient accuracy to guide the micro-injector from the planned delivery routes into practice. The entire system accuracy was limited by the image fusion and orientation procedures, due to its nature of the blurred PET imaging obtained from the small objects. The primary improvement is to acquire as higher resolution as possible the fused imaging for localizing the targets in the future

  4. The role of intraoperative ultrasound in small renal mass robotic enucleation

    Roberta Gunelli

    2016-12-01

    Full Text Available Introduction: As a result of the growing evidence on tumor radical resection in literature, simple enucleation has become one of the best techniques associated to robotic surgery in the treatment of renal neoplasia, as it guarantees minimal invasiveness and the maximum sparing of renal tissue, facilitating the use of reduced or zero ischemia techniques during resection. The use of a robotic ultrasound probe represents a useful tool to detect and define tumor location, especially in poorly exophytic small renal mass. Materials and methods: A total of 22 robotic enucleations were performed on < 3 cm renal neoplasias (PADUA score 18 Pz 6/7 e 4 Pz 8 using a 12-5 MHz robotic ultrasound probe (BK Drop-In 8826. Results: Once kidney had been isolated from the adipose capsule at the site of the neoplasia (2, the exact position of the lesion could be easily identified in all cases (22/22, even for mostly endophytic lesions, thanks to the insertion of the ultrasound probe through the assistant port. Images were produced and visualized by the surgeon using the TilePro feature of the DaVinci surgical system for producing a picture-in-picture image on the console screen. The margins of resection were then marked with cautery, thus allowing for speedy anatomical dissection. This reduced the time of ischemia to 8 min (6-13 and facilitated the enucleation technique when performed without clamping the renal peduncle (6/22. No complications due to the use of the ultrasound probe were observed. Conclusions: The use of an intraoperative robotic ultrasound probe has allowed for easier identification of small, mostly endophytic neoplasias, better anatomical approach, shorter ischemic time, reduced risk of pseudocapsule rupture during dissection, and easier enucleation in cases performed without clamping. It is noteworthy that the use of intraoperative ultrasound probe allows mental reconstruction of the tumor through an accurate 3D vision of the hidden field during

  5. The role of intraoperative ultrasound in small renal mass robotic enucleation.

    Gunelli, Roberta; Fiori, Massimo; Salaris, Cristiano; Salomone, Umberto; Urbinati, Marco; Vici, Alexia; Zenico, Teo; Bertocco, Mauro

    2016-12-30

    As a result of the growing evidence on tumor radical resection in literature, simple enucleation has become one of the best techniques associated to robotic surgery in the treatment of renal neoplasia, as it guarantees minimal invasiveness and the maximum sparing of renal tissue, facilitating the use of reduced or zero ischemia techniques during resection. The use of a robotic ultrasound probe represents a useful tool to detect and define tumor location, especially in poorly exophytic small renal mass. A total of 22 robotic enucleations were performed on < 3 cm renal neoplasias (PADUA score 18 Pz 6/7 e 4 Pz 8) using a 12-5 MHz robotic ultrasound probe (BK Drop-In 8826). Once kidney had been isolated from the adipose capsule at the site of the neoplasia (2), the exact position of the lesion could be easily identified in all cases (22/22), even for mostly endophytic lesions, thanks to the insertion of the ultrasound probe through the assistant port. Images were produced and visualized by the surgeon using the TilePro feature of the DaVinci surgical system for producing a picture-in-picture image on the console screen. The margins of resection were then marked with cautery, thus allowing for speedy anatomical dissection. This reduced the time of ischemia to 8 min (6-13) and facilitated the enucleation technique when performed without clamping the renal peduncle (6/22). No complications due to the use of the ultrasound probe were observed. The use of an intraoperative robotic ultrasound probe has allowed for easier identification of small, mostly endophytic neoplasias, better anatomical approach, shorter ischemic time, reduced risk of pseudocapsule rupture during dissection, and easier enucleation in cases performed without clamping. It is noteworthy that the use of intraoperative ultrasound probe allows mental reconstruction of the tumor through an accurate 3D vision of the hidden field during surgical dissection.

  6. Intuitive Robot Tasks with Augmented Reality and Virtual Obstacles

    Gaschler, Andre;Springer, Maximilian;Rickert, Markus;Knoll, Alois

    2017-01-01

    Today's industrial robots require expert knowledge and are not profitable for small and medium sized enterprises with their small lot sizes. It is our strong belief that more intuitive robot programming in an augmented reality robot work cell can dramatically simplify re-programming and leverage robotics technology in short production cycles. In this paper, we present a novel augmented reality system for defining virtual obstacles, specifying tool positions, and specifying robot tasks. We eva...

  7. A Web-Based Integration Procedure for the Development of Reconfigurable Robotic Work-Cells

    Paulo Ferreira

    2013-07-01

    Full Text Available Concepts related to the development of reconfigurable manufacturing systems (RMS and methodologies to provide the best practices in the processing industry and factory automation, such as system integration and web-based technology, are major issues in designing next-generation manufacturing systems (NGMS. Adaptable and integrable devices are crucial for the success of NGMS. In robotic cells the integration of manufacturing components is essential to accelerate system adaptability. Sensors, control architectures and communication technologies have contributed to achieving further agility in reconfigurable factories. In this work a web-based robotic cell integration procedure is proposed to aid the identification of reconfigurable issues and requirements. This methodology is applied to an industrial robot manipulator to enhance system flexibility towards the development of a reconfigurable robotic platform.

  8. Robot Actors, Robot Dramaturgies

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  9. Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design

    Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)

    2001-01-01

    This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.

  10. Robotic milking: Technology, farm design, and effects on work flow.

    Rodenburg, Jack

    2017-09-01

    Robotic milking reduces labor demands on dairy farms of all sizes and offers a more flexible lifestyle for farm families milking up to 250 cows. Because milking is voluntary, barn layouts that encourage low-stress access by providing adequate open space near the milking stations and escape routes for waiting cows improve milking frequency and reduce fetching. Because lame cows attend less often, preventing lameness with comfortable stalls, clean alley floors, and effective foot bathing warrants special emphasis in robotic dairies. Variable milking intervals create challenges for foot bathing, sorting and handling, and dealing with special-needs cows. Appropriate cow routing and separation options at the milking stations are needed to address these challenges and ensure that the expected labor savings are realized. Protocols and layout and gating should make it possible for a herd worker to complete all handling tasks alone. Free traffic and guided traffic systems yield similar results when excellent management is applied or when the number of cows is well below capacity. In less ideal circumstances, guided traffic and the use of commitment pens result in longer standing times and stress, particularly for lower ranking cows, and poor management with free traffic results in more labor for fetching. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Initial Work Toward a Robotically Assisted EVA Glove

    Rogers, J.; Peters, B.; McBryan, E.; Laske, E.

    2016-01-01

    The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.

  12. Robotics

    netic induction to detect an object. The development of ... end effector, inclination of object, magnetic and electric fields, etc. The sensors described ... In the case of a robot, the various actuators and motors have to be modelled. The major ...

  13. Stereo and IMU-Assisted Visual Odometry for Small Robots

    2012-01-01

    This software performs two functions: (1) taking stereo image pairs as input, it computes stereo disparity maps from them by cross-correlation to achieve 3D (three-dimensional) perception; (2) taking a sequence of stereo image pairs as input, it tracks features in the image sequence to estimate the motion of the cameras between successive image pairs. A real-time stereo vision system with IMU (inertial measurement unit)-assisted visual odometry was implemented on a single 750 MHz/520 MHz OMAP3530 SoC (system on chip) from TI (Texas Instruments). Frame rates of 46 fps (frames per second) were achieved at QVGA (Quarter Video Graphics Array i.e. 320 240), or 8 fps at VGA (Video Graphics Array 640 480) resolutions, while simultaneously tracking up to 200 features, taking full advantage of the OMAP3530's integer DSP (digital signal processor) and floating point ARM processors. This is a substantial advancement over previous work as the stereo implementation produces 146 Mde/s (millions of disparities evaluated per second) in 2.5W, yielding a stereo energy efficiency of 58.8 Mde/J, which is 3.75 better than prior DSP stereo while providing more functionality.

  14. Swarming Robot Design, Construction and Software Implementation

    Stolleis, Karl A.

    2014-01-01

    In this paper is presented an overview of the hardware design, construction overview, software design and software implementation for a small, low-cost robot to be used for swarming robot development. In addition to the work done on the robot, a full simulation of the robotic system was developed using Robot Operating System (ROS) and its associated simulation. The eventual use of the robots will be exploration of evolving behaviors via genetic algorithms and builds on the work done at the University of New Mexico Biological Computation Lab.

  15. Experience with the Surveyor mobile robot in radioactive work environments

    Kniazewycz, B.G.; Darvish, A.R.; Irving, T.L.

    1986-01-01

    This paper summarizes the development and implementation history of the Surveyor mobile robotic device from November 1985 through August 1986. This two-tracked remotely controlled tetherless device is used to conduct surveillance and inspection and light maintenance missions in nuclear power plants. Surveyor's relatively light weight (<400 lb) can easily be transported manually from location to location. The total maximum payload of the device, which is able to climb 40-deg stairs, is up to 300 lb when transported on a level floor. Surveyor can traverse through 14 in. of water and over 9-in.-high obstacles. Standard accessories include radiation detector, humidity monitor, temperature measurement, sound detection and position/ranging, and a standard video or CCD camera having a wide angle and telephoto lens. These devices are mounted on a 3 degree-of-freedom articulated arm with halogen lights

  16. DESIGN OF SMALL AUTOMATION WORK CELL SYSTEM DEMONSTRATIONS

    TURNER, C.; PEHL, J.

    2000-01-01

    The introduction of automation systems into many of the facilities dealing with the production, use and disposition of nuclear materials has been an ongoing objective. Many previous attempts have been made, using a variety of monolithic and, in some cases, modular technologies. Many of these attempts were less than successful, owing to the difficulty of the problem, the lack of maturity of the technology, and over optimism about the capabilities of a particular system. Consequently, it is not surprising that suggestions that automation can reduce worker Occupational Radiation Exposure (ORE) levels are often met with skepticism and caution. The development of effective demonstrations of these technologies is of vital importance if automation is to become an acceptable option for nuclear material processing environments. The University of Texas Robotics Research Group (UTRRG) has been pursuing the development of technologies to support modular small automation systems (each of less than 5 degrees-of-freedom) and the design of those systems for more than two decades. Properly designed and implemented, these technologies have a potential to reduce the worker ORE associated with work in nuclear materials processing facilities. Successful development of systems for these applications requires the development of technologies that meet the requirements of the applications. These application requirements form a general set of rules that applicable technologies and approaches need to adhere to, but in and of themselves are generally insufficient for the design of a specific automation system. For the design of an appropriate system, the associated task specifications and relationships need to be defined. These task specifications also provide a means by which appropriate technology demonstrations can be defined. Based on the requirements and specifications of the operations of the Advanced Recovery and Integrated Extraction System (ARIES) pilot line at Los Alamos National

  17. Working on the robot society. : Visions and insights from science about the relation technology and employment.

    van Est, R.; Kool, L.

    2015-01-01

    The report Working on the robot society sets out current scientific findings for the relationship between technology and employment. It looks at the future and describes the policy options. In so doing, the report provides a joint fund of knowledge for societal and political debate on how the

  18. Human-rating Automated and Robotic Systems - (How HAL Can Work Safely with Astronauts)

    Baroff, Lynn; Dischinger, Charlie; Fitts, David

    2009-01-01

    Long duration human space missions, as planned in the Vision for Space Exploration, will not be possible without applying unprecedented levels of automation to support the human endeavors. The automated and robotic systems must carry the load of routine housekeeping for the new generation of explorers, as well as assist their exploration science and engineering work with new precision. Fortunately, the state of automated and robotic systems is sophisticated and sturdy enough to do this work - but the systems themselves have never been human-rated as all other NASA physical systems used in human space flight have. Our intent in this paper is to provide perspective on requirements and architecture for the interfaces and interactions between human beings and the astonishing array of automated systems; and the approach we believe necessary to create human-rated systems and implement them in the space program. We will explain our proposed standard structure for automation and robotic systems, and the process by which we will develop and implement that standard as an addition to NASA s Human Rating requirements. Our work here is based on real experience with both human system and robotic system designs; for surface operations as well as for in-flight monitoring and control; and on the necessities we have discovered for human-systems integration in NASA's Constellation program. We hope this will be an invitation to dialog and to consideration of a new issue facing new generations of explorers and their outfitters.

  19. First Application of Robot Teaching in an Existing Industry 4.0 Environment: Does It Really Work?

    Astrid Weiss

    2016-07-01

    Full Text Available This article reports three case studies on the usability and acceptance of an industrial robotic prototype in the context of human-robot cooperation. The three case studies were conducted in the framework of a two-year project named AssistMe, which aims at developing different means of interaction for programming and using collaborative robots in a user-centered manner. Together with two industrial partners and a technological partner, two different application scenarios were implemented and studied with an off-the-shelf robotic system. The operators worked with the robotic prototype in laboratory conditions (two days, in a factory context (one day and in an automotive assembly line (three weeks. In the article, the project and procedures are described in detail, including the quantitative and qualitative methodology. Our results show that close human-robot cooperation in the industrial context needs adaptive pacing mechanisms in order to avoid a change of working routines for the operators and that an off-the-shelf robotic system is still limited in terms of usability and acceptance. The touch panel, which is needed for controlling the robot, had a negative impact on the overall user experience. It creates a further intermediate layer between the user, the robot and the work piece and potentially leads to a decrease in productivity. Finally, the fear of the worker of being replaced by an improved robotic system was regularly expressed and adds an additional anthropocentric dimension to the discussion of human-robot cooperation, smart factories and the upcoming Industry 4.0.

  20. An advanced semiautonomous robotic system for hazardous response work for decontamination and decommissioning

    Crane, C.; Tulenko, J.F.

    1990-01-01

    The articulated transporter/manipulator system (ATMS) under development by the University of Florida (UF) with Odetics Corporation as lead subcontractor will be able to manipulate through obstructed areas. Since 1987, the Advanced Technology Division of the US Department of Energy has sponsored a university team composed of the UF, University of Michigan, University of Tennessee, and the University of Texas under the leadership of the Oak Ridge National Laboratory to pursue innovative robotics research leading to the development of advanced robotic systems. The UF has the task of developing the ATMS innovative transport system. As part of this task, UF has been focusing on developing horizontal and external navigation algorithms that carry out ongoing ATMS autonomous path planning. The flexibility of the ATMS is also being demonstrated as a surveillance/maintenance robot for the PRISM reactor. The ATMS has demonstrated that it can carry out autonomous planning responding both to obstacles and set operating levels. The ATMS also has demonstrated that it has sufficient flexibility to serve in a surveillance/maintenance mode. Work is progressing on developing the hardware to deliver the mechanical capabilities demonstrated by simulated robotic system

  1. Reconnaissance and Autonomy for Small Robots (RASR) team: MAGIC 2010 challenge

    Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Corley, Katrina

    2012-06-01

    The Reconnaissance and Autonomy for Small Robots (RASR) team developed a system for the coordination of groups of unmanned ground vehicles (UGVs) that can execute a variety of military relevant missions in dynamic urban environments. Historically, UGV operations have been primarily performed via tele-operation, requiring at least one dedicated operator per robot, and requiring substantial real-time bandwidth to accomplish those missions. Our team goal was to develop a system that can provide long-term value to the war-fighter, utilizing MAGIC-2010 as a stepping stone. To that end, we self-imposed a set of constraints that would force us to develop technology that could readily be used by the military in the near term: • Use a relevant (deployed) platform • Use low-cost, reliable sensors • Develop an expandable and modular control system with innovative software algorithms to minimize the computing footprint required • Minimize required communications bandwidth and handle communication losses • Minimize additional power requirements to maximize battery life and mission duration

  2. R and D project for large industrial technologies in fiscal 1990. Report on achievements in R and D of robots for critical works; 1990 nendo seika hokokusho. Ogata kogyo gijutsu kenkyu kaihatsu jigyo. Kyokugen sagyo robot no kenkyu kaihatsu

    NONE

    1991-01-01

    Research and development have been performed on basic technologies common to different types of robots to carry out works in critical conditions. This paper summarizes the achievements in fiscal 1990. In the R and D of tactile sensors, a prototype multi-element sensor array applicable to fingers of a robot hand was produced, and the characteristics test was conducted. In the R and D of motive force technologies, a force controlled actuator for wrist containing a torque sensor was designed and produced on a trial basis, whereas evaluations were given on the size and weight reduction and the force control performance. Regarding the actuator with redundant degree of freedom, a force controlled arm was attached with an actuator with three degrees of freedom to have performed an evaluation experiment. With regard to a small size and light weight controller, fabrication was carried out on a multi-function, high-density controller which adds positional control and peripheral interface functions to the force controlling function, and an evaluation was given. In the R and D of robot language, discussions were given on robot languages related to each system of movement, manipulation, and sensors, and the grammar specifications were prepared. (NEDO)

  3. Identifying Factors Reinforcing Robotization: Interactive Forces of Employment, Working Hour and Wage

    Joonmo Cho; Jinha Kim

    2018-01-01

    Unlike previous studies on robotization approaching the future based on the cutting-edge technologies and adopting a framework where robotization is considered as an exogenous variable, this study considers that robotization occurs endogenously and uses it as a dependent variable for an objective examination of the effect of robotization on the labor market. To this end, a robotization indicator is created based on the actual number of industrial robots currently deployed in workplaces, and a...

  4. USING OF ROBOTS-MANIPULATORS IN LABORATORY WORKS IN HIGHER EDUCATION INSTITUTES

    Viktor Yehorov

    2017-05-01

    Full Text Available Studying of technical disciplines in higher education institution as a rule consists of 2 parts – theories and practice. Practice, is a type of educational process which allows to realize theoretical knowledge to the applied sphere. In particular it allows to provide an object visually, creating its image and visually adequate perception. This work is devoted to development of laboratory base of technical college with use of robots manipulators on occupations. Its relevance is shown. The overview of modern stands is provided in different higher education institutions, the analysis of their benefits and shortcomings is this. The task of creation of the robot manipulator for sorting of objects of color is set. The robot model including an automatic management system it is developed. The sensor of color, the regulator and the executive mechanism allowing to move objects to the corresponding reservoirs is its part. Possibilities of further development of a question, in particular, creations of physical model for use are given in laboratory works.

  5. USING OF ROBOTS-MANIPULATORS IN LABORATORY WORKS IN HIGHER EDUCATION INSTITUTES

    V. Yehorov

    2017-06-01

    Full Text Available Studying of technical disciplines in higher education institution as a rule consists of 2 parts – theories and practice. Practice, is a type of educational process which allows to realize theoretical knowledge to the applied sphere. In particular it allows to provide an object visually, creating its image and visually adequate perception. This work is devoted to development of laboratory base of technical college with use of robots manipulators on occupations. Its relevance is shown. The overview of modern stands is provided in different higher education institutions, the analysis of their benefits and shortcomings is this. The task of creation of the robot manipulator for sorting of objects of color is set. The robot model including an automatic management system it is developed. The sensor of color, the regulator and the executive mechanism allowing to move objects to the corresponding reservoirs is its part. Possibilities of further development of a question, in particular, creations of physical model for use are given in laboratory works.

  6. Work in progress: Robotics mapping of landmine and UXO contaminated areas

    Jensen, K; Jørgensen, R N; Bøgild, A

    Explosive remnants of war like landmines and unexploded ordnance (UXO) are a serious threat in post conflict environments around the World. Aside from the killing and injury of many people the landmines and UXO have a significant impact on the local economy due to inac- cessible roads and loss...... the knowledge and experience from the agricultural plant nursing robotics domain to demining applications. The aim is to have a reliable, efficient and user-friendly autonomous robot capable of mapping as well as visually marking detected landmines and UXO within a bounded area. The operator specifies the area...... Detection System (WADS) developed by the organization Danish Church Aid. Current status of the project is that the first autonomous area coverage tests have been performed successfully using Casmobot, a tracked mower platform capable of working in rough terrain including steep slopes. An improved modular...

  7. Beliefs about motivation and work with quality, environment and working environment in small organisations

    Lindmark, Camilla

    1999-01-01

    Three small organisations in Sweden were studied in order to describe found motives for and against work with quality, environment and working environment among people in a small organisation. Some motives for work within the three areas mainly expressed beliefs about increased production results and increased psychological well-being of people. The work was also thought to have a positive impact on the organisation in terms of coping with changes in the surrounding. Arguments why small organ...

  8. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  9. Healthcare Robotics

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  10. User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke

    Ivanova Ekaterina

    2017-03-01

    Full Text Available Robotic therapy devices have been an important part of clinical neurological rehabilitation for several years. Until now such devices are only available for patients receiving therapy inside rehabilitation hospitals. Since patients should continue rehabilitation training after hospital discharge at home, intelligent robotic rehab devices could help to achieve this goal. This paper presents therapeutic requirements and early phases of the user-centered design process of the patient’s work station as part of a novel robot-based system for motor telerehabilitation.

  11. From Self-Assessment to Frustration, A Small Step Towards Autonomy in Robotic Navigation.

    Adrien eJauffret

    2013-10-01

    Full Text Available Autonomy and self-improvement capabilities are still challenging in the fields of robotics and machine learning. Allowing a robot to autonomously navigate in wide and unknown environments not only requires a repertoire of robust strategies to cope with miscellaneous situations, but also needs mechanisms of self-assessment for guiding learning and for monitoring strategies. Monitoring strategies requires feedbacks on the behavior’s quality, from a given fitness system in order to take correct decisions.In this work, we focus on how a second-order controller can be used to (1 manage behaviors according to the situation and (2 seek for human interactions to improve skills. Following an incremental and constructivist approach, we present a generic neural architecture, based on an online novelty detection algorithm that may be able to self-evaluate any sensory-motor strategies. This architecture learns contingencies between sensations and actions, giving the expected sensation from the previous perception. Prediction error, coming from surprising events, provides a measure of the quality of the underlying sensory-motor contingencies. We show how a simple second-order controller (emotional system based on the prediction progress allows the system to regulate its behavior to solve complex navigation tasks and also succeeds in asking for help if it detects dead-lock situations.We propose that this model could be a key structure toward self-assessment and autonomy. We made several experiments that can account for such properties for two different strategies (road following and place cells based navigation in different situations.

  12. Robot-assisted training for heart failure patients - a small pilot study.

    Schoenrath, Felix; Markendorf, Susanne; Brauchlin, Andreas Emil; Frank, Michelle; Wilhelm, Markus Johannes; Saleh, Lanja; Riener, Robert; Schmied, Christian Marc; Falk, Volkmar

    2015-12-01

    The objective of this study was assess robot-assisted gait therapy with the Lokomat® system in heart failure patients. Patients (n = 5) with stable heart failure and a left ventricular ejection fraction of less than 45% completed a four-week aerobic training period with three trainings per week and an integrated dynamic resistance training of the lower limbs. Patients underwent testing of cardiac and inflammatory biomarkers. A cardiopulmonary exercise test, a quality of life score and an evaluation of the muscular strength by measuring the peak quadriceps force was performed. No adverse events occurred. The combined training resulted in an improvement in peak work rate (range: 6% to 36%) and peak quadriceps force (range: 3% to 80%) in all participants. Peak oxygen consumption (range: –3% to + 61%) increased in three, and oxygen pulse (range: –7% to + 44%) in four of five patients. The quality of life assessment indicated better well-being in all participants. NT-ProBNP (+233 to –733 ng/ml) and the inflammatory biomarkers (hsCRP and IL6) decreased in four of five patients (IL 6: +0.5 to –2 mg/l, hsCRP: +0.2 to –6.5 mg/l). Robot-assisted gait therapy with the Lokomat® System is feasible in heart failure patients and was safe in this trial. The combined aerobic and resistance training intervention with augmented feedback resulted in benefits in exercise capacity, muscle strength and quality of life, as well as an improvement of cardiac (NT-ProBNP) and inflammatory (IL6, hsCRP) biomarkers. Results can only be considered as preliminary and need further validation in larger studies. (ClinicalTrials.gov number, NCT 02146196)

  13. Design of robotic cells based on relative handling modules with use of SolidWorks system

    Gaponenko, E. V.; Anciferov, S. I.

    2018-05-01

    The article presents a diagramed engineering solution for a robotic cell with six degrees of freedom for machining of complex details, consisting of the base with a tool installation module and a detail machining module made as parallel structure mechanisms. The output links of the detail machining module and the tool installation module can move along X-Y-Z coordinate axes each. A 3D-model of the complex is designed in the SolidWorks system. It will be used further for carrying out engineering calculations and mathematical analysis and obtaining all required documentation.

  14. Cloud Robotics Platforms

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  15. Comparison of robotic and laparoscopic partial nephrectomy for small renal tumours

    Abdulmuttalip Simsek

    2017-06-01

    Full Text Available Objective: To evaluate a single surgeon oncological and functional outcomes of laparoscopic partial nephrectomy (LPN compared to robotic partial nephrectomy (RPN for pT1a renal tumours. Materials and methods: Between 2006 and 2016, a retrospective review of 42 patients who underwent LPN (n = 20 or RPN (n = 22 by same surgeon was performed. Patients were matched for gender, age, body mass index (BMI, American Society of Anaesthesiologists (ASA score, tumour side, RENAL and PADUA scores, peri-operative and post-operative outcomes. Results: There was no significant differences between the two groups with respect to patient gender, age, BMI, ASA score, tumours side, RENAL and PADUA scores. Mean operative time for RPN was 176 vs. 227 minutes for LPN (p = 0.001. Warm ischemia time was similar in both groups (p = 0.58. Estimated blood loss (EBL was higher in the LPN. There was no significant difference with preoperative and postoperative creatinine and percent change in eGFR levels. Only one case in LPN had positive surgical margin. Conclusions: RPN is a developing procedure, and technically feasible and safe for small-size renal tumours. Moreover RPN is a comparable and alternative operation to LPN, providing equivalent oncological and functional outcomes, as well as saving more healthy marginal tissue and easier and faster suturing.

  16. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-01-01

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 μm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 μm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154±113 μm. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  17. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  18. The age of em work, love, and life when robots rule the Earth

    Hanson, Robin

    2016-01-01

    Robots may one day rule the world, but what is a robot-ruled Earth like? Many think that the first truly smart robots will be brain emulations or "ems." Robin Hanson draws on decades of expertise in economics, physics, and computer science to paint a detailed picture of this next great era in human (and machine) evolution - the age of em.

  19. Non-manufacturing applications of robotics

    Dauchez, P.

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  20. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  1. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  2. Work related injuries and associated factors among small scale ...

    Objective: This study aims to assess the magnitude of work related injury and associated factors among small scale industrial workers in Mizan-Aman town, Bench Maji Zone, Southwest Ethiopia. Method: A cross-sectional study design was conducted from February to May, 2016. Data was collected using a structured face to ...

  3. Small arms proliferation. Report on working group 2

    1998-01-01

    The working group reported on the proliferation of small arms, light weapons non-lethal weapons, which have traditionally been given little attention in international talks on peace on the contrary to nuclear weapons which have been tested during the Second World War but never used in war later

  4. The role of intraoperative ultrasound in small renal mass robotic enucleation

    Roberta Gunelli; Massimo Fiori; Cristiano Salaris; Umberto Salomone; Marco Urbinati; Alexia Vici; Teo Zenico; Mauro Bertocco

    2016-01-01

    Introduction: As a result of the growing evidence on tumor radical resection in literature, simple enucleation has become one of the best techniques associated to robotic surgery in the treatment of renal neoplasia, as it guarantees minimal invasiveness and the maximum sparing of renal tissue, facilitating the use of reduced or zero ischemia techniques during resection. The use of a robotic ultrasound probe represents a useful tool to detect and define tumor location, especially in poorly exo...

  5. Dual Arm Work Platform teleoperated robotics system. Innovative technology summary report

    1998-12-01

    The US Department of Energy (DOE) and the Federal Energy Technology Center (FETC) has developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial Deactivation and Decommissioning (D and D) technologies in comparison with current baseline technologies. The Dual Arm Work Platform (DAWP) demonstration focused on the use of the DAWP to segment and dismantle the CP-5 reactor tank and surrounding bio-shield components (including the graphite block reflector, lead and boral sheeting) and performing some minor tasks best suited for the use of teleoperated robotics that were not evaluated in this demonstration. The DAWP system is not a commercially available product at this time. The CP-5 implementation was its first D and D application. The demonstration of the DAWP was to determine the areas on which improvements must be made to make this technology commercially viable. The results of the demonstration are included in this greenbook. It is the intention of the developers to incorporate lessons learned at this demonstration and current technological advancements in robotics into the next generation of the DAWP

  6. Robot Futures

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  7. Development of a small cruising-type AUV and training of constant altitude swimming; Kogata kokogata kaichu robot no kaihatsu to teikodo koko no kunren

    Suto, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Ura, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1997-08-01

    A small autonomous robot with high software development efficiency was developed to investigate the control system of an autonomous cruising-type AUV in the actual environment. This robot has a minimum of functions required as a cruising type. One researcher can make an experiment on the robot because of its compactness and lightweight. The robot can also automatically cruise around in a small pool. It was confirmed that an adaptive constant altitude swimming controller utilizing a neural network verified by simulation can also be properly adjusted by an actual robot. The switching mechanism of neural networks was introduced to classify environmental patterns. The corresponding controller is adjusted automatically. In this study, a lightweight and compact cruising-type test-bed robot that has not existed until now was developed. This robot is easy to manufacture and construct in software. Therefore, it is to be desired that the researches and development of autonomous functions are promoted using such a robot. 9 refs., 13 figs., 1 tab.

  8. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  9. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  10. Robotics and general surgery.

    Jacob, Brian P; Gagner, Michel

    2003-12-01

    Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.

  11. Kinematic Modelling and Simulation of a 2-R Robot Using SolidWorks and Verification by MATLAB/Simulink

    Mahmoud Gouasmi

    2012-12-01

    Full Text Available The simulation of robot systems is becoming very popular, especially with the lowering of the cost of computers, and it can be used for layout evaluation, feasibility studies, presentations with animation and off-line programming. The trajectory planning of redundant manipulators is a very active area since many tasks require special characteristics to be satisfied. The importance of redundant manipulators has increased over the last two decades because of the possibility of avoiding singularities as well as obstacles within the course of motion. The angle that the last link of a 2 DOF manipulator makes with the x-axis is required in order to find the solution for the inverse kinematics problem. This angle could be optimized with respect to a given specified key factor (time, velocity, torques while the end-effector performs a chosen trajectory (i.e., avoiding an obstacle in the task space. Modeling and simulation of robots could be achieved using either of the following models: the geometrical model (positions, postures, the kinematic model and the dynamic model. To do so, the modelization of a 2-R robot type is implemented. Our main tasks are comparing two robot postures with the same trajectory (path and for the same length of time, and establishing a computing code to obtain the kinematic and dynamic parameters. SolidWorks and MATLAB/Simulink softwares are used to check the theory and the robot motion simulation. This could be easily generalized to a 3-R robot and possibly therefore to any serial robot (Scara, Puma, etc.. The verification of the obtained results by both softwares allows us to qualitatively evaluate and underline the validityof the chosen model and obtain the right conclusions. The results of the simulations are discussed and an agreement between the two softwares is certainly obtained.

  12. Decreased Time to Return to Work Using Robotic-Assisted Unicompartmental Knee Arthroplasty Compared to Conventional Techniques.

    Jinnah, Alexander H; Augart, Marco A; Lara, Daniel L; Jinnah, Riyaz H; Poehling, Gary G; Gwam, Chukwuweike U; Plate, Johannes F

    2018-06-01

    Unicompartmental knee arthroplasty (UKA) is a commonly used procedure for patients suffering from debilitating unicompartmental knee arthritis. For UKA recipients, robotic-assisted surgery has served as an aid in improving surgical accuracy and precision. While studies exist detailing outcomes of robotic UKA, to our knowledge, there are no studies assessing time to return to work using robotic-assisted UKA. Thus, the purpose of this study was to prospectively assess the time to return to work and to achieve the level of work activity following robotic-assisted UKA to create recommendations for patients preoperatively. We hypothesized that the return to work time would be shorter for robotic-assisted UKAs compared with TKAs and manual UKAs, due to more accurate ligament balancing and precise implementation of the operative plan. Thirty consecutive patients scheduled to undergo a robotic-assisted UKA at an academic teaching hospital were prospectively enrolled in the study. Inclusion criteria included employment at the time of surgery, with the intent on returning to the same occupation following surgery and having end-stage knee degenerative joint disease (DJD) limited to the medial compartment. Patients were contacted via email, letter, or phone at two, four, six, and 12 weeks following surgery until they returned to work. The Baecke physical activity questionnaire (BQ) was administered to assess patients' level of activity at work pre- and postoperatively. Statistical analysis was performed using SAS Enterprise Guide (SAS Institute Inc., Cary, North Carolina) and Excel® (Microsoft Corporation, Redmond, Washington). Descriptive statistics were calculated to assess the demographics of the patient population. Boxplots were generated using an Excel® spreadsheet to visualize the BQ scores and a two-tailed t-test was used to assess for differences between pre- and postoperative scores with alpha 0.05. The mean time to return to work was 6.4 weeks (SD=3.4, range 2

  13. Towards Cost-Effective Robotic Systems for Small and Medium Enterprises

    Andersen, Rasmus Hasle

    with external components such as sensors, actuators and external machinery is not required. When integrating with external components is necessary, the complexity increases and end-users often require external and expensive expertise. This inhibits investment in robotics by SMEs, and prevents further...... behaviour through process modelling and Operators focus only on selecting and configuring appropriate process models using the system in production. The Robot CoWorker Platform comprises three fundamental technical components: 1) A hardware-independent capability modelling framework, 2) Intuitive Human...

  14. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  15. Creating healthy work in small enterprises - from understanding to action

    Stephen, Legg; Ian S., laird; Olsen, Kirsten Bendix

    2014-01-01

    Although much is known about small and medium enterprises (SMEs), our current knowledge and understanding of occupational health and safety (OHS) and the work environment in SMEs is limited. Far less is known about how SMEs put our knowledge of OSH into action. In short, how do we create healthy...... work and healthy lives as well as ‘healthy business' in SMEs? The present paper, which also acts as an editorial for this special issue, addresses these questions by providing a summary of current knowledge - our understanding - about how to create healthy work and healthy lives for workers and owner......-managers in SMEs whilst concurrently also aiming to create a healthy business (in terms of profitability and sustainability). This paper and the special issue also emphasise the need to convert this knowledge into action - ‘from understanding to action'....

  16. A study on the position estimation and recovery of a small-sized mobile robot

    Kim, Jae Hwan

    1994-02-01

    Position estimation capability of an autonomous mobile robot is important for a correct path tracking as well as for a complete navigation in a given environment. This paper describes the system with which the robot can estimate the current position and orientation without perceiving its any outer environments or processing vision image which requires much computational load. The designed system is new and simple. It detects wheel slippage, the main cause of navigational error, and makes it possible to recover from its strayed position. The designed system is composed of an encoder on a non-driven castor, an encoded compass disc as an absolute reference frame, two laser-diodes units with photosensors, and some pertinent data processing hardware and software. An encoded compass disc has two-track codes along its outer perimeter, which give the information on the amount of rotation as well as the direction of rotation in case when slip occurs, and gives the information on the exact turning angles to a mobile robot. The experimental results show that the designed system detects wheel slippage and recovers the robot from its strayed position very well

  17. Intelligent robots for nuclear power plant inspection and surveillance

    Miyazawa, Tatsuo; Suzuki, Kazumi; Fujie, Hideo; Fujii, Masaaki; Asai, Takashi; Sugimoto, Hiroshi.

    1986-01-01

    Recently, the research and development of robotizing the patrol and works in nuclear power plants have been actively carried out since the TMI-2 accident in March, 1979. In this paper, among these robots, six examples of the movable robots, of which the working and movement were intellectualized by using information processing techniques and others, are reported, and their intellectualization is concretely discussed. In Japan, the development of the supporting system for nuclear power generation was carried out for five years from fiscal year 1980 as the project subsidized by the Ministry of International Trade and Industry, and during this period, the inspection robots for LWR plants were developed. The development of the robots for ultimate working as the large scale project of the Agency of Industrial Science and Technology aiming at further heightening the function is in progress as the eight-year project from fiscal year 1983. Monorail type automatic surveillance robots, system maintenance robots 'AMOOTY', variable crawler type intelligent movable robots, hybrid running type intelligent movable robots, monorail running type small checkup robots, and floor running type checkup and light work robots are reported. Sense information processing control and a robot language processor for expanding the function of autonomous control are outlined. (Kako, I.)

  18. Innovative Mobile Robot Method: Improving the Learning of Programming Languages in Engineering Degrees

    Ortiz, Octavio Ortiz; Pastor Franco, Juan Ángel; Alcover Garau, Pedro María; Herrero Martín, Ruth

    2017-01-01

    This paper describes a study of teaching a programming language in a C programming course by having students assemble and program a low-cost mobile robot. Writing their own programs to define the robot's behavior raised students' motivation. Working in small groups, students programmed the robots by using the control structures of structured…

  19. Robotics 101

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  20. Performance Comparison of Two Reinforcement Learning Algorithms for Small Mobile Robots

    Neruda, Roman; Slušný, Stanislav

    2009-01-01

    Roč. 2, č. 1 (2009), s. 59-68 ISSN 2005-4297 R&D Projects: GA MŠk(CZ) 1M0567 Grant - others:GA UK(CZ) 7637/2007 Institutional research plan: CEZ:AV0Z10300504 Keywords : reinforcement learning * mobile robots * inteligent agents Subject RIV: IN - Informatics, Computer Science http://www.sersc.org/journals/IJCA/vol2_no1/7.pdf

  1. Comparison of Behavior-based and Planning Techniques on the Small Robot Maze Exploration Problem

    Slušný, Stanislav; Neruda, Roman; Vidnerová, Petra

    2010-01-01

    Roč. 23, č. 4 (2010), s. 560-567 ISSN 0893-6080. [ICANN 2008. International Conference on Artificial Neural Networks /18./. Prague, 03.09.2008-06.09.2008] R&D Projects: GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary robotic s * neural networks * reinforcement learning * localization Subject RIV: IN - Informatics, Computer Science Impact factor: 1.955, year: 2010

  2. Robotic seeding

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  3. Soft Robotics.

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ERGONOMIC WORK ANALYSIS APPLICATION IN A SMALL SHOE BUSINESS

    Aline Marian Callegaro

    2013-11-01

    Full Text Available This paper aims to presentthe results after conducting an Ergonomic Work Analysis (EWA in a smallbusiness located in Porto Alegre. The ergonomic intervention was performed basedon Guérin et al. (2001 and aimed to analyze the process organization and thelayout of the shoemaker workstations to provide improvements to these areas.The starting point was the account of the small shoe business owner’s need hadto hire one more shoemaker without increasing the company physical space. The EWAwas used focusing the work organization, how the flow of information ran fromthe entry of an order to the final stage of the product repairing. Thediagnosis showed the company main problems were related to the shop assistantsdependence on the shoemakers to provide budget information and delivery time tocustomers and the layout organization. Among the results, a temporal analysisof two company recurrent tasks was performed in order to ascertain possiblelosses related to the displacement and the search for material. A new layoutscheme was also proposed, aiming to organize the work stations, making easierthe stock, tools and equipment removal, providing a free space to make possiblethe hiring of the new shoemakers within the current company boundaries.

  5. A robot-automated work site for repair of the Chinon A3 reactor

    Raynal, A.

    1987-01-01

    In 1982, following degradation due to corrosion of low-carbon steel by carbon dioxide gas, the utility undertook to repair some of the support structures at Chinon A3. This involved consolidation and reinforcing thermocouples and gas monitor pipeworks supports. A welding process was selected and the use of robots became indispensable because of the large number of components to be replaced (200 per outage). Two robots, supplied with tool heads and replacement components from outside the reactor were used. The robots and their servers were coordinated by a central computer and monitored by a closed circuit television system. Each repair operation was performed after ''training'' on a full-scale mockup of the top of the reactor reconstructed from telemetry of the real reactor dimensions. Since becoming operational in June 1986, the robots have accumulated over 20 000 hours of operation and seventy parts have been welded to the reactor. A 3D CAD system has been adapted to simulate the robots and analyse long trajectories in order to reduce robot learning time [fr

  6. Friendly network robotics; Friendly network robotics

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  7. The first nationwide evaluation of robotic general surgery: a regionalized, small but safe start.

    Wormer, Blair A; Dacey, Kristian T; Williams, Kristopher B; Bradley, Joel F; Walters, Amanda L; Augenstein, Vedra A; Stefanidis, Dimitrios; Heniford, B Todd

    2014-03-01

    The purpose of this study was to evaluate the outcomes of the most commonly performed robotic-assisted general surgery (RAGS) procedures in a nationwide database and compare them with their laparoscopic counterparts. The Nationwide Inpatient Sample was queried from October 2008 to December 2010 for patients undergoing elective, abdominal RAGS procedures. The two most common, robotic-assisted fundoplication (RF) and gastroenterostomy without gastrectomy (RG), were individually compared with the laparoscopic counterparts (LF and LG, respectively). During the study, 297,335 patients underwent abdominal general surgery procedures, in which 1,809 (0.6 %) utilized robotic-assistance. From 2009 to 2010, the incidence of RAGS nearly doubled from 573 to 1128 cases. The top five RAGS procedures by frequency were LG, LF, laparoscopic lysis of adhesions, other anterior resection of rectum, and laparoscopic sigmoidectomy. Eight of the top ten RAGS were colorectal or foregut operations. RG was performed in 282 patients (0.9 %) and LG in 29,677 patients (99.1 %). When comparing RG with LG there was no difference in age, gender, race, Charlson comorbidity index (CCI), postoperative complications, or mortality; however, length of stay (LOS) was longer in RG (2.5 ± 2.4 vs. 2.2 ± 1.5 days; p < 0.0001). Total cost for RG was substantially higher ($60,837 ± 28,887 vs. $42,743 ± 23,366; p < 0.0001), and more often performed at teaching hospitals (87.2 vs. 50.9 %; p < 0.0001) in urban areas (100 vs. 93.0 %; p < 0.0001). RF was performed in 272 patients (3.5 %) and LF in 7,484 patients (96.5 %). RF patients were more often male compared with LF (38.2 vs. 32.3 %; p < 0.05); however, there was no difference in age, race, CCI, LOS, or postoperative complications. RF was more expensive than LF ($37,638 ± 21,134 vs. $32,947 ± 24,052; p < 0.0001), and more often performed at teaching hospitals (72.4 vs. 54.9 %; p < 0.0001) in urban areas (98.5 vs. 88.7 %; p < 0.0001). This nationwide

  8. Task decomposition for multilimbed robots to work in the reachable-but-unorientable space

    Su, Chao; Zheng, Yuan F.

    1990-01-01

    Multilimbed industrial robots that have at least one arm and two or more legs are suggested for enlarging robot workspace in industrial automation. To plan the motion of a multilimbed robot, the arm-leg motion-coordination problem is raised and task decomposition is proposed to solve the problem; that is, a given task described by the destination position and orientation of the end-effector is decomposed into subtasks for arm manipulation and for leg locomotion, respectively. The former is defined as the end-effector position and orientation with respect to the legged main body, and the latter as the main-body position and orientation in the world coordinates. Three approaches are proposed for the task decomposition. The approaches are further evaluated in terms of energy consumption, from which an optimal approach can be selected.

  9. Sandia National Laboratories: Working with Sandia: Small Business

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community

  10. Mobile Robot Navigation in a Corridor Using Visual Odometry

    Bayramoglu, Enis; Andersen, Nils Axel; Poulsen, Niels Kjølstad

    2009-01-01

    Incorporation of computer vision into mobile robot localization is studied in this work. It includes the generation of localization information from raw images and its fusion with the odometric pose estimation. The technique is then implemented on a small mobile robot operating at a corridor...

  11. Toward Shared Working Space of Human and Robotic Agents Through Dipole Flow Field for Dependable Path Planning.

    Trinh, Lan Anh; Ekström, Mikael; Cürüklü, Baran

    2018-01-01

    Recent industrial developments in autonomous systems, or agents, which assume that humans and the agents share the same space or even work in close proximity, open for new challenges in robotics, especially in motion planning and control. In these settings, the control system should be able to provide these agents a reliable path following control when they are working in a group or in collaboration with one or several humans in complex and dynamic environments. In such scenarios, these agents are not only moving to reach their goals, i.e., locations, they are also aware of the movements of other entities to find a collision-free path. Thus, this paper proposes a dependable, i.e., safe, reliable and effective, path planning algorithm for a group of agents that share their working space with humans. Firstly, the method employs the Theta * algorithm to initialize the paths from a starting point to a goal for a set of agents. As Theta * algorithm is computationally heavy, it only reruns when there is a significant change of the environment. To deal with the movements of the agents, a static flow field along the configured path is defined. This field is used by the agents to navigate and reach their goals even if the planned trajectories are changed. Secondly, a dipole field is calculated to avoid the collision of agents with other agents and human subjects. In this approach, each agent is assumed to be a source of a magnetic dipole field in which the magnetic moment is aligned with the moving direction of the agent. The magnetic dipole-dipole interactions between these agents generate repulsive forces to help them to avoid collision. The effectiveness of the proposed approach has been evaluated with extensive simulations. The results show that the static flow field is able to drive agents to the goals with a small number of requirements to update the path of agents. Meanwhile, the dipole flow field plays an important role to prevent collisions. The combination of

  12. Toward Shared Working Space of Human and Robotic Agents Through Dipole Flow Field for Dependable Path Planning

    Lan Anh Trinh

    2018-06-01

    Full Text Available Recent industrial developments in autonomous systems, or agents, which assume that humans and the agents share the same space or even work in close proximity, open for new challenges in robotics, especially in motion planning and control. In these settings, the control system should be able to provide these agents a reliable path following control when they are working in a group or in collaboration with one or several humans in complex and dynamic environments. In such scenarios, these agents are not only moving to reach their goals, i.e., locations, they are also aware of the movements of other entities to find a collision-free path. Thus, this paper proposes a dependable, i.e., safe, reliable and effective, path planning algorithm for a group of agents that share their working space with humans. Firstly, the method employs the Theta* algorithm to initialize the paths from a starting point to a goal for a set of agents. As Theta* algorithm is computationally heavy, it only reruns when there is a significant change of the environment. To deal with the movements of the agents, a static flow field along the configured path is defined. This field is used by the agents to navigate and reach their goals even if the planned trajectories are changed. Secondly, a dipole field is calculated to avoid the collision of agents with other agents and human subjects. In this approach, each agent is assumed to be a source of a magnetic dipole field in which the magnetic moment is aligned with the moving direction of the agent. The magnetic dipole-dipole interactions between these agents generate repulsive forces to help them to avoid collision. The effectiveness of the proposed approach has been evaluated with extensive simulations. The results show that the static flow field is able to drive agents to the goals with a small number of requirements to update the path of agents. Meanwhile, the dipole flow field plays an important role to prevent collisions. The

  13. Robotic arm

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  14. Robotic arm

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  15. Next generation light robotic

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2017-01-01

    -assisted surgery imbibes surgeons with superhuman abilities and gives the expression “surgical precision” a whole new meaning. Still in its infancy, much remains to be done to improve human-robot collaboration both in realizing robots that can operate safely with humans and in training personnel that can work......Conventional robotics provides machines and robots that can replace and surpass human performance in repetitive, difficult, and even dangerous tasks at industrial assembly lines, hazardous environments, or even at remote planets. A new class of robotic systems no longer aims to replace humans...... with so-called automatons but, rather, to create robots that can work alongside human operators. These new robots are intended to collaborate with humans—extending their abilities—from assisting workers on the factory floor to rehabilitating patients in their homes. In medical robotics, robot...

  16. Modelling and simulation of multi spindle drilling redundant SCARA robot using SolidWorks and MATLAB/SimMechanics

    Saravana Mohan Mariappan

    2016-01-01

    Full Text Available Los robots son sistemas electromecánicos que necesitan enfoque mecatrónico antes de fabricarlos, esto con el fin de reducir el costo de desarrollo. En este trabajo se presenta un nuevo intento de modelado PRRP (prismáticos-revoluto-revoluto-prismático, una configuración redundante SCARA (Brazo robótico articulado de respuesta selectiva, herramienta de perforación milti-eje (MSDT usando el software CAD de SolidWorks y el estudio dinámico con la ayuda de MATLAB/SimMechanics de perforación. Un SCARA con MSDT se utiliza para perforar varios agujeros en las placas de circuito impreso (PCB y la chapa metálica. En este trabajo, el modelo de CAD 3D del robot propuesto se convierte en un diagrama de bloque SimMechanics exportando a MATLAB/SimMechanics segunda generación de tecnología de modelado y simulación. Entonces se realiza una simulación SimMechanics y utilizando su capacidad de detección de movimiento la velocidad de parámetros dinámicos y la torsión del manipulador se observa la estructura del robot variable modificado. Los resultados de la simulación indican un cambio considerable en el rendimiento dinámico para diferentes parámetros de diseño.

  17. Robotic-assisted Reconstruction of the Cervix and Vagina by Small Intestinal Submucosa Graft and Fusion of the Hemiuterus.

    Zhang, Ying; Chen, Yisong; Hua, Keqin

    To describe our technique of robotic-assisted reconstruction of the cervix and vagina using a small intestinal submucosa (SIS) graft and fusion of the hemiuterus. A step-by-step explanation of the procedure using video. Congenital complete vaginal and cervical atresia is rare. Some patients have urinary system abnormality. No standardized surgical treatment guideline was available, and the performance varies for each patient. We performed a robotic-assisted reconstruction of the cervix and vagina using an SIS graft (Cook Medical, Bloomington, IN) and fusion of the hemiuterus for a 12-year-old girl from China diagnosed with congenital vaginal and cervical atresia (U4C4V4). She complained of severe abdominal periodic pain for 2 months. Mammary development and her serum sex hormone were within normal range. The patient has a single kidney. The diagnosis was made according to clinical characteristics, physical examination, and magnetic resonance imaging and classified using the European Society of Human Reproduction and Embryology /European Society for Gynaecological Endoscopy (ESHRE/ESGE) system. There was a hematometra of 7-cm diameter in her pelvis. We constructed a novel vagina by sharp and blunt separation and connected it to the uterine cavity. With the SIS graft, we reconstructed her cervix and vagina, and we fused the hemiuterus to make the uterine cavity spacious. The operating time was 260 minutes, and blood loss was 300 mL. She recovered well after the operation without any complications. After surgery, the patient has had normal menstruation without pain. She insists on wearing the vaginal mold 24 hours per day. The follow-up was 10 months. The length of the vagina was 9 cm and the width was 3 cm. Robotic-assisted reconstruction of the cervix and vagina using an SIS graft and fusion of the hemiuterus is feasible and safety. However, additional studies are required. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  18. Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments

    Kurt Derr; Milos Manic

    2009-05-01

    Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhanced by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.

  19. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    James S. Tulenko; Carl D. Crane

    2007-12-13

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  20. Task decomposition for a multilimbed robot to work in reachable but unorientable space

    Su, Chau; Zheng, Yuan F.

    1991-01-01

    Robot manipulators installed on legged mobile platforms are suggested for enlarging robot workspace. To plan the motion of such a system, the arm-platform motion coordination problem is raised, and a task decomposition is proposed to solve the problem. A given task described by the destination position and orientation of the end effector is decomposed into subtasks for arm manipulation and for platform configuration, respectively. The former is defined as the end-effector position and orientation with respect to the platform, and the latter as the platform position and orientation in the base coordinates. Three approaches are proposed for the task decomposition. The approaches are also evaluated in terms of the displacements, from which an optimal approach can be selected.

  1. Autonomous charging to enable long-endurance missions for small aerial robots

    Mulgaonkar, Yash; Kumar, Vijay

    2014-06-01

    The past decade has seen an increased interest towards research involving Autonomous Micro Aerial Vehicles (MAVs). The predominant reason for this is their agility and ability to perform tasks too difficult or dangerous for their human counterparts and to navigate into places where ground robots cannot reach. Among MAVs, rotary wing aircraft such as quadrotors have the ability to operate in confined spaces, hover at a given point in space and perch1 or land on a flat surface. This makes the quadrotor a very attractive aerial platform giving rise to a myriad of research opportunities. The potential of these aerial platforms is severely limited by the constraints on the flight time due to limited battery capacity. This in turn arises from limits on the payload of these rotorcraft. By automating the battery recharging process, creating autonomous MAVs that can recharge their on-board batteries without any human intervention and by employing a team of such agents, the overall mission time can be greatly increased. This paper describes the development, testing, and implementation of a system of autonomous charging stations for a team of Micro Aerial Vehicles. This system was used to perform fully autonomous long-term multi-agent aerial surveillance experiments with persistent station keeping. The scalability of the algorithm used in the experiments described in this paper was also tested by simulating a persistence surveillance scenario for 10 MAVs and charging stations. Finally, this system was successfully implemented to perform a 9½ hour multi-agent persistent flight test. Preliminary implementation of this charging system in experiments involving construction of cubic structures with quadrotors showed a three-fold increase in effective mission time.

  2. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  3. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov; Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J. [PVI, Oxnard, California 93031 (United States)

    2015-05-15

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  4. Small data, data infrastructures and big data (Working Paper 1)

    Kitchin, Rob; Lauriault, Tracey P.

    2014-01-01

    The production of academic knowledge has progressed for the past few centuries using small data studies characterized by sampled data generated to answer specific questions. It is a strategy that has been remarkably successful, enabling the sciences, social sciences and humanities to advance in leaps and bounds. This approach is presently being challenged by the development of big data. Small data studies will, however, continue to be important in the future because of their utility in answer...

  5. MATE robots simplifying my work: benefits and socio-ethical implications

    Villani, Valeria; Sabattini, Lorenzo; Czerniak, Julia N.; Mertens, Alexander; Fantuzzi, Cesare

    2017-01-01

    With the increasing complexity of modern industrial automatic and robotic systems, an increasing burden is put on the operators, who are requested to supervise and interact with very complex systems, typically under challenging and stressful conditions. To overcome this issue, it is necessary to adopt a responsible approach based on the anthropocentric design methodology, such that machines adapt to the humans capabilities, and not vice versa. Moving along these lines, in this paper we consid...

  6. A Web-Based Integration Procedure for the Development of Reconfigurable Robotic Work-Cells

    Paulo Ferreira; Victoria Reyes; João Mestre

    2013-01-01

    Concepts related to the development of reconfigurable manufacturing systems (RMS) and methodologies to provide the best practices in the processing industry and factory automation, such as system integration and web-based technology, are major issues in designing next-generation manufacturing systems (NGMS). Adaptable and integrable devices are crucial for the success of NGMS. In robotic cells the integration of manufacturing components is essential to accelerate system adaptability. Sensors,...

  7. Work Related Injuries and Associated Factors among Small Scale ...

    user

    smoking, alcohol consumption, working for more than 8 hours and working at night had high odds of occupational injuries. Use of ... equivalent to 4 % of the world's gross national product. The impact ... required them to miss a week of work (9).

  8. Small is working: small turbines are part of the wind boom, too

    Gipe, Paul

    1999-01-01

    This article traces the growth in the use of small wind turbines, and discusses the trends in the manufacture of the turbines. Small turbine technology is examined, with details given of turbine configurations, the merits of two or three blades, blade materials, orientation, robustness, overspeed control, electric generators, and the current market for small wind turbines

  9. Walking in the uncanny valley: importance of the attractiveness on the acceptance of a robot as a working partner

    Destephe, Matthieu; Brandao, Martim; Kishi, Tatsuhiro; Zecca, Massimiliano; Hashimoto, Kenji; Takanishi, Atsuo

    2015-01-01

    The Uncanny valley hypothesis, which tells us that almost-human characteristics in a robot or a device could cause uneasiness in human observers, is an important research theme in the Human Robot Interaction (HRI) field. Yet, that phenomenon is still not well-understood. Many have investigated the external design of humanoid robot faces and bodies but only a few studies have focused on the influence of robot movements on our perception and feelings of the Uncanny valley. Moreover, no research has investigated the possible relation between our uneasiness feeling and whether or not we would accept robots having a job in an office, a hospital or elsewhere. To better understand the Uncanny valley, we explore several factors which might have an influence on our perception of robots, be it related to the subjects, such as culture or attitude toward robots, or related to the robot such as emotions and emotional intensity displayed in its motion. We asked 69 subjects (N = 69) to rate the motions of a humanoid robot (Perceived Humanity, Eeriness, and Attractiveness) and state where they would rather see the robot performing a task. Our results suggest that, among the factors we chose to test, the attitude toward robots is the main influence on the perception of the robot related to the Uncanny valley. Robot occupation acceptability was affected only by Attractiveness, mitigating any Uncanny valley effect. We discuss the implications of these findings for the Uncanny valley and the acceptability of a robotic worker in our society. PMID:25762967

  10. Designing Emotionally Expressive Robots

    Tsiourti, Christiana; Weiss, Astrid; Wac, Katarzyna

    2017-01-01

    Socially assistive agents, be it virtual avatars or robots, need to engage in social interactions with humans and express their internal emotional states, goals, and desires. In this work, we conducted a comparative study to investigate how humans perceive emotional cues expressed by humanoid...... robots through five communication modalities (face, head, body, voice, locomotion) and examined whether the degree of a robot's human-like embodiment affects this perception. In an online survey, we asked people to identify emotions communicated by Pepper -a highly human-like robot and Hobbit – a robot...... for robots....

  11. The Small College Enrollment Officer: Relationship Marketing at Work

    Vander Schee, Brian A.

    2010-01-01

    Prospective college students regularly read in promotional literature that the college experience is personal and unique to each individual. However, if their experience in the recruitment process proves otherwise it is difficult to convince students that they can each have a personal relationship with the institution. Small colleges can overcome…

  12. The ISIS operation: Robotics repair work on the CHINON A3 natural uranium, carbon dioxide cooled, graphite moderated reactor

    Hilmoine, R.M.E.

    1989-01-01

    After describing the upper internal support structures of the CHINON A3 reactor, the problems resulting from their degradation due to corrosion and to the difficulties of the ISIS operation are presented here. The repair method is as follows: all tools and repair parts reach the working area by the feeding-pipes drilled through the 7 m thick concrete vessel surrounding the reactor core; the robots handle into the reactor, the tool heads and the repair parts which are automatically positioned and welded around the corroded structure, thus restoring the support of measurement devices. The parts are either linked together or to the existing structure by means of 2 studs of 12 mm in diameter. The different phases to sort out a problem are: in-core topography, reconforming of the full-scale mock-up with the repair area, learning on this mock-up and in-core repair. The technical specificities of the robots used are the following: they have an 11 meter long, 0.22 meter across telescopic mast with jointed arms reaching a radius of 2.7 m. Then the useful load is 70 daN and the repeatability 0.1 mm. Different tool heads can be handled by the robot: telemeter and laser reconstruction: it allows to locate the in core points and to materialize them on the mock-up by a laser crossed-beams locating technique; scouring: it cleans the corroded parts of the structures before welding; welding: it allows the parts handling and the carried studs welding; screwing; tensile test: carried out when the stud welds are defective. A high level computerized control system is organized around a central unit which calculates the displacements of robots and synchronises the actions of different tools by communicating with several local units. A 100,000 hour designing, a 200,000 hour building and assembling and a 450,000 hour operating on working area were necessary to repair 15 out of the 102 corroded structures by fitting and welding 205 repair parts. 10 figs

  13. The Human Touch: Practical and Ethical Implications of Putting AI and Robotics to Work for Patients.

    Banks, Jim

    2018-01-01

    We live in a time when science fiction can quickly become science fact. Within a generation, the Internet has matured from a technological marvel to a utility, and mobile telephones have redefined how we communicate. Health care, as an industry, is quick to embrace technology, so it is no surprise that the application of programmable robotic systems that can carry out actions automatically and artificial intelligence (AI), e.g., machines that learn, solve problems, and respond to their environment, is being keenly explored.

  14. RoboGlove: Initial Work Toward a Robotically Assisted EVA Glove

    Rogers, Jonathan

    2015-01-01

    The RoboGlove is a device designed to provide additional grip strength or endurance for a user. In applying this Robonaut 2 spinoff technology to the Phase VI Space Suit glove, the project is using robotic tendons and actuators to regain some of the hand performance that is lost when wearing a pressurized glove. An array of sensors embedded into the finger softgoods provides input to the control system which retracts the tendons, helping to close the user's hand. While active, this system provides augmentation, but is nonintrusive to glove usage when disabled.

  15. Making trade work for small producers in Southeast Asia's least ...

    Public policies can help overcome these entry barriers into global markets. ... Institute will work with women entrepreneurs and business development providers, ... Call for new OWSD Fellowships for Early Career Women Scientists now open.

  16. Two Legged Walking Robot

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  17. Robotics research in Chile

    Javier Ruiz-del-Solar

    2016-12-01

    Full Text Available The development of research in robotics in a developing country is a challenging task. Factors such as low research funds, low trust from local companies and the government, and a small number of qualified researchers hinder the development of strong, local research groups. In this article, and as a case of study, we present our research group in robotics at the Advanced Mining Technology Center of the Universidad de Chile, and the way in which we have addressed these challenges. In 2008, we decided to focus our research efforts in mining, which is the main industry in Chile. We observed that this industry has needs in terms of safety, productivity, operational continuity, and environmental care. All these needs could be addressed with robotics and automation technology. In a first stage, we concentrate ourselves in building capabilities in field robotics, starting with the automation of a commercial vehicle. An important outcome of this project was the earn of the local mining industry confidence. Then, in a second stage started in 2012, we began working with the local mining industry in technological projects. In this article, we describe three of the technological projects that we have developed with industry support: (i an autonomous vehicle for mining environments without global positioning system coverage; (ii the inspection of the irrigation flow in heap leach piles using unmanned aerial vehicles and thermal cameras; and (iii an enhanced vision system for vehicle teleoperation in adverse climatic conditions.

  18. Adaptive heterogeneous multi-robot teams

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail the experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  19. Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-09-01

    This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved.

  20. Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved. (paper)

  1. Emergent risk to workplace safety as a result of the use of robots in the work place

    Steijn, W.; Luiijf, E.; Beek, D. van der

    2016-01-01

    For decades now, robots have been a key part of future visions in films and books. As long ago as 1920, Karel Čapek wrote a play called RUR (Rossum’s Universal Robots). The first real robot, ‘Gargantuan’, was constructed between 1935 and 1937. It was made completely out of Meccano. Today’s

  2. [Robotics in pediatric surgery].

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  3. Low cost submarine robot

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  4. Robots: An Impact on Education.

    Blaesi, LaVon; Maness, Marion

    1984-01-01

    Provides background information on robotics and robots, considering impact of robots on the workplace and concerns of the work force. Discusses incorporating robotics into the educational system at all levels, exploring industry-education partnerships to fund introduction of new technology into the curriculum. New funding sources and funding…

  5. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot.

    Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela

    2016-02-24

    The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.

  6. Small Stirling dynamic isotope power system for multihundred-watt robotic missions

    Bents, D.J.

    1991-01-01

    Free Piston Stirling Engine (FPSE) and linear alternator (LA) technology is combined with radioisotope heat sources to produce a compact dynamic isotope power system (DIPS) suitable for multihundred watt space application which appears competitive with advance radioisotope thermoelectric generators (RTGs). The small Stirling DIPS is scalable to multihundred watt power levels or lower. The FPSE/LA is a high efficiency convertor in sizes ranging from tens of kilowatts down to only a few watts. At multihundred watt unit size, the FPSE can be directly integrated with the General Purpose Heat Source (GPHS) via radiative coupling; the resulting dynamic isotope power system has a size and weight that compares favorably with the advanced modular (Mod) RTG, but requires less than a third the amount of isotope fuel. Thus the FPSE extends the high efficiency advantage of dynamic systems into a power range never previously considered competitive for DIPS. This results in lower fuel cost and reduced radiological hazard per delivered electrical watt. 33 refs

  7. Springer handbook of robotics

    Khatib, Oussama

    2016-01-01

    The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition o...

  8. Small Is Not Always Beautiful – A Comparative Study Of Working Conditions

    Sørensen, Ole Henning; Hasle, Peter; Bach, Elsa

    2004-01-01

    When considering working conditions, the myth sometimes holds that small is beautiful. Some studies of occupational accidents show that small companies have fever accidents than large. This indicates that small companies have better working conditions than large. A Danish study based on a random...... sample of employees in the general industry rejects this myth. The figures show that physical working conditions become systematically worse the smaller the size of privately owned companies. The study also supports international data that small companies underreport accidents, and that this might...... be the reason why small seems beautiful....

  9. Robot modelling; Control and applications with software

    Ranky, P G; Ho, C Y

    1985-01-01

    This book provides a ''picture'' of robotics covering both the theoretical aspect of modeling as well as the practical and design aspects of: robot programming; robot tooling and automated hand changing; implementation planning; testing; and software design for robot systems. The authors present an introduction to robotics with a systems approach. They describe not only the tasks relating to a single robot (or arm) but also systems of robots working together on a product or several products.

  10. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  11. Promotion of a healthy work life at small enterprises in Thailand by participatory methods.

    Krungkraiwong, Sudthida; Itani, Toru; Amornratanapaichit, Ratanaporn

    2006-01-01

    The major problems of small enterprises include unfavourable working conditions and environment that affect safety and health of workers. The WISE (Work Improvement in Small Enterprises) methodology developed by the ILO has been widely applied to improve occupational safety and health in small enterprises in Thailand. The participatory methods building on local good practices and focusing on practicable improvements have proven effective in controlling the occupational hazards in these enterprises at their sources. As a result of applying the methods in small-scale industries, the frequency of occupational accidents was reduced and the working environment actually improved in the cases studied. The results prove that the participatory approach taken by the WISE activities is a useful and effective tool to make owner/managers and workers in small enterprises voluntarily improve their own working conditions and environment. In promoting a healthy work life at small enterprises in Thailand, it is important to further develop and spread the approach.

  12. Service Robots

    Clemmensen, Torkil; Nielsen, Jeppe Agger; Andersen, Kim Normann

    The position presented in this paper is that in order to understand how service robots shape, and are being shaped by, the physical and social contexts in which they are used, we need to consider both work/organizational analysis and interaction design. We illustrate this with qualitative data...... and personal experiences to generate discussion about how to link these two traditions. This paper presents selected results from a case study that investigated the implementation and use of robot vacuum cleaners in Danish eldercare. The study demonstrates interpretive flexibility with variation...

  13. Robotics for nuclear power plants

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  14. Robotics for nuclear power plants

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  15. Robotic architectures

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  16. Computer Aided Design of a Low-Cost Painting Robot

    SYEDA MARIA KHATOON ZAIDI

    2017-10-01

    Full Text Available The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage.

  17. Computer aided design of a low-cost painting robot

    Zaidi, S.M.; Janejo, F.; Mujtaba, S.B.

    2017-01-01

    The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom) arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design) models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage. (author)

  18. Autonomy and manual operation in a small robotic system for under-vehicle inspections at security checkpoints

    Smuda, William; Muench, Paul L.; Gerhart, Grant R.; Moore, Kevin L.

    2002-07-01

    Unmanned ground vehicle (UGV) technology can be used in a number of ways to assist in counter-terrorism activities. In addition to the conventional uses of tele-operated robots for unexploded ordinance handling and disposal, water cannons and other crowd control devices, robots can also be employed for a host of terrorism deterrence and detection applications. In previous research USU developed a completely autonomous prototype robot for performing under- vehicle inspections in parking areas (ODIS). Testing of this prototype and discussions with the user community indicated that neither the technology nor the users are ready for complete autonomy. In this paper we present a robotic system based on ODIS that balances the users' desire/need for tele- operation with a limited level of autonomy that enhances the performance of the robot. The system can be used by both civilian law enforcement and military police to replace the traditional mirror on a stick system of looking under cars for bombs and contraband.

  19. Robots Social Embodiment in Autonomous Mobile Robotics

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  20. Non-manufacturing applications of robotics; Applications non-manufacturieres de la robotique

    Dauchez, P. [LIRMM, Laboratoire d' Informatique, de Robotique et de Microelectronique de Montpellier, 34 (France)

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  1. Image registration algorithm for high-voltage electric power live line working robot based on binocular vision

    Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping

    2017-12-01

    In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.

  2. "Named Small but Doing Great": An Investigation of Small-Scale Chemistry Experimentation for Effective Undergraduate Practical Work

    Tesfamariam, Gebrekidan Mebrahtu; Lykknes, Annette; Kvittingen, Lise

    2017-01-01

    In theory, practical work is an established part of university-level chemistry courses. However, mainly due to budget constraints, large class size, time constraints and inadequate teacher preparations, practical activities are frequently left out from chemistry classroom instruction in most developing countries. Small-scale chemistry (SSC)…

  3. R and D project for large industrial technologies in fiscal 1989. Report on achievements in R and D of robots for critical works; 1989 nendo seika hokokusho. Ogata kogyo gijutsu kenkyu kaihatsu jigyo. Kyokugen sagyo robot no kenkyu kaihatsu

    NONE

    1990-03-01

    Research and development have been performed on basic technologies common to different types of robots to carry out works in critical conditions. This paper summarizes the achievements in fiscal 1989. In the R and D of sensor technologies, a prototype tri-axial one-millimeter sensor array and a signal processing device were produced and evaluations were given. A prototype production and evaluations were made on a system that can recognize comprehensively the slip, hardness, and moment as the tri-axial tactile information. In the R and D of motive force technologies, discussions were given on improvement of sensitivity of the torque sensor in the actuator for force control. Design and prototype fabrication were carried out on a speed reducer integrated actuator having a torque sensor for the manipulator's elbow joint. In addition, a force controlled controller was fabricated on a trial basis, which compensates the non-linearity of the force controlled actuator by means of software control. In the R and D of the robot languages, an application program was prepared on a representative work related to movements of a critical work robot. Verification was also conducted on the reasonability of the grammar specifications. (NEDO)

  4. How can context affect what strategies are effective in improving the working environment in small companies?

    Antonsson, Ann-Beth; Hasle, Peter

    2015-01-01

    Background Small companies include many different sectors and types of organisations. Additionally the small companies are affected by clients, authorities and other stakeholders. Some of these contextual factors have been proven to be of relevance to and affect the work environment management, e.......g. in cleaning companies, where many aspects of the working environment is decided by the client company, whose premises is cleaned by the cleaning company. Aim To discuss what factors in small companies´ context may affect the outcome of work environment interventions as a theoretical basis for evaluation...... of what factors that may have affected the outcome of work environment interventions and programs in small companies. Discussion The context is a convenient and simple term covering a multitude of factors and complex relations. It is unavoidable to discuss context when aiming at understanding small...

  5. Evaluation of a small socially-assistive humanoid robot in intelligent homes for the care of the elderly.

    Torta, E.; Werner, F.; Johnson, D.O.; Juola, J.F.; Cuijpers, R.H.; Bazzani, M.; Oberzaucher, J.; Lemberger, J.

    2014-01-01

    The ageing population phenomenon is pushing the design of innovative solutions to provide assistance to the elderly. In this context a socially–assistive robot can act as a proactive interface in a smart-home environment, providing multimodal communication channels and generating positive feelings

  6. Japan's ARTRA robot moves forward

    Takehara, Ken

    1992-01-01

    Work on the Japanese ARTRA robot has progressed to the point where a demonstration robot has been built. However, much work remains before ARTRA can realize its goal of developing a highly sophisticated remotely-controlled robot to replace the human maintenance worker in a radioactive environment. (author)

  7. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.

    Gravett, Matthew; Cepek, Jeremy; Fenster, Aaron

    2017-11-01

    The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion

  8. Perspectives of construction robots

    Stepanov, M. A.; Gridchin, A. M.

    2018-03-01

    This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.

  9. Robotics for nuclear facilities

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  10. Teen Sized Humanoid Robot: Archie

    Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter

    This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).

  11. [Assessment of work ability index in evaluation of small peptides geroprotective effect].

    Bashkireva, A S; Kachan, E Yu

    We have conducted a comparative analysis of the work ability index (WAI) application in evaluation of the effectiveness of small peptides (cytogens) used as geroprotectors in the system of preventive medical nutrition of those working with occupational hazards. Our study revealed the necessity of an inclusion of small peptides into the system of preventive medical nutrition, health promotion in people working with occupational hazards and thus subjected to an accelerated aging. The combined application of peptide geroprotectors makes it possible to restore and enhance adaptive resources as well as to correct work ability and maintain health and well-being in different professional groups.

  12. Design of Piano -playing Robotic Hand

    Lin Jen-Chang; Hsin-Cheng Li; Kuo-Cheng Huang; Shu-Wei Lin

    2013-01-01

    Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot) for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of...

  13. Effects of Interruptibility-Aware Robot Behavior

    Banerjee, Siddhartha; Silva, Andrew; Feigh, Karen; Chernova, Sonia

    2018-01-01

    As robots become increasingly prevalent in human environments, there will inevitably be times when a robot needs to interrupt a human to initiate an interaction. Our work introduces the first interruptibility-aware mobile robot system, and evaluates the effects of interruptibility-awareness on human task performance, robot task performance, and on human interpretation of the robot's social aptitude. Our results show that our robot is effective at predicting interruptibility at high accuracy, ...

  14. Robotics in General Surgery

    Wall, James; Chandra, Venita; Krummel, Thomas

    2008-01-01

    In summary, robotics has made a significant contribution to General Surgery in the past 20 years. In its infancy, surgical robotics has seen a shift from early systems that assisted the surgeon to current teleoperator systems that can enhance surgical skills. Telepresence and augmented reality surgery are being realized, while research and development into miniaturization and automation is rapidly moving forward. The future of surgical robotics is bright. Researchers are working to address th...

  15. Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories

    Bennett, P.C. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1996-11-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

  16. Evolution of robotic arms.

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  17. The impact of service robotics on service work within a healthcare service system

    Friedrich, Michaela; Rößner, Andrea; Tombeil, Anne-Sophie

    2015-01-01

    Demographic change nowadays has more and more influences on the health care sector. Less nursing staff face more and more patients and elderly people. Those changes on work processes can be observed in the area of prevention but also in the field of medical and elderly care. Technical support in the sense of IT is considered as helpful to support documentation. Nevertheless, support is still required concerning physical interaction in nursing and elderly care. The proposed solution in the pap...

  18. Setup of the development tools for a small-sized controller built in a robot using Linux

    Lee, Jae Cheol; Jun, Hyeong Seop; Choi, Yu Rak; Kim, Jae Hee

    2004-03-01

    This report explains a setup method of practical development tools for robot control software programming. Well constituted development tools make a programmer more productive and a program more reliable. We ported a proven operating system to the target board (our robot's controller) to avoid such convention. We selected open source Linux as operating system, because it is free, reliable, flexible and widely used. First, we setup the host computer with Linux, and installed a cross compiler on it. And we ported Linux to the target board and connected to the host computer with ethernet, and setup NFS to both the host and the target. So the target board can use host computer's hard disk as it's own disk. Next, we installed gdb server on the target board and gdb client and DDD to the host computer for debugging the target program in the host computer with graphic environment. Finally, we patched the target board's Linux kernel with another one which have realtime capability. In this way, we can have a realtime embedded hardware controller for a robot with convenient software developing tools. All source programs are edited and compiled on the host computer, and executable codes exist in the NFS mounted directory that can be accessed from target board's directory. We can execute and debugging the code by means of logging into the target through the ethernet or the serial line

  19. Robot Programming.

    1982-12-01

    Paris, France, June, 1982, 519-530. Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d’avancement des recherches," Laboratoire...8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS ,. 545 Technology Square Cambridge

  20. Robot Tracer with Visual Camera

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  1. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors.

    Quinn, Matt; Smith, Lincoln; Mayley, Giles; Husbands, Phil

    2003-10-15

    We report on recent work in which we employed artificial evolution to design neural network controllers for small, homogeneous teams of mobile autonomous robots. The robots were evolved to perform a formation-movement task from random starting positions, equipped only with infrared sensors. The dual constraints of homogeneity and minimal sensors make this a non-trivial task. We describe the behaviour of a successful system in which robots adopt and maintain functionally distinct roles in order to achieve the task. We believe this to be the first example of the use of artificial evolution to design coordinated, cooperative behaviour for real robots.

  2. Work-rate-guided exercise testing in patients with incomplete spinal cord injury using a robotics-assisted tilt-table.

    Laubacher, Marco; Perret, Claudio; Hunt, Kenneth J

    2015-01-01

    Robotics-assisted tilt-table (RTT) technology allows neurological rehabilitation therapy to be started early thus alleviating some secondary complications of prolonged bed rest. This study assessed the feasibility of a novel work-rate-guided RTT approach for cardiopulmonary training and assessment in patients with incomplete spinal cord injury (iSCI). Three representative subjects with iSCI at three distinct stages of primary rehabilitation completed an incremental exercise test (IET) and a constant load test (CLT) on a RTT augmented with integrated leg-force and position measurement and visual work rate feedback. Feasibility assessment focused on: (i) implementation, (ii) limited efficacy testing, (iii) acceptability. (i) All subjects were able follow the work rate target profile by adapting their volitional leg effort. (ii) During the IETs, peak oxygen uptake above rest was 304, 467 and 1378 ml/min and peak heart rate (HR) was 46, 32 and 65 beats/min above rest (subjects A, B and C, respectively). During the CLTs, steady-state oxygen uptake increased by 42%, 38% and 162% and HR by 12%, 20% and 29%. (iii) All exercise tests were tolerated well. The novel work-rate guided RTT intervention is deemed feasible for cardiopulmonary training and assessment in patients with iSCI: substantial cardiopulmonary responses were observed and the approach was found to be tolerable and implementable. Implications for Rehabilitation Work-rate guided robotics-assisted tilt-table technology is deemed feasible for cardiopulmonary assessment and training in patients with incomplete spinal cord injury. Robotics-assisted tilt-tables might be a good way to start with an active rehabilitation as early as possible after a spinal cord injury. During training with robotics-assisted devices the active participation of the patients is crucial to strain the cardiopulmonary system and hence gain from the training.

  3. Robotic hand project

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  4. What kind of knowledge do small companies need to improve their working environment?

    Antonsson, Ann-Beth; Hasle, Peter

    2015-01-01

    towards knowledge-based behaviour. Additionally the time required increases when moving from skill- to knowledge-based behaviour. On the other hand, skill-based behaviour lacks the ability to solve problems and adapt to new situations. In the working environment risk assessment as well as the development...... of management routines are typically knowledge-based activities, whereas the application of good practice is more of skill or rule-based. For small companies, time as well as knowledge is an important constraint for the work environment management. Therefore the conclusion could be to focus on and provide skill......Background One of the main obstacles identified for small companies´ improvement of the working environment is lack of knowledge. Aim To discuss what kind of knowledge is required by small companies if they are to be able to improve their working environment and the pros and cons of different kinds...

  5. The Power of Educational Robotics

    Cummings, Timothy

    The purpose of this action research project was to investigate the impact a students' participation in educational robotics has on his or her performance in the STEM subjects. This study attempted to utilize educational robotics as a method for increasing student achievement and engagement in STEM subjects. Over the course of 12 weeks, an after-school robotics program was offered to students. Guided by the standards and principles of VEX IQ, a leading resource in educational robotics, students worked in collaboration on creating a design for their robot, building and testing their robot, and competing in the VEX IQ Crossover Challenge. Student data was gathered through a pre-participation survey, observations from the work they performed in robotics club, their performance in STEM subject classes, and the analysis of their end-of-the-year report card. Results suggest that the students who participate in robotics club experienced a positive impact on their performance in STEM subject classes.

  6. Towards Error Handling in a DSL for Robot Assembly Tasks

    Laursen, Johan S.; Buch, Jacob P.; Sørensen, Lars C.

    This work-in-progress paper presents our work with a domain specific language (DSL) for tackling the issue of programming robots for small-sized batch production. We observe that as the complexity of assembly increases so does the likelihood of errors, and these errors need to be addressed...

  7. The Mobile Robot "Little Helper"

    Hvilshøj, Mads; Bøgh, Simon; Madsen, Ole

    2009-01-01

    Increased customer needs and intensified global competition require intelligent and flexible automation. The interaction technology mobile robotics addresses this, so it holds great potential within the industry. This paper presents the concepts, ideas and working principles of the mobile robot...... this show promising results regarding industrial integration, exploitation and maturation of mobile robotics....

  8. Multi-robot caravanning

    Denny, Jory; Giese, Andrew; Mahadevan, Aditya; Marfaing, Arnaud; Glockenmeier, Rachel; Revia, Colton; Rodriguez, Samuel; Amato, Nancy M.

    2013-01-01

    of waypoints. At the heart of our algorithm is the use of leader election to efficiently exploit the unique environmental knowledge available to each robot in order to plan paths for the group, which makes it general enough to work with robots that have

  9. L-ALLIANCE: a mechanism for adaptive action selection in heterogeneous multi-robot teams

    Parker, L.E.

    1995-11-01

    In practical applications of robotics, it is usually quite difficult, if not impossible, for the system designer to fully predict the environmental states in which the robots will operate. The complexity of the problem is further increased when dealing with teams of robots which themselves may be incompletely known and characterized in advance. It is thus highly desirable for robot teams to be able to adapt their performance during the mission due to changes in the environment, or to changes in other robot team members. In previous work, we introduced a behavior-based mechanism called the ALLIANCE architecture -- that facilitates the fault tolerant cooperative control of multi-robot teams. However, this previous work did not address the issue of how to dynamically update the control parameters during a mission to adapt to ongoing changes in the environment or in the robot team, and to ensure the efficiency of the collective team actions. In this paper, we address this issue by proposing the L-ALLIANCE mechanism, which defines an automated method whereby robots can use knowledge learned from previous experience to continually improve their collective action selection when working on missions composed of loosely coupled, discrete subtasks. This ability to dynamically update robotic control parameters provides a number of distinct advantages: it alleviates the need for human tuning of control parameters, it facilitates the use of custom-designed multi-robot teams for any given application, it improves the efficiency of the mission performance, and It allows robots to continually adapt their performance over time due to changes in the robot team and/or the environment. We describe the L-ALLIANCE mechanism, present the results of various alternative update strategies we investigated, present the formal model of the L-ALLIANCE mechanism, and present the results of a simple proof of concept implementation on a small team of heterogeneous mobile robots.

  10. Work Ability Index (WAI) and its health-related determinants among Iranian farmers working in small farm enterprises.

    Rostamabadi, Akbar; Mazloumi, Adel; Rahimi Foroushani, Abbas

    2014-01-01

    This study aimed to determine the Work Ability Index (WAI) and examine the influence of health dimensions and demographic variables on the work ability of Iranian farmers working in small farm enterprises. A cross-sectional study was conducted among 294 male farmers. The WAI and SF-36 questionnaires were used to determine work ability and health status. The effect of demographics variables on the work ability index was investigated with the independent samples t-test and one-way ANOVA. Also, multiple linear regression analysis was used to test the association between the mean WAI score and the SF-36 scales. The mean WAI score was 35.1 (SD=10.6). One-way ANOVA revealed a significant relationship between the mean WAI and age. Multiple linear regression analysis showed that work ability was more influenced by physical scales of the health dimensions, such as physical function, role-physical, and general health, whereas a lower association was found for mental scales such as mental health. The average WAI was at a moderate work ability level for the sample population of farmers in this study. Based on the WAI guidelines, improvement of work ability and identification of factors affecting it should be considered a priority in interventional programs. Given the influence of health dimensions on WAI, any intervention program for preservation and promotion of work ability among the studied farmers should be based on balancing and optimizing the physical and psychosocial work environments, with a special focus on reducing physical work load.(J Occup Health 2014; 56: 478-484).

  11. Robotic Hand

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  12. Robot skills for manufacturing

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    -asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... products are introduced by manufacturers. In order to compete on global markets, the factories of tomorrow need complete production lines, including automation technologies that can effortlessly be reconfigured or repurposed, when the need arises. In this paper we present the concept of general, self...... in running production facilities at an industrial partner. It follows from these experiments that the use of robot skills, and associated task-level programming framework, is a viable solution to introducing robots that can intuitively and on the fly be programmed to perform new tasks by factory workers....

  13. Systematic Work Environment Management: experiences from implementation in Swedish small-scale enterprises.

    Gunnarsson, Kristina; Andersson, Ing-Marie; Rosén, Gunnar

    2010-01-01

    Small-scale enterprises face difficulties in fulfilling the regulations for organising Systematic Work Environment Management. This study compared three groups of small-scale manufacturing enterprises with and without support for implementing the provision. Two implementation methods, supervised and network method, were used. The third group worked according to their own ideas. Twenty-three enterprises participated. The effects of the implementation were evaluated after one year by semi-structured dialogue with the manager and safety representative. Each enterprise was classified on compliance with ten demands concerning the provision. The work environment was estimated by the WEST-method. Impact of the implementation on daily work was also studied. At the follow-up, the enterprises in the supervised method reported slightly more improvements in the fulfilment of the demands in the provision than the enterprises in the network method and the enterprises working on their own did. The effect of the project reached the employees faster in the enterprises with the supervised method. In general, the work environment improved to some extent in all enterprises. Extensive support to small-scale enterprises in terms of advise and networking aimed to fulfil the regulations of Systematic Work Environment Management had limited effect - especially considering the cost of applying these methods.

  14. Advanced robot locomotion.

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  15. Robotics at Savannah River

    Byrd, J.S.

    1983-01-01

    A Robotics Technology Group was organized at the Savannah River Laboratory in August 1982. Many potential applications have been identified that will improve personnel safety, reduce operating costs, and increase productivity using modern robotics and automation. Several active projects are under way to procure robots, to develop unique techniques and systems for the site's processes, and to install the systems in the actual work environments. The projects and development programs are involved in the following general application areas: (1) glove boxes and shielded cell facilities, (2) laboratory chemical processes, (3) fabrication processes for reactor fuel assemblies, (4) sampling processes for separation areas, (5) emergency response in reactor areas, (6) fuel handling in reactor areas, and (7) remote radiation monitoring systems. A Robotics Development Laboratory has been set up for experimental and development work and for demonstration of robotic systems

  16. Evolutionary robotics

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  17. Robot Aesthetics

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  18. Filigree Robotics

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  19. Small Businesses in South Africa : Who Outsources Tax Compliance Work and Why?

    Coolidge, Jacqueline; Ilic, Domagoj; Kisunko, Gregory

    2009-01-01

    The authors use firm-level survey data on 998 small and medium enterprises registered for tax in South Africa regarding tax compliance costs to investigate the use of outsourcing to complete tax compliance tasks. Overall, about 43 percent of the enterprises do all their tax compliance work in-house, 11 percent outsource all their tax compliance work, and the remaining 46 percent use a comb...

  20. Advances in Robotics and Virtual Reality

    Hassanien, Aboul

    2012-01-01

    A beyond human knowledge and reach, robotics is strongly involved in tackling challenges of new emerging multidisciplinary fields. Together with humans, robots are busy exploring and working on the new generation of ideas and problems whose solution is otherwise impossible to find. The future is near when robots will sense, smell and touch people and their lives. Behind this practical aspect of human-robotics, there is a half a century spanned robotics research, which transformed robotics into a modern science. The Advances in Robotics and Virtual Reality is a compilation of emerging application areas of robotics. The book covers robotics role in medicine, space exploration and also explains the role of virtual reality as a non-destructive test bed which constitutes a premise of further advances towards new challenges in robotics. This book, edited by two famous scientists with the support of an outstanding team of fifteen authors, is a well suited reference for robotics researchers and scholars from related ...

  1. Study for wireless power transmission of nuclear robot system

    Kim, Jongseog

    2013-01-01

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment

  2. Study for wireless power transmission of nuclear robot system

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment.

  3. Human-Robot Interaction

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  4. Vocabulary Learning in Collaborative Tasks: A Comparison of Pair and Small Group Work

    Dobao, Ana Fernández

    2014-01-01

    This study examined the opportunities that pair and small group interaction offer for collaborative dialogue and second language (L2) vocabulary learning. It compared the performance of the same collaborative writing task by learners working in groups of four (n = 60) and in pairs (n = 50), focusing on the occurrence of lexical language-related…

  5. Developing Employment Interview and Interviewing Skills in Small-group Project Work.

    Hindle, Paul

    2000-01-01

    Discusses the value of communications skills in geographical education. Describes the use of realistic interviews that were a part of small-group project work. Explains that students wrote job specifications, a curriculum vitae, a cover letter, and conducted interview panels. (CMK)

  6. Gender, Work-Family Linkages, and Economic Success among Small Business Owners.

    Loscocco, Karyn A.; Leicht, Kevin T.

    1993-01-01

    Investigated work-family connections and economic success among women and men small business owners. Analyses of data from 3-year panel survey of 99 women and 312 men showed considerable gender similarity in processes through which business and individual characteristics affect personal earnings, although women were disadvantaged in some…

  7. Socially intelligent robots: dimensions of human-robot interaction.

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  8. 3D light robotics

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    2016-01-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale ...... research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short....

  9. The Human-Robot Interaction Operating System

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  10. A review on humanoid robotics in healthcare

    Joseph Azeta; Christian Bolu; Abiodun Abioye A.; Oyawale Festus

    2018-01-01

    Humanoid robots have evolved over the years and today it is in many different areas of applications, from homecare to social care and healthcare robotics. This paper deals with a brief overview of the current and potential applications of humanoid robotics in healthcare settings. We present a comprehensive contextualization of humanoid robots in healthcare by identifying and characterizing active research activities on humanoid robot that can work interactively and effectively with humans so ...

  11. Methodology for Assessing the Work of Small Business at the Municipal Level

    Aleksandr Evgen’evich Kremin

    2016-07-01

    Full Text Available In order to promote sustainable socio-economic development in a municipality, its local authorities face the task of establishing an industrial and financial base on their territory, it will help increase its level of economic independence. On the basis of foreign experience and domestic research on territorial development it can be concluded that one of the most effective ways to enhance the level of socio-economic development of the municipality is to boost its small business. Effective management of this economic sector requires adequate assessment of its functioning at the municipal level. The analysis of existing methodologies for assessing the functioning of small business at the municipal level shows that none of them meets the criteria that the author of the present paper has selected and that are necessary for efficient research into the small business sector. In this regard, a methodology for estimating the work of small business at the municipal level was elaborated, and tested on the statistic data of municipal formations of the Vologda Oblast. The study reveals municipalities with the highest and lowest levels of small business development. In addition, municipalities were grouped in three blocks that represent different characteristics of their functioning. Taking into account the problems of business subjects, the study has developed measures to increase the level of development for each group of municipalities. Implementing these activities will help intensify the work of the sector of the economy under consideration, and increase the economic independence of territorial formations in the region. The paper can be used to assess the effectiveness of activities aimed to support small business in the region and to help regional and municipal authorities to work out a strategy for further development of this economic sector

  12. Hexapod Robot

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  13. Robotic-assisted transperitoneal nephron-sparing surgery for small renal masses with associated surgical procedures: surgical technique and preliminary experience.

    Ceccarelli, Graziano; Codacci-Pisanelli, Massimo; Patriti, Alberto; Ceribelli, Cecilia; Biancafarina, Alessia; Casciola, Luciano

    2013-09-01

    Small renal masses (T1a) are commonly diagnosed incidentally and can be treated with nephron-sparing surgery, preserving renal function and obtaining the same oncological results as radical surgery. Bigger lesions (T1b) may be treated in particular situations with a conservative approach too. We present our surgical technique based on robotic assistance for nephron-sparing surgery. We retrospectively analysed our series of 32 consecutive patients (two with 2 tumours and one with 4 bilateral tumours), for a total of 37 robotic nephron-sparing surgery (RNSS) performed between June 2008 and July 2012 by a single surgeon (G.C.). The technique differs depending on tumour site and size. The mean tumour size was 3.6 cm; according to the R.E.N.A.L. Nephrometry Score 9 procedures were considered of low, 14 of moderate and 9 of hight complexity with no conversion in open surgery. Vascular clamping was performed in 22 cases with a mean warm ischemia time of 21.5 min and the mean total procedure time was 149.2 min. Mean estimated blood loss was 187.1 ml. Mean hospital stay was 4.4 days. Histopathological evaluation confirmed 19 cases of clear cell carcinoma (all the multiple tumours were of this nature), 3 chromophobe tumours, 1 collecting duct carcinoma, 5 oncocytomas, 1 leiomyoma, 1 cavernous haemangioma and 2 benign cysts. Associated surgical procedures were performed in 10 cases (4 cholecystectomies, 3 important lyses of peritoneal adhesions, 1 adnexectomy, 1 right hemicolectomy, 1 hepatic resection). The mean follow-up time was 28.1 months ± 12.3 (range 6-54). Intraoperative complications were 3 cases of important bleeding not requiring conversion to open or transfusions. Regarding post-operative complications, there were a bowel occlusion, 1 pleural effusion, 2 pararenal hematoma, 3 asymptomatic DVT (deep vein thrombosis) and 1 transient increase in creatinine level. There was no evidence of tumour recurrence in the follow-up. RNSS is a safe and feasible technique

  14. Intelligent mobile robots

    Ichikawa, Yoshiaki; Senoo, Makoto

    1984-01-01

    For the purpose of the application to remote working apparatuses in nuclear power plants and others, the software and moving mechanism of mobile robots that automatically accomplish the movement by only specifying the destination were manufactured for trial. The software has the function of searching a path to determine the quasi-shortest path and the function of controlling execution to control the action of the robots and guide to the destination. By taking heuristics into the method of searching a path and utilizing ultrasonic waves for the function of sight as they can easily detect distance though the information quantity is small, the execution was accelerated. By the simulation examination and the experiment using a mobile apparatus made for trial, it was confirmed that the route plan was able to be made almost in real time, and the appearance of an unknown obstacle was detected before collision and able to be reasonably avoided by the revision of the plan. An environment model, a route planner, the program for controlling execution, the makeup and control of moving function and the experiment on the movement are reported. The shortening of the processing time by dealing with unconfirmed echo and simplifying the writing in a map is a future problem. (Kako, I.)

  15. Automated Cable Preparation for Robotized Stator Cable Winding

    Erik Hultman

    2017-04-01

    Full Text Available A method for robotized cable winding of the Uppsala University Wave Energy Converter generator stator has previously been presented and validated. The purpose of this study is to present and validate further developments to the method: automated stand-alone equipment for the preparation of the winding cables. The cable preparation consists of three parts: feeding the cable from a drum, forming the cable end and cutting the cable. Forming and cutting the cable was previously done manually and only small cable drums could be handled. Therefore the robot cell needed to be stopped frequently. The new equipment was tested in an experimental robot stator cable winding setup. Through the experiments, the equipment was validated to be able to perform fully automated and robust cable preparation. Suggestions are also given on how to further develop the equipment with regards to performance, robustness and quality. Hence, this work represents another important step towards demonstrating completely automated robotized stator cable winding.

  16. The digitalization of the working environment: the advent of Robotics, Automation and Artificial Intelligence (RAAI) from the employees perspective – a scoping review

    Terminio, Rosanna; Gilabert, Eva

    2017-01-01

    Robotics, automation and artificial intelligence (RAAI) are changing how work gets done, to the point of putting 47% of existing jobs in the USA at risk of becoming redundant in 5 to 15 years. RAAI and their cognitive abilities have a potential impact on employees’ sense of self-worth and career satisfaction and, in turn, on organizations and the society as a whole. In spite of the significant debate on whether there is a real risk of job losses or simply a need of re-skilling, the impa...

  17. Achievements and prospects of robotics in dismantling operations

    Clement, G.; Goetghebeur, S.; Ravera, J.P.

    1993-01-01

    After a definition of 'robotic systems' (poly functionality is the main concept), the nuclear facilities that have used robotic systems for their dismantling are reviewed; the various robot intervention domains in dismantling, the different types of machines and the work carried out by robots are presented. Difficulties arising from robot utilization for reactor dismantling, robot design considerations, reliability, personnel training needs, tooling and costs are discussed. Applicability criteria are derived concerning radio protection, hard working conditions, task complexity, multiplicity and quality, and costs

  18. Foraging behavior analysis of swarm robotics system

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  19. A New Classification Technique in Mobile Robot Navigation

    Bambang Tutuko

    2011-12-01

    Full Text Available This paper presents a novel pattern recognition algorithm that use weightless neural network (WNNs technique.This technique plays a role of situation classifier to judge the situation around the mobile robot environment and makes control decision in mobile robot navigation. The WNNs technique is choosen due to significant advantages over conventional neural network, such as they can be easily implemented in hardware using standard RAM, faster in training phase and work with small resources. Using a simple classification algorithm, the similar data will be grouped with each other and it will be possible to attach similar data classes to specific local areas in the mobile robot environment. This strategy is demonstrated in simple mobile robot powered by low cost microcontrollers with 512 bytes of RAM and low cost sensors. Experimental result shows, when number of neuron increases the average environmental recognition ratehas risen from 87.6% to 98.5%.The WNNs technique allows the mobile robot to recognize many and different environmental patterns and avoid obstacles in real time. Moreover, by using proposed WNNstechnique mobile robot has successfully reached the goal in dynamic environment compare to fuzzy logic technique and logic function, capable of dealing with uncertainty in sensor reading, achieving good performance in performing control actions with 0.56% error rate in mobile robot speed.

  20. QUALITY OF WORK LIFE: PROPOSED ASSESSMENT FOR PROFESSIONAL MICRO AND SMALL ENTERPRISES LOGISTICS SECTOR

    Orlando Roque da Silva

    2015-03-01

    Full Text Available The concept of Management of Quality of Work Life (MQWL search to develop mechanisms for the individual has balance between their professional and human life. The great challenge for organizations is to match the organizational need, dictated by the market with its rapid businesses changes and individual needs. Understanding the individual as an entire person with numerous and diverse interests and knowledge that can be directed to the activities performed in the organization is one of the conditions for having this compliance. This work, following the proposals made by Richard Walton, is an indication for evaluation especially for micro and small enterprises. The purpose of this article is observe the concepts and establish variants understood as fundamental in the production environment of micro and small enterprises sector logistics.

  1. The Hidden Work of Women in Small Family Firms in Southern Spain

    Paula Rodríguez-Modroño

    2017-01-01

    Full Text Available Women have historically played an important hidden role in family firms, and a great deal of research is now shedding light on this role. In spite of the more formal nature of female work at the present day, still a considerable volume of women’s contributions in family firms is unregistered and unpaid, even in developed regions. A questionnaire was administered to 396 women working in small and medium-sized family firms located in Andalucia, a southern European region, characterized by familialism and an important informal economy. Our results confirm the persistence of subordinate forms of unpaid family collaboration due to the neutrality assigned to female contributions under the traditional gendered division of work. But also this study shows how some of the women voluntarily embrace subordinate roles as a temporary way to gain professional experience, useful for their future work inside or outside the family firm.

  2. A Robotic Guide for Blind People. Part 1. A Multi-National Survey of the Attitudes, Requirements and Preferences of Potential End-Users

    Marion A. Hersh

    2010-01-01

    Full Text Available This paper reports the results of a multi-national survey in several different countries on the attitudes, requirements and preferences of blind and visually impaired people for a robotic guide. The survey is introduced by a brief overview of existing work on robotic travel aids and other mobile robotic devices. The questionnaire comprises three sections on personal information about respondents, existing use of mobility and navigation devices and the functions and other features of a robotic guide. The survey found that respondents were very interested in the robotic guide having a number of different functions and being useful in a wide range of circumstances. They considered the robot's appearance to be very important but did not like any of the proposed designs. From their comments, respondents wanted the robot to be discreet and inconspicuous, small, light weight and portable, easy to use, robust to damage, require minimal maintenance, have a long life and a long battery life.

  3. Working fluid charge oriented off-design modeling of a small scale Organic Rankine Cycle system

    Liu, Liuchen; Zhu, Tong; Ma, Jiacheng

    2017-01-01

    Highlights: • Organic Rankine Cycle model considering working fluid charge has been established. • Overall solution algorithm of system off-design performance is proposed. • Variation trend of different zones in both heat exchangers can be observed. • Optimal working fluid charge volume for different output work has been estimated. - Abstract: Organic Rankine Cycle system is one of the most widely used technique for low-grade waste heat recovery. Developing of dynamic Organic Rankine Cycle models played an increasingly important part in system performance prediction. The present paper developed a working fluid charge oriented model for an small scale Organic Rankine Cycle to calculate the theoretical value of working fluid charge level for the system under rated condition. The two heat exchangers are divided into three different zones and related heat transfer correlations are employed to estimate the length variation of each zones. Steady state models have been applied to describe the performance of pump and expander. Afterwards, an overall solution algorithm based on the established model has been proposed in order to exact simulate the system’s off-design performance. Additionally, the impact of different working fluid charge volumes has also been discussed. Simulation results clearly shows the variation trend of different zones in both heat exchangers, as well as the variation trend of system operating parameters under various expander output work. Furthermore, the highest thermal efficiency can be reached 6.37% under rated conditions with a working fluid charge volume of 34.6 kg.

  4. Linking Working Capital Policy Towards Financial Performance of Small Medium Enterprise (SME in Malaysia

    Binti Mohamad Nor Edi Azhar

    2017-01-01

    Full Text Available Despite the fact that working capital management (WCM is vital to businesses of any size that operated in developed and emerging countries, WCM is of particular importance to the small business firms operating in emerging markets. The importance of WCM to small and medium-sized enterprises (SMEs stems from the limited financial resources available and heavily reliance of SMEs on WCM as a main source of finance. This study aims to provide empirical evidence on the effects of working capital investment policy on firm’s financial performance for a sample of 103 small and medium-sized firms listed with the SME Corporation of Malaysia. Data for the period from 2008 to 2013 are analysed to examine if investment policy improves firms’ return on total asset. By using correlation and pooled ordinary least square regression, the result provides a significant relationship between the level of aggressiveness of investment policy and SME’s financial performance. The findings of this study not only contribute to the scant WCM literature in Malaysia but throw light on the importance of efficient WCM to the policy makers and regulators in motivating and encouraging relevant parties to pay more attention on working capital through improving investors’ awareness and improving transparency.

  5. Store-Carry and Forward-Type M2M Communication Protocol Enabling Guide Robots to Work together and the Method of Identifying Malfunctioning Robots Using the Byzantine Algorithm

    Yoshio Suga

    2016-11-01

    Full Text Available This paper concerns a service in which multiple guide robots in an area display arrows to guide individual users to their destinations. It proposes a method of identifying malfunctioning robots and robots that give wrong directions to users. In this method, users’ mobile terminals and robots form a store-carry and forward-type M2M communication network, and a distributed cooperative protocol is used to enable robots to share information and identify malfunctioning robots using the Byzantine algorithm. The robots do not directly communicate with each other, but through users’ mobile terminals. We have introduced the concept of the quasi-synchronous number, so whether a certain robot is malfunctioning can be determined even when items of information held by all of the robots are not synchronized. Using simulation, we have evaluated the proposed method in terms of the rate of identifying malfunctioning robots, the rate of reaching the destination and the average length of time to reach the destination.

  6. Robotic environments

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  7. A lightweight, inexpensive robotic system for insect vision.

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Adaptation of the IBM ECR [electric cantilever robot] robot to plutonium processing applications

    Armantrout, G.A.; Pedrotti, L.R.; Halter, E.A.; Crossfield, M.

    1990-12-01

    The changing regulatory climate in the US is adding increasing incentive to reduce operator dose and TRU waste for DOE plutonium processing operations. To help achieve that goal the authors have begun adapting a small commercial overhead gantry robot, the IBM electric cantilever robot (ECR), to plutonium processing applications. Steps are being taken to harden this robot to withstand the dry, often abrasive, environment within a plutonium glove box and to protect the electronic components against alpha radiation. A mock-up processing system for the reduction of the oxide to a metal was prepared and successfully demonstrated. Design of a working prototype is now underway using the results of this mock-up study. 7 figs., 4 tabs

  9. Robot and mechatronics equipment for daily life support in high-elderly and small number of child society; Chokorei/shosika shakai seikatsu ni shien shitekureru robot/mekatoro kiki

    Fujie, M. [Hitachi Ltd., Tokyo (Japan)

    1997-07-05

    As for high-elderly society, Japan is going to face in near future, self dependency without depending on others as far as possible of bed ridden people or people using wheel chair and also including the probable elderly ones is going to be necessary. In Japan, there is so far accumulation of high level mechatronics technology and it is thought that there is possible to develop a system to fulfill such needs. In this system, equipment has deep connection with human being and natural coexistence between the equipment and human being is most necessary. Accordingly, development and practical use of walking practicing machine used for elderly people, walking support system, daily life work support system and so forth are expected by making successful in practice the coexistence functions of high level robot/mechatronics technology and machine/man. However, the study regarding the technology that are common to man and machine, particularly, research of mental characteristics and physical characteristics of human being is still insufficient and further results are expected. 9 refs., 12 figs.

  10. Industrial Robots.

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  11. The application of manipulator robot for nuclear power plant maintenance

    Fujita, Jun; Onishi, Ken

    2009-01-01

    In the maintenance works at nuclear power plant, robots are used because of high radiation, narrow space and underwater work. In light of manufacture period, cost and reliability, various maintenance works are requested to be done by one robot. As one of the solutions, we developed manipulator robots for the access of specialized tools. This study shows manipulator robots developed by MHI, application example to maintenance works and effectiveness of manipulator robots. When robotization of maintenance works are considered, manipulator technology is very effective solution means. The manipulator technologies in this study are able to apply to robotization needed under radiation environment. (author)

  12. Percutaneous Radiofrequency Ablation Versus Robotic-Assisted Partial Nephrectomy for the Treatment of Small Renal Cell Carcinoma

    Pantelidou, Maria; Challacombe, Ben; McGrath, Andrew; Brown, Matthew; Ilyas, Shahzad; Katsanos, Konstantinos; Adam, Andreas

    2016-01-01

    IntroductionThe authors compared the oncologic outcomes of radiofrequency ablation (RFA) with robotic-assisted partial nephrectomy (RPN) for the treatment of T1 stage renal cell carcinoma (RCC).Materials and methodsThis was a retrospective data analysis of a high-volume single tertiary centre. Patients were treated with RFA or RPN following multidisciplinary decision making. Only histologically proven RCCs were included. Baseline demographics were collected, and PADUA scores of tumour features were calculated to standardize baseline anatomy. Peri-operative complications, kidney function and oncological outcomes were compared.ResultsSixty-three cases were included in each group. Baseline renal function was poorer in RFA, and 16/63 RFA patients had tumours in single kidneys compared to 1/63 RPN cases (p < 0.001). Length of stay was shorter in RFA (1 vs. 3 days, p < 0.0001). Post-procedure renal function decline at 30 days was significantly less in RFA [(−0.8) ± 9.6 vs. (−16.1) ± 19.5 mls/min/1.73 m"2; p < 0.0001]. More minor complications were recorded in RPN (10/63 vs. 4/63, p = 0.15), but local recurrence was numerically higher in RFA (6/63 vs. 1/63, p = 0.11). Disease-free survival (DFS) was not significantly different (adjusted HR = 0.6, 95 % Cl 0.1–3.7; p = 0.60). Increasing tumour size was an independent predictor of local recurrence (adjusted HR = 1.7; 95 % Cl 1.1–2.6 per cm; p = 0.02).ConclusionsBoth RPN and RFA offer very good oncological outcomes for the treatment of T1 RCC with low peri-operative morbidity and similar oncologic outcomes. RFA demonstrated fewer peri-operative complications and better preservation of renal function, whereas RPN had an insignificantly lower local recurrence rate. RFA should be offered alongside RPN for selected cases.

  13. Percutaneous Radiofrequency Ablation Versus Robotic-Assisted Partial Nephrectomy for the Treatment of Small Renal Cell Carcinoma

    Pantelidou, Maria [King’s Health Partners, Department of Interventional Radiology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Challacombe, Ben [King’s Health Partners, Department of Urology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); McGrath, Andrew [King’s Health Partners, Department of Interventional Radiology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Brown, Matthew [King’s Health Partners, Department of Urology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Ilyas, Shahzad; Katsanos, Konstantinos, E-mail: konstantinos.katsanos@gstt.nhs.uk; Adam, Andreas [King’s Health Partners, Department of Interventional Radiology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom)

    2016-11-15

    IntroductionThe authors compared the oncologic outcomes of radiofrequency ablation (RFA) with robotic-assisted partial nephrectomy (RPN) for the treatment of T1 stage renal cell carcinoma (RCC).Materials and methodsThis was a retrospective data analysis of a high-volume single tertiary centre. Patients were treated with RFA or RPN following multidisciplinary decision making. Only histologically proven RCCs were included. Baseline demographics were collected, and PADUA scores of tumour features were calculated to standardize baseline anatomy. Peri-operative complications, kidney function and oncological outcomes were compared.ResultsSixty-three cases were included in each group. Baseline renal function was poorer in RFA, and 16/63 RFA patients had tumours in single kidneys compared to 1/63 RPN cases (p < 0.001). Length of stay was shorter in RFA (1 vs. 3 days, p < 0.0001). Post-procedure renal function decline at 30 days was significantly less in RFA [(−0.8) ± 9.6 vs. (−16.1) ± 19.5 mls/min/1.73 m{sup 2}; p < 0.0001]. More minor complications were recorded in RPN (10/63 vs. 4/63, p = 0.15), but local recurrence was numerically higher in RFA (6/63 vs. 1/63, p = 0.11). Disease-free survival (DFS) was not significantly different (adjusted HR = 0.6, 95 % Cl 0.1–3.7; p = 0.60). Increasing tumour size was an independent predictor of local recurrence (adjusted HR = 1.7; 95 % Cl 1.1–2.6 per cm; p = 0.02).ConclusionsBoth RPN and RFA offer very good oncological outcomes for the treatment of T1 RCC with low peri-operative morbidity and similar oncologic outcomes. RFA demonstrated fewer peri-operative complications and better preservation of renal function, whereas RPN had an insignificantly lower local recurrence rate. RFA should be offered alongside RPN for selected cases.

  14. Service robots, care ethics, and design

    van Wynsberghe, Amy Louise

    2016-01-01

    It should not be a surprise in the near future to encounter either a personal or a professional service robot in our homes and/or our work places: according to the International Federation for Robots, there will be approx 35 million service robots at work by 2018. Given that individuals will

  15. Robots Spur Software That Lends a Hand

    2014-01-01

    While building a robot to assist astronauts in space, Johnson Space Center worked with partners to develop robot reasoning and interaction technology. The partners created Robonaut 1, which led to Robonaut 2, and the work also led to patents now held by Universal Robotics in Nashville, Tennessee. The NASA-derived technology is available for use in warehousing, mining, and more.

  16. Mergeable nervous systems for robots.

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  17. Pantomimic gestures for human-robot interaction

    Burke, Michael G

    2015-10-01

    Full Text Available -1 IEEE TRANSACTIONS ON ROBOTICS 1 Pantomimic Gestures for Human-Robot Interaction Michael Burke, Student Member, IEEE, and Joan Lasenby Abstract This work introduces a pantomimic gesture interface, which classifies human hand gestures using...

  18. Robot Mechanisms

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  19. Multi-robot team design for real-world applications

    Parker, L.E.

    1996-10-01

    Many of these applications are in dynamic environments requiring capabilities distributed in functionality, space, or time, and therefore often require teams of robots to work together. While much research has been done in recent years, current robotics technology is still far from achieving many of the real world applications. Two primary reasons for this technology gap are that (1) previous work has not adequately addressed the issues of fault tolerance and adaptivity in multi-robot teams, and (2) existing robotics research is often geared at specific applications and is not easily generalized to different, but related, applications. This paper addresses these issues by first describing the design issues of key importance in these real-world cooperative robotics applications: fault tolerance, reliability, adaptivity, and coherence. We then present a general architecture addressing these design issues (called ALLIANCE) that facilities multi-robot cooperation of small- to medium-sized teams in dynamic environments, performing missions composed of loosely coupled subtasks. We illustrate an implementation of ALLIANCE in a real-world application, called Bounding Overwatch, and then discuss how this architecture addresses our key design issues.

  20. Intelligent robotics and remote systems for the nuclear industry

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  1. Vision-Based Robot Following Using PID Control

    Chandra Sekhar Pati

    2017-06-01

    Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.

  2. [Individual learning curve for radical robot-assisted prostatectomy based on the example of three professionals working in one clinic].

    Rasner, P I; Pushkar', D Iu; Kolontarev, K B; Kotenkov, D V

    2014-01-01

    The appearance of new surgical technique always requires evaluation of its effectiveness and ease of acquisition. A comparative study of the results of the first three series of successive robot-assisted radical prostatectomy (RARP) performed on at time by three surgeons, was conducted. The series consisted of 40 procedures, and were divided into 4 groups of 10 operations for the analysis. When comparing data, statistically significant improvement of intra- and postoperative performance in each series was revealed, with increase in the number of operations performed, and in each subsequent series compared with the preceding one. We recommend to perform the planned conversion at the first operation. In our study, previous laparoscopic experience did not provide any significant advantages in the acquisition of robot-assisted technology. To characterize the individual learning curve, we recommend the use of the number of operations that the surgeon looked in the life-surgery regimen and/or in which he participated as an assistant before his own surgical activity, as well as the indicator "technical defect". In addition to the term "individual learning curve", we propose to introduce the terms "surgeon's individual training phase", and "clinic's learning curve".

  3. Mobile robotics research at Sandia National Laboratories

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  4. Robotics education

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  5. Robots and humans: synergy in planetary exploration

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  6. Feasibility and safety of robot-assisted thoracic surgery for lung lobectomy in patients with non-small cell lung cancer: a systematic review and meta-analysis.

    Wei, Shiyou; Chen, Minghao; Chen, Nan; Liu, Lunxu

    2017-05-08

    The aim of this study is to evaluate the feasibility and safety of robot-assisted thoracic surgery (RATS) lobectomy versus video-assisted thoracic surgery (VATS) for lobectomy in patients with non-small cell lung cancer (NSCLC). An electronic search of six electronic databases was performed to identify relevant comparative studies. Meta-analysis was performed by pooling the results of reported incidence of overall morbidity, mortality, prolonged air leak, arrhythmia, and pneumonia between RATS and VATS lobectomy. Subgroup analysis was also conducted based on matched and unmatched cohort studies, if possible. Relative risks (RR) with their 95% confidence intervals (CI) were calculated by means of Revman version 5.3. Twelve retrospective cohort studies were included, with a total of 60,959 patients. RATS lobectomy significantly reduced the mortality rate when compared with VATS lobectomy (RR = 0.54, 95% CI 0.38-0.77; P = 0.0006), but this was not consistent with the pooled result of six matched studies (RR = 0.12, 95% CI 0.01-1.07; P = 0.06). There was no significant difference in morbidity between the two approaches (RR = 0.97, 95% CI 0.85-1.12; P = 0.70). RATS lobectomy is a feasible and safe technique and can achieve an equivalent short-term surgical efficacy when compared with VATS, but its cost effectiveness also should be taken into consideration.

  7. On Robot Modelling using Maple

    Wallén, Johanna

    2007-01-01

    This report studies robot modelling by means of the computer algebra tool Maple. First coordinate systems are described, and the more general way with transformation matrices is chosen in the further work. The position kinematics of the robot are then described by homogeneous transformations. The Denavit-Hartenberg representation is used, which is a systematic way to develop the forward kinematics for rigid robots. The velocity kinematics is then described by the Jacobian. The industrial robo...

  8. Frugal Design and Surgical Robotics

    McKinley, Stephen Alan

    2016-01-01

    A new era of robotic surgery is poised to begin when critical patents held by Intuitive Surgical (IS) expire in 2016. IS market dominance for decades has led to an effective monopoly that will be challenged by several commercial enterprises working on next generation general robotic surgery systems. Robotic surgery has the potential to alleviate the skill-gap between experienced and inexperienced surgeons through the automation of sub-tasks within surgicalprocedures.The primary objective of...

  9. Digitizing specimens in a small herbarium: A viable workflow for collections working with limited resources.

    Harris, Kari M; Marsico, Travis D

    2017-04-01

    Small herbaria represent a significant portion of herbaria in the United States, but many are not digitizing their collections. At the Arkansas State University Herbarium (STAR), we have created a viable workflow to help small herbaria begin the digitization process, including suggestions for publishing data on the Internet. We calculated hourly rates of each phase of the digitization process. We also mapped accessions at the county level to determine geographic strengths in the collection. All 17,678 accessioned flowering plant specimens at STAR are imaged, databased in Specify, and available electronically on the herbarium's website. Students imaged the specimens at a mean rate of 145/h. We found differences in databasing rates between the graduate student leading the project (47/h) and undergraduate assistants (25/h). The majority of specimens at STAR were collected within the counties neighboring the institution. With this workflow, we estimate that one person can digitize a 20,000-specimen collection in less than 2.5 yr by working only 10 h/wk. Because STAR is a small herbarium with limited resources, the application of the workflow described should assist curators of similar-sized collections as they contemplate and undertake the digitization process.

  10. Digitizing specimens in a small herbarium: A viable workflow for collections working with limited resources1

    Harris, Kari M.; Marsico, Travis D.

    2017-01-01

    Premise of the study: Small herbaria represent a significant portion of herbaria in the United States, but many are not digitizing their collections. Methods: At the Arkansas State University Herbarium (STAR), we have created a viable workflow to help small herbaria begin the digitization process, including suggestions for publishing data on the Internet. We calculated hourly rates of each phase of the digitization process. We also mapped accessions at the county level to determine geographic strengths in the collection. Results: All 17,678 accessioned flowering plant specimens at STAR are imaged, databased in Specify, and available electronically on the herbarium’s website. Students imaged the specimens at a mean rate of 145/h. We found differences in databasing rates between the graduate student leading the project (47/h) and undergraduate assistants (25/h). The majority of specimens at STAR were collected within the counties neighboring the institution. Discussion: With this workflow, we estimate that one person can digitize a 20,000-specimen collection in less than 2.5 yr by working only 10 h/wk. Because STAR is a small herbarium with limited resources, the application of the workflow described should assist curators of similar-sized collections as they contemplate and undertake the digitization process. PMID:28439474

  11. Autodesk Robot Structural Analysis Professional 2016 essentials

    Marsh, Ken

    2016-01-01

    Autodesk Robot Structural Analysis Professional 2016 - Essentials is an excellent introduction to the essential features, functions, and workflows of Autodesk Robot Structural Analysis Professional. Master the tools you will need to make Robot work for you: Go from zero to proficiency with this thorough and detailed introduction to the essential concepts and workflows of Robot Structural Analysis Professional 2016. - Demystify the interface - Manipulate and manage Robot tables like a pro - Learn how to use Robot's modeling tools - Master loading techniques - Harness Robot automated load combinations - Decipher simplified seismic loading - Discover workflows for steel and concrete design - Gain insights to help troubleshoot issues Guided exercises are provided to help cement fundamental concepts in Robot Structural Analysis and drive home key functions. Get up to speed quickly with this essential text and add Robot Structural Analysis Professional 2016 to your analysis and design toolbox. New in 2016: AWC-NDS ...

  12. Evolutionary Robotics: What, Why, and Where to

    Stephane eDoncieux

    2015-03-01

    Full Text Available Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work.

  13. Biological Soft Robotics.

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  14. Robotics in Colorectal Surgery

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895

  15. Working hard to make a simple definition of synergies. Comment on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Alessandro, Cristiano; Oliveira Barroso, Filipe; Tresch, Matthew

    2016-07-01

    The paper ;Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands; [1] presents a comprehensive review of the work carried out as part of the EU funded project ;The Hand Embodied;. The work uses the concept of ;synergy; to study the neuromuscular control of the human hand and to design novel robotics systems. The project has been very productive and has made important contributions. We are therefore confident that it will lead to further advancements and experiments in the future.

  16. Concurrent Path Planning with One or More Humanoid Robots

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor)

    2014-01-01

    A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.

  17. Robotic buildings(s)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  18. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  19. Inverse kinematic solution for near-simple robots and its application to robot calibration

    Hayati, Samad A.; Roston, Gerald P.

    1986-01-01

    This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.

  20. Robotics for nuclear power plants

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  1. Towards Using a Generic Robot as Training Partner

    Sørensen, Anders Stengaard; Savarimuthu, Thiusius Rajeeth; Nielsen, Jacob

    2014-01-01

    In this paper, we demonstrate how a generic industrial robot can be used as a training partner, for upper limb training. The motion path and human/robot interaction of a non-generic upper-arm training robot is transferred to a generic industrial robot arm, and we demonstrate that the robot arm can...... implement the same type of interaction, but can expand the training regime to include both upper arm and shoulder training. We compare the generic robot to two affordable but custom-built training robots, and outline interesting directions for future work based on these training robots....

  2. Integration of Haptics in Agricultural Robotics

    Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.

    2017-08-01

    Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.

  3. Mobile app for human-interaction with sitter robots

    Das, Sumit Kumar; Sahu, Ankita; Popa, Dan O.

    2017-05-01

    Human environments are often unstructured and unpredictable, thus making the autonomous operation of robots in such environments is very difficult. Despite many remaining challenges in perception, learning, and manipulation, more and more studies involving assistive robots have been carried out in recent years. In hospital environments, and in particular in patient rooms, there are well-established practices with respect to the type of furniture, patient services, and schedule of interventions. As a result, adding a robot into semi-structured hospital environments is an easier problem to tackle, with results that could have positive benefits to the quality of patient care and the help that robots can offer to nursing staff. When working in a healthcare facility, robots need to interact with patients and nurses through Human-Machine Interfaces (HMIs) that are intuitive to use, they should maintain awareness of surroundings, and offer safety guarantees for humans. While fully autonomous operation for robots is not yet technically feasible, direct teleoperation control of the robot would also be extremely cumbersome, as it requires expert user skills, and levels of concentration not available to many patients. Therefore, in our current study we present a traded control scheme, in which the robot and human both perform expert tasks. The human-robot communication and control scheme is realized through a mobile tablet app that can be customized for robot sitters in hospital environments. The role of the mobile app is to augment the verbal commands given to a robot through natural speech, camera and other native interfaces, while providing failure mode recovery options for users. Our app can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provides conversational dialogue during sitting sessions. In this paper, we present the software and hardware framework that

  4. Zebrafish (Danio rerio) behavioural response to bioinspired robotic fish and mosquitofish (Gambusia affinis)

    Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    The field of ethorobotics holds promise in aiding fundamental research in animal behaviour, whereby it affords fully controllable and easily reproducible experimental tools. Most of the current ethorobotics studies are focused on the behavioural response of a selected target species as it interacts with a biologically-inspired robot in controlled laboratory conditions. In this work, we first explore the interactions between two social fish species and a robotic fish, whose design is inspired by salient visual features of one of the species. Specifically, this study investigates the behavioural response of small shoals of zebrafish interacting with a zebrafish-inspired robotic fish and small shoals of mosquitofish in a basic ecological context. Our results demonstrate that the robotic fish differentially influences the behaviour of the two species by consistently attracting zebrafish, while repelling mosquitofish. This selective behavioural control is successful in spatially isolating the two species, which would otherwise exhibit prey–predator interactions, with mosquitofish attacking zebrafish. (communication)

  5. Human centric object perception for service robots

    Alargarsamy Balasubramanian, A.C.

    2016-01-01

    The research interests and applicability of robotics have diversified and seen a
    tremendous growth in recent years. There has been a shift from industrial robots operating in constrained settings to consumer robots working in dynamic environments associated closely with everyday human

  6. Tele-operated service robots : ROSE

    Osch, van M.P.W.J.; Bera, D.; Hee, van K.M.; Koks, Y.; Zeegers, H.

    2014-01-01

    Service robots are robots that are intended to perform tasks normally done by humans in an environment in which humans work as well. However, they are neither required to accomplish these tasks in the same way as humans nor need to look like a human being. A tele-operated robot is controlled from a

  7. Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    Stuyt, Floran H.A.; Römer, GertWillem R.B.E.; Stuyt, Harry .J.A.

    2007-01-01

    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm

  8. Robotic stereotactic body radiation therapy for elderly medically inoperable early-stage non-small cell lung cancer

    Karam SD

    2013-08-01

    Full Text Available Sana D Karam,1 Zachary D Horne,1 Robert L Hong,1,2 Nimrah Baig,1 Gregory J Gagnon,4 Don McRae,2 David Duhamel,3 Nadim M Nasr1,21Department of Radiation Oncology, Georgetown University Hospital, Washington, DC, USA; 2Department of Radiation Oncology, Virginia Hospital Center, Arlington, VA, USA; 3Department of Pulmonary/Critical Care Medicine, Virginia Hospital Center, Arlington, VA, USA; 4Department of Radiation Oncology, Frederick Memorial Hospital, Frederick, MD, USAIntroduction: Stereotactic body radiation therapy (SBRT is being increasingly applied in the treatment of non-small cell lung cancer (NSCLC because of its high local efficacy. This study aims to examine survival outcomes in elderly patients with inoperable stage I NSCLC treated with SBRT.Methods: A total of 31 patients with single lesions treated with fractionated SBRT from 2008 to 2011 were retrospectively analyzed. A median prescribed dose of 48 Gy was delivered to the prescription isodose line, over a median of four treatments. The median biologically effective dose (BED was 105.6 (range 37.50–180, and the median age was 73 (65–90 years. No patient received concurrent chemotherapy.Results: With a median follow up of 13 months (range, 4–40 months, the actuarial median overall survival (OS and progression-free survival (PFS were 32 months, and 19 months, respectively. The actuarial median local control (LC time was not reached. The survival outcomes at median follow up of 13 months were 80%, 68%, and 70% for LC, PFS, and OS, respectively. Univariate analysis revealed a BED of >100 Gy was associated with improved LC rates (P = 0.02, while squamous cell histology predicted for worse LC outcome at median follow up time of 13 months (P = 0.04. Increased tumor volume was a worse prognostic indicator of both LC and OS outcomes (P < 0.05. Finally, female gender was a better prognostic factor for OS than male gender (P = 0.006. There were no prognostic indicators of PFS that reached

  9. Friendly network robotics; Friendly network robotics

    NONE

    1998-03-01

    A working group (WG) study was conducted aiming at realizing human type robots. The following six working groups in the basement field were organized to study in terms mostly of items of technical development and final technical targets: platform, and remote attendance control in the basement field, maintenance of plant, etc., home service, disaster/construction, and entertainment in the application field. In the platform WG, a robot of human like form is planning which walks with two legs and works with two arms, and the following were discussed: a length of 160cm, weight of 110kg, built-in LAN, actuator specifications, modulated structure, intelligent driver, etc. In the remote attendance control WG, remote control using working function, stabilized movement, stabilized control, and network is made possible. Studied were made on the decision on a remote control cockpit by open architecture added with function and reformable, problems on the development of the standard language, etc. 77 ref., 82 figs., 21 tabs.

  10. Applying information theory to small groups assessment: emotions and well-being at work.

    García-Izquierdo, Antonio León; Moreno, Blanca; García-Izquierdo, Mariano

    2010-05-01

    This paper explores and analyzes the relations between emotions and well-being in a sample of aviation personnel, passenger crew (flight attendants). There is an increasing interest in studying the influence of emotions and its role as psychosocial factors in the work environment as they are able to act as facilitators or shock absorbers. The contrast of the theoretical models by using traditional parametric techniques requires a large sample size to the efficient estimation of the coefficients that quantify the relations between variables. Since the available sample that we have is small, the most common size in European enterprises, we used the maximum entropy principle to explore the emotions that are involved in the psychosocial risks. The analyses show that this method takes advantage of the limited information available and guarantee an optimal estimation, the results of which are coherent with theoretical models and numerous empirical researches about emotions and well-being.

  11. LIFE QUALITY AT WORK: PROPOSITION FOR MICRO AND SMALL BUSINESS AVALIATION

    Jucelaine Lopes de Oliveira

    2012-12-01

    Full Text Available The concept of QLW seeks to develop mechanisms for the individual to have balance between their personal and professional life, with this in mind the challenge for the organizations is to balance the organizational needs, dictated by the market with its rapid changes, and the needs of individuals. The company should understand the individual as a whole person with various interests and knowledge which can be directed to activities undertaken in the organization. This work, following the proposals made by Richard Walton, is an indication for evaluation especially created for micro and small businesses; the goal is to sharpen the concepts and to establish variant knowledge as fundamental in the environment production of MSEs.

  12. Multi-robot caravanning

    Denny, Jory

    2013-11-01

    We study multi-robot caravanning, which is loosely defined as the problem of a heterogeneous team of robots visiting specific areas of an environment (waypoints) as a group. After formally defining this problem, we propose a novel solution that requires minimal communication and scales with the number of waypoints and robots. Our approach restricts explicit communication and coordination to occur only when robots reach waypoints, and relies on implicit coordination when moving between a given pair of waypoints. At the heart of our algorithm is the use of leader election to efficiently exploit the unique environmental knowledge available to each robot in order to plan paths for the group, which makes it general enough to work with robots that have heterogeneous representations of the environment. We implement our approach both in simulation and on a physical platform, and characterize the performance of the approach under various scenarios. We demonstrate that our approach can successfully be used to combine the planning capabilities of different agents. © 2013 IEEE.

  13. Self-Organizing Robots

    Murata, Satoshi

    2012-01-01

    It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the rob...

  14. Gathering asychronous mobile robots with inaccurate compasses

    Souissi, Samia; Defago, Xavier; Yamashita, Masafumi

    2006-01-01

    This paper considers a system of asynchronous autonomous mobile robots that can move freely in a twodimensional plane with no agreement on a common coordinate system. Starting from any initial configuration, the robots are required to eventually gather at a single point, not fixed in advance (gathering problem). Prior work has shown that gathering oblivious (i.e., stateless) robots cannot be achieved deterministically without additional assumptions. In particular, if robots can detect multipl...

  15. Work environment and occupational risk assessment for small animal Portuguese veterinary activities.

    Macedo, Angela C; Mota, Vânia T; Tavares, João M; Machado, Osvaldo L; Malcata, Francisco X; Cristo, Marinela P; Mayan, Olga N

    2018-03-01

    The professional work of small animal veterinary staff encompasses a wide diversity of demanding tasks. This has prompted a number of studies covering physical, chemical, biological, ergonomic, or psychological hazards, as well as their health effects upon veterinary workers. However, such results were obtained from self-reported surveys (via paper or online). This study reports the identification of potential hazards and provides a risk assessment of 15 veterinary clinics based on data from walk-through surveys, interviews with workers, and quantification of indoor air quality parameters including concentration of volatile organic compounds (total, isoflurane, and glutaraldehyde). The risk arising from X-ray exposure was unacceptable in seven clinics; X-ray examination should be discontinued in the absence of isolated radiation rooms, poor safety practices, and lack of personal protective equipment. Ergonomic-related hazards and work practices should be revised as soon as possible, considering that improper postures, as well as moving and lifting heavy animals are major causes of musculoskeletal disorders. The risk levels were, in general, small or medium (acceptable) with regard to exposure to physical hazards (such as bites, scratches, cuts, and burns) and biological hazards. It was observed that the indoor air quality parameters including temperature, respirable particulate matter and total volatile organic compounds do not indicate a comfortable workplace environment, requiring clinics' attention to keep the safe environment. The veterinarians and nurses were exposed to isoflurane (above 2 ppm) during surgery if an extractor system for waste gas was used instead of a scavenging system. Finally, veterinary workers did not possess any type of training on occupational safety and health issues, even though they recognized its importance.

  16. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-01-01

    For years, public discourse in science education, technology, and policy-making has focused on the “leaky pipeline” problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created “microenvironments” (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students’ academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women’s academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women’s verbal participation in group work, which often affects learning and mastery. PMID:25848061

  17. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering.

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-04-21

    For years, public discourse in science education, technology, and policy-making has focused on the "leaky pipeline" problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created "microenvironments" (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students' academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women's academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women's verbal participation in group work, which often affects learning and mastery.

  18. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  19. Return to work following robot-assisted laparoscopic and open retropubic radical prostatectomy: A single-center cohort study to compare duration of sick leave.

    von Mechow, Stefanie; Graefen, Markus; Haese, Alexander; Tennstedt, Pierre; Pehrke, Dirk; Friedersdorff, Frank; Beyer, Burkhard

    2018-06-01

    To compare the duration of sick leave in patients with localized prostate cancer after robot-assisted radical prostatectomy (RARP) and open retropubic RP (ORP) at a German high-volume prostate cancer center. The data of 1,415 patients treated with RP at Martini Klinik, Prostate Cancer Center between 2012 and 2016 were, retrospectively, analyzed. Information on employment status, monthly revenues and days of work missed due to sickness were assessed via online questionnaire. Additional data were retrieved from our institutional database. Medians and interquartile ranges (IQR) were reported for continuous data. Cox proportional hazard analysis was performed to compare both surgical techniques for return to work time after RP. Median time elapsed between surgery and return to work comprised 42 days in patients undergoing RARP (IQR: 21-70) and ORP (IQR: 28-84, P = 0.05). In Cox regression analysis, surgical approach showed no impact on return to work time (RARP vs. ORP hazard ratio = 1, 95% CI: 0.91-1.16, P = 0.69). Return to work time was significantly associated with employment status, physical workload and monthly income (all PLimitation of this study is the nonrandomized design in a single-center. As the surgical approach did not show any influence on the number of days missed from work in patients undergoing RP, no superiority of either RARP or ORP could be identified for return to work time in a German cohort. Both surgical approaches are safe options usually allowing the patients to resume normal activities including work after an appropriate convalescence period. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Risk-adapted robotic stereotactic body radiation therapy for inoperable early-stage non-small-cell lung cancer

    Temming, Susanne; Kocher, Martin; Baus, Wolfgang W.; Semrau, Robert; Baues, Christian; Marnitz, S. [University of Cologne, Department of Radiation Oncology, Center for Integrated Oncology, Cologne (Germany); Stoelben, Erich [Hospital of Cologne, Lung Clinic Merheim, Cologne (Germany); Hagmeyer, Lars [University of Cologne, Bethanien Hospital, Institute of Pneumology, Solingen (Germany); Chang, De-Hua [University of Cologne, Department of Diagnostic and Interventional Radiology, Center for Integrated Oncology, Cologne (Germany); Frank, Konrad [Heart Centre of the University of Cologne, Department III of Internal Medicine, Cologne (Germany); Hekmat, Khosro [University of Cologne, Department of Cardiothoracic Surgery, Center for Integrated Oncology, Cologne (Germany); Wolf, Juergen [University Hospital of Cologne, First Department of Internal Medicine, Center for Integrated Oncology, Cologne (Germany)

    2018-02-15

    To evaluate efficacy and toxicity of stereotactic body radiation therapy (SBRT) with CyberKnife {sup registered} (Accuray, Sunnyvale, CA, USA) in a selected cohort of primary, medically inoperable early-stage non-small cell lung cancer (NSCLC) patients. From 2012 to 2016, 106 patients (median age 74 years, range 50-94 years) with primary NSCLC were treated with SBRT using CyberKnife {sup registered}. Histologic confirmation was available in 87 patients (82%). For mediastinal staging, 92 patients (87%) underwent {sup 18}F-fluorodeoxyglucose positron-emission tomography (18-FDG-PET) and/or endobronchial ultrasound (EBUS)-guided lymph node biopsy or mediastinoscopy. Tumor stage (UICC8, 2017) was IA/B (T1a-c, 1-3 cm) in 86 patients (81%) and IIA (T2a/b, 3-5 cm) in 20 patients (19%). Depending on tumor localization, three different fractionation schedules were used: 3 fractions of 17Gy, 5 fractions of 11Gy, or 8 fractions of 7.5 Gy. Tracking was based on fiducial implants in 13 patients (12%) and on image guidance without markers in 88%. Median follow-up was 15 months (range 0.5-46 months). Acute side effects were mild (fatigue grade 1-2 in 20% and dyspnea grade 1-2 in 17%). Late effects were observed in 4 patients (4%): 3 patients developed pneumonitis requiring therapy (grade 2) and 1 patient suffered a rib fracture (grade 3). In total, 9/106 patients (8%) experienced a local recurrence, actuarial local control rates were 88% (95% confidence interval, CI, 80-96%) at 2 years and 77% (95%CI 56-98%) at 3 years. The median disease-free survival time was 27 months (95%CI 23-31 months). Overall survival was 77% (95%CI 65-85%) at 2 years and 56% (95%CI 39-73%) at 3 years. CyberKnife {sup registered} lung SBRT which allows for real-time tumor tracking and risk-adapted fractionation achieves satisfactory local control and low toxicity rates in inoperable early-stage primary lung cancer patients. (orig.) [German] Untersuchung von Wirkung und Toxizitaet einer stereotaktischen

  1. Robots in Elderly Care

    Alessandro Vercelli

    2018-03-01

    Full Text Available Low birth rate and the long life expectancy represent an explosive mixture, resulting in the rapid aging of population. The costs of healthcare in the grey society are increasing dramatically, and soon there will be not enough resources and people for care. This context requires conceptually new elderly care solutions progressively reducing the percentages of the human-based care. Research on robot-based solutions for elderly care and active ageing aims to answer these needs. From a general perspective, robotics has the power to completely reshape the landscape of healthcare both in its structure and its operation. In fact, the long-term sustainability of healthcare systems could be addressed by automation powered by digital health technologies, such as artificial intelligence, 3D-printing or robotics. The latter could take over monotonous work from healthcare workers, which would allow them to focus more on patients and to have lesser workload. Robots might be used in elder care with several different aims. (i Robots may act as caregivers, i.e. assist the elderly, (ii they can provide remainders and instructions for activities of daily life and safety, and/or assist their carers in daily tasks; (iii they can help monitor their behaviour and health; and (iv provide companionship, including entertainment and hobbies, reminiscence and social contact. The use of Robots with human subjects/patients raise several sensitive questions. First of all, robots may represent information hubs, and can collect an incredible amount of data about the subjects and their environment. In fact, they record habits such as sleeping, exercising, third persons entering in the house, appointments. Communications may be continuously recorded. Moreover, by connecting with medical devices, they can store medical data. On one hand, this represents a very powerful tool to collect information about the single subject (precision medicine, about disease (thus eventually finding

  2. The application of manipulator robot for nuclear plant maintenance

    Kohata, Yukifumi; Fujita, Jun; Onishi, Ken; Tsuhari, Hiroyuki; Hosoe, Fumihiro

    2010-01-01

    In the maintenance works at nuclear power plant, robots are used because of high radiation, narrow space and underwater work. Various robots are needed because there is various maintenance works. This is inefficiency. As the solutions, we developed manipulator robots for the access of specialized tools. This study shows manipulator robots developed by MHI, application example to maintenance works and effectiveness of manipulator robots. When robotization of maintenance works are considered, manipulator technology is very effective solution means. We achieved efficiency improvement and the reliability improvement by developing a high generality manipulator. (author)

  3. Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2015-08-01

    Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

  4. Vitruvian Robot

    Hasse, Cathrine

    2017-01-01

    future. A real version of Ava would not last long in a human world because she is basically a solipsist, who does not really care about humans. She cannot co-create the line humans walk along. The robots created as ‘perfect women’ (sex robots) today are very far from the ideal image of Ava...

  5. Laser Energy Transmission for a Wireless Energy Supply to Robots

    Kawashima, Nobuki; Takeda, Kazuya

    2008-01-01

    We can find a lot of robot applications in construction activities, where it is very difficult or dangerous for a man to access and only robots can work. The time will come soon when the actual use of those robots is extensively realized and the wireless energy transmission technology using laser is a unique means to supply energy to those robots.

  6. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    Larsen, Jørgen Christian; Støy, Kasper

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in un- known terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et. la [3...

  7. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    Larsen, J. C.; Stoy, K.

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in unknown terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et al. [1...

  8. High performance work practices in small firms : A resource-poverty and strategic decision-making perspective

    Kroon, B.; van de Voorde, F.C.; Timmers, J.

    2013-01-01

    High performance work practices (HPWPs) are human resource management practices aimed at stimulating employee and organisational performance. The application of HPWPs is not widespread in small organisations. We examine whether the implementation of coherent bundles of HPWPs (aimed at employee

  9. High performance work practices in small firms: a resource-poverty and strategic decision-making perspective

    Kroon, B.; Voorde, F.C. van de; Timmers, J.

    2013-01-01

    High performance work practices (HPWPs) are human resource management practices aimed at stimulating employee and organisational performance. The application of HPWPs is not widespread in small organisations. We examine whether the implementation of coherent bundles of HPWPs (aimed at employee

  10. Robot Teachers

    Nørgård, Rikke Toft; Ess, Charles Melvin; Bhroin, Niamh Ni

    The world's first robot teacher, Saya, was introduced to a classroom in Japan in 2009. Saya, had the appearance of a young female teacher. She could express six basic emotions, take the register and shout orders like 'be quiet' (The Guardian, 2009). Since 2009, humanoid robot technologies have...... developed. It is now suggested that robot teachers may become regular features in educational settings, and may even 'take over' from human teachers in ten to fifteen years (cf. Amundsen, 2017 online; Gohd, 2017 online). Designed to look and act like a particular kind of human; robot teachers mediate human...... existence and roles, while also aiming to support education through sophisticated, automated, human-like interaction. Our paper explores the design and existential implications of ARTIE, a robot teacher at Oxford Brookes University (2017, online). Drawing on an initial empirical exploration we propose...

  11. Robot vision

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  12. Social Robots

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us as indiv......Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  13. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  14. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a “Research to Development to Application” structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  15. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-2006 FINAL ANNUAL REPORT

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-01-01

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a ''Research to Development to Application'' structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction

  16. Micro intelligence robot

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  17. An Intelligent Robot Programing

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  18. An Intelligent Robot Programing

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  19. Afterword: Robot Conceptualizations Between Continuity and Innovation

    Leopoldina Fortunati

    2013-01-01

    Full Text Available The aim of this afterword is to discuss a topic that links all the papers presented in this special issue. This transversal topic is the forms of social robots. Firstly, social robots form is discussed in light of the forms of robotics we have inherited from the past. This includes the models of society that each of them embodied, as well as the social logic of the emotions connected to them. Secondly, social robots form is analyzed in light of the arrival in a new area for robotics, that of robots in the domestic sphere. Here, the system of filters created by the mass appropriation of information and communication technologies in the last two decades, has set the premise for a change of the social contract that has made social robot penetration possible. Whilst exploring the models and the meanings of social robots in the domestic sphere it emerges that robotics is following two different paths: one addressing the material part of housework (more traditional robotics and the other addressing the immaterial part of reproduction work (more innovative robotics. Finally, the paper analyzes the dematerialization process of social robotics that is still taking place, a practice that is defined herein as “ubiquitous social roboting.”

  20. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  1. Pyrotechnic robot - constructive design and command

    Ionel A. Staretu

    2013-10-01

    Full Text Available Pyrotechnic robots are service robots used to reduce the time for intervention of pyrotechnic troops and to diminish the danger for the operators. Pyrotechnic robots are used to inspect dangerous areas or/and to remove and to distroy explosive or suspicious devices/objects. These robots can be used to make corridors through mined battle fields, for manipulation and neutralization of unexploded ammunition, for inspection of vehicles, trains, airplanes and buildings. For these robots, a good functional activity is determined with regard to work space dimensions,, robotic arm kinematics and gripper characteristics. The paper shows the structural, kinematic, static synthesis and analysis as well as the design and functional simulation of the robotic arm and the grippers attached on the pyrotechnic robot designed by the authors.

  2. Surgery with cooperative robots.

    Lehman, Amy C; Berg, Kyle A; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Rentschler, Mark E; Platt, Stephen R; Farritor, Shane M; Oleynikov, Dmitry

    2008-03-01

    Advances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient trauma. While minimally invasive techniques offer significant patient advantages, the procedures are surgically challenging. Robotic surgical systems are being developed that address the visualization and manipulation limitations, but many of these systems remain constrained by the entry incisions. Alternatively, miniature in vivo robots are being developed that are completely inserted into the peritoneal cavity for laparoscopic and natural orifice procedures. These robots can provide vision and task assistance without the constraints of the entry incision, and can reduce the number of incisions required for laparoscopic procedures. In this study, a series of minimally invasive animal-model surgeries were performed using multiple miniature in vivo robots in cooperation with existing laparoscopy and endoscopy tools as well as the da Vinci Surgical System. These procedures demonstrate that miniature in vivo robots can address the visualization constraints of minimally invasive surgery by providing video feedback and task assistance from arbitrary orientations within the peritoneal cavity.

  3. Development of stretcher component robots for rescue against nuclear disaster

    Iwano, Yuki; Osuka, Koichi; Amano, Hisanori

    2006-01-01

    This paper studies the rescue robots to rescue people in an area polluted with radioactive leakage in nuclear power institutions. In particular, we propose the rescue system which consists of a group of small mobile robots. First, small traction robots set the posture of the fainted victims to carry easily, and carry them to the safety space with the mobile robots for the stretcher composition. In this paper, we confirm that the stretcher component robots could transport and convey a 40 [kg] dummy doll. And, we also show an application usage of stretcher robot. (author)

  4. Handling Small Talk at Work: Challenges for Workers with Intellectual Disabilities.

    Holmes, Janet; Fillary, Rose

    2000-01-01

    This study analyzed tape-recorded workplace small talk collected in New Zealand workplaces, including workplaces employing workers with intellectual disabilities. The topics, the distributional patterns, and the functions of small talk are described, and aspects of the management of small talk which may present problems to workers with…

  5. Workspace Analysis for Parallel Robot

    Ying Sun

    2013-05-01

    Full Text Available As a completely new-type of robot, the parallel robot possesses a lot of advantages that the serial robot does not, such as high rigidity, great load-carrying capacity, small error, high precision, small self-weight/load ratio, good dynamic behavior and easy control, hence its range is extended in using domain. In order to find workspace of parallel mechanism, the numerical boundary-searching algorithm based on the reverse solution of kinematics and limitation of link length has been introduced. This paper analyses position workspace, orientation workspace of parallel robot of the six degrees of freedom. The result shows: It is a main means to increase and decrease its workspace to change the length of branch of parallel mechanism; The radius of the movement platform has no effect on the size of workspace, but will change position of workspace.

  6. Robotic Prostate Biopsy in Closed MRI Scanner

    Fischer, Gregory

    2008-01-01

    .... This work enables prostate brachytherapy and biopsy procedures in standard high-field diagnostic MRI scanners through the development of a robotic needle placement device specifically designed...

  7. Developmental Robots - A New Paradigm

    Weng, Juyang; Zhang, Yilu

    2005-01-01

    .... This is especially true for a humanoid robot due to the very large number of redundant degrees of freedom and large number of sensors that are required for a humanoid to work safely and effectively...

  8. Physical Human Robot Interaction for a Wall Mounting Robot - External Force Estimation

    Alonso García, Alejandro; Villarmarzo Arruñada, Noelia; Pedersen, Rasmus

    2018-01-01

    The use of collaborative robots enhances human capabilities, leading to better working conditions and increased productivity. In building construction, such robots are needed, among other tasks, to install large glass panels, where the robot takes care of the heavy lifting part of the job while...

  9. Robotic Planetary Drill Tests

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  10. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  11. Audio localization for mobile robots

    de Guillebon, Thibaut; Grau Saldes, Antoni; Bolea Monte, Yolanda

    2009-01-01

    The department of the University for which I worked is developing a project based on the interaction with robots in the environment. My work was to define an audio system for the robot. This audio system that I have to realize consists on a mobile head which is able to follow the sound in its environment. This subject was treated as a research problem, with the liberty to find and develop different solutions and make them evolve in the chosen way.

  12. Space Robotics Challenge

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  13. Automatic Operation For A Robot Lawn Mower

    Huang, Y. Y.; Cao, Z. L.; Oh, S. J.; Kattan, E. U.; Hall, E. L.

    1987-02-01

    A domestic mobile robot, lawn mower, which performs the automatic operation mode, has been built up in the Center of Robotics Research, University of Cincinnati. The robot lawn mower automatically completes its work with the region filling operation, a new kind of path planning for mobile robots. Some strategies for region filling of path planning have been developed for a partly-known or a unknown environment. Also, an advanced omnidirectional navigation system and a multisensor-based control system are used in the automatic operation. Research on the robot lawn mower, especially on the region filling of path planning, is significant in industrial and agricultural applications.

  14. Robots and service innovation in health care.

    Oborn, Eivor; Barrett, Michael; Darzi, Ara

    2011-01-01

    Robots have long captured our imagination and are being used increasingly in health care. In this paper we summarize, organize and criticize the health care robotics literature and highlight how the social and technical elements of robots iteratively influence and redefine each other. We suggest the need for increased emphasis on sociological dimensions of using robots, recognizing how social and work relations are restructured during changes in practice. Further, we propose the usefulness of a 'service logic' in providing insight as to how robots can influence health care innovation. The Royal Society of Medicine Press Ltd 2011.

  15. A review on humanoid robotics in healthcare

    Joseph Azeta

    2018-01-01

    Full Text Available Humanoid robots have evolved over the years and today it is in many different areas of applications, from homecare to social care and healthcare robotics. This paper deals with a brief overview of the current and potential applications of humanoid robotics in healthcare settings. We present a comprehensive contextualization of humanoid robots in healthcare by identifying and characterizing active research activities on humanoid robot that can work interactively and effectively with humans so as to fill some identified gaps in current healthcare deficiency.

  16. Emotion based human-robot interaction

    Berns Karsten

    2018-01-01

    Full Text Available Human-machine interaction is a major challenge in the development of complex humanoid robots. In addition to verbal communication the use of non-verbal cues such as hand, arm and body gestures or mimics can improve the understanding of the intention of the robot. On the other hand, by perceiving such mechanisms of a human in a typical interaction scenario the humanoid robot can adapt its interaction skills in a better way. In this work, the perception system of two social robots, ROMAN and ROBIN of the RRLAB of the TU Kaiserslautern, is presented in the range of human-robot interaction.

  17. Robots conquering local government services

    Nielsen, Jeppe Agger; Andersen, Kim Normann; Sigh, Anne

    2016-01-01

    labour-intensive services, the public administration research community is short on knowledge of the impact on the work processes carried out in public organizations and how staff and clients react toward robots. This case study investigates the implementation and use of robot vacuum cleaners in Danish......The movement of robots from the production line to the service sector provides a potentially radical solution to innovate and transform public service delivery. Although robots are increasingly being adopted in service delivery (e.g., health- and eldercare) to enhance and in some cases substitute...... eldercare, demonstrating how robot vacuums have proven to have considerable interpretive flexibility with variation in the perceived nature of technology, technology strategy, and technology use between key stakeholders in eldercare....

  18. Robotic surgery

    ... with this type of surgery give it some advantages over standard endoscopic techniques. The surgeon can make ... Elsevier Saunders; 2015:chap 87. Muller CL, Fried GM. Emerging technology in surgery: Informatics, electronics, robotics. In: ...

  19. Robotic parathyroidectomy.

    Okoh, Alexis Kofi; Sound, Sara; Berber, Eren

    2015-09-01

    Robotic parathyroidectomy has recently been described. Although the procedure eliminates the neck scar, it is technically more demanding than the conventional approaches. This report is a review of the patients' selection criteria, technique, and outcomes. © 2015 Wiley Periodicals, Inc.

  20. Light Robotics

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  1. Socially Impaired Robots: Human Social Disorders and Robots' Socio-Emotional Intelligence

    Vitale, Jonathan; Williams, Mary-Anne; Johnston, Benjamin

    2016-01-01

    Social robots need intelligence in order to safely coexist and interact with humans. Robots without functional abilities in understanding others and unable to empathise might be a societal risk and they may lead to a society of socially impaired robots. In this work we provide a survey of three relevant human social disorders, namely autism, psychopathy and schizophrenia, as a means to gain a better understanding of social robots' future capability requirements. We provide evidence supporting...

  2. FIRST robots compete

    2000-01-01

    FIRST teams and their robots work to go through the right motions at the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  3. Human-Robot Interaction

    Rochlis-Zumbado, Jennifer; Sandor, Aniko; Ezer, Neta

    2012-01-01

    Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularies

  4. The changing nature of nursing work in rural and small community hospitals.

    Montour, Amy; Baumann, Andrea; Blythe, Jennifer; Hunsberger, Mabel

    2009-01-01

    The nursing literature includes descriptions of rural nursing workforces in Canada, the United States of America and Australia. However, inconsistent definitions of rural demography, diverse employment conditions and health care system reorganization make comparisons of these data difficult. In 2007, the Ministry of Health and Long-term Care in Ontario, Canada, transferred responsibility for decision-making and funding to 14 regional governing bodies known as Local Health Integration Networks (LHINs). Little is known about rural-urban variations in the nursing workforces in the LHINs because existing data repositories do not describe them. This study investigated the influence of demographic characteristics, provincial policies, organizational changes and emerging practice challenges on nursing work in a geographically unique rural region. The purpose was to describe the nature of nursing work from the perspective of rural nurse executives and frontline nurses. The study was conducted in 7 small rural and community hospitals in the Hamilton Niagara Haldimand Brant LHIN. Data collection occurred between August and November 2007. A qualitative descriptive study design was chosen to facilitate exploration of nursing in the rural setting. Study participants were identified through purposive snowball sampling. All nurses, nurse managers and nurse executives currently employed in the 7 study hospitals were eligible to participate. Data collection included the use of questionnaires and semi-structured interviews. Memos were also created to describe the relevance and applicability of concepts, categories and properties emerging from the data. Themes were compared across interviews to determine relevance and value. Twenty-one nurses from 7 different hospitals participated. The nurses reflect the aging trend in the provincial and regional workforces of Ontario. All study participants anticipate a substantial increase in retirements during the next decade, which will alter

  5. Recent work on network application layer: MioNet, the virtual workplace for small businesses

    Hesselink, Lambertus; Rizal, Dharmarus; Bjornson, Eric; Miller, Brian; Chan, Keith

    2005-11-01

    Small businesses must be extremely efficient and smartly leverage their resources, suppliers, and partners to successfully compete with larger firms. A successful small business requires a set of companies with interlocking business relationships that are dynamic and needs-based. There has been no software solution that creates a secure and flexible way to efficiently connect small business computer-based employees and partners. In this invited paper, we discuss MioNet, a secure and powerful data management platform which may provide millions of small businesses with a virtual workplace and help them to succeed.

  6. Design of Piano -playing Robotic Hand

    Lin Jen-Chang

    2013-09-01

    Full Text Available Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of keyboard instrument. The piano-playing robot is capable of control linear motor, servo-motor and pneumatic devices in accordance with the notes and rhythm in order to drive the mechanical structure to proper positions for pressing the keys and generating music. The devices used for this robot are mainly crucial components produced by HIWIN Technology Corp. The design of robotic hand is based on the direction of anthropomorphic hand such that five fingers will be used for playing piano. The finger actuations include actions of finger rotation, finger pressing, and finger lifting; time required for these 3 stages must meet the requirement of rhythm. The purpose of entertainment robot can be achieved by playing electric piano with robotic hand, and we hope this research can contribute to the development of domestic entertainment music playing robots.

  7. Performance optimization of solar driven small-cooled absorption–diffusion chiller working with light hydrocarbons

    Sayadi, Zouhour [U.R. Thermique et Thermodynamique des Procédés Industriels, Ecole Nationale d’Ingénieurs de Monastir (ENIM), Av. Ibn Jazzar, 5060 Monastir (Tunisia); Ben Thameur, Nizar, E-mail: nizarbenthameur@yahoo.fr [U.R. Thermique et Thermodynamique des Procédés Industriels, Ecole Nationale d’Ingénieurs de Monastir (ENIM), Av. Ibn Jazzar, 5060 Monastir (Tunisia); Bourouis, Mahmoud [Mechanical Engineering Department, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Bellagi, Ahmed [U.R. Thermique et Thermodynamique des Procédés Industriels, Ecole Nationale d’Ingénieurs de Monastir (ENIM), Av. Ibn Jazzar, 5060 Monastir (Tunisia)

    2013-10-15

    Highlights: • 1 kW{sub cooling} diffusion/absorption machine with light hydrocarbons as working fluids. • Hysys optimization to choose the optimal mixture for a better machine performance. • Cooling loads for a small bed-room (16 m{sup 2}) have been estimated into TRNSYS. • Economic assessment to choose the best combination of solar equipments. • Energy savings, CO{sub 2} avoided and equivalent gasoil and Diesel saved energy. - Abstract: We present in this paper a HYSYS (Aspen One) model and simulation results for 1 kW capacity water-cooled absorption/diffusion machine using different binary mixtures of light hydrocarbons as working fluids (C{sub 3}/n-C{sub 6}, C{sub 3}/c-C{sub 6}, C{sub 3}/c-C{sub 5}, propylene/c-C{sub 5}, propylene/i-C{sub 4}, propylene/i-C{sub 5}) in combination with helium as inert gas. The driving heat is supposed to be provided by an evacuated solar collector field. TRNSYS is used to address the solar aspects of the simulations. For the optimal chiller the driving heat temperature was found to be 121 °C for an evaporator exit temperature of 0 °C. The cooling water flow rate circulating between chiller and cooling tower is 140 l/h. Bubble pump and generator are heated by pressurized water from an insulated tank (70 l/m{sup 2}) maintained at a maximum temperature of 126 °C – with make-up heat when needed – and storing solar heat at an estimated 4.2 kW power. The solar energy cover only 40% for the energy supplied to drive the chiller. It’s found that the necessary collector surface area is about 6 m{sup 2} with annually total costs of 1.60 €/kW h with 20 years lifetime period for the installation. The avoided CO{sub 2} emissions are estimated at 1396 kg. The equivalent saved energy is 521 l of diesel or 604 l of gasoline.

  8. Performance optimization of solar driven small-cooled absorption–diffusion chiller working with light hydrocarbons

    Sayadi, Zouhour; Ben Thameur, Nizar; Bourouis, Mahmoud; Bellagi, Ahmed

    2013-01-01

    Highlights: • 1 kW cooling diffusion/absorption machine with light hydrocarbons as working fluids. • Hysys optimization to choose the optimal mixture for a better machine performance. • Cooling loads for a small bed-room (16 m 2 ) have been estimated into TRNSYS. • Economic assessment to choose the best combination of solar equipments. • Energy savings, CO 2 avoided and equivalent gasoil and Diesel saved energy. - Abstract: We present in this paper a HYSYS (Aspen One) model and simulation results for 1 kW capacity water-cooled absorption/diffusion machine using different binary mixtures of light hydrocarbons as working fluids (C 3 /n-C 6 , C 3 /c-C 6 , C 3 /c-C 5 , propylene/c-C 5 , propylene/i-C 4 , propylene/i-C 5 ) in combination with helium as inert gas. The driving heat is supposed to be provided by an evacuated solar collector field. TRNSYS is used to address the solar aspects of the simulations. For the optimal chiller the driving heat temperature was found to be 121 °C for an evaporator exit temperature of 0 °C. The cooling water flow rate circulating between chiller and cooling tower is 140 l/h. Bubble pump and generator are heated by pressurized water from an insulated tank (70 l/m 2 ) maintained at a maximum temperature of 126 °C – with make-up heat when needed – and storing solar heat at an estimated 4.2 kW power. The solar energy cover only 40% for the energy supplied to drive the chiller. It’s found that the necessary collector surface area is about 6 m 2 with annually total costs of 1.60 €/kW h with 20 years lifetime period for the installation. The avoided CO 2 emissions are estimated at 1396 kg. The equivalent saved energy is 521 l of diesel or 604 l of gasoline

  9. TO ASSESS THE QUALITY OF WORK LIFE EMPLOYEE IN SMALL SCALE INDUSTRIES

    Dr. Devendra S. Verma; Atul Kumar Doharey

    2016-01-01

    Quality of work life is a policy to increase the strategies and focus is on the potential of these policies to influence employees. Quality of work life is useful for workers to use their potential to maximum extend. Quality of work life helps the employees to maintain work life balance with equal attention on their performance and commitment to work. Quality of work life helps to employees for their job satisfaction and work place environment. Quality of work life helps to the employees to ...

  10. 77 FR 9882 - Arsenic Small Systems Compliance and Alternative Affordability Criteria Working Group; public...

    2012-02-21

    ... affordability criteria that give extra weight to small, rural, and lower income communities. This meeting will... held via the Internet using a Webcast and teleconference. Registrants will receive an Internet access... affordability criteria that give extra weight to small, rural, and lower income communities. Based upon input...

  11. Recent advances in robotics

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  12. Architectures of soft robotic locomotion enabled by simple mechanical principles.

    Zhu, Liangliang; Cao, Yunteng; Liu, Yilun; Yang, Zhe; Chen, Xi

    2017-06-28

    In nature, a variety of limbless locomotion patterns flourish, from the small or basic life forms (Escherichia coli, amoebae, etc.) to the large or intelligent creatures (e.g., slugs, starfishes, earthworms, octopuses, jellyfishes, and snakes). Many bioinspired soft robots based on locomotion have been developed in the past few decades. In this work, based on the kinematics and dynamics of two representative locomotion modes (i.e., worm-like crawling and snake-like slithering), we propose a broad set of innovative designs for soft mobile robots through simple mechanical principles. Inspired by and going beyond the existing biological systems, these designs include 1-D (dimensional), 2-D, and 3-D robotic locomotion patterns enabled by the simple actuation of continuous beams. We report herein over 20 locomotion modes achieving various locomotion functions, including crawling, rising, running, creeping, squirming, slithering, swimming, jumping, turning, turning over, helix rolling, wheeling, etc. Some are able to reach high speed, high efficiency, and overcome obstacles. All these locomotion strategies and functions can be integrated into a simple beam model. The proposed simple and robust models are adaptive for severe and complex environments. These elegant designs for diverse robotic locomotion patterns are expected to underpin future deployments of soft robots and to inspire a series of advanced designs.

  13. Biological inspiration used for robots motion synthesis.

    Zielińska, Teresa

    2009-01-01

    This work presents a biologically inspired method of gait generation. Bipedal gait pattern (for hip and knee joints) was taken into account giving the reference trajectories in a learning task. The four coupled oscillators were taught to generate the outputs similar to those in a human gait. After applying the correction functions the obtained generation method was validated using ZMP criterion. The formula suitable for real-time motion generation taking into account the positioning errors was also formulated. The small real robot prototype was tested to be able walk successfully following the elaborated motion pattern.

  14. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles.

    Chen, Zheng

    2017-01-01

    A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal artificial muscles for small-scale and bio-inspired robots. This paper takes a system perspective to review the recent work on IPMC-enabled underwater robots, from modeling, fabrication, and bio-inspired design perspectives. First, a physics-based and control-oriented model of IPMC actuator will be reviewed. Second, a bio-inspired robotic fish propelled by IPMC caudal fin will be presented and a steady-state speed model of the fish will be demonstrated. Third, a novel fabrication process for 3D actuating membrane will be introduced and a bio-inspired robotic manta ray propelled by two IPMC pectoral fins will be demonstrated. Fourth, a 2D maneuverable robotic fish propelled by multiple IPMC fin will be presented. Last, advantages and challenges of using IPMC artificial muscles in bio-inspired robots will be concluded.

  15. Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot

    Rafael Barea

    2013-01-01

    Full Text Available Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot’s back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  16. A survey of bio-inspired compliant legged robot designs

    Zhou Xiaodong; Bi Shusheng

    2012-01-01

    The roles of biological springs in vertebrate animals and their implementations in compliant legged robots offer significant advantages over the rigid legged ones in certain types of scenarios. A large number of robotics institutes have been attempting to work in conjunction with biologists and incorporated these principles into the design of biologically inspired robots. The motivation of this review is to investigate the most published compliant legged robots and categorize them according to the types of compliant elements adopted in their mechanical structures. Based on the typical robots investigated, the trade-off between each category is summarized. In addition, the most significant performances of these robots are compared quantitatively, and multiple available solutions for the future compliant legged robot design are suggested. Finally, the design challenges for compliant legged robots are analysed. This review will provide useful guidance for robotic designers in creating new designs by inheriting the virtues of those successful robots according to the specific tasks. (topical review)

  17. Easy Reconfiguration of Modular Industrial Collaborative Robots

    Schou, Casper

    2016-01-01

    the production staff collaborating to perform common tasks. This change of environment imposes a much more dynamic lifecycle for the robot which consequently requires new ways of interacting. This thesis investigates how the changeover to a new task on a collaborative robot can be performed by the shop floor...... operators already working alongside the robot. To effectively perform this changeover, the operator must both reconfigure the hardware of the robot and reprogram the robot to match the new task. To enable shop floor operators to quickly and intuitively program the robot, this thesis proposes the use...... of parametric, task-related robot skills with a manual parameterization method. Reconfiguring the hardware entails adding, removing, or modifying some of the robot’s components. This thesis investigate how software configurator tools can aid the operator in selecting appropriate hardware modules, and how agent...

  18. Robots for use in autism research.

    Scassellati, Brian; Admoni, Henny; Matarić, Maja

    2012-01-01

    Autism spectrum disorders are a group of lifelong disabilities that affect people's ability to communicate and to understand social cues. Research into applying robots as therapy tools has shown that robots seem to improve engagement and elicit novel social behaviors from people (particularly children and teenagers) with autism. Robot therapy for autism has been explored as one of the first application domains in the field of socially assistive robotics (SAR), which aims to develop robots that assist people with special needs through social interactions. In this review, we discuss the past decade's work in SAR systems designed for autism therapy by analyzing robot design decisions, human-robot interactions, and system evaluations. We conclude by discussing challenges and future trends for this young but rapidly developing research area.

  19. Fuzzy Behaviors for Control of Mobile Robots

    Saleh Zein-Sabatto

    2003-02-01

    Full Text Available In this research work, an RWI B-14 robot has been used as the development platform to embody some basic behaviors that can be combined to build more complex robotics behaviors. Emergency, avoid-obstacle, left wall- following, right wall-following, and move-to-point behaviors have been designed and embodied as basic robot behaviors. The basic behaviors developed in this research are designed based on fuzzy control technique and are integrated and coordinated to from complex robotics system. More behaviors can be added into the system as needed. A robot task can be defined by the user and executed by the intelligent robot control system. Testing results showed that fuzzy behaviors made the robot move intelligently and adapt to changes in its environment.

  20. Robotic and Survey Telescopes

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  1. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  2. Soft Robotics Week

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  3. Sensory Robot Gripper

    Drimus, Alin

    The project researches and proposes a tactile sensor system for equipping robotic grippers, thus giving them a sense of touch. We start by reviewing work that covers the building of tactile sensors and we focus on the flexible sensors with multiple sensing elements. As the piezoresistive, capacit......The project researches and proposes a tactile sensor system for equipping robotic grippers, thus giving them a sense of touch. We start by reviewing work that covers the building of tactile sensors and we focus on the flexible sensors with multiple sensing elements. As the piezoresistive......, such as establishing of contact, release of contact or slip. The proposed applications are just a few examples of the advantages of equipping robotic grippers with such a tactile sensor system, that is robust, fast, affordable, adaptable to any kind of gripper and has properties similar to the human sense of touch....... Based on experimental validation, we are confident that our proposed tactile sensor solution can be successfully employed in other application areas like reactive grasping, exploration of unknown objects, slip avoidance, dexterous manipulation or service robotics....

  4. Advances in Autonomous Mini Robots : Proceedings of the 6-th AMiRE Symposium

    Joaquin, Sitte; Felix, Werner

    2012-01-01

    Autonomous robots must carry out useful tasks all by themselves relying entirely on their own perceptions of their environment. The cognitive abilities required for autonomous action are largely independent of robot size, which makes mini robots attractive as artefacts for research, education and entertainment. Autonomous mini robots must be small enough for experimentation on a desktop or a small laboratory.  They must be easy to carry and safe for interaction with humans. They must not be expensive. Mini robot designers have to work at the leading edge of technology so that their creations can carry out purposeful autonomic action under these constraints. Since 2001 researchers have met every two years for an international symposium to report on the advances achieved in Autonomous Mini  Robots for Research and Edutainment (AMiRE). The AMiRE Symposium is a single track conference that offers ample opportunities for discussion and exchange of ideas. This volume contains the contributed papers of the 2011 AM...

  5. Rehabilitation robotics.

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Medical robotics.

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  7. Exploring child-robot engagement in a collaborative task

    Zaga, Cristina; Truong, Khiet Phuong; Lohse, M.; Evers, Vanessa

    Imagine a room with toys scattered on the floor and a robot that is motivating a small group of children to tidy up. This scenario poses real-world challenges for the robot, e.g., the robot needs to navigate autonomously in a cluttered environment, it needs to classify and grasp objects, and it

  8. D2 Delta Robot Structural Design and Kinematics Analysis

    Yang, Xudong; wang, Song; Dong, Yu; Yang, Hai

    2017-12-01

    In this paper, a new type of Delta robot with only two degrees of freedom is proposed on the basis of multi - degree - of - freedom delta robot. In order to meet our application requirements, we have carried out structural design and analysis of the robot. Through SolidWorks modeling, combined with 3D printing technology to determine the final robot structure. In order to achieve the precise control of the robot, the kinematics analysis of the robot was carried out. The SimMechanics toolbox of MATLAB is used to establish the mechanism model, and the kinematics mathematical model is used to simulate the robot motion control in Matlab environment. Finally, according to the design mechanism, the working space of the robot is drawn by the graphic method, which lays the foundation for the motion control of the subsequent robot.

  9. Structural synthesis of parallel robots

    Gogu, Grigore

    This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators.  This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schönflies motions systematically generated by using the structural synthesis approach proposed in Part 1.  Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. T...

  10. Generic robot architecture

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  11. Modelling reversible execution of robotic assembly

    Laursen, Johan Sund; Ellekilde, Lars Peter; Schultz, Ulrik Pagh

    2018-01-01

    Programming robotic assembly for industrial small-batch production is challenging; hence, it is vital to increase robustness and reduce development effort in order to achieve flexible robotic automation. A human who has made an assembly error will often simply undo the process until the error is ...

  12. 'Filigree Robotics'

    2016-01-01

    -scale 3D printed ceramics accompanied by prints, videos and ceramic probes, which introduce the material and design processes of the project.'Filigree Robotics' experiments with a combination of the traditional ceramic technique of ‘Overforming’ with 3d Laserscan and Robotic extrusion technique...... application of reflectivity after an initial 3d print. The consideration and integration of this material practice into a digital workflow took place in an interdisciplinary collaboration of Ceramicist Flemming Tvede Hansen from KADK Superformlab and architectural researchers from CITA (Martin Tamke, Henrik...... to the creation of the form and invites for experimentation. In Filigree Robotics we combine the crafting of the mold with a parallel running generative algorithm, which is fed by a constant laserscan of the 3d surface. This algorithm, analyses the topology of the mold, identifies high and low points and uses...

  13. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  14. ROBOT TASK SCENE ANALYZER

    Hamel, William R.; Everett, Steven

    2000-01-01

    Environmental restoration and waste management (ER and WM) challenges in the United States Department of Energy (DOE), and around the world, involve radiation or other hazards which will necessitate the use of remote operations to protect human workers from dangerous exposures. Remote operations carry the implication of greater costs since remote work systems are inherently less productive than contact human work due to the inefficiencies/complexities of teleoperation. To reduce costs and improve quality, much attention has been focused on methods to improve the productivity of combined human operator/remote equipment systems; the achievements to date are modest at best. The most promising avenue in the near term is to supplement conventional remote work systems with robotic planning and control techniques borrowed from manufacturing and other domains where robotic automation has been used. Practical combinations of teleoperation and robotic control will yield telerobotic work systems that outperform currently available remote equipment. It is believed that practical telerobotic systems may increase remote work efficiencies significantly. Increases of 30% to 50% have been conservatively estimated for typical remote operations. It is important to recognize that the basic hardware and software features of most modern remote manipulation systems can readily accommodate the functionality required for telerobotics. Further, several of the additional system ingredients necessary to implement telerobotic control--machine vision, 3D object and workspace modeling, automatic tool path generation and collision-free trajectory planning--are existent

  15. ROBOT TASK SCENE ANALYZER

    William R. Hamel; Steven Everett

    2000-08-01

    Environmental restoration and waste management (ER and WM) challenges in the United States Department of Energy (DOE), and around the world, involve radiation or other hazards which will necessitate the use of remote operations to protect human workers from dangerous exposures. Remote operations carry the implication of greater costs since remote work systems are inherently less productive than contact human work due to the inefficiencies/complexities of teleoperation. To reduce costs and improve quality, much attention has been focused on methods to improve the productivity of combined human operator/remote equipment systems; the achievements to date are modest at best. The most promising avenue in the near term is to supplement conventional remote work systems with robotic planning and control techniques borrowed from manufacturing and other domains where robotic automation has been used. Practical combinations of teleoperation and robotic control will yield telerobotic work systems that outperform currently available remote equipment. It is believed that practical telerobotic systems may increase remote work efficiencies significantly. Increases of 30% to 50% have been conservatively estimated for typical remote operations. It is important to recognize that the basic hardware and software features of most modern remote manipulation systems can readily accommodate the functionality required for telerobotics. Further, several of the additional system ingredients necessary to implement telerobotic control--machine vision, 3D object and workspace modeling, automatic tool path generation and collision-free trajectory planning--are existent.

  16. Imitation learning of Non-Linear Point-to-Point Robot Motions using Dirichlet Processes

    Krüger, Volker; Tikhanoff, Vadim; Natale, Lorenzo

    2012-01-01

    In this paper we discuss the use of the infinite Gaussian mixture model and Dirichlet processes for learning robot movements from demonstrations. Starting point of this work is an earlier paper where the authors learn a non-linear dynamic robot movement model from a small number of observations....... The model in that work is learned using a classical finite Gaussian mixture model (FGMM) where the Gaussian mixtures are appropriately constrained. The problem with this approach is that one needs to make a good guess for how many mixtures the FGMM should use. In this work, we generalize this approach...... our algorithm on the same data that was used in [5], where the authors use motion capture devices to record the demonstrations. As further validation we test our approach on novel data acquired on our iCub in a different demonstration scenario in which the robot is physically driven by the human...

  17. Medical robotics

    Troccaz, Jocelyne

    2013-01-01

    In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and

  18. Robot Choreography

    Jochum, Elizabeth Ann; Heath, Damith

    2016-01-01

    We propose a robust framework for combining performance paradigms with human robot interaction (HRI) research. Following an analysis of several case studies that combine the performing arts with HRI experiments, we propose a methodology and “best practices” for implementing choreography and other...... performance paradigms in HRI experiments. Case studies include experiments conducted in laboratory settings, “in the wild”, and live performance settings. We consider the technical and artistic challenges of designing and staging robots alongside humans in these various settings, and discuss how to combine...

  19. Acquisition of earthworm-like movement patterns of many-segmented peristaltic crawling robots

    Norihiko Saga

    2016-09-01

    Full Text Available In recent years, attention has been increasingly devoted to the development of rescue robots that can protect humans from the inherent risks of rescue work. Particularly, anticipated is the development of a robot that can move deeply through small spaces. We have devoted our attention to peristalsis, the movement mechanism used by earthworms. A reinforcement learning technique used for the derivation of the robot movement pattern, Q-learning, was used to develop a three-segmented peristaltic crawling robot with a motor drive. Characteristically, peristalsis can provide movement capability if at least three segments work, even if a segmented part does not function. Therefore, we had intended to derive the movement pattern of many-segmented peristaltic crawling robots using Q-learning. However, because of the necessary increase in calculations, in the case of many segments, Q-learning cannot be used because of insufficient memory. Therefore, we devoted our attention to a learning method called Actor–Critic, which can be implemented with low memory. Because Actor-Critic methods are TD methods that have a separate memory structure to explicitly represent the policy independent of the value function. Using it, we examined the movement patterns of six-segmented peristaltic crawling robots.

  20. Robotics Offer Newfound Surgical Capabilities

    2008-01-01

    Barrett Technology Inc., of Cambridge, Massachusetts, completed three Phase II Small Business Innovation Research (SBIR) contracts with Johnson Space Center, during which the company developed and commercialized three core technologies: a robotic arm, a hand that functions atop the arm, and a motor driver to operate the robotics. Among many industry uses, recently, an adaptation of the arm has been cleared by the U.S. Food and Drug Administration (FDA) for use in a minimally invasive knee surgery procedure, where its precision control makes it ideal for inserting a very small implant.

  1. Transformational and transactional leadership: does it work in small to medium-sized enterprises?

    Mesu, J.K.

    2013-01-01

    Using a sample of 755 employees who rated 121 supervisors within 50 Dutch small and medium-sized enterprises (SMEs), this dissertation intends to fill in some of the existing gaps in the literature. Firstly, by investigating whether the impact of transformational and transactional leadership extends

  2. Graduates' Experiences of Work in Small Organizations in the UK and the Netherlands : Better than Expected

    Arnold, J.; Schalk, R.; Bosley, S.; van Overbeek, S.

    2002-01-01

    This project was designed to examine university graduates' expectations and experiences of employment in small organizations in the UK and the Netherlands. Specifically, three predictions were made on the basis of existing literature and tested using self-report questionnaire data gathered from 126

  3. Small Wars 2.0: A Working Paper on Land Force Planning After Iraq and Afghanistan

    2011-02-01

    official examination of future ground combat demands that look genetically distinct from those undertaken in the name of the WoT. The concept of...under the worst-case rubric but for very different reasons. The latter are small wars. However, that by no means aptly describes their size

  4. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  5. Large Industries in Small Towns: Who Benefits? Working Paper RID 73.9.

    Clemente, Frank; Summers, Gene F.

    The impact of a large manufacturing plant on a small village in "middle America" was explored in this paper. Research was conducted in Illinois using Putnam County as an "experimental" region and Iroquois County as a "control." In the spring of 1966, the Jones and Laughlin Steel Corporation began construction of a…

  6. Do decent working conditions contribute to work–life balance: A study of small enterprises in Bangladesh

    A.H.M. Belayeth Hussain

    2018-05-01

    Full Text Available Purpose - The purpose of this study was to explore the contributions of decent work situation to work–life balance of small entrepreneurs. The survey was conducted to uncover the degree and magnitude of essential decent work indicators that can aid the work–life balance situation of small ventures. Design/methodology/approach - The study utilized a survey research design and used a five-point Likert type questionnaire to investigate the research questions. Each construct of the scale has its corresponding items, which were measured specifically. To analyze the latent variables, partial least square (PLS–structural equation modelling with Smart PLS application was used. Findings - The findings of this study reveal that social dialogue and stability and security of enterprise have the most significant effects in ensuring work–life balance of an enterprise. Additionally, social dialogue among entrepreneurs has influence in maintaining decent working hours and fair treatment at workplace. Originality/value - The value of this study lies in exploring a new dimension of analyzing working conditions in informal sector economy such as small enterprises. Because this research aims to study ventures that are financed by the microcredit institution, whether social financing plays a role in improving work–life balance situation through empowering decent working conditions can be investigated.

  7. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  8. Robots show us how to teach them: feedback from robots shapes tutoring behavior during action learning.

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.

  9. Effect of cognitive biases on human-robot interaction: a case study of robot's misattribution

    Biswas, Mriganka; Murray, John

    2014-01-01

    This paper presents a model for developing long-term human-robot interactions and social relationships based on the principle of 'human' cognitive biases applied to a robot. The aim of this work is to study how a robot influenced with human ‘misattribution’ helps to build better human-robot interactions than unbiased robots. The results presented in this paper suggest that it is important to know the effect of cognitive biases in human characteristics and interactions in order to better u...

  10. The EMeRGE modular robot, an open platform for quick testing of evolved robot morphologies

    Moreno Garcia, Rodrigo; Liu, Ceyue; Faina, Andres

    2017-01-01

    This work presents the hardware design and implementation of the EMeRGE open modular robot platform. EMeRGE (Easy Modular Embodied Robot Generation) modules are designed to be cheap and easy to build and their hardware is open for anyone to use and modify. Four magnetic connectors enable the quick...... assembly of different complex robot morphologies like the ones generated by evolutionary robotics experiments. Non-human agents, like robotic manipulators, can also take advantage of the magnetic connectors to assemble and disassemble morphologies....

  11. Biomimetic vibrissal sensing for robots.

    Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J

    2011-11-12

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

  12. Silica dust control in small-scale building/structure demolition operations using good work practice guidance

    Muianga, C V; Rice, C H; Succop, P

    2009-01-01

    Work practices can influence exposure, especially in small-scale operations conducted by mobile work crews. This study evaluated the use of information on good work practice in control guidance sheets adapted from UK Silica Essentials guidance sheets by trained workers and supervisors employed in small-scale concrete and masonry demolition operations. A one-page employee silica task-based control guidance sheet for each of four demolition tasks and multiple-page silica control guidance for supervisors were developed. Interactive, hands-on worker training on these task-based good work practice controls was developed. Training was presented to 26 participants from two demolition crews. Feedback on the training and task-based good work practice control guidance sheets was elicited. Observations of work practices were made before and after training. Participants indicated gains in knowledge and checklists were used to document skill attainment. The quality of the training and usefulness of the material/skills was rated high by trainees. Increased use of water to suppress dust and wet cleaning methods on the job were documented following the training. Additional follow-up after training is required to determine long-term impact on sustained changes in work practices, and to evaluate the need for refresher training.

  13. Silica dust control in small-scale building/structure demolition operations using good work practice guidance

    Muianga, C. V.; Rice, C. H.; Succop, P.

    2009-02-01

    Work practices can influence exposure, especially in small-scale operations conducted by mobile work crews. This study evaluated the use of information on good work practice in control guidance sheets adapted from UK Silica Essentials guidance sheets by trained workers and supervisors employed in small-scale concrete and masonry demolition operations. A one-page employee silica task-based control guidance sheet for each of four demolition tasks and multiple-page silica control guidance for supervisors were developed. Interactive, hands-on worker training on these task-based good work practice controls was developed. Training was presented to 26 participants from two demolition crews. Feedback on the training and task-based good work practice control guidance sheets was elicited. Observations of work practices were made before and after training. Participants indicated gains in knowledge and checklists were used to document skill attainment. The quality of the training and usefulness of the material/skills was rated high by trainees. Increased use of water to suppress dust and wet cleaning methods on the job were documented following the training. Additional follow-up after training is required to determine long-term impact on sustained changes in work practices, and to evaluate the need for refresher training.

  14. Robot vision for nuclear advanced robot

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  15. Use of mobile robots for mapping radiation field around particle accelerators

    Sharma, S.; Agashe, V.; Pal, P.K.

    2011-01-01

    In Particle Accelerators, when the accelerated particles hit the target or inadvertently strike the wall, prompt and induced radiation is produced. It is necessary to monitor the resulting radiation field in order to reduce radiation exposure to operating personnel, as well as to locate points of leakage of the particle beam. This paper describes the development of mobile robots equipped with onboard radiation detectors for mapping such radiation fields. They include a user interface software running on a host computer to tele operate the robot, monitor radiation levels, and build and display a radiation map out of these data through interpolation. One such robot (ARMER-II), designed and developed by us in consultation with Radiation Safety Division (RSD), is a portable mobile robot for identifying locations with radiation levels higher than permissible limits. Its remote interface computes and guides the robot to move in a direction in which the increase in intensity of radiation is the steepest. Another mobile robot (ARMER-I) has a telescopic arm fitted with a light and small GM tube. This also can be controlled remotely, and is very useful in remote measurement of radiation from locations which are difficult to reach otherwise. Another version (ASHWA) has been successfully adapted by VECC, Kolkata, for gamma and neutron radiation profiling in the cyclotron vault area. We are presently working on the design and development of a four-wheel differentially driven mobile robot (RADMAPPER) with higher payload capacity for carrying radiation detectors like gamma camera and neutron dosimeters and positioning them at desired heights. With appropriate localization capability, this is going to be a very flexible mobile robot based system for radiation profiling around particle accelerators. The specification for this robot has been prepared in consultation with VECC for use in their cyclotron facilities. (author)

  16. Multi-sensor measurement system for robotic drilling

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  17. Design of a Mobile Robot for Air Ducts Exploration

    Moses A. Koledoye

    2017-10-01

    Full Text Available This work presents the solutions adopted for the design and the implementation of an autonomous wheeled robot developed for the exploration and mapping of air ventilation ducts. The hardware is based on commercial off-the-shelf devices, including sensors, motors, processing devices and interfaces. The mechanical chassis was designed from scratch to meet a trade-off between small size and available volume to host the components. The software stack is based on the Robot Operating System (ROS. Special attention was dedicated to the design of the mobility strategy, which must take into account some constraints and issues that are specific to the considered application, such as the relatively small size of ducts, the need to detect and avoid possible holes on the floor of the duct and other unusual obstacles and the unavailability of external reference frameworks for localization. The main contribution of this paper lies in the design, implementation and experimentation of the overall system.

  18. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  19. Space robot simulator vehicle

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  20. Work Ability and Its Related Factors Among Workers in Small and Medium Enterprises: Comparison Among Four ASEAN Countries.

    Kaewboonchoo, Orawan; Isahak, Marzuki; Susilowati, Indri; Phuong, Toai Nguyen; Morioka, Ikuharu; Harncharoen, Kitiphong; Low, Wah Yun; Ratanasiripong, Paul

    2016-07-01

    Work ability is related to many factors that might influence one's capacity to work. This study aimed to examine the work ability and its related factors among small and medium enterprises (SME) workers in 4 Association of Southeast Asian Nations (ASEAN) countries. The participants in this study included 2098 workers from food and textile industries in Indonesia, Malaysia, Thailand, and Vietnam. A cross-sectional survey of anonymous self-administrated questionnaire was designed to collect information on sociodemographic factors, work environment and ergonomic condition, musculoskeletal disorders, and work ability. Bivariate correlation coefficient and multiple linear regression analyses were used to predict the work ability. Results of this study confirm that work ability in 4 ASEAN countries was similar to that in European countries, and that the sociodemographic factors, work environment and ergonomic condition, and musculoskeletal disorder (MSD) were associated with work ability. These factors are important for considering occupational health and safety policy to promote work ability in food, textile, and other SME workers. © 2016 APJPH.

  1. Remote excavation using the telerobotic small emplacement excavator

    Thompson, D.H.; Burks, B.L.; Killough, S.M.

    1993-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Office of Technology Development, Robotics Technology Development Program. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems

  2. Robotic Surgery

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  3. The Planning of a Small Pilot Plant for Development Work on Aqueous Reprocessing of Nuclear Fuels

    Sjoeborg, T U; Haeffner, E; Hultgren, Aa

    1963-10-15

    A shielded volume (42 m{sup 3}) in the hot laboratory at Kjeller, Norway, has been used for the installation of a small pilot plant intended for studies on nuclear fuel reprocessing. During the first period of operation (1963) a plutonium separation method (the Silex process) developed at AB Atomenergi will be studied. This document is a description of the project during the stage of technical planning and chemical process development.

  4. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-01-01

    Advances in science, technology, engineering, and mathematics are critical to the American economy and require a robust workforce. The scarcity of women in this workforce is a well-recognized problem, but data-driven solutions to this problem are less common. We provide experimental evidence showing that gender composition of small groups in engineering has a substantial impact on undergraduate women’s persistence. Women participate more actively in engineering groups when members are mostly ...

  5. Framework to Implement Collaborative Robots in Manual Assembly: A Lean Automation Approach

    Malik, Ali Ahmad; Bilberg, Arne

    The recent proliferation of smart manufacturing technologies has emerged the concept of hybrid automation for assembly systems utilizing the best of humans and robots in a combination. Based on the ability to work alongside human-workers the next generation of industrial robots (or robotics 2...... of virtual simulations is discussed for validation and optimization of human-robot work environment....

  6. An educational alternative for improving working conditions in small and medium enterprises

    Eliana Castro S; Elisabeth Herreño T

    2011-01-01

    Managing health and safety at work involves considering two internal processes common to all organizations: knowledge and human talent management. These two processes are affected by globalizing phenomena that have an effect at the economic, environmental, and occupational levels. This is especially true for countries like Colombia. Objective: to provide an educational alternative that contributes to knowledge management in SME’s in order to improve the working conditions and to support their...

  7. Analyzing Robotic Kinematics Via Computed Simulations

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  8. Robot motion control in mobile environment

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  9. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  10. Enhancing work motivation for Japanese female nurses in small to medium-sized private hospitals by analyzing job satisfaction.

    Kudo, Yasushi; Kido, Shigeri; Shahzad, Machiko Taruzuka; Shida, Kyoko; Satoh, Toshihiko; Aizawa, Yoshiharu

    2010-03-01

    Proper work environments are important for nurses to feel motivated. We examined the associations between work motivation and job satisfaction among Japanese nurses to improve their motivation. In Japan, relatively small and medium-sized private hospitals play a central role in the healthcare industry. In the present study, the subjects were nurses working in 23 small and medium-sized private hospitals that had 65 to 326 beds. We analyzed 1,116 registered and licensed practical female nurses (average age, 38.3 years; standard deviation, 11.3 years). Many nurses with their specialized nursing skills dedicate themselves to patient care. However, many of these nurses may not be interested in contributing to their hospitals. Nurses may have different opinions regarding dedication to patient care and contribution to their hospitals. Therefore, concerning work motivation, we produced these two different items, "Nurses' dedication to patients" and "Nurses' contribution to their hospitals." We also produced our own original new job satisfaction questionnaire. We found 7 facets of job satisfaction: "Work as specialists," "Workplace safety," "Relationships with superiors," "Work-life balance," "Relationships among nurses," "Communications with physicians," and "Salary." Multiple linear regression analyses show that both "Nurses' dedication to patients" and "Nurses' contribution to their hospitals" were significantly associated with "Work as specialists." Nurses feel their jobs of protecting people's lives and health are valuable. They do not feel motivated only by money. They value the intrinsic nature of their jobs. Creating proper work environments is important for nurses to be able to work as specialists.

  11. New Methods for Kinematic Modelling and Calibration of Robots

    Søe-Knudsen, Rune

    2014-01-01

    the accuracy in an easy and accessible way. The required equipment is accessible, since the cost is held to a minimum and can be made with conventional processing equipment. Our first method calibrates the kinematics of a robot using known relative positions measured with the robot itself and a plate...... with holes matching the robot tool flange. The second method calibrates the kinematics using two robots. This method allows the robots to carry out the collection of measurements and the adjustment, by themselves, after the robots have been connected. Furthermore, we also propose a method for restoring......Improving a robot's accuracy increases its ability to solve certain tasks, and is therefore valuable. Practical ways of achieving this improved accuracy, even after robot repair, is also valuable. In this work, we introduce methods that improve the robot's accuracy and make it possible to maintain...

  12. Control of free-flying space robot manipulator systems

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  13. Modular robotic applications in nuclear power plant maintenance

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  14. Expert robots in nuclear plants

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots enhance a safety and operations in nuclear plants. E.I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligence, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  15. Mobile Robots in Human Environments

    Svenstrup, Mikael

    intelligent mobile robotic devices capable of being a more natural and sociable actor in a human environment. More specific the emphasis is on safe and natural motion and navigation issues. First part of the work focus on developing a robotic system, which estimates human interest in interacting......, lawn mowers, toy pets, or as assisting technologies for care giving. If we want robots to be an even larger and more integrated part of our every- day environments, they need to become more intelligent, and behave safe and natural to the humans in the environment. This thesis deals with making...... as being able to navigate safely around one person, the robots must also be able to navigate in environments with more people. This can be environments such as pedestrian streets, hospital corridors, train stations or airports. The developed human-aware navigation strategy is enhanced to formulate...

  16. Expert robots in nuclear plants

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots will enhance safety and operations in nuclear plants. E. I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligent, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  17. State Estimation for Tensegrity Robots

    Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas

    2016-01-01

    Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.

  18. Static stiffness modeling of a novel hybrid redundant robot machine

    Li Ming; Wu Huapeng; Handroos, Heikki

    2011-01-01

    This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.

  19. Navigation and Robotics in Spinal Surgery: Where Are We Now?

    Overley, Samuel C; Cho, Samuel K; Mehta, Ankit I; Arnold, Paul M

    2017-03-01

    Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery. Copyright © 2016 by the Congress of Neurological Surgeons.

  20. Success nonetheless : Making public utilities work in small-scale democracies despite difficult capital conditions

    Douglas, Scott

    2011-01-01

    A large part of the study of politics is dedicated to identifying the circumstances under which democracy will flourish. Putnam made a major contribution to this field through his concept of social capital as developed in Making Democracy Work. Putnam found that communities with a high number of

  1. Can't You Just Talk to Them? Small Group Work in a Senior Thesis Course.

    Nance, Teresa; Mackey-Kallis, Susan

    At Villanova University, the Senior Projects Course is designed to serve as a capstone course. Students are required to integrate the pieces of the discipline acquired from previous course work into a comprehensive, fully developed research project. This paper looks critically at one aspect of effectively managing a group project course: conflict…

  2. Sociable Robots Through Self-Maintained Energy

    Trung Dung Ngo

    2006-12-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  3. Sociable Robots through Self-maintained Energy

    Henrik Schioler

    2008-11-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  4. A Case Analysis on the Adequacy of Work-Life Balance Practices in UK Small- and Medium-Sized Enterprises

    Babatunde Akanji

    2017-01-01

    Objective: The purpose of this study is to examine whether work-life balance (WLB) practices are satisfactorily provided in UK small and medium-sized enterprises (SMEs) and the impact of the availability of these work-life policies on turnover intentions. A review of extant literature reveals scarce knowledge in this area of research and this study presents a rudimentary effort to fill this gap. Research Design & Methods: Using qualitative design, the data set comprised of in-depth interv...

  5. Work motivation for Japanese nursing assistants in small- to medium-sized hospitals.

    Kudo, Yasushi; Kido, Shigeri; Shahzad, Machiko Taruzuka; Yoshimura, Emiko; Shibuya, Akitaka; Aizawa, Yoshiharu

    2011-12-01

    Nursing assistants can work without a professional certification to help registered nurses and licensed practical nurses. Nursing assistants engage in various tasks, e.g., washing laundry, cleaning up, and clerk tasks regarding nursing. Enhancing work motivation among nursing assistants is essential for every hospital, because when nursing assistants do their jobs well, it allows registered nurses and licensed practical nurses to complete their own specialized jobs. We examined the predictors significantly associated with nursing assistants' work motivation. For those predictors, we produced items to examine job satisfaction. Those items are classified into intrinsic and extrinsic facets. The subjects for this study were Japanese nursing assistants working in 26 hospitals with 62-376 beds (4 public and 22 private hospitals). A total of 516 nursing assistants were analyzed, with the average age and standard deviation of 42.7 ± 12.9 years; the age of 456 female subjects was 43.8 ± 12.7 years and that of 60 male subjects was 34.3 ± 11.0 years. Our results show that "work motivation" is significantly associated with "free time to do one's own things," "nursing assistants as important partners on the job," "feeling helpful to patients," "participating in decision making," and "job-skill improvement." Free time to do one's own things is an extrinsic item. Hospital administrators must monitor the workload and their quality of life among nursing assistants. All the other significant items are intrinsic. Nursing assistants are not only motivated by money. They highly value the intrinsic nature and experience of their jobs.

  6. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  7. Robots of the Future

    two main types of robots: industrial robots, and autonomous robots. .... position); it also has a virtual CPU with two stacks and three registers that hold 32-bit strings. Each item ..... just like we can aggregate images, text, and information from.

  8. Presentation robot Advee

    Krejsa, Jiří; Věchet, Stanislav; Hrbáček, J.; Ripel, T.; Ondroušek, V.; Hrbáček, R.; Schreiber, P.

    2012-01-01

    Roč. 18, 5/6 (2012), s. 307-322 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot * human - robot interface * localization Subject RIV: JD - Computer Applications, Robot ics

  9. Towards Sociable Robots

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  10. Risks connected to the work force at the small, medium and micro enterprises

    Bukelwa Mbinda

    2016-11-01

    Full Text Available The aim of this paper is to report on, and examine the impacts of, a skills shortage as a constraint on entrepreneurial development in the townships, specifically that of Khayelitsha, and to identify tools that are essential for the Small, Medium and Micro enterprise (SMMEs businesses, in Khayelitsha. These skills are critical for the future development of the area. The research design employed in data gathering for this study was both qualitative and quantitative, and the questionnaires used required participants to answer open and closed ended questions. The review reveals, among other factors, a lack of a skilled workforce facing these businesses, and the recommendations made could lead to an empowering tool necessary for business ventures and entrepreneurs to succeed

  11. Light robotics: a new field of research

    Engay, Einstom; Chouliara, Manto; Bañas, Andrew

    2018-01-01

    After years of working on light-driven trapping and manipulation, we can see that a confluence of developments is now ripe for the emergence of a new area that can contribute to nanobiophotonics - Light Robotics - which combines advances in microfabrication and optical micromanipulation together...... with intelligent control ideas from robotics, wavefront engineering and information optics. In the Summer 2017 we are publishing a 482 pages edited Elsevier book volume covering the fundamental aspects needed for Light Robotics including optical trapping systems, microfabrication and microassembly as well...... as underlying theoretical principles and experimental illustrations for optimizing optical forces and torques for Light Robotics...

  12. A Recipe for Soft Fluidic Elastomer Robots.

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  13. An educational alternative for improving working conditions in small and medium enterprises

    Eliana Castro S

    2011-11-01

    Full Text Available Managing health and safety at work involves considering two internal processes common to all organizations: knowledge and human talent management. These two processes are affected by globalizing phenomena that have an effect at the economic, environmental, and occupational levels. This is especially true for countries like Colombia. Objective: to provide an educational alternative that contributes to knowledge management in SME’s in order to improve the working conditions and to support their innovation processes. Methodology: an exploratory and descriptive study. We start by analyzing the concepts related to the improvement of working conditions and experiences from previous projects involving the university-industry relationship. This is done from the systemic viewpoint that characterizes the ergonomics and interdisciplinary perspectives of the professional practice of industrial design. Result: the proposal was approved by regional institutions wishing to conduct a pilot study, and is based on principles establishing health promotion at the workplace. It also includes a methodology for affecting the technological core of companies and contributes to the empowerment of the personnel involved. Conclusion:it is mandatory that organizations express their support and commitment through a policy that facilitates the active participation of employees in these processes.

  14. Cloud Robotics Model

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  15. Learning for intelligent mobile robots

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  16. Robots and Cultural Heritage: New Museum Experiences

    Claudio Germak

    2015-12-01

    Full Text Available The introduction of new technologies to enhance the visiting museum experience is not a novelty. A large variety of interactive systems are nowadays available, including virtual tours, which makes cultural heritage accessible remotely. The theme of increase in accessibility and attractiveness has lately been faced with the employment of the service robotics, covering various types of applications. Regrettably, many of robotics solutions appear less successful in terms of utility and usability. On the basis of this awareness, a design for a new robotic solution for cultural heritage has been proposed. The project, developed at the royal residence of Racconigi Castle, consists of a telepresence robot designed as a tool to explore inaccessible areas of the heritage. The employed robot, called Virgil, was expressly designed for the project. The control of the robot is entrusted to the museum guides in order to enhance their work and enrich the cultural storytelling.

  17. ANDROID BASED TELEOPERATION FOR THE FINCH ROBOT

    Oliver Faust

    2016-09-01

    Full Text Available The act of creating a robot involves systems engineering and creative problem solutions. It is about using established components to create a system that works in the natural or at least in the human environment. The current project is no exception, we have used the Robot Operating System (ROS to create an android based teleoperator application for the Finch robot. A Raspberry Pi processing platform establishes the link between the android device and the Finch robot. The most creative task, during the system design, was to translate the commands from the teleoperator application into wheel movements of the Finch robot. The translation must take into account the physical setup of the robot, including unintended negative influences, such as drag. The command translation involved a nonlinear coordinate transformation. The ROS framework enabled us to focus on that nonstandard coordinate translation task by offering a high level of abstraction and the ability to create component functionalities independently.

  18. Robotics in Orthopedics: A Brave New World.

    Parsley, Brian S

    2018-02-16

    Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Distributed control of multi-robot teams: Cooperative baton passing task

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, they describe the implementation of this architecture on a team of physical mobile robots performing a cooperative baton passing task. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes during the task.

  20. Development of a soft untethered robot using artificial muscle actuators

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  1. Dynamic photogrammetric calibration of industrial robots

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  2. Laboratory experiments in mobile robot navigation

    Kar, Asim; Pal, Prabir K.

    1997-01-01

    Mobile robots have potential applications in remote surveillance and operation in hazardous areas. To be effective, they must have the ability to navigate on their own to desired locations. Several experimental navigational runs of a mobile robot developed have been conducted. The robot has three wheels of which the front wheel is steered and the hind wheels are driven. The robot is equipped with an ultrasonic range sensor, which is turned around to get range data in all directions. The range data is fed to the input of a neural net, whose output steers the robot towards the goal. The robot is powered by batteries (12V 10Ah). It has an onboard stepper motor controller for driving the wheels and the ultrasonic setup. It also has an onboard computer which runs the navigation program NAV. This program sends the range data and configuration parameters to the operator''s console program OCP, running on a stationary PC, through radio communication on a serial line. Through OCP, an operator can monitor the progress of the robot from a distant control room and intervene if necessary. In this paper the control modules of the mobile robot, its ways of operation and also results of some of the experimental runs recorded are reported. It is seen that the trained net guides the mobile robot through gaps of 1m and above to its destination with about 84% success measured over a small sample of 38 runs

  3. Exploring the role of robots

    Kilbourn, Kyle; Bay, Marie Brøndum

    2011-01-01

    a welfare technology project and our early attempts at performing relations in the context of robotics and automation, assumed to be an integral part of sterilization work for medical instruments. We focus on several aspects of the project: relations between work within and outside of the project...

  4. Child, Robot and Educational Material : A Triadic Interaction

    Davison, Daniel Patrick

    The process in which a child and a robot work together to solve a learning task can be characterised as a triadic interaction. Interactions between the child and robot; the child and learning materials; and the robot and learning materials will each shape the perception and appreciation the child

  5. Child, Robot and Educational Material: A Triadic Interaction

    Davison, Daniel Patrick

    The process in which a child and a robot work together to solve a learning task can be characterised as a triadic interaction. Interactions between the child and robot; the child and learning materials; and the robot and learning materials will each shape the perception and appreciation the child

  6. An autonomous robot for harvesting cucumbers in greenhouses

    Henten, van E.J.; Hemming, J.; Tuijl, van B.A.J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; Os, van E.A.

    2002-01-01

    This paper describes the concept of an autonomous robot for harvesting cucumbers in greenhouses. A description is given of the working environment of the robot and the logistics of harvesting. It is stated that for a 2 ha Dutch nursery, 4 harvesting robots and one docking station are needed during

  7. Robotic Teaching Assistance for the "Tower of Hanoi" Problem

    Thien, Nguyen Duc; Terracina, Annalisa; Iocchi, Luca; Mecella, Massimo

    2016-01-01

    In this work the authors investigate the effectiveness of robotics in education. Rather than creating excitement for children when playing with robots in games, they are examining the overall learning environment where a robot acts as a teaching assistant. They designed a suitable lesson plan when groups of teenagers participate in activities…

  8. Prediction of Repair Work Duration for Gas Transport Systems Based on Small Data Samples

    Lesnykh, Valery; Litvin, Yuri; Kozin, Igor

    2016-01-01

    Prediction of the duration of a repair and maintenance project of a gas transport system is an important part of planning activities. There exist numerous sources of uncertainties that may result in time overruns possibly leading to multiple negative consequences. Our experience in planning...... this work suggests that accepting the stochastic nature of the project duration is a constructive step towards the preparedness to contingencies and defining penalties for repair companies. To support this approach, one needs to construct probability distributions of the durations of the projects...

  9. Robots that can adapt like animals.

    Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste

    2015-05-28

    Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles

  10. Aspects of working with manipulators and small samples in an αβγ-box

    Zubler, Robert; Bertsch, Johannes; Heimgartner, Peter

    2007-01-01

    The Laboratory for Materials Behaviour, operator of the Hotlab and part of the Paul Scherrer Institute (PSI) is studying corrosion- and mechanical phenomena of irradiated fuel rod cladding materials. To improve the options for mechanical tests, a heavy shielded αβγ) universal electro-mechanical testing machine has been installed. The machine is equipped with an 800 deg. C furnace. The furnace chamber is part of the inner α-box and can be flushed with inert gas. The specimen can be observed by camera during the tests. The foreseen active specimens are very small and can not be handled by hand. Before starting active tests, tools and installations had to be improved and a lot of manipulator practise had to be absolved. For the operational permit, given by the authorities (Swiss Federal Nuclear Safety Inspectorate, HSK), many safety data concerning furnace cooling, air pressure and γ- shielding had to be collected. Up to now various inactive tests have been performed. Besides the operational and safety features, results of inactive mechanical tests and tests for active commissioning are presented. (authors)

  11. Micro and small firms contracted the works of third sector contracting and public

    Daniela Juliano Silva

    2015-06-01

    Full Text Available In a scenario of successive changes, we are faced today with a "new" State of design (First Sector subsidiary and developer, embracing new contracting models, involving private non-profit institutions (Third Sector ahead of social services relevance (health, education, technology, among others. To comply with the obligations entered into with the public entity (end-obligations, this Third Sector performs hires (to perform their half-bonds with the second sector (market, where they operate Micro and Small Businesses. This study aims a reflective look at these contracts, usually the result of simplified bidding process in order to verify their specificities and whether they take place in compliance with the prerogatives and differential treatment meted especially those business companies (art. 170, X, SC / 1988. In this endeavor, it was decided, besides a literature review by an investigative approach from the point of view of three different social organizations that have management contracts in health care with public entities and therefore have signed contracts with ME and EPP for the fulfillment of their obligations to the government.      

  12. LEGO Robotics: An Authentic Problem Solving Tool?

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  13. Lazy motion planning for robotic manipulators

    Andrien, A.R.P.; van de Molengraft, M.J.G.; Bruyninckx, H.P.J.

    2017-01-01

    Robotic manipulators are making a shift towards mobile bases in both industry and domestic environments, which puts high demands on efficient use of the robot’s limited energy resources. In this work, the problem of reducing energy usage of a robot manipulator during a task is investigated. We

  14. Robotics Team Lights Up New Year's Eve

    LeBlanc, Cheryl

    2011-01-01

    A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…

  15. Improving the economy-of-scale of small organic rankine cycle systems through appropriate working fluid selection

    White, Martin; Sayma, Abdulnaser I.

    2016-01-01

    Highlights: • Novel system model coupling turbine and ORC system performance. • Contour plots to characterise working fluid and turbine performance. • Changing working fluid can expand pump and turbine operating envelope. • Possible to improve the economy-of-scale through optimal working fluid selection. - Abstract: Organic Rankine cycles (ORC) are becoming a major research area within the field of sustainable energy systems. However, a major challenge facing the widespread implementation of small and mini-scale ORC systems is the economy-of-scale. To overcome this challenge requires single components that can be manufactured in large volumes and then implemented into a wide variety of different applications where the heat source conditions may vary. The aim of this paper is to investigate whether working fluid selection can improve the current economy-of-scale by enabling the same system components to be used in multiple ORC systems. This is done through coupling analysis and optimisation of the energy process, with a performance map for a small-scale ORC radial turbine. The performance map, obtained using CFD, is adapted to account for additional loss mechanisms not accounted for in the original CFD simulation before being non-dimensionalised using a modified similitude theory developed for subsonic ORC turbines. The updated performance map is then implemented into a thermodynamic model, enabling the construction of a single performance contour that displays the range of heat source conditions that can be accommodated by the existing turbine whilst using a particular working fluid. Constructing this performance map for a range of working fluids, this paper demonstrates that through selecting a suitable working fluid, the same turbine can efficiently utilise heat sources between 360 and 400 K, with mass flow rates ranging between 0.5 and 2.75 kg/s respectively. This corresponds to using the same turbine in ORC applications where the heat available ranges

  16. Human-Robot Planetary Exploration Teams

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  17. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  18. Sensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain.

    Ditz, Helen M; Nieder, Andreas

    2016-11-23

    Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several

  19. Sound over Matter: The Effects of Functional Noise, Robot Size and Approach Velocity in Human-Robot Encounters

    Joosse, M.P.; Lohse, M.; Evers, Vanessa

    2014-01-01

    In our previous work we introduced functional noise as a modality for robots to communicate intent [6]. In this follow-up experiment, we replicated the first study with a robot which was taller in order to find out if the same results would apply to a tall vs. a short robot. Our results show a

  20. Industrial robots with sensors and object recognition systems

    Koehler, G.W.

    1978-01-01

    The previous development and the present status of industrial robots equipped with sensors and object recognition systems are described. This type of equipment allows flexible automation of many work stations in which industrial robots of the first generation, which are unable to react to changes in their respective environments automatically, apart from their being linked to other machines, could not be used because of the prevailing boundary conditions. A classification system facilitates an overview of the large number of technical solutions now available. The manifold possibilities of application of this equipment are demonstrated by a number of examples. As a result of the present state of development of the components required, and in view also of economic reasons, there is a trend towards special designs for a small number of specific purposes and towards stripped-down object recognition. systems with limited applications. A fitting description is offered of the term 'robot', which is now being used in various contexts, and an indication is made of the capabilities and components a machine to be called robot should have as a minimum. Finally, reference is made to some potential lines of development serving to reduce expediture and accelerate recognition processes. (orig.) [de

  1. A preliminary cyber-physical security assessment of the Robot Operating System (ROS)

    McClean, Jarrod; Stull, Christopher; Farrar, Charles; Mascareñas, David

    2013-05-01

    Over the course of the last few years, the Robot Operating System (ROS) has become a highly popular software framework for robotics research. ROS has a very active developer community and is widely used for robotics research in both academia and government labs. The prevalence and modularity of ROS cause many people to ask the question: "What prevents ROS from being used in commercial or government applications?" One of the main problems that is preventing this increased use of ROS in these applications is the question of characterizing its security (or lack thereof). In the summer of 2012, a crowd sourced cyber-physical security contest was launched at the cyber security conference DEF CON 20 to begin the process of characterizing the security of ROS. A small-scale, car-like robot was configured as a cyber-physical security "honeypot" running ROS. DEFFCON-20 attendees were invited to find exploits and vulnerabilities in the robot while network traffic was collected. The results of this experiment provided some interesting insights and opened up many security questions pertaining to deployed robotic systems. The Federal Aviation Administration is tasked with opening up the civil airspace to commercial drones by September 2015 and driverless cars are already legal for research purposes in a number of states. Given the integration of these robotic devices into our daily lives, the authors pose the following question: "What security exploits can a motivated person with little-to-no experience in cyber security execute, given the wide availability of free cyber security penetration testing tools such as Metasploit?" This research focuses on applying common, low-cost, low-overhead, cyber-attacks on a robot featuring ROS. This work documents the effectiveness of those attacks.

  2. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  3. Robots and art exploring an unlikely symbiosis

    Kroos, Christian; Stelarc, Stelarc

    2016-01-01

    The first compendium on robotic art of its kind, this book explores the integration of robots into human society and our attitudes, fears and hopes in a world shared with autonomous machines. It raises questions about the benefits, risks and ethics of the transformative changes to society that are the consequence of robots taking on new roles alongside humans. It takes the reader on a journey into the world of the strange, the beautiful, the uncanny and the daring – and into the minds and works of some of the world’s most prolific creators of robotic art. Offering an in-depth look at robotic art from the viewpoints of artists, engineers and scientists, it presents outstanding works of contemporary robotic art and brings together for the first time some of the most influential artists in this area in the last three decades. Starting from a historical review, this transdisciplinary work explores the nexus between robotic research and the arts and examines the diversity of robotic art, the encounter with rob...

  4. A trend of robotics in nuclear facilities

    Nakayama, Ryoichi

    1993-01-01

    In order to operate stably nuclear power stations, the periodic inspection determined by the law has been carried out once every year in Japan. For reducing the radiation exposure of workers and improving work efficiency and work quality, the automation and the use of robots have been promoted. Also in fuel reprocessing plants and the facilities for storing radioactive wastes, the remotely operated devices for handling uranium and plutonium are indispensable. The course of the development of the robots for nuclear power plants classified by ages is shown. The research and development have been advanced from special automatic machines of first generation since 1965, through versatile robots of second generation since 1980 to intellectual robots of third generation since 1985. Automatic fuel exchanger, control rod moving mechanism and the ultrasonic flaw detector for pipings are those of first generation. As those of second generation, various movable inspection robots and the manipulators for them were developed. The ultimate working robot completed in 1990 is that of third generation. As the trend of the practical use, monorail type inspection robots and underwater inspection robots and various manipulators are reported. (K.I.)

  5. Robotic Milking Implementation in the Sverdlovsk Region

    Egor Artyomovich Skvortcov

    2017-03-01

    Full Text Available The research topic is relevant due to a high rate of the implementation of milking robots (automatic milking system, AMS in Western Europe and in the Middle Urals. As of January 1, 2016, 21 milking robot systems of six different brands of foreign production were installed in the region. Milking robotics is used in small, medium and large enterprises (by the number of personnel, in contrast to Western Europe, where it is mainly used on the farms of family type. The article examines the socioeconomic causes of the introduction of robotics, as well as the impact of the use of robots to the economic indicators of milk production. The expert survey has revealed as the main reasons for the introduction of robotics, a desire to reduce the risks of personnel (45.5 % and a shortage of staff (18.2 %. The analysis of the utilization efficiency of fixed assets in all organizations introduced robots has shown both a decrease of capital productivity after the introduction of milking robots for 15–60 % or more, and the reduce of the profit rate in 9 out of 11 of the analysed organizations because of the high capital intensity of robotics projects. The analysis of labour indicators and the net cost of milk is carried out in 45.5 % of organizations, where we have obtained the consistent results of the use of robotics. The authors have analysed the direct costs for the production of 1 quintal of milk. In a group of 5 companies, on a robotic farm, it is 5.1 % lower than in a conventional farm. The complexity of the production of milk on a robotic farm is lower by 48.7 %, and labour productivity per person is higher on 95.3 % than on conventional farms. The results of the study can be used as the recommendations for agricultural organizations to use robotics milking to reduce the deficit of staff and to minimize the impact of personnel risks on production results. The growth of the importance of the reasons for the introduction of milking robots and a high

  6. A Case Analysis on the Adequacy of Work-Life Balance Practices in UK Small- and Medium-Sized Enterprises

    Babatunde Akanji

    2017-09-01

    Full Text Available Objective: The purpose of this study is to examine whether work-life balance (WLB practices are satisfactorily provided in UK small and medium-sized enterprises (SMEs and the impact of the availability of these work-life policies on turnover intentions. A review of extant literature reveals scarce knowledge in this area of research and this study presents a rudimentary effort to fill this gap. Research Design & Methods: Using qualitative design, the data set comprised of in-depth interviews with thirty-six employees working in small and medium-sized UK convenience stores and supermarkets with less than ninety employees. Findings: Informal nature of human resource management policies emerged from the findings as one of the constraining forces impeding work-life agendas in SMEs and causing low staff retention in UK. Although other themes were found to contribute to retention challenges, however, these additional reasons were not independent, but all considered integrated. Implications & Recommendations: Consequently, the practical implication of devising ways to overcome WLB and retention deficiencies in this context were also explored. Contribution & Value Added: The originality of this work lies in studying the importance of WLB practices to some of these grass root businesses that make up a large proportion of the economy in the UK. As the limitation of this study is that it is wholly qualitative in nature, it is suggested that future research should rely on quantitative designs that provides more internally valid tests via computational techniques.

  7. Robotics Algorithms Provide Nutritional Guidelines

    2009-01-01

    On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child s wagon, NASA s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner - largely remote controlled by NASA operators on Earth - transmitted photos and data unlike any previously collected. Sojourner was perhaps the crowning achievement of the NASA Space Telerobotics Program, an Agency initiative designed to push the limits of robotics in space. Telerobotics - devices that merge the autonomy of robotics with the direct human control of teleoperators - was already a part of NASA s efforts; probes like the Viking landers that preceded Sojourner on Mars, for example, were telerobotic applications. The Space Telerobotics Program, a collaboration between Ames Research Center, Johnson Space Center, Jet Propulsion Laboratory (JPL), and multiple universities, focused on developing remote-controlled robotics for three main purposes: on-orbit assembly and servicing, science payload tending, and planetary surface robotics. The overarching goal was to create robots that could be guided to build structures in space, monitor scientific experiments, and, like Sojourner, scout distant planets in advance of human explorers. While telerobotics remains a significant aspect of NASA s efforts, as evidenced by the currently operating Spirit and Opportunity Mars rovers, the Hubble Space Telescope, and many others - the Space Telerobotics Program was dissolved and redistributed within the Agency the same year as Sojourner s success. The program produced a host of remarkable technologies and surprising inspirations, including one that is changing the way people eat

  8. Psychological Distress, Related Work Attendance, and Productivity Loss in Small-to-Medium Enterprise Owner/Managers

    Cocker, Fiona; Martin, Angela; Scott, Jenn; Venn, Alison; Sanderson, Kristy

    2013-01-01

    Owner/managers of small-to-medium enterprises (SMEs) are an under-researched population in terms of psychological distress and the associated health and economic consequences. Using baseline data from the evaluation of the Business in Mind program, a mental health promotion intervention amongst SME owner/managers, this study investigated: (i) prevalence of high/very high psychological distress, past-month sickness absenteeism and presenteeism days in SME owner/managers; (ii) associated, self-reported lost productivity; and (iii) associations between work, non-work and business-specific factors and work attendance behaviours. In our sample of 217 SME owner/managers 36.8% reported high/very high psychological distress. Of this group 38.7% reported past-month absenteeism, 82.5% reported past-month presenteeism, and those reporting presenteeism were 50% less productive as than usual. Negative binomial regression was used to demonstrate the independent effects of socio-demographic, work-related wellbeing and health-related factors, as well as various individual and business characteristics on continuous measures of absenteeism and presenteeism days. Health-related factors (self-rated health and treatment) were the strongest correlates of higher presenteeism days (p absenteeism days (p absenteeism days. SME-specific information about the occurrence of psychological distress, work attendance behaviour, and the variables that influence these decisions, are needed for the development of guidelines for managing psychological distress within this sector. PMID:24132134

  9. Sistem kontrol gerak kinematika robot gripper manipulator

    Wayan Widhiada

    2018-01-01

    are usually interact with the system, and in industrial activity is usually referred to as a gripper hand. The author uses the method of simulation techniques to determine the robot kinematics motion systems. Simulation technique is a method used to design and analyze the movement of the robot where the results of robot movement response to the result obtained in actual circumstances. Simulations can also save time and costs used in designing the robot gripper manipulator five fingers with prismatic elements. By using the PID control is expected kinematic motion response of each joint robot manipulator achieve best perfomance as small overshoot, and calm conditions (steady state within a short time accompanied by a small driving keselahan. Advance through the process of tuning PID parameters obtained complete control amplifier at PID control is Kp = 0.7194, Ki = 8,306 and Kd = 0.0061 so that the best performance kinematic motion for robot gripper manipulator is achieved as desired by the user with a short rise time of 12:52 seconds, time 0:52 seconds short peak, small overshoot maximum 1.8%, kesetebailan response was achieved in 0.76 seconds and a very small driving mistakes 12:32%. Keywords: Robot gripper manipulator, PID control, kinematics motion

  10. Test Methods for Robot Agility in Manufacturing.

    Downs, Anthony; Harrison, William; Schlenoff, Craig

    2016-01-01

    The paper aims to define and describe test methods and metrics to assess industrial robot system agility in both simulation and in reality. The paper describes test methods and associated quantitative and qualitative metrics for assessing robot system efficiency and effectiveness which can then be used for the assessment of system agility. The paper describes how the test methods were implemented in a simulation environment and real world environment. It also shows how the metrics are measured and assessed as they would be in a future competition. The test methods described in this paper will push forward the state of the art in software agility for manufacturing robots, allowing small and medium manufacturers to better utilize robotic systems. The paper fulfills the identified need for standard test methods to measure and allow for improvement in software agility for manufacturing robots.

  11. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.; Nasiri, A. [Atomic Energy Organization of Iran, Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (Iran, Islamic Republic of)

    2017-01-15

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  12. INFORMATION AND SMALL AND MEDIUM SIZED ENTERPRISES: THE CONVERGENCE OF SHAREDTIME WORK AND INFORMATION AND COMMUNICATION TECHNOLOGIES

    Marc-André VILETTE

    2009-01-01

    Full Text Available The subject of this communication is to analyze points of similarities of usingInformation and Communication Technologies (ICT and Shared Time Work(STW, for a special category of firms, whose place seems to be more andmore important: Small and Middle sized Enterprises (SMEs. After severalparticularities (apart from the size, we will remind their difficulties in HumanResources Management, especially about ICT, then the opportunity in theusing of STW, for research teachers, professionals and media. We willpresent different legal shapes, then precise points of similarities between TICand STW, and finally, results among different kinds of players in this one, inan exploring research.

  13. 5th International Robotic Sailing Conference

    Finnis, James

    2013-01-01

    Robotic sailing offers the potential of wind propelled vehicles which are sufficiently autonomous to remain at sea for months at a time. These could replace or augment existing oceanographic sampling systems, be used in border surveillance and security or offer a means of carbon neutral transportation. To achieve this represents a complex, multi-disciplinary challenge to boat designers and naval architects, systems/electrical engineers and computer scientists.  Since 2004 a series of competitions in the form of the Sailbot, World Robotic Sailing Championship and Microtransat competitions have sparked an explosion in the number of groups working on autonomous sailing robots. Despite this interest the longest distance sailed autonomously remains only a few hundred miles. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the cutting edge of work in a variety of fields related to robotic sailing. They will be presented during the 5th International...

  14. To Err Is Robot: How Humans Assess and Act toward an Erroneous Social Robot

    Nicole Mirnig

    2017-05-01

    Full Text Available We conducted a user study for which we purposefully programmed faulty behavior into a robot’s routine. It was our aim to explore if participants rate the faulty robot different from an error-free robot and which reactions people show in interaction with a faulty robot. The study was based on our previous research on robot errors where we detected typical error situations and the resulting social signals of our participants during social human–robot interaction. In contrast to our previous work, where we studied video material in which robot errors occurred unintentionally, in the herein reported user study, we purposefully elicited robot errors to further explore the human interaction partners’ social signals following a robot error. Our participants interacted with a human-like NAO, and the robot either performed faulty or free from error. First, the robot asked the participants a set of predefined questions and then it asked them to complete a couple of LEGO building tasks. After the interaction, we asked the participants to rate the robot’s anthropomorphism, likability, and perceived intelligence. We also interviewed the participants on their opinion about the interaction. Additionally, we video-coded the social signals the participants showed during their interaction with the robot as well as the answers they provided the robot with. Our results show that participants liked the faulty robot significantly better than the robot that interacted flawlessly. We did not find significant differences in people’s ratings of the robot’s anthropomorphism and perceived intelligence. The qualitative data confirmed the questionnaire results in showing that although the participants recognized the robot’s mistakes, they did not necessarily reject the erroneous robot. The annotations of the video data further showed that gaze shifts (e.g., from an object to the robot or vice versa and laughter are typical reactions to unexpected robot behavior

  15. Kinematics analysis and simulation of a new underactuated parallel robot

    Wenxu YAN

    2017-04-01

    Full Text Available The number of degrees of freedom is equal to the number of the traditional robot driving motors, which causes defects such as low efficiency. To overcome that problem, based on the traditional parallel robot, a new underactuated parallel robot is presented. The structure characteristics and working principles of the underactuated parallel robot are analyzed. The forward and inverse solutions are derived by way of space analytic geometry and vector algebra. The kinematics model is established, and MATLAB is implied to verify the accuracy of forward and inverse solutions and identify the optimal work space. The simulation results show that the robot can realize the function of robot switch with three or four degrees of freedom when the number of driving motors is three, improving the efficiency of robot grasping, with the characteristics of large working space, high speed operation, high positioning accuracy, low manufacturing cost and so on, and it will have a wide range of industrial applications.

  16. Educational Robotics as Mindtools

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  17. ROILA : RObot Interaction LAnguage

    Mubin, O.

    2011-01-01

    The number of robots in our society is increasing rapidly. The number of service robots that interact with everyday people already outnumbers industrial robots. The easiest way to communicate with these service robots, such as Roomba or Nao, would be natural speech. However, the limitations

  18. Review on design and control aspects of ankle rehabilitation robots.

    Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q

    2015-03-01

    Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.

  19. Future of robots

    Stauffer, R.

    1984-01-01

    A decade ago, the United States was creating about 75% of the world's technology. Today, it is something like 50%. A decade from now, the figure could be down to 30%. The deteriorating condition of the U.S. competitive position in the world marketplace has become painfully evident to our government, the business community, and to labor. As with the energy crisis of several years ago, there has been a rude awakening to the critical need for a turnaround in our efforts to improve both productivity and quality. Industrial robots represent one of the most promising approaches to achieving both objectives. Today's top buzzword is, indeed, ''robot.'' The attention is well deserved. These versatile forms of flexible automation can improve productivity and quality through their consistent performance under the most difficult of working conditions. They are building an excellent track record in terms of dependability and uptime. The robot population in the U.S. now stands at around 7000, with sales growing at an annual rate of about 30%. By 1990, the total number of these machines on the plant floor could reach 100,000

  20. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  1. Modeling and Control of Collaborative Robot System using Haptic Feedback

    Vivekananda Shanmuganatha

    2017-08-01

    Full Text Available When two robot systems can share understanding using any agreed knowledge, within the constraints of the system’s communication protocol, the approach may lead to a common improvement. This has persuaded numerous new research inquiries in human-robot collaboration. We have built up a framework prepared to do independent following and performing table-best protest object manipulation with humans and we have actualized two different activity models to trigger robot activities. The idea here is to explore collaborative systems and to build up a plan for them to work in a collaborative environment which has many benefits to a single more complex system. In the paper, two robots that cooperate among themselves are constructed. The participation linking the two robotic arms, the torque required and parameters are analyzed. Thus the purpose of this paper is to demonstrate a modular robot system which can serve as a base on aspects of robotics in collaborative robots using haptics.

  2. A Plug and Produce Framework for Industrial Collaborative Robots

    Schou, Casper; Madsen, Ole

    2017-01-01

    Collaborative robots are today ever more interesting in response to the increasing need for agile manufacturing equipment. Contrary to traditional industrial robots, collaborative robots are intended for working in dynamic environments alongside the production staff. To cope with the dynamic...... environment and workflow, new configuration and control methods are needed compared to those of traditional industrial robots. The new methods should enable shop floor operators to reconfigure the robot. This article presents a plug and produce framework for industrial collaborative robots. The article...... focuses on the control framework enabling quick and easy exchange of hardware modules as an approach to achieving plug and produce. To solve this, an agent-based system is proposed building on top of the robot operating system. The framework enables robot operating system packages to be adapted...

  3. Robot Lies in Health Care: When Is Deception Morally Permissible?

    Matthias, Andreas

    2015-06-01

    Autonomous robots are increasingly interacting with users who have limited knowledge of robotics and are likely to have an erroneous mental model of the robot's workings, capabilities, and internal structure. The robot's real capabilities may diverge from this mental model to the extent that one might accuse the robot's manufacturer of deceiving the user, especially in cases where the user naturally tends to ascribe exaggerated capabilities to the machine (e.g. conversational systems in elder-care contexts, or toy robots in child care). This poses the question, whether misleading or even actively deceiving the user of an autonomous artifact about the capabilities of the machine is morally bad and why. By analyzing trust, autonomy, and the erosion of trust in communicative acts as consequences of deceptive robot behavior, we formulate four criteria that must be fulfilled in order for robot deception to be morally permissible, and in some cases even morally indicated.

  4. A Multi-Agent Control Architecture for a Robotic Wheelchair

    C. Galindo

    2006-01-01

    Full Text Available Assistant robots like robotic wheelchairs can perform an effective and valuable work in our daily lives. However, they eventually may need external help from humans in the robot environment (particularly, the driver in the case of a wheelchair to accomplish safely and efficiently some tricky tasks for the current technology, i.e. opening a locked door, traversing a crowded area, etc. This article proposes a control architecture for assistant robots designed under a multi-agent perspective that facilitates the participation of humans into the robotic system and improves the overall performance of the robot as well as its dependability. Within our design, agents have their own intentions and beliefs, have different abilities (that include algorithmic behaviours and human skills and also learn autonomously the most convenient method to carry out their actions through reinforcement learning. The proposed architecture is illustrated with a real assistant robot: a robotic wheelchair that provides mobility to impaired or elderly people.

  5. Controlling the autonomy of a reconnaissance robot

    Dalgalarrondo, Andre; Dufourd, Delphine; Filliat, David

    2004-09-01

    In this paper, we present our research on the control of a mobile robot for indoor reconnaissance missions. Based on previous work concerning our robot control architecture HARPIC, we have developed a man machine interface and software components that allow a human operator to control a robot at different levels of autonomy. This work aims at studying how a robot could be helpful in indoor reconnaissance and surveillance missions in hostile environment. In such missions, since a soldier faces many threats and must protect himself while looking around and holding his weapon, he cannot devote his attention to the teleoperation of the robot. Moreover, robots are not yet able to conduct complex missions in a fully autonomous mode. Thus, in a pragmatic way, we have built a software that allows dynamic swapping between control modes (manual, safeguarded and behavior-based) while automatically performing map building and localization of the robot. It also includes surveillance functions like movement detection and is designed for multirobot extensions. We first describe the design of our agent-based robot control architecture and discuss the various ways to control and interact with a robot. The main modules and functionalities implementing those ideas in our architecture are detailed. More precisely, we show how we combine manual controls, obstacle avoidance, wall and corridor following, way point and planned travelling. Some experiments on a Pioneer robot equipped with various sensors are presented. Finally, we suggest some promising directions for the development of robots and user interfaces for hostile environment and discuss our planned future improvements.

  6. Navigasi Berbasis Behavior dan Fuzzy Logic pada Simulasi Robot Bergerak Otonom

    Rendyansyah

    2016-03-01

    Full Text Available Mobile robot is the robotic mechanism that is able to moved automatically. The movement of the robot automatically require a navigation system. Navigation is a method for determining the robot motion. In this study, using a method developed robot navigation behavior with fuzzy logic. The behavior of the robot is divided into several modules, such as walking, avoid obstacles, to follow walls, corridors and conditions of u-shape. In this research designed mobile robot simulation in a visual programming. Robot is equipped with seven distance sensor and divided into several groups to test the behavior that is designed, so that the behavior of the robot generate speed and steering control. Based on experiments that have been conducted shows that mobile robot simulation can run smooth on many conditions. This proves that the implementation of the formation of behavior and fuzzy logic techniques on the robot working well

  7. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Intelligence for Human-Assistant Planetary Surface Robots

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  9. Modular Robotic Wearable

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  10. Serendipitous Offline Learning in a Neuromorphic Robot

    Terrence C Stewart

    2016-02-01

    Full Text Available We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviours. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviours. All sensor data is provided via a spike-based silicon retina camera (eDVS, and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker. Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where he robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behaviour.

  11. Insufficient time for leisure and perceived health and stress in working parents with small children.

    Håkansson, Carita; Axmon, Anna; Eek, Frida

    2016-10-17

    More knowledge about how recovery may promote health among parents with small children is needed. To explore whether insufficient time for leisure was associated with poorer perceived health and higher stress in working parents. A further aim was to explore potential gender differences in the association between insufficient time for leisure and poor perceived health. A postal survey including the perceived stress scale and three measures of subjective health - self-rated health (SF-36), work-related fatigue (Swedish occupational fatigue questionnaire), and Lund subjective health complaints - as well as questions about time for leisure was completed by 965 women and 597 men. Risk ratios for poor perceived health and stress were estimated using Poisson regression, in which also gender interaction was analysed. The results showed higher risk for perceived stress among parents reporting insufficient time for relaxation, and more subjective health complaints among those reporting insufficient time to spend with their children. Overall, effects were larger among women than among men. A good balance between work and leisure seems to be of importance for working parents' perceived health and stress.

  12. Research on Open-Closed-Loop Iterative Learning Control with Variable Forgetting Factor of Mobile Robots

    Hongbin Wang

    2016-01-01

    Full Text Available We propose an iterative learning control algorithm (ILC that is developed using a variable forgetting factor to control a mobile robot. The proposed algorithm can be categorized as an open-closed-loop iterative learning control, which produces control instructions by using both previous and current data. However, introducing a variable forgetting factor can weaken the former control output and its variance in the control law while strengthening the robustness of the iterative learning control. If it is applied to the mobile robot, this will reduce position errors in robot trajectory tracking control effectively. In this work, we show that the proposed algorithm guarantees tracking error bound convergence to a small neighborhood of the origin under the condition of state disturbances, output measurement noises, and fluctuation of system dynamics. By using simulation, we demonstrate that the controller is effective in realizing the prefect tracking.

  13. Psychological distress, related work attendance, and productivity loss in small-to-medium enterprise owner/managers.

    Cocker, Fiona; Martin, Angela; Scott, Jenn; Venn, Alison; Sanderson, Kristy

    2013-10-15

    Owner/managers of small-to-medium enterprises (SMEs) are an under-researched population in terms of psychological distress and the associated health and economic consequences. Using baseline data from the evaluation of the Business in Mind program, a mental health promotion intervention amongst SME owner/managers, this study investigated: (i) prevalence of high/very high psychological distress, past-month sickness absenteeism and presenteeism days in SME owner/managers; (ii) associated, self-reported lost productivity; and (iii) associations between work, non-work and business-specific factors and work attendance behaviours. In our sample of 217 SME owner/managers 36.8% reported high/very high psychological distress. Of this group 38.7% reported past-month absenteeism, 82.5% reported past-month presenteeism, and those reporting presenteeism were 50% less productive as than usual. Negative binomial regression was used to demonstrate the independent effects of socio-demographic, work-related wellbeing and health-related factors, as well as various individual and business characteristics on continuous measures of absenteeism and presenteeism days. Health-related factors (self-rated health and treatment) were the strongest correlates of higher presenteeism days (p < 0.05). Work-related wellbeing factors (job tension and job satisfaction) were the strongest correlates of higher absenteeism days (p < 0.05). Higher educational attainment, treatment and neuroticism were also correlated with more absenteeism days. SME-specific information about the occurrence of psychological distress, work attendance behaviour, and the variables that influence these decisions, are needed for the development of guidelines for managing psychological distress within this sector.

  14. Psychological Distress, Related Work Attendance, and Productivity Loss in Small-to-Medium Enterprise Owner/Managers

    Alison Venn

    2013-10-01

    Full Text Available Owner/managers of small-to-medium enterprises (SMEs are an under-researched population in terms of psychological distress and the associated health and economic consequences. Using baseline data from the evaluation of the Business in Mind program, a mental health promotion intervention amongst SME owner/managers, this study investigated: (i prevalence of high/very high psychological distress, past-month sickness absenteeism and presenteeism days in SME owner/managers; (ii associated, self-reported lost productivity; and (iii associations between work, non-work and business-specific factors and work attendance behaviours. In our sample of 217 SME owner/managers 36.8% reported high/very high psychological distress. Of this group 38.7% reported past-month absenteeism, 82.5% reported past-month presenteeism, and those reporting presenteeism were 50% less productive as than usual. Negative binomial regression was used to demonstrate the independent effects of socio-demographic, work-related wellbeing and health-related factors, as well as various individual and business characteristics on continuous measures of absenteeism and presenteeism days. Health-related factors (self-rated health and treatment were the strongest correlates of higher presenteeism days (p < 0.05. Work-related wellbeing factors (job tension and job satisfaction were the strongest correlates of higher absenteeism days (p < 0.05. Higher educational attainment, treatment and neuroticism were also correlated with more absenteeism days. SME-specific information about the occurrence of psychological distress, work attendance behaviour, and the variables that influence these decisions, are needed for the development of guidelines for managing psychological distress within this sector.

  15. Comparative Performance in Single-Port Versus Multiport Minimally Invasive Surgery, and Small Versus Large Operative Working Spaces: A Preclinical Randomized Crossover Trial.

    Marcus, Hani J; Seneci, Carlo A; Hughes-Hallett, Archie; Cundy, Thomas P; Nandi, Dipankar; Yang, Guang-Zhong; Darzi, Ara

    2016-04-01

    Surgical approaches such as transanal endoscopic microsurgery, which utilize small operative working spaces, and are necessarily single-port, are particularly demanding with standard instruments and have not been widely adopted. The aim of this study was to compare simultaneously surgical performance in single-port versus multiport approaches, and small versus large working spaces. Ten novice, 4 intermediate, and 1 expert surgeons were recruited from a university hospital. A preclinical randomized crossover study design was implemented, comparing performance under the following conditions: (1) multiport approach and large working space, (2) multiport approach and intermediate working space, (3) single-port approach and large working space, (4) single-port approach and intermediate working space, and (5) single-port approach and small working space. In each case, participants performed a peg transfer and pattern cutting tasks, and each task repetition was scored. Intermediate and expert surgeons performed significantly better than novices in all conditions (P Performance in single-port surgery was significantly worse than multiport surgery (P performance in the intermediate versus large working space. In single-port surgery, there was a converse trend; performances in the intermediate and small working spaces were significantly better than in the large working space. Single-port approaches were significantly more technically challenging than multiport approaches, possibly reflecting loss of instrument triangulation. Surprisingly, in single-port approaches, in which triangulation was no longer a factor, performance in large working spaces was worse than in intermediate and small working spaces. © The Author(s) 2015.

  16. The Development of light-weight 2-link robot arm for high radiation area

    Shin, Ho Cheol; Seo, Yong Chil; Jung, Kyung Min; Choi, Young Soo

    2009-10-15

    A light-weight 2-link robot arm which weight is less than 8kg was developed for treating the small radio-active material in the high radiation area such as nuclear power plants and NDT area. The light-weight 2-link robot arm can be attached on a small mobile robot and carry out tasks. It is a 5 DOF robot arm including a gripper

  17. Interface robotics in nuclear emergencies

    Ruiz Mungia, E.

    1998-01-01

    The area between the reactor building and the external wall of a nuclear power station could be affected in case of a severe accident with repercussion in the outside. The article describes a series of robotics machines which could be used for building recognition, transmission improvement, civil works and for the making of a radiologic cartography in this area. (Author)

  18. Control of Wall Mounting Robot

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  19. A hand-held robotic device for peripheral intravenous catheterization.

    Cheng, Zhuoqi; Davies, Brian L; Caldwell, Darwin G; Barresi, Giacinto; Xu, Qinqi; Mattos, Leonardo S

    2017-12-01

    Intravenous catheterization is frequently required for numerous medical treatments. However, this process is characterized by a high failure rate, especially when performed on difficult patients such as newborns and infants. Very young patients have small veins, and that increases the chances of accidentally puncturing the catheterization needle directly through them. In this article, we present the design, development and experimental evaluation of a novel hand-held robotic device for improving the process of peripheral intravenous catheterization by facilitating the needle insertion procedure. To our knowledge, this design is the first hand-held robotic device for assisting in the catheterization insertion task. Compared to the other available technologies, it has several unique advantages such as being compact, low-cost and able to reliably detect venipuncture. The system is equipped with an electrical impedance sensor at the tip of the catheterization needle, which provides real-time measurements used to supervise and control the catheter insertion process. This allows the robotic system to precisely position the needle within the lumen of the target vein, leading to enhanced catheterization success rate. Experiments conducted to evaluate the device demonstrated that it is also effective to deskill the task. Naïve subjects achieved an average catheterization success rate of 88% on a 1.5 mm phantom vessel with the robotic device versus 12% with the traditional unassisted system. The results of this work prove the feasibility of a hand-held assistive robotic device for intravenous catheterization and show that such device has the potential to greatly improve the success rate of these difficult operations.

  20. Robot dispatching Scenario for Accident Condition Monitoring of NPP

    Kim, Jongseog

    2013-01-01

    In March of 2011, unanticipated big size of tsunami attacks Fukushima NPP, this accident results in explosion of containment building. Tokyo electric power of Japan couldn't dispatch a robot for monitoring of containment inside. USA Packbot robot used for desert war in Iraq was supplied to Fukushima NPP for monitoring of high radiation area. Packbot also couldn't reach deep inside of Fukushima NPP due to short length of power cable. Japanese robot 'Queens' also failed to complete a mission due to communication problem between robot and operator. I think major reason of these robot failures is absence of robot dispatching scenario. If there was a scenario and a rehearsal for monitoring during or after accident, these unanticipated obstacles could be overcome. Robot dispatching scenario studied for accident of nuclear power plant was described herein. Study on scenario of robot dispatching is performed. Flying robot is regarded as good choice for accident monitoring. Walking robot with arm equipped is good for emergency valve close. Short time work and shift work by several robots can be a solution for high radiation area. Thin and soft cable with rolling reel can be a good solution for long time work and good communication