WorldWideScience

Sample records for small wind technology

  1. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  2. Small Wind Turbine Technology Assessment; Estado del Arte de la Tecnologia de Pequeos Aerogeneradores

    Energy Technology Data Exchange (ETDEWEB)

    Avia Aranda, F; Cruz Cruz, I [CIEMAT. Madrid (Spain)

    1999-03-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m``2) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufactures in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs.

  3. Small scale wind power harnessing in Colombian oil industry facilities: Wind resource and technology issues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, Mauricio; Nieto, Cesar; Escudero, Ana C.; Cobos, Juan C.; Delgado, Fernando

    2010-07-01

    Full text: Looking to improve its national and international standing, Colombia's national oil company, Ecopetrol, has set its goal on becoming involved on the production of energy from multiple sources, most importantly, on having an important percentage of its installed capacity from renewable sources. Part of this effort entices the evaluation of wind power potential on its facilities, including production, transportation and administrative, as well as identifying those technologies most suitable for the specific conditions of an equatorial country such as Colombia. Due to the lack of adequate site information, the first step consisted in superimposing national data to the facilities map of the company; this allowed for the selection of the first set of potential sites. From this set, the terminal at Covenas-Sucre was selected taking into account not only wind resource, but ease of access and power needs, as well as having a more or less representative wind potential in comparison to the rest of the country. A weather station was then installed to monitor wind variables. Measurements taken showed high variations in wind direction, and relatively low velocity profiles, making most commercially available wind turbines difficult to implement. In light of the above, a series of iterative steps were taken, first considering a range of individual Vertical Axis Wind Turbines (VAWT), given their capacity to adapt to changing wind directions. However, wind speed variations proved to be a challenge for individual VAWT's, i.e. Darriues turbines do not work well with low wind speeds, and Savonius turbines are not efficient of high wind speeds. As a result, a combined Darrieus- Savonius VAWT was selected given the capacity to adapt to both wind regimes, while at the same time modifying the size and shape of the blades in order to adapt to the lower average wind speeds present at the site. The resulting prototype is currently under construction and is scheduled to

  4. Canadian small wind market

    International Nuclear Information System (INIS)

    Moorhouse, E.

    2010-01-01

    This PowerPoint presentation discussed initiatives and strategies adopted by the Canadian Wind Energy Association (CanWEA) to support the development of Canada's small wind market. The general public has shown a significant interest in small wind projects of 300 kW. Studies have demonstrated that familiarity and comfort with small wind projects can help to ensure the successful implementation of larger wind projects. Small wind markets include residential, farming and commercial, and remote community applications. The results of CanWEA market survey show that the small wind market grew by 78 percent in 2008 over 2007, and again in 2009 by 32 percent over 2008. The average turbine size is 1 kW. A total of 11,000 turbines were purchased in 2007 and 2008. Global small wind market growth increased by 110 percent in 2008, and the average turbine size was 2.4 kW. Eighty-seven percent of the turbines made by Canadian mid-size wind turbine manufacturers are exported, and there is now a significant risk that Canada will lose its competitive advantage in small wind manufacturing as financial incentives have not been implemented. American and Canadian-based small wind manufacturers were listed, and small wind policies were reviewed. The presentation concluded with a set of recommendations for future incentives, educational programs and legislation. tabs., figs.

  5. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  6. Small wind turbines - Technical sheet

    International Nuclear Information System (INIS)

    2015-02-01

    This publication first proposes an overview of the technical context of small wind turbines (from less than 1 kW to 36 kW). It discusses issues related to mast height, indicates the various technologies in terms of machine geometry (vertical or horizontal axis), of mast and foundations, of mechanism of orientation with respect to the wind. It also outlines that power curves are not always reliable due to a lack of maturity of techniques and technologies. Other issues are discussed: wind characteristics, and the assessment of the national potential source. The next parts address the regulatory and economic context, environmental impacts (limited impact on landscape, noise), propose an overview of actors and market (supply and demand of small wind turbines in the USA and in France, actors involved in the chain value in France), and give some recommendations for the development of small wind turbines in France. The last part proposes a technical focus on self-consumption by professional in rural areas (production and consumption in farms)

  7. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  8. Wind: small is beautiful

    International Nuclear Information System (INIS)

    Vries, E. de

    2005-01-01

    The small wind sector (0.5-100 kW) is often overlooked but could provide decentralised energy systems. Small wind turbines have been used for homes, farms and small businesses for over 80 years (e.g. in the USA and the Netherlands), receiving a boost in the 1970s and 1980s following the 1973 oil crisis when a new generation of turbines entered the European and US markets. Bergey Windpower and Southwest Windpower from the USA are the market leaders in this sector in terms of sales volume but are still classed as medium-sized enterprises. Small turbines have the disadvantage of higher costs compared with large turbines due to higher manufacturing costs, technical factors associated with the tendency to use small turbines on relatively short towers, small production runs and a failure to keep up with the latest design developments such as cost-effective state-of-the-art frequency converters. Most small turbines are horizontal axis turbines, though vertical axis turbines are produced by some manufacturers. Examples of the systems available from European suppliers are described

  9. Small Wind Site Assessment Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Tim [Advanced Energy Systems LLC, Eugene, OR (United States); Preus, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  10. Proceedings: Small Wind Turbine Systems, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Small wind turbine technology is discussed. Systems development, test programs, utility interface issues, safety and reliability programs, applications, and marketing are discussed. For individual titles, see N83-23723 through N83-23741.

  11. Emerging wind energy technologies

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Grivel, Jean-Claude; Faber, Michael Havbro

    2014-01-01

    This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive.......This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive....

  12. Report on wind energy for small communities

    Energy Technology Data Exchange (ETDEWEB)

    Maissan, J.F. [Leading Edge Projects Inc., Whitehorse, YT (Canada)

    2006-04-15

    Wind energy projects can be economically viable in the north under a range of conditions when oil prices are in the range of $60 U.S. per barrel. Some of the requirements for economic viability include locations with economies of scale, availability of local equipment, availability of local technical human resources, access to reasonable transportation, and a committed community and project proponent. This paper presented the results of a study on wind energy in small northern communities. The objective of the paper was to provide an assessment of the feasibility of wind power to community leaders in diesel-dependant remote communities. The paper provided a review of wind power technologies including wind turbines; wind turbine towers; wind-diesel integration; wind penetration levels; anti-icing technology; suppliers of wind-diesel integration systems; and wind turbine manufacturers promoting wind-diesel systems. The paper also provided a review of the historical capital costs for the installation of wind projects; recommendations from project developers; project site selection criteria; as well as a simplified economic analyses for small communities. The paper also discussed the successful Kotzebue Alaska wind-diesel project as a model to follow. It described how to start a wind energy program with reference to the roles of the federal government, territorial governments and their power utilities. It was demonstrated that wind energy can be a cost effective option to reduce diesel generation requirements in the appropriate circumstances. It was concluded that deployment of wind energy in the north still needs to proceed on a carefully planned path beginning with leader projects and branching out from there. In addition, there is a need for good quality wind resource assessment at potential wind project locations in many communities in the north. refs., tabs., figs.

  13. Small Wind Turbine Applications: Current Practice in Colorado

    International Nuclear Information System (INIS)

    Green, Jim

    1999-01-01

    Numerous small wind turbines are being used by homeowners in Colorado. Some of these installations are quite recent while others date back to the federal tax-credit era of the early 1980s. Through visits with small wind turbine owners in Colorado, I have developed case studies of six small wind energy applications focusing on the wind turbine technology, wind turbine siting, the power systems and electric loads, regulatory issues, and motivations about wind energy. These case studies offer a glimpse into the current state-of-the-art of small-scale wind energy and provide some insight into issues affecting development of a wider market

  14. Canadian Wind Energy Association small wind conference proceedings : small wind policy developments (turbines of 300 kW or less)

    International Nuclear Information System (INIS)

    2005-01-01

    The small wind session at the Canadian Wind Energy Association's (CanWEA) annual conference addressed policies affecting small wind, such as net metering, advanced renewable tariffs and interconnections. It also addressed CanWEA's efforts in promoting small wind turbines, particularly in remote northern communities, small businesses and within the residential sector. Small wind systems are typically installed in remote communities to offset utility supplied electricity at the retail price level. In certain circumstances, small wind and hybrid systems can produce electricity at less than half the cost of traditional electricity sources, which in remote communities is typically diesel generators. Small wind turbines require different materials and technologies than large wind turbines. They also involve different local installation requirements, different by-laws, tax treatment and environmental assessments. Small wind turbines are typically installed for a range of factors, including energy independence, energy price stability and to lower environmental impacts of traditional power generation. The small wind session at the conference featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  15. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  16. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  17. Status of Wind Power Technologies

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    With the development of wind turbine technology, wind power will become more controllable and grid‐friendly. It is desirable to make wind farms operate as conventional power plants. Wind turbine generators (WTGs) were mainly used in rural and remote areas for wind power generation. WTG‐based wind...... energy conversion systems (WECS) can be divided into the four main types (type 1‐4). Due to the inherent variability and uncertainty of the wind, the integration of wind power into the grid has brought challenges in several different areas, including power quality, system reliability, stability......, and planning. The impact of each is largely dependent on the level of wind power penetration in the grid. In many countries, relatively high levels of wind power penetration have been achieved. This chapter shows the estimated wind power penetration in leading wind markets....

  18. Technology Development and Innovation | Wind | NREL

    Science.gov (United States)

    Technology Development and Innovation Technology Development and Innovation Technology Development Technology Center (NWTC) supports efforts to reduce bird and bat fatalities at wind energy projects and photo of wind turbines at the National Wind Technology Center. Wildlife technology research and

  19. Small is working: small turbines are part of the wind boom, too

    International Nuclear Information System (INIS)

    Gipe, Paul

    1999-01-01

    This article traces the growth in the use of small wind turbines, and discusses the trends in the manufacture of the turbines. Small turbine technology is examined, with details given of turbine configurations, the merits of two or three blades, blade materials, orientation, robustness, overspeed control, electric generators, and the current market for small wind turbines

  20. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  1. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-08

    Wind power capacity in the United States experienced strong growth in 2016. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—as well as a myriad of state-level policies. Wind additions have also been driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers.

  2. Market experiences with small wind turbines

    International Nuclear Information System (INIS)

    Van Deijl, T.J.

    1990-01-01

    An overview is given of the marketing experiences of Lagerwey Windturbines with the exploitation of small wind turbines. Attention is paid to the market mechanisms which effect the sale and implementation of small wind turbines: payback of surplus power, provincial and regional subsidies, grid connection costs, energy prices, and flexible solutions for grid connections. Also problems with municipalities with regard to regulations or construction licenses are discussed. Some recommendations are given to stimulate the market for small wind turbines. 1 fig., 1 ref

  3. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  4. Small wind planning and building successful installations

    CERN Document Server

    Clark, Nolan

    2013-01-01

    This book provides a cohesive guide to achieving successful small wind installations. It is a comprehensive information resource from one of the world's most experienced small wind professionals, covering all the key issues for small wind system development, from site and machine selection to international standards compliance. Engineers who are tasked with planning and developing these small wind systems, from choosing the best site and accurately estimating likely power output to obtaining proper permitting and troubleshooting operational inefficiencies, will find this book an ess

  5. Airfoil selection methodology for Small Wind Turbines

    DEFF Research Database (Denmark)

    Salgado Fuentes, Valentin; Troya, Cesar; Moreno, Gustavo

    2016-01-01

    On wind turbine technology, the aerodynamic performance is fundamental to increase efficiency. Nowadays there are several databases with airfoils designed and simulated for different applications; that is why it is necessary to select those suitable for a specific application. This work presents...... a new methodology for airfoil selection used in feasibility and optimization of small wind turbines with low cut-in speed. On the first stage, airfoils data is tested on XFOIL software to check its compatibility with the simulator; then, arithmetic mean criteria is recursively used to discard...... underperformed airfoils; the best airfoil data was exported to Matlab for a deeper analysis. In the second part, data points were interpolated using "splines" to calculate glide ratio and stability across multiple angles of attack, those who present a bigger steadiness were conserved. As a result, 3 airfoils...

  6. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  7. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This annual report--now in its tenth year--provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation trends and then covers an array of industry and technology trends. The report also discusses project performance, wind turbine prices, project costs, operations and maintenance expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments, expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments.

  8. Small Wind Turbine Installation Compatibility Demonstration Methodology

    Science.gov (United States)

    2013-08-01

    wind turbine (HAWT) and one 2.9-kW vertical-axis wind turbine (VAWT), we planned to measure radar, acoustic and seismic, turbulence, bird and...non-issue for small turbines . The majority of studies of bat and bird interactions with wind turbines are for large turbines (BPA 2002; Whittam...et al. 2010). The majority of studies of bat and bird interactions with wind energy facil- ities are for utility-scale turbines (> 1 MW) with

  9. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  10. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  11. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  12. Small wind rising? Is the market for building-mounted wind power about to pick up?

    International Nuclear Information System (INIS)

    Slowe, J.

    2006-01-01

    The potential market for small roof-mounted wind turbines is discussed. Should the technology prove popular, the market would be enormous. Delta Energy and Environment has prepared a study called, Roof Top Wind Turbines: A Product for Mass Markets? At present, the future for roof-mounted wind turbines is unclear: predictions range from little or no market at all to mass installations with a payback period of as little as five years. Several small roof-top turbines are described. A critical factor influencing the efficiency of a roof-mounted wind turbine is the air flow pattern over the roof which may in turn be affected by neighbouring buildings. (author)

  13. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamachi LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hansen, Dana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  14. Dissemination of wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, A

    1982-10-01

    This article argues that in order to adopt wind power in new places or in areas where windmills have not been used for many years, the following approaches should be used: 1) utilizing imported machines, 2) copy-production of the imported models, 3) production on a village level of local designs that are inexpensive, but which require more maintenance, or 4) production of local designs of moderate cost and high-reliability. Offers some national experiences in such developing countries as India, Argentina, and Cape Verde.

  15. 2011 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Fink, Sari [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  16. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-03

    Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospects for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes

  17. Technology solutions for wind integration in Ercot

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-23

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  18. Technology solutions for wind integration in ERCOT

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  19. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-10

    The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% to 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of

  20. Small wind in Canada's energy future : fostering domestic manufacturers

    International Nuclear Information System (INIS)

    Rhoads-Weaver, H.; Gluckman, M.; Weis, T.; Moorhouse, J.; Taylor, A.; Maissan, J.; Sherwood, L.; Whittaker, S.

    2008-01-01

    While large-scale wind power projects are sustaining a 30 per cent annual growth rate, residential-scale wind power is increasingly being adopted in Germany, Japan, and the United States. This presentation discussed the benefits associated with fostering strong domestic wind turbine markets in Canada. Small wind turbine markets typically consist of grid-connected, net-metered turbines of less than 1 kW, off-grid micro-turbines used for battery charging, and net-metered, grid-connected, mid-sized turbines larger than 10 kW used in farming and small business applications. Continued energy price hikes are expected to cause the rapid growth of distributed generation, and nearly half of the world's 10 to 300 kW wind turbine generator manufacturers are located in Canada. However, federal support for small-scale distributed wind systems is lacking, and financial incentives are needed to mature the technology in Canada and leverage private investment. The use of decentralized energy will help to prevent line losses and reduce peak demands on the electricity grid. Use of the technology offers farms and small businesses a revenue stream and can reduce energy costs and demands. It is also expected that small wind jobs in Canada will grow from 50 to 640 by 2025. It was concluded that in order to ensure small wind development, capital cost incentive levels must be coupled with good interconnection and permitting policies. In addition, minimum safety and performance standards must be developed, along with rebate policies and siting analysis methods. tabs., figs

  1. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  2. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  3. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  4. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  5. 2012 wind technologies market report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Assoc., Columbia, MD (United States); Buckley, Michael [Exeter Assoc., Columbia, MD (United States); Fink, Sari [Exeter Assoc., Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  6. Benchmarking U.S. Small Wind Costs with the Distributed Wind Taxonomy

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-10-04

    The objective of this report is to benchmark costs for small wind projects installed in the United States using a distributed wind taxonomy. Consequently, this report is a starting point to help expand the U.S. distributed wind market by informing potential areas for small wind cost-reduction opportunities and providing a benchmark to track future small wind cost-reduction progress.

  7. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small

  8. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Xiliang Zhang; Shuhua Gu; Wenqiang Liu; Lin Gan

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyses the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analysed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (Author)

  9. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Zhang Xiliang; Liu Wenqiang; Gu Shuhua; Gan Lin

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyzes the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analyzed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (author)

  10. A Successful Small Wind Future: There Is Great Potential

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2017-05-02

    Suzanne Tegen made this presentation at the 2017 Small Wind Conference in Bloomington, Minnesota. It provides an overview of DOE-sponsored small wind products, testing, and support; an example of a Regional Resource Center defending distributed wind; the recently published Distributed Wind Taxonomy; the dWind model and recent results; and other recent DOE and NREL publications related to small and distributed wind.

  11. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  12. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  13. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Wiser, Mark Bolinger

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  14. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  15. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  16. Proceedings of CanWEA's 2006 small wind conference

    International Nuclear Information System (INIS)

    2006-01-01

    Small wind energy systems are typically comprised of a single wind turbine for on-site power generation of between 300 watts to 100 kW. They are suited for use in remote locations, as well as on farms or for on-grid residential applications. Small wind customers are concerned about environmental issues as well as the reliability of the electric power grid. Recent increases in electricity prices have contributed to a renewed interest in small wind systems. Primary distributed wind market growth areas include residential grid-connected sites; schools, public facilities and farmer co-operatives; and farms, business and industry. Growth in small wind applications has not been matched by an increase in government incentives, and the lack of clear technical standards for wind systems may negatively impact public perceptions of the industry. This conference provided an overview of the small wind industry in Canada. The conference provided a forum for wind industry members, government agencies, and academics to explore challenges and barriers to the growth of the small wind industry. The conference, which was held as part of the larger annual CanWEA 2006 conference and trade show, was divided into 3 sessions: (1) policies to support small wind; (2) doing business with small wind; and (3) small wind technical insights. Recommendations for the certification of small wind turbines were provided, as well as a model zoning by-law. Technical issues included the development of high penetration wind/diesel systems for isolated communities in the Arctic; technical challenges with small turbines; and siting guidelines for consumers. Several small wind turbine owners reviewed some of the challenges of both buying and using wind systems. Technical and market barriers for distributed wind applications were also discussed. The conference featured 13 presentations, of which 12 were catalogued separately for inclusion in this database. refs., tabs., figs

  17. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  18. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind......Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  19. Wind turbines fundamentals, technologies, application, economics

    CERN Document Server

    Hau, Erich

    2013-01-01

    "Wind Turbines" addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields.  In its revised third edition, special emphasis has been given to the latest trends in wind turbine technology and design, such as gearless drive train concepts, as well as on new fields of application, in particular the offshore utilisation of wind energy. The author has gained experience over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics.

  20. 2013 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  1. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  2. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially ... the best solutions for small-scale wind power plants. Low-speed multi-pole PM generators ..... Designs of the Same Magnet Structure for.

  3. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  5. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  6. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  7. Simulation of Small Wind Turbine Generation System Using Ring Winding Slotless PMSG by FEM

    OpenAIRE

    徳永, 翔平; 袈裟丸, 勝己; Tokunaga, Shohei; Kesamaru, Katsumi

    2011-01-01

    This paper describes a novel small wind turbine generation system with ring winding slotless PMSG. To reduce cogging torque, ring winding PM generator is used for a wind turbine generator. Using finite element analysis, the characteristics of slotless PMSGs are elucidated and the dynamic performance of the proposed system with MPPT control is represented. In this paper, the constant wind test and the quasi-natural wind test are conducted. The results of these tests indicate the proposed syste...

  8. Efficiency of a small wind power station

    International Nuclear Information System (INIS)

    Ivanov, K.; Christov, Ch.; Kozarev, N.

    2001-01-01

    The aim of the study is to obtain the optimal solution for wind station both by technical parameters and costs. The energetic characteristics of the wind as a renewable energy source are discussed and assessment of the economical efficiency is made. For the determination of the optimal wind parameters the method of integral wind curves is used. The low power wind generators (0.4 - 1.5 kW) are considered as optimal for the presented wind characteristics

  9. Final Report - Certifying the Performance of Small Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Larry [Small Wind Certification Council, Clifton Park, NY (United States)

    2015-08-28

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  10. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  11. Urban wind turbines. Guidelines for small wind turbines in the built environment

    International Nuclear Information System (INIS)

    Cace, J.; Ter Horst, E.; Syngellakis, K.; Niel, M.; Clement, P.; Heppener, R.; Peirano, E.

    2007-02-01

    The objective of the WINEUR project (Wind Energy Integration in the Urban Environment) is to determine the deployability of small wind turbines in built environments while identifying the current significant constraints and possible solutions. The purpose of this document is to Inform the stakeholders about the state of the development of small wind turbines for the built environment; Provide practical guidelines to actors dealing with installation of small wind turbines in urban areas; and Provide recommendations for future products and for market development

  12. 2009 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  13. 2008 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  14. Enhancement of small signal stability of a DFIG-based wind power ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... logic controllers for enhancing the small signal stability of DFIG-based wind integrated power system. ... state space model, eigenvalue analysis, fuzzy logic based tuning circuits ...

  15. Technology Roadmap: Wind Energy. 2013 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The IEA Wind Power Technology Roadmap 2013 Edition recognises the very significant progress made since the first edition was published in 2009. The technology continues to improve rapidly, and costs of generation from land-based wind installations continue to fall. Wind power is now being deployed in countries with good resources without any dedicated financial incentives. The 2013 Edition targets an increased share (15% to 18%) of global electricity to be provided by wind power in 2050, compared to 12% in the original roadmap of 2009. However, increasing levels of low-cost wind still require predictable, supportive regulatory environments and appropriate market designs. The challenges of integrating higher levels of variable wind power into the grid need to be addressed. For offshore wind, much remains to be done to develop appropriate large-scale systems and to reduce costs. The 2013 Wind Power Roadmap also provides updated analysis on the barriers that exist for the technology and suggests ways to address them, including legal and regulatory recommendations.

  16. 2016 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter; Beiter, Philipp; Schwabe, Paul; Tian, Tian; Stehly, Tyler; Spitsen, Paul; Robertson, Amy; Gevorgian, Vahan

    2017-08-08

    The 2016 Offshore Wind Technologies Market Report was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) and is intended to provide offshore wind policymakers, regulators, developers, researchers, engineers, financiers, and supply chain participants, with quantitative information about the offshore wind market, technology, and cost trends in the United States and worldwide. In particular, this report is intended to provide detailed information on the domestic offshore wind industry to provide context to help navigate technical and market barriers and opportunities. The scope of the report covers the status of the 111 operating offshore wind projects in the global fleet through December 31, 2016, and provides the status and analysis on a broader pipeline of 593 projects at some stage of development. In addition, this report provides a wider assessment of domestic developments and events through the second quarter of 2017 to provide a more up-to-date discussion of this dynamically evolving industry.

  17. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  18. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  19. Wind energy technology development and diffusion. A case study of Inner Mongolia, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiliang; Gu Shuhua; Liu Wenqiang; Lin Gan

    1999-09-01

    This report provides an overview of the diffusion of small household wind generators and development of wind farms in Inner Mongolia, China, with the emphasis on policy and institutional perspectives. It analyses the patterns of wind technology diffusion within social, economic, and environmental contexts and relates the diffusion of wind technology to institutional framework building and international investment and technology transfer. By examining the economics of windfarm development and analysing the role of alternative policy instruments, the major constraints of wind technology development are analysed and relevant policy recommendations are given. 12 refs., 3 figs., 9 tabs.

  20. Small Artifacts - Big Technologies

    DEFF Research Database (Denmark)

    Kreiner, Kristian

    2005-01-01

    The computer IC is the heart of the information and telecommunication technology. It is a tiny artifact, but with incredible organizing powers. We use this physical artifact as the location for studying central problems of the knowledge economy. First, the paper describes the history of chip design...

  1. Practical experience and economic aspects of small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Workshop proceedings presented cover operating experience and development of wind turbines installed in the UK by Northern Engineering Industries plc companies, the Howden aerogenerator installed in Orkney, and the commissioning of a vertical-axis generator in a remote location. The National Wind Turbine Test Centre, the Caithness Wind Project, the South of Scotland Electricity Board's activities, economics of small scale wind power and commercialisation are discussed.

  2. Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.; Sinclair, K.

    2012-03-01

    Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

  3. Small wind turbine energy policies for residential and small business usage in Ontario, Canada

    International Nuclear Information System (INIS)

    Heagle, A.L.B.; Naterer, G.F.; Pope, K.

    2011-01-01

    This paper examines the social barriers, policies, and incentive programs for residential and small business small wind (RBSW) projects, particularly in Ontario, Canada, as well as comparisons with California, US, and the United Kingdom. The alignment between socio-political and community acceptance is considered for its impact on market acceptance of the technology. Barriers inhibiting social acceptance of RBSW projects include adequate capacity factor, cost effectiveness, wind variability, audio-esthetics impact, health and safety, procedural fairness, and transparency. A review of the policies for implementation of small wind projects in each location is presented. Strategies to overcome barriers to social acceptance are examined, along with recommendations for the increased implementation of RBSW projects worldwide. Recommendations to increase social acceptance and subsequent implementation of RBSW projects include the collaboration of government agencies, industry and community members, during RBSW implementation processes, and the provision of consistent, long-term, supportive policies and incentive programs for project owners. - Highlights: → This paper examines the social barriers, policies, and incentive programs for residential and small business small wind (RBSW) projects, particularly in Ontario, Canada, as well as comparisons with California, US, and the United Kingdom. → Barriers inhibiting social acceptance of RBSW projects include adequate capacity factor, cost effectiveness, wind variability, audio-esthetics impact, health and safety, procedural fairness, and transparency. → Recommendations to increase social acceptance and subsequent implementation of RBSW projects include the collaboration of government agencies, industry and community members, during RBSW implementation processes, and the provision of consistent, long-term, supportive policies and incentive programs for project owners.

  4. Small-scale wind power design, analysis, and environmental impacts

    CERN Document Server

    Abraham, John P

    2014-01-01

    In today's world, clean and robust energy sources are being sought to provide power to residences, commercial operations, and manufacturing enterprises. Among the most appealing energy sources is wind power-with its high reliability and low environmental impact. Wind power's rapid penetration into markets throughout the world has taken many forms, and this book discusses the types of wind power, as well as the appropriate decisions that need to be made regarding wind power design, testing, installation, and analysis. Inside, the authors detail the design of various small-wind systems including horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs). The design of wind turbines takes advantage of many avenues of investigation, all of which are included in the book. Analytical methods that have been developed over the past few decades are major methods used for design. Alternatively, experimentation (typically using scaled models in wind tunnels) and numerical simulation (using modern comp...

  5. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  6. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  7. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  8. Small Wind Electric Systems An Alaska Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Alaska Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  9. Small Wind Electric Systems: A New Mexico Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The New Mexico Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  10. Small Wind Electric Systems: A Vermont Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  11. Small Wind Electric Systems: A South Dakota Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The South Dakota Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  12. Maneuverability of Ships with small Draught in Steady Wind

    Directory of Open Access Journals (Sweden)

    Daeng Paroka

    2016-04-01

    Full Text Available Wind force and moment may force a ship to drastically decrease its speed and use a large drift angle as well as a large rudder angle in order to maintain its course. Shipswith a small draught might have more risk in maneuvering to its point of view compared with a ship with a larger draught. This paper discusses maneuverability of a ship with a small draught in steady wind. The effect of wind on ship speed, drift angle, and rudder angle are investigated in a steady state condition. Five different ratios of wind velocity to ship speed from 1.0 to 20.0 are used in the simulation. The variation in wind direction is examined from 0°to 180°. Results of the numerical simulation show that thewind has a significant effect on the reduction in ship speed with a wind direction less than 100°. The drift angle increases due to increasing wind velocity in the same wind direction. Wind direction also has a significant effect on the drift angle especially when the wind direction is less than 140°. The same phenomenon was found for the rudder angle. The necessary rudder angle is greater than the maximum rudder angle of the ship when the wind direction is 60°with a wind velocity to ship speed ratio of 20 or more.

  13. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  14. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  15. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  16. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  17. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  18. Marketing Strategic Choices for Wind Technology in China : case: Chinese Domestic Wind Technology Companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  19. Marketing strategic choice for wind power technology in China : case: Chinese domestic wind technology companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  20. Review of Potential Wind Tunnel Balance Technologies

    Science.gov (United States)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  1. Harnessing the Power of Wind Technology

    Science.gov (United States)

    Dotson, Tawny M.

    2009-01-01

    "Where the wind comes sweepin' down the plain" is more than just a song lyric for Oklahoma's career and technical education community. It's the acknowledgement of an untapped natural resource that has the potential to translate into both energy independence for the country and jobs for the state. Statewide, technology center instructors…

  2. Wind Energy Technology: Training a Sustainable Workforce

    Science.gov (United States)

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  3. Critical Clearing Time and Wind Power in Small Isolated Power Systems Considering Inertia Emulation

    Directory of Open Access Journals (Sweden)

    Elías Jesús Medina-Domínguez

    2015-11-01

    Full Text Available The stability and security of small and isolated power systems can be compromised when large amounts of wind power enter them. Wind power integration depends on such factors as power generation capacity, conventional generation technology or grid topology. Another issue that can be considered is critical clearing time (CCT. In this paper, wind power and CCT are studied in a small isolated power system. Two types of wind turbines are considered: a squirrel cage induction generator (SCIG and a full converter. Moreover, the full converter wind turbine’s inertia emulation capability is considered, and its impact on CCT is discussed. Voltage is taken into account because of its importance in power systems of this kind. The study focuses on the small, isolated Lanzarote-Fuerteventura power system, which is expected to be in operation by 2020.

  4. Financing innovative technologies in wind projects

    International Nuclear Information System (INIS)

    Vaughan, C.

    2006-01-01

    Methods of market entry and the financing of new technologies were discussed from the perspective of Clipper Windpower, a wind energy company based in the northeastern United States and Canada. Many new technology companies only consider private equity when seeking financing for new product development. However, financing for projects and products is only the first step to market entry. Wind projects are the financial equivalent of a high yield bond with mechanical risk. Many wind power projects with company equity can also be seen as a long term bond with upside in any given year. It is therefore important for wind developers to seek out strategic buyers for both product development and project development, in addition to finding sources of private equity. Clipper Windpower Inc. has developed a partnership with British Petroleum (BP), who hold an equity interest in the company. Both companies are now partnering on projects with Clipper turbines, and firm orders are in place for 2007 and 2008. As a result of the partnership, Clipper now has increased its financial strength in cash flows, balance sheets, and projected revenue. It was concluded that a successful partnership can increase the scale of wind power development, and bring financial sophistication to smaller companies with limited resources. refs., tabs., figs

  5. Small Wind Electric Systems: A U.S. Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The U.S. Consumer's Guide for Small Wind Electric systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy

  6. Small Wind Electric Systems: A Kansas Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Kansas Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of state incentives and state contacts for more information

  7. Small signal modeling of wind farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2017-01-01

    -Input Multi-Output (MIMO) dynamic system, where the current control loops with Phase-Locked Loops (PLLs) are linearized around an operating point. Each sub-module of the wind farm is modeled as a 2×2 admittance matrix in dq-domain and all are combined together by using a dq nodal admittance matrix....... The frequency and damping of the oscillatory modes are calculated by finding the poles of the introduced MIMO matrix. Time-domain simulation results obtained from a 400-MW wind farm are used to verify the effectiveness of the presented model....

  8. Small Footprint Solar/Wind-powered CASTNET System Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — In this Research Effort “Small Footprint Solar/Wind-Powered CASTNET System” there are two data sets. One data set contains atmospheric concentration measurements, at...

  9. Financing small scale wind energy projects in the UK

    International Nuclear Information System (INIS)

    Mitchell, Catherine

    1993-01-01

    This paper shows how wind energy projects in the UK have obtained finance. It attempts to list the financing options open to small scale developments and to note any likely problems which may occur. (UK)

  10. Canadian wind technology licensed for use in China

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-01

    A collaboration between Calgary-based Sustainable Energy Technology Ltd. and the China Renewable Energy Technologies Delegation was discussed. Sustainable Energy Technology develops, manufactures and markets products for emerging alternative and renewable energy markets. The aim of the collaboration is to advance the development and commercialization of Darrieus type wind turbines for use in China and other markets around the world. Sustainable Energy will license its technology and expertise in advancing the Chinook 250 vertical axis wind turbine technology, beginning with the construction and testing of a commercial proto-type 250 kW turbine at a test site in southern Alberta. A memorandum of understanding was signed by Guo Shuyan on behalf of the China Renewable Energy Technologies Delegation. It was noted that Shuyan is currently vice chairman of the finance and economic committee of the National People's Congress and was also the executive director of the Three Gorges Project Construction Committee. Sustainable Energy is a leader in vertical axis wind turbines, and the Chinook 250 design was developed with support from Canada's National Research Council in 1999 in order to provide a simple, low-cost turbine that will reduce costly diesel fuel consumption for power generation on small islands in remote areas and throughout the developing world. The agreement with China is subject to approval by National Research Council.

  11. Canadian wind technology licensed for use in China

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    A collaboration between Calgary-based Sustainable Energy Technology Ltd. and the China Renewable Energy Technologies Delegation was discussed. Sustainable Energy Technology develops, manufactures and markets products for emerging alternative and renewable energy markets. The aim of the collaboration is to advance the development and commercialization of Darrieus type wind turbines for use in China and other markets around the world. Sustainable Energy will license its technology and expertise in advancing the Chinook 250 vertical axis wind turbine technology, beginning with the construction and testing of a commercial proto-type 250 kW turbine at a test site in southern Alberta. A memorandum of understanding was signed by Guo Shuyan on behalf of the China Renewable Energy Technologies Delegation. It was noted that Shuyan is currently vice chairman of the finance and economic committee of the National People's Congress and was also the executive director of the Three Gorges Project Construction Committee. Sustainable Energy is a leader in vertical axis wind turbines, and the Chinook 250 design was developed with support from Canada's National Research Council in 1999 in order to provide a simple, low-cost turbine that will reduce costly diesel fuel consumption for power generation on small islands in remote areas and throughout the developing world. The agreement with China is subject to approval by National Research Council

  12. Review of fluid and control technology of hydraulic wind turbines

    Science.gov (United States)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  13. Review of fluid and control technology of hydraulic wind turbines

    Institute of Scientific and Technical Information of China (English)

    Maolin CAI; Yixuan WANG; Zongxia JIAO; Yan SHI

    2017-01-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines.The current state of hydraulic wind turbines as a new technology is described,and its basic fluid model and typical control method are expounded by comparing various study results.Finally,the advantages of hydraulic wind turbines are enumerated.Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  14. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    2014-01-01

    To develop and test wind power technology for use on Mars, Ames Research Center turned to Northern Power Systems (NPS), based in Barre, Vermont. Ames awarded NPS an SBIR contract so the company could enhance their turbine’s function. Today, over 200 NASA-derived Northern Power 100s are in operation on Earth and have reduced carbon emissions by 50,000 tons annually.

  15. New airfoils for small horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, P.; Selig, M.S. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  16. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study....... The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear...

  17. Blowing in the Wind: A Review of Wind Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  18. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  19. Low cost infrastructure solutions for small embedded wind generators

    Energy Technology Data Exchange (ETDEWEB)

    Robb, C.

    2003-07-01

    This report gives details of a project to demonstrate novel economic solutions to increase the potential for installing small-scale embedded wind generator systems at many UK sites which have so far been dismissed as too difficult. Details are given of the first phase of the study which examined current solutions to infrastructure problems and potential techniques. The use of drilled rock anchor foundations to minimise the need for delivery of ready-mix concrete to wind turbine sites, and the use of a winch and A-frame system for erecting a wind turbine to avoid the use of cranes are discussed. The demonstration of the installation of a 50kW wind turbine on the Isle of Luing in Scotland where there is no access for cranes or larger vehicles in the second phase of the project is described. The potential for the use of these techniques on larger wind turbines is considered.

  20. Wind Penetration with different wind turbine technologies in a weak grid

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernandez, Miguel A.; Martínez García, Antonio

    2012-01-01

    The insertion of wind energy into electric network may provoke stability problems due to stochastic character of wind. The variation in the wind causes voltage variation in the Point of Common Coupling (PCC). In a weakest system that variation is high. Another important factor is wind turbine technology. The use of grid-connected fixed speed wind generator introduces a great consumption of reactive power that can be compensated using different devices as capacitors bank or static var compensator (SVC or STATCOM). In the other hand the variable speed wind turbine have an electronic converter to control the reactive consumption to maintain the PCC voltage more stable. In this paper a comparison between the different types of wind turbines technology is show. It's analyzing the impact in wind power limit for different wind turbine technologies in a weak system. (author)

  1. A fair wind blows for one green technology

    International Nuclear Information System (INIS)

    Marshall, E.

    1993-01-01

    The newest windmills are small and robust, typically capable of generating 50 to 500 kilowatts each. Sales have been helped along, both in Europe and the United States, by laws requiring utility companies to offer fixed purchase-price contracts to suppliers of wind electricity. Another boost comes from the National Energy Policy Act, signed into law last fall by George Bush. It permits a 1.5 cent per kilowatt-hour tax credit for generators of electricity from renewable sources. Emphasizing energy production is open-quotes a much smarter approachclose quotes than just rewarding construction of new windmills, says Alexander Ellis, an executive at Kenetech/US Windpower, because it encourages companies to deliver durable products. Today, the wind energy business seems to be booming, bearing out the Administration's faith that environmental technologies can open new markets. There are now more than 16,000 wind turbines installed in the United States, according to DeMeo, most of them still in California. Europe is also moving ahead. Although European countries have installed fewer machines to date, DeMeo says, the European Community has ambitious plans, calling for double the current US wind energy capacity by the end of the decade. About 10 major manufacturers in the United States and abroad are vying for this business. It took some fine-tuning, but government incentives to nurture this green technology seem to be working

  2. FEM Simulation of Small Wind Power Generating System Using PMSG

    Science.gov (United States)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  3. Small-Scale vertical axis wind turbine design

    OpenAIRE

    Castillo Tudela, Javier

    2011-01-01

    The thesis focuses on the design of a small vertical axis wind turbine rotor with solid wood as a construction material. The aerodynamic analysis is performed implementing a momentum based model on a mathematical computer program. A three bladed wind turbine is proposed as candidate for further prototype testing after evaluating the effect of several parameters in turbine efficiency, torque and acceleration. The results obtained indicate that wood is a suitable material for rotor cons...

  4. Urban small wind turbine applications for reducing GHC emissions

    International Nuclear Information System (INIS)

    Tullis, S.

    2009-01-01

    'Full text:' There are advantages to power generation at or near the points of consumption and this is still true for low carbon sustainable power sources, including wind. Consequently, there is interest in wind power generation in cities and suburbs. The potential now exists for realistic power small-scale generation in building mounted turbines. This presentation provides the benefits and obstacles to their use, as well as details of such turbines and the design and operations requirements for them. The main issues associated with locating turbines in cities and suburbs are: the highly turbulent, unsteady wind in the urban/suburban environment produces lower power outputs; vibration is a large concern on mounting turbines on buildings, and safety (turbine failure or even just ice shedding) with pedestrians below. Past and current thinking has just been straightforward in that it is not worth it, and the previous attempts at simply mounting small-scale turbines on rooftops has done more harm than good to the reputation of the small wind, and wind in general, industries. Recently there has been a reconsideration of urban small wind led by reputable companies such as Quiet Revolution (UK), Turby (NL) and Cleanfield (Canada) combined with academic research. A common feature of all of these companies is the use of vertical axis turbines (VAWTs) to help deal with the highly turbulent, unsteady urban winds. Large-scale VAWTs enjoyed a brief flurry of interest in the 1970s and 80s with large amounts of research done at Sandia and NRC in Canada. Vibration and fatigue in the large-scale turbines were among the issues that led to their decline. These, particularly vibration, remain issues for small-scale turbines, but there are some mitigating strategies available. These are now leading to the development of reputable, practical and reliable turbines that can become part of the urban/suburban environment. (author)

  5. Potential Coir Fibre Composite for Small Wind Turbine Blade Application

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fibers have been developed as reinforcement of composite to shift synthetic fibers. One of potential natural fibers developed is coir fiber. This paper aims to describe potential coir fiber as reinforcement of composite for small wind turbine blade application. The research shows that mechanical properties ( tensile, impact, shear, flexural and compression strengths of coir fiber composite have really similar to wood properties for small wind turbine blade material, but inferior to glass fiber composite properties. The effect of weathering was also evaluated to coir fiber composite in this paper.

  6. Analysis of the furling behavior of small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Audierne, Etienne; Bergami, Leonardo; Ibarra, Humberto; Probst, Oliver [Department of Physics, Instituto Tecnologico y de Estudios Superiores de Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, NL, CP 64849 (Mexico); Elizondo, Jorge [Diseno Eolico y Solar, Monterrey, NL (Mexico)

    2010-07-15

    Furling is the dominant mechanism for over speed and power control of small wind turbines. In this paper we present a consistent model of the dynamics of gravity-controlled furling systems based on a Lagrangian formalism. The aerodynamic forces acting on tail vane and rotor have been modeled using Xfoil and blade element momentum (BEM) theory, respectively. Due to the proximity of tail vane and rotor a model of the near-wake generated by the rotor was incorporated into the model, assuming a parabolic wake shape. The different design parameters, such as lever lengths and axis tilt angles, have been studied in a systematic manner and their impact on the wind speed values for entering and leaving the furling regime have been assessed. In the first part of the study the free-stream in-flow wind speed was fixed at a given value and the system was allowed to reach stable conditions. The steady-state values of the yaw and furling angle were recorded as a function of wind speed both for increasing and decreasing wind speed and the consequences for design choices have been discussed. In the second part, a slow variation of input wind speed was superimposed on the constant wind speed signal and the dynamic response of the system was analyzed. The results of the study are thought to provide an initial roadmap for the design of furling systems. (author)

  7. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  8. Technological Implementation of Renewable Energy in Rural-Isolated Areas and Small-Medium Islands in Indonesia: Problem Mapping And Preliminary Surveys of Total People Participation in a Local Wind Pump Water Supply

    Science.gov (United States)

    Taufik, Ahmad

    2007-10-01

    This article discusses a formulation of problem mapping and preliminary surveys of total people participation in a local wind pump (LWP) water supply in term of technological implementation of renewable energy (RE) in rural-isolated areas and small-medium islands in Indonesia. The formulation was constructed in order to enhance and to promote the local product of RE across Indonesia. It was also addressed to accommodate local potencies, barriers and opportunities into a priority map. Moreover, it was designed into five aspects such as (1) local technology of the RE: a case of pilot project of the LWP; (2) environmental-cultural aspects related to global issues of energy-renewable energy; (3) potencies and barriers corresponding to local, national, regional and international contents; (4) education and training and (5) gender participation. To focus the formulation, serial preliminary surveys were conducted in five major areas, namely: (1) survey on support and barrier factors of the aspects; (2) strategic planning model, a concept A-B-G which stands for Academician-Business people-Government; (3) survey on background based knowledge on energy conservation; (4) survey on gender participation in energy conservation and (5) survey on local stakeholder involvement. Throughout the surveys, it has been notified that the concept needs to be developed to any level of its component since its elements were identified in tolerance values such as high potency value of the LWP development (95%); a strong potency of rural area application (88%); a medium background of energy, energy conservation (EC) identified in a range of 56%-72%, sufficient support from local stakeholders and gender participation.

  9. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  10. Draft South African wind energy technology platform: preliminary wind energy research and development framework

    CSIR Research Space (South Africa)

    Szewczuk, S

    2011-08-01

    Full Text Available The South African Wind Energy Technology Programme (SAWEP) Phase 1 aims to achieve two key strategic outputs that will guide South Africa on wind energy development. One of these outputs is the Wind Atlas for South Africa (WASA) which will play a...

  11. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  12. Small wind power systems: market, applications, architectures and energy management

    International Nuclear Information System (INIS)

    Roboam, X.

    2005-01-01

    Context and stakes of small wind power systems are described in this paper by situating both supply and demand as well as the main application fields. Technical issues are then concerned in terms of system structure, energy management and network connection. (author)

  13. Project appraisal for small and medium size wind energy installation: The Italian wind energy policy effects

    International Nuclear Information System (INIS)

    Fera, M.; Iannone, R.; Macchiaroli, R.; Miranda, S.; Schiraldi, M.M.

    2014-01-01

    In the last few years, the distributed energy production from small wind turbines (i.e.<200 kWp) has developed into a relevant business opportunity for different investors in Italy. The market, especially in Italy, has rapidly grown, achieving 9 MWp only in 2011, with an increase from 1.5 MW in 2009 to 13.3 MW at the end of 2011. This paper reports the results of a case study on the installation of several small wind turbines. It aims to provide an analysis of the conditions in Italy that make it possible to install these machines and offer a reliable reference for designing, planning, and controlling small wind turbine projects while focusing on the strategic variables of time, cost, and quality used by typical enterprises in the investment projects. The results are relevant to investors as well as engineering, procurement, and construction companies involved in this new sector, which must understand Italy’s renewable energy policy and its effects in practice. Moreover, certain national energy policy conclusions are reported and discussed in this paper. To properly study the sector, the data on time, cost and quality are analysed using typical project management tools. - Highlights: • Focus on the Italian wind energy sector. • Analysis of Italian policy effects. • Focus on small/medium size wind energy machines

  14. Aerodynamic study of a small horizontal-axis wind turbine

    Directory of Open Access Journals (Sweden)

    Cornelia NITA

    2012-06-01

    Full Text Available The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

  15. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  16. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1996-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  17. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  18. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  19. Aerodynamics of small-scale vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  20. A concept of wind-diesel hybrid systems for the electrification of small rural communities in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, J.T.; Bezerra, U.H. [Ag. Nucleo Universitario, Para (Brazil)

    1997-12-31

    This work presents the concept of a wind-diesel hybrid system for the electrification of a small rural community in the Northern Region of Brazil, which can be used in many other places with similar characteristics. The system consists of two small diesel units and two wind turbines, one of which was designed and developed as a prototype with the purpose of gaining some insight in the field of wind turbine technology. Some considerations about small communities of the Northern Region of Brazil, and about electrification concepts are also made.

  1. Small wind turbine purchasing guide : off-grid, residential, farm and small business applications

    International Nuclear Information System (INIS)

    2008-11-01

    Consumer interest in the environment and the economic advantages of using wind power are now driving interest in smaller wind turbines that range from micro battery-charging models to 300 kW tower-mounted turbines. Smaller turbines are also becoming increasingly accessible through major retail outlets. This guide discussed basic issues surrounding the purchasing, selection and installation of smaller wind turbines. Guidance related to site selection, permitting and approvals was provided, as well as recommendations related to maintenance and system performance. Information related to compliance, safety and setback and zoning restrictions was also presented. The guide was divided into 5 chapters: (1) an introduction to small wind turbines, (2) assessing site-specific expectations, (3) purchasing and permitting, (4) installation, operation and maintenance, and (6) a permitting checklist for small wind customers. Financial incentives for defraying the capital costs of small wind turbines were discussed, and guidance for determining electrical requirements was also provided. A glossary was included, as well as a list of local wind energy contractor and dealers. 3 tabs., 10 figs

  2. The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

    Science.gov (United States)

    Tang, Tian; Popp, David

    2016-01-01

    The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…

  3. Modelling wind speed parameters for computer generation of wind speed in Flanders. A case study using small wind turbines in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Michael; Dessel, Michel van [Lessius Mechelen, Campus De Nayer (Belgium). Dept. of Applied Engineering; Driesen, Johan [Leuven Univ. (Belgium). Dept. of Electrical Engineering / ESAT

    2012-07-01

    The calculation of wind energy parameters is made for small wind turbines on moderate height in a suburban environment. After using the measured data, the same parameters were calculated using first order Markov chain computer generated data. Some characteristics of the wind and the wind power were preserved using Markov, other were not. (orig.)

  4. Quiet airfoils for small and large wind turbines

    Science.gov (United States)

    Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  5. Performance testing of a small vertical-axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Tullis, S.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    Full-scale wind tunnel testing of a prototype 3.5 kW vertical-axis wind turbine (VAWT) was conducted in a low speed wind tunnel in Ottawa. The tests were conducted to determine nominal power curves as well as the system's structural integrity, safety and operational characteristics. Dimensionless power curves were used to assess the relation between the wind turbine's rotary speed and the produced power for various wind speeds. Tests began at the lowest wind speed and revolutions per minute (RPM) and were gradually increased. A proximity sensor was used to determine the passing frequency of spaced bolts. The aerodynamic performance of the turbine was evaluated using a servo-controlled mechanical variable load with a disc brake calliper and electro-hydraulic servo-actuator. A load cell was used to measure torque produced by the turbine. An active closed loop speed control system was used to regulate the rotary speed of the turbine. The system used a high gain proportional control law to guarantee stability. Calculated power was based on the average rotary speed measurement. Results of the study suggested that the dimensional power performance of the turbine could be predicted from the curve for all rotary speeds and for wind speeds between 8 and 16 m/s. The maximum power coefficient of 0.3 occurred at a tip speed ratio of 1.6. Test results demonstrated that the turbine reached its rated power at 14 m/s. However, the range of tip speed ratios for power production were lower than the range for most other small VAWT. 2 refs., 3 figs.

  6. Survey of the small (300 W to 300 kW) wind turbine market in Canada

    International Nuclear Information System (INIS)

    2005-01-01

    The significant growth in the Canadian wind power industry over the past decade has resulted in an increased number of large utility-scale wind farms appearing across Canada. Although large wind turbines are often acknowledged as a mature technology that can provide clean, reliable and economically competitive power, smaller wind turbines have had relatively little documentation in comparison. The aim of this report was to provide a profile of the Canadian market for small wind turbines (SWTs), divided into 3 categories: mini wind turbines with a rated power output from 300 watts to 1000 watts; small wind turbines up to 30 kW; and medium-sized wind turbines up to 300 kW. Study findings were based on interviews with industry experts and a comprehensive survey of 135 companies involved in the Canadian SWT industry. Details of annual sales and total installed capacity were provided, as well as a summary of key SWT markets. An overview of Canadian market demand and international SWT manufacturing capacity was presented. Opportunities and barriers were examined. It was observed that experiences in the United States have indicated that SWTs are more successful when combined with enabling policies, market incentives, and education and awareness raising. The U.S. small wind industry has estimated that in the near future, the SWT industry could supply 50,000 MW, employ 10,000 people and generate $1 billion per year. A number of opportunities for the promotion of the small wind industry in Canada were reviewed, including the niche manufacturing sector in the 20 kW to 50 kW range. Issues concerning the economic benefits of a SWT manufacturing industry were examined. It was suggested that as the SWT markets grow and mature, turbine prices are expected to fall and turbine effectiveness and reliability will increase. An SWT promotional strategy was outlined with incentives in 4 areas: (1) market development; (2) policy development; (3) technology development; and (4) education

  7. Wind energy potential in Chile: Assessment of a small scale wind farm for residential clients

    International Nuclear Information System (INIS)

    Becerra, Miguel; Morán, José; Jerez, Alejandro; Cepeda, Francisco; Valenzuela, Miguel

    2017-01-01

    Highlights: • An assessment of a small scale wind farm was carried out. • Two Chilean locations were selected, which are geographically dissimilar. • The software tool selected for the project’s evaluation was HOMER. • All the project’s financial evaluations were negative. • Government policy tools and their applications were discussed. - Abstract: This work presents a techno-financial evaluation of two Chilean locations with promising wind potential: Laguna Verde placed in the central region of the country, and Porvenir in the southern region. A small scale wind farm was studied, considering a nominal electrical production capacity of 90 kW. This facility is comprised of three wind turbine models, all available in the national market. Currently, the tariff method used in Chile is the net billing scheme, where the energy bought and sold to the grid has different prices. The study is based on 300 hypothetical residential households. The software tool used to perform the assessment was the Hybrid Optimization of Multiple Energy Resources (HOMER). For all the scenarios the results showed a Net Present Cost (NPC), instead of a financial profit from the proposed projects. A sensitivity analysis was also carried out. From the group of variables studied, the NPC exhibited itself as more sensitive to the price of buying energy from the grid and to the annual average wind speed. Finally, a few government policies and their applications are discussed.

  8. Modern wind energy technology for Russian applications. Main report

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Winther-Jensen, Martin; Bindner, Henrik W.

    1999-01-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis forfuture joint ventures and technology exports...... climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operationalconditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up’s for verifications of such adapted...

  9. Understanding wind power technology theory, deployment and optimisation

    CERN Document Server

    Schaffarczyk, Alois

    2014-01-01

    Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology

  10. Wind energy - The facts. Vol. 1: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, P.; Garrad, A.; Jamieson, P.; Snodin, H.; Tindal, A. (comps.) [Gerrad Hassan and partners (United Kingdom)

    2004-02-01

    The politics and economics of wind energy have played an important role in the development of the industry and contributed to its present success. Engineering is, however, pivotal. As the wind industry has become better established, the central place of engineering has become overshadowed by other issues. This is a tribute to the success of the engineers and their turbines. This volume addresses the key engineering Issues: 1) The turbines - their past achievements and future challenges - a remarkable tale of technical endeavour and entrepreneurship. 2) The wind - its characteristics and reliability - how can it be measured, quantified and harnessed? 3) The wind farms - an assembly of individual turbines into wind power stations or wind farms - their optimisation and development. 4) The grid - transporting the energy from remote locations with plentiful wind energy to the loads - the key technical and strategic challenges. This volume provides an historical overview of turbine development, describes the present status and considers future challenges. This is a remarkable story starting in the nineteenth century and then accelerating through the last two decades of the twentieth century on a course very similar to the early days of aeronautics. The story is far from finished but it has certainly started with a vengeance. Wind must be treated with great respect. The speed of the wind on a site has a very powerful effect on the economics of a wind farm; it provides both the fuel to generate electricity and the loads to destroy the turbine. This volume describes how it can be quantified, harnessed and put to work in an economic and predictable manner. The long-term behaviour of the wind is described as well as its short-term behaviour. The latter can be successfully forecast to allow wind energy to participate in electricity markets. In order for wind to live up to its raw potential promise, individual turbines must be assembled into wind farms or wind power stations

  11. Wind lens technology and its application to wind and water turbine and beyond

    Directory of Open Access Journals (Sweden)

    Ohya Yuji

    2017-01-01

    Full Text Available Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2–5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1–3 kW Wind lens turbines and a 100 kW Wind lens turbine. In addition to the enhanced output power, Wind lens turbine is quiet. The technology is now used in an offshore experiment with a hexagonal float 18 meters in diameter set off the coast of Hakata Bay in Fukuoka City. Moreover, we are now pursuing larger size Wind lens turbines through multi-rotor design consisting of multiple Wind lens turbines in a same vertical plane to embody larger total power output.

  12. Economic evaluation of small wind turbines and hybrid systems for residential use

    Directory of Open Access Journals (Sweden)

    Predescu Mihail

    2016-01-01

    Full Text Available Renewable electricity generating systems are gaining ground in residential sector for the purpose of diminishing the electricity bills or to reaching some degree of energy independence. The decision to invest in small wind turbines or hybrid energy generation technologies should be based on an economic estimation of money invested in such systems. Levelized Cost of Energy (LCOE calculation for local technologies of choice for residential energy generation is a very meaningful figure for deciding whether the investment can bring financial satisfaction and for selecting which type of technology is the best suited for a specific location.

  13. Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados

    International Nuclear Information System (INIS)

    Bishop, Justin D.K.; Amaratunga, Gehan A.J.

    2008-01-01

    The island of Barbados is 99% dependent on fossil fuel imports to satisfy its energy needs, which is unsustainable. This study proposes a 10 MW distributed wind energy scheme using micro wind turbines (WT) of horizontal (HAWT) and vertical axis (VAWT) configurations. These units are rated less than 500 W, and the scheme is hereafter referred to as mWT10. mWT10 is compared to the proposed 10 MW medium WT farm by the Barbados Light and Power Company (BL and P). The economic bottom line is the levelized cost of electricity (LCOE). The results highlight the BL and P proposal as the best economic option at BDS$0.19 per kWh, while that of both mWT10 configurations exceeds the conventional cost of BDS$0.25 by two to nine times. This is attributed to significantly higher relative installation and operational costs. However, the financial gap between mWT10 LCOE and the retail price of electricity is much smaller due to a large fuel surcharge passed on to each customer. Annual additional benefits of using wind energy include: greenhouse gas emissions savings of 6-23 kt of carbon dioxide; and anavoided fuel costs of BDS$1.5-5.3 million. The distributed mWT10 using HAWTs competes directly with the BL and P farm, however, it provides these benefits without the visual or ecological impacts of the larger machines. Conversely, VAWTs have features that favour a visually discrete and widely repeatable scheme but suffer relatively high costs. Therefore, this study illustrates the great potential of small wind turbines to be competitive with conventional wind farms, thus challenging the small wind industry to meet its potential by producing reliable and robust machines at lower cost

  14. Increasing the competitiveness of wind energy. New technologies for advanced wind predictability

    International Nuclear Information System (INIS)

    Bertolotti, Fabio

    2013-01-01

    The performance of thermal and nuclear power plants is assessed routinely and precisely, whereas the performance assessment of wind turbines is lagging far behind. This increases operational costs, reduces energy capture, and makes wind energy less competitive. The paper presents a technology and system with improved 24-h power forecasting, as well as condition monitoring of the rotor blades. The system can be employed by any wind power plant and offers potentials to increase the competitiveness of the power industry. (orig.)

  15. Wind Power Technologies FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation’s electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80% by 2050 by reducing costs and increasing performance of wind energy systems.

  16. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  17. The role of research in the diffusion of wind technology

    International Nuclear Information System (INIS)

    Pirazzi, L.

    2009-01-01

    This last year for the first time in Europe the stunning global growth of wind technology has made wind energy to rank highest in diffusion among all energy sources. The role of research remains critical to achieve ever more ambitions E U goals. [it

  18. 2012 Market Report on Wind Technologies in Distributed Applications

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  19. Technology Roadmaps: How2Guide for Wind Energy Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Whether in OECD, emerging or developing country economies, governments are increasingly looking to diversify their energy mix beyond simply fossil fuels. While wind energy is developing towards a mainstream, competitive and reliable technology, a range of barriers can delay progress, such as financing, grid integration, social acceptance and aspects of planning processes. National and regional technology roadmaps can play a key role in supporting wind energy development and implementation, helping countries to identify priorities and pathways tailored to local resources and markets. Recognising this, the IEA has started the How2Guides - a new series co-ordinated by the International Low-Carbon Energy Technology Platform to address the need for more focused guidance in the development of national roadmaps, or strategies, for specific low-carbon technologies. This builds on the success of the IEA global technology roadmap series and responds to a growing number of requests for IEA guidance to adapt the findings of the IEA global technology roadmaps to national circumstances. A successful roadmap contains a clear statement of the desired outcome, followed by a specific pathway for reaching it. The How2Guide for Wind Energy builds on the IEA well established methodology for roadmap development and shares wind specific recommendations on how to address the four phases to developing and implementing a wind energy roadmap: Planning; Visioning; Development; and Implementation. The manual also offers menus of recommendations on policy and technical options for deployment of utility-scale wind energy installations. A matrix of barriers-versus-realistic solutions options is cross-listed with considerations such as planning, development, electricity market and system, infrastructure, and finance and economics. Drawing on several case studies from around the globe, as well as on the IEA Technology Roadmap for Wind Energy, the How2Guide for Wind Energy it is intended as a

  20. Global wind power potential: Physical and technological limits

    International Nuclear Information System (INIS)

    Castro, Carlos de; Mediavilla, Margarita; Miguel, Luis Javier; Frechoso, Fernando

    2011-01-01

    This paper is focused on a new methodology for the global assessment of wind power potential. Most of the previous works on the global assessment of the technological potential of wind power have used bottom-up methodologies (e.g. ). Economic, ecological and other assessments have been developed, based on these technological capacities. However, this paper tries to show that the reported regional and global technological potential are flawed because they do not conserve the energetic balance on Earth, violating the first principle of energy conservation (). We propose a top-down approach, such as that in , to evaluate the physical-geographical potential and, for the first time, to evaluate the global technological wind power potential, while acknowledging energy conservation. The results give roughly 1 TW for the top limit of the future electrical potential of wind energy. This value is much lower than previous estimates and even lower than economic and realizable potentials published for the mid-century (e.g. ). - Highlights: → Reported wind power potentials are flawed because they violate energy conservation. → For the first time, it is evaluated the technological wind power potential with a top-down approach. → Our results show 1 TWe for the limit of wind power energy, which is much lower than previous estimates.

  1. Description and evaluation of foreign wind turbine technology

    International Nuclear Information System (INIS)

    1995-06-01

    It is stated that sales of Danish-manufactured wind turbines abroad are decreasing due to an increase in production, marketing and technology research in other countries. The aim was to give an account of this international development which could form the basis for the future strategies of the Danish Wind turbine industry. The study is based on a survey of relevant literature, interviews with experts on the subject and the collection of the latest data. The survey is limited to wind turbines with a larger capacity than 50 kW. Recommendations are given as to how to conserve and develop the market for Danish wind turbines. (AB) 17 refs

  2. Wind turbines - facts from 20 years of technological progress

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L H; Dannemand Andersen, P [Risoe Ntaional Lab., Roskilde (Denmark)

    1999-03-01

    The first Danish commercial wind turbines were installed in the late 1970s. Over the last 20 years the Danish wind turbine market has been relatively stable concerning annual installations, and the wind turbine technology has been able to develop continuously. This gives a unique time track for technology analysts. The aim of this paper is to extract reliable information on this time track from existing archives and statistics. Seven generations of wind turbine technology have been identified mainly based on `characteristic` rotor diameters. The technological development of each generation is described using indicators such as: market share in Denmark, generator size, rotor diameter, hub height, electricity production and productivity. Economical indicators comprise: costs of turbine and standard foundation. (au)

  3. Wind turbines - facts from 20 years of technological progress

    International Nuclear Information System (INIS)

    Hansen, L.H.; Dannemand Andersen, P.

    1999-01-01

    The first Danish commercial wind turbines were installed in the late 1970s. Over the last 20 years the Danish wind turbine market has been relatively stable concerning annual installations, and the wind turbine technology has been able to develop continuously. This gives a unique time track for technology analysts. The aim of this paper is to extract reliable information on this time track from existing archives and statistics. Seven generations of wind turbine technology have been identified mainly based on 'characteristic' rotor diameters. The technological development of each generation is described using indicators such as: market share in Denmark, generator size, rotor diameter, hub height, electricity production and productivity. Economical indicators comprise: costs of turbine and standard foundation. (au)

  4. Further dual purpose evolutionary optimization of small wind turbine blades

    International Nuclear Information System (INIS)

    Clifton-Smith, M J; Wood, D H

    2007-01-01

    Much work has been done to maximise the power extraction of wind turbine blades. However, small wind turbines are also required to be self starting and whilst blades designed for maximum power extraction can be optimised analytically, these blades often have poor starting performance. The numeric method of Differential Evolution is used here to maximise for both power and starting performance. Standard blade element theory is used to calculate the power coefficient, and a modified blade element method for starting time. The chord and twist of each blade element make up the genes for evolution. Starting times can be improved by a factor of 20 with only a small reduction in power coefficient. With the introduction of the tip speed ratio as an additional gene, up to 10% improvement in power coefficient was achieved. A second study was done in another case where analytical optimisation is not possible; the inclusion of tip losses. The inclusion resulted in only a small increase in the optimum chord in the tip region which becomes less noticeable at lower tip speed ratios

  5. Assessment of research needs for wind turbine rotor materials technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  6. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... (WPP) equipped with a WPP voltage controller and comparisons are presented. The models of wind turbine and WPP voltage controller are kindly provided by Siemens Wind Power A/S for this work. The study is based on modal analysis which are complemented with simulations on the nonlinear system....

  7. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  8. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  9. Modern wind energy technology for Russian applications. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Winther-Jensen, M., Bindner, H.W. [and others

    1999-05-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis for future joint ventures and technology exports. More specifically, the objective is to develop and establish the basic knowledge and design criteria for adaptation and development of Danish wind turbine technology for application under Russian conditions. The research programme is envisaged to be carried out in three phases, the first phase being the project reported herein. The main purpose of phase 1 is to assess the needs for modifications and adaptations of established standard (in casu Danish) wind turbine designs for decentralised energy systems with a limited number of medium sized wind turbines and for grid connected wind turbines in cold climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operational conditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up is for verifications of such adapted and modified wind turbines. The reporting of this project is made in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report, (Risoe-R-1069), summing up the activities and findings of phase 1 and outlining a strategy for Russian-Danish cooperation in wind energy as agreed upon between the Russian and the Danish parties. (au)

  10. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  11. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  12. Enhancement of small signal stability of a DFIG-based wind power ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Vol. .... system connected to infinite bus comprises a wind turbine including drive train ... The wind turbine, generator shaft, and the gearbox are modelled in as a lumped inertia.

  13. Small Wind Electric Systems: A Virginia Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Virginia Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a Virginia wind resource map and information about state incentives and contacts for more information.

  14. Marketing strategy for retailing small-scale wind energy turbines in Indian markets

    OpenAIRE

    Harjula, Nina

    2009-01-01

    The study analyzes the small-scale wind energy markets in Mumbai, focusing on questions: How feasible is the wind energy for SME businesses in Mumbai, and what are the main challenges and opportunities of small-scale wind energy in Mumbai? The study is a qualitative case study, in which, the data has been collected through observing the markets by visiting wind energy sites and companies, interviewing and meeting potential customers and other stakeholders in the market. Theoretical frame...

  15. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  16. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  17. Study of LANs access technologies in wind power system

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the energy challenges in the world, new types of generation technologies, such as renewable energy based generators, attract great attention and are being quickly developed, which results in the dramatic developments and changes in modern power systems, the communication technologies play...... a increasingly important role in guaranteeing the power system’s stability, reliability, and security. In this paper the necessity of communication technologies employed in wind power system are introduced. According the International Standards Organization (ISO) reference 7-layered model, the communication...... power environment are explained and discussed. Furthermore the simulation of application of Ethernet in an offshore wind farm communication network by a software, OPNET, is elaborated. With the investigation of the communication technologies in this paper, the offshore wind farm SCADA system can...

  18. Small, but growing fast - small wind turbine sales soar in California

    International Nuclear Information System (INIS)

    Gipe, P.

    2001-01-01

    The power crisis in California has created a flourishing market for small wind turbines which are said to be 'sprouting across the state.' Both the manufacturers and the customers are benefiting from the state subsidy. The article covers: (i) the buy-down costs; (ii) who qualifies for state support; (iii) the benefits of batteries; (iv) supplying the national grid; (v) permits and contracts for subsidy and (vi) the potential market outside California

  19. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U

  20. 2014–2015 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Smith, Tyler Stehly, Walt Musial

    2015-09-30

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  1. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  2. Multi-dimensional optimization of small wind turbine blades

    DEFF Research Database (Denmark)

    Sessarego, Matias; Wood, David

    2015-01-01

    used to reduce the rotor inertia to help minimize starting time. Two airfoils are considered: the 10% thick SG6043 which has excellent lift:drag performance at low Reynolds number and the SD7062 whose extra thickness (14%) has some structural advantages, particularly for the weaker material (c). All......This paper describes a computer method to allow the design of small wind turbine blades for the multiple objectives of rapid starting, efficient power extraction, low noise, and minimal mass. For the sake of brevity, only the first two and the last objectives are considered in this paper....... The optimization aimed to study a range of blade materials, from traditional fibreglass through sustainable alternatives to rapid prototyping plastic. Because starting performance depends on blade inertia, there is a complex interaction between the material properties and the aerodynamics. Example blades of 1.1 m...

  3. Numerical investigation of airfoils for small wind turbine applications

    Directory of Open Access Journals (Sweden)

    Natarajan Karthikeyan

    2016-01-01

    Full Text Available A detailed numerical investigation of the aerodynamic performance on the five airfoils namely Mid321a, Mid321b, Mid321c, Mid321d, and Mid321e were carried out at Reynolds numbers ranging from 0.5×105 to 2.5×105. The airfoils used for small wind turbines are designed for Reynolds number ranges between 3×105 and 5×105 and the blades are tend to work on off-design conditions. The blade element moment method was applied to predict the aerodynamic loads, power coefficient, and blade parameters for the airfoils. Based on the evaluate data, it was found that Mid321c airfoil has better lift to drag ratio over the range of Reynolds numbers and attained maximum power coefficient of 0.4487 at Re = 2×105.

  4. Effects of Net Metering on the Use of Small-Scale Wind Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, T. L.; Pedden, M.; Gagliano, T.

    2002-11-01

    Factors such as technological advancements, steadily decreasing costs, consumer demand, and state and federal policies are combining to make wind energy the world's fastest growing energy source. State and federal policies are facilitating the growth of the domestic, large-scale wind power market; however, small-scale wind projects (those with a capacity of less than 100 kilowatts[kW]) still face challenges in many states. Net metering, also referred to as net billing, is one particular policy that states are implementing to encourage the use of small renewable energy systems. Net metering allows individual, grid-tied customers who generate electricity using a small renewable energy system to receive credit from their utility for any excess power they generate beyond what they consume. Under most state rules, residential, commercial, and industrial customers are eligible for net metering; however, some states restrict eligibility to particular customer classes. This paper illustrates how net metering programs in certain states vary considerably in terms of how customers are credited for excess power they generate; the type and size of eligible technologies and whether the utility; the state, or some other entity administers the program. This paper focuses on10 particular states where net metering policies are in place. It analyzes how the different versions of these programs affect the use of small-scale wind technologies and whether some versions are more favorable to this technology than others. The choice of citizens in some states to net meter with photovoltaics is also examined.

  5. IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riva, Alberto D [Ea Energy Analyses; Hethey, Janos [Ea Energy Analyses; Vitina, Aisma [Danish Energy Agency

    2018-05-01

    This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on both existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.

  6. Extent and types of small-scale wind policies in the U.S. states: Adoption and effectiveness

    International Nuclear Information System (INIS)

    Wiener, Joshua G.; Koontz, Tomas M.

    2012-01-01

    Renewable energy sources, including wind, are increasingly promoted by U.S. state governments. Using state-level data and survey responses from energy officials in 44 states, this study catalogs the extent and types of small wind policies adopted by states. It examines the factors correlated with policy adoption, and perceptions about which policy tools are most effective. Results indicate that 84% of the states participating in the survey have adopted at least one policy to promote small wind technologies, and most have adopted several policies. The most frequent policy is net metering, and this policy tool was also perceived to be one of the most effective at encouraging businesses and consumers to install small wind technologies. However, several other policy tools perceived to be most effective at promoting small wind installations have been adopted by relatively few states. This identified gap suggests opportunities for improving policy effectiveness. In explaining factors associated with adoption of policy tools, we find support for variables comprising both the policy diffusion and internal determinants models of policy adoption, including state commitment to environmental protection and policy innovations, citizen ideology, per capita wealth, energy policy network communications, and desire to be viewed as an environmental leader.

  7. History and development of wind technology

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The demand for energy has been increasing day by day in India due to various reasons such as increasing population, the aspiration for improved living standards, and general economic and industrial growth. But due to the environmental constraints and risks associated with high dependence on fossil fuel-based energy generation, further capacity additions to the conventional centralized methods of power generation would be questionable. However, as a result of the increased attention directed towards alternative forms of energy and methods of conversion, the significance of renewable energy devices operating in the dispersed and decentralized mode as serious components of modern energy supply has been growing. Wind energy is one of the clean and renewable energy sources which hold out the promise of meeting a significant portion of energy demand in the direct grid-connected-modes-stand-alone and remote niche applications (e.g. water pumping, desalination, and telecommunications), in developing countries like India. 2 figs., 4 tabs

  8. Impact of Wind Power Plants with Full Converter Wind Turbines on Power System Small-Signal Stability

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nygaard Nielsen, Jørgen; Dixon, Andrew

    Wind power is being developed in power systems all around the world, and already today wind power covers more than 20 % of the electricity consumption in some countries. As the size of each wind power plant (WPP) increases and as the levels of penetration reaches certain magnitudes, the inclusion...... of the dynamic properties of the WPPs in the power system stability studies become important. The work presented in this report deal with the impact of WPPs based on full converter wind turbines (WTs) on the power system small-signal rotor angle stability. During small disturbances in the power system, the rotor...... speed of the synchronous machines will eventually return to its steady state if the power system is small-signal stable. The dynamic properties of a WPP are fundamentally dierent from those of a synchronous machine, and the interaction of WPPs with the synchronous machines in power system oscillations...

  9. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  10. Assessment of research needs for wind turbine rotor materials technology

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1991-01-01

    ... on Assessment of Research Needs for Wind Turbine Rotor Materials Technology Energy Engineering Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe true use are Please breaks Page inserted. accidentally typesetting been have may original the from errors not...

  11. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  12. International energy technology collaboration: wind power integration into electricity systems

    International Nuclear Information System (INIS)

    Justus, D.

    2006-01-01

    A rapid growth of wind power since the 1990s has led to notable market shares in some electricity markets. This growth is concentrated in a few countries with effective Research, Development and Demonstration (RD and D) programmes and with policies that support its diffusion into the market place. The speed and depth of its penetration in these electricity markets have amplified the need to address grid integration concerns, so as not to impede the further penetration of wind power. Research on technologies, tools and practices for integrating large amounts of wind power into electricity supply systems is attempting to respond to this need. In recent years, existing international collaborative research efforts have expanded their focus to include grid integration of wind power and new consortia have been formed to pool knowledge and resources. Effective results benefit a few countries that already have a significant amount of wind in their electricity supply fuel mix, as well as to the potential large markets worldwide. This paper focuses on the challenge of bringing significant amounts of intermittent generating sources into grids dominated by large central generating units. It provides a brief overview of the growth of wind power, mainly since 1990, the technical and operational issues related to integration and selected collaborative programmes underway to address grid integration concerns. (author)

  13. Experience in Reviewing Small Modular Reactor Technology

    International Nuclear Information System (INIS)

    Ahmad Nabil Abdul Rahim; Alfred, S.L.; Phongsakorn, P.

    2015-01-01

    Malaysia is in the stage of conducting Preliminary Technical Feasibility Study for the Deployment of Small Modular Reactor (SMR). There are different types of SMR, some already under construction in Argentina (CAREM) and China (HTR-PM) - (light water reactor and high temperature reactor technologies), others with near-term deployment such as SMART in South Korea, ACP100 in China, mPower and NuScale in the US, and others with longer term deployment prospects (liquid-metal cooled reactor technologies). The study was mainly to get an overview of the technology available in the market. The SMR ranking in the study was done through listing out the most deployable technology in the market according to their types. As a new comer country, the proven technology with an excellent operation history will usually be the main consideration points. (author)

  14. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  15. Structures and Intermittency in Small Scales Solar Wind Turbulence

    International Nuclear Information System (INIS)

    Sahraoui, Fouad; Goldstein, Melvyn

    2010-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to result from nonlinear interactions between the plasma modes, which depend strongly on their phase synchronization. Despite this important role of the phases in turbulence, very limited work has been devoted to study the phases as potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. The reason why the phases are seldom used is probably because they usually appear to be completely mixed (due to their dependence on an arbitrary time origin and to 2π periodicity). To handle the phases properly, a new method based on using surrogate data has been developed recently to detect coherent structures in magnetized plasmas [Sahraoui, PRE, 2008]. Here, we show new applications of the technique to study the nature (weak vs strong, self-similar vs intermittent) of the small scale turbulence in the solar wind using the Cluster observations.

  16. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-08-08

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: The Small Business Administration (SBA) is publishing the Small Business...

  17. Simulation and operational assessment for a small autonomous wind-hydrogen energy system

    International Nuclear Information System (INIS)

    Bechrakis, D.A.; McKeogh, E.J.; Gallagher, P.D.

    2006-01-01

    A case study with respect to the current trends in hydrogen technology and market developments is presented in this paper. The main goal is to design an autonomous, environmentally sustainable and zero emission power system using commercially available equipment. In order to achieve the optimum cost effective solution, its limitations are defined by simulating its performance over a year. A scenario is chosen which is representative of an area with significant wind potential, where the grid connection is relatively long or the construction of the line itself would irretrievably harm the environment. This study simulated the operation of a small, remote hotel primarily powered by a wind turbine and supported by a hydrogen energy system incorporating a medium pressure electrolyzer, a compressed hydrogen gas storage unit and a PEM fuel cell stack. The simulated load is biased towards a particular season as in the case of a small hotel for summer holidays. This arrangement takes advantage of the long period of low load during the 'off peak' season, which enables the production of reserves of hydrogen to supplement the wind generated electricity during the 'peak' season, avoiding the use of a large electrolyzer system, which is the most expensive and vulnerable component. The simulation results showed that for this particular system, a wind turbine rated at four times the peak load power associated with the optimum combination of an electrolyzer and a hydrogen storage unit would meet the electrical energy needs of a 10 bedroom, non-luxury hotel under the supervision of a load management controller

  18. 2014-2015 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities. Title page contains link to associated data tables posted at http://www.nrel.gov/docs/fy15osti/64283_data_tables.xlsx.

  19. Small-scale wind shear definition for aerospace vehicle design.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    Rawinsonde wind profile data provide adequate wind shear information for vertical height intervals greater than 1 km. To specify wind shears for intervals below 1 km for space vehicle design, detailed wind-profile information like that provided by the FPS-16 Radar/Jimsphere system or an extrapolation procedure is required. This paper is concerned with the latter alternative. It is assumed that any realization from an ensemble of wind profiles can be represented in terms of a Fourier integral. This permits the calculation of the ensemble standard deviation and mean of the corresponding shear ensemble for any altitude and shear interval in terms of the power spectrum of the ensemble of wind profiles. The results of these calculations show that the mean and standard deviation of the wind shear ensemble, as well as the wind shear for any percentile, asymptotically behave like the vertical interval to the 0.7 power. This result is in excellent agreement with shear data from Cape Kennedy, Fla.

  20. Low Cost Small Wind Turbine Generators for Developing Countries

    NARCIS (Netherlands)

    Ani, S.O.

    2013-01-01

    Wind energy accounts for an increasing percentage of the energy supplied to the electricity network. Electricity generation from wind is now cheaper than other renewables and almost cost competitive with other conventional sources of electricity generation. However, this impressive growth is largely

  1. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  2. A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems

    DEFF Research Database (Denmark)

    Orlando, Natalia Angela; Liserre, Marco; Mastromauro, Rosa Anna

    2013-01-01

    /position estimation, pitch control, braking chopper control, dc/dc converter control, and grid converter control. Specific issues for small wind-turbines arise in the wind energy extraction optimization and limitation and in the innovative concept of “universal” wind-turbine operation, that leads these system...... generators directly connected to the grid, while recently permanent magnet synchronous generators (PMSG) with power converter, either partially or fully controlled, became popular. This paper reviews the control issues related to these small wind-turbine systems: generator torque control, speed...

  3. World trend - a 10% growth per year for small wind turbines

    International Nuclear Information System (INIS)

    Kane, M.

    2016-01-01

    A decline was expected for small wind turbine business with the advent of bigger wind turbines but it is really not the case. In 2014 the growth rate was about 10 % with a cumulated power installed that year of 830 MW for small wind turbines. China (41% of the installed capacity), United-States (30%) and Great-Britain (15%) are the 3 main players. About 1 million wind turbines are operating in the world - it means 8.3% (∼ 70.000 units) more than a year before. (A.C.)

  4. Design and construction of a simple blade pitch measurement system for small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Whale, Jonathan [Research Institute of Sustainable Energy, Murdoch University, Perth, WA 6150 (Australia)

    2009-02-15

    For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in the field. This paper presents a simple system for monitoring the blade feathering of a turbine with an overall component cost that small wind turbine manufacturers can afford. The Blade Pitch Measurement System (BPMS) has been designed and constructed by the Research Institute of Sustainable Energy (RISE) and aids small wind turbine manufacturers in testing and optimising the settings of the blade feathering mechanisms on their machines. The results show that the BPMS was successful in recording the behaviour of the blade feathering mechanism in field trials with a 20 kW and a 30 kW wind turbine. The BPMS displays significant potential as an effective, inexpensive system for small wind turbine manufacturers to ensure the reliability of their pitch regulating over-speed protection mechanisms. (author)

  5. Current R and D needs in wind energy technology

    International Nuclear Information System (INIS)

    Maribo Pedersen, B.

    1995-01-01

    The meeting, hosted by NOVEM, the Netherlands Agency for Energy and the Environment, was attended by 22 people. The purpose of the meeting was to get an impression of how far the efforts spent until now on worldwide research and development have brought the general understanding of, and possibly solutions to, the various problems within wind energy technology - thereby providing some guidance as to where to go from now. In 1994 it was estimated that more than 100 million U.S. dollars was spent on R, D and D by those OECD countries which have a wind energy program, and that since 1974 at least 1000 mil. U.S. dollars must have been spent. The necessity of continued basic research within certain areas was recognized, and it was emphasized that the size of the research teams should always be greater than 'the critical mass'. There seemed to be consensus among all participants that the areas for continued research were the following: aerodynamics, aeroelasticity and load calculations, aeroacoustics (verification of fatigue calculation procedures for 3D stress distribution, establishing a data base of material properties), lightning protection measures, offshore installations (combined wind/wave loading, dynamics of support structures, wind and turbulence over the open sea), power conversion and wind turbine - grid interaction. (EG)

  6. The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment★

    Directory of Open Access Journals (Sweden)

    Evans Samuel P.

    2017-01-01

    Full Text Available This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST. Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK (Perth, Australia and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia. For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response.

  7. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  8. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    Science.gov (United States)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  9. Developing countries: small technology with big effects

    International Nuclear Information System (INIS)

    McRobie, G.; Carr, M.

    1978-01-01

    As far the poor countries of the world are concerned, during the past twenty years they have had access only to the technologies developed by the rich to suit the rich. It is now beyond question that some of the most daunting problems confronting the majority of the worlds populations stem directly from the kind of technology transferred to them under current aid and development programs. That the technology of the rich is generally inappropriate to meet the needs and resources of the poor countries is becoming more widley recognized both by aid-givers and aid-receivers. Yet it is this technology that continues to be almost exclusively and most powerfully promoted in the developing countries. To meet their needs a new technology must be discovered or devised: one that lies between the sickle and the combine harvester and is small, simple and cheap enough to harmonise withlocal human and material resources and lends itself to widespread reproduction with the minimum of outside help. What we now need most urgently is a new set of technologies, designed, by people who are informed by the need to develop capital-saving technologies capable of being decentralized to the maximum extend. The technology gap is not only wide, but the knowledge an resources required to fill is, although they exist in the industrialized countries, have not been mobilized to provide the right kind of knowledge and to make it available to those who need it. It was to do this that the Intermediate Technology Development Group was set up ten years ago. (orig.) 891 HP 892 EKI [de

  10. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-09-26

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business... Business Administration (SBA) is reopening the comment period for the Small Business Innovation Research...

  11. Small Wind Electric Systems: A North Carolina Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. A summary of impacts of wind power integration on power system small-signal stability

    Science.gov (United States)

    Yan, Lei; Wang, Kewen

    2017-05-01

    Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.

  13. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mowers, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative. In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.

  14. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  15. 75 FR 27583 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Vertical Wind Turbine and...

    Science.gov (United States)

    2010-05-17

    ... CFR 11.11(d), gives final notice of the proposed construction of a small vertical axis wind turbine... (FONSI) for Small Vertical Wind Turbine and Solar Installation at the Paul Simon Job Corps Center Located... impact. This notice serves as the Final Finding of No Significant Impact (FONSI) for Small Vertical Wind...

  16. 75 FR 29365 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Wind Turbine Installation at...

    Science.gov (United States)

    2010-05-25

    ... (FONSI) for Small Wind Turbine Installation at the Pine Ridge Job Corps Center Located at 15710 Highway... Finding of No Significant Impact (FONSI) for Small Wind Turbine Installation at the Pine Ridge Job Corps....11(d), gives final notice of the proposed construction of a small wind turbine at the Pine Ridge Job...

  17. U.S. small wind market 2010 report: developments and challenges

    International Nuclear Information System (INIS)

    Flowers, Larry

    2011-01-01

    As changes occur in the economy and in government policy, significant changes will also take place in the renewable energy market. In this presentation, the American Wind Energy Association discusses small wind developments that took place in the United States in 2010. The analysis included in the presentation illustrated that a shift had taken place from small wind to larger wind turbines connected to the grid. There were many other changes in the small wind sector in the United States, including the development of the institutional framework, the setting up of four wind test centers, and the adoption of a number of federal and state policies. Some of these policy changes included tax credits, grants, net metering, certifications, and incentives. The American Wind Energy Association also recognized that the small wind industry is facing a number of challenges, including the entry into the market of non-certified turbines, planning and zoning ordinances, resistance from the utilities, and a loss of environmental focus on the part of the public.

  18. Design study of coated conductor direct drive wind turbine generator for small scale demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech

    2012-01-01

    We have investigated the properties of a superconducting direct drive generator suitable for demonstration in a small scale 11 kW wind turbine. The engineering current density of the superconducting field windings is based on properties of coated conductors wound into coils holding of the order 68...

  19. The role of technology transfer for the development of a local wind component industry in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana; Garcia, Rodrigo; Mendiluce, Maria; Morales, Dario

    2011-01-01

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: → We analyse the case of a Chilean company starting up wind blades production. → Technology transfer is required as the relevant knowledge is not available in the country. → We examine the factors that enable technology transfer to draw policy conclusions. → We highlight the particularities of medium sized developing countries.

  20. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  1. Locally manufactured wind power technology for sustainable rural electrification

    International Nuclear Information System (INIS)

    Leary, J.; While, A.; Howell, R.

    2012-01-01

    To date, the use of wind power for rural electrification has been limited. However the fact that micro-wind turbines can be manufactured using only basic workshop tools, techniques and materials, and therefore can be produced locally is often overlooked. Local manufacture has the potential to boost the local economy, build local capacity, reduce costs and produce resilient and flexible energy systems. However, locally manufactured technology must be seen as socially embedded due to the variety of local knowledge, skills, equipment and materials needed to construct and maintain such systems, as well as the organisational structures needed to ensure their long term sustainability. Evidence from successful initiatives suggests that stable institutional support from intermediaries such as the local/national government or NGOs is necessary to foster the development of a wind power industry based on local manufacture. The roles of these intermediaries include identifying and targeting windy areas with favourable environmental conditions, conducting research and development, collecting feedback from end users, creating supply chains for new parts and materials and developing relevant knowledge and skills. In this paper, three case studies of specific initiatives are analysed to draw out the social, economic and technical factors that could facilitate wider adoption of the technology. - Highlights: ► Local manufacture of wind turbines often overlooked for rural electrification. ► Flexible to adapt to local context and benefits local economy, capacity and supply chain. ► Development of technology discussed and 3 case studies of dissemination analysed. ► Critical factors: institutional support, system level planning, continuity of supply. ► Dissemination successful in Inner Mongolia; work continues elsewhere.

  2. A small wind power producer on a deregulated market

    International Nuclear Information System (INIS)

    Jari, Ihonen; Mikko, Jalas; Timo, Lahti

    2000-01-01

    Lumituuli Oy is a customer owned wind power producer in Finland. The company installed one wind turbine (Vestas V47/660kW) on an artificial island in Lumijoki in March 1999 and has sold electricity on the Finnish market since then. This document describes the experiences, which the company has gained in projecting the investment and operating of the turbine. A technical description of the special construction and erection technique, namely the ice road, is also included in this document. (author)

  3. Trends, Opportunities, and Challenges for Tall Wind Turbine and Tower Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric; Roberts, Owen; Dykes, Katherine

    2017-06-28

    This presentation summarizes recent analysis focused on characterizing the opportunity for Tall Wind technologies generally and for tall tower technologies specifically. It seeks to illuminate and explain the concept of Tall Wind, its impact on the wind industry to date, and the potential value of Tall Wind in the future. It also explores the conditions and locations under which the impacts of Tall Wind offer the most significant potential to increase wind technology performance. In addition, it seeks to examine the status of tall tower technology as a key sub-component of Tall Wind, focusing on the potential for continued innovation in tubular steel wind turbine towers and the status and potential for a select set of alternative tall tower technologies.

  4. Technology of a small plasma focus

    International Nuclear Information System (INIS)

    Lee, S.

    1990-01-01

    This paper reviews plasma focus technology, including the underlying dynamic and energy balance theory, scaling of the neutron yield, cost effectiveness of the design, as well as the main subsystems, e.g., capacitor bank, spark-gap switch and triggering electronics, the plasma focus tube, some simple diagnostics, and a high-voltage charger. It discusses the range of densities and temperatures available with a small plasma focus, and the type of experiments and applications that can be carried out with it. 61 refs, 21 figs

  5. Drivers of Public Attitudes towards Small Wind Turbines in the UK.

    Science.gov (United States)

    Tatchley, Cerian; Paton, Heather; Robertson, Emma; Minderman, Jeroen; Hanley, Nicholas; Park, Kirsty

    2016-01-01

    Small Wind Turbines (SWTs) are a growing micro-generation industry with over 870,000 installed units worldwide. No research has focussed on public attitudes towards SWTs, despite evidence the perception of such attitudes are key to planning outcomes and can be a barrier to installations. Here we present the results of a UK wide mail survey investigating public attitudes towards SWTs. Just over half of our respondents, who were predominantly older, white males, felt that SWTs were acceptable across a range of settings, with those on road signs being most accepted and least accepted in hedgerows and gardens. Concern about climate change positively influenced how respondents felt about SWTs. Respondent comments highlight visual impacts and perceptions of the efficiency of this technology are particularly important to this sector of the UK public. Taking this into careful consideration, alongside avoiding locating SWTs in contentious settings such as hedgerows and gardens where possible, may help to minimise public opposition to proposed installations.

  6. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  7. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  8. Dysprosium, the balance problem, and wind power technology

    International Nuclear Information System (INIS)

    Elshkaki, Ayman; Graedel, T.E.

    2014-01-01

    Highlights: • We investigate the impacts of the increasing market share of wind power on the demand and supply of REE. • The analysis is carried out using a dynamic material flow and stock model and three scenarios for Dy supply. • The supply of Dy from all deposits will likely lead to an oversupply of the total REEs, Nd, La, Ce and Y. • The supply of Dy from critical REE or Dy rich deposits will likely lead to an oversupply of Ce and Y only. • Large quantities of thorium will be co-produced as a result of Dy demand that needs to be managed carefully. - Abstract: Wind power technology is one of the cleanest electricity generation technologies that are expected to have a substantial share in the future electricity mix. Nonetheless, the expected increase in the market share of wind technology has led to an increasing concern of the availability, production capacity and geographical concentration of the metals required for the technology, especially the rear earth elements (REE) neodymium (Nd) and the far less abundant dysprosium (Dy), and the impacts associated with their production. Moreover, Nd and Dy are coproduced with other rare earth metals mainly from iron, titanium, zirconium, and thorium deposits. Consequently, an increase in the demand for Nd and Dy in wind power technology and in their traditional applications may lead to an increase in the production of the host metals and other companion REE, with possible implications on their supply and demand. In this regard, we have used a dynamic material flow and stock model to study the impacts of the increasing demand for Nd and Dy on the supply and demand of the host metals and other companion REE. In one scenario, when the supply of Dy is covered by all current and expected producing deposits, the increase in the demand for Dy leads to an oversupply of 255 Gg of total REE and an oversupply of the coproduced REE Nd, La, Ce and Y. In the second and third scenarios, however, when the supply of Dy is

  9. Classification of micro-, mini- and small wind electric power plants applying wind fluid drives

    International Nuclear Information System (INIS)

    Sabev, S.; Kollen, H.; Sabeva, A.

    2006-01-01

    Wind power plants have various design features and efficiency ranges from 30 to 42%. In Bulgaria the first attempts in the field were made in the early 70-tees of the last century. At the moment Rexroth of the Bosch Group turns out a range of high-tech solutions. The generator gear unit with power output of 2.0 MW is a planetary type and the first gear drive is a helical one for noise reduction purposes. The azimuth gear unit rotates the cabin and is also a planetary one. The pitch Gear unit is also planetary and provides for the pitch of the rotor blades. Power plants have highly automated control systems. Essential care is paid to the reliability of the system to meet requirements for long term operation. Building of wind power plants is related to the wind energy potential of the specific site, and to that purpose the wind energy potential map of Bulgaria is used

  10. Wind Energy Assessment for Small Urban Communities in the Baja California Peninsula, Mexico

    OpenAIRE

    Quetzalcoatl Hernandez-Escobedo

    2016-01-01

    Mexico needs to exploit its renewable resources and many studies have determined the great renewable potential it has using wind energy. However it is necessary to calculate the amount of this resource for small urban communities, which in this country lack essential services such as electricity. This study is focused in the Baja California Peninsula, using GIS as a tool to identify small urban zones with higher wind power. For this work data was analyzed from meteorological stations and reco...

  11. An Evaluation of Wind Turbine Technology at Peterson Air Force Base

    Science.gov (United States)

    2005-03-01

    by the wind speed. Darrieus turbines are ordinarily inexpensive and are used for electricity generation and irrigation. One advantage to a...AN EVALUATION OF WIND TURBINE TECHNOLOGY...02 AN EVALUATION OF WIND TURBINE TECHNOLOGY AT PETERSON AIR FORCE BASE THESIS Presented to the Faculty Department of

  12. NASA technology utilization program: The small business market

    Science.gov (United States)

    Vannoy, J. K.; Garcia-Otero, F.; Johnson, F. D.; Staskin, E.

    1980-01-01

    Technology transfer programs were studied to determine how they might be more useful to the small business community. The status, needs, and technology use patterns of small firms are reported. Small business problems and failures are considered. Innovation, capitalization, R and D, and market share problems are discussed. Pocket, captive, and new markets are summarized. Small manufacturers and technology acquisition are discussed, covering external and internal sources, and NASA technology. Small business and the technology utilization program are discussed, covering publications and industrial applications centers. Observations and recommendations include small business market development and contracting, and NASA management technology.

  13. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    Science.gov (United States)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  14. Distributed small-scale wind in New Zealand: Advantages, barriers and policy support instruments

    International Nuclear Information System (INIS)

    Barry, Martin; Chapman, Ralph

    2009-01-01

    If future climate change goals being negotiated internationally are to have any chance of being achieved, developed countries need to undertake a major transition in their energy systems. This will require a rapid expansion of renewable energy generation, including wind electricity. Wind energy in New Zealand is commercially viable in many cases, yet opportunities for its exploitation are far from fully utilised. Many communities are showing resistance to wind farm developments, since large wind farms are often seen as intrusive. Building wind farms on a small scale may be a useful way of overcoming this problem. This study examines the pattern of recent wind industry development in New Zealand. It is argued that two key characteristics have emerged that are limiting the potential development of the industry: a trend towards large scale, leading to increased local opposition; and a small number of investors. Research methods include a review of international and local literature, and a rural mail survey questionnaire, with 338 respondents. We provide survey evidence that small wind farms, and community ownership of them, may be attractive to local communities, and that this point of advantage is helpful for the rapid expansion of wind generation in New Zealand.

  15. IEA Wind Task 23 Offshore Wind Technology and Deployment. Subtask 1 Experience with Critical Deployment Issues. Final Technical Report

    OpenAIRE

    Lemming, Jørgen Kjærgaard

    2010-01-01

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background information and objectives of Task 23. It specifically discusses ecological issues and regulation, electrical system integration and offshore wind, external conditions, and key conclusions for Subtask 1. ...

  16. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sy; Moritz, Bob

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from

  17. Controller for a small induction-generator based wind-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ahshan, R.; Iqbal, M.T.; Mann, George K.I. [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, Newfoundland (Canada)

    2008-04-15

    Design of a low-cost micro-controller for a small induction-generator based grid-connected wind-turbine is presented in this paper. The controller senses the parameters of the wind-turbine generator and the grid, and makes decisions about grid connection and disconnection. Low-cost instrumentation circuitry has been developed to measure the generator and grid parameters. Based on the measurement of voltage and frequency of the wind-turbine generator and the grid side, a control decision is taken to connect the system to the grid. The controller makes decision to disconnect the system from the grid based on the power flow measurement between the wind turbine and the grid. The power flow between wind turbine and the grid depends upon the availability of the wind. The prototype controller has been developed based on a micro-controller PIC16F877 and has been tested in the laboratory. (author)

  18. Influence of Wind Plant Ancillary Voltage Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern power grids. This introduces some new challenges to the connected power systems, and the transmission system operators (TSOs) have to put some new requirements as part of the grid codes...... on the integration of wind farms. One common requirement to wind farms is the function of system voltage control which can be implemented in the grid-side convertor controller of a variable speed wind turbine. This ancillary voltage control provided by wind farms could have some influence on the system small signal...... stability. This paper implements an ancillary voltage control strategy on a direct-drive-full-convertor-based wind farm and studies its influence on the damping ratio values of the dominant oscillation mode within the connected power system. All the calculations and simulations are conducted in DIg...

  19. Small-Signal Stability Analysis of Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2009-01-01

    focus since the share of wind power increases substituting power generation from conventional power plants. Here, a study based on modal analysis is presented which investigate the effect of large scale integration of full-load converter interfaced wind turbines on inter-area oscillations in a three...... generator network. A detailed aggregated wind turbine model is employed which includes all necessary control functions. It is shown that the wind urbines have very low participation in the inter-area power oscillation.......Power system stability investigations of wind farms often cover the tasks of low-voltage-fault-ride-through, voltage and reactive power control, and power balancing, but not much attention has yet been paid to the task of small-signal stability. Small-signal stability analysis needs increasing...

  20. INNOVATIVE SOLUTIONS FOR SMALL SCALE VERTICAL AXIS WIND TURBINES USED IN HARBOURS AND SHORE AREAS

    Directory of Open Access Journals (Sweden)

    IONESCU Raluca Dora

    2014-09-01

    Full Text Available The paper aims to analyse the wind turbine solutions implemented in harbours and on shore areas. Also a thorough study of the blade design solutions for small power Vertical axis wind turbines (VAWTs has been conducted, with their advantages and disadvantages, in order to find the best solution that minimises the loads and helps with the self-starting capabilities of the wind turbine. First are presented all the solutions, next are discussed several research results for each solution and, in the end, a combination of solutions is chosen for our new small power VAWT with a pre-dimensioning analysis.

  1. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  2. Small Hydropower Research and Development Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, Mo [Near Space Systems, Inc.

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  3. Modeling and simulation of grid connected permanent magnet generator based small wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Arifujjaman, Md.

    2011-07-01

    In order to recover the maximum energy from small scale wind turbine systems many parameters have to be controlled. The aim of this paper is to propose a control strategy for the grid connected PMG-based small wind turbine systems. A mathematical model of small wind turbine systems was developed and the system simulated. Results show demonstrated that the control strategy is highly efficient. Sure enough it reduces the dependence on system variables, diminishes the system complexity, its furling and maximum power point controllers are efficient and it provides a stable operation for multiple wind speeds. This study developed a modeling and control strategy which was proved to be feasible by simulation results.

  4. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.

    Science.gov (United States)

    Ma, Ping; Lien, Fue-Sang; Yee, Eugene

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.

  5. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation

    Directory of Open Access Journals (Sweden)

    Leopoldo Rodriguez Salazar

    2016-12-01

    Full Text Available This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS. The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain, was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz

  6. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    Science.gov (United States)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  7. Small Nuclear Technology and Market Entry

    International Nuclear Information System (INIS)

    Stewart, J S; Schock, R N; Brown, N W; Smith, C F

    2002-01-01

    An overview of energy-system projections into the new century leads to the conclusion that nuclear power will play a significant role. How significant a role will be determined by the marketplace. Within the range of nuclear-power technologies available, small nuclear-power plants of innovative design appear to fit the needs of a number of developing nations and states. Under similar financing options used by the airline industry and others, the capital requirement barrier that puts the nuclear industry at a disadvantage in deregulated markets could be reduced. These plants have the potential advantage of modularity, are proliferation-resistant, incorporate passive safety features, minimize waste, and could be cost-competitive with fossil-fuel plants

  8. Enhancing consumers' voluntary use of small-scale wind turbines to generate own electricity in South Africa

    OpenAIRE

    Brendan Whelan; Edwin Muchapondwa

    2009-01-01

    This paper investigates whether South African households and small businesses can take advantage of the country’s substantial wind resources to produce their own power from small-scale wind turbines in a viable way. The viability of small-scale wind turbines is assessed by means of a financial analysis based on the internal rate of return method. The recently announced wind feed-in tariff will not affect the viability of consumer-based small-scale wind turbines considered in this paper sinc...

  9. Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint

    International Nuclear Information System (INIS)

    van Dam, J. J. D.; Forsyth, T. L.; Hansen, A. C.

    2001-01-01

    This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken on a Whisper H40 turbine and an AOC 15/50. Results from this study were used to verify the simple design equations. This verification will be used to evaluate how changes made in the design load estimation section of the standard work out for a broad range of turbine configurations. The work presented here builds on work performed by Van Hulle (1996)

  10. Laser cladding technology to small diameter pipes

    International Nuclear Information System (INIS)

    Fujimagari, H.; Hagiwara, M.; Kojima, T.

    2000-01-01

    A laser cladding method which produces a highly corrosion-resistant material coating layers (cladding) on the austenitic stainless steel (type 304 SS) pipe inner surface was developed to prevent SCC (stress corrosion cracking) occurrence. This technology is applicable to a narrow and long distance area from operators, because of the good accessibility of the YAG (yttrium-aluminum-garnet) laser beam that can be transmitted through an optical fiber. In this method a mixed paste metallic powder and heating-resistive organic solvent are firstly placed on the inner surface of a small pipe, and then a YAG laser beam transmitted through an optical fiber irradiates to the pasted area. A mixed paste will be melted and form a cladding layer subsequently. A cladding layer shows as excellent corrosion resistance property. This laser cladding (LC) method had already applied to several domestic nuclear power plants and had obtained a good reputation. This report introduces the outline of laser cladding technology, the developed equipment for practical application in the field, and the circumstance in actual plant application. (orig.)

  11. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  12. Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.

    2016-06-01

    The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.

  13. Altitude dependent neutral wind effects on the nonlinear motion of a small barium cloud

    International Nuclear Information System (INIS)

    Book, D.L.; Ossakow, S.L.; Goldman, S.R.

    1975-01-01

    The nonlinear motion of a small F region barium release electrostatically coupled to the E region is studied in the presence of a neutral wind with differing values for the E and F regions. In a reference frame moving with the E region neutral wind and F region neutral wind transverse to the background E 0 field is shown to retard or accelerate the evolution of the cloud without otherwise altering the development of the system. When the relative neutral wind has a component parallel to the background E 0 field, there is also a change in the direction of the axis of elongation of the cloud as a function of time, although the final direction is independent of the relative neutral wind. Barium cloud and image behavior are shown to be substantially identical for periodic and Dirichlet boundary conditions

  14. Study on the product estimation of small wind turbines; Kogata fusha no hatsudenryo yosoku ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, K.; Kimura, Y.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan); Nagai, H. [Nihon Univ., Chiba (Japan). Coll. of Industrial Technology

    1998-09-01

    In order to clarify problems involved in application of Weibull probability distribution used for estimation of power production by a large wind turbine to a small wind turbine, and solutions thereof, the estimated results are compared with the observed ones. The conventional estimation method, when applied to a small wind turbine, tends to overestimate production of power, because of overestimated production in a high wind velocity range which occurs less frequently. Estimation of power produced by a wind turbine is based on working wind velocity range, determined from the furling mechanism for the power generation characteristics of the wind turbine concerned. In the case of a small wind turbine, on the other hand, better estimates are obtained from the working wind velocity range in which Weibull wind velocity distribution is used to determine probability of occurrence. For wind turbines working at low to medium wind velocities, such as Savonius wind turbine, the estimates are in fairly good agreement with the observed results, by which is meant that the conventional estimation method aided by Weibull distribution can be directly applicable to small wind turbines. 4 refs., 3 figs., 3 tabs.

  15. INVESTINGATION DOWNWARD WIND PRESSURE ON A SMALL QUADROTOR HELICOPTER

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Small rotary-wing UAVs are susceptible to gusts and other environmental disturbances that affect inflow at their rotors. Inflow variations cause unexpected aerodynamic forces through changes in thrust conditions and unmodeled blade-flapping dynamics. This pa­per introduces an onboard, pressure-based flow measurement system developed for a small quadrotor helicopter. The probe-based instrumentation package provides spatially dis­tributed airspeed measurements along each of the aircra...

  16. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  17. Relaxing the Small Particle Approximation for Dust-grain opacities in Carbon-star Wind Models

    OpenAIRE

    Mattsson, Lars; Höfner, Susanne

    2010-01-01

    We have computed wind models with time-dependent dust formation and grain-size dependent opacities, where (1) the problem is simplified by assuming a fixed dust-grain size, and where (2) the radiation pressure efficiency is approximated using grain sizes based on various means of the actual grain size distribution. It is shown that in critical cases, the effect of grain sizes can be significant. For well-developed winds, however, the effects on the mass-loss rate and the wind speed are small.

  18. Reindeer habitat use in relation to two small wind farms, during preconstruction, construction, and operation.

    Science.gov (United States)

    Skarin, Anna; Alam, Moudud

    2017-06-01

    Worldwide there is a rush toward wind power development and its associated infrastructure. In Fennoscandia, large-scale wind farms comprising several hundred windmills are currently built in important grazing ranges used for Sámi reindeer husbandry. In this study, reindeer habitat use was assessed using reindeer fecal pellet group counts in relation to two relatively small wind farms, with 8 and 10 turbines, respectively. In 2009, 1,315 15-m 2 plots were established and pellet groups were counted and cleaned from the plots. This was repeated once a year in May, during preconstruction, construction, and operation of the wind farms, covering 6 years (2009-2014) of reindeer habitat use in the area. We modeled the presence/absence of any pellets in a plot at both the local (wind farm site) and regional (reindeer calving to autumn range) scale with a hierarchical logistic regression, where spatial correlation was accounted for via random effects, using vegetation type, and the interaction between distance to wind turbine and time period as predictor variables. Our results revealed an absolute reduction in pellet groups by 66% and 86% around each wind farm, respectively, at local scale and by 61% at regional scale during the operation phase compared to the preconstruction phase. At the regional, scale habitat use declined close to the turbines in the same comparison. However, at the local scale, we observed increased habitat use close to the wind turbines at one of the wind farms during the operation phase. This may be explained by continued use of an important migration route close to the wind farm. The reduced use at the regional scale nevertheless suggests that there may be an overall avoidance of both wind farms during operation, but further studies of reindeer movement and behavior are needed to gain a better understanding of the mechanisms behind this suggested avoidance.

  19. Wind lens technology and its application to wind and water turbine and beyond

    OpenAIRE

    Ohya Yuji; Karasudani Takashi; Nagai Tomoyuki; Watanabe Koichi

    2017-01-01

    Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2–5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1–3 kW W...

  20. Emerging Technologies: Small Satellite and Associated TPED

    Science.gov (United States)

    Zitz, R.

    2014-09-01

    The 2010 National Space Policy directs the U.S. space community, comprised of the Department of Defense, Intelligence Community, Military Services and NASA to examine our nation's ability to conduct space-based ISR and communications even during a period of peer state and near peer state attacks intended to deny us our advantages we accrue from our use of space systems. DOD and the ICs past experience is largely one of building small numbers of extraordinarily capable and expensive (exquisite) satellites for communications and ISR. As potential adversaries continue to develop cyber-attack capabilities and have demonstrated an ability to kinetically attack spacecraft, the vulnerability of our architecture is now a serious concern. In addition, the sluggish U.S. economy, the draw down and pull back from a decade of combat operations, and other factors have combined to force a significant reduction in DOD and IC spending over the coming decade(s). Simultaneously, DOD and the IC have a growing awareness that the long lead times and long mission duration of the exquisite space assets can lead to fielding technologies that become obsolete and mission limiting. Some DOD and IC leaders are now examining alternative architectures to provide lower cost, flexible, more diverse and rapidly launchable space systems. Government leaders are considering commercially hosted payloads in geosynchronous orbits and smaller, lower cost, free flying government and commercial satellites in low earth orbits. Additional changes to the ground tasking, processing, exploitation and dissemination (TPED) systems would ensure small satellites have end-to-end mission capability and meet emerging needs such as ease of tasking, multi-INT processing, and more advanced distribution mechanisms (e.g., to users on the move). Today, a majority of agency leaders and their subordinate program managers remain convinced that only large, expensive systems can truly answer requirements and provide reliable

  1. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with request for comments. SUMMARY: The U.S. Small Business Administration (SBA) is amending its Small Business...

  2. Analysis of the performance and cost effectiveness of nine small wind energy conversion systems funded by the DOE small grants program

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Joshua [Univ. of California, Berkeley, CA (United States)

    1982-04-01

    This report presents an analysis of the technical performance and cost effectiveness of nine small wind energy conversion systems (SWECS) funded during FY 1979 by the U.S. Department of Energy. Chapter 1 gives an analytic framework with which to evaluate the systems. Chapter 2 consists of a review of each of the nine projects, including project technical overviews, estimates of energy savings, and results of economic analysis. Chapter 3 summarizes technical, economic, and institutional barriers that are likely to inhibit widespread dissemination of SWECS technology.

  3. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  4. Remote community electrification program - small wind integration in BC's offgrid communities

    Energy Technology Data Exchange (ETDEWEB)

    Lafaille, Julien [BC Hydro (Canada)

    2011-07-01

    The paper presents the Remote Community Electrification (RCE) program and wind integration in BC's off grid communities. The program offers electric utility service to eligible remote communities in BC. Most of them are offered off-grid services although it is cheaper to connect a community to a grid. BC hydro serves some communities that are not connected to the main grid. Local diesel or small hydro-generating stations are used to serve remote communities. The renewable energy program target is to reach 50% of remote communities. The reason that wind is a small part of the renewables is that hydro and biomass are abundant in BC. Some other barriers include high installation costs, durability concerns, and lack of in-house technical expertise. Some small Wind initiatives that have been taken were relatively few and fairly small. It can be concluded that due to a poor wind resource and the relatively low cost of diesel, there is limited potential for wind in BC remote communities.

  5. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  6. IEA Wind Task 23 Offshore Wind Technology and Deployment. Subtask 1 Experience with Critical Deployment Issues. Final Technical Report

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background...... information and objectives of Task 23. It specifically discusses ecological issues and regulation, electrical system integration and offshore wind, external conditions, and key conclusions for Subtask 1. The Subtask 2 report covers OC3 background information and objectives of the task, OC3 benchmark exercises...... of aero-elastic offshore wind turbine codes, monopile foundation modeling, tripod support structure modeling, and Phase IV results regarding floating wind turbine modeling....

  7. Comparative life-cycle assessment of a small wind turbine for residential off-grid use

    International Nuclear Information System (INIS)

    Fleck, Brian; Huot, Marc

    2009-01-01

    As the popularity of renewable energy systems grows, small wind turbines are becoming a common choice for off-grid household power. However, the true benefits of such systems over the traditional internal combustion systems are unclear. This study employs a life-cycle assessment methodology in order to directly compare the environmental impacts, net-energy inputs, and life-cycle cost of two systems: a stand-alone small wind turbine system and a single-home diesel generator system. The primary focus for the investigation is the emission of greenhouse gases (GHG) including CO 2 , CH 4 , and N 2 O. These emissions are calculated over the life-cycle of the two systems which provide the same amount of energy to a small off-grid home over a twenty-year period. The results show a considerable environmental benefit for small-scale wind power. The wind generator system offered a 93% reduction of GHG emissions when compared to the diesel system. Furthermore, the diesel generator net-energy input was over 200 MW, while the wind system produced an electrical energy output greater than its net-energy input. Economically, the conclusions were less clear. The assumption was made that diesel fuel cost over the next twenty years was based on May 2008 prices, increasing only in proportion to inflation. As such, the net-present cost of the wind turbine system was 14% greater than the diesel system. However, a larger model wind turbine would likely benefit from the effects of the 'economy of scale,' producing superior results both economically and environmentally. (author)

  8. Fuzzy Logic Based MPPT Controller for a Small Wind Turbine System

    DEFF Research Database (Denmark)

    Petrila, Diana; Blaabjerg, Frede; Muntean, Nicolae

    2012-01-01

    operation. Therefore, the mechanical power (Pm) is composed of the generator mechanical (input) power (Pg) plus the dynamic power, resulting in the dynamic power versus rotating speed curve. The controller is able to track the maximum power point for changing wind conditions, and is robust with respect....../Δω. The change of reference generator current (ΔI*) is the output variable. For small power applications, when the turbine inertia is relatively small, and the wind speed changes continuously, it is important to consider the transients in order to develop an accurate theoretical model and to attain optimal...

  9. Status of large scale wind turbine technology development abroad?

    Institute of Scientific and Technical Information of China (English)

    Ye LI; Lei DUAN

    2016-01-01

    To facilitate the large scale (multi-megawatt) wind turbine development in China, the foreign e?orts and achievements in the area are reviewed and summarized. Not only the popular horizontal axis wind turbines on-land but also the o?shore wind turbines, vertical axis wind turbines, airborne wind turbines, and shroud wind turbines are discussed. The purpose of this review is to provide a comprehensive comment and assessment about the basic work principle, economic aspects, and environmental impacts of turbines.

  10. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  11. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.

    Directory of Open Access Journals (Sweden)

    Jeroen Minderman

    Full Text Available The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m, bat activity (measured as the probability of a bat "pass" per hour decreases from 84% (71-91% to 28% (11-54% as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m from operating turbines (activity decreases from 80% (65-89% to 59% (32-81%, and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.

  12. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.

    Science.gov (United States)

    Minderman, Jeroen; Pendlebury, Chris J; Pearce-Higgins, James W; Park, Kirsty J

    2012-01-01

    The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.

  13. Wind and solar data for sizing small wind turbine and photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, W [Northumbrian Energy Workshop Ltd., Hexham (GB)

    1990-01-01

    Small renewable energy power systems have to be more carefully sized and installed than fossil fuelled alternatives. Accurate assessment of the energy resource available at the site is the first step in system design. This paper describes the sort of data available and how they are processed. When small systems are involved there is little money available for detailed meteorological investigations. This has led our company to develop the techniques described. (author).

  14. Wind Energy Assessment for Small Urban Communities in the Baja California Peninsula, Mexico

    Directory of Open Access Journals (Sweden)

    Quetzalcoatl Hernandez-Escobedo

    2016-10-01

    Full Text Available Mexico needs to exploit its renewable resources and many studies have determined the great renewable potential it has using wind energy. However it is necessary to calculate the amount of this resource for small urban communities, which in this country lack essential services such as electricity. This study is focused in the Baja California Peninsula, using GIS as a tool to identify small urban zones with higher wind power. For this work data was analyzed from meteorological stations and recorded every 10 min for two years (2012–2014. Weibull distribution, linear regression, kriging interpolation, power and energy output and useful hours were calculated for each station. It was found that the total energy generated is 38,603,666 kWh per year and the mean of useful hours is 5220 h per year for the whole Peninsula. Maps of Wind Power Density (WPD show a good power per square meter, GIS shows the areas with the most wind power where it can be used i.e., the state of Baja California wind power can generate electricity for 12% of those communities, meanwhile for Baja California Sur, the electric power generation could electrify almost 25% of the total of small urban communities.

  15. Technological learning in offshore wind energy: Different roles of the government

    NARCIS (Netherlands)

    Smit, T.; Junginger, M.; Smits, R.E.H.M.

    2007-01-01

    Offshore wind energy is a promising source of renewable electricity, even though its current costs prevent large-scale implementation. Technological learning has improved the technology and its economic performance already, and could result in significant further improvements. This study

  16. Aerodynamic shape optimization of non-straight small wind turbine blades

    International Nuclear Information System (INIS)

    Shen, Xin; Yang, Hong; Chen, Jinge; Zhu, Xiaocheng; Du, Zhaohui

    2016-01-01

    Graphical abstract: Small wind turbine blades with 3D stacking lines (sweep and bend) have been considered and analyzed with an optimization code based on the lifting surface method. The results indicated that the power capture and the rotor thrust can be improved with these more complex geometries. The starting behavior of the small wind turbines can be improved by the optimization of the blade chord and twist angle distribution. - Highlights: • The small wind turbine blade was optimized with non-straight shape. • Lifting surface method with free wake was used for aerodyanmic performace evaluation. • The non-straight shape can be used to increase energy production and decrease the thrust. • The energy production should be sacrificed in order to increase the starting behavior. - Abstract: Small wind turbines usually operate in sub-optimal wind conditions in order to satisfy the demand where it is needed. The aerodynamic performance of small horizontal axis wind turbines highly depends on the geometry. In the present study, the geometry of wind turbine blades are optimized not only in terms of the distribution of the chord and twist angle but also with 3-dimensional stacking line. As the blade with 3-dimensional stacking line is given sweep in the plan of rotation and dihedral in the plan containing the blade and rotor axis, the common used blade element momentum method can no longer provide accurate aerodynamic performance solution. A lifting surface method with free wake model is used as the aerodynamic model in the present work. The annual energy production and the starting performance are selected as optimization objective. The starting performance is evaluated based on blade element method. The optimization of the geometry of the non-straight wind turbine blades is carried out by using a micro-genetic algorithm. Results show that the wind turbine blades with properly designed 3-dimensional stacking line can increase the annual energy production and have

  17. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  18. Wind Power in Australia: Overcoming Technological and Institutional Barriers

    Science.gov (United States)

    Healey, Gerard; Bunting, Andrea

    2008-01-01

    Until recently, Australia had little installed wind capacity, although there had been many investigations into its potential during the preceding decades. Formerly, state-owned monopoly utilities showed only token interest in wind power and could dictate the terms of energy debates. This situation changed in the late 1990s: Installed wind capacity…

  19. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  20. System for manufacturing wooden rotor blades for small wind mills

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, B

    1991-05-01

    Acknowledging the need (also in developing countries) for small windmill wings with various patterns and aerodynamic characteristics a simple, low-cost hand-controlled copying milling machine was built (with standard parts) to reduce production time for one wing to 1-2 hours. A sensor-roll transfers the airfoil pattern to a set of two saw blades, driven by an electric motor, which carves the airfoil out of a wooden beam. It is thus possible to cut out each cross section of the wing and manufacture a constantly reproducible rotor blade. The hard-foam airfoil models - their shapes, material and production, the laminated beam - the preparation of the wood and the lamination, and the copying milling machine itself - its design and how to build, operate and maintain it, are described in detail. (AB)

  1. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    Energy Technology Data Exchange (ETDEWEB)

    Dana, Scott [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Dam, Jeroen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-24

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.

  2. Technological transfer. 2. Through developing small businesses

    Energy Technology Data Exchange (ETDEWEB)

    Berrie, T W; Leslie, D

    1978-12-01

    The transfer of small businesses to developing countries is proposed as the most effective way to build upon existing capabilities and small resources while benefiting the largest number of people. Labor-intensive small businesses require little capital investment and can bring immediate progress to both urban and rural areas. One drawback to this approach is the need for organizational effort by the government, although the Civil Service in India has been able to fill this function. Small businesses can be promoted through tax exemptions or benefits, the restriction of some manufacturing to small-scale industries, and government support of equipment research. This approach is less disruptive of social patterns and lifestyles than urbanization and its associated costs while still providing the opportunity for an improved standard of living. Electrification can be handled at the village level with diesel generators or by central power plants, although consumer cooperatives have worked better than the small business concept in this area.

  3. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    Science.gov (United States)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  4. Drivers of Public Attitudes towards Small Wind Turbines in the UK.

    Directory of Open Access Journals (Sweden)

    Cerian Tatchley

    Full Text Available Small Wind Turbines (SWTs are a growing micro-generation industry with over 870,000 installed units worldwide. No research has focussed on public attitudes towards SWTs, despite evidence the perception of such attitudes are key to planning outcomes and can be a barrier to installations. Here we present the results of a UK wide mail survey investigating public attitudes towards SWTs. Just over half of our respondents, who were predominantly older, white males, felt that SWTs were acceptable across a range of settings, with those on road signs being most accepted and least accepted in hedgerows and gardens. Concern about climate change positively influenced how respondents felt about SWTs. Respondent comments highlight visual impacts and perceptions of the efficiency of this technology are particularly important to this sector of the UK public. Taking this into careful consideration, alongside avoiding locating SWTs in contentious settings such as hedgerows and gardens where possible, may help to minimise public opposition to proposed installations.

  5. Drivers of Public Attitudes towards Small Wind Turbines in the UK

    Science.gov (United States)

    Tatchley, Cerian; Paton, Heather; Robertson, Emma; Minderman, Jeroen; Hanley, Nicholas; Park, Kirsty

    2016-01-01

    Small Wind Turbines (SWTs) are a growing micro-generation industry with over 870,000 installed units worldwide. No research has focussed on public attitudes towards SWTs, despite evidence the perception of such attitudes are key to planning outcomes and can be a barrier to installations. Here we present the results of a UK wide mail survey investigating public attitudes towards SWTs. Just over half of our respondents, who were predominantly older, white males, felt that SWTs were acceptable across a range of settings, with those on road signs being most accepted and least accepted in hedgerows and gardens. Concern about climate change positively influenced how respondents felt about SWTs. Respondent comments highlight visual impacts and perceptions of the efficiency of this technology are particularly important to this sector of the UK public. Taking this into careful consideration, alongside avoiding locating SWTs in contentious settings such as hedgerows and gardens where possible, may help to minimise public opposition to proposed installations. PMID:27011356

  6. IEA Wind Task 23, offshore wind technology and deployment. Subtask 1: Experience with critical deployment issues. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J

    2010-10-15

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background information and objectives of Task 23. It specifically discusses ecological issues and regulation, electrical system integration and offshore wind, external conditions, and key conclusions for Subtask 1. A comprehensive approach to planning is needed that integrates impacts on ecology, the effects of electrical infrastructure, and the layout of wind farms. Governments, which usually finance ecological research, should disclose results for wide dissemination as they become available. As example the workshop held suggested that documents covering the issues like offshore wind energy legislation, Guidelines for EIAs and SEAs and best practices need to be produced and distributed on a regular basis, as ecological research progresses and experience from the planning and operation of existing wind farms emerges. Research should help strike the balance between optimum regulation and the need to get projects up and running. Such research is needed to increase understanding of offshore wind metrology and its impact on electrical power fluctuations. More work is needed to develop special grid code and standards for offshore. The transient behavior of large cable installations (switching / harmonic/ Behavior and modeling of large HV cable systems) must be better understood. Connection and control systems must be developed for large offshore wind farms. Work is needed to develop the technical architecture of offshore wind grid systems. Public access to measurements (e.g., turbine power output, meteorological masts, buoys) is important, especially for model validation. Determining wake effects is currently the most important challenge in wind engineering. Emphasis should be put into

  7. Social acceptance and social innovation in wind power technology

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Y. [Tokyo Univ., Tokyo (Japan). Faculty of Arts and Sciences; Nishikido, M. [Hosei Univ., Tokyo (Japan). Faculty of Humanity and Environment; Furuya, S. [Aalborg Univ., Aalborg (Denmark). International Doctoral School of Technology and Science; IIDA, T. [Inst. for Sustainable Energy Policies, Tokyo (Japan)

    2008-07-01

    The social changes that are brought about by community wind power development in Japan were discussed, with particular reference to the protest movement against wind power. Environmentalists are concerned with the problem of bird collisions with wind turbines as well as the noise and aesthetics associated with the rapid increase in the number of wind turbines being erected near communities. This paper focused on the contradiction from a framework of social justice and the conflict between the advantages and limitations of wind power. The authors cautioned that there is a lack of distribution justice behind the miscommunications between developers and residents. Survey questionnaires showed that citizens may get involved in community wind power development for 3 reasons, notably environmental concerns, economic benefit and social commitment. This diversity of incentives suggests that there is a moral value linked to wind energy. 7 refs., 4 tabs., 6 figs.

  8. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    Science.gov (United States)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  9. Development and comparisons of wind retrieval algorithms for small unmanned aerial systems

    Science.gov (United States)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2012-12-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  10. Small modular reactors are 'crucial technology'

    Science.gov (United States)

    Johnston, Hamish

    2018-03-01

    Small modular nuclear reactors (SMRs) offer a way for the UK to reduce carbon dioxide emissions from electricity generation, while allowing the country to meet the expected increase in demand for electricity from electric vehicles and other uses.

  11. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    Science.gov (United States)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  12. The development of the Dutch wind energy technology in an international perspective

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.

    1990-01-01

    An overview is given of the developments in the Dutch wind energy industry and the position of that industry in the industrialized world. First attention is paid to some historical developments of the modern wind energy technology in the Netherlands compared to some other countries. The start of the Integral Wind energy Program (IPW) at the end of 1985 brought the Dutch know-how of wind energy back on the international level. Next a brief overview is given of governmental wind energy programs which resulted in various projects aimed at designing, testing and implementing wind turbines in the Netherlands. Here too a comparison is made with other countries concerning the realized capacity, investments, and attempts to commercialize the wind turbines. The technological developments in the Netherlands can be characterized as gradual: step-by-step larger wind turbines (i.e. larger capacities) will be developed. The development of multi-megawatt turbines is too risky and too costly at present. Some final remarks state that the present position of the Dutch wind energy industry and the Dutch research activities are good starting-points to realize an important part of the wind energy capacity in Europe, or even the world. Recommendations are given by which the Dutch wind energy industry can operate with success on the international market. 5 figs., 3 tabs., 2 refs

  13. Small, but Determined: Technological Determinism in Nanoscience

    OpenAIRE

    Cyrus C.M. Mody

    2004-01-01

    Analysis of technological determinism by historians, sociologists, and philosophers has declined in recent years. Yet understanding this topic is necessary, particularly in examining the dynamics of emerging technologies and their associated research areas. This is especially true of nanotechnology, which, because of its roots in futurist traditions, employs unusual variants on classical determinist arguments. In particular, nanotechnology orients much more strongly to the past and future tha...

  14. Wind power costs expected to decrease due to technological progress

    International Nuclear Information System (INIS)

    Williams, Eric; Hittinger, Eric; Carvalho, Rexon; Williams, Ryan

    2017-01-01

    The potential for future cost reductions in wind power affects adoption and support policies. Prior analyses of cost reductions give inconsistent results. The learning rate, or fractional cost reduction per doubling of production, ranges from −3% to +33% depending on the study. This lack of consensus has, we believe, contributed to high variability in forecasts of future costs of wind power. We find that learning rate can be very sensitive to the starting and ending years of datasets and the geographical scope of the study. Based on a single factor experience curve that accounts for capacity factor gains, wind quality decline, and exogenous shifts in capital costs, we develop an improved model with reduced temporal variability. Using a global adoption model, the wind-learning rate is between 7.7% and 11%, with a preferred estimate of 9.8%. Using global scenarios for future wind deployment, this learning rate range implies that the cost of wind power will decline from 5.5 cents/kWh in 2015 to 4.1–4.5 cents/kWh in 2030, lower than a number of other forecasts. If attained, wind power may be the cheapest form of new electricity generation by 2030, suggesting that support and investment in wind should be maintained or expanded. - Highlights: • Expectations for cost reductions in wind power is important for policy. • Wind learning rates are sensitive to data time period and regional choice. • We develop improved wind cost model with much reduced variability. • New model gives global wind learning rates between 7.7%-11%.

  15. Comparative study of a small size wind generation system efficiency for battery charging

    Directory of Open Access Journals (Sweden)

    Mayouf Messaoud

    2013-01-01

    Full Text Available This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM active switching device (IGPT. The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.

  16. Explaining technological change of wind power in China and the United States: Roles of energy policies, technological learning, and collaboration

    Science.gov (United States)

    Tang, Tian

    The following dissertation explains how technological change of wind power, in terms of cost reduction and performance improvement, is achieved in China and the US through energy policies, technological learning, and collaboration. The objective of this dissertation is to understand how energy policies affect key actors in the power sector to promote renewable energy and achieve cost reductions for climate change mitigation in different institutional arrangements. The dissertation consists of three essays. The first essay examines the learning processes and technological change of wind power in China. I integrate collaboration and technological learning theories to model how wind technologies are acquired and diffused among various wind project participants in China through the Clean Development Mechanism (CDM)--an international carbon trade program, and empirically test whether different learning channels lead to cost reduction of wind power. Using pooled cross-sectional data of Chinese CDM wind projects and spatial econometric models, I find that a wind project developer's previous experience (learning-by-doing) and industrywide wind project experience (spillover effect) significantly reduce the costs of wind power. The spillover effect provides justification for subsidizing users of wind technologies so as to offset wind farm investors' incentive to free-ride on knowledge spillovers from other wind energy investors. The CDM has played such a role in China. Most importantly, this essay provides the first empirical evidence of "learning-by-interacting": CDM also drives wind power cost reduction and performance improvement by facilitating technology transfer through collaboration between foreign turbine manufacturers and local wind farm developers. The second essay extends this learning framework to the US wind power sector, where I examine how state energy policies, restructuring of the electricity market, and learning among actors in wind industry lead to

  17. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  18. Exports of Finnish wind power technology gaining momentum

    International Nuclear Information System (INIS)

    2005-01-01

    In the 1990s, Finnish companies in the wind power sector focused on supplying advanced components and materials. This capability has now extended to cover entire turbines and wind farms. Winwind Oy, based in northern Finland, has developed a new type of solution for the export market, combining the advantages of modem direct drives with those of traditional high-speed gear systems

  19. 2014-2015 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron

    2015-11-18

    This presentation provides an overview of progress toward offshore wind cost reduction in Europe and implications for the U.S. market. The presentation covers an overview of offshore wind developments, economic and performance trends, empirical evidence of LCOE reduction, and challenges and opportunities in the U.S. market.

  20. Potential Offshore Wind Energy Areas in California: An Assessment of Locations, Technology, and Costs

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existing site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.

  1. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.

    Directory of Open Access Journals (Sweden)

    Wallace P Erickson

    Full Text Available Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW] for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows], and domestic cats have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top

  2. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.

    Science.gov (United States)

    Erickson, Wallace P; Wolfe, Melissa M; Bay, Kimberly J; Johnson, Douglas H; Gehring, Joelle L

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  3. A comprehensive analysis of small-passerine fatalities from collisions with turbines at wind energy facilities

    Science.gov (United States)

    Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 39 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  4. IEA Wind Task 26. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007–2012

    Energy Technology Data Exchange (ETDEWEB)

    Vitina, Aisma [Ea Energy Analyses, Copenhagen (Denmark); Lüers, Silke [Deutsche WindGuard, Varel (Germany); Wallasch, Anna-Kathrin [Deutsche WindGuard, Varel (Germany); Berkhout, Volker [Fraunhofer IWES, Kassel (Germany); Duffy, Aidan [Dublin Inst. of Technology and Dublin Energy Lab. (Ireland); Cleary, Brendan [Dublin Inst. of Technology and Dublin Energy Lab. (Ireland); Husabø, Lief I. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Weir, David E. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Lacal-Arántegui, Roberto [European Commission, Ispra (Italy). Joint Research Centre; Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Belyeu, Kathy [Belyeu Consulting, Takoma Park, MD (United States); Wiser, Ryan H [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    The International Energy Agency Implementing Agreement for cooperation in Research, Development, and Deployment of Wind Energy Systems (IEA Wind) Task 26—The Cost of Wind Energy represents an international collaboration dedicated to exploring past, present and future cost of wind energy. This report provides an overview of recent trends in wind plant technology, cost, and performance in those countries that are currently represented by participating organizations in IEA Wind Task 26: Denmark, Germany, Ireland, Norway, and the United States as well as the European Union.

  5. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    Science.gov (United States)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  6. Technology Roadmaps: China Wind Energy Development Roadmap 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The report shows how China, already the world's largest wind market, could reach 1 000 GW of wind power by the middle of the century, an achievement that would reduce carbon dioxide emissions by 1.5 gigatonnes per year, or roughly equivalent to the combined CO2 emissions of Germany, France and Italy in 2009. The China Wind Energy Roadmap is the first national roadmap that has been developed by a country with IEA support, drawing from its global roadmap series.

  7. Performance evaluation of small wind turbines for off grid applications in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Hadhrami, Luai M.

    2014-01-01

    Highlights: • Sixteen HAWT and 8 VAWT performance evaluations for s wind measurement site. • HAWT were found to be more efficient than VAWT. • Higher energy yields during high load demands. • PCF’s of up to 54% could be achieved. • Highest energy increase for hub height change from 20 to 30 m. - Abstract: The study evaluated the energy output and plant capacity factor (PCF) of small wind turbines in the category of 1–3 kW, 5–10 kW, 15–20 kW and 50–80 kW rated powers. Furthermore, the effect of hub height on energy output and the PCF has been studied to recommend suitable hub height for different type of applications and load requirements. To achieve the set objectives, hourly average wind speed data measured at 10, 20, 30, and 40 m and wind direction at 30 and 40 m above ground level during July 01, 2006 to July 10, 2008 has been utilized. Highest percentage change in annual energy yield (AEY) was obtained for an increase in hub height of 10 m from 20 to 30 m for both horizontal and vertical wind turbines chosen in the present study. The next best AEY was obtained while increasing hub height from 10 to 15 m. Horizontal axis wind turbines Fortis Passat with PCF of 44.4% at 15 m hub height, Aeolos-H 5 kW with PCF of 20% at 20 m hub height, and CF6e with PCF of 32.5% at 20 m hub height are recommended for different load requirements. Similarly, vertical axis wind turbines UGE Vision 2 kW with PCF of 8.9% at 15 m hub height, Aeolos-V-2 5 kW with PCF of 20.6% at 20 m hub height, and UGE-9M 10 kW with PCF of 14.2% at 30 m hub height are also recommended for various ranges of loads. Horizontal axis wind turbines were found generally more efficient than the vertical axis wind turbines in the present case

  8. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  9. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  10. High-altitude wind prediction and measurement technology assessment

    Science.gov (United States)

    2009-06-30

    The principles and operational characteristics of balloon and radar-based techniques for measuring upper air winds in support of launches and recoveries are presented. Though either a balloon or radar system could serve as a standalone system, the sa...

  11. Technology challenges in small animal PET imaging

    International Nuclear Information System (INIS)

    Lecomte, Roger

    2004-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging modality allowing biochemical processes to be investigated in vivo with sensitivity in the picomolar range. For this reason, PET has the potential to play a major role in the emerging field of molecular imaging by enabling the study of molecular pathways and genetic processes in living animals non-invasively. The challenge is to obtain a spatial resolution that is appropriate for rat and mouse imaging, the preferred animal models for research in biology, while achieving a sensitivity adequate for real-time measurement of rapid dynamic processes in vivo without violating tracer kinetic principles. An overview of the current state of development of dedicated small animal PET scanners is given, and selected applications are reported and discussed with respect to performance and significance to research in biology

  12. Fostering a renewable energy technology industry: an international comparison of wind industry policy support mechanisms

    International Nuclear Information System (INIS)

    Lewis, J.I.; Wiser, R.H.

    2007-01-01

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in 12 countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which is turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry. (author)

  13. Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms

    International Nuclear Information System (INIS)

    Lewis, Joanna I.; Wiser, Ryan H.

    2007-01-01

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in 12 countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry

  14. China's wind power industry: Policy support, technological achievements, and emerging challenges

    International Nuclear Information System (INIS)

    Wang, Zhongying; Qin, Haiyan; Lewis, Joanna I.

    2012-01-01

    Since 2005 the Chinese wind power technology industry has developed rapidly, with China becoming the largest installer of wind power capacity in the world in 2010. This paper reviews the policy system implemented in China to support the wind power industry, centered on China's 2005 Renewable Energy Law. It examines the industry's achievements over the past two decades, including the development of wind power technology and equipment, the utilization of China's wind power resources, and the cost reductions achieved. It then explores the obstacles affecting the ongoing sustainability of the Chinese wind industry, including regulatory barriers, grid integration challenges, and challenges to continued technological innovation. It recommends that integration challenges be addressed through policy reforms, establishing interconnection standards, and creating predictability with forecasting and storage; that market signals be established with long-term development goals and pricing reforms; and that industry limitations be addressed with targeted R and D, improved wind resource assessment and transparency, domestic and international collaborations, and the cultivation of a skilled workforce. - Highlights: ► Review the policy system and the achievements of Chinese wind industry. ► Analyze the obstacles affecting the sustainability of the industry. ► Provide recommendations for how China can address these obstacles.

  15. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-02-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  16. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-05-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  17. Technology learning in a small open economy-The systems, modelling and exploiting the learning effect

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper reviews the characteristics of technology learning and discusses its application in energy system modelling in a global-local perspective. Its influence on the national energy system, exemplified by Norway, is investigated using a global and national Markal model. The dynamic nature of the learning system boundary and coupling between the national energy system and the global development and manufacturing system is elaborated. Some criteria important for modelling of spillover are suggested. Particularly, to ensure balance in global energy demand and supply and accurately reflect alternative global pathways spillover for all technologies as well as energy carrier cost/prices should be estimated under the same global scenario. The technology composition, CO 2 emissions and system cost in Norway up to 2050 exhibit sensitivity to spillover. Moreover, spillover may reduce both CO 2 emissions and total system cost. National energy system analysis of low carbon society should therefore consider technology development paths in global policy scenarios. Without the spillover from international deployment a domestic technology relies only on endogenous national learning. However, with high but realistic learning rates offshore floating wind may become cost-efficient even if initially deployed only in Norwegian niche markets. - Research highlights: → Spillover for all technologies should emanate from the same global scenario. → A global model is called for to estimate spillover.→ Spillover may reduce CO 2 emissions and the total system cost in a small open economy. → Off-shore floating wind may become cost-efficient in a national niche market.

  18. Management and innovation of small science and technology libraries

    International Nuclear Information System (INIS)

    Yang Shumei

    2014-01-01

    This paper describes the new conception of management and service of small science and technology libraries in research and development institutions (R and D institutions), in the light of characteristics of the R and D institution, this paper gives the small science and technology libraries the new and advanced knowledge of management and service. Moreover, this paper gives instructions on knowledge management and service innovation in future practice. (author)

  19. Systematic framework for the efficient integration of wind technologies into buildings

    Directory of Open Access Journals (Sweden)

    Ashraf A. ELMokadem

    2016-03-01

    Full Text Available The renewed interest that is being paid by architects, project developers and local governments to integrate wind turbines with buildings is mainly required a framework to unify much data, criteria and variables to ease the design process to many architects. Therefore, this paper introduces and elaborates the systematic framework towards the efficient integration of wind technologies into new building. Moreover, it evaluates the framework effectiveness by comparing the current status of wind technologies integration into a building with the suggested status if the framework is followed.

  20. A net-present value analysis for a wind turbine purchase at a small US college

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N. H. [Principia College, Elsah, IL 62028 (United States); Solomon, B. D. [Department of Social Sciences, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-07-01

    Wind power is becoming an increasingly attractive method of electric power generation due to concerns with global climate change, increasing uncertainty of future oil supplies, and energy security. While most large-scale wind turbines are part of wind farms, which help states meet state renewable energy standards, several colleges and universities in the United States have purchased wind turbines for financial and educational purposes. This paper gives details of a cost-benefit analysis completed for a small liberal arts college in Illinois, Principia College, which is considering buying a single large-scale turbine. The process set forth here can easily be adapted to any college, university, or school. It is found that the project has a positive net present value for both a 20-year scenario and a 30-year scenario. Assuming the project did not receive any grants, Principia College would need to have an annual real return rate of about 6% on its initial investment to gain the same economic benefits. (author)

  1. A Net-Present Value Analysis for a Wind Turbine Purchase at a Small US College

    Directory of Open Access Journals (Sweden)

    Nicholas H. Johnson

    2010-05-01

    Full Text Available Wind power is becoming an increasingly attractive method of electric power generation due to concerns with global climate change, increasing uncertainty of future oil supplies, and energy security. While most large-scale wind turbines are part of wind farms, which help states meet state renewable energy standards, several colleges and universities in the United States have purchased wind turbines for financial and educational purposes. This paper gives details of a cost-benefit analysis completed for a small liberal arts college in Illinois, Principia College, which is considering buying a single large-scale turbine. The process set forth here can easily be adapted to any college, university, or school. It is found that the project has a positive net present value for both a 20-year scenario and a 30-year scenario. Assuming the project did not receive any grants, Principia College would need to have an annual real return rate of about 6% on its initial investment to gain the same economic benefits.

  2. Small transport aircraft technology propeller study

    Science.gov (United States)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.

    1983-01-01

    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  3. Blueprint and Approach to Grow Revenue in Small Technology Companies

    Directory of Open Access Journals (Sweden)

    Tony Bailetti

    2010-05-01

    Full Text Available This article examines a new approach to grow the revenue of small technology companies and technology startups. We name this new approach the business ecosystem approach. The article is organized into five sections. The first section provides a blueprint to grow revenue and an inventory of growth formulas that top management teams of small technology companies and founders of startups find useful. The second section briefly defines business ecosystems, keystones and platforms. The third section describes the business ecosystem approach to grow the revenue of small technology companies and technology startups. It compares the traditional and business ecosystem approaches to growing revenue; identifies when the business ecosystem approach works better than the traditional approach; explains what small companies and startups need to do to grow revenue using the business ecosystem approach; and describes the benefits and risks of implementing the business ecosystem approach. The fourth section compares three approaches to growing revenue and highlights the differences between i business ecosystems and development communities and ii the business ecosystem approach and outsourcing. The fifth section identifies the key decisions a small technology company or technology startup needs to make to become the keystone that anchors a business ecosystem.

  4. Clean technology for the small auriferous mining

    International Nuclear Information System (INIS)

    Wotruba, Herrnann

    2004-01-01

    The concentration of gold in the small auriferous mining is characterized by several deficiencies, among them low recovery, emissions of mercury in form of milled mercury; amalgams and vapor, cyanide emissions and of its compounds, low level of industrial security. The mercury is used for the amalgamation of concentrated (taken place by several methods of gravimetric separation), for the amalgamation of the whole mineral load. The last case represents a mercury use in open circuit, with lost discharges of mercury to the process tales. The cyanidation is used in most of the cases for the residuals of the gravimetric concentration. This means that combines amalgamation with cyanidation that is in double cost and double environmental impact. To minimize operation costs and environmental impacts, the following steps of the mineral benefit, are advisable: controlled mill and appropriate to liberate the gold and not over miller; gravimetric concentration to recover a pre-concentrated with lost minimum of gold; Separation of the thick gold (if it exists) of the pre-concentrate. The free and thick gold can separate for gravimetric processes of the pre-concentrate and to smelt it directly; the amalgamation is not more necessary. The pre-concentrated cyanidation for agitation generally has bigger recovery and it is quicker than the traditional method for percolation. The realization of the new process has a gold recovery more high, less operation costs, less cyanide emissions, any emission of mercury and a higher work security. It should be mentioned that the viability and efficiency of the clean process depends of the mineral nature

  5. Evaluating the Effect of Information Technology in Small Businesses

    Science.gov (United States)

    Newman, Peter

    2010-01-01

    Information technology (IT) has become a strategic vehicle for small businesses to achieve and sustain their competitive advantage. Prior research has suggested that information technology plays an important role in the decision-making process. The purpose of this study is to examine the relationship between organizational IT performance and…

  6. Technology Mentors: Enablers of ICT Uptake in Australian Small Business

    Science.gov (United States)

    Woodley, Carolyn J.; Burgess, Stephen; Paguio, Rafael; Bingley, Scott

    2015-01-01

    Purpose: The purpose of this paper is to report on the innovative employment of students as technology mentors as part of a Blended Learning Program (BLP) that supported a group of owner-managers of small businesses to adopt appropriate information and communication technologies (ICT) to enhance their work practices. Design/methodology/approach:…

  7. Obstacles to the adoption of improved rabbit technologies by small ...

    African Journals Online (AJOL)

    This will lead to the achievement of a multiplier effect in the adoption of the technologies, which undoubtedly will increase production, and subsequently the protein intake in the society. Keywords:Rabbit technologies, Small scale farmers, Nsukka Local Government Area, Enugu State Agro-Science Vol. 4(1) 2005: pp. 70-73.

  8. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  9. The application of suction caisson technology to offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-09-15

    A mathematical model describing the behaviour of caisson foundations for offshore wind turbines has been developed. The model has been verified and calibrated through laboratory and field work. Simultaneously, conceptual designs of wind turbine foundations incorporating suction caissons were studied using the same model. It was concluded that much of the seabed around Britain is well suited to the use of caissons and monopod and quadropod structures are superior to tripods. Although suction caissons are vulnerable to scour, rock dumping can largely eliminate this potential problem. The next phase will be to install a fully instrumented full-scale prototype to monitor the effects of wind and waves. The main contractor was SLP Engineering Limited and about 75 per cent of the funding came from the DTI.

  10. Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain

    International Nuclear Information System (INIS)

    Zubi, Ghassan

    2011-01-01

    The shift to a low carbon society is an issue of highest priority in the EU. For electricity generation, such a target counts with three main alternatives: renewable energies, nuclear power and carbon capture and storage. This paper focuses on the renewables’ alternative. Due to resource availability, a technology mix with a high share of PV and wind power is gaining increasing interest as a major solution for several EU member states and in part for the EU collectively to achieve decarbonization and energy security with acceptable costs. Due to their intermittency, the integration of high shares of PV and wind power in the electricity supply is challenging. This paper presents a techno-economic assessment of technology mix alternatives with a high share of PV and wind power in Spain, as an example. Thereby, the focus is on the option of increasing wind curtailment versus substituting rigid baseload generation in favor of the more flexible gas turbines and combined cycle gas turbines. - Highlights: ► The potential of power generation from renewable energy resources in the EU is illustrated. ► The LEC of the different technologies considered is calculated for today and future scenarios. ► An excel-based model for the technology mix assessment is applied using Spanish data. ► Technology mix alternatives with a high share of PV and wind power are assessed. ► The focus is on increasing wind curtailment vs. relying on more flexible power generation units.

  11. Analyzing the requirements for mass production of small wind turbine generators

    Science.gov (United States)

    Anuskiewicz, T.; Asmussen, J.; Frankenfield, O.

    Mass producibility of small wind turbine generators to give manufacturers design and cost data for profitable production operations is discussed. A 15 kW wind turbine generator for production in annual volumes from 1,000 to 50,000 units is discussed. Methodology to cost the systems effectively is explained. The process estimate sequence followed is outlined with emphasis on the process estimate sheets compiled for each component and subsystem. These data enabled analysts to develop cost breakdown profiles crucial in manufacturing decision-making. The appraisal also led to various design recommendations including replacement of aluminum towers with cost effective carbon steel towers. Extensive cost information is supplied in tables covering subassemblies, capital requirements, and levelized energy costs. The physical layout of the plant is depicted to guide manufacturers in taking advantage of the growing business opportunity now offered in conjunction with the national need for energy development.

  12. Field Verification Project for Small Wind Turbines, Quarterly Report: April - June 2001; 2nd Quarter, Issue No.5

    Energy Technology Data Exchange (ETDEWEB)

    2002-04-01

    This newsletter provides a brief overview of the Field Verification Project for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  13. Field Verification Program for Small Wind Turbines: Quarterly Report for January-March 2001; 1st Quarter, Issue No.4

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, T.; Cardinal, J.

    2001-10-30

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  14. Field Verification Program for Small Wind Turbines: Quarterly Report for October-December 2000; 4th Quarter, Iss. No.3

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal, J.

    2001-07-03

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  15. Field Verification Project for Small Wind Turbines Quarterly Report; July-September 2001, 3rd Quarter, Issue#6

    Energy Technology Data Exchange (ETDEWEB)

    2003-04-01

    This newsletter provides a brief overview of the Field Verification Project for Small Wind Turbines conducted at the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  16. Field Verification Program for Small Wind Turbines, Quarterly Report: 3rd Quarter, Issue No.2, July-September 2000

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal. J.; Tu, P.

    2001-05-16

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  17. Anti-jamming Technology in Small Satellite Communication

    Science.gov (United States)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  18. Status of the technology development of large scale HTS generators for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2015-06-15

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

  19. Status of the technology development of large scale HTS generators for wind turbine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M.

    2015-01-01

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study

  20. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    Science.gov (United States)

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2015-03-01

    Full Text Available For the interconnected power system with large-scale wind power, the problem of the small signal stability has become the bottleneck of restricting the sending-out of wind power as well as the security and stability of the whole power system. Around this issue, this paper establishes a small signal stability region boundary model of the interconnected power system with large-scale wind power based on catastrophe theory, providing a new method for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and the mathematic model of the interconnected power system with wind power and pointed out that conventional methods can’t directly identify the topological properties of small signal stability region boundaries. For this problem, adopting catastrophe theory, we established a small signal stability region boundary model of the interconnected power system with large-scale wind power in two-dimensional power injection space and extended it to multiple dimensions to obtain the boundary model in multidimensional power injection space. Thirdly, we analyzed qualitatively the topological property’s changes of the small signal stability region boundary caused by large-scale wind power integration. Finally, we built simulation models by DIgSILENT/PowerFactory software and the final simulation results verified the correctness and effectiveness of the proposed model.

  2. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  3. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    Science.gov (United States)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  4. Evolutionary analysis of technological innovations: the example of solar photovoltaic and wind energy

    International Nuclear Information System (INIS)

    Taillant, Pierre

    2005-01-01

    The objective of this research thesis is to study the building up and the development of technologies for renewable energies considered as environmental radical innovations. In a first part, the author discusses the systemic aspects of innovation and the environmental challenges associated with energy technologies. He examines the main evolutions of energy systems over a long period. In a second part, he addresses innovation incentives in the case of environmental technologies and within the frame of the neo-classical economic theory. The next parts aim at presenting the theoretical framework of the evolutionary analysis of innovation and technical change, and at applying it to the case of technological innovations for renewable energies (photovoltaic and wind energy). World PV market trends are discussed and the technological competition context of this sector is analysed. The evolution of the solar PV technological system in Germany is discussed, as well as the specific case of development of the wind energy technological system in Denmark

  5. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Science.gov (United States)

    2012-02-06

    ... Display Technologies, Inc., China Wind Energy, Inc., Fuda Faucet Works, Inc., Greater China Media & Entertainment Corp., and Xechem International, Inc.; Order of Suspension of Trading February 2, 2012. It appears... Technologies, Inc. because it has not filed any periodic reports since the period ended September 30, 2008. It...

  6. Validity of VR Technology on the Smartphone for the Study of Wind Park Soundscapes

    Directory of Open Access Journals (Sweden)

    Tianhong YU

    2018-04-01

    Full Text Available The virtual reality of the landscape environment supplies a high level of realism of the real environment, and may improve the public awareness and acceptance of wind park projects. The soundscape around wind parks could have a strong influence on the acceptance and annoyance of wind parks. To explore this VR technology on realism and subjective responses toward different soundscapes of ambient wind parks, three different types of virtual reality on the smartphone tests were performed: aural only, visual only, and aural–visual combined. In total, 21 aural and visual combinations were presented to 40 participants. The aural and visual information used were of near wind park settings and rural spaces. Perceived annoyance levels and realism of the wind park environment were measured. Results indicated that most simulations were rated with relatively strong realism. Perceived realism was strongly correlated with light, color, and vegetation of the simulation. Most wind park landscapes were enthusiastically accepted by the participants. The addition of aural information was found to have a strong impact on whether the participant was annoyed. Furthermore, evaluation of the soundscape on a multidimensional scale revealed the key components influencing the individual’s annoyance by wind parks were the factors of “calmness/relaxation” and “naturality/pleasantness”. “Diversity” of the soundscape might correlate with perceived realism. Finally, the dynamic aural–visual stimuli using virtual reality technology could improve the environmental assessment of the wind park landscapes, and thus, provide a more comprehensible scientific decision than conventional tools. In addition, this study could improve the participatory planning process for more acceptable wind park landscapes.

  7. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  8. A small wind turbine system (SWTS) application and its performance analysis

    International Nuclear Information System (INIS)

    Ozgener, Onder

    2006-01-01

    Energy conservation, pollution prevention, resource efficiency, systems integration and life cycle costing are very important terms for sustainable construction. The purpose of this work is to ensure a power supply for the north of the Solar Energy Institute building environment lamps by using wind power to comply with the green building approach. Beside this, the study is to present an energy analysis of the 1.5 kW small wind turbine system (SWTS) with a hub height of 12 m above ground level with a 3 m rotor diameter in Turkey. The SWTS was installed at the Solar Energy Institute of Ege University (latitude 38.24 N, longitude 27.50 E), Izmir, Turkey. NACA 63-622 profile type (National Advisory Committee for Aeronautics) blades of epoxy carbon fiber reinforced plastics were used. The system was commissioned in September 2002, and performance tests have been conducted since then. The performance analysis of the SWTS is quantified and illustrated in the tables, particularly for a reference temperature of 25 deg. C, 30th of October 2003 till 5th of November 2003 for comparison purposes. Test results show that when the average wind speed is 7.5 m/s, 616 W and 76 Hz electricity is produced by the alternator

  9. Aerodynamic Optimization of Airfoil Profiles for Small Horizontal Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Ali Cemal Benim

    2018-04-01

    Full Text Available The purpose of this study is the development of an automated two-dimensional airfoil shape optimization procedure for small horizontal axis wind turbines (HAWT, with an emphasis on high thrust and aerodynamically stable performance. The procedure combines the Computational Fluid Dynamics (CFD analysis with the Response Surface Methodology (RSM, the Biobjective Mesh Adaptive Direct Search (BiMADS optimization algorithm and an automatic geometry and mesh generation tool. In CFD analysis, a Reynolds Averaged Numerical Simulation (RANS is applied in combination with a two-equation turbulence model. For describing the system behaviour under alternating wind conditions, a number of CFD 2D-RANS-Simulations with varying Reynolds numbers and wind angles are performed. The number of cases is reduced by the use of RSM. In the analysis, an emphasis is placed upon the role of the blade-to-blade interaction. The average and the standard deviation of the thrust are optimized by a derivative-free optimization algorithm to define a Pareto optimal set, using the BiMADS algorithm. The results show that improvements in the performance can be achieved by modifications of the blade shape and the present procedure can be used as an effective tool for blade shape optimization.

  10. Technological and economic preconditions for the construction of wind power stations on inland sites

    International Nuclear Information System (INIS)

    Stapperfenne, W.

    1992-01-01

    In principle, wind power is perceived as a manageable and soft-type energy; nevertheless operators are advised against trying to design and build wind power plants based on their very own ideas since these will often be found to fall short of the stringent requirements of regulatory authorities for safety, wind technology and statics, and of the demand of knowledge in mechanical engineering, electronics and computer technology. In addition, the utilization of wind power is ruled by tax laws since a certain are of the power produced will have to be fed to the national grid which means that the plant operator is a producer subjected to value-added taxation with the right of reimbussement of prepaid taxes [de

  11. Proceedings of Opportunity '95 -- Environmental technology through small business

    International Nuclear Information System (INIS)

    Kothari, V.P.

    1994-11-01

    The Opportunity '95--Environmental Technology Through Small Business conference was held November 16--17, 1994, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of the Environmental Management--Office of Technology Development (EM-OTD) Program at METC. The focus of this conference was also to address the accomplishments and barriers affecting small businesses, and lay the groundwork for future technology development initiatives and opportunities. Twenty papers were presented in three EM-OTD focus areas: mixed waste characterization, treatment and disposal (6 papers); contaminant plume containment and remediation (6 papers); and facility transitioning, decommissioning and final disposition (8 papers). In addition to the presentations, nine posters of environmental management areas were displayed. A panel discussion was also held on technology development assistance to small businesses. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  12. Enhancing technological innovation in small firms: Role of collaboration

    International Nuclear Information System (INIS)

    Singh, D; Khamba, J S; Nanda, T

    2014-01-01

    Contribution of Micro-Small and Medium Enterprises (MSMEs) is highly remarkable in the overall industrial economy of the country. In recent years, the MSME sector has consistently registered higher growth rate compared to the overall industrial sector. With its agility and dynamism, the sector has shown admirable innovativeness and adaptability to survive the recent economic downturn and recession. However, MSMEs growth rate is still at low level. Therefore, it becomes essential for organizations to adopt new technologies or upgrade existing setup to meet continuously changing global market and fulfill customer needs. This paper explores the relationships between different collaboration networks and technological innovation of small firms through an extensive review of literature. The study finds that collaboration with larger enterprises, R and D institutions, universities and government agencies play a significant role in enhancing technological innovation in small firms

  13. Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies

    International Nuclear Information System (INIS)

    Qiu, Yueming; Ortolano, Leonard; David Wang, Yi

    2013-01-01

    This paper uses firm level data for the Chinese wind turbine manufacturing industry from 1998 to 2009 to quantify the effects of technology acquisition mechanisms – purchasing production licenses from foreign manufacturers, joint design with foreign design firms, joint-ventures and domestic R and D – on wind turbine manufacturers' technology levels (as measured by turbine size, in megawatts). It also examines the impacts of government policies on manufacturer technology levels. Technology upgrading (measured by increase of turbine size) and catch-up (measured by decrease in the distance to the world technology frontier in terms of turbine size) are used to measure advances in technology level. Results from econometric modeling studies indicate that firms' technology acquisition mechanisms and degree of business diversification are statistically significant factors in influencing technology upgrading. Similar results were found for the catch-up variable (i.e., distance to the world technology frontier). The influence of government policies is significant for technology upgrading but not catch-up. These and other modeling results are shown to have implications for both policymakers and wind turbine manufacturers. - Highlights: ► Technology acquired through joint design has the highest level. ► Technology acquired through purchasing production license has the lowest level. ► Technology acquired through domestic R and D has the level in between. ► A firm with related other businesses tends to have a higher level of technology. ► The influence of policies is significant for technology upgrade but not catch-up

  14. Call for tender - Areva-Alstom: watershed in wind energy - Technological duel on the open sea

    International Nuclear Information System (INIS)

    Dupin, L.

    2012-01-01

    The author comments the answers to a call for tender made by the French government and concerning five offshore wind farm sites (Le Treport, Fecamp, Courseulles sur Mer, Saint-Brieuc and Saint-Nazaire). As they are present within the three consortiums, Areva and Alstom should provide the wind turbines. This would result in the construction by Alstom of two blade and mast factories and two turbine and pad factories. For both companies, this market of 500 to 600 turbines is an opportunity. Many jobs are at stake. They push themselves forward for their experience or their innovation capacity. But their wind turbines will be based on foreign (Spanish or German) technology

  15. Offshore wind energy in Mediterranean and other european seas: Technology and potential applications

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1997-01-01

    In the last six years (1990-1996) the world wide capacity of grid connected offshore wind plants, at the prototypical stage, has reached 12 MW at energy costs some what higher than fifty per cent of similar on shore plants. Additional offshore installations are close to the construction and proposed for some hundreds MW in north european seas. The technology of the offshore wind turbines is evolving parallely to that of the onshore ones

  16. Offshore wind energy in Mediterranean and other european seas: Technology and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiosi, G

    1998-12-31

    In the last six years (1990-1996) the world wide capacity of grid connected offshore wind plants, at the prototypical stage, has reached 12 MW at energy costs some what higher than fifty per cent of similar on shore plants. Additional offshore installations are close to the construction and proposed for some hundreds MW in north european seas. The technology of the offshore wind turbines is evolving parallely to that of the onshore ones.

  17. Wind power in Denmark technology, policies and results

    International Nuclear Information System (INIS)

    Dannemand Andersen, Per

    1998-11-01

    The Association of Danish Electricity Utilities has estimated the total electricity production from wind turbines in 1997 as 1932 GWh: 384 GWh from utility-owned turbines and 1548 GWh from privately owned turbines. This equals 6% of total electricity consumption in Denmark. Corrected to a 'normal wind year' this equals 6.6% of Denmark's annual electricity consumption. The wind energy index in 1997 was 91%. According to the Danish Association of Electricity Utilities, 4784 turbines with a capacity of 1129 MW were connected to the grid at the end of 1997. 534 turbines and 287 MW were added in 1997, the largest figure ever. These are net figures and included dismantled machines. The actual sales of turbines is a bit higher, reflecting the fact that not all machines sold in 1997 were installed that year. New machines are usually 500 kW, 600 kW and 750 kW. No 1500 kW machines have as yet been installed on a commercial basis in Denmark. (au)

  18. Wind power in Denmark technology, policies and results

    Energy Technology Data Exchange (ETDEWEB)

    Dannemand Andersen, Per [ed.] [Risoe National Lab. (Denmark)

    1998-11-01

    The Association of Danish Electricity Utilities has estimated the total electricity production from wind turbines in 1997 as 1932 GWh: 384 GWh from utility-owned turbines and 1548 GWh from privately owned turbines. This equals 6% of total electricity consumption in Denmark. Corrected to a `normal wind year` this equals 6.6% of Denmark`s annual electricity con-sumption. The wind energy index in 1997 was 91%. According to the Danish Association of Electricity Utilities, 4784 turbines with a capacity of 1129 MW were connected to the grid at the end of 1997. 534 turbines and 287 MW were added in 1997, the largest figure ever. These are net figures and included dismantled machines. The actual sales of turbines is a bit higher, reflecting the fact that not all machines sold in 1997 were installed that year. New machines are usually 500 kW, 600 kW and 750 kW. No 1500 kW machines have as yet been installed on a commercial basis in Denmark. (au)

  19. Technologies for production of electricity and heat in Sweden. Wind energy in perspective of international development

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik

    2008-12-15

    The development of the wind energy technology has been very successful from the 1970s and up till now. Initially there was a battle between wind turbine concepts, but the commercial winner today is the three-bladed horizontal axis, upwind, electricity producing and grid connected wind turbine with availability on mature markets somewhere around 99%. An important contributor to the growth of the European market for wind energy technology has been EU framework legislation combined with legislation at the national level. The binding target for renewable energy in Sweden is proposed to be 49% of the final energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment cost of 1.230 Euro/kW with a typically variation from approximately 1000 Euro/kW to approximately 1400 Euro/kW. The calculated costs per kWh wind generated power range from approximately 7-10 cEuro/kWh at sites with low average wind speeds to approximately 5-6.5 cEuro/kWh at good coastal positions, with an average of approximately 7cEuro/kWh at a medium wind site. Offshore costs are largely dependent on weather and wave conditions, water depth, and distance to the

  20. Enhancing information for solar and wind energy technology deployment in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Martins, Fernando, E-mail: fernando.martins@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil); Pereira, Enio Bueno, E-mail: enio.pereira@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil)

    2011-07-15

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: > Current status on the solar and wind energy deployment in Brazil is presented. > Policy framework required to support solar and wind energy was discussed. > Study was based on responses for consultations with key stakeholders. > Worthiness Index was established to rank the stakeholders outlooks. > Energy price, human resources and tax reductions were indicated as priority.

  1. Enhancing information for solar and wind energy technology deployment in Brazil

    International Nuclear Information System (INIS)

    Ramos Martins, Fernando; Pereira, Enio Bueno

    2011-01-01

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: → Current status on the solar and wind energy deployment in Brazil is presented. → Policy framework required to support solar and wind energy was discussed. → Study was based on responses for consultations with key stakeholders. → Worthiness Index was established to rank the stakeholders outlooks. → Energy price, human resources and tax reductions were indicated as priority.

  2. Technological learning in offshore wind energy: Different roles of the government

    International Nuclear Information System (INIS)

    Smit, Thijs; Junginger, Martin; Smits, Ruud

    2007-01-01

    Offshore wind energy is a promising source of renewable electricity, even though its current costs prevent large-scale implementation. Technological learning has improved the technology and its economic performance already, and could result in significant further improvements. This study investigates how technological learning takes place in offshore wind energy and how technological learning is related to different policy regimes. Offshore wind energy developments in Denmark and the United Kingdom have been analysed with a technology-specific innovation systems approach. The results reveal that the dominant forms of learning are learning by doing and learning by using. At the same time, learning by interacting is crucial to achieve the necessary binding elements in the technology-specific innovation system. Generally, most learning processes were performed by self-organizing entities. However, sometimes cultural and technical barriers occurred, excluding component suppliers and knowledge institutes from the innovation system. Danish policies successfully anticipated these barriers and removed them; therefore, the Danish policies can be characterized as pro-active. British policies shaped stable conditions for learning only; therefore, they can be characterized as active. In the future, barriers could hinder learning by interacting between the oil and gas industry, the offshore wind industry and academia. Based on this study, we suggest national and international policy makers to design long-term policies to anticipate these barriers, in order to contribute to technological learning

  3. Innovation Environment in Small Technology-Based Companies

    OpenAIRE

    Gonçalves Silveira Fiates, Gabriela; Azevedo Fiates, José Eduardo; Ribeiro Serra, Fernando A; Portugal Ferreira, Manuel

    2010-01-01

    Innovation has been identified as a strategy to achieve competitive advantage, particularly in contexts of change and especially for technology-based companies – TBCs. Although the adoption of innovation strategies is not easy, small companies have an organizational environment more conducive to innovation. This article examines how managers and employees of small TBCs perceive aspects of the internal environment of innovation in the organization (culture, organizational structure, personnel ...

  4. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert; /SLAC; Sykes, Mark V.; /PSI, Tucson

    2012-02-15

    The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  5. Thermospheric winds in the auroral oval: observations of small scale structures and rapid fluctuations by a Doppler imaging system

    International Nuclear Information System (INIS)

    Batten, S.; Rees, D.

    1990-01-01

    At high geomagnetic latitudes, thermospheric wind flows are dramatically affected by the combined effects of magnetospheric ion convection and Joule and particle heating. Thermospheric winds have been observed by ground based and space-borne Fabry-Perot interferometers (FPIs). Short period, localized wind fluctuations have always been difficult to resolve with a conventional FPI, due to the limited time and spatial resolution. However, the highest quality wind data obtained by these instruments from the middle and upper thermosphere have implied that thermospheric winds may respond to the combination of strong local ion drag forcing and heating within the auroral oval and polar cap, with spatial scale sizes of 50-500 km, and with time scales as short as 10-30 min. Since the 1982/1983 winter, a prototype Doppler Imaging System (DIS) has been operated at Kiruna (67.84 0 N, 20.42 0 E). This instrument maps thermospheric wind flows over a region some 500 km in diameter centred on Kiruna and has observed many interesting features in the thermospheric wind fields. In particular, strong local wind gradients, rapid wind reversals and small scale structures are regularly observed, particularly during geomagnetically disturbed nights. (author)

  6. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids

    Directory of Open Access Journals (Sweden)

    Sheng Jie Shao

    2010-06-01

    Full Text Available The ever increasing development and availability of power electronic systems is the underpinning technology that enables large scale integration of wind generation plants with the electricity grid. As the size and power capacity of the wind turbine continues to increase, so is the need to place these significantly large structures at off-shore locations. DC grids and associated power transmission technologies provide opportunities for cost reduction and electricity grid impact minimization as the bulk power is concentrated at single point of entry. As a result, planning, optimization and impact can be studied and carefully controlled minimizing the risk of the investment as well as power system stability issues. This paper discusses the key technologies associated with DC grids for offshore wind farm applications.

  7. HTS technology - Generating the future of offshore wind power

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens

    2010-09-15

    Superconductive generator design is going to become a real competitive alternative in the future. In general, superconductor design is the most competitive out of Direct Drive Systems and best fulfils the needs of the upcoming market - especially in the offshore market, where WECs with higher nominal power up to 10MW are required. Low weight, high reliability and the very good grid behaviour are the main advantages of the superconductor generator design and will lead to lower costs. The other systems are restricted to a smaller energy output range and / or onshore wind power production business.

  8. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    Science.gov (United States)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  9. Tehachapi Wind Energy Storage Project - Technology Performance Report #3

    Energy Technology Data Exchange (ETDEWEB)

    Pinsky, Naum [Southern California Edison, Rosemead, CA (United States); O' Neill, Lori [Southern California Edison, Rosemead, CA (United States)

    2017-03-31

    The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing system capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.

  10. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    Science.gov (United States)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  11. The wind energy takes off

    International Nuclear Information System (INIS)

    Rapin, M.; Degobert, Ph.

    2010-01-01

    After having evoked the objectives defined for wind energy production by 2050, the important growth of wind energy in Europe and in other parts of the world, and its importance in terms of business and jobs, this article presents the Denmark model where the wind energy industry is a world leader but now faces the need of a new development model. It comments the investments and incentives implemented in Western countries after the first oil crisis. It outlines the increasing power of wind generators and their technological evolution, the development of offshore wind farms and their cost, and finally the intermittency problem and the case of small wind turbines

  12. Fiscal 1999 research report. Support project for formation of the energy and environment technology demonstration project (International joint demonstration research). FS study on construction of wind-farms in Sakhalin and Kurile Islands; 1999 nendo Sakhalin, Chishima retto ni okeru wind farm kensetsu no tame no FS kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For Sakhalin Electric Power's plan for coal fuel saving and stable power supply by introducing wind power generation for Sakhalin island in great difficulty, this research surveys its feasibility from the viewpoint of wind condition estimation, power system and wind turbine facility. The research result showed 3 promising candidate power generation sites with a sufficient profitability in Sakhalin island. In particular, 2 sites among them have excellent conditions from the viewpoint of traffic, transport and construction, and because these sites require only a small investment, earlier start of construction at these sites is expected. Since Kurile Islands and the Far East area also have excellent wind conditions, their wind resources are very promising. For total estimated wind power generation of 56MW, power system interconnection is possible with the existing substation facilities without any technical problem. Protective measures against the cold for wind turbine facilities are also possible by excellent technology of European suppliers. (NEDO)

  13. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    Science.gov (United States)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  14. Economics of a small wind pump system based on estimated petrol and diesel cost savings from use in Northern Nigeria

    OpenAIRE

    Ejieji, C. J.; Olayaki-Luqman, M.

    2013-01-01

    Eleven years of daily wind records were analyzed for the estimation of available wind energy for water pumping at three selected locations in Northern Nigeria, namely Jos, Kano and Sokoto. This formed the basis for investigating the economics of the use of an imported small wind pump under a deregulated energy market environment.  The estimated available energy for water pumping at the installation height of 9m was 190 kwh/m2/yr for Jos, 225 kwh/m2/yr for Kano and 348 kwh/m2/yr for Sokot...

  15. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    OpenAIRE

    Xavier Ortiz; David Rival; David Wood

    2015-01-01

    To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 10 4 to 2 × 10 5 . Measurements were made for angles of attack between 0°...

  16. Power converter with maximum power point tracking MPPT for small wind-electric pumping systems

    International Nuclear Information System (INIS)

    Lara, David; Merino, Gabriel; Salazar, Lautaro

    2015-01-01

    Highlights: • We implement a wind electric pumping system of small power. • The power converter allowed to change the operating point of the electro pump. • Two control techniques were implemented in the power converter. • The control V/f variable allowed to increase the power generated by the permanent magnet generator. - Abstract: In this work, an AC–DC–AC direct-drive power converter was implemented for a wind electric pumping system consisting of a permanent magnet generator (PMG) of 1.3 kW and a peripheral single phase pump of 0.74 kW. In addition, the inverter linear V/f control scheme and the maximum power point tracking (MPPT) algorithm with variable V/f were developed. MPPT algorithm seeks to extract water in a wide range of power input using the maximum amount of wind power available. Experimental trials at different pump pressures were conducted. With a MPPT tracking system with variable V/f, a power value of 1.3 kW was obtained at a speed of 350 rpm and a maximum operating hydraulic head of 50 m. At lower operating heads pressures (between 10 and 40 m), variable V/f control increases the power generated by the PMG compared to the linear V/f control. This increase ranged between 4% and 23% depending on the operating pressure, with an average of 13%, getting close to the maximum electrical power curve of the PMG. The pump was driven at variable frequency reaching a minimum speed of 0.5 times the rated speed. Efficiency of the power converter ranges between 70% and 95% with a power factor between 0.4 and 0.85, depending on the operating pressure

  17. Contribution to the chapter on wind power in: Energy technology perspectives 2008, IEA

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.; Clausen, Niels-Erik; Hjuler Jensen, P.

    2009-01-15

    Over the last 5 years the growth rate in wind energy has been as high as 30% an on average nearly 25% in all continents, and a considerable number of countries have very ambitious goals concerning their wind energy development, therefore it could be likely to cover as much as 20% of the world's electricity consumption by wind in 2030 and 35% in 2050, although on the shorter term growth is expected to take place mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power are being developed and better planning tools as well as other frameworks, which benefit the market for installation of wind turbines, are being implemented across all wind energy countries. The cost of wind-generated electricity has fallen steadily for the last two decades, driven largely by technological advances, increased production levels and the use of larger turbines. Between 1985 and 2005, production costs energy from of wind turbines decreased by nearly 100% in 2006 prices. The price rises seen in last three years due to capacity problems in the industry are expected to stop, once supply system constraints are overcome. Onshore wind is considered commercial at sites with good wind resources and grid access. Cost reductions in both turbines and infrastructure are expected to bring investment costs to 0.88 mill. Euro/MW in 2030 and 0.8 mill. Euro/MW in 2050. On the other hand, offshore wind is in pre-commercial development phase. Considerable costs improvements are expected in all areas making costs go down to 1. 4 mill. Euro/MW in 2030 and 1.3 mill. Euro/MW in 2050. Priority RD and D areas to foster continued growth in wind power are to increase the value and reduce uncertainties. This will mean further cost reductions on longer terms, enabling large-scale use by improved grid integration and storage facilities and minimizing environmental impact. (au)

  18. Joint Small Arms Technology Development Strategy for Joint Service Small Arms Science and Technology Investments

    Science.gov (United States)

    2016-01-26

    reduction efforts that need to be led by the Joint Services include One Way Luminescence, where the improvement in hit goes up for the follow on shots...new technology would enable spectral segment defeat, ranging from ultraviolet ( UV ), visible, Infrared (IR), radar, and radio and any combinations...program of work as directed via the Land Armaments Management Plan ( LAMP ) and advise the NAAG on systems and equipment aspects of dismounted operations

  19. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    Science.gov (United States)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  20. Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

    Science.gov (United States)

    Kim, Myeong Joon; Park, Kyung Sun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Rok Soon; Cho, Kyungsuk; Choi, Kyu-Cheol; Kim, Jaehun

    2017-12-01

    Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker ( 7.4 nT) than that of MCs ( 10.6 nT). Also, the average duration time and expansion speed of SMFRs are 2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of 10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

  1. WIND TUNNEL EVALUATION FOR CONTROL TRANSITION FROM ELEVATOR TO STABILATOR OF SMALL UAV

    Directory of Open Access Journals (Sweden)

    ZULHILMY SAHWEE

    2017-06-01

    Full Text Available Faulty control surface actuator in a small Unmanned Aerial Vehicles (sUAV could be overcome with a few techniques. Redundant actuators, analytical redundancy or combination of both are normally used as fault accommodation techniques. In this paper, the accommodation technique of faulty elevator actuator is presented. This technique uses a standby control surface as temporary control reallocation. Wind tunnel measurement facility is set up for the experimental validation and it is compared with FoilSim software. Flat plate airfoil which was used as horizontal stabilizer, is simulated using numerical model and it is validated using the wind tunnel test. Then, a flat airfoil is designed to be used as stabilator for the recovery of faulty elevator actuator. Results show the different deflection angle is needed when transferring from one control surface to another. From the analysis, the proposed method could be implemented without affecting the pitch stability during control surface transition. The alternate control surface accommodation technique proves to be promising for higher reliability sUAV in the case of a faulty on-board actuator.

  2. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  3. Small-wind-systems application analysis. Technical report and executive summary

    Science.gov (United States)

    1981-06-01

    A small wind energy conversion systems (SWECS) analysis was conducted to estimate the potential market for SWEC, or wind machines smaller than 100 kW for five selected applications. The goals were to aid manufacturers in attaining financing by convincing venture capital investors of the potential of SWECS and to aid government planners in allocating R and D expenditures that will effectively advance SWECS commercialization. Based on these goals, the study: (1) provides a basis for assisting the DOE in planning R and D programs that will advance the state of SWECS industry; (2) quantifies estimates of market size vs. installed system cost to enable industry to plan expansion of capacity and product lines; (3) identifies marketing strategies for industry to use in attaining financing from investors and in achieving sales goals; and (4) provides DOE with data that will assist in determining actions, incentives, and/or legislation required to achieve a commercially viable SWECS industry. The five applications were selected through an initial screening and priority-ranking analysis. The year of analysis was 1985, but all dollar amounts, such as fuel costs, are expressed in 1980 dollars. The five SWECS applications investigated were farm residences, non-farm residences, rural electric cooperatives, feed grinders, and remote communities.

  4. Using a "small wind" demonstration project to support public extension and education in renewable energy and STEM disciplines

    Science.gov (United States)

    O'brien-gayes, P. T.

    2012-12-01

    The City of North Myrtle Beach SC has erected three small-scale wind turbines for educational purposes. These turbines are tied directly into the local power grid. This allows for a unique study opportunity through which to teach renewable energy strategies. The study focuses on inter-site variability spread out over four miles of beach. Each location is subject to different wind fields responding to local structures. The study focuses on inter-site variability to cross reference energy production with the wind and weather conditions. Public and K-12 outreach is a primary objective of the program. Using demonstration turbines and by analyzing the wind, weather and site conditions outreach efforts are focused on highlighting renewable energy concepts. This also allows focus on STEM disciplines and critical thinking in analyzing data to compare the sites and different turbine production. Engaging in the STEM disciplines the projects crosses over science, technology, engineering, and mathematical boundaries creating an interdisciplinary scientific experience for students. In addition, this allows for introduction of techniques and developing technologies. It also allows students to consider challenges and possible solutions to issues of increased power production and cost efficiency. Through connecting the touchstone of experiential learning; a hands-on experience actively engages students in experimental application and problem solving. By looking locally at renewable energy in Horry County South Carolina students are engaged in seeing how projects impact science and economic development in the region. The Congressional Research Service (CRS) Report for Congress reports a considerable need expand and enhance the o preparation of students, teachers and practitioners in the areas of science, technology, engineering and mathematics. "When compared to other nations, the math and science achievement of U.S. pupils and the rates of STEM degree attainment appear

  5. From technology transfer to local manufacturing: China's emergence in the global wind power industry

    Science.gov (United States)

    Lewis, Joanna Ingram

    This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive

  6. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  7. Financial problems facing the manufacturers of small wind energy conversion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, T G

    1979-11-01

    The financial barriers faced by the manufacturers of small wind energy conversion systems (SWECS) are assessed and found to be similar to those faced by other start up businesses. However, these problems are found to be aggravated by the high expectations for accelerated SWECS industry growth in the face of moderate government support and lack of investment capital. The underlying conditions of limited SWECS entrepreneur business experience, the highly competitive venture capital market, the inability of existing financial institutions to aid infant busineses and public unawareness of SWECS are reviewed. Specific manufacturer-oriented recommendations and federal, state and regulatory policy-oriented recommendations are made. In addition, the dynamics of the SWECS commercialization process are assessed and the variety of financial institutions playing a role in this process is detailed. Issues related to inflation, tax policy, regulation and federal R and D procurement policies are analyzed.

  8. Use of Small-Scale Wind Energy to Power Cellular Communication Equipment

    Directory of Open Access Journals (Sweden)

    B. Plourde

    2011-12-01

    Full Text Available The recent increase in cellular communication coverage and usage has been remarkable. The increase has occurred throughout the globe, in both developed and developing regions. In fact, in some regions of the world, land-line communications are being avoided altogether as countries move into primarily mobile communication technologies. In order for cellular communication to function adequately, communication towers must be built with sufficient density to provide coverage. These towers have electrical requirements which are often not met with grid-based power. This study presents a novel design of a wind turbine which is designed to be positioned atop existing communication towers in order to provide local power for the tower. These turbines have vertical axes of rotation and other features which suit them for this highly specialized application. The study carried out here shows that these turbines are able to provide the required electrical power to fully satisfy the communication-tower electronics.

  9. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  10. Wind Technology: A Framework for the Evaluation of Innovations¿ Impacts on the Diffusion Potential

    NARCIS (Netherlands)

    Dinica, V.

    2010-01-01

    This paper proposes a framework based on which innovations in wind power technologies can be evaluated from the standpoint of their contribution to diffusion expansion. The framework helps build up a missing link between the technical literature on innovations and policy-oriented contributions

  11. Transition of wind power utilization technology in the 20th century; 20 seiki ni okeru furyoku riyo gijutsu no hensen

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, I. [Ashikaga Inst. of Tech., Tochigi (Japan)

    2000-04-01

    Windmills are one of the oldest prime movers and have been used for more than 700 years in Europe. The transition from low speed windmills for grain grinding and water pumping to high speed wind turbines for electric power generation had occurred at the end of 19{sup th} century. This paper, at first, reviews the windmill technologies and the researchers before 20th century. Then describes the back ground of how the wind power generator has existed and how the four pioneers developed their wind power generator. The historical developments of windmills to wind turbines in this century are studied focusing mainly on Danish activities. Then, the effort of the development of large wind turbine such as Smith-Putnum's first MW machine in U.S.A. and other mammoth machine concept are introduced. The new concept machines such as Savonius and Darrieus wind turbines in 1920s to 1930s are also explained. Finally, the novel technologies of wind turbine covering larger machines, variable speed generators, special wing sections for wind turbines, theoretical analysis method of wind turbine performance, offshore wind turbines, and wind turbine control technologies are stated. (author)

  12. Virginia Offshore Wind Technology Advancement Project (VOWTAP) DOE EE0005985 Final Technical Report Rev 1a

    Energy Technology Data Exchange (ETDEWEB)

    Pietryk, Steven [Dominion, Richmond, VA (United States)

    2017-01-31

    The primary purpose of the VOWTAP was to advance the offshore wind industry in the United States (U.S.) by demonstrating innovative technologies and process solutions that would establish offshore wind as a cost-effective renewable energy resource. The VOWTAP Team proposed to design, construct, and operate a 12 megawatt (MW) offshore wind facility located approximately 27 statute miles (mi) (24 nautical miles [nm], 43 kilometers [km]) off the coast of Virginia. The proposed Project would consist of two Alstom Haliade™ 150-6 MW turbines mounted on inward battered guide structures (IBGS), a 34.5-kilovolt (kV) alternating current (AC) submarine cable interconnecting the WTGs (inter-array cable), a 34.5-kV AC submarine transmission cable (export cable), and a 34.5 kV underground cable (onshore interconnection cable) that would connect the Project with existing Dominion infrastructure located in Virginia Beach, Virginia (Figure 1). Interconnection with the existing Dominion infrastructure would also require an onshore switch cabinet, a fiber optic cable, and new interconnection station to be located entirely within the boundaries of the Camp Pendleton State Military Reservation (Camp Pendleton). The VOWTAP balanced technology innovation with commercial readiness such that turbine operations were anticipated to commence by 2018. Dominion, as the leaseholder of the Virginia Wind Energy Area (WEA), anticipated leveraging lessons learned through the VOWTAP, and applying them to future commercial-scale offshore wind development.

  13. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  14. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  15. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  16. Information Technology in Small Medium Enterprise: Logistic and Production Processes

    Directory of Open Access Journals (Sweden)

    Maurizio Pighin

    2017-01-01

    Full Text Available This paper presents and discuss a survey which describes how small-medium enterprises (SMEs implement and use their information system with respect to their logistic and production processes. The study first describes the rationale of the research, then it identifies the characteristics of the companies and detects their general attitude towards information technology (IT. In the following section the paper presents a set of detailed processes to verify the structure and workflow of companies and how IT supports their processes. In the last part we study the influence of some company characteristics to effective use of processes and to different technological approaches, to support defined logistic and production processes. The novelty of the study and its interest, both in academic and institutional context as in the real world, resides in the opportunity to verify and understand the different attitudes of SMEs towards information technology in defining, organizing, planning and control their processes.

  17. An integrated control method for a wind farm to reduce frequency deviations in a small power system

    International Nuclear Information System (INIS)

    Kaneko, Toshiaki; Uehara, Akie; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu

    2011-01-01

    Output power of wind turbine generator (WTG) is not constant and fluctuates due to wind speed changes. To reduce the adverse effects of the power system introducing WTGs, there are several published reports on output power control of WTGs detailing various researches based on pitch angle control, variable speed wind turbines, energy storage systems, and so on. In this context, this paper presents an integrated control method for a WF to reduce frequency deviations in a small power system. In this study, the WF achieves the frequency control with two control schemes: load estimation and short-term ahead wind speed prediction. For load estimation in the small power system, a minimal-order observer is used as disturbance observer. The estimated load is utilized to determine the output power command of the WF. To regulate the output power command of the WF according to wind speed changing, short-term ahead wind speed is predicted by using least-squares method. The predicted wind speed adjusts the output power command of the WF as a multiplying factor with fuzzy reasoning. By means of the proposed method, the WF can operate according to the wind and load conditions. In the WF system, each output power of the WTGs is controlled by regulating each pitch angle. For increasing acquisition power of the WF, a dispatch control method also is proposed. In the pitch angle control system of each WTG, generalized predictive control (GPC) is applied to enhance the control performance. Effectiveness of the proposed method is verified by the numerical simulations.

  18. Cloud County Community College Wind Energy Technology Project and Renewable Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Bruce [Cloud County Community College, Concordia, KS (United States)

    2016-02-26

    Cloud County Community College's (CCCC) Wind Energy Technology (WET) program is a leader in the renewable energy movement across Kansas and the USA. The field of renewable energy is a growing industry which continues to experience high demand for career opportunities. This CCCC/DOE project entailed two phases: 1) the installation of two Northwind 100 wind turbines, and 2) the continued development of the WET program curriculum, including enhancement of the CCCC Blade Repair Certificate program. This report provides a technical account of the total work performed, and is a comprehensive description of the results achieved.

  19. Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors

    International Nuclear Information System (INIS)

    Daili, Yacine; Gaubert, Jean-Paul; Rahmani, Lazhar

    2015-01-01

    Highlights: • A new maximum power point tracking algorithm for small wind turbines is proposed. • This algorithm resolves the problems of the classical perturb and observe method. • The proposed method has been tested under several wind speed profiles. • The validity of the new algorithm has been confirmed by the experimental results. - Abstract: This paper proposes a modified perturbation and observation maximum power point tracking algorithm for small wind energy conversion systems to overcome the problems of the conventional perturbation and observation technique, namely rapidity/efficiency trade-off and the divergence from peak power under a fast variation of the wind speed. Two modes of operation are used by this algorithm, the normal perturbation and observation mode and the predictive mode. The normal perturbation and observation mode with small step-size is switched under a slow wind speed variation to track the true maximum power point with fewer fluctuations in steady state. When a rapid change of wind speed is detected, the algorithm tracks the new maximum power point in two phases: in the first stage, the algorithm switches to the predictive mode in which the step-size is auto-adjusted according to the distance between the operating point and the estimated optimum point to move the operating point near to the maximum power point rapidly, and then the normal perturbation and observation mode is used to track the true peak power in the second stage. The dc-link voltage variation is used to detect rapid wind changes. The proposed algorithm does not require either knowledge of system parameters or of mechanical sensors. The experimental results confirm that the proposed algorithm has a better performance in terms of dynamic response and efficiency compared with the conventional perturbation and observation algorithm

  20. Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2012-01-01

    Highlights: ► We propose a mathematical model for optimal sizing of small wind energy systems. ► No other previous work has considered all the aspects included in this paper. ► The model considers several parameters about batteries. ► Wind speed variability is considered by means of ARMA model. ► The results show how to minimize the expected energy that is not supplied. - Abstract: In this paper, a mathematical model for stochastic simulation and optimization of small wind energy systems is presented. This model is able to consider the operation of the charge controller, the coulombic efficiency during charge and discharge processes, the influence of temperature on the battery bank capacity, the wind speed variability, and load uncertainty. The joint effect of charge controller operation, ambient temperature, and coulombic efficiency is analyzed in a system installed in Zaragoza (Spain), concluding that if the analysis without considering these factors is carried out, the reliability level of the physical system could be lower than expected, and an increment of 25% in the battery bank capacity would be required to reach a reliability level of 90% in the analyzed case. Also, the effect of the wind speed variability and load uncertainty in the system reliability is analyzed. Finally, the uncertainty in the battery bank lifetime and its effect on the net present cost are discussed. The results showed that, considering uncertainty of 17.5% in the battery bank lifetime calculated using the Ah throughput model, about 12% of uncertainty in the net present cost is expected. The model presented in this research could be a useful stochastic simulation and optimization tool that allows the consideration of important uncertainty factors in techno-economic analysis.

  1. Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan

    Science.gov (United States)

    Mahmood, Khurram; Haroon, General

    2012-11-01

    Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.

  2. Modelling and Analysis of Radial Flux Surface Mounted Direct-Driven PMSG in Small Scale Wind Turbine

    Directory of Open Access Journals (Sweden)

    Theint Zar Htet

    2017-11-01

    Full Text Available This paper presents the modelling and analysis of permanent magnet synchronous generator (PMSG which are used in direct driven small scale wind turbines. The 3 kW PM generator which is driven directly without gear system is analyzed by Ansoft Maxwell 2D RMxprt. The performance analysis of generator includes the cogging torque in two teeth, induced coil voltages under load, winding current under load, airgap flux density distribution and so on. The modelling analysis is based on the 2D finite element techniques. In an electrical machine, an accurate determination of the geometry parameters is a vital role. The proper performance results of 3kW PMSG in small scale wind turbine can be seen in this paper.

  3. L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard

    2014-01-01

    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wi......) is used to carry out case studies using Matlab/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodeled dynamics and in the presence of parameter uncertainties and unknown disturbances.......This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wind...

  4. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can......%. The detailed characterization of the flow carried out indicates that the wind tunnel can be used to test small scale models of wind turbines....

  5. Solar wind sputtering of small bodies: Exospheres of Phobos and Deimos

    Science.gov (United States)

    Schaible, M. J.; Johnson, R. E.; Lee, P.; Benna, M.; Elphic, R. C.

    2014-12-01

    Solar wind, magnetospheric ions and micrometeorites impact the surface of airless bodies in the solar system and deposit energy in the surface material. Excitation and momentum transfer processes lead to sputtering or desorption of molecules and atoms, thereby creating a dynamic exosphere about an otherwise airless body. Ion mass spectrometry of ejected materials provides a highly sensitive method for detecting sputter products and determining the surface composition [Johnson and Baragiola, 1991; Elphic et al., 1991]. Though most of the material is sputtered as neutral gas, UV photons can ionize ejected neutrals and a small fraction of the ejecta leaves the surface in an ionized state. However, ions are deflected by the variably-oriented solar wind magnetic field and thus relating their detection to a surface location can be problematic. Here we estimate the average ion density close to the surface of Phobos or Deimos to predict whether modern mass spectrometry instruments [Mahaffey et al. 2014] would be able to obtain sufficient compositional information to place constraints on their origin. The open source Monte Carlo program SRIM.SR was used to simulate the effect of ions incident onto a surface representing several different meteorite compositions and gave estimates of the damage and sputtering effects. As much of the empirical data supporting SRIM results comes from sputtering of metallic and organic molecular targets which can differ greatly from materials that make up planetary surfaces, measurements of cohesive energies and enthalpies of formation were used to estimate the surface binding energies for minerals, though these can vary significantly depending on the chemical composition. Since these properties affect the sputtering yield, comparisons of simulations with laboratory measurements were made to test the validity of our estimates. Using the validated results and a constant fraction to estimate ion yields, the density of ejected ions and neutrals vs

  6. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-06-01

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some of these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.

  7. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  8. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    In developing a national energy strategy, the United States has a number of objectives, including increasing economic growth, improving environmental quality, and enhancing national energy security. Wind power contributes to these objectives through the deployment of clean, affordable and reliable domestic energy. To achieve U.S. wind generation objectives, the Wind and Water Power Program within the Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE) instituted the U.S. Offshore Wind: Removing Market Barriers Program in FY 2011. Accurate and comprehensive information on offshore wind resource characteristics across a range of spatial and temporal scales is one market barrier that needs to be addressed through advanced research in remote sensing technologies. There is a pressing need for reliable offshore wind-speed measurements to assess the availability of the potential wind energy resource in terms of power production and to identify any frequently occurring spatial variability in the offshore wind resource that may impact the operational reliability and lifetime of wind turbines and their components and to provide a verification program to validate the “bankability” of the output of these alternative technologies for use by finance institutions for the financing of offshore wind farm construction. The application of emerging remote sensing technologies is viewed as a means to cost-effectively meet the data needs of the offshore wind industry. In particular, scanning and buoy mounted LIDAR have been proposed as a means to obtain accurate offshore wind data at multiple locations without the high cost and regulatory hurdles associated with the construction of offshore meteorological towers. However; before these remote sensing technologies can be accepted the validity of the measured data must be evaluated to ensure their accuracy. The proposed research will establish a unique coastal ocean test-bed in the Mid-Atlantic for

  9. Performance assessment of a small wind turbine with crossflow runner by numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dragomirescu, A. [University Politehnica of Bucharest, Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, Splaiul Independentei 313, 060042 Bucharest (Romania)

    2011-03-15

    Most of the classical wind turbines are not able to start at wind speeds as low as 2-3 m/s. Other turbines, like Savonius, have a low maximum efficiency, which renders them useless in poor wind conditions. Therefore, new turbine designs are required to harvest wind power even when the wind speed is low. A wind turbine having a crossflow runner, similar to the Banki water turbine, is studied numerically in this work in order to estimate its performance. The results obtained suggest that this turbine has a considerable high starting torque and its maximum power coefficient is comparable to those of horizontal axis wind turbines. Based on the results obtained, some improvements of the design are proposed in order to further increase turbine performance. (author)

  10. Field Verification Program for Small Wind Turbines, Quartelry Report: 2nd Quarter, Issue No.1, October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tu, P.; Forsyth, T.

    2000-11-02

    The Field Verification Program for Small Wind Turbines quarterly report provides industry members with a description of the program, its mission, and purpose. It also provides a vehicle for participants to report performance data, activities, and issues during quarterly test periods.

  11. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.; Hamre, L.

    2014-01-01

    In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for two soil-structure interaction (SSI) models to assess the initial soil stiffness for offshore wind turbine foundations. This stiffness has a defining influence on the first

  12. Federal Wind Energy Program. Program summary. [USA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of the Federal Wind Energy Program is to accelerate the development of reliable and economically viable wind energy systems and enable the earliest possible commercialization of wind power. To achieve this objective for small and large wind systems requires advancing the technology, developing a sound industrial technology base, and addressing the non-technological issues which could deter the use of wind energy. This summary report outlines the projects being supported by the program through FY 1977 toward the achievement of these goals. It also outlines the program's general organization and specific program elements.

  13. Inventory of future power and heat production technologies. Partial report Small-scale technology; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Smaaskalig teknik

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt (Grontmij AB (Sweden))

    2008-12-15

    The following techniques for small-scale production have been selected to be studied more carefully, Fuel cells, Photovoltaics, Organic Rankine Cycle (ORC), and Wave power. Of the four selected technologies, fuel cells, solar cells, ORC are appropriate for use in so-called distributed generation, to be used close to a consumer, and possibly also for the production of electricity. Wave power is more like the wind in nature and is probably better suited to be used by power companies for direct input to the transmission grid. None of these technologies are now competitive against buying electricity from the Swedish grid. However, there are opportunities for all to reduce production costs so that they can become competitive alternatives in the future, depending largely on the general development of electricity prices, taxes, delivery reliability, etc. The four different technologies have different development stages and requirements that affect their possibility for a commercial breakthrough. These technologies will probably not all get a breakthrough in Sweden. Small-scale technologies will in the time period up to 2030 not be able to compete with the large-scale technologies that exist in today's power grid. In the longer term the situation may be different. The power system might be reduced in importance if the small scale technologies become cheap, reliable and easy to use. Electricity can then be produced locally, directly related to user needs

  14. Issues on Design Basis Knowledge in Small and Medium-sized Reactor Technology Development

    International Nuclear Information System (INIS)

    Subki, M. Hadid

    2013-01-01

    Summary: • Studies needed to evaluate the potential benefits of deploying SMRs in grid systems that contain large shares of renewable energy. • Studies needed to assess SMR “target costs” in future cogeneration markets, the benefits from coupling SMRs with wind turbines to stabilize the power grid, and impacts on sustainability measures from deployment. • There are technical challenges in integrating nuclear with RES, however “no solution that allows significant increases to renewable energy penetration in the grid will be simple” • SMR is an attractive option to enhance energy supply security in newcomer countries with small grids and less-developed infrastructure and in advanced countries requiring power supplies in remote areas and/or specific purpose; • Innovative SMR concepts have common technology development challenges, including regulatory and licensing frameworks

  15. Innovation Environment in Small Technology-Based Companies

    Directory of Open Access Journals (Sweden)

    Gabriela Gonçalves Silveira Fiates

    2010-11-01

    Full Text Available Innovation has been identified as a strategy to achieve competitive advantage, particularly in contexts of change and especially for technology-based companies – TBCs. Although the adoption of innovation strategies is not easy, small companies have an organizational environment more conducive to innovation. This article examines how managers and employees of small TBCs perceive aspects of the internal environment of innovation in the organization (culture, organizational structure, personnel and infrastructure and their suitability for the innovation process. This is a qualitative research from a multicase study on five companies located in an incubator. Data were collected through open interviews, using a semi-structured script, with one of the managers and two employees from each company. Data were analyzed from preliminary content analysis. The results showed some discrepancies between the perceptions of managers and employees about the issues investigated and their suitability for the innovation system, as well as between reality and the theoretical basis used.

  16. Potential Beneficiaries Of Cloud Accounting Technology: Small Or Large Companies?

    Directory of Open Access Journals (Sweden)

    Bogdan Ştefan Ionescu

    2013-05-01

    Full Text Available The article addresses the issue of Cloud Computing concept from the perspective of its implications on the business environment. In this respect we have analyzed the changes brought by the new technology which come to connect the discontinuities between the IT solutions adopted by small and medium organizations and those adopted by large corporations. The article analyzes the benefits and limitations of cloud both in terms of small companies and in terms of more developed entities. Whatever the size and type of organization but especially for SMEs Cloud provides a competitive advantage by providing access to affordable, reliable and flexible IT solutions that allows them to operate more efficiently among their competitors in the market.

  17. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  18. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  19. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    Science.gov (United States)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  20. On the continuum theory of the one-fluid solar wind for small Prandtl number

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1976-01-01

    The continuum theory for a single-species gas expanding into a vacuum (or near vacuum) is considered. The gas is assumed compressible, viscous and heat conducting with a constant Prandtl number and viscosity proportional to (temperature) sup(ω), ω > 1. The gas is under the influence of a gravitational field centred on the Sun. For small Prandtl number (which is realistic for the one-fluid solar wind), the method of matched asymptotic expansions is used to construct a solution describing the complete flow field from the surface of the Sun to infinity. The first two regions correspond to those found by Roberts and Soward (Proc. R. Soc. Lond.; A328:185 (1972)) for large thermal conductivity; the next involves the viscous terms, and in the fourth the viscous terms dominate. It it shown from the fourth region that either the flow remains supersonic but terminates at a finite point, or the flow becomes subsonic through a diffuse shock layer and approaches a non-zero pressure at infinity. It is seen that the existence of a critical point (subsonic/supersonic transition) together with a known pressure at infinity can uniquely determine the complete solution. However, to correspond with typical results near the Sun and at the Earth's orbit the pressure at infinity is found to be very much larger than that generally accepted. (author)

  1. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  2. MPPT Algorithm for Small Wind Systems based on Speed Control Strategy

    Directory of Open Access Journals (Sweden)

    Ciprian VLAD

    2008-07-01

    Full Text Available This paper presents experimental results of an autonomous low-power wind energy conversion system (WECS, based on a permanent-magnet synchronous generator (PMSG connected directly to the wind turbine. The purpose of this paper is to present an improving method for MPPT (Maximum Power Point Tracking algorithm based shaft rotational speed optimal control. The proposed method concern the variable delay compensation between measured wind speed from anemometer and wind shaft rotational speed proportional signal. Experimental results aiming to prove the efficiency of the proposed method are presented.

  3. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    Science.gov (United States)

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers.

  4. Grid-friendly wind power systems based on the synchronverter technology

    International Nuclear Information System (INIS)

    Zhong, Qing-Chang; Ma, Zhenyu; Ming, Wen-Long; Konstantopoulos, George C.

    2015-01-01

    Highlights: • A grid-friendly wind power system that uses the synchronverter technology is proposed. • Both the rotor-side and the grid-side converters act as synchronverters. • The complete generator–motor–generator system improves the performance under grid faults. • Real-time digital simulation results verify the effectiveness of the proposed method. - Abstract: Back-to-back PWM converters are becoming a realistic alternative to conventional converters in high-power wind power applications. In this paper, a control strategy based on the synchronverter technology is proposed for back-to-back PWM converters. Both converters are run as synchronverters, which are mathematically equivalent to the conventional synchronous generators. The rotor-side converter is responsible for maintaining the DC link voltage and the grid-side converter is responsible for the maximum power point tracking (MPPT). As the two converters are operated using the synchronverter technology, the formed wind power system becomes more friendly to the grid. Extensive real-time digital simulation results are presented to verify the effectiveness of the proposed method under normal operation and grid-fault scenarios

  5. Design of low noise airfoil with high aerodynamic performance for use on small wind turbines

    Institute of Scientific and Technical Information of China (English)

    Taehyung; KIM; Seungmin; LEE; Hogeon; KIM; Soogab; LEE

    2010-01-01

    Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.

  6. Climatological changing effects on wind, precipitation and erosion: Large, meso and small scale analysis

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    The Fourier transformation analysis for monthly average values of meteorological parameters has been considered, and amplitudes, phase angles have been calculated by using ground measurements in Turkey. The first order harmonics of meteorological parameters show large scale effects, while higher order harmonics show the effects of small scale fluctuations. The variations of first through sixth order harmonic amplitudes and phases provide a useful means of understanding the large and local scale effects on meteorological parameters. The phase angle can be used to determine the time of year the maximum or minimum of a given harmonic occurs. The analysis helps us to distinguish different pressure, relative humidity, temperature, precipitation and wind speed regimes and transition regions. Local and large scale phenomenon and some unusual seasonal patterns are also defined near Keban Dam and the irrigation area. Analysis of precipitation based on long term data shows that semi-annual fluctuations are predominant in the study area. Similarly, pressure variations are mostly influenced by semi-annual fluctuations. Temperature and humidity variations are mostly influenced by meso and micro scale fluctuations. Many large and meso scale climate change simulations for the 21st century are based on concentration of green house gases. A better understanding of these effects on soil erosion is necessary to determine social, economic and other impacts of erosion. The second part of this study covers the time series analysis of precipitation, rainfall erosivity and wind erosion at the Marmara Region. Rainfall and runoff erosivity factors are defined by considering the results of field measurements at 10 stations. Climatological changing effects on rainfall erosion have been determined by monitoring meteorological variables. In the previous studies, Fournier Index is defined to estimate the rainfall erosivity for the study area. The Fournier Index or in other words a climatic index

  7. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  8. IEA Wind Task 26. Wind Technology, Cost and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States. 2007 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    Vitina, Aisma [Ea Energy Analyses, Copenhagen (Denmark); Luers, Silke [Deutsche WindGuard, Varel (Germany); Wallasch, Anna-Kathrin [Deutsche WindGuard, Varel (Germany); Berkhout, Volker [Fraunhofer IWES (Germany); Duffy, Aidan [Dublin Inst. of Technology and Dublin Energy Lab (Ireland); Cleary, Brendan [Dublin Inst. of Technology and Dublin Energy Lab (Ireland); Husabo, Leif I. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Weir, David E. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Lacal-Arantegui, Roberto [European Commission, Ispra (Italy). Joint Research Centre; Hand, M. Maureen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lantz, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Belyeu, Kathy [Belyeu Consulting, Tacoma Park, MD (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-12

    This report builds from a similar previous analysis (Schwabe et al., 2011) exploring the differences in cost of wind energy in 2008 among countries participating in IEA Wind Task 26 at that time. The levelized cost of energy (LCOE) is a widely recognized metric for understanding how technology, capital investment, operations, and financing impact the life-cycle cost of building and operating a wind plant. Schwabe et al. (2011) apply a spreadsheet-based cash flow model developed by the Energy Research Centre of the Netherlands (ECN) to estimate LCOE. This model is a detailed, discounted cash flow model used to represent the various cost structures in each of the participating countries from the perspective of a financial investor in a domestic wind energy project. This model is used for the present analysis as well, and comparisons are made for those countries who contributed to both reports, Denmark, Germany, and the United States.

  9. Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions

    Science.gov (United States)

    Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin

    2018-03-01

    Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.

  10. Small and Medium Sized Reactors: Driving Forces and Technology Development

    International Nuclear Information System (INIS)

    Gowin, P.J.; Kupitz, J.

    2002-01-01

    There will be growing demands for energy in the coming decades. One aspect of particular importance is that prospects for nuclear energy will to a considerable extent be influenced by developing countries. Since population growth will occur primarily in developing countries nuclear energy cannot play a significant global role without being a viable option in these countries. Since new power plants to be built will have to be compatible with regional electricity grids, this may result in a greater focus on plants in the small and medium range, defined by the International Atomic Energy Agency (IAEA) to produce up to 700 Megawatt of electrical power. This paper first examines the driving forces that could influence the development of nuclear energy in general and of Small and Medium Sized Reactors (SMRs) in particular in the next decades and identifies key factors in that process. Concerns over climate change may to a certain extent influence the discussion on future energy options. Other factors of equal importance for the future of nuclear are a continued emphasis on maintaining high safety standards, the implementation of acceptable solutions for spent fuel and radioactive waste disposal and a globally accepted non-proliferation regime, factors that may in turn have an impact on public acceptance. Economic competitiveness of nuclear energy is an additional important factor, and without being commercially viable, no energy source can in the long run represent a major and stable component in a competitive energy sector. The introduction of SMRs in developing countries poses additional challenges, such as investment limitations. Technology development plays an important role in keeping the nuclear option open for countries wishing to use nuclear reactors to meet their energy needs, and advances in reactor design will be important to enable a significant nuclear component in developing countries. This paper considers the contribution that nuclear science and

  11. On the continuum theory of the two-fluid solar wind for small mass ratio

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1976-01-01

    The continuum theory for the two-fluid solar wind is considered. The fluid is assumed to be a fully ionized neutral plasma of electrons and protons which is compressible, viscous and heat conducting with a constant Prandtl number and a viscosity proportional to (temperature) sup(ω), ω > 1. The gas is under the influence of a gravitational field centred on the Sun. It is assumed that the bulk velocity (at any point) is the same for both electrons and protons, but that an energy transfer can occur between the two species due to binary (Coulomb) collisions. The equations are non-dimensionalized and it is shown that the natural parameter to use in the construction of an asymptotic solution is the mass ratio. The limit mass ratio → zero corresponds to the small Prandtl number limit for the one-fluid theory developed by Johnson (Proc. R. Soc. (Lond) A; 347:537 (1976)). By using the method of matched asymptotic expansions, a solution is constructed that starts from the base of the corona and extends out to a diffuse shock layer. The results obtained exactly parallel the one-fluid theory and many details are identified and absorbed into this analysis. It is shown how the temperatures in the corona eventually become the well-known behaviours: rsup(-2/7) (electrons), rsup(-6/7) (protons) when ω = 5/2 and r is the radial coordinate. However, the continuum theory will probably have failed in the shock layer region - the more so since this occurs at about 100 light years distance - and further mathematical details are omitted. The numerical estimates given here compare tolerably well with the observed data and very favourably with other work on the same equations. (author)

  12. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  13. Modal analysis of a small vertical axis wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Ion NILA

    2012-06-01

    Full Text Available This paper reports a brief study on free vibration analysis for determining parameters such as natural frequencies and mode shapes for vertical axis wind turbines (VAWT for an urban application. This study is focused on numerical work using available finite element software. For further understanding of the wind turbine dynamic analysis, two vibration parameters of dynamic response have been studied, namely natural frequencies and mode shapes.Block Lanczos method has been used to analyze the natural frequency while wind turbine mode shapes have been utilized because of their accuracy and faster solution. In this problem 12 modes of structure have been extracted.

  14. Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sinha, Rakesh

    2011-01-01

    The low cost wind turbines with timber blades represent a good solution for the decentralized energy production in off-grid regions of developing countries. This paper summarizes the results of investigations on the mechanical testing and choice of timber for wind blades, testing of different...... of the blades and turbines. It was further demonstrated that the low cost wind turbines with timber blades represent a promising and viable option for the decentralized energy production in developing countries, which also opens new areas for businesses....

  15. Exploring technology diffusion in emerging markets – the role of public policy for wind energy

    International Nuclear Information System (INIS)

    Friebe, Christian A.; Flotow, Paschen von; Täube, Florian A.

    2014-01-01

    This study challenges the implicit assumption of homogeneity in national institutional contexts made in past studies of (renewable) energy policy. We propose that institutional differences matter by focusing on several technology-specific and generic policy factors that can foster technology diffusion through private sector activity. More specifically, we explore perceptions of early adopters in emerging economy contexts using wind park project developers as an example. By applying a parsimonious method for our questionnaire as well as qualitative data we make several contributions: Methodologically, we introduce Maximum Difference Scaling to the energy policy domain. Empirically, we identify several public influences on private investment, and assess their relative importance. This leads to new insights challenging findings from industrialized economies; we identified additional institutional barriers to diffusion, hence, the requirement of a combination of technology-specific and generic policy measures. - Highlights: • Explorative qualitative and quantitative study of project developers in emerging markets. • Identifies influencing factors for technology diffusion regarding wind farms. • Predictable public authorities and well-implemented public processes attract intern. project developers. • Feed-in-Tariffs and grid access guarantees are particularly appealing

  16. Technology selection for offshore underwater small modular reactors

    International Nuclear Information System (INIS)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil

    2016-01-01

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO 2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options

  17. Technology selection for offshore underwater small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States)

    2016-12-15

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO{sub 2} cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  18. Technology Selection for Offshore Underwater Small Modular Reactors

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1 a lead–bismuth fast reactor based on the Russian SVBR-100; (2 a novel organic cooled reactor; (3 an innovative superheated water reactor; (4 a boiling water reactor based on Toshiba's LSBWR; and (5 an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50–80% with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  19. Influences of some parameters on the performance of a small vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Dumitrache Alexandru

    2016-01-01

    Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.

  20. 76 FR 56735 - Small Takes of Marine Mammals Incidental to Specified Activities; Cape Wind's High Resolution...

    Science.gov (United States)

    2011-09-14

    ... sound propagation. Cape Wind Associates would use a boomer to obtain deeper resolution of geologic layering that cannot be imaged by the chirp. An Applied Acoustics 200, 300, or similar model would be used...

  1. Influence of Wind Plant Ancillary Frequency Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    Since large-scale wind farms are increasingly connected to modern power grids, the transmission system operators put more requirements as part of the grid codes on the integration of wind farms. System frequency control which is normally provided by conventional synchronous generators becomes a c...... ratio values of the dominant oscillation modes within the connected power system. All the calculations and simulations are conducted in DIgSILENT PowerFactory 14.0....

  2. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  3. Offshore Wind Power Plant Technology Catalogue - Components of wind power plants, AC collection systems and HVDC systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Antonios Cutululis, Nicolaos

    2017-01-01

    Traditionally, Offshore Wind Power Plants (OWPPs) are connected through many com-ponents as shown in the figure 1. An OWPP consists of controllable, variable speed Wind Turbines (WTs). These WTs are connected through Medium Voltage (MV) sub-marine cables typically at voltage level of upto 33-66 k...... for the cables as well reduce the power losses through them....

  4. Evaluation small scale, grid connected wind and solar distributed generation systems in Jordan

    International Nuclear Information System (INIS)

    Naji, G. J.; Tahboub, K. K.; Jalham, I. S.

    2011-01-01

    In this paper, the potential of utilizing wind and solar Private Distributed Generation (PDG) for utility interactive systems is investigated for 11 selected stations (sites) in Jordan. Six customer categories are considered: residential, office, commercial mall, school, hospital and hotel. The main goal of this study was to evaluate the potential of utilizing different grid connected PDG under different conditions such as their location, size, served building category, number of people who share and own the equipment and system type whether wind, solar or hybrid based. It was found that solar systems are still not attractive for all location due to their associated high cost, while wind systems would vary widely depending on the customer category, location and the size of the equipment. Based on the Benefit to Cost ratio criterion, the most attractive sites for installing wind PDGS for residential communities are Ras Muneef, Mafraq, Aqaba, Irbid and H5, while it doesn't seem attractive at Amman,Shoubak, Ghor Essafi, Deir Alla, Maan and H4. On the other hand, the wind on-grid PDGS is very attractive at Ras Muneef, mafraq and Aqaba for commercial buildings, less attractive at H5 and irbid, while it's not attractive at the other sites. The attraction for hybrid PDG systems is closer to those of wind systems alone. (authors).

  5. Wind/Hybrid Electricity Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Lori [Iowa Department of Natural Resources, Des Moines, IA (United States)

    2001-03-01

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  6. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends

  7. Barriers to Technology Use in Large and Small School Districts

    Science.gov (United States)

    Francom, Gregory M.

    2016-01-01

    Barriers to effective technology integration come in several different categories, including access to technology tools and resources, technology training and support, administrative support, time to plan and prepare for technology integration, and beliefs about the importance and usefulness of technology tools and resources. This study used…

  8. The axial flux generator of the Octopus Wind Technology. A feasibility study; De axiale flux-generator van Octopus Wind Technology. Een haalbaarheidsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Van Schie, R. [ECN Technologische Services and Consultancy, Petten (Netherlands)

    2001-02-01

    This report presents the results of a feasibility study of a generator concept for wind turbines that was suggested by Octopus Wind Technology (OWT). In this concept the following ideas were implemented: (1) The generator is a direct-drive generator with permanent magnets; (2) (Sliding) bearings are integrated in the generator on the circumference; (3) Rotor and stator are divided into (radial) modular segments; (4) The generator has an axial magnetic flux; (5) The blades of the turbine are mounted between the rotors. The result of this study is that the OWT-concept has to be changed. It is better to mount the turbine blades on a compact hub than on the large rotor ring. Also in this concept there is no reason to choose for the axial magnetic flux. The use of modules, of permanent magnets and a large bearing are very useful developments in wind turbines and are already examined or implemented. The application of a bearing on an even larger diameter of approximately 3,5 m still is (very) expensive. Hydrostatic bearings are the sliding bearings to implement on this diameter and have the advantage of being modular as well. The drawback of this bearing type is the use of oil. Jeumont uses axial modules in their generator design. The objective is to use the same modules in turbines with different power ratings. In the OWT-concept the modules are radial and the aim is ease of production, transport and maintenance. This idea was already patented in December 1998 (US-patent 5 844 341) for a radial flux machine and that appeared to be the logical choice. It is concluded that after the desired changes the OWT-concept has insufficient unique characteristics to protect the design. Most of the good ideas in the OWT-concept were already implemented in the research work following the mentioned patent and in the design of the LW 50/750. A combination of these ideas could be a good basis for a new turbine design, but a detailed analysis is needed to examine the true perspective of

  9. Requirements and Technology Advances for Global Wind Measurement with a Coherent Lidar: A Shrinking Gap

    Science.gov (United States)

    Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David

    2007-01-01

    Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.

  10. Economics of a small wind pump system based on estimated petrol and diesel cost savings from use in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    C. J. Ejieji

    2013-08-01

    Full Text Available Eleven years of daily wind records were analyzed for the estimation of available wind energy for water pumping at three selected locations in Northern Nigeria, namely Jos, Kano and Sokoto. This formed the basis for investigating the economics of the use of an imported small wind pump under a deregulated energy market environment. The estimated available energy for water pumping at the installation height of 9m was 190 kwh/m2/yr for Jos, 225 kwh/m2/yr for Kano and 348 kwh/m2/yr for Sokoto. The monetary value of the available wind energy was considered as saved energy cost. The saved cost was obtained in terms of the unsubsidized cost of the petrol and diesel that an internal combustion engine (ICE would consume to produce energy equivalent to the available wind energy. At the prevailing interest and inflation rates of 21.96 % and 12.1% respectively, and unsubsidized prices of N 131.32/l and N 140.23/l for petrol and diesel respectively, investment in the wind pump was not found to be economically competitive relative to using a pump with ICE prime mover at the three locations unless the cost of the pump was subsidized. For Sokoto, the estimated subsidy for initial cost of the wind pump required for the investment to be competitive relative to the use of a pump driven by a petrol ICE was 16%. Relative to a pump driven by a diesel ICE, the required subsidy was 24%. The corresponding subsidy estimates for Kano were 48 % and 51 % respectively. For Jos, it was 56% relative to the use of a pump driven by a petrol ICE and 60 % relative to that driven by a diesel ICE. Considering the potential environmental and social and environmental benefits however, subsidy support by government for local manufacturing of the pumps was recommended since shipping cost and custom tariff constituted over 36% of the initial cost of the wind pump.

  11. Low-capacity wind power systems. Technology, legal aspects, economic efficiency; Kleine Windenergieanlagen. Technik - Recht - Wirtschaftlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Eggersgluess, Walter [Landwirtschaftskammer Schleswig-Holstein, Rendsburg (Germany); Eckel, Henning; Hartmann, Stefan [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt (Germany)

    2012-07-01

    In what conditions will investments in a low-capacity wind power plant be profitable? This leaflet intends to provide a decision aid for farmers and other land owners interested in thes subject. It outlines the technology of low-capacity wind power systems, goes into site selection, expected yields and legal boundary conditions. The most important economic data are defined, and the economic efficiency of wind power plants of 7.5 to 25 kW is discussed. The text is supplemented by useful internet links. [German] Unter welchen Bedingungen rechnet sich die Investition in eine kleine Windenergieanlage? Das Heft hilft Landwirten sowie allen anderen investitionswilligen Grundstueckseigentuemern fuer sich Antworten auf diese Fragen zu finden und die richtigen Entscheidungen zu treffen. Es gibt einen Ueberblick ueber die Technik kleiner Windenergieanlagen, beschreibt was den richtigen Standort auszeichnet, mit welchen Energieertraegen gerechnet werden kann und welchen rechtlichen Rahmenbedingungen Bau und Betrieb der Anlagen unterliegen. Die wichtigsten wirtschaftlichen Kenngroessen werden definiert und die Wirtschaftlichkeit kleiner Windenergieanlagen anhand von Beispielanlagen im Leistungsbereich von 7,5 bis 25 kW diskutiert. Nuetzliche Internetadressen zum Thema Windenergie runden das Informationsangebot ab.

  12. Strategies to overcome barriers for cleaner generation technologies in small developing power systems: Sri Lanka case study

    International Nuclear Information System (INIS)

    Wijayatunga, Priyantha D.C.; Siriwardena, Kanchana; Fernando, W.J.L.S.; Shrestha, Ram M.; Attalage, Rahula A.

    2006-01-01

    The penetration of cleaner and energy efficient technologies in small power systems such as the one in Sri Lanka has encountered many problems. This has caused major concerns among the policy makers, mainly in the context of the growing need to reduce harmful emissions in the electricity supply industry from the point of view of both local environmental pollution as well as the global warming concerns. This paper presents the outcome of a study involved in identifying and ranking the barriers to the promotion of cleaner and energy efficient technologies and strategies to overcome these barriers in Sri Lanka. Barriers for renewable energy based systems such as wind and wood fuel fired plants (dendro thermal power) and cleaner technologies such as liquefied natural gas (LNG) fired combined cycle and IGCC (coal) were identified based on a survey. A direct assessment multi-criteria decision making method called Analytic Hierarchy Process (AHP) was used to rank the barriers. The most effective strategies are proposed to address the three major barriers for each of these technologies based on extensive discussions with all the stakeholders in the electricity industry. It was found that lack of financing instruments, high initial cost and lack of assurance of resource supply or availability are the main barriers for renewable technologies. As for cleaner fuel and technology options associated with conventional generation systems, the lack of a clear government policy, uncertainty of fuel supplies and their prices and the reliability of the technologies themselves are the major barriers. Strategies are identified to overcome the above barriers. Establishment of a proper feed in tariff, geographical diversification of installations and capacity building in commercial banks are suggested for wind power. Investment incentives, streamlining of wood production and research on site identification are proposed for wood fuel fired plants. Also the study suggests delayed

  13. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  14. The small amplitude of density turbulence in the inner solar wind

    Directory of Open Access Journals (Sweden)

    S. R. Spangler

    2003-01-01

    Full Text Available Very Long Baseline Interferometer (VLBI observations were made of radio sources close to the Sun, whose lines of sight pass through the inner solar wind (impact parameters 16-26 RE. Power spectra were analyzed of the interferometer phase fluctuations due to the solar wind plasma. These power spectra provide information on the level of plasma density fluctuations on spatial scales of roughly one hundred to several thousand kilometers. By specifying an outer scale to the turbulence spectrum, we can estimate the root-mean-square (rms amplitude of the density fluctuations. The data indicate that the rms fluctuation in density is only about 10% of the mean density. This value is low, and consistent with extrapolated estimates from more distant parts of the solar wind. Physical speculations based on this result are presented.

  15. Analysis of Debris Trajectories at the Scaled Wind Farm Technology (SWiFT) Facility

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Sandia National Laboratories operates the Scaled Wind Farm Technology Facility (SWiFT) on behalf of the Department of Energy Wind and Water Power Technologies Office. An analysis was performed to evaluate the hazards associated with debris thrown from one of SWiFT’s operating wind turbines, assuming a catastrophic failure. A Monte Carlo analysis was conducted to assess the complex variable space associated with debris throw hazards that included wind speed, wind direction, azimuth and pitch angles of the blade, and percentage of the blade that was separated. In addition, a set of high fidelity explicit dynamic finite element simulations were performed to determine the threshold impact energy envelope for the turbine control building located on-site. Assuming that all of the layered, independent, passive and active engineered safety systems and administrative procedures failed (a 100% failure rate of the safety systems), the likelihood of the control building being struck was calculated to be less than 5/10,000 and ballistic simulations showed that the control building would not provide passive protection for the majority of impact scenarios. Although options exist to improve the ballistic resistance of the control building, the recommendation is not to pursue them because there is a low probability of strike and there is an equal likelihood personnel could be located at similar distances in other areas of the SWiFT facility which are not passively protected, while the turbines are operating. A fenced exclusion area has been created around the turbines which restricts access to the boundary of the 1/100 strike probability. The overall recommendation is to neither relocate nor improve passive protection of the control building as the turbine safety systems have been improved to have no less than two independent, redundant, high quality engineered safety systems. Considering this, in combination with a control building strike probability of less than 5/10,000, the

  16. Catching the Wind in a Bottle: Collection Development for Wind Energy Technology Programs at Universities and Colleges

    Science.gov (United States)

    Johnson-Renvall, Poppy

    2009-01-01

    This article aims to assist information professionals in developing a resource collection that serves Wind Energy students in academic settings. Traditional as well as Internet resources should be utilized in order to meet the needs of this unique student population.

  17. Evaluation of a small-scale wind power plant; Utvaerdering av smaaskaligt vindkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Arvidsson, Ulf; Hilding, Sten [Elforsk AB, Stockholm (Sweden)

    2001-12-01

    The aim of this work is to evaluate the electrical performance of the 20 kW Pitch Wind turbine. The work was originally intended to focus on evaluating the first machine in a series of three, which should be a machine ready for series production. However, the control system of the machine was not tested and verified so instead a large part of the work has been to check that the electrical system and the control system operates as intended and to adjust and suggest improvements. The design includes a self-regulating variable speed wind turbine coupled to a permanent magnet generator and a converter.

  18. Small scale experimental study of the dynamic response of a tension leg platform wind turbine

    DEFF Research Database (Denmark)

    Hansen, Anders Mandrup; Laugesen, Robert; Bredmose, Henrik

    2014-01-01

    the pitch stiffness and thereby the nacelle displacements. Inclining the tendons towards the wind turbine reduces the nacelle displacements significantly and reduces the occurrence of slack tendons, but increases the inline tilt-motion of the rotor. Application of a very stiff mooring configuration...... increases the occurrence of slack tendons and the magnitude of the pitch accelerations. In a robust commercial design, however, slack tendons must be avoided. The experiments demonstrate the ability of the wind turbine model and the experimental setup to give insight to the dynamic characteristics...

  19. When land breezes collide: Converging diurnal winds over small bodies of water

    OpenAIRE

    Gille, ST; Llewellyn Smith, SG

    2014-01-01

    © 2013 Royal Meteorological Society. Over enclosed and semi-enclosed bodies of water, the land-breeze/sea-breeze circulation is expected to be modified by the presence of opposing coastlines. These effects are studied using satellite scatterometer surface wind observations from the QuikSCAT and ADEOS-2 tandem mission from April-October 2003. Winds are studied for six bodies of water: the Red Sea, the Gulf of California, the Mediterranean, the Adriatic Sea, the Black Sea and the Caspian Sea. T...

  20. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2008, Wind & Hydropower Technologies Program (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-01

    As part of its Native American outreach, DOE?s Wind Powering America program produces a newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. This issue features an interview with Dave Danz, a tribal planner for the Grand Portage Band of Chippewa in northeastern Minnesota, and a feature on the new turbine that powers the KILI radio station on the Pine Ridge Reservation.

  1. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  2. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.; Oteri, F.

    2011-05-01

    This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  3. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.; Sinclair, K.

    2011-11-01

    This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  4. Distributed Wind Market Applications

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  5. Cream beaters, lawn mowers or Wokkels? A study on the implementation of small wind turbines in the built environment of Noord-Brabant

    International Nuclear Information System (INIS)

    Vermeer, E.

    2003-11-01

    The Dutch Projectbureau Energie 2050 aims to gain more insight in the technical, economic, social, legal and policy-related aspects of small wind turbines in the built environment. The aim of this report is to formulate recommendations for Energie 2050 with respect to the implementation of small wind turbines in the built environment of the province Noord-Brabant, which can serve as a basis for starting up concrete projects. [mk] [nl

  6. Design and preliminary testing of a MEMS microphone phased array for aeroacoustic testing of a small-scale wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Bale, A.; Orlando, S.; Johnson, D. [Waterloo Univ., ON (Canada). Wind Energy Group

    2010-07-01

    One of the barriers preventing the widespread utilization of wind turbines is the audible sound that they produce. Developing quieter wind turbines will increase the amount of available land onto which wind farms can be built. Noise emissions from wind turbines can be attributed to the aerodynamic effects between the turbine blades and the air surrounding them. A dominant source of these aeroacoustic emissions from wind turbines is known to originate at the trailing edges of the airfoils. This study investigated the flow physics of noise generation in an effort to reduce noise from small-scale wind turbine airfoils. The trailing edge noise was studied on scale-models in wind tunnels and applied to full scale conditions. Microphone phased arrays are popular research tools in wind tunnel aeroacoustic studies because they can measure and locate noise sources. However, large arrays of microphones can be prohibitively expensive. This paper presented preliminary testing of micro-electrical mechanical system (MEMS) microphones in phased arrays for aeroacoustic testing on a small wind turbine airfoil. Preliminary results showed that MEMS microphones are an acceptable low-cost alternative to costly condenser microphones. 19 refs., 1 tab., 11 figs.

  7. Multibrid technology - a significant step to multi-megawatt wind turbines

    Science.gov (United States)

    Siegfriedsen, S.; Böhmeke, G.

    1998-12-01

    To fulfil the significant economic potential for offshore wind energy, it is essential that the largest possible installations must be allowed to come into use. Infrastructure investments for foundations and energy transport are only slightly dependent on the size of the installation, so these costs become proportionally smaller as the installed power output increases. This article puts forward a technologically novel type of development for a drive train design, specifically introduced for a 5 MW installation. The concept is especially suited for offshore application and the components are designed for this purpose. The usual way of modifying onshore plants partially and using them in the sea has been left with the present proposals. The design comprises a single-stage planetary gear, into which the rotor bearing is integrated, and a generator rotating at slow speed. Both components are assembled into a compact unit and are characterized by low wear and complete enclosure. New solutions are also proposed for the cooling of the machinery and the yaw system, offering particular advantages in offshore application. The advantages of the new technology are brought out from system comparisons with both a conventional plant configuration with a multi-stage gear and a high-speed generator, and also a combination with a direct drive generator in the 1·5 MW class. A particular design solution, worked through for a 5 MW installation, is presented and described in detail. At 31 kg kW-1, the specific tower head mass achieves a value that has not previously been realized in this power output class. As a result of the advantages that are brought together by this technology, both investment and operating costs are lowered, particularly for offshore applications. Implementation of this technology can thus provide a further stimulus for progress in wind energy utilization. Copyright

  8. Inventory of future power and heat production technologies. Partial report Wind Power; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Vindkraft

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik [Risoe National Laboratory, Roskilde (Denmark)

    2008-12-15

    The development of the wind energy technology has been very successful from the 1970s and up till now. Initially there was a battle between wind turbine concepts, but the commercial winner today is the three-bladed horizontal axis, upwind, electricity producing and grid connected wind turbine with availability on mature markets somewhere around 99%. An important contributor to the growth of the European market for wind energy technology has been EU framework legislation combined with legislation at the national level. The binding target for renewable energy in Sweden is proposed to be 49% of the final energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment cost of 1.230 Euro/kW with a typically variation from approximately 1000 Euro/kW to approximately 1400 Euro/kW. The calculated costs per kWh wind generated power range from approximately 0.07-0.10 Euro/kWh at sites with low average wind speeds to approximately 0.05-0.065 Euro/kWh at good coastal positions, with an average of approximately 0.07 Euro/kWh at a medium wind site. Offshore costs are largely dependent on weather and wave conditions, water depth, and distance

  9. Literacy and Technology: Integrating Technology with Small Group, Peer-led Discussions of Literature

    Directory of Open Access Journals (Sweden)

    Genya Coffey

    2012-03-01

    Full Text Available This review examines research of computer-mediated small group discussion of literature. The goal of this review is to explore several instructional formats for integrating print-based and new literacies skills. First, the theoretical foundations for the shift from teacher-led to student led discussion are outlined. Research exploring ways in which technology has been infused into several common elements of literature discussion groups are presented next. Benefits and challenges of such integration are highlighted and suggestions for future research are presented.

  10. ewec 2007 - Europe's premier wind energy event

    International Nuclear Information System (INIS)

    Chaviaropoulos, T.

    2007-01-01

    This online collection of papers - the ewec 2007 proceedings - reflects the various sessions and lectures presented at the ewec wind-energy convention held in Milan in 2007. The first day's sessions looked at the following topics: Renewable Energy Roadmap, the changing structure of the wind industry, politics and programmes, aerodynamics and innovation in turbine design, wind resources and site characterisation (2 sessions), energy scenarios, harmonisation of incentive schemes, structural design and materials, forecasting, integration studies, integrating wind into electricity markets, wind-turbine electrical systems and components, as well as loads, noise and wakes. The second day included sessions on offshore: developments and prospects, extreme wind conditions and forecasting techniques, small wind turbines, distributed generation and autonomous systems cost effectiveness, cost effectiveness of wind energy, financing wind energy concepts, wind and turbulence, wind power plants and grid integration, offshore technology, global challenges and opportunities, aero-elasticity, loads and control, operations and maintenance, carbon trading and the emission trading schemes, investment strategies of power producers, wind power plants and grid integration, wind turbine electrical systems and components, and wakes. The third day offered sessions on environmental issues, condition monitoring, operation and maintenance, structural design and materials, the Up-Wind workshop, winning hearts and minds, offshore technology, advances in measuring methods and advancing drive-train reliability. In a closing session the conference was summarised, awards for poster contributions were made and the Poul la Cour Prize was presented

  11. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    International Nuclear Information System (INIS)

    Versteijlen, W G; Van Dalen, K N; Metrikine, A V; Hamre, L

    2014-01-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an important design parameter, as it has a defining influence on the first natural frequency of these structures. In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for 3D soil-structure interaction models to assess the initial soil stiffness at small strains for offshore wind turbine foundations. A linear elastic finite element model of a half-space of solids attached to a pile is used to derive an equivalent first mode shape of the foundation. The second model extends the first one by introducing contact elements between pile and soil, to take possible slip and gap-forming into account. The deflections derived with the 3D models are smaller than those derived with the p- y curve design code. This higher stiffness is in line with the higher measured natural frequencies. Finally a method is suggested to translate the response of 3D models into 1D engineering models of a beam laterally supported by uncoupled distributed springs

  12. Technological Change In Small And Medium Scale Enterprises ...

    African Journals Online (AJOL)

    SMEs) have been assessed to deter-mine the effect of financial liberalization policy, by surveying purposively 66 SMEs and 11 financial institution-ns. While some SMEs acquired technologies and innovated internally to bring about technological ...

  13. Final Technical Report: The Incubation of Next-Generation Radar Technologies to Lower the Cost of Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States); Hirth, Brian [Texas Tech Univ., Lubbock, TX (United States); Guynes, Jerry [Texas Tech Univ., Lubbock, TX (United States)

    2017-03-15

    The National Wind Institute (NWI) at Texas Tech University (TTU) has had an impressive and well documented 46-year history of wind related research activities (http://www.depts.ttu.edu/nwi/). In 2011 with funding from the United States Department of Energy (DOE), an NWI team applied radar technologies and techniques to document the complex flows occurring across a wind plant. The resulting efforts yielded measurements that exceeded the capabilities of commercial lidar technologies with respect to maximum range, range resolution and scan speed. The NWI team was also the first to apply dual-Doppler synthesis and objective analysis techniques to resolve the full horizontal wind field (i.e. not just the line-of-sight wind speeds) to successfully define turbine inflow and wake flows across large segments of wind plants. While these successes advanced wind energy interests, the existing research radar platforms were designed to serve a diversity of meteorological applications, not specifically wind energy. Because of this broader focus and the design choices made during their development, the existing radars experienced technical limitations that inhibited their commercial viability and wide spread adoption. This DOE project enabled the development of a new radar prototype specifically designed for the purpose of documenting wind farm complex flows. Relative to other “off the shelf” radar technologies, the specialized transmitter and receiver chains were specifically designed to enhance data availability in non-precipitating atmospheres. The new radar prototype was integrated at TTU using components from various suppliers across the world, and installed at the Reese Technology Center in May 2016. Following installation, functionality and performance testing were completed, and subsequent comparative analysis indicated that the new prototype greatly enhances data availability by a factor of 3.5-50 in almost all atmospheric conditions. The new prototype also provided

  14. Hydrological Regimes of Small Catchments in the High Tatra Mountains Before and After Extraordinary Wind-Induced Deforestation

    Science.gov (United States)

    Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan

    2009-01-01

    The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.

  15. Determination of the Most Suitable Technology Transfer Strategy for Wind Turbines Using an Integrated AHP-TOPSIS Decision Model

    Directory of Open Access Journals (Sweden)

    A. Dinmohammadi

    2017-05-01

    Full Text Available The high-speed development of industrial products and goods in the world has caused “technology” to be considered as a crucial competitive advantage for most large organizations. In recent years, developing countries have considerably tended to promote their technological and innovative capabilities through importing high-tech equipment owned and operated by developed countries. There are currently a variety of solutions to transfer a particular technology from a developed country. The selection of the most profitable technology transfer strategy is a very complex decision-making problem for technology importers as it involves different technical, environmental, social, and economic aspects. In this study, a hybrid multiple-criteria decision making (MCDM model based on the analytic hierarchy process (AHP and the technique for order of preference by similarity to ideal solution (TOPSIS is proposed to evaluate and prioritise various technology transfer strategies for wind turbine systems. For this purpose, a number of criteria and sub-criteria are defined from the viewpoint of wind energy investors, wind turbine manufacturers, and wind farm operators. The relative importance of criteria and sub-criteria with respect to the ultimate goal are computed using the eigenvalue method and then, the technology transfer alternatives are ranked based on their relative closeness to the ideal solution. The model is finally applied to determine the most suitable wind turbine technology transfer strategy among four options of reverse engineering, technology skills training, turn-key contracts, and technology licensing for the renewable energy sector of Iran, and the results are compared with those obtained by classical decision-making models.

  16. Feasibility study of permanent magnet generator topologies for small-scale wind power application

    Energy Technology Data Exchange (ETDEWEB)

    Rovio, T.

    2010-07-01

    In this work the design of electric generators for use in a 300-Watt wind power plant is explored. These generators must also be suitable for short-series manufacture. There are two foci: the best design methods for these machines and comparison of technical and economical performance of machnines designed with these methods. I explain how the wind turbine affects the generator design process. Easy-to-manufacture structures are selected from each electric machine topology. The design and construction of prototype axial and radial flux machines is studied. A design method for a claw-pole transversal flux machine is introduced. This design method is based on FEM and genetic optimization, without recourse to iron-circuit models. Finally, I compare the predicted performance of the new claw-pole transversal flux generator to axial flux and radial flux generator prototypes is compared

  17. Comparative study of energy conversion system dedicated to a small wind turbine

    International Nuclear Information System (INIS)

    Mirecki, A.

    2005-01-01

    This study presents a comparison of architectures and strategies of energy management dedicated to VAWT turbines such as Savonius. A Maximum Power Point Tracking must be implemented in order to optimize the energetic behavior. A torque or a speed control, or an indirect control of the DC bus current is possible. In the fact that the wind turbine characteristic is unknown, an operational research based on fuzzy logic is proposed. Aiming to minimize the cost of the static conversion structure, simple structures (diode bridge inverter, associated with DC-DC chopper) are analyzed and compared with a system based on a PWM Voltage Source Inverter. A test bench has been realized in the meantime as a system simulation. Comparisons of the provided energy are made for different wind speeds allowing to evaluate the performance of each structure and of the control strategies. (author)

  18. Cost Estimation and Comparison of Carbon Capture and Storage Technology with Wind Energy

    Directory of Open Access Journals (Sweden)

    ABDULLAH MENGAL

    2017-04-01

    Full Text Available The CCS (Carbon Capture and Storage is one of the significant solutions to reduce CO2 emissions from fossil fuelled electricity generation plants and minimize the effect of global warming. Economic analysis of CCS technology is, therefore, essential for the feasibility appraisal towards CO2 reduction. In this paper LCOE (Levelized Cost of Electricity Generation has been estimated with and without CCS technology for fossil fuel based power plants of Pakistan and also further compared with computed LCOE of WE (Wind Energy based power plants of the Pakistan. The results of this study suggest that the electricity generation costs of the fossil fuel power plants increase more than 44% with CCS technology as compared to without CCS technology. The generation costs are also found to be 10% further on higher side when considering efficiency penalty owing to installation of CCS technology. In addition, the CO2 avoided costs from natural gas plant are found to be 40 and 10% higher than the local coal and imported coal plants respectively. As such, the electricity generation cost of 5.09 Rs/kWh from WE plants is found to be competitive even when fossil fuel based plants are without CCS technology, with lowest cost of 5.9 Rs./kWh of CCNG (Combined Cycle Natural Gas plant. Based on analysis of results of this study and anticipated future development of efficient and cheap WE technologies, it is concluded that WE based electricity generation would be most appropriate option for CO2 reduction for Pakistan.

  19. Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories

    Science.gov (United States)

    2016-04-01

    to-target range , muzzle velocity, projectile mass, drag coefficient Approved for public release; distribution is unlimited. 2 exponent, wind...time of flight of the projectile to range , and = residual velocity of the projectile at range ...this case, when a projectile flies through the ranges covered by anemometers A6–A10, it is more likely to encounter crosswinds acting in concert with

  20. Positioning and tail rotor of a small horizontal axis wind turbine of due to the influence of drag coefficient and lift affecting vane cola

    International Nuclear Information System (INIS)

    Farinnas Wong, E. Y.; Jauregui Rigo, S.; Betancourt Mena, J.

    2009-01-01

    In the present investigation was carried out an assessment on the state of technology on guidance systems and tail protection when used in small horizontal axis wind turbines, work was improved methodological approach for the development of guidance systems queue by time of these machines, to incorporate the use of coefficients of lift and drag behavior varies according to the aspect ratio, using the principles of continuum mechanics and CFD methods. Two versions are analyzed , original and updated, the wind turbine CEET-01, on which the author would have been granted a Certificate of Patent of Invention and one of Industrial Model, the updated version was derived from the procedure proposed by the author, this presents a holder for the longest vane and a larger area in the vane. In addition to analyzing the amount and cost of power generated and the capacity factor at three locations in the province of Villa Clara it was concluded that the updated variant of the turbine CEET-01 is superior to the original

  1. Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry

    International Nuclear Information System (INIS)

    Ru Peng; Zhi Qiang; Zhang Fang; Zhong Xiaotian; Li Jianqiang; Su Jun

    2012-01-01

    The market scale of China’s wind turbine manufacturing industry has grown immensely. Despite China still having a limited capacity in terms of technology innovation, the institutional support has promoted the technology capability development of the wind turbine manufacturing industry. This paper explores the driving forces underlying this development by reviewing the transition of the innovation modes and the dynamic interactions among the technology capability, innovation modes, market formation, and wind energy policy. The innovation mode in China began with imitative innovation, then transitioned to cooperative innovation, and has more recently set its sights on attaining truly indigenous innovation. Public policy serves as a key driving force for the evolution of innovation modes, as well as the development of the market. The policy focus has evolved in the following sequence: 1. building the foundation for technological innovation; 2. encouraging technology transfer; 3. enhancing local R and D and manufacturing capabilities; 4. enlarging the domestic market; and 5. cultivating an open environment for global competition and sustainable market development in China. - Highlights: ► New data were provided for China’s wind turbine manufacturing industry. ► The transition of innovation modes in the industry is reviewed. ► The interaction among the technology, market, policy, and innovation mode is explored. ► Public policies are the key driving forces for the transition.

  2. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  3. A large-scale view of Space Technology 5 magnetometer response to solar wind drivers.

    Science.gov (United States)

    Knipp, D J; Kilcommons, L M; Gjerloev, J; Redmon, R J; Slavin, J; Le, G

    2015-04-01

    In this data report we discuss reprocessing of the Space Technology 5 (ST5) magnetometer database for inclusion in NASA's Coordinated Data Analysis Web (CDAWeb) virtual observatory. The mission consisted of three spacecraft flying in elliptical orbits, from 27 March to 27 June 2006. Reprocessing includes (1) transforming the data into the Modified Apex Coordinate System for projection to a common reference altitude of 110 km, (2) correcting gain jumps, and (3) validating the results. We display the averaged magnetic perturbations as a keogram, which allows direct comparison of the full-mission data with the solar wind values and geomagnetic indices. With the data referenced to a common altitude, we find the following: (1) Magnetic perturbations that track the passage of corotating interaction regions and high-speed solar wind; (2) unexpectedly strong dayside perturbations during a solstice magnetospheric sawtooth oscillation interval characterized by a radial interplanetary magnetic field (IMF) component that may have enhanced the accompanying modest southward IMF; and (3) intervals of reduced magnetic perturbations or "calms," associated with periods of slow solar wind, interspersed among variable-length episodic enhancements. These calms are most evident when the IMF is northward or projects with a northward component onto the geomagnetic dipole. The reprocessed ST5 data are in very good agreement with magnetic perturbations from the Defense Meteorological Satellite Program (DMSP) spacecraft, which we also map to 110 km. We briefly discuss the methods used to remap the ST5 data and the means of validating the results against DMSP. Our methods form the basis for future intermission comparisons of space-based magnetometer data.

  4. Simulative technology for auxiliary fuel tank separation in a wind tunnel

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2016-06-01

    Full Text Available In this paper, we propose a simulative experimental system in wind tunnel conditions for the separation of auxiliary fuel tanks from an aircraft. The experimental system consists of a simulative release mechanism, a scaled model and a pose measuring system. A new release mechanism was designed to ensure stability of the separation. Scaled models of the auxiliary fuel tank were designed and their moment of inertia was adjusted by installing counterweights inside the model. Pose parameters of the scaled model were measured and calculated by a binocular vision system. Additionally, in order to achieve high brightness and high signal-to-noise ratio of the images in the dark enclosed wind tunnel, a new high-speed image acquisition method based on miniature self-emitting units was presented. Accuracy of the pose measurement system and repeatability of the separation mechanism were verified in the laboratory. Results show that the position precision of the pose measurement system can reach 0.1 mm, the precision of the pitch and yaw angles is less than 0.1° and that of the roll angle can be up to 0.3°. Besides, repeatability errors of models’ velocity and angular velocity controlled by the release mechanism remain small, satisfying the measurement requirements. Finally, experiments for the separation of auxiliary fuel tanks were conducted in the laboratory.

  5. Hand in Glove? Small Building Contractors, Mobile Technology and Innovation

    DEFF Research Database (Denmark)

    Buser, Martine; Koch, Christian; Tambo, Torben

    2010-01-01

    for construction are developing as well. A recent review shows a small portfolio of systems using mobile computing to support specifically the construction project processes. The aim of this paper is to evaluate the use of mobile computing at small construction contractors. The paper presents a quantitative...

  6. Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack

    DEFF Research Database (Denmark)

    Zhao, Zhenzhou; Qian, Siyuan; Shen, Wenzhong

    2017-01-01

    Variable-pitch (VP) technology is an effective approach to upgrade the aerodynamics of the blade of an H-type vertical-axis wind turbine (VAWT). At present, most of the research efforts are focused on the performance improvement of the azimuth angle owing to the large angle of attack (Ao...... distribution in the swept area of turbine changes from an arched shape of the FP-VAWT into a rectangular shape of the VP-VAWT. At last, an 18.9% growth in power efficiency is achieved. All of the above results confirm that the new VP-technology can effectively improve VAWT performance and also widens...... the highest performance tip speed ratio zone which makes the turbines capable of running with high efficiency in wider zones....

  7. Propulsion Study for Small Transport Aircraft Technology (STAT)

    Science.gov (United States)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  8. Development and test of a Nb3Sn racetrack magnet using the react and wind technology

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.; Carcagno, R.; Chichili, D.; Ewald, K.; Feher, S.; Imbasciati, L.; Kashikhin, V. V.; Limon, P.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Yadav, S.; Zlobin, A.V.

    2002-01-01

    Fermilab is involved in the development of a high field accelerator magnet for future hadron colliders using Nb 3 Sn superconductor and the react-and-wind technology. The magnet design is based on single-layer common coils wound simultaneously into a laminated mechanical structure and impregnated with epoxy. In order to develop and optimize the fabrication techniques and to study the conductor performance, a magnet with flat racetrack type coils in a common coil configuration was assembled and tested. The coils were wound in the mechanical structure and in situ impregnated following a procedure that will be used in the single-layer common coil. The magnetic and mechanical design of the racetrack magnet, the fabrication techniques and the test results are presented and discussed in this paper

  9. SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Moon, Y.-J. [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr [Centre for Energy Studies, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016 (India)

    2015-10-10

    We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.

  10. Mobile Data Technology for Small Businesses: needs, uses and adoption

    Directory of Open Access Journals (Sweden)

    Debra Harker

    2002-05-01

    Full Text Available The technological environment in which Australian SMEs operate can be best described as dynamic and vital. The rate of technological change provides the SME owner/manger a complex and challenging operational context. Wireless applications are being developed that provide mobile devices with Internet content and E-business services. In Australia, the adoption of commerce by large organisations has been relatively high, however, the same cannot be said for SMEs, where adoption has been slower than other developed countries. In contrast, however, mobile telephone adoption and diffusion is relatively high by SMEs. Will SMEs who have been reluctant to adopt ecommerce technologies in the past be more ready to go on-line with the merging of the Internet and mobile data technologies? This exploratory study identifies attitudes, perceptions and issues for mobile data technologies by regional SME owner/managers across a range of industry sectors. The major issues include the sector the firm belongs to, the current adoption status of the firm, the level of mistrust of the IT industry, the cost of the technologies, and the applications and attributes of the technologies.

  11. Laboratory and Field Investigations of Small Crater Repair Technologies

    National Research Council Canada - National Science Library

    Priddy, Lucy P; Tingle, Jeb S; McCaffrey, Timothy J; Rollings, Ray S

    2007-01-01

    .... This airfield damage repair (ADR) investigation consisted of laboratory testing of selected crater fill and capping materials, as well as full-scale field testing of small crater repairs to evaluate field mixing methods, installation...

  12. Anchoring Technology for In Situ Exploration of Small Bodie

    Science.gov (United States)

    Steltzner, A.; Nasif, A.

    2000-01-01

    Comets, asteroids and other small bodies found in the solar system do not possess enough gravity to ensure spacecraft contact forces sufficient to allow many types of in situ science, such as core or surface sampling.

  13. Small Screen Technology Use among Indigenous Boarding School Adolescents from Remote Regions of Western Australia

    Science.gov (United States)

    Johnson, Genevieve Marie; Oliver, Rhonda

    2014-01-01

    The uptake of small screen technology by adolescents is widespread, particularly in industrial nations. Whether the same is true for Australian Aboriginal youth is less clear as there is a dearth of research in this regard. Therefore, in this exploratory study the use of small screen technology by Indigenous students was examined. Twenty-four…

  14. Selecting Advanced Software Technology in Two Small Manufacturing Enterprises

    National Research Council Canada - National Science Library

    Anderson, Bill; Estrin, Len; Buhman, Charles

    2004-01-01

    .... These challenges may include the lack of awareness of the specific technologies and commercial products available, the lack of ability to select the appropriate product, and the lack of skill sets...

  15. Zoning for Distributed Wind Power - Breaking Down Barriers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Sagrillo, M.

    2005-08-01

    Zoning regulations for the use of small wind turbines vary from state to state and from one local jurisdiction to the next. This paper examines the zoning experiences of small wind turbine owners, options for local actions, and examples of state and federal limited preemption of local zoning authority as a means of promoting the implementation of new technologies.

  16. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    Science.gov (United States)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus

  17. Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE

    Directory of Open Access Journals (Sweden)

    L. Wang

    2006-01-01

    Full Text Available Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs at the aircraft's flight level (typically ~20 km altitude. For a given flight segment, the S-transform (a Gaussian wavelet transform was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of ~5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, ~20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  18. Design and Numerical Calculation of Variable Test Section for Small Supersonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Václav DVOŘÁK

    2010-12-01

    Full Text Available The paper is concerned with numerical modelling of transition in a separated boundary layer. The model of laminar/turbulent transition is based on the combination of empirical terms determining position of the transition and averaged Navier – Stokes equations closed by the k – ω SST turbulence model. The model of transition is applied in computation of 2D flow past NACA63A421 airfoil. Computation is performed using the commercial code ANSYS Fluent 6.3.26, in which the transition method is implemented as a User-Defined-Function. Computed distributions of Cp along the airfoil are verified by comparison with experimental data, which were obtained by measurements in a closed circuit wind tunnel at the constant Reynolds number and several angles of attack. Comparisons prove applicability of the implemented transitional model.

  19. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herges, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  20. Energy output estimation for a small wind turbine positioned on a rooftop in the urban environment with and without a duct

    Energy Technology Data Exchange (ETDEWEB)

    Beller, C.

    2011-05-15

    Nowadays, wind turbines in general, but also urban wind turbines attained acceptance to a certain extend. Conceptual designs and some examples in reality exist, where small-scale wind turbines have been implemented close to buildings or even integrated in the building structure. This work is aiming to estimate how much energy a wind turbine could produce in the built environment, depending on its integration and configuration. On the basis of measurements taken on the rooftop of H.C. Orsted Institut in Copenhagen, which is located in an urban area, a comparison of fictive free standing turbines with ducted turbines of the same type was carried out. First, a prevailing wind energy direction was detected with rough mean velocity and frequency calculations. Next, a duct was aligned with the direction, where the highest energy potential was found. Further calculations were conducted with more detailed wind velocity distributions, depending on the wind direction sectors. The duct's wind velocity amplification capability was set to 14%, while a total opening angle of 30. was assumed to be accessible from both sides. With the simplifying assumptions and the uncertainties at the location of measurement, the free standing turbines had an energy potential of 300kWh/m2/a for the horizontal axis wind turbine (HAWT) and for the vertical axis wind turbine (VAWT) 180kWh/m2/a. For the ducted turbines an energy output of 180kWh/m2/a was found for the HAWT configuration, while the VAWT configuration reached an output of 110kWh/m2/a. The available wind had an energy potential of 730kWh/m2/a. Evaluating these results it seems a free standing turbine is preferable, when only considering the power output, whereas the ducted version comprises properties, which are important considering the requirements needed in the inhabited area such as safety and noise issues. (Author)