WorldWideScience

Sample records for small satellite project

  1. The C3PO project: a laser communication system concept for small satellites

    Science.gov (United States)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  2. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  3. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  4. Environmental Testing Philosophy for a Sandia National Laboratories' Small Satellite Project - A Retrospective

    Energy Technology Data Exchange (ETDEWEB)

    CAP,JEROME S.

    2000-08-24

    Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learned including both things that went well and things that should/could have been done differently.

  5. Advanced Deployable Structural Systems for Small Satellites

    Science.gov (United States)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  6. Reusable Communication Infrastructure for Small Satellites

    Data.gov (United States)

    National Aeronautics and Space Administration — The research goal of this project is to develop a comprehensive communications reference architecture that is applicable to a wide variety of small satellite...

  7. Phillips Laboratory small satellite initiatives

    Science.gov (United States)

    Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.

    1993-09-01

    The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.

  8. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  9. Small Satellite Mechanical Design Experience

    OpenAIRE

    Meyers, Stewart

    1993-01-01

    The design approach used and the experience gained in the building of four small satellite payloads is explained. Specific recommendations are made and the lessons learned on the SAMPEX program are detailed.

  10. Chartering Launchers for Small Satellites

    Science.gov (United States)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  11. Small satellites and their regulation

    CERN Document Server

    Jakhu, Ram S

    2014-01-01

    Since the launch of UoSat-1 of the University of Surrey (United Kingdom) in 1981, small satellites proved regularly to be useful, beneficial, and cost-effective tools. Typical tasks cover education and workforce development, technology demonstration, verification and validation, scientific and engineering research as well as commercial applications. Today the launch masses range over almost three orders of magnitude starting at less than a kilogram up to a few hundred kilograms, with budgets of less than US$ 100.00 and up to millions within very short timeframes of sometimes less than two years. Therefore each category of small satellites provides specific challenges in design, development and operations. Small satellites offer great potentials to gain responsive, low-cost access to space within a short timeframe for institutions, companies, regions and countries beyond the traditional big players in the space arena. For these reasons (particularly the low cost of construction, launch and operation), small (m...

  12. Satellite medical centers project

    Science.gov (United States)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  13. The Swedish satellite project Viking

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1990-01-01

    The Swedish satellite project Viking is described and related to earlier missions. Some new operational characteristics are discussed, including the real-time data analysis campaigns that were an important part of the project. Some areas of important scientific impact of the project are also described. Viking was specially designed and equipped for investigation of plasma physical acceleration and other processes in the transition region between hot and cold plasma on auroral latitude magnetic field lines

  14. Miniature Reaction Wheel for Small Satellite Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to design, develop, demonstrate, and deliver a miniature, high torque, low-vibration reaction wheel for use on small satellites....

  15. Astrophysics with small satellites in Scandinavia

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.......The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved....

  16. Smartphone Video Guidance Sensor for Small Satellites

    Data.gov (United States)

    National Aeronautics and Space Administration — Smartphone Video Guidance Sensor(SVGS) for Small Satellites will provide a low-cost,integrated rendezvous & proximity operations sensor system to allow an...

  17. Micro Resistojet for Small Satellites, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Micro-resistojets offer an excellent combination of simplicity, performance and wet system mass for small satellites (<100 kg, <50 watts) requiring mN level...

  18. Micro Resistojet for Small Satellites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Micro-resistojets offer the best combination of simplicity, performance, wet system mass and power consumption for small satellites (<100kg, <50Watts)...

  19. Small Satellite Constellations for Geospace Sciences

    Science.gov (United States)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  20. Small satellites and space debris issues

    Science.gov (United States)

    Yakovlev, M.; Kulik, S.; Agapov, V.

    2001-10-01

    The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.

  1. About Nano-JASMINE Satellite System and Project Status

    Science.gov (United States)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  2. Formation Flying/Satellite Swarm Concept Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    NASA needs a method of not only propelling and rotating small satellites, but also to track their position and orientation. We propose a concept that will, for the first time, demonstrate both tracking and propulsion simultaneously in the same system.

  3. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  4. Tracking Small Satellites using Translated GPS

    OpenAIRE

    Lefevre, Don; Mulally, Daniel

    1991-01-01

    This paper discusses using translated GPS for tracking small satellites, the technical trade-offs involved, and the position and timing accuracies which are achievable using translated GPS. The Global Positioning System (GPS) uses the relative times-of-arrival of multiple spread-spectrum signals at an antenna to determine the position of the antenna. The system can also determine the time the antenna was at that position. The direct sequence spread spectrum signals are transmitted from GPS sa...

  5. SMALL PLANETARY SATELLITE COLORS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include published colors of small planetary satellites published up through December 2003. Small planetary satellites are defined as all...

  6. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  7. HF Radio Astronomy from a Small Satellite

    Science.gov (United States)

    2016-06-15

    SSC16-XI-03 HF Radio Astronomy from a Small Satellite Frank C. Robey1, Mary Knapp2, Alan J. Fenn1, Mark Silver1, Kerry Johnson1 Frank J. Lind3...frequency end of the electromagnetic spectrum (below 15 MHz) is one of the least explored windows in observational astronomy . Observations at these...pdf. [Accessed: 17-Oct-2015]. 3. G. Hallinan, “The Owens Valley LWA,” in Exascale Radio Astronomy , 2014, vol. 2. 4. C. J. Lonsdale, R. J. Cappallo

  8. SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the Iodine Satellite (iSAT) Project

    Science.gov (United States)

    Dankanich, John W.

    2014-01-01

    Closing Remarks: ?(1) SmallSats hold significant potential for future low cost high value missions; (2) Propulsion remains a key limiting capability for SmallSats that Iodine can address: High ISP * Density for volume constrained spacecraft; Indefinite quiescence, unpressurized and non-hazardous as a secondary payload; (3) Iodine enables MicroSat and SmallSat maneuverability: Enables transfer into high value orbits, constellation deployment and deorbit; (4) Iodine may enable a new class of planetary and exploration class missions: Enables GTO launched secondary spacecraft to transit to the moon, asteroids, and other interplanetary destinations for approximately 150 million dollars full life cycle cost including the launch; (5) ESPA based OTVs are also volume constrained and a shift from xenon to iodine can significantly increase the transfer vehicle change in volume capability including transfers from GTO to a range of Lunar Orbits; (6) The iSAT project is a fast pace high value iodine Hall technology demonstration mission: Partnership with NASA GRC and NASA MSFC with industry partner - Busek; (7) The iSAT mission is an approved project with PDR in November of 2014 and is targeting a flight opportunity in FY17.

  9. Lightweight Solar Power for Small Satellites

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  10. A Conceptual Design for a Small Deployer Satellite

    Science.gov (United States)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  11. Emerging Technologies: Small Satellite and Associated TPED

    Science.gov (United States)

    Zitz, R.

    2014-09-01

    The 2010 National Space Policy directs the U.S. space community, comprised of the Department of Defense, Intelligence Community, Military Services and NASA to examine our nation's ability to conduct space-based ISR and communications even during a period of peer state and near peer state attacks intended to deny us our advantages we accrue from our use of space systems. DOD and the ICs past experience is largely one of building small numbers of extraordinarily capable and expensive (exquisite) satellites for communications and ISR. As potential adversaries continue to develop cyber-attack capabilities and have demonstrated an ability to kinetically attack spacecraft, the vulnerability of our architecture is now a serious concern. In addition, the sluggish U.S. economy, the draw down and pull back from a decade of combat operations, and other factors have combined to force a significant reduction in DOD and IC spending over the coming decade(s). Simultaneously, DOD and the IC have a growing awareness that the long lead times and long mission duration of the exquisite space assets can lead to fielding technologies that become obsolete and mission limiting. Some DOD and IC leaders are now examining alternative architectures to provide lower cost, flexible, more diverse and rapidly launchable space systems. Government leaders are considering commercially hosted payloads in geosynchronous orbits and smaller, lower cost, free flying government and commercial satellites in low earth orbits. Additional changes to the ground tasking, processing, exploitation and dissemination (TPED) systems would ensure small satellites have end-to-end mission capability and meet emerging needs such as ease of tasking, multi-INT processing, and more advanced distribution mechanisms (e.g., to users on the move). Today, a majority of agency leaders and their subordinate program managers remain convinced that only large, expensive systems can truly answer requirements and provide reliable

  12. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    Science.gov (United States)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For

  13. Attitude stability analyses for small artificial satellites

    International Nuclear Information System (INIS)

    Silva, W R; Zanardi, M C; Formiga, J K S; Cabette, R E S; Stuchi, T J

    2013-01-01

    The objective of this paper is to analyze the stability of the rotational motion of a symmetrical spacecraft, in a circular orbit. The equilibrium points and regions of stability are established when components of the gravity gradient torque acting on the spacecraft are included in the equations of rotational motion, which are described by the Andoyer's variables. The nonlinear stability of the equilibrium points of the rotational motion is analysed here by the Kovalev-Savchenko theorem. With the application of the Kovalev-Savchenko theorem, it is possible to verify if they remain stable under the influence of the terms of higher order of the normal Hamiltonian. In this paper, numerical simulations are made for a small hypothetical artificial satellite. Several stable equilibrium points were determined and regions around these points have been established by variations in the orbital inclination and in the spacecraft principal moment of inertia. The present analysis can directly contribute in the maintenance of the spacecraft's attitude

  14. Structural Analysis of Components of the Students for the Exploration and Development of Space Satellite (SEDSAT) for the Small Expendable Deployer System (SEDS) Project Office

    Science.gov (United States)

    Maddux, Gary A.

    1998-01-01

    During the time frame allocated by the delivery order, members of the UAH Applied Research Program, with the cooperation of representatives from NASA investigated and conducted stress analysis of the SEDSAT1 satellite. The main area of concern was with the design of the deployable 10 m antennas. The placement of the holes for the antenna door hinge pin was too close to the edge of the antenna canister. Because of the load placed on the hinge pin, the stress analysis of this area suggested that more space would be needed between the holes and the edge of the material. Due to other conflicts, SEDSATI was removed from flying on the space shuttle and moved to the Delta Launch Vehicle. This changed many of the design requirements for the mounting and deployment of the satellite that forced a new design for the satellite. Once this happened, the stress analysis became obsolete, and the task was concluded.

  15. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  16. Small Satellites and the Nigerian National Space Programme

    Science.gov (United States)

    Borroffice, Robert; Chizea, Francis; Sun, Wei; Sweeting, Martin, , Sir

    2002-01-01

    Space technology and access to space have been elusive to most developing countries over the last half of the 21st century, which is attributed to very low par capital income and the lack of awareness of policy/decision makers about the role of space technology in national development. Space technology was seen as very expensive and prestigious, meant only for the major industrialized countries, while the developing countries should focus on building their national economy and providing food, shelter and other social amenities for their ever-growing populations. In the last decade, the trend has changed with many developing countries embracing spaced technology as one of the major ways of achieving sustainable development. The present trend towards the use of small satellites in meeting national needs has aided this transition because, apart from the small size, they are cheaper to build and to launch, with shorter development time, lower complexity, improved effectiveness and reduced operating costs. This in turn has made them more affordable and has opened up new avenues for the acquisition of satellite technology. The collaborative work between National Space Research and Development Agency of Nigeria (NASRDA) and Surrey Satellite and Technology Limited (SSTL) is a programme aimed at building two small satellites as a way of kick- starting the national space programme. The first project, NigeriaSAT-1, is an enhanced microsatellite carrying Earth observation payloads able to provide 32 metre GSD 3 band multispectral images with a 600km swath width. NigeriaSAT-1 is one of six microsatellites forming the Disaster Monitoring Constellation (DMC) alongside microsatellites contributed by Algeria, China, Turkey, Thailand and UK. Through participation in this international constellation, Nigeria will be able to receive images with a daily revisit worldwide. The EO images generated by NigeriaSAT-1 and the partner microsatellites will be used for providing rapid coverage

  17. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  18. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  19. Satellite based Ocean Forecasting, the SOFT project

    Science.gov (United States)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  20. Comprehensive Study on Small and Low Cost Satellite Technology for Earth Observation with Case Study for Indonesia: Projection for 2002-2022

    Science.gov (United States)

    Djojodihardjo, Harijono

    and economic progress, while facing global competitiveness locally as opportunities and challenges. Of particular importance is the utilization and development of earth observation capabilities for environmental natural resources imperatives to this end is quite significant. On one hand there may appear challenges to achieve unique and high quality requirements on many of the elements of social and economic progress, i.e. natural resources, human resources, market opportunities and geographical advantage; on the other hand one may face constraints in the financial system, cultural inertia and paradigm, and the need to carry forward large momentum that may pull back technological and economic progress that may be characterized by a "roller coaster" dynamics. Satellite Technology for Earth Observation, its Utilization and Development is carried out with Indonesian Development Interest in mind. Space System Services and Players are identified. Mission objectives associated with Urban and Rural Areas as well as Satellite-Based Multimedia Technology Applications For Promoting Rural Development will be identified. System design analysis and synthesis will be elaborated and some alternatives will be presented following a unified system outlook. Ground Segment and Space Segment Architecture will be elaborated by carrying out Architecture Optimization.

  1. Fuzzy Logic Controller for Small Satellites Navigation

    National Research Council Canada - National Science Library

    Della Pietra, G; Falzini, S; Colzi, E; Crisconio, M

    2005-01-01

    .... The navigator aims at operating satellites in orbit with a minimum ground support and very good performances, by the adoption of innovative technologies, such as attitude observation GPS, attitude...

  2. Hurricane Satellite (HURSAT) from International Satellite Cloud Climatology Project (ISCCP) B1, Version 6

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from derived International Satellite Cloud Climatology Project (ISCCP) B1 observations of tropical cyclones worldwide. The B1 data...

  3. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    Science.gov (United States)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  4. Cogeneration for small SAGD projects

    Energy Technology Data Exchange (ETDEWEB)

    Albion, Stuart [AMEC BDR Limited (United Kingdom)

    2011-07-01

    As many SAGD projects are being developed in remote locations, the supply of a steady source of power to them becomes an important question. Connecting these remote facilities to a grid can often be difficult and costly. This presentation, by AMEC BDR Limited, promotes the use of cogeneration in small SAGD projects. Cogeneration is the generation of two forms of energy from one fuel source. In this particular case, the energy forms would be electricity and heat. In many SAGD projects, a gas turbine system is used to generate the electricity, while a heat recovery system is utilized to generate steam. The use of cogeneration systems in SAGD projects, as opposed to using separate heat and electricity systems, has the potential to significantly reduce the amount of energy lost, the amount of emissions and power costs, in addition to ensuring that there is a reliable supply of steam and electricity.

  5. Small Satellite Transceiver for Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NAL Research Corporation proposes to develop a small, light-weight, low-cost transceivers capable of establishing satellite communications links for telemetry and...

  6. The NASA CYGNSS Small Satellite Constellation

    Science.gov (United States)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  7. Small launchers (current and future projects in the world)

    Science.gov (United States)

    Naumann, W. G.

    1993-01-01

    Small satellites need launching services using small launchers capable of injecting 100 to 1000 kg into a polar orbit at an altitude of 1000 km. Operational small launchers are reviewed as well as developing and planned ones. Launcher characteristics, constraints, performance, and status are detailed. Few technical problems are encountered, as most launcher projects call for existing components and well known technologies. Most of the difficulties have come from launch site availability and from financial considerations.

  8. Educational Benefits From the AAU-cubesat Student Satellite Project

    DEFF Research Database (Denmark)

    Alminde, Lars

    2003-01-01

    In September 2001 Aalborg university started the AAU-cubesat project that reached it climax when the student built satellite was launched into space on the 30th of June 2003 on top of a former Russian ICBM. AAU-cubesat was among the first five satellites to be launched that are built within the c......-satellite designs will be given. In addition as the project has been carried through by students then the educational value will be addressed as well....

  9. The Nothuesli small hydro project

    International Nuclear Information System (INIS)

    Balachandran, S.; Jorde, K.

    2008-01-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the project for a small 16-kilowatt hydro plant on the Gonzenbaechli stream in eastern Switzerland. The site, which was used even before 1860 for obtaining power from the stream is briefly described, as are the present remains of earlier installations. An old Francis turbine has been retrieved and could possibly be reused. Water-flow figures and fall-heights are noted. Design flows and residual water quantities required by legislation are noted and discussed, as are the geology and topology of the catchment area. The proposals for a new hydro-power plant are described, including the apparatus proposed with a power of 20 kVA. Environmental aspects are also discussed, as are the investment costs and the economic viability of the project. The paper is completed with a comprehensive appendix, including detailed cost estimates.

  10. Anti-jamming Technology in Small Satellite Communication

    Science.gov (United States)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  11. Fixed-focus camera objective for small remote sensing satellites

    Science.gov (United States)

    Topaz, Jeremy M.; Braun, Ofer; Freiman, Dov

    1993-09-01

    An athermalized objective has been designed for a compact, lightweight push-broom camera which is under development at El-Op Ltd. for use in small remote-sensing satellites. The high performance objective has a fixed focus setting, but maintains focus passively over the full range of temperatures encountered in small satellites. The lens is an F/5.0, 320 mm focal length Tessar type, operating over the range 0.5 - 0.9 micrometers . It has a 16 degree(s) field of view and accommodates various state-of-the-art silicon detector arrays. The design and performance of the objective is described in this paper.

  12. Space Access for Small Satellites on the K-1

    Science.gov (United States)

    Faktor, L.

    Affordable access to space remains a major obstacle to realizing the increasing potential of small satellites systems. On a per kilogram basis, small launch vehicles are simply too expensive for the budgets of many small satellite programs. Opportunities for rideshare with larger payloads on larger launch vehicles are still rare, given the complications associated with coordinating delivery schedules and deployment orbits. Existing contractual mechanisms are also often inadequate to facilitate the launch of multiple payload customers on the same flight. Kistler Aerospace Corporation is committed to lowering the price and enhancing the availability of space access for small satellite programs through the fully-reusable K-1 launch vehicle. Kistler has been working with a number of entities, including Astrium Ltd., AeroAstro, and NASA, to develop innovative approaches to small satellite missions. The K-1 has been selected by NASA as a Flight Demonstration Vehicle for the Space Launch Initiative. NASA has purchased the flight results during the first four K-1 launches on the performance of 13 advanced launch vehicle technologies embedded in the K-1 vehicle. On K-1 flights #2-#4, opportunities exist for small satellites to rideshare to low-earth orbit for a low-launch price. Kistler's flight demonstration contract with NASA also includes options to fly Add-on Technology Experiment flights. Opportunities exist for rideshare payloads on these flights as well. Both commercial and government customers may take advantage of the rideshare pricing. Kistler is investigating the feasibility of flying dedicated, multiple small payload missions. Such a mission would launch multiple small payloads from a single customer or small payloads from different customers. The orbit would be selected to be compatible with the requirements of as many small payload customers as possible, and make use of reusable hardware, standard interfaces (such as the existing MPAS) and verification plans

  13. The synchronization method for distributed small satellite SAR

    Science.gov (United States)

    Xing, Lei; Gong, Xiaochun; Qiu, Wenxun; Sun, Zhaowei

    2007-11-01

    One of critical requirement for distributed small satellite SAR is the trigger time precision when all satellites turning on radar loads. This trigger operation is controlled by a dedicated communication tool or GPS system. In this paper a hardware platform is proposed which has integrated navigation, attitude control, and data handling system together. Based on it, a probabilistic synchronization method is proposed for SAR time precision requirement with ring architecture. To simplify design of transceiver, half-duplex communication way is used in this method. Research shows that time precision is relevant to relative frequency drift rate, satellite number, retry times, read error and round delay length. Installed with crystal oscillator short-term stability 10 -11 magnitude, this platform can achieve and maintain nanosecond order time error with a typical three satellites formation experiment during whole operating process.

  14. The data processor from the small scientific satellite

    Science.gov (United States)

    Mccain, H. G.

    1973-01-01

    A reprogrammable data system aboard a small scientific satellite is described that samples and processes magnetospheric measurements for transmission to the ground. The lightweight configuration of the data system is made up of the program memory, data storage, input/output module, and a central processing unit. The system is designed for multiple missions.

  15. The Iodine Satellite (iSat) Project Development Towards Critical Design Review (CDR)

    Science.gov (United States)

    Dankanich, John W.; Selby, Michael; Polzin, Kurt A.; Kamhawi, Hani; Hickman, Tyler; Byrne, Larry

    2016-01-01

    Despite the prevalence of Small Satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy (i.e. high pressure vessels). These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U configuration under the Small Spacecraft Technology Program. The project formally began in FY15 as a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is in final preparation of the Critical Design Review prior to initiating the fabrication and integration phase of the project. The iSat project is on schedule for a launch opportunity in November 2017.

  16. Educational Benefits from the AAU-Cubesat Student Satellite Project

    DEFF Research Database (Denmark)

    Alminde, Lars

    2003-01-01

    In September 2001 Aalborg university started the AAU-cubesat project that reached it climax when the student built satellite was launched into space on the 30th of June 2003 on top of a former Russian ICBM. AAU-cubesat was among the first five satellites to be launched that are built within the c...... on pico-satellite designs will be given. In addition as the project has been carried through by students then the educational value will be addressed as well....

  17. Iodine Small Satellite Propulsion Demonstration - iSAT

    OpenAIRE

    Jehle, MAJ; L., Alexander

    2017-01-01

    NASA’s Iodine Satellite (iSAT) is a small satellite demonstration mission designed and built at NASA’s Marshall Spaceflight Center (MSFC). Previously expected to launch late 2nd quarter of fiscal year ’18, iSAT’s flight effort has temporarily stood-down as of May 2017 to allow for the propulsion system to mature. Once launched, iSAT will demonstrate and characterize the efficiency of BUSEK’s 200 Watt Hall effect thruster utilizing iodine as a propellant in low Earth orbit. This paper covers i...

  18. Description of Simulated Small Satellite Operation Data Sets

    Science.gov (United States)

    Kulkarni, Chetan S.; Guarneros Luna, Ali

    2018-01-01

    A set of two BP930 batteries (Identified as PK31 and PK35) were operated continuously for a simulated satellite operation profile completion for single cycle. The battery packs were charged to an initial voltage of around 8.35 V for 100% SOC before the experiment was started. This document explains the structure of the battery data sets. Please cite this paper when using this dataset: Z. Cameron, C. Kulkarni, A. Guarneros, K. Goebel, S. Poll, "A Battery Certification Testbed for Small Satellite Missions", IEEE AUTOTESTCON 2015, Nov 2-5, 2015, National Harbor, MA

  19. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  20. The Iodine Satellite (iSat) Project Development Towards Critical Design Review

    Science.gov (United States)

    Dankanich, John W.; Calvert, Derek; Kamhawi, Hani; Hickman, Tyler; Szabo, James; Byrne, Lawrence

    2015-01-01

    Despite the prevalence of small satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy. These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U (cubesat units) configuration under the Small Spacecraft Technology Program. The mission is a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is working towards the critical design review in the final design and fabrication phase of the project. The current design shows positive technical performance margins in all areas. The iSat project is planned for launch readiness in the spring of 2017.

  1. Kalman filter implementation for small satellites using constraint GPS data

    Science.gov (United States)

    Wesam, Elmahy M.; Zhang, Xiang; Lu, Zhengliang; Liao, Wenhe

    2017-06-01

    Due to the increased need for autonomy, an Extended Kalman Filter (EKF) has been designed to autonomously estimate the orbit using GPS data. A propagation step models the satellite dynamics as a two body with J2 (second zonal effect) perturbations being suitable for orbits in altitudes higher than 600 km. An onboard GPS receiver provides continuous measurement inputs. The continuity of measurements decreases the errors of the orbit determination algorithm. Power restrictions are imposed on small satellites in general and nanosatellites in particular. In cubesats, the GPS is forced to be shut down most of the mission’s life time. GPS is turned on when experiments like atmospheric ones are carried out and meter level accuracy for positioning is required. This accuracy can’t be obtained by other autonomous sensors like magnetometer and sun sensor as they provide kilometer level accuracy. Through simulation using Matlab and satellite tool kit (STK) the position accuracy is analyzed after imposing constrained conditions suitable for small satellites and a very tight one suitable for nanosatellite missions.

  2. Small Satellites and RPAs in Global-Change Research

    Science.gov (United States)

    1992-12-01

    room for fruitful compromise here, either with dual-use FPAs (see point 1.4 above), or with multi-pixel arrays that do not contain many thousands of...of most of this sulphate appears to be microbiota in the upper ocean layers which produce dimethyl sulfide, (CH 3 )2S. These molecules must, however...opportunity. If a flexible and relatively inexpensive small satellite platform were avail- able for global change applications, a fruitful use would be to

  3. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites

    OpenAIRE

    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas

    2017-01-01

    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  4. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  5. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  6. Simobiz-Simulation Tool to Study the Impact of Small Satellites in Mobile Market

    Science.gov (United States)

    Burlacu, M.-M.; Kohlenberg, J.; Prathaban, M.

    2008-08-01

    Interest in small satellites is growing fast world- wide. Businesses, governments, universities and other organizations around the world are starting their own small satellite programs. The surveys conducted by the space agencies and universities shows a promising increase in the use of small satellites for commercial applications. More number of operators offers or plans to offer mobile phone services by satellite. With the help of cost effective small satellite, mobile operators can be able to provide the services cheaper. Hence, it is always interesting to study the effect of low cost small satellite over the mobile market. In this article, we present SmartSim (Small Satellites Mobile Market Simulator) - the new module of Simobiz business simulation game, in which we have implemented two operators, a normal satellite operator and a nanosatellite operator, with specific terminals and services. Our main focus in this work is to understand the future market of small satellite in mobile telecommunication network.

  7. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  8. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  9. Small-satellite technology and applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Horais, Brian J.

    Remote sensing applications and systems, small satellites for sensing missions, and supporting technologies are the broad topics discussed. Particular papers are presented on small satellites for water cycle experiments, low-cost spacecraft buses for remote sensing applications, Webersat (a low-cost imaging satellite), DARPA initiatives in small-satellite technologies, a solid-state magnetic azimuth sensor for small satellites, and thermal analysis of a small expendable tether satellite package. (For individual items see A93-24152 to A93-24175)

  10. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  11. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  12. Sensor and computing resource management for a small satellite

    Science.gov (United States)

    Bhatia, Abhilasha; Goehner, Kyle; Sand, John; Straub, Jeremy; Mohammad, Atif; Korvald, Christoffer; Nervold, Anders Kose

    A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.

  13. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  14. The open prototype for educational NanoSats: Fixing the other side of the small satellite cost equation

    Science.gov (United States)

    Berk, Josh; Straub, Jeremy; Whalen, David

    Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat form-factor. OPEN consists of public-domain educational reference plans, complete with engineering schematics, CAD files, construction and test instructions as well as ancillary reference materials relevant to satellite building and operation. By making the plan, to produce a small but capable spacecraft freely available, OPEN seeks to lower the barriers to access on the other side (non-launch costs) of the satellite cost equation.

  15. Make Projects Small Form Factor PCs

    CERN Document Server

    Wessels, Duane

    2006-01-01

    Shoebox sized and smaller, small-form-factor PCs can pack as much computing muscle as a full-sized desktop computer. They consumer less power, have few or no moving parts, and are very quiet. Whether you plan to use one as a standalone PC or want to embed it in your next hacking project, a small-form-factor PC can be a lot of fun to build. Make Projects: Small Form Factor PCs is the only book available that shows you how to build small-form-factor PCs -- from kits and from scratch -- that are more interesting and more personalized than what a full-sized PC can give you. Included in the book

  16. Financing options for small hydro projects

    International Nuclear Information System (INIS)

    Shepherd, J.C.

    1993-01-01

    Examples and techniques used to enhance the ability to finance small hydro projects, or to finance them in non-standard ways, were discussed. It was suggested that factors that motivate investors, namely the maximization of the rate of return on capital, and minimization of risk, should be the primary concern for any would-be developer. A responsible, conservative approach to financial projections was recommended as the best to impress potential investors

  17. Small-scale structure of the geodynamo inferred from Ørsted and Magsat satellite data

    DEFF Research Database (Denmark)

    Hulot, G.; Eymin, C.; Langlais, B.

    2002-01-01

    The 'geodynamo' in the Earth's liquid outer core produces a magnetic field that dominates the large and medium length scales of the magnetic field observed at the Earth's surface(1,2). Here we use data from the currently operating Danish Oersted(3) satellite, and from the US Magsat(2) satellite...... that operated in 1979/80, to identify and interpret variations in the magnetic field over the past 20 years, down to length scales previously inaccessible. Projected down to the surface of the Earth's core, we found these variations to be small below the Pacific Ocean, and large at polar latitudes...... and in a region centred below southern Africa. The flow pattern at the surface of the core that we calculate to account for these changes is characterized by a westward flow concentrated in retrograde polar vortices and an asymmetric ring where prograde vortices are correlated with highs (and retrograde vortices...

  18. Miniaurizable, High Performance, Fiber-Optic Gyroscopes for Small Satellites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Small satellites require much lighter weight, smaller, and long life Attitude control components that can withstand stressing launch conditions and space vibration...

  19. Small and low head pumped storage projects

    International Nuclear Information System (INIS)

    Makarechian, A.H.

    1991-01-01

    The purpose of this paper is to focus attention on small and low head pumped storage projects. These projects may be defined as having a capacity of less than 200-300 MW and down to about 20 MW, with heads of 1200 ft to about 300 ft or less. Many advantages of these smaller pumped storage projects include more flexibility in siting of a project, considerably shorter licensing and construction period, adaptability to closed system design concept to reduce adverse environmental impacts, considerably reduced risks of delays and substantial cost over-runs, better suited to meeting peaking capacity requirements for individual utilities, and much less transmission inter-connection requirements. An overall licensing and construction schedule of about 3 to 3 1/2 years is realistic for many smaller pumped storage projects, and competitive costs in terms of dollars per kW installed can be achieved

  20. Trends in the Global Small Satellite Ecosystem: Implications for Science Missions

    Science.gov (United States)

    Behrens, J.; Lal, B.

    2017-12-01

    Activity in the small satellite industry has increased in the recent years. New actors and nations have joined the evolving market globally in both the private and public sector. Progress in the smallsat sector has been driven, in part, by growing capabilities and falling costs of smallsats. Advancements include the miniaturization of technology for the small satellite platform, increased data processing capabilities, the ubiquitous presence of GPS enabling location and attitude determination, improvements in ground system costs and signal processing capabilities, and the deployment of inexpensive COTS parts. The emerging trends in the state of the art for smallsat technology, paired with planned smallsat constellation missions by both private and public actors, open the opportunity for new earth and remote sensing scientific endeavors. This presentation will characterize the drivers influencing the development of smallsat technology and the industry more generally. An overview will be provided for trends in the state of the art of smallsat technology, and secondary trends that influence the smallsat sector including infrastructure, demand, the satellite launch market, and the policy environment. These trends are mapped onto current and projected Earth observation needs, as identified by academic and governmental communities, to identify those that could be fulfilled by smallsats in the near and long term. A set of notional science missions that could be enabled, based on the various drivers identified, will be presented for both the near (3 years) and farther term (10 years).

  1. Broadband VHF observations for lightning impulses from a small satellite SOHLA-1 (Maido 1)

    Science.gov (United States)

    Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.; Hidekazu, H.; Aoki, T.

    2009-12-01

    Lightning Research Group of Osaka University (LRG-OU) has been developing VHF Broadband Digital Interferometer (DITF) to image precise lightning channels and monitor lightning activity widely. The feature of broadband DITF is its ultrawide bandwidth (from 25MHz to 100MHz) and implicit redundancy for estimating VHF source location. LRG-OU considers an application of the broadband DITF to the spaceborne measurement system and joins the SOHLA (Space Oriented Higashi-Osaka Leading Associate) satellite project. The SOHLA satellite project represents a technology transfer program to expand the range of the space development community in Japan. The objective is to get SMEs (Small and Medium sized manufacturing Enterprises) involved in small space projects and new space technologies. Under the cooperative agreement, JAXA (Japan Aerospace Exploration Agency) intends to contribute to socio-economic development by returning its R&D results to society, and SOHLA tries to revitalize the local economy through the commercialization of versatile small satellites. According to the agreement, JAXA provides SOHLA its technical information on small satellites and other technical assistance for the development of the small satellites, SOHLA-1. The prime objective of the SOHLA-1 program is to realize low-cost and short term development of a microsatellite which utilizes the components and bus technologies of JAXA’s MicroLabSat. SOHLA-1 is a spin-stabilized microsatellite of MicroLabSat heritage (about 50 kg). The spin axis is fixed to inertial reference frame. The spin axis (z-axis) lies in the plane containing the solar direction and the normal to the orbital plane. LRG-OU takes responsibility for a science mission of SOHLA-1. To examine the feasibility of the DITF receiving VHF lightning impulses in space, LRG-OU proposes the BMW (Broadband Measurement of Waveform for VHF Lightning Impulses). BMW consists of a single pair of an antenna, a band-pass filter, an amplifier, and an

  2. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    Science.gov (United States)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  3. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    Science.gov (United States)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  4. Family Portrait of the Small Inner Satellites of Jupiter

    Science.gov (United States)

    1997-01-01

    These images, taken by Galileo's solid state imaging system between November 1996 and June 1997, provide the first ever 'family portrait' of the four small, irregularly shaped moons that orbit Jupiter in the zone between the planet's ring and the larger Galilean satellites. The moons are shown in their correct relative sizes, with north approximately up in all cases. From left to right, arranged in order of increasing distance from Jupiter, are Metis (longest dimension is approximately 60 kilometers or 37 miles across), Adrastea (20 kilometers or 12 miles across), Amalthea (247 kilometers or 154 miles across), and Thebe (116 kilometers or 72 miles across). While Amalthea, the largest of these four tiny moons, was imaged by NASA's two Voyager spacecraft in 1979 with a resolution comparable to what is shown here, the new Galileo observations represent the first time that Metis, Adrastea, and Thebe have been seen as more than points of light.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  5. ARCADE small-scale docking mechanism for micro-satellites

    Science.gov (United States)

    Boesso, A.; Francesconi, A.

    2013-05-01

    The development of on-orbit autonomous rendezvous and docking (ARD) capabilities represents a key point for a number of appealing mission scenarios that include activities of on-orbit servicing, automated assembly of modular structures and active debris removal. As of today, especially in the field of micro-satellites ARD, many fundamental technologies are still missing or require further developments and micro-gravity testing. In this framework, the University of Padova, Centre of Studies and Activities for Space (CISAS), developed the Autonomous Rendezvous Control and Docking Experiment (ARCADE), a technology demonstrator intended to fly aboard a BEXUS stratospheric balloon. The goal was to design, build and test, in critical environment conditions, a proximity relative navigation system, a custom-made reaction wheel and a small-size docking mechanism. The ARCADE docking mechanism was designed against a comprehensive set of requirements and it can be classified as small-scale, central, gender mating and unpressurized. The large use of commercial components makes it low-cost and simple to be manufactured. Last, it features a good tolerance to off-nominal docking conditions and a by-design soft docking capability. The final design was extensively verified to be compliant with its requirements by means of numerical simulations and physical testing. In detail, the dynamic behaviour of the mechanism in both nominal and off-nominal conditions was assessed with the multibody dynamics analysis software MD ADAMS 2010 and functional tests were carried out within the fully integrated ARCADE experiment to ensure the docking system efficacy and to highlight possible issues. The most relevant results of the study will be presented and discussed in conclusion to this paper.

  6. Ozone Satellite Data Synergy and Combination with Non-satellite Data in the AURORA project

    Science.gov (United States)

    Cortesi, U.; Tirelli, C.; Arola, A.; Dragani, R.; Keppens, A.; Loenen, E.; Masini, A.; Tsiakos, , C.; van der A, R.; Verberne, K.

    2017-12-01

    The geostationary satellite constellation composed of TEMPO (North America), SENTINEL-4 (Europe) and GEMS (Asia) missions is a major instance of space component in the fundamentally new paradigm aimed at integrating information on air quality from a wide variety of sources. Space-borne data on tropospheric composition from new generation satellites have a growing impact in this context because of their unprecedented quantity and quality, while merging with non-satellite measurements and other types of auxiliary data via state-of-the-art modelling capabilities remains essential to fit the purpose of highly accurate information made readily available at high temporal and spatial resolution, both in analysis and forecast mode. Proper and effective implementation of this paradigm poses severe challenges to science, technology and applications that must be addressed in a closely interconnected manner to pave the way to high quality products and innovative services. Novel ideas and tools built on these three pillars are currently under investigation in the AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) Horizon 2020 project of the European Commission. The primary goal of the project is the proof of concept of a synergistic approach to the exploitation of Sentinel-4 and -5 Ozone measurements in the UV, Visible and Thermal Infrared based on the combination of an innovative data fusion method and assimilation models. The scientific objective shares the same level of priority with the technological effort to realize a prototype data processor capable to manage the full data processing chain and with the development of two downstream applications for demonstration purposes. The presentation offers a first insight in mid-term results of the project, which is mostly based on the use of synthetic data from the atmospheric Sentinels. Specific focus is given to the role of satellite data synergy in integrated systems for air quality monitoring, in

  7. Umatilla Satellite and Release Sites Project : Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  8. Small-Body Extensions for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Stodden, David; Coggi, John

    2008-01-01

    An extension to the SOAP software allows users to work with tri-axial ellipsoid-based representations of planetary bodies, primarily for working with small, natural satellites, asteroids, and comets. SOAP is a widely used tool for the visualization and analysis of space missions. The small body extension provides the same visualization and analysis constructs for use with small bodies. These constructs allow the user to characterize satellite path and instrument cover information for small bodies in both 3D display and numerical output formats. Tri-axial ellipsoids are geometric shapes the diameters of which are different in each of three principal x, y, and z dimensions. This construct provides a better approximation than using spheres or oblate spheroids (ellipsoids comprising two common equatorial diameters as a distinct polar diameter). However, the tri-axial ellipsoid is considerably more difficult to work with from a modeling perspective. In addition, the SOAP small-body extensions allow the user to actually employ a plate model for highly irregular surfaces. Both tri-axial ellipsoids and plate models can be assigned to coordinate frames, thus allowing for the modeling of arbitrary changes to body orientation. A variety of features have been extended to support tri-axial ellipsoids, including the computation and display of the spacecraft sub-orbital point, ground trace, instrument footprints, and swathes. Displays of 3D instrument volumes can be shown interacting with the ellipsoids. Longitude/latitude grids, contour plots, and texture maps can be displayed on the ellipsoids using a variety of projections. The distance along an arbitrary line of sight can be computed between the spacecraft and the ellipsoid, and the coordinates of that intersection can be plotted as a function of time. The small-body extension supports the same visual and analytical constructs that are supported for spheres and oblate spheroids in SOAP making the implementation of the more

  9. Cosmic Visions Dark Energy: Small Projects Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle; Frieman, Josh; Heitmann, Katrin; Jain, Bhuvnesh; Kahn, Steve; Mandelbaum, Rachel; Perlmutter, Saul; Slosar, Anže

    2018-02-20

    Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3) lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.

  10. Development of the European Small Geostationary Satellite SGEO

    Science.gov (United States)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  11. Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Science.gov (United States)

    1989-01-01

    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  12. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  13. Experience and Methodology gained from 4 years of Student Satellite Projects

    DEFF Research Database (Denmark)

    Alminde, Lars; Bisgaard, Morten; Bhanderi, Dan

    2005-01-01

    The AAU Cubesat student satellite project at Aalborg University was initiated in September 2001 and led to the launch of the satellite on the 30th of June 2003 with a “Rockot” rocket from Plesetsk in Russia. The satellite survived three months in orbit and based on the experiences gained the next...

  14. Kids Interactive Telecommunications Project by Satellite (KITES): A Telecommunications Partnership To Empower Middle School Students.

    Science.gov (United States)

    LeBaron, John

    Kids Interactive Telecommunications Project by Satellite (KITES) is a cooperative international telecommunications partnership involving the University of Lowell, Digital's corporate video network, Videostar Connections Inc. (a satellite networking broker), PanAmSat (a satellite operator), and several other public education institutions in…

  15. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  16. The German joint research project "concepts for future gravity satellite missions"

    Science.gov (United States)

    Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen

    2010-05-01

    Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.

  17. Solid State Inflation Balloon Active Deorbiter: Scalable Low-Cost Deorbit System for Small Satellites

    Science.gov (United States)

    Huang, Adam

    2016-01-01

    The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.

  18. Revisiting the configuration of small satellites structures in the framework of 3D Additive Manufacturing

    Science.gov (United States)

    Gaudenzi, P.; Atek, S.; Cardini, V.; Eugeni, M.; Graterol Nisi, G.; Lampani, L.; Pasquali, M.; Pollice, L.

    2018-05-01

    In this paper the AM-induced evolution of the design process for small satellites is investigated, leading to the identification of optimal design strategies and the definition of a new MAIT concept. A review of the open literature is presented and some introductory concepts are exposed to highlight the effect of the introduction of AM technologies in the development of new satellites systems. In particular, an innovative structural configuration for the CubeSat class of satellites is proposed, with the ultimate goal of minimizing system complexity via parts reduction and the integration of subsystems through an innovative assembly configuration, as an example to be considered for larger satellites.

  19. APPLICATION OF PROJECT MANAGEMENT APPROACHES AT A SMALL BUSINESSES ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Sergey V. Rajewski

    2016-01-01

    Full Text Available This article discusses the types of organizational structures of project management and their application in project management in small and medium-sized enterprises. Among the approaches and methods to organize projects emphasizing project management as part of the existing functional structure of the enterprise. Analyzed the most relevant organizational tools of project management in small business: a network schedule; matrix distribution of administrative and management tasks of the project; schedule of the project plan; information and technological methods and models used in the process of project management; software applications for project management, used in the sphere of small business.

  20. A Small Revolution in Space: An Analysis of the Challenges to US Military Adoption of Small Satellite Constellations

    Science.gov (United States)

    2017-06-01

    a Number of satellites reflects projected for TerraBella and OmniEarth b Mass varies based on specific model of satellite c Orbital variations and...CEO, Kay Sears, Intelsat President, Tip Osterthaler, SES CEO, Phillip Harlow, XTAR CEO and Daniel S. Goldberg , Telesat CEO, Open Letter, Subject...Tip Osterthaler, SES CEO, Phillip Harlow, XTAR CEO and Daniel S. Goldberg , Telesat CEO. Open Letter. Seven Ways to Make the DoD a Better Buyer of

  1. Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization

    Science.gov (United States)

    2016-03-01

    AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION by Halis C. Polat March 2016...FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION 5. FUNDING NUMBERS 6. AUTHOR(S) Halis C. Polat 7...need a robust and accurate attitude control system. Due to the mass- and volume-constrained design environment of CubeSat, conventional methods are

  2. Promoting space research and applications in developing countries through small satellite missions

    Science.gov (United States)

    Sweeting, M.

    The high vantage-point of space offers very direct and tangible benefits to developing countries when carefully focused upon their real and particular communications and Earth observation needs. However, until recently, access to space has been effectively restricted to only those countries prepared to invest enormous sums in complex facilities and expensive satellites and launchers: this has placed individual participation in space beyond the sensible grasp of developing countries. However, during the last decade, highly capable and yet inexpensive small satellites have been developed which provide an opportunity for developing countries realistically to acquire and operate their own independent space assets - customized to their particular national needs. Over the last 22 years, the Surrey Space Centre has pioneered, developed and launched 23 nano-micro-minisatellite missions, and has worked in partnership with 12 developing countries to enable them to take their first independent steps into space. Surrey has developed a comprehensive and in-depth space technology know-how transfer and 'hands-on' training programme that uses a collaborative project comprising the design, construction, launch and operation of a microsatellite to acquire an indigenous space capability and create the nucleus of a national space agency and space industry. Using low cost small satellite projects as a focus, developing countries are able to initiate a long term, affordable and sustainable national space programme specifically tailored to their requirements, that is able to access the benefits derived from Earth observation for land use and national security; improved communications services; catalyzing scientific research and indigenous high-technology supporting industries. Perhaps even more important is the long-term benefit to the country provided by stimulating educational and career opportunities for your scientists and engineers and retaining them inside the country rather the

  3. A Reusable Software Architecture for Small Satellite AOCS Systems

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

    2006-01-01

    This paper concerns the software architecture called Sophy, which is an abbreviation for Simulation, Observation, and Planning in HYbrid systems. We present a framework that allows execution of hybrid dynamical systems in an on-line distributed computing environment, which includes interaction...... with both hardware and on-board software. Some of the key issues addressed by the framework are automatic translation of mathematical specifications of hybrid systems into executable software entities, management of execution of coupled models in a parallel distributed environment, as well as interaction...... with external components, hardware and/or software, through generic interfaces. Sophy is primarily intended as a tool for development of model based reusable software for the control and autonomous functions of satellites and/or satellite clusters....

  4. Very Small Satellite Design for Space Sensor Networks

    Science.gov (United States)

    2008-06-01

    Literature Review 25 Clyde Space Power Pumpkin Computer Microhard Comm SSTL GPS User Payload Pumpkin Structure Figure 2-10. CUTE-I CubeSat [69...Structure Pumpkin [244] Skeletonized 155 $1,350* $810* EPS Clyde Space [245] CubeSat EPS 310 $25,240* $19,252* DH Pumpkin [244] FM430 90 $1,200* $720...satellite miniaturisation since 1993 and probably before. Furthermore, the term itself has been diluted from the pure literal form, eventually

  5. Small astronomy satellite-A, Uhuru data analysis

    Science.gov (United States)

    Koch, D.

    1974-01-01

    Objectives were to conduct observations with the first satellite entirely devoted to X-ray astronomy and to analyze the results obtained. A catalog of X-ray sources was generated, and results of discoveries and further detailed observations of sources were presented in scientific journals and meetings. A list of how objectives were met, a brief description of the instrument, significant results, the X-ray catalog, and a complete bibliography of results are included.

  6. The AAU-cubesat Student Satellite Project: Architectual Overview and Lessons Learnt

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Alminde, Lars; Bisgaard, Morten

    satellite like the AAU-cubesat. Results from the operation phase will be stated, and recommendations on further work on pico-satellite designs will be given. In addition as the project has been carried through by students, the educational value of the project will be addressed as well....

  7. Teaching Small Group Communication: The Do Good Project

    Science.gov (United States)

    Minei, Elizabeth M.

    2016-01-01

    This paper focuses on the parameters of a semester-long project called the "Do Good" project, geared towards developing small group communication skills in undergraduate students. This project highlights participation in a social engagement project that allows students to bridge concepts learned in small group communication lectures…

  8. Tracking big and small agriculture with new satellite sensors

    Science.gov (United States)

    Lobell, D. B.; Azzari, G.; Jin, Z.

    2017-12-01

    New sensors from both the public and private sector are opening up exciting possibilities for monitoring agriculture and its use of water. This talk will present selected examples from recent work using data from Planet's Planetscope and Skysat sensors as well as Sentinel-1 and Sentinel-2 missions that are part of Europe's Copernicus program. Among other things, these satellites are now helping to track crop types and productivity for fields in rainfed cropping systems of East Africa and irrigated systems in South Asia. This information should contribute to understanding land and water use decisions throughout the world.

  9. State-of-the-Art for Small Satellite Propulsion Systems

    Science.gov (United States)

    Parker, Khary I.

    2016-01-01

    SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.

  10. A Large Scale Problem Based Learning inter-European Student Satellite Construction Project

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Alminde, Lars; Bisgaard, Morten

    2006-01-01

    that electronic communication technology was vital within the project. Additionally the SSETI EXPRESS project implied the following problems it didn’t fit to a standard semester - 18 months for the satellite project compared to 5/6 months for a “normal” semester project. difficulties in integrating the tasks......A LARGE SCALE PROBLEM BASED LEARNING INTER-EUROPEAN STUDENT SATELLITE CONSTRUCTION PROJECT This paper describes the pedagogical outcome of a large scale PBL experiment. ESA (European Space Agency) Education Office launched January 2004 an ambitious project: Let students from all over Europe build....... The satellite was successfully launched on October 27th 2005 (http://www.express.space.aau.dk). The project was a student driven project with student project responsibility adding at lot of international experiences and project management skills to the outcome of more traditional one semester, single group...

  11. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    Science.gov (United States)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  12. Small Hydropower Research and Development Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, Mo [Near Space Systems, Inc.

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  13. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  14. APPLICATION OF PROJECT MANAGEMENT APPROACHES AT A SMALL BUSINESSES ENTERPRISES

    OpenAIRE

    Sergey V. Rajewski

    2016-01-01

    This article discusses the types of organizational structures of project management and their application in project management in small and medium-sized enterprises. Among the approaches and methods to organize projects emphasizing project management as part of the existing functional structure of the enterprise. Analyzed the most relevant organizational tools of project management in small business: a network schedule; matrix distribution of administrative and management tasks of the projec...

  15. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Science.gov (United States)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  16. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    OpenAIRE

    Horais, Brian; Love, Lonnie; Dehoff, Ryan

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron ...

  17. Dynamic communications for small satellites using disruption tolerant network concepts

    NARCIS (Netherlands)

    Giuditta, N.; Gill, E.K.A.; Fernández, B.; Isaac, D.

    2009-01-01

    New network technologies are providing interconnectivity in areas previously unheard of. One of these novel technologies, named Disruption Tolerant Networking (DTN), shows promise for the space industry. In order to study its suitability for University projects, a model of a University space mission

  18. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel

    OpenAIRE

    Stubenrauch , C.J.; Rossow , W.B.; Kinne , S.; Ackerman , S.; Cesana , G.; Chepfer , H.; Di Girolamo , L.; Getzewich , B.; Guignard , A.; Heidinger , A.; Maddux , B.C.; Menzel , W.P.; Minnis , P.; Pearl , C.; Platnick , S.

    2013-01-01

    International audience; The Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel initiated the GEWEX Cloud Assessment in 2005 to compare available, global, long-term cloud data products with the International Satellite Cloud Climatology Project (ISCCP). The GEWEX Cloud Assessment database included cloud properties retrieved from different satellite sensor measurements, taken at various local times and over various time periods. The relevant passive satellite sensors measured radia...

  19. An Overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE)

    Science.gov (United States)

    Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.

    1992-11-01

    In the summer of 1983 a group of scientists working in the fields of meteorology, biology, and remote sensing met to discuss methods for modeling and observing land-surface—atmosphere interactions on regional and global scales. They concluded, first, that the existing climate models contained poor representations of the processes controlling the exchanges of energy, water, heat, and carbon between the land surface and the atmosphere and, second, that satellite remote sensing had been underutilized as a means of specifying global fields of the governing biophysical parameters. Accordingly, a multiscale, multidisciplinary experiment, FIFE, was initiated to address these two issues. The objectives of FIFE were specified as follows: (1) Upscale integration of models: The experiment was designed to test the soil-plant-atmosphere models developed by biometeorologists for small-scale applications (millimeters to meters) and to develop methods to apply them at the larger scales (kilometers) appropriate to atmospheric models and satellite remote sensing. (2) Application of satellite remote sensing: Even if the first goal were achieved to yield a "perfect" model of vegetation-atmosphere exchanges, it would have very limited applications without a global observing system for initialization and validation. As a result, the experiment was tasked with exploring methods for using satellite data to quantify important biophysical states and rates for model input. The experiment was centered on a 15 × 15 km grassland site near Manhattan, Kansas. This area became the focus for an extended monitoring program of satellite, meteorological, biophysical, and hydrological data acquisition from early 1987 through October 1989 and a series of 12- to 20-day intensive field campaigns (IFCs), four in 1987 and one in 1989. During the IFCs the fluxes of heat, moisture, carbon dioxide, and radiation were measured with surface and airborne equipment in coordination with measurements of surface

  20. Design of a Low-Cost 2-Axes Fluxgate Magnetometer for Small Satellite Applications

    Directory of Open Access Journals (Sweden)

    Su-Jeoung Kim

    2005-03-01

    Full Text Available This paper addresses the design and analysis results of a 2-axes magnetometer for attitude determination of small satellite. A low-cost and efficient 2-axes fluxgate magnetometer was selected as the most suitable attitude sensor for LEO microsatellites which require a low-to-medium level pointing accuracy. An optimization trade-off study has been performed for the development of 2-axes fluxgate magnetometer. All the relevant parameters such as permeability, demagnetization factor, coil diameter, core thickness, and number of coil turns were considered for the sizing of a small satellite magnetometer. The magnetometer which is designed, manufactured, and tested in-house as described in this paper satisfies linearity requirement for determining attitude position of small satellites. On the basis of magnetometer which is designed in Space System Research Lab. (SSRL, commercial magnetometer will be developed.

  1. Quantifying suspended solids in small rivers using satellite data.

    Science.gov (United States)

    Isidro, Celso M; McIntyre, Neil; Lechner, Alex M; Callow, Ian

    2018-09-01

    The management of suspended solids and associated contaminants in rivers requires knowledge of sediment sources. In-situ sampling can only describe the integrated impact of the upstream sources. Empirical models that use surface reflectance from satellite images to estimate total suspended solid (TSS) concentrations can be used to supplement measurements and provide spatially continuous maps. However, there are few examples, especially in narrow, shallow and hydrologically dynamic rivers found in mountainous areas. A case study of the Didipio catchment in Philippines was used to address these issues. Four 5-m resolution RapidEye images, from between the years 2014 and 2016, and near-simultaneous ground measurements of TSS concentrations were used to develop a power law model that approximates the relationship between TSS and reflectance for each of four spectral bands. A second dataset using two 2-m resolution Pleiades-1A and a third using a 6-m resolution SPOT-6 image along with ground-based measurements, were consistent with the model when using the red band data. Using that model, encompassing data from all three datasets, gave an R 2 value of 65% and a root mean square error of 519mgL -1 . A linear relationship between reflectance and TSS exists from 1mgL -1 to approximately 500mgL -1 . In contrast, for TSS measurements between 500mgL -1 and 3580mgL -1 reflectance increases at a generally lower and more variable rate. The results were not sensitive to changing the pixel location within the vicinity of the ground sampling location. The model was used to generate a continuous map of TSS concentration within the catchment. Further ground-based measurements including TSS concentrations that are higher than 3580mgL -1 would allow the model to be developed and applied more confidently over the full relevant range of TSS. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Survey of Verification and Validation Techniques for Small Satellite Software Development

    Science.gov (United States)

    Jacklin, Stephen A.

    2015-01-01

    The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.

  3. Cost-Effective Icy Bodies Exploration using Small Satellite Missions

    Science.gov (United States)

    Jonsson, Jonas; Mauro, David; Stupl, Jan; Nayak, Michael; Aziz, Jonathan; Cohen, Aaron; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Klamm, Benjamin; hide

    2015-01-01

    It has long been known that Saturn's moon Enceladus is expelling water-rich plumes into space, providing passing spacecraft with a window into what is hidden underneath its frozen crust. Recent discoveries indicate that similar events could also occur on other bodies in the solar system, such as Jupiter's moon Europa and the dwarf planet Ceres in the asteroid belt. These plumes provide a possible giant leap forward in the search for organics and assessing habitability beyond Earth, stepping stones toward the long-term goal of finding extraterrestrial life. The United States Congress recently requested mission designs to Europa, to fit within a cost cap of $1B, much less than previous mission designs' estimates. Here, innovative cost-effective small spacecraft designs for the deep-space exploration of these icy worlds, using new and emerging enabling technologies, and how to explore the outer solar system on a budget below the cost horizon of a flagship mission, are investigated. Science requirements, instruments selection, rendezvous trajectories, and spacecraft designs are some topics detailed. The mission concepts revolve around a comparably small-sized and low-cost Plume Chaser spacecraft, instrumented to characterize the vapor constituents encountered on its trajectory. In the event that a plume is not encountered, an ejecta plume can be artificially created by a companion spacecraft, the Plume Maker, on the target body at a location timed with the passage of the Plume Chaser spacecraft. Especially in the case of Ceres, such a mission could be a great complimentary mission to Dawn, as well as a possible future Europa Clipper mission. The comparably small volume of the spacecraft enables a launch to GTO as a secondary payload, providing multiple launch opportunities per year. Plume Maker's design is nearly identical to the Plume Chaser, and fits within the constraints for a secondary payload launch. The cost-effectiveness of small spacecraft missions enables the

  4. 6/4 GHz band small capacity omni-use terminal satellite system

    Science.gov (United States)

    Masamura, T.; Inoue, T.

    1983-03-01

    This paper presents system outline and multiple access techniques for a domestic satellite communication system accommodating numerous small earth stations. Two kinds of earth stations are employed in this system, a small earth terminal (SET) and a master earth station (MES). There are 48 both way satellite channels using a 6/4 GHz band transponder whose e.i.r.p is about 62 dBm. The TDM (Time Division Multiplex) method is employed in the MES to SET link, and the SSMA (Spread Spectrum Multiple Access) method is used in the SET to MES link.

  5. B612 plans asteroid hunt with fleet of small satellites

    Science.gov (United States)

    Mann, Adam

    2018-05-01

    Last week, an asteroid the size of Egypt's Great Pyramid of Giza whizzed by Earth, missing it by half the distance to the moon. The concern that we may one day not be so lucky has long preoccupied the B612 Foundation, a private organization in Mill Valley, California, dedicated to finding asteroids that cross Earth's orbit and could devastate humanity. B612 itself had a near-death experience 3 years ago, when its bold plans for an asteroid-hunting space telescope fell apart. But now, its ambitions are rising again with a new technique for finding menacing objects. On 10 May, B612 announced a partnership with York Space Systems to investigate building a fleet of small asteroid hunters. For many years, B612 aimed to build and launch a much larger craft, Sentinel, a $450 million space telescope with a 50-centimeter mirror. But fundraising stalled and, in 2015, NASA ended an agreement to help B612 because it wasn't meeting mileposts, essentially killing the telescope. Now, B612 has developed a new technique, called synthetic tracking, that can produce similar results at a far lower cost with small space telescopes. Ed Lu, B612 co-founder and CEO, expects the first telescope to cost about $10 million and believes a full constellation "would be a factor of many, many cheaper" than Sentinel.

  6. Heating and melting of small icy satellites by the decay of Al-26

    International Nuclear Information System (INIS)

    Prialnik, D.; Bar-Nun, A.

    1990-01-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26). The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass). 34 refs

  7. Heating and melting of small icy satellites by the decay of Al-26

    Science.gov (United States)

    Prialnik, Dina; Bar-Nun, Akiva

    1990-05-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26. The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass).

  8. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  9. International Satellite Cloud Climatology Project (ISCCP) Climate Data Record, H-Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Satellite Cloud Climatology Project (ISCCP) focuses on the distribution and variation of cloud radiative properties to improve the understanding of...

  10. Interconnection of Broadband Islands via Satellite-Experiments on the Race II Catalyst Project

    National Research Council Canada - National Science Library

    Sun, Z

    1996-01-01

    .... The purpose of the project was to develop an ATM satellite link for the future B-ISDN services, particularly for the interconnections of the ATM testbeds which are in the form of broadband islands...

  11. The Role of Ground-Based Robotic Observatories in Satellite Projects

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2010-01-01

    Roč. 2010, - (2010), 594854/1-594854/10 ISSN 1687-7969 R&D Projects: GA ČR GA205/08/1207 Grant - others:ESA(XE) ESA-PECS project No. 98058 Institutional research plan: CEZ:AV0Z10030501 Keywords : robotic telescopes * satellite projects * INTEGRAL mission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Teaching Small Group Communication: A Do Good Project

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Minei, PhD

    2016-08-01

    Full Text Available This paper focuses on the parameters of a semester-long project called the “Do Good” project, geared towards developing small group communication skills in undergraduate students. This project highlights participation in a social engagement project that allows students to bridge concepts learned in small group communication lectures (e.g., team dynamics, project management, conflict resolution, decision making, leadership with community outreach. Included are an overview of the project, and examples for how each component both challenges students’ ability to communicate in groups and provides motivation that foster students’ ability to link in-class knowledge with practical, real world application.

  13. FireBird - a small satellite fire monitoring mission: Status and first results

    Science.gov (United States)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  14. Low-Cost Telemetry System for Small/Micro Satellites

    Science.gov (United States)

    Sims, William; Varnavas, Kosta

    2012-01-01

    A Software Defined Radio (SDR) concept uses a minimum amount of analog/radio frequency components to up/downconvert the RF signal to/from a digital format. Once in the digital domain, all other processing (filtering, modulation, demodulation, etc.) is done in software. The project will leverage existing designs and enhance capabilities in the commercial sector to provide a path to a radiation-hardened SDR transponder. The SDR transponder would incorporate baseline technologies dealing with improved Forward Error Correcting (FEC) codes to be deployed to all Near Earth Network (NEN) ground stations. By incorporating this FEC, at least a tenfold increase in data throughput can be achieved. A family of transponder products can be implemented using common platform architecture, allowing new products to be more quickly introduced into the market. Software can be reused across products, reducing software/hardware costs dramatically. New features and capabilities, such as encoding and decoding algorithms, filters, and bit synchronizers, can be added to the existing infrastructure without requiring major new capital expenditures, allowing implementation of advanced features in the communication systems. As new telecommunication technologies emerge, incorporating them into the SDR fabric will be easily accomplished with little or no requirements for new hardware. There are no preferred flight platforms for the SDR technology, so it can be used on any type of orbital or sub-orbital platform, all within a fully radiation hardened design.

  15. Analysis and implementation of communications systems for small satellite missions

    Science.gov (United States)

    Hammerman, Morgan

    STEM (science, technology, engineering, and math) is a wave of the future for teaching. It combines multiple topics that promote critical thinking. This study targeted one aspect of the first-grade curriculum, sorting using properties. This unit used STEM teaching methods to test if hands-on, game based methods would enhance learning. The setting used for this study was a first-grade classroom in an upper middle-class suburb. The students took a pre-test before the unit began and a post-test at the end of the unit. These assessments were used to evaluate their progress in sorting and identifying properties of various objects. One major research focus was to look at group dynamics in the classroom. This was done by dividing the students into small groups to promote working collaboratively with their peers. The results of this study showed that hands on activity or game based learning are effective tools when teaching properties. It was inconclusive whether these results were due to game based learning or the hands-on activities. The study also revealed that group work is a successful tool that can be used while teaching properties.

  16. Testing solar panels for small-size satellites: the UPMSAT-2 mission

    International Nuclear Information System (INIS)

    Roibás-Millán, E; Alonso-Moragón, A; Jiménez-Mateos, A G; Pindado, S

    2017-01-01

    At present, the development of small-size satellites by universities, companies and research institutions has become usual practice, and is spreading rapidly. In this kind of project cost plays a significant role. One of the main areas are the assembly, integration and test (AIT) plans, which carry an associated cost for simulating environmental conditions. For instance, in the power subsystems test and, in particular, in the testing of solar panels, the irradiance and temperature conditions might be optimum so the performance of the system can be shown next to real operational conditions. To reproduce the environmental conditions in terms of irradiance, solar simulators are usually used, which carries an associated increase in cost for testing the equipment. The aim of this paper is to present an alternative and inexpensive way to perform AIT plans on spacecraft power subsystems, from a testing campaign performed using outdoor clean-sky conditions and an isolation system to protect the panels. A post-process of the measured data is therefore needed, taking into account the conditions in which the test has been accomplished. The I–V characteristics obtained are compared with a theoretical 1-diode/2-resistor equivalent electric circuit, achieving enough precision based solely on the manufacturer’s data. (paper)

  17. Testing solar panels for small-size satellites: the UPMSAT-2 mission

    Science.gov (United States)

    Roibás-Millán, E.; Alonso-Moragón, A.; Jiménez-Mateos, A. G.; Pindado, S.

    2017-11-01

    At present, the development of small-size satellites by universities, companies and research institutions has become usual practice, and is spreading rapidly. In this kind of project cost plays a significant role. One of the main areas are the assembly, integration and test (AIT) plans, which carry an associated cost for simulating environmental conditions. For instance, in the power subsystems test and, in particular, in the testing of solar panels, the irradiance and temperature conditions might be optimum so the performance of the system can be shown next to real operational conditions. To reproduce the environmental conditions in terms of irradiance, solar simulators are usually used, which carries an associated increase in cost for testing the equipment. The aim of this paper is to present an alternative and inexpensive way to perform AIT plans on spacecraft power subsystems, from a testing campaign performed using outdoor clean-sky conditions and an isolation system to protect the panels. A post-process of the measured data is therefore needed, taking into account the conditions in which the test has been accomplished. The I-V characteristics obtained are compared with a theoretical 1-diode/2-resistor equivalent electric circuit, achieving enough precision based solely on the manufacturer’s data.

  18. A Guide to Bundling Small-scale CDM Projects

    International Nuclear Information System (INIS)

    Mariyappan, J.; Bhardwaj, N.; De Coninck, H.; Van der Linden, N.

    2005-07-01

    Small-scale renewable energy and energy efficiency projects that fit the development needs of many developing countries, can potentially be supported via the Clean Development Mechanism (CDM), one of the Kyoto Protocol's flexible mechanisms for tackling climate change. However, there is concern that due to high transaction costs, as well as many existing barriers, very few investments will be made in small-scale projects, which are often the most suitable development option in countries such as India. In view of this, the 'bundling' together of appropriate small-scale projects on a regional basis has been proposed as a way in which funding can be leveraged from international sources and transaction costs reduced. IT Power, IT Power India and the Energy research Centre of the Netherlands (ECN) are carrying out a 2-year project to establish the capacity within India to enable individual small scale projects to be bundled as a single CDM project. Overall objectives are to develop the necessary institutional capabilities to formulate and implement small scale CDM projects in India; to provide a guide on how to bundle small scale projects under the CDM in developing countries; and to raise the awareness of the potential for investment in small scale energy projects which can gain funding through the CDM

  19. Trevino Project: a fast-track approach for a small construction project

    International Nuclear Information System (INIS)

    Schick, C.J.; Lynn, N.S.

    1982-01-01

    The approach to a construction project can vary according to the size, location, and degree of difficulty associated with the project. This paper deals with one approach that can be taken to a small construction project, the fast-track approach. A small construction project can be defined as a project having less than $20 million capital cost or a project with a low degree of difficulty. This approach is very applicable to in-situ leaching uranium projects, small precious metal operations, etc. The approach to the small project is that of fast-tracking the project in order to minimize the time over which capital expenditure occurs and also to reduce the indirect costs of field expense, construction supplies, construction equipment, etc. In order to fast-track a project it is necessary to do a very precise job on the preliminary phases of the project such as preliminary engineering, plant site location, environmental permits, etc. 2 figures, 2 tables

  20. Texas Telecommunication Satellite Demonstration Project. Planning Effort for Application of Communication Satellites in Education.

    Science.gov (United States)

    Education Service Center Region 4, Houston, TX.

    The primary goal of the Texas Telecommunication Satellite Demonstration consortium is to install, operate, and evaluate a comprehensive communication service delivery system which would provide the citizens of Texas with greater opportunity for equal access to education and information. The four major objectives of the demonstration are (1) to…

  1. EFFECTS OF SMALL THRUST ON THE MOTION OF AN ARTIFICIAL EARTH SATELLITE

    OpenAIRE

    TAKEUCHI, Sumio; 武内, 澄夫

    1982-01-01

    Perturbative effects of small thrust on the motion of an artificial earth satellite are investigated. The Lagrange planetary equations in Gaussian form are applied to determine the variations of the orbital elements. Also, equations of motion expressed in terms of different components of the thrust acceleration are used. It is assumed that the small thrust acceleration is a function of time and expressible as a linear combination of a polynomial and a composite set of all sines and cosines. B...

  2. Managing Small Spacecraft Projects: Less is Not Easier

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn

    2012-01-01

    Managing small, low cost missions (class C or D) is not necessarily easier than managing a full flagship mission. Yet, small missions are typically considered easier to manage and used as a training ground for developing the next generation of project managers. While limited resources can be a problem for small missions, in reality most of the issues inherent in managing small projects are not the direct result of limited resources. Instead, problems encountered by managers of small spacecraft missions often derive from 1) the perception that managing small projects is easier if something is easier it needs less rigor and formality in execution, 2) the perception that limited resources necessitate or validate omitting standard management practices, 3) less stringent or unclear guidelines or policies for small projects, and 4) stakeholder expectations that are not consistent with the size and nature of the project. For example, the size of a project is sometimes used to justify not building a full, detailed integrated master schedule. However, while a small schedule slip may not be a problem for a large mission, it can indicate a serious problem for a small mission with a short development phase, highlighting the importance of the schedule for early identification of potential issues. Likewise, stakeholders may accept a higher risk posture early in the definition of a low-cost mission, but as launch approaches this acceptance may change. This presentation discusses these common misconceptions about managing small, low cost missions, the problems that can result, and possible solutions.

  3. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  4. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    Science.gov (United States)

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  5. LARGE AND SMALL GROUP TYPEWRITING PROJECT.

    Science.gov (United States)

    JEFFS, GEORGE A.; AND OTHERS

    AN INVESTIGATION WAS CONDUCTED TO DETERMINE IF GROUPS OF HIGH SCHOOL STUDENTS NUMERICALLY IN EXCESS OF 50 COULD BE AS EFFECTIVELY INSTRUCTED IN TYPEWRITING SKILLS AS GROUPS OF LESS THAN 30. STUDENTS ENROLLED IN 1ST-YEAR TYPEWRITING WERE RANDOMLY ASSIGNED TO TWO LARGE GROUPS AND THREE SMALL GROUPS TAUGHT BY THE SAME INSTRUCTOR. TEACHER-MADE,…

  6. Paving the Way for Small Satellite Access to Orbit: Cyclops' Deployment of SpinSat, the Largest Satellite Ever Deployed from the International Space Station

    Science.gov (United States)

    Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2015-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.

  7. The Milky Way Project: A Census of Small Bubbles

    Science.gov (United States)

    Arvidsson, Kim; Wolf-Chase, G. A.; Way Project, Milky

    2013-01-01

    The first data release (DR1) from the Milky Way Project (MWP) contains 1362 visually identified small bubbles drawn by users. These small infrared bubbles typically have diameters MSX6C point source catalog; >90% of all small bubbles are MSX point sources.

  8. Tailoring Small IT Projects in the Project Planning Phase

    Science.gov (United States)

    Mulhearn, Michael F.

    2011-01-01

    Project management (PM) and systems engineering (SE) are essential skills in information technology (IT). There is an abundance of information available detailing the comprehensive bodies of knowledge, standards, and best practices. Despite the volume of information, there is surprisingly little information about how to tailor PM and SE tasks for…

  9. Technical and cost advantages of silicon carbide telescopes for small-satellite imaging applications

    Science.gov (United States)

    Kasunic, Keith J.; Aikens, Dave; Szwabowski, Dean; Ragan, Chip; Tinker, Flemming

    2017-09-01

    Small satellites ("SmallSats") are a growing segment of the Earth imaging and remote sensing market. Designed to be relatively low cost and with performance tailored to specific end-use applications, they are driving changes in optical telescope assembly (OTA) requirements. OTAs implemented in silicon carbide (SiC) provide performance advantages for space applications but have been predominately limited to large programs. A new generation of lightweight and thermally-stable designs is becoming commercially available, expanding the application of SiC to small satellites. This paper reviews the cost and technical advantages of an OTA designed using SiC for small satellite platforms. Taking into account faceplate fabrication quilting and surface distortion after gravity release, an optimized open-back SiC design with a lightweighting of 70% for a 125-mm SmallSat-class primary mirror has an estimated mass area density of 2.8 kg/m2 and an aspect ratio of 40:1. In addition, the thermally-induced surface error of such optimized designs is estimated at λ/150 RMS per watt of absorbed power. Cost advantages of SiC include reductions in launch mass, thermal-management infrastructure, and manufacturing time based on allowable assembly tolerances.

  10. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    Science.gov (United States)

    Levchenko, Igor; Bazaka, Kateryna; Ding, Yongjie; Raitses, Yevgeny; Mazouffre, Stéphane; Henning, Torsten; Klar, Peter J.; Shinohara, Shunjiro; Schein, Jochen; Garrigues, Laurent; Kim, Minkwan; Lev, Dan; Taccogna, Francesco; Boswell, Rod W.; Charles, Christine; Koizumi, Hiroyuki; Shen, Yan; Scharlemann, Carsten; Keidar, Michael; Xu, Shuyan

    2018-03-01

    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small

  11. Motivating Students to Develop Satellites in a Problem and Project-Based Learning Environment

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Nielsen, Jens Frederik Dalsgaard; Zhou, Chunfang

    2013-01-01

    During the last decade, a total of three student satellites have been developed by engineering students in a Problem and Project-Based Learning (PBL) environment at Aalborg University (AAU), Denmark. As solving such a complex project, we emphasize that a high level of motivation is needed for the...

  12. A small satellite design for deep space network testing and training

    Science.gov (United States)

    McWilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-05-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  13. A small satellite design for deep space network testing and training

    Science.gov (United States)

    Mcwilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-01-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  14. Development of Next Generation Memory Test Experiment for Deployment on a Small Satellite

    Science.gov (United States)

    MacLeod, Todd; Ho, Fat D.

    2012-01-01

    The original Memory Test Experiment successfully flew on the FASTSAT satellite launched in November 2010. It contained a single Ramtron 512K ferroelectric memory. The memory device went through many thousands of read/write cycles and recorded any errors that were encountered. The original mission length was schedule to last 6 months but was extended to 18 months. New opportunities exist to launch a similar satellite and considerations for a new memory test experiment should be examined. The original experiment had to be designed and integrated in less than two months, so the experiment was a simple design using readily available parts. The follow-on experiment needs to be more sophisticated and encompass more technologies. This paper lays out the considerations for the design and development of this follow-on flight memory experiment. It also details the results from the original Memory Test Experiment that flew on board FASTSAT. Some of the design considerations for the new experiment include the number and type of memory devices to be used, the kinds of tests that will be performed, other data needed to analyze the results, and best use of limited resources on a small satellite. The memory technologies that are considered are FRAM, FLASH, SONOS, Resistive Memory, Phase Change Memory, Nano-wire Memory, Magneto-resistive Memory, Standard DRAM, and Standard SRAM. The kinds of tests that could be performed are read/write operations, non-volatile memory retention, write cycle endurance, power measurements, and testing Error Detection and Correction schemes. Other data that may help analyze the results are GPS location of recorded errors, time stamp of all data recorded, radiation measurements, temperature, and other activities being perform by the satellite. The resources of power, volume, mass, temperature, processing power, and telemetry bandwidth are extremely limited on a small satellite. Design considerations must be made to allow the experiment to not interfere

  15. The role of small satellites in the development of the South African space programme

    Science.gov (United States)

    Martinez, Peter

    In the 1990s a team of scientists and engineers at Stellenbosch University built the first South African satellite to fly in space, the 64-kg Sunsat. This university-based satellite programme took advantage of the skills and facilities developed in the previous South African space programme of the 1980s and early 1990s, which had developed a much larger satellite (Greensat), but was cancelled in the mid-1990s prior to launch. Sunsat incorporated a number of novel capabilities for a microsatellite platform, and interest was shown in these technologies by other groups developing similar satellites. As the University was not the ideal environment to develop the commercial potential of these microsatellite technologies, a company called Sunspace was later established, thus creating industrial capacity in South Africa in a niche area of space technology. This new industrial capability, together with the infrastructure from the previous space programme, have created a foundation upon which to build the new South African space programme. This paper discusses the historical, current and possible future roles of small satellites in the development of the South African space programme.

  16. Dynamic Capabilities and Project Management in Small Software Companies

    DEFF Research Database (Denmark)

    Nørbjerg, Jacob; Nielsen, Peter Axel; Persson, John Stouby

    2017-01-01

    A small software company depends on its capability to adapt to rapid technological and other changes in its environment—its dynamic capabilities. In this paper, we argue that to evolve and maintain its dynamic capabilities a small software company must pay attention to the interaction between...... dynamic capabilities at different levels of the company — particularly between the project management and the company levels. We present a case study of a small software company and show how successful dynamic capabilities at the company level can affect project management in small software companies...

  17. IMPLEMENTING SMALL AND MEDIUM IT PROJECTS IN SMALL AND MEDIUM ENERPRISES

    Directory of Open Access Journals (Sweden)

    Felix DUMITRESCU

    2014-06-01

    Full Text Available Information technology is essential nowadays for all companies. Small enterprises are an important part of the economy and this article aims at providing some useful insight in implementing modern IT projects to their benefit. Due to the limited funding available for the IT infrastructure in most start-ups and small businesses, the projects should be adapted to fulfill the needs of the company for the lowest cost. The paper will start by defining small and medium project management theory and outlining the target of the study, small and medium sized companies. Next it will show a number of case studies of IT projects implemented in different types of small companies in Romania. Based on these implementations the article will draw some conclusions relevant to most small companies which need to design or improve their IT infrastructure.

  18. Financing small scale wind energy projects in the UK

    International Nuclear Information System (INIS)

    Mitchell, Catherine

    1993-01-01

    This paper shows how wind energy projects in the UK have obtained finance. It attempts to list the financing options open to small scale developments and to note any likely problems which may occur. (UK)

  19. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    Science.gov (United States)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  20. The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment

    CERN Document Server

    Méndez-Lorenzo, P; Lamanna, M; Meyer, X; Lazeyras, M; Bjorgo, E; Retiere, A; Falzone, A; Venuti, N; Maccarone, S; Ugolotti, B

    2007-01-01

    UNOSAT is a United Nations activity to provide access to satellite images and geographic system services for humanitarian operations for rescue or aid activities. UNOSAT is implemented by the UN Institute for Training and Research (UNITAR) and managed by the UN Office for Project Services (UNOPS). In addition, partners from different organizations constitute the UNOSAT consortium. Among these partners, CERN participates actively providing the required computational and storage resources. The critical part of the UNOSAT activity is the storage and processing of large quantities of satellite images. The fast and secure access to these images from any part of the world is mandatory during these activities. Based on two successful CERN-GRID/UNOSAT pilot projects (data storage/compression/download and image access through mobile phone), the GRIDUNOSAT project has consolidated the considerable work undertaken so far in the present activity. The main use case already demonstrated is the delivery of satellite images ...

  1. PEGASUS - A Flexible Launch Solution for Small Satellites with Unique Requirements

    Science.gov (United States)

    Richards, B. R.; Ferguson, M.; Fenn, P. D.

    The financial advantages inherent in building small satellites are negligible if an equally low cost launch service is not available to deliver them to the orbit they require. The weight range of small satellites puts them within the capability of virtually all launch vehicles. Initially, this would appear to help drive down costs through competition since, by one estimate, there are roughly 75 active space launch vehicles around the world that either have an established flight record or are planning to make an inaugural launch within the year. When reliability, budget constraints, and other issues such as inclination access are factored in, this list of available launch vehicles is often times reduced to a very limited few, if any at all. This is especially true for small satellites with unusual or low inclination launch requirements where the cost of launching on the heavy-lift launchers that have the capacity to execute the necessary plane changes or meet the mission requirements can be prohibitive. For any small satellite, reducing launch costs by flying as a secondary or even tertiary payload is only advantageous in the event that a primary payload can be found that either requires or is passing through the same final orbit and has a launch date that is compatible. If the satellite is able to find a ride on a larger vehicle that is only passing through the correct orbit, the budget and technical capability must exist to incorporate a propulsive system on the satellite to modify the orbit to that required for the mission. For these customers a launch vehicle such as Pegasus provides a viable alternative due to its proven flight record, relatively low cost, self- contained launch infrastructure, and mobility. Pegasus supplements the existing world-wide launch capability by providing additional services to a targeted niche of payloads that benefit greatly from Pegasus' mobility and flexibility. Pegasus can provide standard services to satellites that do not

  2. 20 Years Experience with using Low Cost Launch Opportunities for 20 Small Satellite Missions

    Science.gov (United States)

    Meerman, Maarten; Sweeting, Martin, , Sir

    To realise the full potential of modern low cost mini-micro-nano-satellite missions, regular and affordable launch opportunities are required. It is simply not economic to launch individual satellites of 5-300kg on single dedicated launchers costing typically 15-20M per launch. Whilst there have been periodic 'piggy-back' launches of small satellites on US launchers since the 1960's, these have been infrequent and often experienced significant delays due the vagaries of the main (paying!) payload. In 1989, Arianespace provided a critical catalyst to the microsatellite community when it imaginatively developed the ASAP platform on Ariane-4 providing, for the first time, a standard interface and affordable launch contracts for small payloads up to 50kg. During the 1990's, some 20 small satellites have been successfully launched on the Ariane-4 ASAP ring for international customers carrying out a range of operational, technology demonstration and training missions. However, most of these microsatellite missions seek low Earth orbit and especially sun-synchronous orbits, but the number of primary missions into these orbit has declined since 1996 and with it the availability of useful low cost launch opportunities for microsatellites. Whilst Ariane-5 has an enhanced capacity ASAP, it has yet to be widely used due both to the infrequent launches, higher costs, and the GTO orbit required by the majority of customers. China, Japan and India have also provided occasional secondary launches for small payloads, but not yet on a regular basis. Fortunately, the growing interest and demand for microsatellite missions coincided with the emergence of regular, low cost launch opportunities from the former Soviet Union (FSU) - both as secondary 'piggy-back' missions or as multiple microsatellite payloads on converted military ICBMs. Indeed, the FSU now supplies the only affordable means of launching minisatellites (200-500kg) into LEO as dedicated missions on converted missiles as

  3. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    assessed the ability of satellite-based relays working above GEO in conjunction with Earth ground stations. Many of these focused on the trade between space relay and direct-to-Earth station links5,6,7. Several others focused on top-level architecture based on relays at various destinations8,9,10,11,12. Much has changed in terms of microwave and optical technology since the publication of the referenced papers; Ka-band communication systems are being deployed, optical communication is being demonstrated, and spacecraft buses are becoming increasingly more functional and operational. A design concept study was undertaken to access the potential for deploying a Small Space-Based Satellite (SSBS) relay capable of serving missions between LEO and NEO. The needs of future human exploration missions were analyzed, and a notional relay-based architecture concept was generated as shown in Fig. 1. Relay satellites in Earth through cis-Lunar orbits are normally located in stable orbits requiring low fuel consumption. Relay satellites for Mars orbit are normally selected based on the mission requirement and projected fuel consumption. Relay satellites have extreme commonalities of functions between them, differing only in the redundancy and frequencies used; therefore, the relay satellite in GEO was selected for further analysis since it will be the first step in achieving a relay-based architecture for human exploration missions (see Fig.Figure 2). The mission design methodology developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team13 was used to produce the satellite relay design and to perform various design trades. At the start of the activity, the team was provided with the detailed concept of the notional architecture and the system and communication payload drivers.

  4. Project Finance Model for Small Contractors in USA

    Directory of Open Access Journals (Sweden)

    Jawahar Nesan

    2012-11-01

    Full Text Available Construction projects do not require a large capital outlay but a large working capital to start up the project. Unfortunately, for small contractors there are very limited options available from the banks or other lending institutions to cover this large working capital requirement in the absence of sufficient collateral. The “Project Finance” method presented in this paper is recommended as the most effective method for small contractors in the United States. The problems of small and start up contractors in funding their projects have been little addressed in the literature. The current financing practices were observed through both the literature review and interviews with contractors and bankers in the western Michigan area and subsequently a system has been proposed which could help a small start-up company seeking higher growth. The growth rates that can be achieved using the project finance system in contrast to the traditional “line of credit” arrangements as illustrated in this paper show that the project finance model is beneficial.

  5. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  6. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  7. Natural disaster reduction applications of the Chinese small satellite constellation for environment and disaster monitoring and forecasting

    Science.gov (United States)

    Liu, Sanchao; Fan, Yida; Gao, Maofang

    2013-10-01

    The Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) is an important component of Chinese satellites earth observation system. The first stage of SSCEDMF is composed by "2+1" satellites. The 2 optical satellites (HJ-1-A and HJ-1-B) and 1 S band microwave satellite (HJ-1-C) were successful launched on September 6, 2008 and November 19, 2012 respectively. This article introduced SSCEDMF characteristic and the disaster reduction application system and satellites on-orbit test works, and also analyzed the application capacity in natural disasters included flood, ice flooding, wild fire, severely drought, snow disasters, large area landslide and debris flow, sea ice, earthquake recovering, desertification and plant diseases and insect pests. Furthermore, we show some cases of China's and other countries' new natural disasters forecasting, monitoring, assessment and recovery construction.

  8. Small satellite technologies and applications II; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Horais, Brian J.

    The present conference on small satellite (SS) systems and their supporting technologies discusses the Medsat SS for malaria early warning and control, results of the Uosat earth-imaging system, commercial applications for MSSs, an SS family for LEO communications, videosignal signature-synthesis for fast narrow-bandwidth transmission, and NiH battery applications in SSs. Also discussed are the 'PegaStar' spacecraft concept for remote sensing, dual-cone scanning earth sensor processing algorithms, SS radiation-budget instrumentation, SDI's relevance to SSs, spacecraft fabrication and test integration, and cryocooler producibility. (For individual items see A93-28077 to A93-28100)

  9. Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization

    International Nuclear Information System (INIS)

    Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.

    2016-01-01

    Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4  J K −1 .

  10. Small scale renewable solar energy and the best result project

    Energy Technology Data Exchange (ETDEWEB)

    Bilbao, J.; Miguel, A.H.; Perez-Burgos, A.M. [Valladolid Univ. (Spain)

    2008-07-01

    The European Community has established programmes with different Projects in relation with the develop of an energy system according to de Kyoto objectives, improving energy efficiency, maintaining security supply and doubling the share of renewable energy use. The Best Result Project (Building and Energy Systems and Technology in Renewable Energy Sources Update and Linked Training), is financed by the European Commission, Intelligent Energy Agency (EIE) and the project objectives are to develop training and diffusion activities in the field of Renewable Energy Technology. The project aims to raise the renewable energy knowledge among suppliers and general public. The project activities are: basis and specialized training events, workshops, meetings, visits and e-learning common platform. The final objective is to extend the market of small scale RES applications in the building and energy sector through common and local activities addressing RES suppliers and consumers. (orig.)

  11. Direct Satellite Data Acquisition and its Application for Large -scale Monitoring Projects in Russia

    Science.gov (United States)

    Gershenzon, O.

    2011-12-01

    ScanEx RDC created an infrastructure (ground stations network) to acquire and process remote sensing data from different satellites: Terra, Aqua, Landsat, IRS-P5/P6, SPOT 4/5, FORMOSAT-2, EROS A/B, RADARSAT-1/2, ENVISAT-1. It owns image archives from these satellites as well as from SPOT-2 and CARTOSAT-2. ScanEx RDC builds and delivers remote sensing ground stations (working with up to 15 satellites); and owns the ground stations network to acquire data for Russia and surrounding territory. ScanEx stations are the basic component in departmental networks of remote sensing data acquisition for different state authorities (Roshydromet, Ministry of Natural Recourses, Emercom) and University- based remote sensing data acquisition and processing centers in Russia and abroad. ScanEx performs large-scale projects in collaboration with government agencies to monitor forests, floods, fires, sea surface pollution, and ice situation in Northern Russia. During 2010-2011 ScanEx conducted daily monitoring of wild fires in Russia detecting and registering thermal anomalies using data from Terra, Aqua, Landsat and SPOT satellites. Detailed SPOT 4/5 data is used to analyze burnt areas and to assess damage caused by fire. Satellite data along with other information about fire situation in Russia was daily updated and published via free-access Internet geoportal. A few projects ScanEx conducted together with environmental NGO. Project "Satellite monitoring of Especially Protected Natural Areas of Russia and its results visualization on geoportal was conducted in cooperation with NGO "Transparent World". The project's goal was to observe natural phenomena and economical activity, including illegal, by means of Earth remote sensing data. Monitoring is based on multi-temporal optical space imagery of different spatial resolution. Project results include detection of anthropogenic objects that appeared in the vicinity or even within the border of natural territories, that have never been

  12. On Student Motivation in a Problem and Project-Based Satellite Development and Learning Environment

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Nielsen, Jens Frederik Dalsgaard; Zhou, Chunfang

    2013-01-01

    During the past decade, students at Aalborg University have had the possibility to participate in the cross disciplinary, and cross semester project of building and launching a cubesat. However, as such a project easily can last from three to five years, from the initial development to the launch...... of the satellite, it is important to consider how to keep the different student groups, who have participated in the project motivated in further developing of their respective subsystems, as well as engage actively in knowledge transfer to new student groups....

  13. Why Its Projects Should Be Small, Local And Private

    OpenAIRE

    Weissenberger, Stein

    1998-01-01

    In this paper, the author contends that in order to produce and capture useful knowledge, early Intelligent Transportation Systems (ITS) projects should be local, small, and focused on realistic goals. The importance of cooperative networks that support knowledge acquisition and diffusion is stressed. Additionally, the author promotes the usage of private industry, especially to perform tasks for which they are best qualified.

  14. Small car exposure data project. Phase 1 : methodology

    Science.gov (United States)

    1985-10-01

    The Small Car Exposure Data Project represents the first phase of an effort to build a data : base of exposure variables for crash-avoidance studies. Among these are: (1) vehicle make, : model, year, body style, wheel base, weight, and horsepower; (2...

  15. Fine Resolution Air Quality Monitoring from a Small Satellite: CHRIS/PROBA

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2008-11-01

    Full Text Available Current remote sensing techniques fail to address the task of air quality monitoring over complex regions where multiple pollution sources produce high spatial variability. This is due to a lack of suitable satellite-sensor combinations and appropriate aerosol optical thickness (AOT retrieval algorithms. The new generation of small satellites, with their lower costs and greater flexibility has the potential to address this problem, with customised platform-sensor combinations dedicated to monitoring single complex regions or mega-cities. This paper demonstrates the ability of the European Space Agency’s small satellite sensor CHRIS/PROBA to provide reliable AOT estimates at a spatially detailed level over Hong Kong, using a modified version of the dense dark vegetation (DDV algorithm devised for MODIS. Since CHRIS has no middle-IR band such as the MODIS 2,100 nm band which is transparent to fine aerosols, the longest waveband of CHRIS, the 1,019 nm band was used to approximate surface reflectance, by the subtraction of an offset derived from synchronous field reflectance spectra. Aerosol reflectance in the blue and red bands was then obtained from the strong empirical relationship observed between the CHRIS 1,019 nm, and the blue and red bands respectively. AOT retrievals for three different dates were shown to be reliable, when compared with AERONET and Microtops II sunphotometers, and a Lidar, as well as air quality data at ground stations. The AOT images exhibited considerable spatial variability over the 11 x 11km image area and were able to indicate both local and long distance sources.

  16. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    Science.gov (United States)

    Baup, F.; Frappart, F.; Maubant, J.

    2014-05-01

    This study presents an approach to determining the volume of water in small lakes (manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications.

  17. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  18. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    Science.gov (United States)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  19. Evaluating the biological potential in samples returned from planetary satellites and small solar system bodies: framework for decision making

    National Research Council Canada - National Science Library

    National Research Council Staff; Space Studies Board; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    ... from Planetary Satellites and Small Solar System Bodies Framework for Decision Making Task Group on Sample Return from Small Solar System Bodies Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1998 i Copyrightthe true use are Please breaks...

  20. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  1. IT Project Management in Very Small Software Companies

    DEFF Research Database (Denmark)

    Shakir, Shahid Nadeem; Nørbjerg, Jacob

    2013-01-01

    In developing countries very small software companies (VSSCs) with only 1-10 employees play an important role both in the local economy and as providers of software and services to customers in other parts of the world. Understanding and improving their IT project management (ITPM) practices...... and challenges are, therefore, important in the local as well as the larger context of globalized software development. There is, however, very little research into small shop software practices in developing countries. The current paper explores actual ITPM practices in Pakistani VSSCs based on a qualitative...... study of seven Pakistani VSSCs. We find that some Pakistani ITPM practices are similar to what is reported from VSSCs in other parts of the world, while others seem to be related to the companies' position in the global software development chain. This paper is part of a larger research project aiming...

  2. Development of a funding, cost, and spending model for satellite projects

    Science.gov (United States)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  3. Gendered small-business assistance : lessons from a Swedish project

    OpenAIRE

    Tillmar, Malin

    2007-01-01

    Purpose – The purpose of this paper is to deal with the design of small-business training programs and focuses on women business owners, their real needs and the supply of adequate training. How and to what extent are client selection and support needs influenced by the gender system? Design/methodology/approach – An in-depth study of an ambitious Swedish project is reported. Interviews with the participating business-owners and advisors, combined with observations during lectures and coachin...

  4. Development of a miniature Stirling cryocooler for LWIR small satellite applications

    Science.gov (United States)

    Kirkconnell, C. S.; Hon, R. C.; Perella, M. D.; Crittenden, T. M.; Ghiaasiaan, S. M.

    2017-05-01

    The optimum small satellite (SmallSat) cryocooler system must be extremely compact and lightweight, achieved in this paper by operating a linear cryocooler at a frequency of approximately 300 Hz. Operation at this frequency, which is well in excess of the 100-150 Hz reported in recent papers on related efforts, requires an evolution beyond the traditional Oxford-class, flexure-based methods of setting the mechanical resonance. A novel approach that optimizes the electromagnetic design and the mechanical design together to simultaneously achieve the required dynamic and thermodynamic performances is described. Since highly miniaturized pulse tube coolers are fundamentally ill-suited for the sub-80K temperature range of interest because the boundary layer losses inside the pulse tube become dominant at the associated very small pulse tube size, a moving displacer Stirling cryocooler architecture is used. Compact compressor mechanisms developed on a previous program are reused for this design, and they have been adapted to yield an extremely compact Stirling warm end motor mechanism. Supporting thermodynamic and electromagnetic analysis results are reported.

  5. Rural interdisciplinary mental health team building via satellite: a demonstration project.

    Science.gov (United States)

    Cornish, Peter A; Church, Elizabeth; Callanan, Terrence; Bethune, Cheri; Robbins, Carl; Miller, Robert

    2003-01-01

    This paper reports on the results of a demonstration project that examined the role of telehealth/telemedicine (hereafter referred to as telehealth) in providing interdisciplinary mental health training and support to health professionals in a rural region of Atlantic Canada. Special emphasis was placed on addressing the question of how training might affect interdisciplinary collaboration among the rural health professionals. Five urban mental health professionals from three disciplines provided training and support via video-satellite and internet, print and video resources to 34 rural health and community professionals. In order to assess the rural community's needs and the impact of the interventions, questionnaires were administered and on-site interviews were conducted before and after the project. Throughout the project, field notes were recorded and satisfaction ratings were obtained. Satisfaction with the video-satellite presentations was high and stable, with the exception of one session when signal quality was very poor. Rural participants were most satisfied with opportunities for interaction and least satisfied with the variable quality of the video transmission signal. High staff turnover among rural professionals resulted in insufficient power to permit statistical analysis. Positive reports of the project impact included expanded knowledge and heightened sensitivity to mental health issues, increased cross-disciplinary connections, and greater cohesion among professionals. The results suggest that, with some refinements, telehealth technology can be used to facilitate mental health training and promote interdisciplinary collaboration among professionals in a rural setting.

  6. The Evolution of Successful Satellite Science to Air Quality Application Projects: From Inception to Realization

    Science.gov (United States)

    Soja, A. J.

    2012-12-01

    Teams of scientist have been working for almost a decade with state, local, regional and federal Air Quality regulators and scientists on several projects that have been focused on improving biomass burning emissions within our nation's National Emissions Inventory (NEI). Initially, the NEI was based strictly on ground-based information that often used data aggregated from previous years reported at the county-centroid and completely ignored the spatial domain of all fires. This methodology resulted in gross inaccuracies; however it was an ingrained system and the users and organizations were largely comfortable. Improvements were viewed as too costly. Our task was to convince regulators, managers and users of the value that could be added by using satellite data to enhance the NEI. Certainly, there were individuals that understood the value of using satellite data, but they needed support to convince the establishment of the intrinsic, cost-effective value of publically-available satellite data. It was essential to present arguments, as well as requested verification and validation statistics, in the format that most suited the objectives of application organizations. This process incorporated: knowledge of state-of-the-art satellite data, algorithms and science; a working knowledge of the users applications and requirements; interacting with individuals with a variety of skill sets and goals; and perhaps most importantly, listening to the goals and responsibilities of the user community and fully communicating. Today, the Environmental Protection Agency and several state and regional organizations are using satellite data to estimate biomass burnings emissions at daily and annual scales for a number of critical environmental management and policy activities including regulation setting and regional strategy development for attainment of the National Ambient Air Quality Standards (NAAQS). We continue to work at the local, state and federal levels to improve the

  7. A Small Ku-Band Polarization Tracking Active Phased Array for Mobile Satellite Communications

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2013-01-01

    Full Text Available A compact polarization tracking active phased array for Ku-band mobile satellite signal reception is presented. In contrast with conventional mechanically tracking antennas, the approach presented here meets the requirements of beam tracking and polarization tracking simultaneously without any servo components. The two-layer stacked square patch fed by two probes is used as antenna element. The impedance bandwidth of 16% for the element covers the operating frequency range from 12.25 GHz to 12.75 GHz. In the presence of mutual coupling, the dimensional parameters for each element of the small 7 × 7 array are optimized during beam scanning and polarization tracking. The compact polarization tracking modules based on the low-temperature cofired ceramic (LTCC system-in-package (SiP technology are proposed. A small active phased array prototype with the size of 120 mm (length × 120 mm (width × 55 mm (height is developed. The measured polarization tracking patterns of the prototype are given. The polarization tracking beam can be steered in the elevation up to 50°. The gain of no less than 16.0 dBi and the aperture efficiency of more than 50% are obtained. The measured and simulated polarization tracking patterns agreed well.

  8. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  9. The Nothuesli small hydro project; Wasserkraftwerk Nothuesli, Gonzenbaechli - Vorprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, S.; Jorde, K.

    2008-07-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the project for a small 16-kilowatt hydro plant on the Gonzenbaechli stream in eastern Switzerland. The site, which was used even before 1860 for obtaining power from the stream is briefly described, as are the present remains of earlier installations. An old Francis turbine has been retrieved and could possibly be reused. Water-flow figures and fall-heights are noted. Design flows and residual water quantities required by legislation are noted and discussed, as are the geology and topology of the catchment area. The proposals for a new hydro-power plant are described, including the apparatus proposed with a power of 20 kVA. Environmental aspects are also discussed, as are the investment costs and the economic viability of the project. The paper is completed with a comprehensive appendix, including detailed cost estimates.

  10. Fouling in small hydro projects; Verschmutzung von Kleinwasserkraftwerken - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Abgottspon, A.; Staubli, T.

    2010-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at fouling problems encountered in small hydro installations. The report is based on ten interviews made with operators of small hydro power stations in Switzerland. A parallel project carried out in Germany is mentioned. A large variation in the degree of fouling in the various hydro power stations is noted. Sources such as leaves in autumn and algae are discussed, as are the various rinsing procedures used to clear the turbines of fouling. Power losses are discussed and measures that can be taken to prevent fouling are described. Measurements made at an installation in Freienstein, Switzerland, are presented and discussed. The report is completed with an appendix containing calculations, details on the Freienstein power plant and the results of interviews made with the ten hydro power installations examined.

  11. Projective embeddings of homogeneous spaces with small boundary

    International Nuclear Information System (INIS)

    Arzhantsev, Ivan V

    2009-01-01

    We study open equivariant projective embeddings of homogeneous spaces such that the complement of the open orbit has codimension at least 2. We establish a criterion for the existence of such an embedding, prove that the set of isomorphism classes of such embeddings is finite, and give a construction of the embeddings in terms of Geometric Invariant Theory. A generalization of Cox's construction and the theory of bunched rings enable us to describe in combinatorial terms the basic geometric properties of embeddings with small boundary

  12. The Small angle TIle Calorimeter project in DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-01-01

    The new Small Angle TIle Calorimeter (STIC) covers the forward regions in DELPHI. The main motivation for its construction was to achieve a systematic error of 0.1% on the luminosity determination. This detector consists of a ''shashlik'' type calorimeter, equipped with two planes of silicon pad detectors placed respectively after 4 and 7.4 radiation lengths. A veto counter, composed of two scintillator planes, covers the front of the calorimeter to allow e-γ separation and to provide a neutral energy trigger.The physics motivations for this project, results from extensive testbeam measurements and the performance during the 1994 LEP run are reported here. (orig.)

  13. Monitoring Snow and Land Ice Using Satellite data in the GMES Project CryoLand

    Science.gov (United States)

    Bippus, Gabriele; Nagler, Thomas

    2013-04-01

    The main objectives of the project "CryoLand - GMES Service Snow and Land Ice" are to develop, implement and validate services for snow, glaciers and lake and river ice products as a Downstream Service within the Global Monitoring for Environment and Security (GMES) program of the European Commission. CryoLand exploits Earth Observation data from current optical and microwave sensors and of the upcoming GMES Sentinel satellite family. The project prepares also the basis for the cryospheric component of the GMES Land Monitoring services. The CryoLand project team consists of 10 partner organisations from Austria, Finland, Norway, Sweden, Switzerland and Romania and is funded by the 7th Framework Program of the European Commission. The CryoLand baseline products for snow include fractional snow extent from optical satellite data, the extent of melting snow from SAR data, and coarse resolution snow water equivalent maps from passive microwave data. Experimental products include maps of snow surface wetness and temperature. The products range from large scale coverage at medium resolution to regional products with high resolution, in order to address a wide user community. Medium resolution optical data (e.g. MODIS, in the near future Sentinel-3) and SAR (ENVISAT ASAR, in the near future Sentinel-1) are the main sources of EO data for generating large scale products in near real time. For generation of regional products high resolution satellite data are used. Glacier products are based on high resolution optical (e.g. SPOT-5, in the near future Sentinel-2) and SAR (TerraSAR-X, in the near future Sentinel-1) data and include glacier outlines, mapping of glacier facies, glacier lakes and ice velocity. The glacier products are generated on users demand. Current test areas are located in the Alps, Norway, Greenland and the Himalayan Mountains. The lake and river ice products include ice extent and its temporal changes and snow extent on ice. The algorithms for these

  14. Sensitivity Analysis of Arctic Sea Ice Extent Trends and Statistical Projections Using Satellite Data

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2018-02-01

    Full Text Available An ice-free Arctic summer would have pronounced impacts on global climate, coastal habitats, national security, and the shipping industry. Rapid and accelerated Arctic sea ice loss has placed the reality of an ice-free Arctic summer even closer to the present day. Accurate projection of the first Arctic ice-free summer year is extremely important for business planning and climate change mitigation, but the projection can be affected by many factors. Using an inter-calibrated satellite sea ice product, this article examines the sensitivity of decadal trends of Arctic sea ice extent and statistical projections of the first occurrence of an ice-free Arctic summer. The projection based on the linear trend of the last 20 years of data places the first Arctic ice-free summer year at 2036, 12 years earlier compared to that of the trend over the last 30 years. The results from a sensitivity analysis of six commonly used curve-fitting models show that the projected timings of the first Arctic ice-free summer year tend to be earlier for exponential, Gompertz, quadratic, and linear with lag fittings, and later for linear and log fittings. Projections of the first Arctic ice-free summer year by all six statistical models appear to converge to the 2037 ± 6 timeframe, with a spread of 17 years, and the earliest first ice-free Arctic summer year at 2031.

  15. On the Accuracy of the Conjugation of High-Orbit Satellites with Small-Scale Regions in the Ionosphere

    Science.gov (United States)

    Safargaleev, V. V.; Safargaleeva, N. N.

    2018-03-01

    The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 R E from the Earth's surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.

  16. The International Satellite Cloud Climatology Project H-Series climate data record product

    Science.gov (United States)

    Young, Alisa H.; Knapp, Kenneth R.; Inamdar, Anand; Hankins, William; Rossow, William B.

    2018-03-01

    This paper describes the new global long-term International Satellite Cloud Climatology Project (ISCCP) H-series climate data record (CDR). The H-series data contain a suite of level 2 and 3 products for monitoring the distribution and variation of cloud and surface properties to better understand the effects of clouds on climate, the radiation budget, and the global hydrologic cycle. This product is currently available for public use and is derived from both geostationary and polar-orbiting satellite imaging radiometers with common visible and infrared (IR) channels. The H-series data currently span July 1983 to December 2009 with plans for continued production to extend the record to the present with regular updates. The H-series data are the longest combined geostationary and polar orbiter satellite-based CDR of cloud properties. Access to the data is provided in network common data form (netCDF) and archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite Climate Data Record Program (https://doi.org/10.7289/V5QZ281S" target="_blank">https://doi.org/10.7289/V5QZ281S). The basic characteristics, history, and evolution of the dataset are presented herein with particular emphasis on and discussion of product changes between the H-series and the widely used predecessor D-series product which also spans from July 1983 through December 2009. Key refinements included in the ISCCP H-series CDR are based on improved quality control measures, modified ancillary inputs, higher spatial resolution input and output products, calibration refinements, and updated documentation and metadata to bring the H-series product into compliance with existing standards for climate data records.

  17. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  18. Outgassing of Out-of-Autoclave Composite Primary Structures for Small Satellites

    Science.gov (United States)

    Komus, Alastair

    Out-of-autoclave vacuum-bagged-only (VBO) processing is capable of producing lower cost composite primary structures for small satellites than autoclave processing. However, the outgassing performance of VBO structures in a vacuum environment has not been examined. Panels were manufactured from CYCOM 5320-1 and TC275-1 carbon fiber/epoxy prepreg using VBO processing. The humidity level, pre-cure dwell time, and cure cycle parameters were varied during manufacturing. The degree of cure and glass transition temperature were shown to increase with increasing oven temperature. Processing humidity levels and the length of pre-cure dwell times had no discernable effect on the total mass loss (TML) and collected volatile condensable material (CVCM) that were outgassed under vacuum. Instead the TML was controlled by moisture saturation after manufacturing. Fourier transform infrared spectroscopy showed that epoxy oligomers were the primary CVCM. The study showed the VBO laminates had outgassing values that were comparable to the autoclave-cured laminates.

  19. Advanced Communication Technology Satellite (ACTS) Very Small Aperture Terminal (VSAT) Network Control Performance

    Science.gov (United States)

    Coney, T. A.

    1996-01-01

    This paper discusses the performance of the network control function for the Advanced Communications Technology Satellite (ACTS) very small aperture terminal (VSAT) full mesh network. This includes control of all operational activities such as acquisition, synchronization, timing and rain fade compensation as well as control of all communications activities such as on-demand integrated services (voice, video, and date) connects and disconnects Operations control is provided by an in-band orderwire carried in the baseboard processor (BBP) control burst, the orderwire burst, the reference burst, and the uplink traffic burst. Communication services are provided by demand assigned multiple access (DAMA) protocols. The ACTS implementation of DAMA protocols ensures both on-demand and integrated voice, video and data services. Communications services control is also provided by the in-band orderwire but uses only the reference burst and the uplink traffic burst. The performance of the ACTS network control functions have been successfully tested during on-orbit checkout and in various VSAT networks in day to day operations. This paper discusses the network operations and services control performance.

  20. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  1. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    Science.gov (United States)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  2. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  3. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia

    NARCIS (Netherlands)

    Sulistioadi, Y.B.; Tseng, K.H.; Shum, C.K.; Hidayat, Hidayat; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S.

    2015-01-01

    Remote sensing and satellite geodetic observations are capable of hydrologic monitoring of freshwater resources. Although satellite radar altimetry has been used in monitoring water level or discharge, its use is often limited to monitoring large rivers (>1 km) with longer interval periods

  4. M.S. independent research study : partnering on small construction project

    OpenAIRE

    Conley, Michael A

    1997-01-01

    This investigation will address the possibility that partnering concepts are underutilized in small government projects. If Government Contracting Officers utilized partnering concepts on small construction projects, there could be a potential for saving millions of dollars annually. The primary objective of this report is to inform Contracting Officers of the benefits of partnering on small construction projects. Small projects will be considered to have a value of less than $3 million, mid-...

  5. A Design of Solar Proton Telescope for Next Generation Small Satellite

    Directory of Open Access Journals (Sweden)

    Jongdae Sohn

    2012-12-01

    Full Text Available The solar proton telescope (SPT is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS which is determined for next generation small satellite-1 (NEXTSat-1. The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4. The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

  6. Virtual Mission Operations Center -Explicit Access to Small Satellites by a Net Enabled User Base

    Science.gov (United States)

    Miller, E.; Medina, O.; Paulsen, P.; Hopkins, J.; Long, C.; Holloman, K.

    2008-08-01

    The Office of Naval Research (ON R), The Office of the Secr etary of Defense (OSD) , Th e Operationally Responsive Space Off ice (ORS) , and th e National Aeronautics and Space Administration (NASA) are funding the development and integration of key technologies and new processes that w ill allow users across th e bread th of operations the ab ility to access, task , retr ieve, and collaborate w ith data from various sensors including small satellites v ia the Intern et and the SIPRnet. The V irtual Mission Oper ations Center (VMO C) facilitates the dynamic apportionmen t of space assets, allows scalable mission man agement of mu ltiple types of sensors, and provid es access for non-space savvy users through an intu itive collaborative w eb site. These key technologies are b eing used as experimentation pathfinders fo r th e Do D's Operationally Responsiv e Sp ace (O RS) initiative and NASA's Sensor W eb. The O RS initiative seeks to provide space assets that can b e rapid ly tailored to meet a commander's in telligen ce or commun ication needs. For the DoD and NASA the V MO C provid es ready and scalab le access to space b ased assets. To the commercial space sector the V MO C may provide an analog to the innovativ e fractional ownersh ip approach represen ted by FlexJet. This pap er delves in to the technology, in tegration, and applicability of th e V MO C to th e DoD , NASA , and co mmer cial sectors.

  7. Big concerns with small projects: Evaluating the socio-ecological impacts of small hydropower projects in India.

    Science.gov (United States)

    Jumani, Suman; Rao, Shishir; Machado, Siddarth; Prakash, Anup

    2017-05-01

    Although Small Hydropower Projects (SHPs) are encouraged as sources of clean and green energy, there is a paucity of research examining their socio-ecological impacts. We assessed the perceived socio-ecological impacts of 4 SHPs within the Western Ghats in India by conducting semi-structured interviews with local respondents. Primary interview data were sequentially validated with secondary data, and respondent perceptions were subsequently compared against the expected baseline of assured impacts. We evaluated the level of awareness about SHPs, their perceived socio-economic impacts, influence on resource access and impacts on human-elephant interactions. The general level of awareness about SHPs was low, and assurances of local electricity and employment generation remained largely unfulfilled. Additionally most respondents faced numerous unanticipated adverse impacts. We found a strong relationship between SHP construction and increasing levels of human-elephant conflict. Based on the disparity between assured and actual social impacts, we suggest that policies regarding SHPs be suitably revised.

  8. The 150 ns detector project: progress with small detectors

    International Nuclear Information System (INIS)

    Warburton, W.K.; Russell, S.R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-01-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  9. The 150 ns detector project: progress with small detectors

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Russell, S.R. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Kleinfelder, Stuart A. (VLSI Physics, 19 Drury Lane, Berkeley, CA 94705 (United States)); Segal, Julie (Integrated Ckts Lab., Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States))

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 [mu]m CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  10. Small and medium power reactors: project initiation study, Phase 1

    International Nuclear Information System (INIS)

    1985-07-01

    In conformity with the Agency's promotional role in the peaceful uses of nuclear energy, IAEA has provided, over the past 20 years, assistance to Member States, particularly developing countries, in planning for the introduction of nuclear power plants in the Small and Medium range (SMPR). However these efforts did not produce any significant results in the market introduction of these reactors, due to various factors. In 1983 the Agency launched a new SMPR Project Initiation Study with the objective of surveying the available designs, examining the major factors influencing the decision-making processes in Developing Countries and thereby arriving at an estimate of the potential market. Two questionnaires were used to obtain information from possible suppliers and prospective buyers. The Nuclear Energy Agency of OECD assisted in making a study of the potential market in industrialized countries. The information gained during the study and discussed during a Technical Committee Meeting on SMPRs held in Vienna in March 1985, along with the contribution by OECD-NEA is embodied in the present report

  11. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  12. J6 Himalia: New Compositional Evidence and Interpretations for the Origin of Jupiter's Small Satellites

    Science.gov (United States)

    Vilas, Faith; Jarvis, K.; Larson, S.; Gaffey, M.

    1999-01-01

    New narrowband spectrophotometric data of J6 Himalia, some of which are spatially resolved, support its C-type classification. The new spectra confirm the presence of a weak absorption feature centered near 0.7 micron attributed to oxidized iron in phyllosilicates, products of aqueous alteration, which varies in depth on opposite sides of the satellite. Evaluation of older UBV photometry of J6 and J7 Elara compared to UBV photometry of C-class (and subclass) asteroids showing spectral evidence of the 0.7-microns absorption feature suggests that J6 Himalia is an F-class asteroid. We propose that the parent body of the prograde Jovian satellites originated as part of the Nysa asteroid family. Evolutionary models of the Jovian system are used to address the capture and dispersal of the irregular satellites.

  13. New Opportunitie s for Small Satellite Programs Provided by the Falcon Family of Launch Vehicles

    Science.gov (United States)

    Dinardi, A.; Bjelde, B.; Insprucker, J.

    2008-08-01

    The Falcon family of launch vehicles, developed by Space Exploration Technologies Corporation (SpaceX), are designed to provide the world's lowest cost access to orbit. Highly reliable, low cost launch services offer considerable opportunities for risk reduction throughout the life cycle of satellite programs. The significantly lower costs of Falcon 1 and Falcon 9 as compared with other similar-class launch vehicles results in a number of new business case opportunities; which in turn presents the possibility for a paradigm shift in how the satellite industry thinks about launch services.

  14. Project Finance for Small and Medium Scale Enterprises (SMEs) in ...

    African Journals Online (AJOL)

    Project financing is one of the best methods of seeking to acquire capitals Funds and other tools to finance a planned business activity which will yields profit in order to liquidate the procured fund. Financing project for SMES is carried out by Federal, States and some development Institutions. In Nigeria, project financing ...

  15. Small scale observation of magnetopause motion: preliminary results of the INTERBALL project

    Directory of Open Access Journals (Sweden)

    J. Safrankova

    Full Text Available Two satellites of the INTERBALL project were launched on 3 August 1995. The main goals of the present paper are (1 to give a brief information about the VDP plasma device onboard the INTERBALL-1 satellite, (2 to present the Faradays cup data taken in different magnetospheric regions and (3 to expose first results of the two satellite measurements of the magnetopause motion. The presented data illustrate magnetopause crossings as seen by two satellites when separated by about ~ 1000 km. This separation combined with the Faraday's cup time resolution allows to estimate the velocity of the magnetopause and to reconstruct a possible structure of the boundary. Simultaneous measurement of the magnetic field supports the interpretation of the observed ion fluxes as a signature of the wavy motion of the boundary.

  16. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    Science.gov (United States)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    Small satellites have historically been forced to use low cost propulsion, or to do without in order to maintain low cost. Since 1999 an increasing number of SSTL's customers have demanded the capability to precisely position and subsequently manoeuvre their satellites, driven largely by the current attraction of small satellite constellations such as Disaster Monitoring (DMC), which require propulsion for launcher injection error correction, drag compensation, constellation phasing and proximity manoeuvring and rendezvous. SSTL has successfully flight qualified a simple, low cost propulsion system based on a low power (15-100 W) resistojet employing green propellants such as butane and xenon, and demonstrated key constellation manoeuvres. The system is capable of up to 60 m/s deltaV and will be described here. The SSTL low power resistojet is however limited by a low Isp ( ˜50s for Xenon in the present design, and ˜100s with nitrogen and butane) and a slow reaction time ( 10min warm-up required). An increasing desire to apply small satellite technology to high deltaV missions while retaining the low cost aspect demands new solutions. 'Industry standard' solutions based on cryogenic propulsion, or toxic, carcinogenic storable propellants such as hydrazine/nitrogen oxides combination are not favourable for small satellite missions developed within SSTL's low cost engineering environment. This paper describes a number of strawman missions with high deltaV and/or precision manoeuvring requirements and some low cost propulsion solutions which have been explored at the Surrey Space Centre to meet future needs: Deployment of a complex constellation of nano- or pico-satellites from a secondary launch to a new orbit. The S3TV concept has been developed to allow deployment up to 12 payloads from an 'off-the-shelf' thrust tube, using a restartable nitrous oxide hybrid engine, operating in a dual mode with resistojets for attitude control. Orbit transfer of an enhanced

  17. An Online Tilt Estimation and Compensation Algorithm for a Small Satellite Camera

    Science.gov (United States)

    Lee, Da-Hyun; Hwang, Jai-hyuk

    2018-04-01

    In the case of a satellite camera designed to execute an Earth observation mission, even after a pre-launch precision alignment process has been carried out, misalignment will occur due to external factors during the launch and in the operating environment. In particular, for high-resolution satellite cameras, which require submicron accuracy for alignment between optical components, misalignment is a major cause of image quality degradation. To compensate for this, most high-resolution satellite cameras undergo a precise realignment process called refocusing before and during the operation process. However, conventional Earth observation satellites only execute refocusing upon de-space. Thus, in this paper, an online tilt estimation and compensation algorithm that can be utilized after de-space correction is executed. Although the sensitivity of the optical performance degradation due to the misalignment is highest in de-space, the MTF can be additionally increased by correcting tilt after refocusing. The algorithm proposed in this research can be used to estimate the amount of tilt that occurs by taking star images, and it can also be used to carry out automatic tilt corrections by employing a compensation mechanism that gives angular motion to the secondary mirror. Crucially, this algorithm is developed using an online processing system so that it can operate without communication with the ground.

  18. "XANSONS for COD": a new small BOINC project in crystallography

    Science.gov (United States)

    Neverov, Vladislav S.; Khrapov, Nikolay P.

    2018-04-01

    "XANSONS for COD" (http://xansons4cod.com) is a new BOINC project aimed at creating the open-access database of simulated x-ray and neutron powder diffraction patterns for nanocrystalline phase of materials from the collection of the Crystallography Open Database (COD). The project uses original open-source software XaNSoNS to simulate diffraction patterns on CPU and GPU. This paper describes the scientific problem this project solves, the project's internal structure, its operation principles and organization of the final database.

  19. Oregon department of transportation small business group twice-monthly payments pilot project : summary report.

    Science.gov (United States)

    2008-07-01

    Oregon Department of Transportation (ODOT) recently completed a pilot study on small business payment practices. In the study, three pilot projects were tested where payments to small business contractors were changed from a monthly payment to twice-...

  20. Poverty Mapping Project: Small Area Estimates of Poverty and Inequality

    Data.gov (United States)

    National Aeronautics and Space Administration — The Small Area Estimates of Poverty and Inequality dataset consists of consumption-based poverty, inequality and related measures for subnational administrative...

  1. Definition of multipath/RFI experiments for orbital testing with a small applications technology satellite

    Science.gov (United States)

    Birch, J. N.; French, R. H.

    1972-01-01

    An investigation was made to define experiments for collection of RFI and multipath data for application to a synchronous relay satellite/low orbiting satellite configuration. A survey of analytical models of the multipath signal was conducted. Data has been gathered concerning the existing RFI and other noise sources in various bands at VHF and UHF. Additionally, designs are presented for equipment to combat the effects of RFI and multipath: an adaptive delta mod voice system, a forward error control coder/decoder, a PN transmission system, and a wideband FM system. The performance of these systems was then evaluated. Techniques are discussed for measuring multipath and RFI. Finally, recommended data collection experiments are presented. An extensive tabulation is included of theoretical predictions of the amount of signal reflected from a rough, spherical earth.

  2. Systems Engineering Applications for Small Business Innovative Research (SBIR) Projects

    Science.gov (United States)

    2012-09-01

    Engineering processes within the SBIR community. Information was collected from multiple organizations throughout the SBIR community to support this research...Force by Program Executive Officers, Technolgy Directorates, Air Logistics Centers and Test Centers. SBIR projects are developed in three phases...found to be associated with SBIR projects and varied among organizations. Thus it became essential to conduct interviews to gather the information

  3. From concept to construction: a 15 MW small hydro project

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.; Neegan, K.

    1995-12-31

    An audio recording of an address by Chief Stanley Stephens and Deputy-Chief Ken Neegan of the Constance Lake First Nation, at the Renewable Energy Commercial Trade Show and Markets Conference was presented. The speech concerned development of a 15 MW hydro project on the reservation. Stephens recalled how initial opposition was overcome by addressing simple misconceptions about the project. The project was initiated by the Ontario Energy Corporation with a series of community discussions which addressed environmental impacts, and benefits that would result from the project. Neegan explained that after deliberation and negotiations, the Constance Lake First Nation was pleased with the project. This project was evidence that sound partnership could be formed between First Nations and hydro developers, while preserving respect for `Mother Earth` in the process. Trust between the community, the developers and government was considered to be the critical component of the project. Sound legal, technical, environmental and financial information was also indispensable in allowing the Constance Lake First Nation to make its decision to proceed with the project.

  4. From concept to construction: a 15 MW small hydro project

    International Nuclear Information System (INIS)

    Stephens, S.; Neegan, K.

    1995-01-01

    An audio recording of an address by Chief Stanley Stephens and Deputy-Chief Ken Neegan of the Constance Lake First Nation, at the Renewable Energy Commercial Trade Show and Markets Conference was presented. The speech concerned development of a 15 MW hydro project on the reservation. Stephens recalled how initial opposition was overcome by addressing simple misconceptions about the project. The project was initiated by the Ontario Energy Corporation with a series of community discussions which addressed environmental impacts, and benefits that would result from the project. Neegan explained that after deliberation and negotiations, the Constance Lake First Nation was pleased with the project. This project was evidence that sound partnership could be formed between First Nations and hydro developers, while preserving respect for 'Mother Earth' in the process. Trust between the community, the developers and government was considered to be the critical component of the project. Sound legal, technical, environmental and financial information was also indispensable in allowing the Constance Lake First Nation to make its decision to proceed with the project

  5. NOAA Interest in Small Satellite Solutions for Mitigation of Data Gaps

    Science.gov (United States)

    Caulfield, M.; Tewey, K.; John, P.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is undertaking a strategy to achieve satellite constellation robustness by 2023 to maintain continuity of polar satellite observations, which are central to NOAA's weather forecast capability. NOAA's plans include mitigation activities in the event of a loss of polar observations. In 2017, NOAA will begin development of the Earth Observing Nanosatellite - Microwave (EON-MW). EON-MW is a miniature microwave sounder that approximates the atmospheric profiling capabilities of the Advanced Technology Microwave Sounder (ATMS) instrument on the NOAA Joint Polar Satellite System (JPSS). NOAA is collaborating with the Massachusetts Institute of Technology's Lincoln Laboratory (MIT / LL) on EON-MW, which includes 2 years of risk reduction efforts to further define the EON-MW mission and identify and manage key technical risks. These studies will refine designs and evaluate system trades for operational earth observations from a U-class satellite platform, as well as examine microwave sensor concepts and investigated payload architecture to support microwave frequencies for atmospheric remote sensing. Similar to EON-MW, NOAA is also investigating the potential to mitigate against the loss of the JPSS Cross Track Infrared Sounder (CrIS) data with a CubeSat based mid-wave Infrared sounder. NOAA is collaborating with the Jet Propulsion Laboratory (JPL) to design the Earth Observation Nanosatellite-Infrared (EON-IR). EON-IR will leverage the NASA-JPL CubSat based infrared sounder CubSat Infrared Atmospheric Sounder (CIRAS) mission. In FY 2015 NOAA funded a study to analyze the feasibility of meeting the essential requirements of the CrIS from a CubeSat platform and began exploring the basic design of the EON-IR payload and bus. NOAA will continue to study EON-IR in 2016 by examining ways to modify the CIRAS design to better meet NOAA's observational and operational needs. These modifications will aim to increase mission

  6. The Challenge of Small Satellite Systems to the Space Security Environment

    Science.gov (United States)

    2012-03-01

    Space, 1945–1995, (New York: Dodd, Mead & Company, Inc . 1984), 142. 40 Moltz, The Politics of Space Security, 93. 41William E. Burrows, Deep Black...Experimental World Circling Spaceship,” Report No. SE: 11827, Douglas Aircraft Company, Inc ., Santa Monica Plant Engineering Division, Contract WBB-038... Nike Zeus nuclear missile as a means to track and intercept targeted adversarial satellites. The commonality of antiballistic missile (ABM) and ASAT

  7. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    Energy Technology Data Exchange (ETDEWEB)

    Mangin, A.; Morel, M.; Fanton d' Andon, O

    2000-07-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  8. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    International Nuclear Information System (INIS)

    Mangin, A.; Morel, M.; Fanton d'Andon, O.

    2000-01-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  9. Nanosatellite swarm support for larger satellites

    NARCIS (Netherlands)

    Verhoeven, Chris; Engelen, Steven; Noroozi, Arash; Bentum, Marinus Jan; Sundaramoorthy, Prem; Meijer, Robert

    2011-01-01

    Nano-satellites are small (less than 10 kg) and low cost satellites of which quite a number has been launched the last few years, mostly as university educational or research projects. The development of professional scientific and commercial applications is still in its infancy and there are only

  10. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  11. Resistance projection welding small pins in vacuum tube feedthrough assembly

    International Nuclear Information System (INIS)

    Kuncz, F. Jr.

    1980-01-01

    Resistance projection welding of two stainless steel pins to a cup is successfully accomplished by specially designed electrodes and by forming domes on the pin ends. Details of electrode and pin construction are given, as well as welding parameters

  12. Educational Television Via Satellite: Studies of Antecedents and Projects, Preliminary Plan. Volume One.

    Science.gov (United States)

    Comision Nacional de Investigaciones Espaciales, Buenos Aires (Argentina).

    A proposed satellite-aided educational television (ETV) system for Argentina is described in this Spanish-language report. The requirements and advantages of such a system are discussed, and some other studies of satellite-aided ETV are summarized. International and legal considerations, and problems of integrating existing Argentine TV stations…

  13. The AAU-cubesat Student Satellite Project: Architectual Overview and Lessons Learnt

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Alminde, Lars; Bisgaard, Morten

    2004-01-01

    the cubesat concept that prescribes a satellite with dimensions 10x10x10cm and mass one kilogram. This paper will describe the overall architecture of the AAU-cubesat in order to show what a pico-satellite can be and demonstrate all the fields of engineering which must come together to built a student...

  14. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  15. In-Space Demonstration of High Performance Green Propulsion and its Impact on Small Satellites

    OpenAIRE

    Anflo, Kjell; Crowe, Ben

    2011-01-01

    This paper summarizes the pre-launch activities and the results from the in-space demonstration of a novel propulsion system on the PRISMA main satellite, using a “Green” monopropellant. This propellant is a storable ADN-based monopropellant blend (i.e. LMP-103S). The basic mission for the High Performance Green Propulsion System (HPGP) has been successfully completed and all primary objectives of TRL 7 have been met. The HPGP technology is now flight proven and ready for implementation on fu...

  16. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  17. Project management and management of innovation in small industrial firms

    NARCIS (Netherlands)

    During, W.E.

    1986-01-01

    In innovation projects, three sub-processes have to evolue concurrently. These are problem solving, to bring about a new product or process; internal innovation diffusion, to disseminate information and engender a positive attitude towards new developments; and change in the organization so that it

  18. Multiple Learning Strategies Project. Small Engine Repair. Visually Impaired.

    Science.gov (United States)

    Foster, Don; And Others

    This instructional package designed for visually impaired students, focuses on the vocational area of small engine repair. Contained in this document are forty learning modules organized into fourteen units: engine block; starters; fuel tank, lines, filters and pumps; carburetors; electrical; test equipment; motorcycle; machining; tune-ups; short…

  19. Market for small waste gasification projects - preliminary scoping study

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents the findings of a market analysis for small waste gasification/pyrolysis plant in the UK. The overall objectives of the study are to assess the potential merits in establishing a demonstration plant in the UK, and to identify the size, profile and characteristics of the potential market based on municipal solid waste (MSW) feedstock. (author)

  20. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  1. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    International Nuclear Information System (INIS)

    Vimmerstedt, L.

    1998-01-01

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market

  2. Nimbus Satellite Data Rescue Project for Sea Ice Extent: Data Processing

    Science.gov (United States)

    Campbell, G. G.; Sandler, M.; Moses, J. F.; Gallaher, D. W.

    2011-12-01

    Early Nimbus satellites collected both visible and infrared observations of the Earth at high resolution. Nimbus I operated in September, 1964. Nimbus II operated from April to November 1966 and Nimbus III operated from May 1969 to November 1969. We will discuss our procedures to recover this data into a modern digital archive useful for scientific analysis. The Advanced Videocon Camera System data was transmitted as an analog signal proportional to the brightness detected by a video camera. This was archived on black and white film. At NSIDC we are scanning and digitizing the film images using equipment derived from the motion picture industry. The High Resolution Infrared Radiance data was originally recorded in 36 bit words on 7 track digital tapes. The HRIR data were recently recovered from the tapes and TAP (tape file format from 1966) files were placed in EOSDIS archives for online access. The most interesting parts of the recovery project were the additional processing required to rectify and navigate the raw digital files. One of the artifacts we needed to identify and remove were fiducial marks representing latitude and longitude lines added to the film for users in the 1960's. The IR data recording inserted an artificial random jitter in the alignment of individual scan lines. We will describe our procedures to navigate, remap, detect noise and remove artifacts in the data. Beyond cleaning up the HRIR swath data or the AVCS picture data, we are remapping the data into standard grids for comparisons in time. A first run of all the Nimbus 2 HRIR data into EASE grids in NetCDF format has been completed. This turned up interesting problems of overlaps and missing data issues. Some of these processes require extensive computer resources and we have established methods for using the 'Elastic Compute Cloud' facility at Amazon.com to run the many processes in parallel. In addition we have set up procedures at the University of Colorado to monitor the ongoing

  3. TIRCIS: A Thermal Infrared, Compact Imaging Spectrometer for Small Satellite Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will demonstrate how hyperspectral thermal infrared (TIR; 8-14 microns) image data, with a spectral resolution of up to 8 wavenumbers, can be acquired...

  4. Low-Cost Small Satellite Atmospheric Rotating Solar Occultation Imager (ROI)

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing a unique, new occultation technique involving imaging, the ROI concept will meet or exceed the quality of SAGE measurements at a small fraction of the...

  5. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  6. Economic project perspectives: An overview of the impact resulting from recent advances in satellite meteorology

    Science.gov (United States)

    Smith, K. R.; Boness, F. H.

    1972-01-01

    The impact of advanced satellite meteorology on long range weather forecasts, agriculture, commerce, and resource utilization are examined. All data are geared to obtaining a picture of various user needs and possible benefits.

  7. The GALILEO GALILEI small-satellite mission with FEEP thrusters (G G)

    International Nuclear Information System (INIS)

    Nobili, A. M.; Bramanti, D.; Catastini, G.

    1997-01-01

    The Equivalence Principle, formulated by Einstein generalizing Galileo's and Newton's work, is a fundamental principle of modern physics. As such it should be tested as accurately as possible. Its most direct consequence, namely the Universality of Free Fall, can be tested in space, in a low Earth orbit, the crucial advantage being that the driving signal is about three orders of magnitude stronger than on Earth. GALILEO GALILEI (G G) is a small space mission designed for such a high-accuracy test. At the time of print, G G has been selected by ASI (Agenzia Spaziale Italiana) as a candidate for the next small Italian mission. Ground tests of the proposed apparatus now indicate that an accuracy of 1 part in 10 17 is within the reach of this small mission

  8. Small-scale field-aligned currents observed by the AKEBONO (EXOS-D) satellite

    International Nuclear Information System (INIS)

    Fukunishi, H.; Oya, H.; Kokubun, S.; Tohyama, F.; Mukai, T.; Fujii, R.

    1991-01-01

    The EXOS-D fluxgate magnetometer data obtained at 3,000-10,000 km altitude have shown that small-scale field-aligned currents always exist in large-scale region 1, region 2, cusp and polar cap current systems. Assuming that these small-scale field-aligned currents have current sheet structure, the width of current sheet is estimated to be 5-20 km at ionospheric altitude. By comparing the magnetometer data with charged particle and high frequency plasma wave data simultaneously obtained from EXOS-D, it is found that small-scale currents have one-to-one correspondence with localized electron precipitation events characterized by flux enhancement over a wide energy range from 10 eV to several keV and broadband electrostatic bursts occasionally extending above local plasma frequencies or electron cyclotron frequencies

  9. Development of High Energy Particle Detector for the Study of Space Storms onboard Next Generation Small Satellite-1

    Science.gov (United States)

    Sohn, J. D.; Min, K.; Lee, J.; Lee, D. Y.; Yi, Y.; Kang, K.; Shin, G. H.; Jo, G. B.; Lee, S. U.; Na, G.

    2017-12-01

    We reports the development of the High Energy Particle Detector (HEPD), one of the radiation detectors on board the Next Generation Small Satellite-1 to be launched into a low-Earth polar orbit in late 2017. The HEPD consists of three telescopes, each with a field of view of 33.4°, that are mounted on the satellite to have an angle of 0°, 45°, and 90° to the geomagnetic field during observations in the Earth's sub-auroral regions. The detection system of each telescope is composed of two silicon surface barrier detectors (SSDs), with the capability of measuring electrons from 300 keV to 2 MeV at 32 Hz that precipitate into the polar regions from the Earth's radiation belts when space storms occur. The successful operation of the HEPD in orbit will help us understand the interaction mechanisms between energetic electrons and plasma waves such as whistler and Electromagnetic Ion Cyclotron (EMIC) waves that are believed to be responsible for the energization and loss of high energy electrons in the Earth's radiation belts.

  10. Rapid Application of Space Effects for the Small Satellites Systems and Services Symposium

    Science.gov (United States)

    Tsairides, Demosthenes; Finley, Charles; Moretti, George

    2016-01-01

    NASA Ames Research Center (ARC) has engaged Military Branches, the Department of Defense, and other Government Agencies in successful partnerships to design, develop, deliver and support various space effects capabilities and space vehicles on timeline of need. Contracts with Industry are in place to execute operational and enabler missions using physical and informational infrastructures including Responsive Manufacturing capabilities and Digital Assurance. The intent is to establish a secure, web-enabled "store front" for ordering and delivering any capabilities required as defined by the users and directed by NASA ARC and Partner Organizations. The capabilities are envisioned to cover a broad range and include 6U CubeSats, 50-100 kg Space Vehicles, Modular Space Vehicle architecture variations, as well as rapid payload integration on various Bus options. The paper will discuss the efforts underway to demonstrate autonomous manufacturing of low-volume, high-value assets, to validate the ability of autonomous digital techniques to provide Mission Assurance, and to demonstrate cost savings through the identification, characterization, and utilization of Responsive Space components. The culmination of this effort will be the integration of several 6U satellites and their launch in 2016.

  11. Project study of a small-angle neutron scattering apparatus

    International Nuclear Information System (INIS)

    Schedler, E.; Pollet, J.L.

    1979-03-01

    This design study deals with the set up of a low angle scattering apparatus in the HMI reactor hall in Berlin. The experiences of other institutes with facilities of a similar type, - especially with D11 and D17 of the ILL in Grenoble, the set up the KFA in Juelich and of the PTB in Braunschweig -, are included to a large extend. The aim of this paper is - to define the necessary boundary conditions for the construction (including: installation of a cold source, the beam line, the neutron guide pipe and an extention of the reactor hall), -to determine the properties of the planned apparatus, especially in comparison with D11, probably the most versatile instrument, - to make desitions for the design of the components, - to work out the detailed drawings for construction - to estimate the costs and the time necessary for construction, if industrial manufacturers set up the project. (orig.) [de

  12. Investigation into Hybrid Rockets and Other Cost-Effective Propulsion System Options for Small Satellites

    Science.gov (United States)

    1996-05-01

    8-7 COMPLETE TEXT OF THESIS ROCKET PROPULSION FUNDEMENTALS EXPERIMENTAL DATA (MICROSOFT EXCEL FILES) 4 ANALYSIS WORKSHEETS (MATHSOFT MATHCAD FILES...up and running. At ~413,000, this represents a very small investment considering it encompasses the entire program. Similar programs run at... investment would be -needed along with over two man-years of effort. However, this is for the first flight article. Subsequent flight articles of identical

  13. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  14. 75 FR 27808 - Section 8 Housing Choice Voucher Program-Demonstration Project of Small Area Fair Market Rents in...

    Science.gov (United States)

    2010-05-18

    ... Voucher Program--Demonstration Project of Small Area Fair Market Rents in Certain Metropolitan Areas for.... ACTION: Notice of Demonstration Project of Small Area Fair Market Rents (FMRs) in Selected Metropolitan... topics related to small area FMRs, including how these small areas should be defined. Small area FMRs...

  15. A comparison of the aquatic impacts of large hydro and small hydro projects

    Science.gov (United States)

    Taylor, Lara A.

    The expansion of small hydro development in British Columbia has raised concerns surrounding the effects of these projects, and the provincial government's decision to proceed with Site C has brought attention to the impacts of large hydro. Together, these decisions highlight that there are impacts associated with all energy development. My study examines the aquatic effects of large and small hydro projects using two case study sites: Site C and the Upper Harrison Water Power Project. I first determine the aquatic effects of each of the case study sites. Next, I use existing literature and benefits transfer to determine the monetary value of these effects. My results suggest that, with mitigation, small hydro projects have less of an effect on the environment than a large hydro project per unit of electricity. I also describe the implications of my study in the context of current British Columbia energy policy. Keywords: hydropower; aquatic effects. Subject Terms: environmental impact assessment; benefits transfer.

  16. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.

    2014-01-01

    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  17. Synthesis of results obtained within the framework of international satellite land surface climatology projects. Final report

    International Nuclear Information System (INIS)

    Bolle, H.J.; Katergiannakis, U.; Billing, H.; Koslowsky, D.; Langer, I.; Tonn, W.

    1993-01-01

    In large-scale field experiments, methods were validated with whose aid characteristics of the terrestrial surfaces can be derived from satellite data; these characteristics are required for the exploration of the global change. The report gives an overview. The following topics are treated: Problems of calibration of satellite sensors; the geographical matching of ground observations to the satellite measurements; necessary corrections; dimensional integration of the data up to the dimensions of raster grids of global climate models. The report discusses in detail in what manner the remote exploration data can be connected with information on the terrestrial surfaces, in particular with energy balances. Few experiments only have been executed up to now within the framework of land surface climatology; however, they contributed a great deal to the better understanding of linking satellite data with terrestrial surface processes. If one wants to apply the elaborated methods globally wants, one needs, however, complex algorithms as well as - at least for the time being - constant quality control in the different landscape regions of the earth. (orig.) [de

  18. The SOLS TICE Project: Satellite Television and Audioconferencing in Continuing Professional Development for LIS Staff.

    Science.gov (United States)

    Hughes, Alun; Priestley, John

    1992-01-01

    Describes SOLS TICE, the Satellite On-Line Searching Interactive Conferencing Experiment, conducted at the University of Plymouth (United Kingdom) to meet the training needs of staff in the library and information science (LIS) sector. Continuing professional development is discussed, instructional effectiveness and cost effectiveness are…

  19. ANALYSIS OF PROJECT PORTFOLIO MANAGEMENT MATURITY: THE CASE OF A SMALL FINANCIAL INSTITUTION

    Directory of Open Access Journals (Sweden)

    Karoline Doro Alves Carneiro

    2012-04-01

    Full Text Available This study explores the implementation of project portfolio management in the organizational context. The objective is to analyze the methodology of project portfolio management adopted by an organization based in the project portfolio management maturity model proposed by Rad and Levin (2006. We developed an exploratory case study in a small financial institution that experienced problems with the implementation of its methodology in project portfolio management. As a result of study, we found that the organization has maturity level 2 in portfolio project management, and that some methodology aspects are not appropriate at this level.

  20. Small-scale bioenergy projects in rural China: Lessons to be learnt

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.; Zhang, L.

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy

  1. Experimental Verification of a Simple Method for Accurate Center of Gravity Determination of Small Satellite Platforms

    Directory of Open Access Journals (Sweden)

    Dario Modenini

    2018-01-01

    Full Text Available We propose a simple and relatively inexpensive method for determining the center of gravity (CoG of a small spacecraft. This method, which can be ascribed to the class of suspension techniques, is based on dual-axis inclinometer readings. By performing two consecutive suspensions from two different points, the CoG is determined, ideally, as the intersection between two lines which are uniquely defined by the respective rotations. We performed an experimental campaign to verify the method and assess its accuracy. Thanks to a quantitative error budget, we obtained an error distribution with simulations, which we verified through experimental tests. The retrieved experimental error distribution agrees well with the results predicted through simulations, which in turn lead to a CoG error norm smaller than 2 mm with 95% confidence level.

  2. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    Science.gov (United States)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  3. Using "EC-Assess" to Assess a Small Biofuels Project in Honduras

    Science.gov (United States)

    Ngassa, Franklin Chamda

    2010-01-01

    Biofuels may contribute to both rural economic development and climate change mitigation and adaptation. The Gota Verde Project in Yoro, Honduras, attempts to demonstrate the technical and economic feasibility of small-scale biofuel production for local use by implementing a distinctive approach to feedstock production that encourages small farm…

  4. Comparative study of FDMA, TDMA and hybrid 30/20 GHz satellite communications systems for small users

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.

    1982-01-01

    This study compares several satellite uplink and downlink accessing schemes for a Customer Premises Service. Four conceptual system designs are presented: Satellite-Routed FDMA, Frequency-Routed TDMA, Satellite-Switched TDMA, and Processor-Routed TDMA, operating in the 30/20 GHz band. The designs are compared on the basis of estimated satellite weight, power consumption, and cost. The system capacities are analyzed for a fixed multibeam coverage of CONUS. Analysis shows that the system capacity is limited by the available satellite resources and by the terminal size and cost.

  5. An Improved dem Construction Method for Mudflats Based on BJ-1 Small Satellite Images: a Case Study on Bohai Bay

    Science.gov (United States)

    Wu, D.; Du, Y.; Su, F.; Huang, W.; Zhang, L.

    2018-04-01

    The topographic measurement of muddy tidal flat is restricted by the difficulty of access to the complex, wide-range and dynamic tidal conditions. Then the waterline detection method (WDM) has the potential to investigate the morph-dynamics quantitatively by utilizing large archives of satellite images. The study explores the potential for using WDM with BJ-1 small satellite images to construct a digital elevation model (DEM) of a wide and grading mudflat. Three major conclusions of the study are as follows: (1) A new intelligent correlating model of waterline detection considering different tidal stages and local geographic conditions was explored. With this correlative algorithm waterline detection model, a series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of a year. The model proved to detect waterlines more efficiently and exactly. (2) The spatial structure of elevation superimposing on the points of waterlines was firstly constructed and a more accurate hydrodynamic ocean tide grid model was used. By the newly constructed abnormal hydrology evaluation model, a more reasonable and reliable set of waterline points was acquired to construct a smoother TIN and GRID DEM. (3) DEM maps of Bohai Bay, with a spatial resolution of about 30 m and height accuracy of about 0.35 m considering LiDAR and 0.19 m considering RTK surveying were constructed over an area of about 266 km2. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible and is an effective tool for monitoring the tidal flats.

  6. Project Monitor: Part II. Conservation in small business: an exploratory study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, P Y

    1979-08-01

    Project Monitor examined the energy conservation attitude and behavior of small samples of small business owners/operators in Allegheny County, Pennsylvania, focusing on manufacturing concerns and retailers. Section I reports the findings on the energy conserving behavior of 92 smaller manufacturers and Section II identifies the factors which affect decision making concerning energy consuming activities by the owners/operators of 94 small retail establishments. In each, the impact of Project Pacesetter and of the coal strike and the general energy situation is considered. (MCW)

  7. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    Science.gov (United States)

    Avisse, Nicolas; Tilmant, Amaury; François Müller, Marc; Zhang, Hua

    2017-12-01

    In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs) to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i) a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii) a statistical correction of DEM data to characterize the topography of each reservoir, and (iii) a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  8. Linking satellite ICT application businesses with regional innovation centers and investors: The EC “INVESaT” project

    Science.gov (United States)

    Ghiron, Florence; Kreisel, Joerg

    2009-09-01

    In the sector of information and communication technologies (ICT), whether in the USA, Japan, or Europe, innovative services are already in use, based on large-scale space-based infrastructure investments. Such systems are e.g. earth observation, telecommunication, and navigation, timing and positioning satellites. In combination with the advent of powerful handheld terminals and the demand for ubiquitous services, it is expected that info-mobility applications will reveal new sources of business in the years ahead, using in particular the Earth observation and future GALILEO systems to position any feature or user anywhere in the world within a few meter accuracy. Hence, satellite-based capabilities provide new and unique opportunities for economic stimulation and development. Many incubators and innovation centers in Europe have already grasped this growth potential. Yet, for many European players business growth appears below expectations compared to developments in the USA following the launch of GPS (Global Positioning System). Europe still has to overcome intrinsic barriers to seize these new business opportunities faster and with more visible economic impact by leveraging on SMEs and regional innovation centers to expand the commercial utilization of satellite capabilities and mobilization of appropriate financial resources. The paper elaborates on the INVESat project (funded by the EuropeInnova—European Commission), which aims at bridging the gap between Innovative enterprises and financial In VEstors in the emerging markets of SaTellite applications. The critical success factors required to stimulate and support more efficiently investments in this bread of innovative services will also be highlighted.

  9. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    Science.gov (United States)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  10. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    Directory of Open Access Journals (Sweden)

    N. Avisse

    2017-12-01

    Full Text Available In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii a statistical correction of DEM data to characterize the topography of each reservoir, and (iii a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  11. Small-scale bioenergy projects in rural China: Lessons to be learnt

    International Nuclear Information System (INIS)

    Han Jingyi; Mol, Arthur P.J.; Lu Yonglong; Zhang Lei

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy projects in Shandong Province as a case and assesses these projects in terms of economy, technological performance and effectiveness. Results show that these projects have not achieved a satisfying performance after 10 years experience. Many projects have been discontinued. This failure is attributed to a complex of shortcomings in institutional structure, technical level, financial support and social factors. For a more successful future development of bioenergy in rural areas, China should reform its institutional structure, establish a renewable energy market and enhance the technological level of bioenergy projects

  12. The average carbon-stock approach for small-scale CDM AR projects

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Quijano, J.F.; Muys, B. [Katholieke Universiteit Leuven, Laboratory for Forest, Nature and Landscape Research, Leuven (Belgium); Schlamadinger, B. [Joanneum Research Forschungsgesellschaft mbH, Institute for Energy Research, Graz (Austria); Emmer, I. [Face Foundation, Arnhem (Netherlands); Somogyi, Z. [Forest Research Institute, Budapest (Hungary); Bird, D.N. [Woodrising Consulting Inc., Belfountain, Ontario (Canada)

    2004-06-15

    In many afforestation and reforestation (AR) projects harvesting with stand regeneration forms an integral part of the silvicultural system and satisfies local timber and/or fuelwood demand. Especially clear-cut harvesting will lead to an abrupt and significant reduction of carbon stocks. The smaller the project, the more significant the fluctuations of the carbon stocks may be. In the extreme case a small-scale project could consist of a single forest stand. In such case, all accounted carbon may be removed during a harvesting operation and the time-path of carbon stocks will typically look as in the hypothetical example presented in the report. For the aggregate of many such small-scale projects there will be a constant benefit to the atmosphere during the projects, due to averaging effects.

  13. Use of Satellite SAR Data for Seismic Risk Management: Results from the Pre-Operational ASI-SIGRIS Project

    Science.gov (United States)

    Salvi, Stefano; Vignoli, Stefano; Zoffoli, Simona; Bosi, Vittorio

    2010-12-01

    The scope of the SIGRIS pilot project is the development of an infrastructure to provide value-added information services for the seismic risk management, assuring a close integration between ground-based and satellite Earth Observation data. The project is presently in the demonstration phase, and various information products are constantly generated and disseminated to the main user, the Italian Civil Protection Department. We show some examples of the products generated during the Crisis management of the 2009 L'Aquila earthquake in Central Italy. We also show an example of products generated for the Knowledge and Prevention service in support of the seismic hazard assessment in the area of the Straits of Messina.

  14. Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand

    2017-04-01

    Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.

  15. Improvements of Storm Surge Modelling in the Gulf of Venice with Satellite Data: The ESA Due Esurge-Venice Project

    Science.gov (United States)

    De Biasio, F.; Bajo, M.; Vignudelli, S.; Papa, A.; della Valle, A.; Umgiesser, G.; Donlon, C.; Zecchetto, S.

    2016-08-01

    Among the most detrimental natural phenomena, storm surges heavily endanger the environment, the economy and the everyday life of sea-side countries and coastal zones. Considering that 120.000.000 people live in the Mediterranean area, with additional 200.000.000 presences in Summer for tourism purposes, the correct prediction of storm surges is crucial to avoid fatalities and economic losses. Earth Observation (EO) can play an important role in operational storm surge forecasting, yet it is not widely diffused in the storm surge community. In 2011 the European Space Agency (ESA), through its Data User Element (DUE) programme, financed two projects aimed at encouraging the uptake of EO data in this sector: eSurge and eSurge-Venice (eSV). The former was intended to address the issues of a wider users' community, while the latter was focused on a restricted geographical area: the northern Adriatic Sea and the Gulf of Venice. Among the objectives of the two projects there were a number of storm surge hindcast experiments using satellite data, to demonstrate the improvements on the surge forecast brought by EO. We report here the results of the hindcast experiments of the eSV project. They were aimed to test the sensitivity of a storm surge model to a forcing wind field modified with scatterometer data in order to reduce the bias between simulated and observed winds. Hindcast experiments were also performed to test the response of the storm surge model to the assimilation, with a dual 4D-Var system, of satellite altimetry observations as model errors of the initial state of the sea surface level. Remarkable improvements on the storm surge forecast have been obtained for what concerns the modified model wind forcing. Encouraging results have been obtained also in the assimilation experiments.

  16. NASA Small Business Innovation Research Program. Composite List of Projects, 1983 to 1989

    Science.gov (United States)

    1990-01-01

    The NASA SBIR Composite List of Projects, 1983 to 1989, includes all projects that have been selected for support by the Small Business Innovation Research (SBIR) Program of NASA. The list describes 1232 Phase 1 and 510 Phase 2 contracts that had been awarded or were in negotiation for award in August 1990. The main body is organized alphabetically by name of the small businesses. Four indexes cross-reference the list. The objective of this listing is to provide information about the SBIR program to anyone concerned with NASA research and development activities.

  17. Determine small and medium enterprise social media activities: A community engagement project in the Tshwane community

    OpenAIRE

    Louise van Scheers; Jacques van Scheers

    2015-01-01

    The aim of this paper is to determine small and medium enterprise (SME) social media activities and promote CE scholarship engagement. It is a community engagement project conducted in the Tshwane community. Community engagement (CE) as a planned process with the specific purpose of working with identified groups of people in the community to address issues affecting their well-being. The CE project SME skills transfer workshops are aimed at expanding involvement with the community. The benef...

  18. Project of Carbon Capture in Small and Medium Farms in the Brunca Region, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gilmar Navarrete

    2013-12-01

    Full Text Available The Clean Development Mechanism (CDM of the Kyoto Protocol, allows the non Annex 1 countries to receive projects that contribute to reducing greenhouse gas emissions and sustainable development in developing countries. The CDM, since its inception, has issued credits equivalent to 1.434.737.562 tons of CO2, distributed across 7.450 projects around the world, from 15 different sectors. Sectors 14 that allow forestry projects (such as reforestation and afforestation have registered 53 projects to date; 19 of which are in Latin America. Nevertheless, the contribution of this sector currently represents less than 1% of CDM Certificates of Emissions Reduction (CERs issued. In September 2013, through their National Forestry Financing Fund (FONAFIFO, Costa Rica registered their first CDM project with the United Nations Framework Convention on Climate Change (UNFCCC, after having complied with all the project cycle processes. The project, known as "Carbon Sequestration in Small and Medium Farms, Brunca Region, Costa Rica" was a project executed by FONAFIFO under their Environmental Services Payment Program. This project was developed in Pérez Zeledón, San José, Costa Rica in partnership with the Cooperative Corporation CoopeAgri RL. The total goal of the project is to reduce the greenhouse gas emission by 176,050 ton of CO2-e, in a period of 20 years and commercialize the CERs in the regulated carbon market.

  19. LEOPACK The integrated services communications system based on LEO satellites

    Science.gov (United States)

    Negoda, A.; Bunin, S.; Bushuev, E.; Dranovsky, V.

    LEOPACK is yet another LEO satellite project which provides global integrated services for 'business' communications. It utilizes packet rather then circuit switching in both terrestrial and satellite chains as well as cellular approach for frequencies use. Original multiple access protocols and decentralized network control make it possible to organize regionally or logically independent and world-wide networks. Relatively small number of satellites (28) provides virtually global network coverage.

  20. PROJECT MANAGEMENT INFORMATION SYSTEM: STUDY IN SMALL AND MEDIUM ENTERPRISES OF INDUSTRIAL AUTOMATION

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Mondin

    2016-12-01

    Full Text Available This article aims to analyze the structuring stage and use of information systems in project management in small and medium-sized companies in the business of providing services in industrial automation. Information systems applied to project management - SIGPs can contribute to decision-making on projects, assisting in the management of reliable information in real time, making it a natural choice for most companies looking to increase performance management of their projects. The research method used was multiple case study, in line with the explanatory nature of the study, when to investigate and perform analytical comparisons on how small and medium-sized enterprises of the studied branch structure and use the SIGPs, considering the contemporary character theme and the possibility of direct observation of the object of study, in addition to conducting interviews. The main results were identified the main gaps in project management in companies and research as the management characteristics of these SMEs have influence in how their projects are managed. It was observed that there is a predominance of features involving scope, time and resources on projects, whereas aspects related to costs, risks, quality, procurement and communications have unimpressive results in relation to structuring.

  1. Development of Fast Error Compensation Algorithm for Integrated Inertial-Satellite Navigation System of Small-size Unmanned Aerial Vehicles in Complex Environment

    Directory of Open Access Journals (Sweden)

    A. V. Fomichev

    2015-01-01

    Full Text Available In accordance with the structural features of small-size unmanned aerial vehicle (UAV, and considering the feasibility of this project, the article studies an integrated inertial-satellite navigation system (INS. The INS algorithm development is based on the method of indirect filtration and principle of loosely coupled combination of output data on UAV positions and velocity. Data on position and velocity are provided from the strapdown inertial navigation system (SINS and satellite navigation system (GPS. A difference between the output flows of measuring data on position and velocity provided from the SINS and GPS is used to evaluate SINS errors by means of the basic algorithm of Kalman filtering. Then the outputs of SINS are revised. The INS possesses the following advantages: a simpler mathematical model of Kalman filtering, high reliability, two independently operating navigation systems, and high redundancy of available navigation information.But in case of loosely coupled scheme, INS can meet the challenge of high precision and reliability of navigation only when the SINS and GPS operating conditions are normal all the time. The proposed INS is used with UAV moving in complex environment due to obstacles available, severe natural climatic conditions, etc. This case expects that it is impossible for UAV to receive successful GPS-signals frequently. In order to solve this problem, was developed an algorithm for rapid compensation for errors of INS information, which could effectively solve the problem of failure of the navigation system in case there are no GPS-signals .Since it is almost impossible to obtain the data of the real trajectory in practice, in the course of simulation in accordance with the kinematic model of the UAV and the complex environment of the terrain, the flight path generator is used to produce the flight path. The errors of positions and velocities are considered as an indicator of the INS effectiveness. The results

  2. Descent with Modification: Thermal Reactions of Subsurface H2O2 of Relevance to Icy Satellites and Other Small Bodies

    Science.gov (United States)

    Hudson, Reggie L.; Loefler, Mark J.

    2012-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Similarly, cosmic radiation (mainly protons) acting on cometary and interstellar ices can promote extensive chemical change. Among the products that have been identified in irradiated H20-ice is hydrogen peroxide (H202), which has been observed on Europa and is suspected on other worlds. Although the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, the thermally-induced solid-phase chemistry of H2O2 is largely unknown. Therefore, in this presentation we report new laboratory results on reactions at 50 - 130 K in ices containing H2O2 and other molecules, both in the presence and absence of H2O. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to SO4(2-). We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto. If other molecules prove to be just as reactive with frozen H2O2 then it may explain why H2O2 has been absent from surfaces of many of the small icy bodies that are known to be exposed to ionizing radiation. Our results also have implications for the survival of H2O2 as it descends towards a subsurface ocean on Europa.

  3. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    Science.gov (United States)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  4. Developing Employment Interview and Interviewing Skills in Small-group Project Work.

    Science.gov (United States)

    Hindle, Paul

    2000-01-01

    Discusses the value of communications skills in geographical education. Describes the use of realistic interviews that were a part of small-group project work. Explains that students wrote job specifications, a curriculum vitae, a cover letter, and conducted interview panels. (CMK)

  5. Small Farmers and Social Capital in Development Projects: Lessons from Failures in Argentina's Rural Periphery

    Science.gov (United States)

    Michelini, Juan Jose

    2013-01-01

    The importance of social capital as a resource for rural development, especially in the context of projects involving joint participation of state and civil society, is widely recognized today. This paper analyzes the obstacles confronted by local players--small farmers and government organizations--in the development of an irrigation area through…

  6. EXPLORING THE POLITICS OF LOCAL PARTICIPATION IN RURAL DEVELOPMENT PROJECTS: SMALL DAMS REHABILITATION PROJECT IN ZIMBABWE

    Directory of Open Access Journals (Sweden)

    Jacob Tagarirofa

    2013-02-01

    Full Text Available The study sought to evaluate the effectiveness of community participation in rural development projects in Zimbabwe testing the credibility of the popularized supposition that almost all contemporary development efforts characteristically embrace local participation. Public participation is widely assumed to be an essential ingredient for the fruition of rural development efforts. The research made use of quantitative and qualitative research methodologies in which unstructured interviews, focus group discussions and questionnaires were used as data gathering instruments. The analysis of data was enabled by the use of People-Centered Development (PCD as a conceptual framework. Findings revealed that the level of community participation in the district is not only minimal, but it is also top down. This has much to do with the negative perceptions by facilitating agents viewing local people as passive recipients of externally crafted models of development and other factors such as the power dynamics within and between the community and other stakeholders. The research also found preferential treatment of other tribal groups by the facilitating agent, intra group conflicts and bureaucratic and political influence as obstacles militating against effective participation. Based on these findings, and consistent with the wider literature, recommendation are that the nature of community engagement should be based on the principle of equal partnership among all stakeholders as this would encourage full cooperation and thus effective participation.

  7. The 'Chriz' small hydro project; Kleinkraftwerk Chriz - Konzessionsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Amacker, P.

    2008-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the project for the renewal of a small hydropower installation in the village of Eischoll in the Swiss Alps. The history of the power station is reviewed and its present state is analysed. The possibilities for its renewal and project financing are discussed, as are rights concerning the use of water and regional planning aspects. The project foresees the use of various older installations and the construction of a new turbine house in the valley. Details on dimensions, the proposed installed power and energy production of the scheme are presented as well as details on the connection to the electricity mains. Environmental aspects and details on the costs and time-scales involved in the construction of the small power station are presented.

  8. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    Science.gov (United States)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  9. Performance Studies of Micromegas Chambers for the New Small Wheel Upgrade Project

    Directory of Open Access Journals (Sweden)

    Leontsinis S.

    2016-01-01

    Full Text Available The ATLAS collaboration has chosen the Micromegas technology along with the small-strip Thin Gap Chambers for the upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel upgrade project. It will employ eight layers of Micromegas and eight layers of small-strip Thin Gap Chambers per wheel. The New Small Wheel project requires fully efficient Micromegas chambers, able to cope with the maximum expected rate of 15 kHz/cm2 featuring single plane spatial resolution better than 100 μm. The Micromegas detectors will cover a total active area of ~ 1200 m2 and will be operated in a moderate magnetic field (≤ 0.3 T. Moreover, together with their precise tracking capability the New Small Wheel Micromegas chambers will contribute to the ATLAS Level-1 trigger system. Several studies have been performed on small (10 × 10 cm2 and medium (1 × 0.5 m2 size prototypes using medium (1 − 5 GeV/c and high momentum (120 – 150 GeV/c hadron beams at CERN. A brief overview of the results obtained is presented.

  10. Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522

    International Nuclear Information System (INIS)

    Mctaggart, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has

  11. Field Verification Project for Small Wind Turbines, Quarterly Report: April - June 2001; 2nd Quarter, Issue No.5

    Energy Technology Data Exchange (ETDEWEB)

    2002-04-01

    This newsletter provides a brief overview of the Field Verification Project for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  12. Field Verification Project for Small Wind Turbines Quarterly Report; July-September 2001, 3rd Quarter, Issue#6

    Energy Technology Data Exchange (ETDEWEB)

    2003-04-01

    This newsletter provides a brief overview of the Field Verification Project for Small Wind Turbines conducted at the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  13. Survey and analysis of satellite-based telemedicine projects involving Japan and developing nations: investigation of transmission rates, channel numbers, and node numbers.

    Science.gov (United States)

    Nakajima, I; Natori, M; Takizawa, M; Kaihara, S

    2001-01-01

    We surveyed interactive telemedicine projects via telecommunications satellite (AMINE-PARTNERS, Post-PARTNERS, and Shinshu University Project using Inmarsat satellites) offered by Japan as assistance to developing countries. The survey helped clarify channel occupation time and data transfer rates. Using our survey results, we proposed an optimized satellite model with VSATs simulating the number of required channels and bandwidth magnitude. For future implementation of VSATs for medical use in developing nations, design of telecommunication channels should take into consideration TCP/IP-based operations. We calculated that one hub station with 30-76 VSATs in developing nation can be operated on bandwidth 6 Mbps using with 128 Kbps videoconferencing system for teleconsultation and teleconference, and linking with Internet.

  14. Project appraisal for small and medium size wind energy installation: The Italian wind energy policy effects

    International Nuclear Information System (INIS)

    Fera, M.; Iannone, R.; Macchiaroli, R.; Miranda, S.; Schiraldi, M.M.

    2014-01-01

    In the last few years, the distributed energy production from small wind turbines (i.e.<200 kWp) has developed into a relevant business opportunity for different investors in Italy. The market, especially in Italy, has rapidly grown, achieving 9 MWp only in 2011, with an increase from 1.5 MW in 2009 to 13.3 MW at the end of 2011. This paper reports the results of a case study on the installation of several small wind turbines. It aims to provide an analysis of the conditions in Italy that make it possible to install these machines and offer a reliable reference for designing, planning, and controlling small wind turbine projects while focusing on the strategic variables of time, cost, and quality used by typical enterprises in the investment projects. The results are relevant to investors as well as engineering, procurement, and construction companies involved in this new sector, which must understand Italy’s renewable energy policy and its effects in practice. Moreover, certain national energy policy conclusions are reported and discussed in this paper. To properly study the sector, the data on time, cost and quality are analysed using typical project management tools. - Highlights: • Focus on the Italian wind energy sector. • Analysis of Italian policy effects. • Focus on small/medium size wind energy machines

  15. Utilization of the NASA Operational Simulator for Small Satellites (NOS3) for V&V of STF-1’s Semiautonomous On-Orbit Operations

    OpenAIRE

    Grubb, Matthew; Lucas, John; Morris, Justin; Zemerick, Scott

    2017-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of software tools that significantly aids the SmallSat community with software development, integration and test (I&T), mission operations/training, verification and validation (V&V), and software systems check-out. NOS3 has been utilized extensively for NASA’s Simulation-to-Flight 1 (STF-1) cubesat mission with respect to V&V of its semiautonomous science operations. NOS3 provides a software development environment, a mult...

  16. Clean development mechanism and off-grid small-scale hydropower projects: Evaluation of additionality

    International Nuclear Information System (INIS)

    Tanwar, Nitin

    2007-01-01

    The global climate change mitigation policies and their stress on sustainable development have made electrification of rural mountainous villages, using small hydro, an attractive destination for potential clean development mechanism (CDM) projects. This invariably involves judging the additionality of such projects. The paper suggests a new approach to judge the additionality of such stand-alone small hydropower projects. This has been done by breaking up additionality into two components: external and local. The external additionality is project developer dependent. For determining the local additionality, the paper takes into account the probability of a village getting electrified over a period of time, which is kept equal to the possible crediting period. This is done by defining an electrification factor (EF) whose value depends on the degree of isolation, financial constraints and institutional constraints encountered while electrifying a mountainous village. Using this EF, the additionality of a CDM project can be judged in a much easier and accurate way. The paper is based on the data and inputs gathered during site visits to many isolated villages located in the eastern Indian Himalayas

  17. From the Icy Satellites to Small Moons and Rings: Spectral Indicators by Cassini-VIMS Unveil Compositional Trends in the Saturnian System

    Science.gov (United States)

    Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Nicholson, P. D.; Clark, R. N.; Cuzzi, J. N.; Buratti, B. B.; Cruikshank, D. P.; Brown, R. H.

    2017-01-01

    Despite water ice being the most abundant species on Saturn satellites' surfaces and ring particles, remarkable spectral differences in the 0.35-5.0 μm range are observed among these objects. Here we report about the results of a comprehensive analysis of more than 3000 disk-integrated observations of regular satellites and small moons acquired by VIMS aboard Cassini mission between 2004 and 2016. These observations, taken from very different illumination and viewing geometries, allow us to classify satellites' and rings' compositions by means of spectral indicators, e.g. 350-550 nm - 550-950 nm spectral slopes and water ice band parameters [1,2,3]. Spectral classification is further supported by indirect retrieval of temperature by means of the 3.6 μm I/F peak wavelength [4,5]. The comparison with syntethic spectra modeled by means of Hapke's theory point to different compositional classes where water ice, amorphous carbon, tholins and CO2 ice in different quantities and mixing modalities are the principal endmembers [3, 6]. When compared to satellites, rings appear much more red at visible wavelengths and show more intense 1.5-2.0 μm band depths [7]. Our analysis shows that spectral classes are detected among the principal satellites with Enceladus and Tethys the ones with stronger water ice band depths and more neutral spectral slopes while Rhea evidences less intense band depths and more red visible spectra. Even more intense reddening in the 0.55-0.95 μm range is observed on Iapetus leading hemisphere [8] and on Hyperion [9]. With an intermediate reddening, the minor moons seems to be the spectral link between the principal satellites and main rings [10]: Prometheus and Pandora appear similar to Cassini Division ring particles. Epimetheus shows more intense water ice bands than Janus. Epimetheus' visible colors are similar to water ice rich moons while Janus is more similar to C ring particles. Finally, Dione and Tethys lagrangian satellites show a very

  18. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the "Deep Blue" Aerosol Project

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.

    2018-01-01

    The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.

  19. Neural network CT image reconstruction method for small amount of projection data

    CERN Document Server

    Ma, X F; Takeda, T

    2000-01-01

    This paper presents a new method for two-dimensional image reconstruction by using a multi-layer neural network. Though a conventionally used object function of such a neural network is composed of a sum of squared errors of the output data, we define an object function composed of a sum of squared residuals of an integral equation. By employing an appropriate numerical line integral for this integral equation, we can construct a neural network which can be used for CT image reconstruction for cases with small amount of projection data. We applied this method to some model problems and obtained satisfactory results. This method is especially useful for analyses of laboratory experiments or field observations where only a small amount of projection data is available in comparison with the well-developed medical applications.

  20. Neural network CT image reconstruction method for small amount of projection data

    International Nuclear Information System (INIS)

    Ma, X.F.; Fukuhara, M.; Takeda, T.

    2000-01-01

    This paper presents a new method for two-dimensional image reconstruction by using a multi-layer neural network. Though a conventionally used object function of such a neural network is composed of a sum of squared errors of the output data, we define an object function composed of a sum of squared residuals of an integral equation. By employing an appropriate numerical line integral for this integral equation, we can construct a neural network which can be used for CT image reconstruction for cases with small amount of projection data. We applied this method to some model problems and obtained satisfactory results. This method is especially useful for analyses of laboratory experiments or field observations where only a small amount of projection data is available in comparison with the well-developed medical applications

  1. A Project Team Analysis Using Tuckman's Model of Small-Group Development.

    Science.gov (United States)

    Natvig, Deborah; Stark, Nancy L

    2016-12-01

    Concerns about equitable workloads for nursing faculty have been well documented, yet a standardized system for workload management does not exist. A project team was challenged to establish an academic workload management system when two dissimilar universities were consolidated. Tuckman's model of small-group development was used as the framework for the analysis of processes and effectiveness of a workload project team. Agendas, notes, and meeting minutes were used as the primary sources of information. Analysis revealed the challenges the team encountered. Utilization of a team charter was an effective tool in guiding the team to become a highly productive group. Lessons learned from the analysis are discussed. Guiding a diverse group into a highly productive team is complex. The use of Tuckman's model of small-group development provided a systematic mechanism to review and understand group processes and tasks. [J Nurs Educ. 2016;55(12):675-681.]. Copyright 2016, SLACK Incorporated.

  2. Small mammal community succession on the beach of Dongting Lake, China after the Three Gorges Project.

    Science.gov (United States)

    Zhang, Meiwen; Wang, Yong; Li, Bo; Guo, Cong; Huang, Guoxian; Shen, Guo; Zhou, Xunjun

    2014-06-01

    Although the Three Gorges Project (TGP) may have affected the population structure and distribution of plant and animal communities, few studies have analyzed the effect of this project on small mammal communities. Therefore, the present paper compares the small mammal communities inhabiting the beaches of Dongting Lake using field investigations spanning a 20-year period, both before and after the TGP was implemented. Snap traps were used throughout the census. The results indicate that the TGP caused major changes to the structure of the small mammal community at a lake downstream of the dam. First, species abundance on the beaches increased after the project commenced. The striped field mouse (Apodemus agrarius) and the Norway rat (Rattus norvegicus), which rarely inhabited the beach before the TGP, became abundant (with marked population growth) once water was impounded by the Three Gorges Reservoir. Second, dominant species concentration indices exhibited a stepwise decline, indicating that the community structure changed from a single dominant species to a more diverse species mix after TGP implementation. Third, the regulation of water discharge release by the TGP might have caused an increase in the species diversity of the animal community on the beaches. A significant difference in diversity indices was obtained before and after the TGP operation. Similarity indices also indicate a gradual increase in species numbers. Hence, a long-term project should be established to monitor the population fluctuations of the Yangtze vole (Microtus fortis), the striped field mouse and the Norway rat to safeguard against population outbreaks (similar to the Yangtze vole outbreak in 2007), which could cause crop damage to adjacent farmland, in addition to documenting the succession process of the small mammal community inhabiting the beaches of Dongting Lake. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley

  3. Satellite Observations from SEVIRI of Saharan dust over West Africa, within the context of the Fennec project

    Science.gov (United States)

    Banks, J.; Brindley, H.

    2012-04-01

    During the summer months, the atmosphere over the western half of the Sahara carries some of the highest dust loadings on the planet. This situation develops when intense solar heating over the dry desert creates a deep and hot low pressure system (the Saharan Heat Low, SHL), which allows a strong vertical mixing of dust. The Fennec* consortium project aims to address the deficiency in observations from the sparsely populated western Sahara through the use of field campaign measurements made in June 2011, incorporating observations from ground instruments, aircraft, and from satellite instruments such as SEVIRI, in combination with climate modelling. Fennec aims to study the poorly understood behaviour of the SHL, and the processes which take place within it. Due to their high temporal resolution, observations from SEVIRI can offer new insights into the timing of activation of specific dust sources, and the processes governing their behaviour. Here we employ a multi-year, high time-resolution record of dust detection and aerosol optical depth (AOD) derived from SEVIRI using an algorithm developed at Imperial College to both identify areas of high dust loading and diagnose diurnal patterns in their activation. We will present results from the SEVIRI record alongside results from other satellite instruments such as MODIS, and place these findings in the context of the initial ground-based and in-situ observations available from the Fennec field campaign. We will also identify surface features which can contaminate the dust detection retrieval, due to their emissivities in the 8.7 micron channel. New techniques can be used to filter out these features, based on the difference between the brightness temperatures at 10.8 and 8.7 microns. Using surface visibility measurements and AERONET data, we will evaluate the consequences of this on the dust detection and AOD record. * Fennec is a consortium project which includes groups from the universities of Oxford, Imperial

  4. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, G.; Eeftens, M.; Beelen, R.; Fischer, P.; Brunekreef, B.; Boersma, K.F.; Veefkind, P.

    2015-01-01

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  5. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, Gerard; Eeftens, Marloes; Beelen, Rob; Fischer, Paul; Brunekreef, Bert; Boersma, K. Folkert; Veefkind, Pepijn

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  6. 75 FR 33893 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-06-15

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  7. 75 FR 55405 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-09-10

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  8. 75 FR 18957 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-04-13

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  9. 75 FR 47348 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-08-05

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  10. 75 FR 62630 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-10-12

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  11. 75 FR 7539 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-02-19

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  12. 75 FR 11999 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-03-12

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  13. 75 FR 39331 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-07-08

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  14. 75 FR 4140 - Open Meeting of the Taxpayer Advocacy Panel Small Business/Self Employed Project Committee

    Science.gov (United States)

    2010-01-26

    ... Small Business/Self Employed Project Committee AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Small Business/ Self Employed Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  15. 76 FR 33333 - Use of Small Area Fair Market Rents for Project Base Vouchers in the Dallas TX Metropolitan Area

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5525-N-01] Use of Small Area Fair Market Rents for Project Base Vouchers in the Dallas TX Metropolitan Area AGENCY: Office of the Assistant... Small Area Fair Market Rents (SAFMRs) for Project-Based Vouchers (PBVs) located in the Dallas, TX...

  16. 76 FR 50813 - Major Capital Investment Projects; Guidance on News Starts/Small Starts Policies and Procedures

    Science.gov (United States)

    2011-08-16

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Major Capital Investment Projects; Guidance on News Starts/Small Starts Policies and Procedures AGENCY: Federal Transit Administration (FTA... Administration (FTA) to publish policy guidance on the New and Small Starts capital project review and evaluation...

  17. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  18. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  19. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  20. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  1. Key factors of project success in family small and medium-sized companies: the theoretical review

    Directory of Open Access Journals (Sweden)

    Sinisa Arsic

    2017-10-01

    Full Text Available The paper proposes a systematization of the key success factors of projects, through the theoretical review of family-owned companies operating in the EU market. It is the small and medium companies that in their own way contribute to the overall success of the national economy in terms of economic activity, increased employment, development activities and defining better business environment. The theoretical review observed numerous studies of family businesses, and the contribution of this work is in the systematization of the results of previous research – over three horizons, i.e., over the role of managers in the creation of successful projects (or owner if it is a family enterprise, institutional support for companies in Serbia and the EU, specific industries and the parent (regional markets where a family company operates. Project management, as a general representation of the concept of implementation of strategic and operational endeavors, contains many specifics in terms of critical success factors of projects depending on the environment in which they are implemented. The goal of the paper is reflected in the identification and presentation of critical success factors of projects implemented in family companies. The paper concludes with a discussion of the research results in relation to the existing, similar research studies, as well as with the announcement of future research, which will examine the conclusions drawn on a real sample.

  2. Cooperation and communication challenges in small-scale eHealth development projects.

    Science.gov (United States)

    Petersen, Lone Stub; Bertelsen, Pernille; Bjørnes, Charlotte

    2013-12-01

    In eHealth development there is an increasing focus on user participation inspired by the information systems field of practice and research. There are, however, many other challenges in developing information systems that fit healthcare practices. One of these is the challenge of cooperation and communication in development projects that are initiated and managed by clinicians e.g. cooperating with IT professionals in 'bottom up' health informatics projects that have been initiated and are managed by healthcare professional project managers. The analysis and results are drawn from a qualitative case study on a systems development project that was managed by a local, non-technical, healthcare professional and the complex blend and interactions with the IT professionals in the phases of ideas, design, development, implementation, maintenance and distribution. We analyze the challenges of cooperation and communication using perspectives from information systems research and the concepts of 'language-games' and 'shared design spaces', and thereby exploring the boundaries between the different communication, practice and culture of the IT professionals and the healthcare professionals. There is a need to (a) develop a better understanding of the development process from the point of view of the 'user' and (b) tools for making technical knowledge explicit in the development process. Cooperative and communicative methods are needed that support and develop the shared design spaces between IT professionals and the clinical context in order to strengthen small-scale health information systems projects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into Aeronautics Research Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research (SBIR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial project managers interested in ARMD funding opportunities through NASA's SBIR program will find this report useful as well.

  4. The quality of Portuguese Environmental Impact Studies: The case of small hydropower projects

    International Nuclear Information System (INIS)

    Pinho, Paulo; Maia, Rodrigo; Monterroso, Ana

    2007-01-01

    In most Environmental Impact Assessment (EIA) systems environmental authorities can stop an EIA process by refusing the respective EIA Report, on the grounds of technical or methodological insufficiencies identified in the review procedure. However, often times, it cannot be taken for granted that, once an EIA Report is formally accepted, as part of an EIA process, its quality standard is, consistently, of a satisfactory level. This paper summarises the results of a one-year research project aimed at assessing the quality of EIA studies carried out for small hydropower plants in Portugal. An extensive survey was carried out to analyse all EIA Reports that were the basis of successful EIA processes involving this kind of small scale projects, under the old and the new national EIA legislation, that is, over the last two decades. Often times unnoticeable to the general public and the media, located in isolated areas upstream secondary rivers, these projects are likely to generate some significant environmental impacts, in particular on the aesthetics value and character of local landscapes and on pristine ecological habitats. And yet, they are usually regarded as environmental friendly projects designed to produce emission free energy. The design of the evaluation criteria benefited from the literature review on similar research projects carried out in other EU countries. The evaluation exercise revealed a number of technical and methodological weaknesses in a significant percentage of cases. A set of simple and clear cut recommendations is proposed twofold: to improve the current standard of EIA practice and to strengthen the role of the so called EIA Commissions, at the crucial review stage of the EIA process

  5. Scientific projects as a way to provide dynamism in small French remote colleges.

    Science.gov (United States)

    Boer, Michel; Strajnic, Jean

    Scientific projects as a way to provide dynamism in small French remote colleges. Though 77% of the French population lives in towns, they are still quite a lot of people in rural areas. The educational model has favored the proximity colleges instead of forcing the students to make long journeys to get to the school, or to be in boarding schools. This means that grade 6-9 students can be in colleges as small as 100-150 children, specifically in remote areas, e.g. in the Alpes de Haute-Provence. Though small structures have many advantages in terms of discipline and proximity of the educational team with both the students and their parents, some "conservatism" may arise from the low turnover of the population. Children stay for long in the same village, and their access to culture, activities, knowledge of the outside can be restricted, inducing a loss of dynamism. In order to fight this tendency the Observatoire de Haute-Provence has started a program together with the regional educational authorities and the teacher teams proposing to work on scientific projects in astronomy, and soon in environmental sciences. Though the children and their teachers visit OHP, and scientists the college, the idea is that the teachers and the classmates become autonomous, the link being maintained via videoconferencing and electronic blackboard. This is based also on the presence of a prominent scientific institute in a rural district.

  6. Planning of a small hydroelectric installation project - orientation aids; Vom Plan zum Werk - Orientierungshilfen

    Energy Technology Data Exchange (ETDEWEB)

    Hutarew, A. [Dr. Hutarew und Partner, Pforzheim (Germany)

    1997-12-31

    The article informs in concise form on essential elements of the plannning of a small hydro power project. Understanding and considerateness are demanded from all parties concerned when such a joint project is envisaged. Not one-sided interests should be followed; rather, everyone should contribute towards facilitating renewable energy generation. Some negative examples are cited. (orig.) [Deutsch] In der Kuerze der gebotenen Zeit wurde versucht, wesentliche Eckpfeiler in der Entstehung einer Wasserkraftanlage zu skizzieren. Ziel meiner Ausfuehrungen ist es, von allen Beteiligten Verstaendnis abzuverlangen und Ruecksichtnahme zu praktizieren, geht es doch darum, ein gemeinsames Werk entstehen zu lassen. Wir stehen nicht in der Not, einseitige Interessen zu verfechten, sondern gemeinsam an einem Baustein regenerativer Energieerzeugung zu arbeiten. Es sei mir verziehen, wenn durch die Schilderung von Negativ-Beispielen ein eher unueblicher Weg beschritten wurde. (orig.)

  7. Monturaqui meteorite impact crater, Chile: A field test of the utility of satellite-based mapping of ejecta at small craters

    Science.gov (United States)

    Rathbun, K.; Ukstins, I.; Drop, S.

    2017-12-01

    Monturaqui Crater is a small ( 350 m diameter), simple meteorite impact crater located in the Atacama Desert of northern Chile that was emplaced in Ordovician granite overlain by discontinuous Pliocene ignimbrite. Ejecta deposits are granite and ignimbrite, with lesser amounts of dark impact melt and rare tektites and iron shale. The impact restructured existing drainage systems in the area that have subsequently eroded through the ejecta. Satellite-based mapping and modeling, including a synthesis of photographic satellite imagery and ASTER thermal infrared imagery in ArcGIS, were used to construct a basic geological interpretation of the site with special emphasis on understanding ejecta distribution patterns. This was combined with field-based mapping to construct a high-resolution geologic map of the crater and its ejecta blanket and field check the satellite-based geologic interpretation. The satellite- and modeling-based interpretation suggests a well-preserved crater with an intact, heterogeneous ejecta blanket that has been subjected to moderate erosion. In contrast, field mapping shows that the crater has a heavily-eroded rim and ejecta blanket, and the ejecta is more heterogeneous than previously thought. In addition, the erosion rate at Monturaqui is much higher than erosion rates reported elsewhere in the Atacama Desert. The bulk compositions of the target rocks at Monturaqui are similar and the ejecta deposits are highly heterogeneous, so distinguishing between them with remote sensing is less effective than with direct field observations. In particular, the resolution of available imagery for the site is too low to resolve critical details that are readily apparent in the field on the scale of 10s of cm, and which significantly alter the geologic interpretation. The limiting factors for effective remote interpretation at Monturaqui are its target composition and crater size relative to the resolution of the remote sensing methods employed. This

  8. The Baselines Project: Establishing Reference Environmental Conditions for Marine Habitats in the Gulf of Mexico using Forecast Models and Satellite Data

    Science.gov (United States)

    Jolliff, J. K.; Gould, R. W.; deRada, S.; Teague, W. J.; Wijesekera, H. W.

    2012-12-01

    We provide an overview of the NASA-funded project, "High-Resolution Subsurface Physical and Optical Property Fields in the Gulf of Mexico: Establishing Baselines and Assessment Tools for Resource Managers." Data assimilative models, analysis fields, and multiple satellite data streams were used to construct temperature and photon flux climatologies for the Flower Garden Banks National Marine Sanctuary (FGBNMS) and similar habitats in the northwestern Gulf of Mexico where geologic features provide a platform for unique coral reef ecosystems. Comparison metrics of the products to in situ data collected during complimentary projects are also examined. Similarly, high-resolution satellite-data streams and advanced processing techniques were used to establish baseline suspended sediment load and turbidity conditions in selected northern Gulf of Mexico estuaries. The results demonstrate the feasibility of blending models and data into accessible web-based analysis products for resource managers, policy makers, and the public.

  9. Financial Feasibility and Merits of the Small Lightweight Tactical Intelligence. Surveillance, and Reconnaisacce Satellite Compared to National Systems

    National Research Council Canada - National Science Library

    Hodge, Donald

    1999-01-01

    This study examines the financial feasibility, technological improvements, and construction procedures that are occurring in the space industry with respect to the feasibility of developing a small...

  10. GALAXY CLUSTERING AND PROJECTED DENSITY PROFILES AS TRACED BY SATELLITES IN PHOTOMETRIC SURVEYS: METHODOLOGY AND LUMINOSITY DEPENDENCE

    International Nuclear Information System (INIS)

    Wang Wenting; Jing, Y. P.; Li Cheng; Okumura, Teppei; Han Jiaxin

    2011-01-01

    We develop a new method which measures the projected density distribution w p (r p )n of photometric galaxies surrounding a set of spectroscopically identified galaxies and simultaneously the projected cross-correlation function w p (r p ) between the two populations. In this method, we are able to divide the photometric galaxies into subsamples in luminosity intervals even when redshift information is unavailable, enabling us to measure w p (r p )n and w p (r p ) as a function of not only the luminosity of the spectroscopic galaxy, but also that of the photometric galaxy. Extensive tests show that our method can measure w p (r p ) in a statistically unbiased way. The accuracy of the measurement depends on the validity of the assumption inherent to the method that the foreground/background galaxies are randomly distributed and are thus uncorrelated with those galaxies of interest. Therefore, our method can be applied to the cases where foreground/background galaxies are distributed in large volumes, which is usually valid in real observations. We have applied our method to data from the Sloan Digital Sky Survey (SDSS) including a sample of 10 5 luminous red galaxies at z ∼ 0.4 and a sample of about half a million galaxies at z ∼ 0.1, both of which are cross-correlated with a deep photometric sample drawn from the SDSS. On large scales, the relative bias factor of galaxies measured from w p (r p ) at z ∼ 0.4 depends on luminosity in a manner similar to what is found for those at z ∼ 0.1, which are usually probed by autocorrelations of spectroscopic samples in previous studies. On scales smaller than a few Mpc and at both z ∼ 0.4 and z ∼ 0.1, the photometric galaxies of different luminosities exhibit similar density profiles around spectroscopic galaxies at fixed luminosity and redshift. This provides clear observational support for the assumption commonly adopted in halo occupation distribution models that satellite galaxies of different luminosities are

  11. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  12. Determine small and medium enterprise social media activities: A community engagement project in the Tshwane community

    Directory of Open Access Journals (Sweden)

    Louise van Scheers

    2015-09-01

    Full Text Available The aim of this paper is to determine small and medium enterprise (SME social media activities and promote CE scholarship engagement. It is a community engagement project conducted in the Tshwane community. Community engagement (CE as a planned process with the specific purpose of working with identified groups of people in the community to address issues affecting their well-being. The CE project SME skills transfer workshops are aimed at expanding involvement with the community. The benefits of social media seem to be ignored by most SMEs however; challenges prevent SME owners from using the tool effectively. A survey study method of research design has been selected for the research. The sample for the study comprised 200 SME owners who currently manage small businesses in the Tshwane area. The conducted research recommends that social media can be cost effective if the SMEs make use of their social networks and use best practises that enable them to get their adverts or posts shared across social networks. The conducted research also recommends that SMEs with limited resources start with social media and YouTube as a marketing tool, as the learning curve is low and cost involved is almost nil.

  13. Performance Studies of Micromegas Chambers for the New Small Wheel Upgrade Project

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349891; The ATLAS collaboration; Leontsinis, Stefanos

    2015-01-01

    Micromegas, an abbreviation for Micro MEsh Gaseous Structure (MM), is a robust detector with excellent spatial resolution and high rate capability. An $R\\&D$ activity, called Muon ATLAS MicroMegas Activity (MAMMA), was initiated in 2007 in order to explore the potential of the MM technology for use in the ATLAS experiment. After several years of prototyping and testing, the ATLAS collaboration has chosen the MM technology along with the small-strip Thin Gap Chambers (sTGC) for the upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW) upgrade project. It will employ eight layers of MM and eight layers of sTGC detectors per wheel. The NSW project requires fully efficient MM chambers, able to cope with the maximum expected rate of $15\\,\\mathrm{kHz/cm^2}$ featuring single plane spatial resolution better than $100\\,\\mu\\mathrm{m}$. The MM detectors will cover a total active area of $\\sim1200\\,\\mathrm{m^2}$ and will be operated in a moderate magnetic field with intens...

  14. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

  15. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    International Nuclear Information System (INIS)

    Geuther, J.; Conrad, E.A.; Rhoadarmer, D.

    2009-01-01

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described

  16. NEOShield-2 Project: Final Results on Compositional Characterization of small NEOs

    Science.gov (United States)

    Barucci, Maria Antonieta; Perna, Davide; Fornasier, Sonia; Doressoundiram, Alain; Lantz, Cateline; Popescu, Marcel; Merlin, Frederic; Fulchignoni, Marcello

    2017-10-01

    NEOShield-2 project was selected in the framework of the European Commission H2020 program in answer to the call for “Access technologies and characterisation for Near Earth Objects (NEOs)”. NEOShield-2 project (2015-2017) is a follow-up of the first NEOShield (2012-2015) and includes 11 European Institutions and Industries. The main objectives of NEOShield-2 project are: i) technological development on techniques and instruments needed for GNC for possible asteroid missions and ii) characterization of NEOs of small sizes.Our team at LESIA is the leader of the entire observational program which involved complementary techniques to provide physical and compositional characterization of NEOs. Priority has been given to potential space-mission targets, optimized for mitigation or exploration missions. In this framework an agreement with the European Southern Observatory was signed to obtain Guaranteed Time Observations at the 3.6-meter NTT with an allocation of 30 nights to characterize by spectroscopy the composition of the smaller asteroids. The objects with an absolute magnitude larger than 20 were selected, with a priority for the very small newly discovered objects.We obtained more than 170 new spectra of NEOs. The observations were performed with EFOSC2 instrument. We covered the wavelength interval 0.4-0.92 microns, with a resolution of R=~200. The observed asteroids include 29 asteroids with diameters smaller than 100 meters and 71 with diameters between 100 and 300 m.The taxonomic type has been assigned for 137 individual objects. Our results on NEO mineralogical compositions provide a body of reference data directly applicable to the design and development of mitigation-relevant space missions. Within our survey, we found eight D-types with ΔV funding by European Commission Horizon 2020 program (contract No. PROTEC-2-2014-640351).

  17. Evolution of project-based learning in small groups in environmental engineering courses

    Directory of Open Access Journals (Sweden)

    Jesús M. Requies

    2018-03-01

    Full Text Available This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning –PBL- implemented on the course “Unit Operations in Environmental Engineering”, within the bachelor’s degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial design and implementation of this methodology during the first academic year (12/13, different modifications were adopted in the following ones (13-14, 14-15 & 15-16 in order to optimize the student’s and professor’s work load as well as correct some malfunctions observed in the initial design of the PBL. This active methodology seeks to make students the main architects of their own learning processes. Accordingly, they have to identify their learning needs, which is a highly motivating approach both for their curricular development and for attaining the required learning outcomes in this field of knowledge. The results obtained show that working in small teams (cooperative work enhances each group member’s self–learning capabilities. Moreover, academic marks improve when compared to traditional learning methodologies. Nevertheless, the implementation of more active methodologies, such as project-based learning, in small groups has certain specific characteristics. In this case it has been implemented simultaneously in two different groups of 10 students each one. Such small groups are more heterogeneoussince the presence of two highly motivated students or not can vary or affect the whole group’s attitude and academic results.

  18. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  19. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  20. Choosing ESRO's first scientific satellites

    Science.gov (United States)

    Russo, Arturo

    1992-11-01

    The choice of the scientific payloads of the European Space Research Organization's (ESRO's) first generation of satellites is analyzed. Concentration is on those aspects of the decision process that involved more directly the scientific community and that emerged as major issues in the discussion of the Launching Program Advisory Committee (LPAC). The main theme was the growing competition between the various fields of space science within the progressive retrenching of the Organization's financial resources available for the satellite program. A general overview of the status of the program by the end of 1966 is presented. The choice of the first small satellites' payloads (ESRO 1 and 2, and HEOS-A) and the difficult definition of the TD satellite program are discussed. This part covers a time span going from early 1963 to the spring of 1966. In the second part, the narrative starts from the spring of 1967, when the decision to recommend a second HEOS-type satellite was taken, and then analyzes the complex situation determined by the crisis of the TD program in 1968, and the debates which eventually led to the abandonment of TD-2 and the start of the far less ambitious ESRO 5 project.

  1. Satellite Capabilities Mapping - Utilizing Small Satellites

    Science.gov (United States)

    2010-09-01

    climate and space measurements. The report shows that federal agencies lack a strategy for the long-term provision of space weather (SWx) data [3...energy across the entire electromagnetic spectrum containing x-rays, ultraviolet, visible light , infrared, and radio waves. The sun also radiates a...atmosphere, galactic cosmic rays, trapped particles, ionospheric scintillation, auroral emissions, in-situ plasma measurements and other selected space

  2. Using Service-Learning Projects to Jump Start Research at Small Institutions

    Science.gov (United States)

    Ongley, L. K.; Spigel, K.; Olin, J.

    2010-12-01

    Geoscientists at small institutions must frequently be very creative about funding and conducting research. High teaching loads, tuition-driven budgets, and a dearth of geosciences colleagues all contribute challenges to an intellectual life that includes research as a scholarship endeavor. Fortunately, service-learning can be used as a multi-purpose pedagogical technique. Unity College is a very small environmentally-focused undergraduate institution in rural Maine with a student population of less than 600 students. Our students really appreciate learning in the field and through participation in projects that impact the communities in which they live and study. Our Environmental Science (geosciences) and Environmental Analysis (chemistry) majors have been showing increasing interest in pursuing graduate school and independent projects in greater and greater depth. In the past 5 years we have had a complete turn-over in geoscience and chemistry faculty (2 persons), a shift that has brought new ideas to campus and a different idea about importance of research. Unity College has always been a big proponent of community-based projects so the extension to service learning as a pedagogical technique has been smooth. A wide variety of towns, schools, land trusts, pond associations and other groups approach Unity College with project ideas. We are best equipped to handle suggestions that relate to environmental chemistry and to lake sedimentation owing to the research interests of our geoscience faculty. We present two examples of ways to sequence student work that ultimately end in student/faculty research projects. Sophomores in the Unity College Environmental Stewardship Core curriculum may choose to take a course that introduces lake sedimentation as a tool to study environmental change. Students in the course take several sediment cores to analyze proxies of environmental change to reconstruct past environments. The final results are reported to the community

  3. LiteBIRD: a small satellite for the study of B-mode polarization and inflation from cosmic background radiation detection

    Science.gov (United States)

    Hazumi, M.; Borrill, J.; Chinone, Y.; Dobbs, M. A.; Fuke, H.; Ghribi, A.; Hasegawa, M.; Hattori, K.; Hattori, M.; Holzapfel, W. L.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Karatsu, K.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, N.; Koga, K.; Komatsu, E.; Lee, A. T.; Matsuhara, H.; Matsumura, T.; Mima, S.; Mitsuda, K.; Morii, H.; Murayama, S.; Nagai, M.; Nagata, R.; Nakamura, S.; Natsume, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ohta, I.; Otani, C.; Richards, P. L.; Sakai, S.; Sato, N.; Sato, Y.; Sekimoto, Y.; Shimizu, A.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takagi, Y.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Watanabe, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.

    2012-09-01

    LiteBIRD [Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection] is a small satellite to map the polarization of the cosmic microwave background (CMB) radiation over the full sky at large angular scales with unprecedented precision. Cosmological inflation, which is the leading hypothesis to resolve the problems in the Big Bang theory, predicts that primordial gravitational waves were created during the inflationary era. Measurements of polarization of the CMB radiation are known as the best probe to detect the primordial gravitational waves. The LiteBIRD working group is authorized by the Japanese Steering Committee for Space Science (SCSS) and is supported by JAXA. It has more than 50 members from Japan, USA and Canada. The scientific objective of LiteBIRD is to test all the representative inflation models that satisfy single-field slow-roll conditions and lie in the large-field regime. To this end, the requirement on the precision of the tensor-to-scalar ratio, r, at LiteBIRD is equal to or less than 0.001. Our baseline design adopts an array of multi-chroic superconducting polarimeters that are read out with high multiplexing factors in the frequency domain for a compact focal plane. The required sensitivity of 1.8μKarcmin is achieved with 2000 TES bolometers at 100mK. The cryogenic system is based on the Stirling/JT technology developed for SPICA, and the continuous ADR system shares the design with future X-ray satellites.

  4. Position Paper on Jatropha curcas. State of the Art Small and Large Scale Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Daey Ouwens, K.; Franken, Y.J.; Rijssenbeek, W. [Fuels from Agriculture in Communal Technology FACT, Eindhoven (Netherlands); Francis, G. [University of Hohenheim, Hohenheim (Germany); Riedacker, A. [French National Institute for Agricultural Research INRA, Paris (France); Foidl, N.; Jongschaap, R.; Bindraban, P. [Plant Research International PRI, Wageningen (Netherlands)

    2007-06-15

    Much information has been collected during the Seminar on Jatropha held in Wageningen, Netherlands, March 2007, summarized in this paper. Much research is still necessary to improve yield, to allow use of biological products such as oil cake as animal fodder, etc. Good documented yield data are still scarce. Cooperation with research institutions is therefore recommended. At this stage it is still particularly important to distinguish between reality, promises and dangerous extrapolations. To avoid, spectacular and regretful failures and waste of money for investors as well as great disappointments of local populations, promoters of large scale plantation are invited to adopt stepwise approaches: large scale plantations should only be considered after some 4 to 5 years obtaining experimental data (annual seed yield and oil yield, economical viability etc.) from a sufficient number of small scale experimental plots (about 1 ha) corresponding to the whole range of soil and climatic conditions of such projects.

  5. Small hydro project in Wohlen, Bern - Preliminary study; Programm Kleinwasserkraftwerke. KWKW Hofenmuehle, Wohlen BE - Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Fritschi, M.; Spescha, P.

    2008-11-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the preliminary project study for the refurbishment of an existing small hydropower installation in Wohlen, Bern, Switzerland. The installation is in the Hofenmuehle, a listed mill complex dating from the first half of the nineteenth century. The headrace channel has already been refurbished by a community service group. The high level of financial effort and the idealism of the owner families are noted. The existing installations are described in detail. The refurbishment of the technical equipment and the associated work such as water-flow measurements are discussed. Cost estimates and environmental aspects are presented and discussed as are the financing of the refurbishment work and the cost-covering remuneration for the power produced. A possible increase in the power produced and the associated water-usage concession are discussed.

  6. Small angle neutron scattering. Report of a coordinated research project 2000-2003

    International Nuclear Information System (INIS)

    2006-03-01

    Small angle neutron scattering (SANS) is a powerful technique for studying macro structures like polymers, precipitates in metallurgical specimens, biological molecules, micelles and magnetic systems like ferrofluids. Neutron scattering has an advantage over X ray scattering (XSAXS) due to selective absorption and scattering cross section of neutrons across the periodic table. It is possible to develop and use a SANS instrument even with a medium flux reactor. The present CRP was aimed at the development of components like collimators, monochromators, position sensitive detectors (PSD) etc. for improving the throughput of the instrument and foster the effective utilization of research reactors, as well as to provide a link between developing and developed facilities. The CRP was launched with the first research coordination meeting (RCM) in 2000 to refine the project proposals and define the action plans and partnerships. There were eight research contracts and four research agreements. Good partnerships were established between various participants with collaborations among participants from various countries including those from developing and developed countries. The progress of the individual projects and team work under the CRP was evaluated and discussed during the second RCM and the action plan for the final phase was formulated. The results of the work done under the CRP were then reviewed in the final RCM held in Vienna, December 2003. This publication presents the results of the work carried out by the participants under the CRP at their respective institutions. The information will be useful for the users and operators of research reactors in developing an instrument and building collaborations for capacity building. The development of collimators, detector assemblies, utilization of the SANS for microstructural characterization of advanced materials , development and design of a ultra small angle neutron scattering (USANS) and proposals for a new SANS

  7. Galactic cosmic ray and El Nino Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    [1] The recently reported correlation between clouds and galactic cosmic rays (GCR) implies the existence of a previously unknown process linking solar variability and climate. An analysis of the interannual variability of International Satellite Cloud Climatology Project D2 (ISCCP-D2) low-cloud...... a strong correlation with GCR, which suggests that low-cloud properties observed in these regions are less likely to be contaminated from overlying cloud. The GCR-low cloud correlation cannot easily be explained by internal climate processes, changes in direct solar forcing, or UV-ozone interactions...... properties over the period July 1983 to August 1994 suggests that low clouds are statistically related to two processes, (1) GCR and (2) El Nino-Southern Oscillation (ENSO), with GCR explaining a greater percentage of the total variance. Areas where satellites have an unobstructed view of low cloud possess...

  8. Tropical Rainfall Analysis Using TRMM in Combination With Other Satellite Gauge Data: Comparison with Global Precipitation Climatology Project (GPCP) Results

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.

  9. INTEGRATED DESIGN AND ENGINEERING USING BUILDING INFORMATION MODELLING: A PILOT PROJECT OF SMALL-SCALE HOUSING DEVELOPMENT IN THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    Rizal Sebastian

    2010-11-01

    Full Text Available During the design phase, decisions are made that affect, on average, 70% of the life-cycle cost of a building. Therefore, collaborative design relying on multidisciplinary knowledge of the building life cycle is essential. Building information modelling (BIM makes it possible to integrate knowledge from various project participants that traditionally work in different phases of the building process. BIM has been applied in a number of large-scale projects in the industrial real estate and infrastructure sectors in different countries, including The Netherlands. The projects in the housing sector, however, are predominantly small scale and carried out by small and medium enterprises (SMEs. These SMEs are looking for practical and affordable BIM solutions for housing projects. This article reports a pilot project of small-scale housing development using BIM in the province of Zeeland, The Netherlands. The conceptual knowledge derived from European and national research projects is disseminated to the SMEs through a series of experimental working sessions. Action learning protocols within a pilot project are developed to ensure direct impacts in terms of cost reduction and quality improvement. The project shows that BIM can be applied without radical changes to the SMEs' information and communication technology systems or to their business organizations. DOI: 10.3763/aedm.2010.0116 Source: Architectural Engineering and Design Management, Volume 6, Number 2, 2010 , pp. 103-110(8

  10. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Puterova, Janka; Razumova, O.; Martínek, T.; Alexandrov, O.; Divashuk, M.; Kubát, Zdeněk; Hobza, Roman; Karlov, G.; Kejnovský, Eduard

    2017-01-01

    Roč. 9, č. 1 (2017), s. 197-212 ISSN 1759-6653 R&D Projects: GA ČR GBP501/12/G090 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68081707 Keywords : sex-chromosomes * repetitive sequences * silene-latifolia Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 3.979, year: 2016

  11. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Puterová, J.; Razumova, O.; Martínek, T.; Alexandrov, O.; Divashuk, M.; Kubát, Z.; Hobza, Roman; Karlov, G.; Kejnovský, E.

    2017-01-01

    Roč. 9, č. 1 (2017), s. 197-212 ISSN 1759-6653 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : sex-chromosomes * repetitive sequences * silene-latifolia * molecular cytogenetics * arabidopsis-thaliana * genome size * evolution * organization * alignment * database * sex chromosomes * genome composition * chromosomal localization * repetitive DNA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.979, year: 2016

  12. Project management for small business: a streamlined approach from planning to completion

    National Research Council Canada - National Science Library

    Phillips, Joseph

    2012-01-01

    ... a Project Management Plan 81 72 Developing the Work Breakdown Structure 85 76 Selecting Your Project Management Software 83 65 CHAPTER 4: MANAGING PROJECT COSTS Building a Cost Management Frame...

  13. An empirical study on the critical success factors of small to medium sized projects in a South African mining company

    Directory of Open Access Journals (Sweden)

    Du Randt, Francois Jean

    2014-08-01

    Full Text Available Projects that fail, for whatever reason, can impact negatively on society, organisations, and other stakeholders. A number of researchers have identified various critical success factors (CSFs that can influence the outcome and success of a project. This research therefore aims to determine the CSFs that influence various success measures of small- to medium-sized projects at a South African mining company, Exxaro Resources’ Grootegeluk Coal Mine. Other objectives of this research include determining the extent of the impacts of these CSFs on the different success measures of a project. The investigation suggests that there are correlations among CSFs, and that certain factors impact the outcome of projects far more than others. This research finds that the single most important CSF for small- to medium-sized projects is the selection of a competent project manager. The competent project manager is characterised by a group of interrelated CSF factors: good leadership, commitment, and learning from past experiences. Based on the research results, other CSFs are discussed and explored in order for recommendations to be made on how this mining company, and possibly other organisations, can achieve greater project success.

  14. Discrimination of Closely-Spaced Geosynchronous Satellites - Phase Curve Analysis & New Small Business Innovative Research (SBIR) Efforts

    Science.gov (United States)

    Levan, P.

    2010-09-01

    Geosynchronous objects appear as unresolved blurs even when observed with the largest ground-based telescopes. Due to the lack of any spatial detail, two or more objects appearing at similar brightness levels within the spectral bandpass they are observed are difficult to distinguish. Observing a changing pattern of such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change. This paper explores solutions to this deficiency in the form of spectral (under small business innovative research) and phase curve analyses. The extension of the technique to phase curves proves to be a powerful new capability.

  15. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  16. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  17. SISCAL project: establishing an internet-based delivery of near-real-time data products on coastal areas and lakes from satellite imagery

    Science.gov (United States)

    Fell, Frank; Burgess, Phelim; Gruenewald, Alexander; Meyer, Mia V.; Santer, Richard P.; Koslowsky, Dirk; Ganor, Dov; Herut, Barak; Nimre, Saleem; Tibor, Gideon; Berastegui, Diego A.; Nyborg, Lotte; Schultz-Rasmussen, Michael; Johansen, Torunn; Johnsen, Geir; Brozek, Morten; Joergensen, Henrik; Habberstad, Jan; Hanssen, Frank; Amir, Ran; Zask, Alon; Koehler, Antje

    2003-05-01

    SISCAL (Satellite-based Information System on Coastal Areas and Lakes) is a pan-European project dedicated to develop facilities to provide end-users with customized and easy-to-use data for environmental monitoring of coastal areas and lakes. The main task will be to create a software system providing Near-Real-Time information on the aquatic environment (using instruments such as AVHRR, MODIS or MERIS) and ancillary GIS-data. These products will be tailored to individual customers needs, allowing them to exploit Earth Observation (EO) data without extensive in-house knowledge. This way, SISCAL aims at closing the gap between research institutes, satellite data providers and the actual end-users. Data and information exchange will entirely take place over the internet, from the acquisition of satellite data raw from the providers to the dissemination of finalized data products to the end-users. The focus of SISCAL is set on the optimal integration of existing techniques. The co-operation between the ten SISCAL partners, including four end-users representative of public authorities from local to national scale, aims at strengthening the operational use of EO data in the management of coastal areas and lakes.

  18. Managing Astronomy Research Data: Case Studies of Big and Small Research Projects

    Science.gov (United States)

    Sands, Ashley E.

    2015-01-01

    Astronomy data management refers to all actions taken upon data over the course of the entire research process. It includes activities involving the collection, organization, analysis, release, storage, archiving, preservation, and curation of research data. Astronomers have cultivated data management tools, infrastructures, and local practices to ensure the use and future reuse of their data. However, new sky surveys will soon amass petabytes of data requiring new data management strategies.The goal of this dissertation, to be completed in 2015, is to identify and understand data management practices and the infrastructure and expertise required to support best practices. This will benefit the astronomy community in efforts toward an integrated scholarly communication framework.This dissertation employs qualitative, social science research methods (including interviews, observations, and document analysis) to conduct case studies of data management practices, covering the entire data lifecycle, amongst three populations: Sloan Digital Sky Survey (SDSS) collaboration team members; Individual and small-group users of SDSS data; and Large Synoptic Survey Telescope (LSST) collaboration team members. I have been observing the collection, release, and archiving of data by the SDSS collaboration, the data practices of individuals and small groups using SDSS data in journal articles, and the LSST collaboration's planning and building of infrastructure to produce data.Preliminary results demonstrate that current data management practices in astronomy are complex, situational, and heterogeneous. Astronomers often have different management repertoires for working on sky surveys and for their own data collections, varying their data practices as they move between projects. The multitude of practices complicates coordinated efforts to maintain data.While astronomy expertise proves critical to managing astronomy data in the short, medium, and long term, the larger astronomy

  19. In Situ and Satellite Observation of CDOM and Chlorophyll-a Dynamics in Small Water Surface Reservoirs in the Brazilian Semiarid Region

    Directory of Open Access Journals (Sweden)

    Christine Coelho

    2017-12-01

    Full Text Available We analyzed chlorophyll-a and Colored Dissolved Organic Matter (CDOM dynamics from field measurements and assessed the potential of multispectral satellite data for retrieving water-quality parameters in three small surface reservoirs in the Brazilian semiarid region. More specifically, this work is comprised of: (i analysis of Chl-a and trophic dynamics; (ii characterization of CDOM; (iii estimation of Chl-a and CDOM from OLI/Landsat-8 and RapidEye imagery. The monitoring lasted 20 months within a multi-year drought, which contributed to water-quality deterioration. Chl-a and trophic state analysis showed a highly eutrophic status for the perennial reservoir during the entire study period, while the non-perennial reservoirs ranged from oligotrophic to eutrophic, with changes associated with the first events of the rainy season. CDOM characterization suggests that the perennial reservoir is mostly influenced by autochthonous sources, while allochthonous sources dominate the non-perennial ones. Spectral-group classification assigned the perennial reservoir as a CDOM-moderate and highly eutrophic reservoir, whereas the non-perennial ones were assigned as CDOM-rich and oligotrophic-dystrophic reservoirs. The remote sensing initiative was partially successful: the Chl-a was best modelled using RapidEye for the perennial one; whereas CDOM performed best with Landsat-8 for non-perennial reservoirs. This investigation showed potential for retrieving water quality parameters in dry areas with small reservoirs.

  20. 2.5D change detection from satellite imagery to monitor small-scale mining activities in the Democratic Republic of the Congo

    Science.gov (United States)

    Kranz, Olaf; Lang, Stefan; Schoepfer, Elisabeth

    2017-09-01

    Mining natural resources serve fundamental societal needs or commercial interests, but it may well turn into a driver of violence and regional instability. In this study, very high resolution (VHR) optical stereo satellite data are analysed to monitor processes and changes in one of the largest artisanal and small-scale mining sites in the Democratic Republic of the Congo, which is among the world's wealthiest countries in exploitable minerals To identify the subtle structural changes, the applied methodological framework employs object-based change detection (OBCD) based on optical VHR data and generated digital surface models (DSM). Results prove the DSM-based change detection approach enhances the assessment gained from sole 2D analyses by providing valuable information about changes in surface structure or volume. Land cover changes as analysed by OBCD reveal an increase in bare soil area by a rate of 47% between April 2010 and September 2010, followed by a significant decrease of 47.5% until March 2015. Beyond that, DSM differencing enabled the characterisation of small-scale features such as pits and excavations. The presented Earth observation (EO)-based monitoring of mineral exploitation aims at a better understanding of the relations between resource extraction and conflict, and thus providing relevant information for potential mitigation strategies and peace building.

  1. Extraction of the respiratory signal from small-animal CT projections for a retrospective gating method

    International Nuclear Information System (INIS)

    ChavarrIas, C; Vaquero, J J; Sisniega, A; RodrIguez-Ruano, A; Soto-Montenegro, M L; GarcIa-Barreno, P; Desco, M

    2008-01-01

    We propose a retrospective respiratory gating algorithm to generate dynamic CT studies. To this end, we compared three different methods of extracting the respiratory signal from the projections of small-animal cone-beam computed tomography (CBCT) scanners. Given a set of frames acquired from a certain axial angle, subtraction of their average image from each individual frame produces a set of difference images. Pixels in these images have positive or negative values (according to the respiratory phase) in those areas where there is lung movement. The respiratory signals were extracted by analysing the shape of the histogram of these difference images: we calculated the first four central and non-central moments. However, only odd-order moments produced the desired breathing signal, as the even-order moments lacked information about the phase. Each of these curves was compared to a reference signal recorded by means of a pneumatic pillow. Given the similar correlation coefficients yielded by all of them, we selected the mean to implement our retrospective protocol. Respiratory phase bins were separated, reconstructed independently and included in a dynamic sequence, suitable for cine playback. We validated our method in five adult rat studies by comparing profiles drawn across the diaphragm dome, with and without retrospective respiratory gating. Results showed a sharper transition in the gated reconstruction, with an average slope improvement of 60.7%

  2. Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, Anthony C [ORNL; Liu, Xiaobing [ORNL; Koopman, Gary [KCF Technologies; Fugate, David L [ORNL

    2017-01-23

    This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need for new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.

  3. Extraction of the respiratory signal from small-animal CT projections for a retrospective gating method

    Energy Technology Data Exchange (ETDEWEB)

    ChavarrIas, C; Vaquero, J J; Sisniega, A; RodrIguez-Ruano, A; Soto-Montenegro, M L; GarcIa-Barreno, P; Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Anexo PsiquiatrIa, 1 Planta. C/Ibiza, 43. Madrid 28007 (Spain)

    2008-09-07

    We propose a retrospective respiratory gating algorithm to generate dynamic CT studies. To this end, we compared three different methods of extracting the respiratory signal from the projections of small-animal cone-beam computed tomography (CBCT) scanners. Given a set of frames acquired from a certain axial angle, subtraction of their average image from each individual frame produces a set of difference images. Pixels in these images have positive or negative values (according to the respiratory phase) in those areas where there is lung movement. The respiratory signals were extracted by analysing the shape of the histogram of these difference images: we calculated the first four central and non-central moments. However, only odd-order moments produced the desired breathing signal, as the even-order moments lacked information about the phase. Each of these curves was compared to a reference signal recorded by means of a pneumatic pillow. Given the similar correlation coefficients yielded by all of them, we selected the mean to implement our retrospective protocol. Respiratory phase bins were separated, reconstructed independently and included in a dynamic sequence, suitable for cine playback. We validated our method in five adult rat studies by comparing profiles drawn across the diaphragm dome, with and without retrospective respiratory gating. Results showed a sharper transition in the gated reconstruction, with an average slope improvement of 60.7%.

  4. Application of finance project for leverage of small size hydroelectric enterprising; Aplicacao do project finance para alavancagem de empreendimentos hidreletricos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Silvana dos

    2003-07-01

    In the same way that the majority of the countries, project financing of substructure in Brazil, in project finance modality, depend on a skillful structure of guaranties and contracts to become possible. In the case of projects of centrals of generation of electrical energy, that financial engineering becomes still more complicated. In Brazil, due to particularities of the sectors of electricity, the arrangements of guaranties requested but creditors pass to present levels of complexity and exigency well elevated. The contractual appliances that give support to the project finance, originally projected to developed countries, request an extreme adaptation to these particularities. The development of Brazil is directly related to its capacity in expanding the offer of electric energy in the just measure of the national necessity. In this context, the small central hydroelectric (PCH's) represent, actually, an efficient and fast form to complete the offer of energy in such a way to supply the crescent demand the national market. For its characteristics, that type of undertaking can be developed by small manager, from among which are the owners of the areas in which on can find these hydraulic potentials which, however they do not dispose of capital to integral raising. These undertakings are tasks, normally, of low global cost, at the rate of US$ 1.000,00/k W, and of a smaller ambient impact, compared to the return that they give to the enterprise and to the Brazilian electric system as a whole, by having to receive special attention in the planned politics to the sector and to merit a series of incentives to become business still more attractive. By thinking in the found difficulty by small enterprises in rising undertakings of generation of electric energy of small port through the convectional mechanisms of financing is being proposed in that work a well-founded methodology in the concepts of the modality of financing project finance. (author)

  5. Application of finance project for leverage of small size hydroelectric enterprising; Aplicacao do project finance para alavancagem de empreendimentos hidreletricos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Silvana dos

    2003-07-01

    In the same way that the majority of the countries, project financing of substructure in Brazil, in project finance modality, depend on a skillful structure of guaranties and contracts to become possible. In the case of projects of centrals of generation of electrical energy, that financial engineering becomes still more complicated. In Brazil, due to particularities of the sectors of electricity, the arrangements of guaranties requested but creditors pass to present levels of complexity and exigency well elevated. The contractual appliances that give support to the project finance, originally projected to developed countries, request an extreme adaptation to these particularities. The development of Brazil is directly related to its capacity in expanding the offer of electric energy in the just measure of the national necessity. In this context, the small central hydroelectric (PCH's) represent, actually, an efficient and fast form to complete the offer of energy in such a way to supply the crescent demand the national market. For its characteristics, that type of undertaking can be developed by small manager, from among which are the owners of the areas in which on can find these hydraulic potentials which, however they do not dispose of capital to integral raising. These undertakings are tasks, normally, of low global cost, at the rate of US$ 1.000,00/k W, and of a smaller ambient impact, compared to the return that they give to the enterprise and to the Brazilian electric system as a whole, by having to receive special attention in the planned politics to the sector and to merit a series of incentives to become business still more attractive. By thinking in the found difficulty by small enterprises in rising undertakings of generation of electric energy of small port through the convectional mechanisms of financing is being proposed in that work a well-founded methodology in the concepts of the modality of financing project finance. (author)

  6. Novel techniques and insights into the deployment of pop-up satellite archival tags on a small-bodied deep-water chondrichthyan

    Science.gov (United States)

    Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.

    2017-01-01

    Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.

  7. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  8. Small-scale CDM projects in a competitive electricity industry: How good is a simplified baseline methodology?

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Abeygunawardana, A.M.A.K.

    2007-01-01

    Setting baseline emissions is one of the principal tasks involved in awarding credits for greenhouse gas emission (GHG) mitigation projects under the Clean Development Mechanism (CDM). An emission baseline has to be project-specific in order to be accurate. However, project-specific baseline calculations are subject to high transaction costs, which disadvantage small-scale projects. For this reason, the CDM-Executive Board (CDM-EB) has approved simplified baseline methodologies for selected small-scale CDM project categories. While the simplified methods help reduce the transaction cost, they may also result in inaccuracies in the estimation of emission reductions from CDM projects. The purpose of this paper is to present a rigorous economic scheduling method for calculating the GHG emission reduction in a hypothetical competitive electricity industry due to the operation of a renewable energy-based power plant under CDM and compare the GHG emission reduction derived from the rigorous method with that obtained from the use of a simplified (i.e., standardized) method approved by the CDM-EB. A key finding of the paper is that depending upon the level of power demand, prices of electricity and input fuels, the simplified method can lead to either significant overestimation or substantial underestimation of emission reduction due to the operation of renewable energy-based power projects in a competitive electricity industry

  9. Slow pyrolysis for rural small biomass energy by joint project developments of Brazil and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Kampegowda, Rajesh; Chandayot, Pongchan [Asian University, Chonburi (Thailand)], email: rkempegowda@asianust.ac.th; Pannirselvam, Pagandai V.; Humberto, Maricy; Santos, Joao Matias [Universidade Federal do Rio Grande do Norte (DEQ/UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos], email: pannirbr@gmail.com

    2008-07-01

    The efficiency for carbonization by slow pyrolysis is still low in the current method studied using rice straw in Thailand and cashewnut shell in Brazil, however direct heating process yields better char yield of 17% as compared to indirect heating with 15% process using horizontal metal drum kiln.where as vertical kiln were mainly used in Brazil. Higher yield is made possible from Brasilian cashew nut shell to make oil and char. Carbon and energy balance was also carried out and the results were compared for the direct and indirect process. Burning by indirect draft gives better results like more char, faster process. Direct draft gives less char, but higher quality (higher C and H2). Also a lot of straw is left unburnt in the direct draft kiln, because of bad temperature distribution and flow inside. The kiln design is found to be more suitable for indirect draft rather than direct draft. Both methods still give rice straw charcoal that has low calorific value with an output char LHV of 4337 kcal/kg as compared to fresh rice straw of 3412 kcal/kg. In the direct heating method output char is enriched to 45% with a still unburnt rice straw left out as compared to indirect heating method with carbon enrichment of 39%. There is a loss of 13% of carbon through the ash in the both the methods. The carbon content in the condensate is in the order of 18.5% for the indirect process as compared to 13.9% in the direct process due to less exhaust and carbon enrichment inside the kiln. There is a loss of 43% of carbon in the exhaust from indirect heating process as compared to direct heating process which is reduced to 26%. The energy balance predicts a heat loss of 14% in exhaust gases. A practical small scale slow pyrolysis project was developed to meet rural energy and heat requirements. to make the clean energy from waste resources possible by the joint project. (author)

  10. RISK MANAGEMENT PROJECTS EVALUATION OF INNOVATION IN SMALL AND MEDIUM-HIGH TECHNOLOGY USING THE PERSPECTIVE OF PRISM METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Taciana de Barros Jerônimo

    2011-10-01

    Full Text Available This study aims to analyze the failures of the activity of project management in small and medium-sized high-tech firms, using the tool PRISM. This postmortem methodology, proposed by Gary Pan, Shan L. and Ray Hackney Pan, analyzes the interactions between the components of the project during the exchange relationship between the project organization, information system and the users. Thus, the contribution of this work is to allow a formal analysis of the relationship between the sequence of events development projects into an innovative view, that provide insights into the potential success or failure of the project on medium-sized high-tech firms (whose the acronym is PMET.

  11. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Science Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.

  12. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Programs and Projects for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.

  13. Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects

    International Nuclear Information System (INIS)

    Linnerud, Kristin; Andersson, Ane Marte; Fleten, Stein-Erik

    2014-01-01

    Policy uncertainty can be a powerful deterrent to immediate investments. Based on panel data of 214 licenses to construct small run-of-the-river hydropower plants, we examine whether the prospect of a common Swedish–Norwegian market for green certificates (i.e., a renewable portfolio standard scheme) affected the timing of investments. Our results show that traditional utilities and other professional investors in the energy market acted in accordance with a real options investment rule, and the prospect of possible future subsidies delayed their investment decision. On the other hand, our results do not show that farmers and other non-professional investors incorporated timing considerations in their investment decisions. Rather, our results indicate that these investors behaved as if their investment opportunity is now-or-never, investing if the project is profitable according to a net present value investment rule, ignoring the opportunity to create additional value by waiting. The observed difference in behavior between professional and non-professional investors is interesting given the distributed nature of many renewable energy technologies, and can help planners and policymakers better understand the forces shaping the future market for electricity. - Highlights: • We examine whether the prospect of introducing subsidies delayed investments in hydropower. • We find that professional and non-professional investors behaved differently. • Professional investors explored the opportunity to create additional value by waiting. • Farmers behaved as if their investment opportunity was now-or-never. • These observations are interesting given the distributed nature of renewable energy technologies

  14. Collage of Saturn's smaller satellites

    Science.gov (United States)

    1981-01-01

    This family portrait shows the smaller satellites of Saturn as viewed by Voyager 2 during its swing through the Saturnian system. The following chart corresponds to this composite photograph (distance from the planet increases from left to right) and lists names, standard numerical designations and approximate dimensions (radii where indicated) in kilometers: 1980S26Outer F-ringshepherd120 X 100 1980S1Leadingco-orbital220 X 160 1980S25TrailingTethys trojanradii: 25 1980S28Outer Ashepherdradii: 20 1980S27Inner F-ringco-orbital145 X 70 1980S3TrailingTethys trojan140 X 100 1980S13LeadingTethys trojanradii: 30 1980S6LeadingDione trojanradii: 30 These images have been scaled to show the satellites in true relative sizes. This set of small objects ranges in size from small asteroidal scales to nearly the size of Saturn's moon Mimas. They are probably fragments of somewhat larger bodies broken up during the bombardment period that followed accretion of the Saturnian system. Scientists believe they may be mostly icy bodies with a mixture of meteorite rock. They are somewhat less reflective than the larger satellites, suggesting that thermal evolution of the larger moons 'cleaned up' their icy surfaces. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  15. Small mammal populations and ecology in the Kings River Sustainable Forest Ecosystems Project area

    Science.gov (United States)

    William F. Jr. Laudenslayer; Roberta J. Fargo

    2002-01-01

    Small mammals are important components of woodlands and forests. Since 1992, we have been studying several aspects of small mammal ecology in oak woodlands in western foothills of the southern Sierra Nevada. Assemblages of small, nocturnal mammal species are dominated by the brush mouse (Peromyscus boylii), California mouse (P. californicus...

  16. [Application of small remote sensing satellite constellations for environmental hazards in wetland landscape mapping: taking Liaohe Delta, Liaoning Province of Northeast China as a case].

    Science.gov (United States)

    Yang, Yuan-Zheng; Chang, Yu; Hu, Yuan-Man; Liu, Miao; Li, Yue-Hui

    2011-06-01

    To timely and accurately acquire the spatial distribution pattern of wetlands is of significance for the dynamic monitoring, conservation, and sustainable utilization of wetlands. The small remote sensing satellite constellations A/B stars (HJ-1A/1B stars) for environmental hazards were launched by China for monitoring terrestrial resources, which could provide a new data source of remote sensing image acquisition for retrieving wetland types. Taking Liaohe Delta as a case, this paper compared the accuracy of wetland classification map and the area of each wetland type retrieved from CCD data (HJ CCD data) and TM5 data, and validated and explored the applicability and the applied potential of HJ CCD data in wetland resources dynamic monitoring. The results showed that HJ CCD data could completely replace Landsat TM5 data in feature extraction and remote sensing classification. In real-time monitoring, due to its 2 days of data acquisition cycle, HJ CCD data had the priority to Landsat TM5 data (16 days of data acquisition cycle).

  17. SAT-MAP-CLIMATE project results[SATellite base bio-geophysical parameter MAPping and aggregation modelling for CLIMATE models

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.; Woetmann Nielsen, N.; Soegaard, H.; Boegh, E.; Hesselbjerg Christensen, J.; Jensen, N.O.; Schultz Rasmussen, M.; Astrup, P.; Dellwik, E.

    2002-08-01

    Earth Observation (EO) data from imaging satellites are analysed with respect to albedo, land and sea surface temperatures, land cover types and vegetation parameters such as the Normalized Difference Vegetation Index (NDVI) and the leaf area index (LAI). The observed parameters are used in the DMI-HIRLAM-D05 weather prediction model in order to improve the forecasting. The effect of introducing actual sea surface temperatures from NOAA AVHHR compared to climatological mean values, shows a more pronounced land-sea breeze effect which is also observable in field observations. The albedo maps from NOAA AVHRR are rather similar to the climatological mean values so for the HIRLAM model this is insignicant, yet most likely of some importance in the HIRHAM regional climate model. Land cover type maps are assigned local roughness values determined from meteorological field observations. Only maps with a spatial resolution around 25 m can adequately map the roughness variations of the typical patch size distribution in Denmark. A roughness map covering Denmark is aggregated (ie area-average non-linearly) by a microscale aggregation model that takes the non-linear turbulent responses of each roughness step change between patches in an arbitrary pattern into account. The effective roughnesses are calculated into a 15 km by 15 km grid for the HIRLAM model. The effect of hedgerows is included as an added roughness effect as a function of hedge density mapped from a digital vector map. Introducing the new effective roughness maps into the HIRLAM model appears to remedy on the seasonal wind speed bias over land and sea in spring. A new parameterisation on the effective roughness for scalar surface fluxes is developed and tested on synthetic data. Further is a method for the estimation the evapotranspiration from albedo, surface temperatures and NDVI succesfully compared to field observations. The HIRLAM predictions of water vapour at 12 GMT are used for atmospheric correction of

  18. Small and medium-sized hydropower projects in competitive markets: the case of Rio Piedras

    International Nuclear Information System (INIS)

    Restrepo Posada, Federico

    1999-01-01

    The article describes the case of the Rio Piedras Hydropower Project, a first private hydropower generation initiative in Colombia, within the new regulatory framework for the provision of public services and electric generation under laws 142 and 143, passed in 1994. Reference is made in this article to the background and characteristics of the Project, and some obstacles, challenges and risks encountered are described, as well as the way in which they are being controlled. The investment and commercialization modules developed in analyzing the project are also presented. Finally, some reflections are given as to the medium and long term prospects for electric generation projects in Colombia. (The author)

  19. Standardization of electric projects of small hydroelectric power plants; Padronizacao de projetos eletricos de pequenas centrais hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Roberth dos Santos

    2002-07-01

    This work presents a standardizing proposal for Electrical Projects of small hydroelectric central and it has as objective to optimize some solutions for the most cases, considering the great diversity of options. The development of the dissertation is the result of several real cases of projects of hydroelectric centrals. Besides the projects, several bibliographies about the case which is being studied were researched, taking into consideration the entire proposal presented to the respective authors and, finally, as synthesis to all observations made in that study, the presentation of an optimized solution for the job of the electrical components and a proposal for the estimate of costs of those components. The conclusions of this work present a favorable result because they offer an initial proposal for the standardizing of information considered extremely important for the carrying out of a project of hydroelectric central. (author)

  20. Ocean EcoSystem Modelling Based on Observations from Satellite and In-Situ Data: First Results from the OSMOSIS Project

    Science.gov (United States)

    Rio, M.-H.; Buongiorno-Nardelli, B.; Calmettes, B.; Conchon, A.; Droghei, R.; Guinehut, S.; Larnicol, G.; Lehodey, P.; Matthieu, P. P.; Mulet, S.; Santoleri, R.; Senina, I.; Stum, J.; Verbrugge, N.

    2015-12-01

    Micronekton organisms are both the prey of large ocean predators, and themselves also the predators of eggs and larvae of many species from which most fishes. The micronekton biomass concentration is therefore a key explanatory variable that is usually missing in fish population and ecosystem models to understand individual behaviour and population dynamics of large oceanic predators. In that context, the OSMOSIS (Ocean ecoSystem Modelling based on Observations from Satellite and In-Situ data) ESA project aims at demonstrating the feasibility and prototyping an integrated system going from the synergetic use of many different variables measured from space to the modelling of the distribution of micronektonic organisms. In this paper, we present how data from CRYOSAT, GOCE, SMOS, ENVISAT, together with other non-ESA satellites and in-situ data, can be merged to provide the required key variables needed as input of the micronekton model. Also, first results from the optimization of the micronekton model are presented and discussed.

  1. Impacts of the Implementation of a Project Management Information System – a Case Study of a Small R

    Directory of Open Access Journals (Sweden)

    Borštnar Mirjana Kljajić

    2014-02-01

    Full Text Available Background: The problems of resources management (human, financial, time in multi-project companies are inherently complex and need to be addressed systematically, in both small and large organizations. Furthermore, there is a need for transparent communication and collaboration within the organization as well as with partnering organizations. There are many methodologies and tools supporting project management, which are themselves complex and are therefore not widely adopted, especially among small companies. Objectives: The aim of this paper is to analyse impact of the implementation of a flexible cloud-based project management information system (PMIS from the human resources, financial management, and collaboration points of view. Method: We have conducted a case study in a small Slovenian research and development company, that has implemented the 4PM PMIS. Results: The findings imply the importance of keeping the balance of the creative processes that are unstructured, rule free and even chaotic, with structured processes monitor and control. Conclusions: The results of the study suggest that the use of “4PM” in support of multi-project management improves human resources and financial management in a collaborative and transparent way when implemented in an open and highly motivated environment

  2. Optimisation of small-scale hydropower using quality assurance methods - Preliminary project; Vorprojekt: Optimierung von Kleinwasserkraftwerken durch Qualitaetssicherung. Programm Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, S.; Staubli, T.

    2006-11-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary project that examined how quality assurance methods can be used in the optimisation of small-scale hydropower projects. The aim of the project, to use existing know-how, experience and synergies, is examined. Discrepancies in quality and their effects on production prices were determined in interviews. The paper describes best-practice guidelines for the quality assurance of small-scale hydro schemes. A flow chart describes the various steps that have to be taken in the project and realisation work. Information collected from planners and from interviews made with them are presented along with further information obtained from literature. The results of interviews concerning planning work, putting to tender and the construction stages of these hydro schemes are presented and commented on. Similarly, the operational phase of such power plant is also examined, including questions on operation and guarantees. The aims of the follow-up main project - the definition of a tool and guidelines for ensuring quality - are briefly reviewed.

  3. Toolbox for Research, or how to facilitate a central data management in small-scale research projects.

    Science.gov (United States)

    Bialke, Martin; Rau, Henriette; Thamm, Oliver C; Schuldt, Ronny; Penndorf, Peter; Blumentritt, Arne; Gött, Robert; Piegsa, Jens; Bahls, Thomas; Hoffmann, Wolfgang

    2018-01-25

    In most research projects budget, staff and IT infrastructures are limiting resources. Especially for small-scale registries and cohort studies professional IT support and commercial electronic data capture systems are too expensive. Consequently, these projects use simple local approaches (e.g. Excel) for data capture instead of a central data management including web-based data capture and proper research databases. This leads to manual processes to merge, analyze and, if possible, pseudonymize research data of different study sites. To support multi-site data capture, storage and analyses in small-scall research projects, corresponding requirements were analyzed within the MOSAIC project. Based on the identified requirements, the Toolbox for Research was developed as a flexible software solution for various research scenarios. Additionally, the Toolbox facilitates data integration of research data as well as metadata by performing necessary procedures automatically. Also, Toolbox modules allow the integration of device data. Moreover, separation of personally identifiable information and medical data by using only pseudonyms for storing medical data ensures the compliance to data protection regulations. This pseudonymized data can then be exported in SPSS format in order to enable scientists to prepare reports and analyses. The Toolbox for Research was successfully piloted in the German Burn Registry in 2016 facilitating the documentation of 4350 burn cases at 54 study sites. The Toolbox for Research can be downloaded free of charge from the project website and automatically installed due to the use of Docker technology.

  4. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    Science.gov (United States)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  5. Data rescue of NASA First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) aerial observations

    Science.gov (United States)

    Santhana Vannan, S. K.; Boyer, A.; Deb, D.; Beaty, T.; Wei, Y.; Wei, Z.

    2017-12-01

    The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for biogeochemical dynamics is one of the NASA Earth Observing System Data and Information System (EOSDIS) data centers. ORNL DAAC (https://daac.ornl.gov) is responsible for data archival, product development and distribution, and user support for biogeochemical and ecological data and models. In particular, ORNL DAAC has been providing data management support for NASA's terrestrial ecology field campaign programs for the last several decades. Field campaigns combine ground, aircraft, and satellite-based measurements in specific ecosystems over multi-year time periods. The data collected during NASA field campaigns are archived at the ORNL DAAC (https://daac.ornl.gov/get_data/). This paper describes the effort of the ORNL DAAC team for data rescue of a First ISLSCP Field Experiment (FIFE) dataset containing airborne and satellite data observations from the 1980s. The data collected during the FIFE campaign contain high resolution aerial imageries collected over Kansas. The data rescue workflow was prepared to test for successful recovery of the data from a CD-ROM and to ensure that the data are usable and preserved for the future. The imageries contain spectral reflectance data that can be used as a historical benchmark to examine climatological and ecological changes in the Kansas region since the 1980s. Below are the key steps taken to convert the files to modern standards. Decompress the imageries using custom compression software provided with the data. The compression algorithm created for MS-DOS in 1980s had to be set up to run on modern computer systems. Decompressed files were geo-referenced by using metadata information stored in separate compressed header files. Standardized file names were applied (File names and details were described in separate readme documents). Image files were converted to GeoTIFF format with embedded georeferencing information. Leverage Open Geospatial

  6. Improved sea level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project

    DEFF Research Database (Denmark)

    Ablain, M.; Cazenave, A.; Larnicol, G.

    2015-01-01

    .6 and 1-2 mm year(-1)). Similarly, interannual global mean sea level variations (currently uncertain to 2-3 mm) need to be monitored with better accuracy. In this paper, we present various data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on "Sea...

  7. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    Science.gov (United States)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  8. Staffing requirements for future small and medium reactors based on projections in the Russian Federation

    International Nuclear Information System (INIS)

    Antonovsky, G.M.; Kodochigov, N.G.; Kurachenkov, A.V.; Novikov, V.V.

    2001-01-01

    Experimental Design Bureau of Mechanical Engineering (OKBM) specializes in the development of small and medium power reactors having different purposes. They include reactor plants for NPHPP, nuclear district heating power plants and propulsion plants. Small and medium power plants have simpler processes of electricity and heat production, less systems, simpler control algorithms and considerably enhanced inherent safety properties. These plants are mainly equipped with passive safety systems. These properties are especially characteristic for reactor plants of nuclear district heating power plants and HTG reactor plants. The designs of small and medium power plants actually provide a high degree of control automation which considerably reduces workload on the personnel in both normal and abnormal operation conditions. All this allows the reduction in personnel for small and medium power reactors if compared to high capacity reactor plants. But due to objective reasons the specific number of personnel (man/MW) for average and especially small capacity reactors considerably exceeds the value for high capacity reactor plants. At the same time one can propose a set of organization - technical measures allowing the increase in this value in future. Safety requirements imposed for small and average capacity reactors are the same or more strict than those for high capacity reactors. That's why the requirements to the training of personnel for such reactor plants are not allowed to be lowered if compared to the requirements imposed to the personnel of high capacity reactors. (author)

  9. Small business innovation research. Abstracts of 1988 phase 1 awards

    Science.gov (United States)

    1990-01-01

    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  10. Active Satellite Sensors for the needs of Cultural Heritage: Introducing SAR applications in Cyprus through ATHENA project

    Science.gov (United States)

    Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2017-04-01

    Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through

  11. Why are small scale demonstration projects important for the future of CCS?

    Science.gov (United States)

    Leetaru, H. E.; Bauer, R. A.; McBride, J. H.; Freiburg, J. T.; Greenberg, S. E.

    2017-12-01

    Carbon Capture and Storage (CCS) is moving toward large-scale commercial projects and the U.S. Department of Energy is supporting a new CarbonSAFE initiative to assist in the development of a 50 million tonnes geologic storage project. This type of large commercial CCS project will rely on lessons learned from smaller DOE CCS projects such as the Illinois Basin-Decatur Project (IBDP) and the Illinois Industrial Carbon Capture and Storage (IL-ICCS) Project located one mile north of IBDP. Over a three year period ending 2014 IBDP injected almost one million tonnes of CO2 into the Mt. Simon Sandstone, and the IL-ICCS project which commenced injection in 2017 will inject another four million tonnes over a four year period. The IBDP has recorded microseismic events within the study area through continuous downhole seismic monitoring before, during, and after injection. Monitoring shows that microseismicity increased during injection and originate not only in the Cambrian Mt. Simon Sandstone (the target reservoir), but also in the underlying Argenta clastics and deeper Precambrian igneous rocks as SW-NE elongate clusters aligned in strike to the maximum in situ stress direction. An interpretation of site 3D seismic reflection data suggests that much of the microseismicity is proximal to interpreted faults that extend from the basement up into the lowermost Mt. Simon strata. The faults proximally associated with microseismic activity are oriented parallel with respect to the maximum stress direction. The seismic monitoring of the IBDP indicate that the assessment of induced seismic potential associated with commercial-scale CCS requires not only identification of a suitable reservoir and its petrophysical characteristics, but also the extent and orientation of existing faults and their relation to regional stress orientation. Assessment of regional fault orientation using 3D seismic reflection data can be extremely useful to understanding the risks of induced seismicity

  12. The 'Weri' small hydro project; Kraftwerk Weri - Schlussbericht. Programm Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Burgener, H.-P. [EWBN Elektrizitaetswerk Brig-Naters AG, Brig-Glis (Switzerland); Bodenmann, M. [BSAP Ingenieure und Berater, Brig-Glis (Switzerland)

    2008-11-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on a project which augments an existing hydropower complex in Brig-Naters, Switzerland. A project for an additional hydropower installation below the last stage of the existing complex in the North Simplon Pass region is presented and discussed. Details are presented on the amount of water available, the boundary conditions pertaining and the technical concept proposed. Financial aspects, including support from the Swiss cost-covering remuneration scheme for electricity from renewable energy sources are also examined. The costs and economic viability of the project are discussed, as are environmental aspects to be taken into account during the construction and operation of the proposed power station.

  13. Joint development of China's medium/small hydropower projects with international investment

    International Nuclear Information System (INIS)

    Xiaozhang, Z.

    1991-01-01

    A general profile of development of small and medium hydropower in China, is described at first. The socio-economic impacts as well as direct financial benefit will then be analyzed. A prospective view of medium/small hydro development for year 2,000 leads to a description of needs for foreign investment in this field. Following the adoption of open policy, a series of regulations for joint venture with foreign investment have been stipulated by the government, and are briefly illustrated. Future prospect is predicted on the basis of past experiences and planning for the next decade. 3 tabs

  14. On the monitoring and prediction of flash floods in small and medium-sized catchments - the EXTRUSO project

    Science.gov (United States)

    Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd

    2017-04-01

    Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support

  15. Feasibility, Design and Construction of a Small Hydroelectric Power Generation Station as a Student Design Project.

    Science.gov (United States)

    Peterson, James N.; Hess, Herbert L.

    An undergraduate capstone engineering design project now provides hydroelectric power to a remote wilderness location. Students investigated the feasibility of designing, building, and installing a 4kW hydroelectric system to satisfy the need for electric power to support the research and teaching functions of Taylor Ranch, a university facility…

  16. Project ZEUS: a field irradiator for small-mammal population studies

    International Nuclear Information System (INIS)

    Turner, B.N.; Iverson, S.L.

    1976-08-01

    The ZEUS (Zoological Environment Under Stress) Project will assess the effects of long-term low-level radiation on meadow vole populations in a northern temperate area through a series of replicated experimental irradiations. These rodent populations will live in grassland areas surrounded by forest, and will be exposed to a dose designed to be a maximum 6 R/day. (author)

  17. Runoff Trends Analysis and Future Projections of Hydrological Patterns in Small Forested Catchments

    Czech Academy of Sciences Publication Activity Database

    Lamačová, Anna; Hruška, Jakub; Krám, Pavel; Stuchlik, E.; Farda, Aleš; Chuman, T.; Fottová, Daniela

    2014-01-01

    Roč. 9, č. 4 (2014), s. 169-181 ISSN 1801-5395 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : climate change * flow pattern * headwater catchments * hydrological modelling Subject RIV: EH - Ecology, Behaviour Impact factor: 0.659, year: 2014

  18. Evolution of Project-Based Learning in Small Groups in Environmental Engineering Courses

    Science.gov (United States)

    Requies, Jesús M.; Agirre, Ion; Barrio, V. Laura; Graells, Moisès

    2018-01-01

    This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning--PBL) implemented on the course "Unit Operations in Environmental Engineering", within the bachelor's degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial…

  19. Service Family Support -- A Small-Scale Project of Educational Psychologists Working with Parents

    Science.gov (United States)

    Hogg, Jane; Hart, Anne; Collins, Zoe V.

    2014-01-01

    Being in a Service family can be a difficult position for children and parents alike due to high levels of mobility, parental separation, and the remaining parent's stress and emotional well-being. A Service family is defined as a family with one or both parents employed by the Ministry of Defence (MOD). The current project looked at the…

  20. Nonrobustness of the Carryover Effects of Small Classes in Project STAR

    Science.gov (United States)

    Sohn, Kitae

    2015-01-01

    Background: Class size reduction (CSR) is an enduring school reform undertaken in an effort to improve academic achievement and has been widely encouraged in the United States. Supporters of CSR often cite the positive contemporaneous and carryover effects of Project STAR. Much has been discussed regarding the robustness of the contemporaneous…

  1. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  2. Three-Dimensional Thermal Modeling Analysis Of CST Media For The Small Ion Exchange Project

    International Nuclear Information System (INIS)

    Lee, S.; King, W.

    2011-01-01

    The Small Column Ion Exchange (SCIX) project is designed to accelerate closure of High Level Waste (HLW) tanks at the Savannah River Site (SRS). The SRS tanks store HLW in three forms: sludge, saltcake, and supernate. An in-tank ion exchange process is being designed to treat supernate and dissolved saltcake waste. Through this process, radioactive cesium from the salt solution is adsorbed into Crystalline Silicotitanate (CST) ion exchange media packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. The waste supernate solution within the ion exchange bed will boil around 120 C. Solution superheating above the boiling point within the column could lead to violent hazardous energy releases. System heating from loaded CST is also of concern in other process modules, such as the waste tank. Due to tank structural integrity concerns, the wall temperature limit for the SRS waste tanks is 100 C. The transfer of cesium-loaded CST to the tank could result in localized hot spots on the tank floor and walls which may exceed this limit. As a result, thermal modeling calculations have been conducted to predict the maximum temperatures achievable both in the column and in the waste tank. As specified in the associated Technical Task Plan, one objective of the present work was to compute temperature distributions within the ion exchange column module under accident scenarios including loss of salt solution flow through the bed and loss of coolant system flow. The column modeling domain and the scope of the calculations in this case were broadened relative to previous two-dimensional calculations to include vertical temperature distributions within the packed bed of ion exchange media as well as the upper column plenum region containing only fluid. The baseline design conditions and in-column modeling domain for the ion-exchange column module are shown in Figure 1. These evaluations assumed the maximum

  3. Technology choice and CDM projects in China: case study of a small steel company in Shandong Province

    International Nuclear Information System (INIS)

    Kaneko, Shinji; Yonamine, Asaka; Jung, Tae Yong

    2006-01-01

    Corporate motives and strategies of both investing and hosting country affect the outcomes of a clean development mechanism (CDM) project-who introduces what technology to whom-and result in large differences in economic viability and the CO 2 emission reductions. This is particularly true for steel industry in which steel making consists of many detailed and complex processes, a given strategy could produce cumulative effects of the individual technologies used, leading to large energy savings overall. The objective of this study is to demonstrate some analytical methods that can be used to quantitatively evaluate the impacts of technology selection on the profit performance of CDM projects. Specifically, in this study we analyze a CDM project to introduce energy saving technology from Japan to a small steel manufacturer in China's Shandong Province, and conduct a simulation of the quantitative relationships between various technology options and profitability. Based on these results, we examine the environmental and economic significance of technology selection for CDM projects. To take this further, we then reconsider the profitability of a project as typical FDI activity (i.e., without the CDM), and by comparing this outcome with the CDM case, we clarify the significance and potential of the CDM

  4. Multiple Learning Strategies Project. Small Engine Repair Service. Regular Vocational. [Vol. 1.

    Science.gov (United States)

    Pitts, Jim; And Others

    This instructional package is one of two designed for use by regular vocational students in the vocational area of small engine repair service. Contained in this document are forty-four learning modules organized into ten units: engine block; air cleaner; starters; fuel tanks; lines, filters, and pumps; carburetors; electrical; magneto systems;…

  5. Results from the search-lidar demonstrator project for detection of small Sea-Surface targets

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Putten, F.J.M. van; Cohen, L.H.; Kemp, R.A.W.; Franssen, G.C.

    2009-01-01

    Coastal surveillance and naval operations in the littoral both have to deal with the threat of small sea-surface targets. These targets have a low radar cross-section and a low velocity that makes them hard to detect by radar. Typical threats include jet skis, FIAC's, and speedboats. Previous lidar

  6. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  7. Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

    2006-01-26

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

  8. Core Flight System Satellite Starter Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — The Core Flight System Satellite Starter Kit (cFS Kit) will allow a small satellite or CubeSat developer to rapidly develop, deploy, test, and operate flight...

  9. Financing Energy Services for Small-scale Energy-users - project FINESSE

    International Nuclear Information System (INIS)

    Annan, R.; Saunders, R.J.; Hassing, P.

    1994-01-01

    This paper presents the FINESSE (Financing Energy Services for Small-scale Energy users) launched in 1989 by World Bank 's Energy Sector Assistance Program (ESMAP) in association with the US Department of Energy and the Netherlands Ministry for Development Cooperation, whose purpose is to address financial, institutional and policy issues related to enhancing energy services for residential and commercial energy consumers in the Developing World. It describes the related technology benefits of renewable energy and energy efficiency, as well as a technology overview and outlines the strategies for financing alternatives in the Developing World. It concludes with a description of successful experiences in small-scale energy services, especially in Asia. (TEC). 8 figs

  10. Small hydro power project operating in cascade; Projeto de pequenas centrais hidreletricas operando em cascata

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Robson Siqueira Filadelfo dos [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Nuclear; Martinez, Carlos Barreira; Macedo, Alberto Amarante [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Hidraulica e Recursos Hidricos

    1999-07-01

    Small Hydro Power is a good option of generation mainly when they are located close to the consumers, because they demand smaller absolute value of invested capital and smaller time of maturation. Besides, the great repressed demand, mainly in the schedules of point, and the recovery of the values of the tariffs has been showed to private investor for this type of central. This paper develops a new method that allows to give agility to the study of small hydropower operating in cascade form in order to optimize the cost-benefit relationship of the enterprise. Approaches are presented for the evaluation of this type of system, the methodology of partition of falls and the proposed model. A case study, in which this method is applied, is shown at the end of this work. (author)

  11. Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 1. Programmatics and small-scale fluctuations

    Science.gov (United States)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-11-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50

  12. Equatorial Dynamics Observed by Rocket, Radar, and Satellite During the CADRE/MALTED Campaign. 1; Programmatics and small-scale fluctuations

    Science.gov (United States)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-01-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the

  13. Competition for public project funding in a small research system: the case of Estonia

    OpenAIRE

    Jaan Masso; Kadri Ukrainski

    2009-01-01

    The extensive literature that deals with competition for research funding has focused on the mechanisms and outcomes of funding, but has not systematically studied the allocation of funding among research performers across different financing instruments. The analysis of a small research system on the basis of funding volumes disaggregated according to beneficiaries and funding instruments showed a very high and growing degree of market concentration strengthening existing dominant research i...

  14. The upgrade of the forward Muon Spectrometer of the ATLAS Experiment: the New Small Wheel project

    CERN Document Server

    Iengo, Paolo; The ATLAS collaboration

    2017-01-01

    The current innermost stations of the ATLAS endcap muon tracking system (the Small Wheel) will be upgraded in 2019 and 2020 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. The upgraded detector will consist of eight layers each of Resistive Micromegas (MM) and small-strip Thin Gap Chambers (sTGC) together forming the ATLAS New Small Wheels. Large area sTGC's up to 2 m2 in size and totaling an active area each of 1200 m2 will be employed for fast and precise triggering. The required spatial resolution of about 100 μm will allow the Level-1 trigger track segments to be reconstructed with an angular resolution of approximately 1mrad. The precision cathode plane has strips with a 3.2mm pitch for precision readout and the cathode plane on the other side has pads to produce a 3-out-of-4 coincidence to identify passage of a track in an sTGC quadruplet, selecting which strips to read-out. The eight layers of ...

  15. Projected Demand and Potential Impacts to the National Airspace System of Autonomous, Electric, On-Demand Small Aircraft

    Science.gov (United States)

    Smith, Jeremy C.; Viken, Jeffrey K.; Guerreiro, Nelson M.; Dollyhigh, Samuel M.; Fenbert, James W.; Hartman, Christopher L.; Kwa, Teck-Seng; Moore, Mark D.

    2012-01-01

    Electric propulsion and autonomy are technology frontiers that offer tremendous potential to achieve low operating costs for small-aircraft. Such technologies enable simple and safe to operate vehicles that could dramatically improve regional transportation accessibility and speed through point-to-point operations. This analysis develops an understanding of the potential traffic volume and National Airspace System (NAS) capacity for small on-demand aircraft operations. Future demand projections use the Transportation Systems Analysis Model (TSAM), a tool suite developed by NASA and the Transportation Laboratory of Virginia Polytechnic Institute. Demand projections from TSAM contain the mode of travel, number of trips and geographic distribution of trips. For this study, the mode of travel can be commercial aircraft, automobile and on-demand aircraft. NASA's Airspace Concept Evaluation System (ACES) is used to assess NAS impact. This simulation takes a schedule that includes all flights: commercial passenger and cargo; conventional General Aviation and on-demand small aircraft, and operates them in the simulated NAS. The results of this analysis projects very large trip numbers for an on-demand air transportation system competitive with automobiles in cost per passenger mile. The significance is this type of air transportation can enhance mobility for communities that currently lack access to commercial air transportation. Another significant finding is that the large numbers of operations can have an impact on the current NAS infrastructure used by commercial airlines and cargo operators, even if on-demand traffic does not use the 28 airports in the Continental U.S. designated as large hubs by the FAA. Some smaller airports will experience greater demand than their current capacity allows and will require upgrading. In addition, in future years as demand grows and vehicle performance improves other non-conventional facilities such as short runways incorporated into

  16. Projects for small hydro-power installations in the Canton of Uri, Switzerland; Kanton Uri. Projekte fuer Kleinwasserkraftwerke - Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This report for the Swiss Federal Office of Energy (SFOE) on a preliminary study presents and discusses small-hydro projects at three locations in the Swiss Canton of Uri. Three of originally six potential locations were selected for further investigation. Factors such as the usable quantities of water available at the locations are discussed. The projects Brunnital, Gruonbach and Palanggenbach are discussed in detail. Water quantities and various components of the installations such as water intakes, de-sanding installations, pressure conduits, machine houses and tailrace channels are described, as is the electro-mechanical equipment proposed. Also, environmental aspects are dealt with. Annual electricity production and economic viability are further topics covered in the report.

  17. Interaction enablers, drivers and barriers of collaborative innovation projects between small firms and academia

    DEFF Research Database (Denmark)

    Filip, Diane; Hansen, Bettina Dencker; Frølunde, Thea Thorsgaard

    2016-01-01

    drivers, and main barriers. Our three major findings relate to the phases of a structured program, elements of collaborative innovation projects, and the facilitation of interaction at two levels, i.e. meta-level and micro-level, by two types of brokers. The operator of the regional program facilitates...... types of brokers acting at two different levels have proven to be useful in overcoming some of the classical barriers firms face when interacting with academia. Essentially, the gap between the world of business and the world of academia has been mitigated by the structured and formalized interactions...

  18. Wave Pressures and Loads on a Small Scale Model of the Svåheia SSG Pilot Project

    DEFF Research Database (Denmark)

    Buccino, Mariano; Vicinanza, Diego; Ciardulli, Francesco

    2011-01-01

    The paper reports on 2D small scale experiments conducted to investigate wave loadings acting on a pilot project of device for the conversion of wave energy into electricity. The conversion concept is based on the overtopping principle and the structure is worldwide known with the acronym SSG....... The hydraulic model tests have been carried out at the LInC laboratory of the University of Naples Federico II using random waves. Results indicate wave overtopping is able to cause a sudden inversion of vertical force under wave crest, so that it is alternatively upward and downward directed over a short time...

  19. Agent control of cooperating satellites

    OpenAIRE

    Lincoln, N.K.; Veres, S.M.; Dennis, Louise; Fisher, Michael; Lisitsa, Alexei

    2011-01-01

    A novel, hybrid, agent architecture for (small)swarms of satellites has been developed. The software architecture for each satellite comprises ahigh-level rational agent linked to a low-level control system. The rational agent forms dynamicgoals, decides how to tackle them and passes theactual implementation of these plans to the control layer. The rational agent also has access to aMatLabmodel of the satellite dynamics, thus allowing it to carry out selective hypothetical reasoningabout pote...

  20. Staffing requirements for future small and medium reactors (SMRs) based on operating experience and projections

    International Nuclear Information System (INIS)

    2001-01-01

    At the time of this study there were about 160 small and medium sized nuclear power reactors (referred to as SMRs) in operation worldwide, and about 25 more under construction. Operation and maintenance costs for operating SMRs represent a substantial portion of the cost of electricity produced. Of these costs, the direct and indirect cost of staff represents the major cost component. In recent years, particularly since 1990, there has been increased interest in SMRs by many developing countries wishing to take advantage of nuclear power and several small and medium reactor designs are in various stages of development. To enhance the economic competitive position of SMRs relative to alternative methods of electricity generation, it is essential to ensure that new SMRs can be operated reliably and efficiently using the optimum number of staff. This publication reviews the lessons learned from the reactor operation, and the insights gained through the design of new SMRs, with a view to optimizing staffing in order to improve overall plant economics without compromising safety.This publication is intended to evaluate the estimated staffing size of various SMRs, the staff qualification and training required for the operation of future SMRs. and the key issues which impact the staffing requirements that should be considered in the development and deployment of future SMRs

  1. Integrated modelling of the water cycle in semi arid watersheds based on ground and satellite data: the SudMed project

    Science.gov (United States)

    Simonneaux, V.; Abourida, A.; Boudhar, A.; Cheggour, A.; Chaponnière, A.; Berjamy, B.; Boulet, G.; Chehbouni, A.; Drapeau, L.; Duchemin, B.; Erraki, S.; Ezzahar, J.; Escadafal, R.; Guemouria, N.; Hanich, L.; Jarlan, L.; Kharrou, H.; Khabba, S.; Le Page, M.; Mangiarotti, S.; Merlin, O.; Mougenot, B.; Mokssit, A.; Ouldbba, A.; Chehbouni, A.

    2010-10-01

    The SudMed project aims since 2002 at modelling the hydrological cycle in the Tensift semi arid watershed located in central Morocco. To reach these modelling objectives, emphasis is put on the use of high and low resolution remote sensing data, in the visible, near infrared, thermal, and microwave domains, to initialize, to force or to control the implementation of the process models. Fundamental studies have been conducted on Soil-Vegetation-Atmosphere Transfer modelling (SVAT), especially related to the various means of incorporating both ground and remote sensing observation into them. Satellite data have been used for monitoring the snow dynamic which is a major contribution to runoff issued from the mountains. Remote sensing image time series have also been used to map the land cover, based on NDVI time profiles analysis or temporal unmixing of low resolution pixels. Subsequently, remote sensing time series proved to be very valuable for monitoring the development of vegetation and the crop water status, in order to estimate of evapotranspiration, key information for irrigation management.

  2. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    Science.gov (United States)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of

  3. COST OF TAX COMPLIANCE AND RISK MANAGEMENT IN PROJECTS: THE CASE STUDY OF A SMALL ENTERPRISE

    Directory of Open Access Journals (Sweden)

    Mario Manzini Cianfanelli

    2010-06-01

    Full Text Available This study uses a risk management perspective to analyze compliance costs arising from overlapping service tax (ST jurisdictions. We study the case of an engineering company providing services to the Companhia de Saneamento Básico do Estado de São Paulo [São Paulo State Sanitation Company] – SABESP, a public entity. The engineering company was contracted under public law 8.666/93, to provide engineering service in several townships in São Paulo’s metropolitan area. Because the laws governing bidding do not permit later modification in price or provider, subsequent double taxation by one municipality cut into the firm’s margins, and should other local governments follow suit, multiple taxation would render the contract untenable for the provider. Our paper models the impact of conflicting jurisdictions on administrative burden, psychological costs and profit constriction and discusses project management techniques for decision making and management in similar situations.

  4. Small Scale Direct Potable Reuse (DPR Project for a Remote Area

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2017-02-01

    Full Text Available An Advanced Water Treatment Plant (AWTP for potable water recycling in Davis Station Antarctica was trialed using secondary effluent at Selfs Point in Hobart, Tasmania, for nine months. The trials demonstrated the reliability of performance of a seven barrier treatment process consisting of ozonation, ceramic microfiltration (MF, biologically activated carbon, reverse osmosis, ultra-violet disinfection, calcite contactor and chlorination. The seven treatment barriers were required to meet the high log removal values (LRV required for pathogens in small systems during disease outbreak, and on-line verification of process performance was required for operation with infrequent operator attention. On-line verification of pathogen LRVs, a low turbidity filtrate of approximately 0.1 NTU (Nephelometric Turbidity Unit, no long-term fouling and no requirement for clean-in-place (CIP was achieved with the ceramic MF. A pressure decay test was also reliably implemented on the reverse osmosis system to achieve a 2 LRV for protozoa, and this barrier required only 2–3 CIP treatments each year. The ozonation process achieved 2 LRV for bacteria and virus with no requirement for an ozone residual, provided the ozone dose was >11.7 mg/L. Extensive screening using multi-residue gas chromatography–mass spectrometry (GC–MS and liquid chromatography–mass spectrometry (LC–MS database methods that can screen for more than 1200 chemicals found that few chemicals pass through the barriers to the final product and rejected (discharge water streams. The AWTP plant required 1.93 kWh/m3 when operated in the mode required for Davis Station and was predicted to require 1.27 kWh/m3 if scaled up to 10 ML/day. The AWTP will be shipped to Davis Station for further trials before possible implementation for water recycling. The process may have application in other small remote communities.

  5. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    Science.gov (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  6. Total renewal of a small hydro project on the Engstligenalp - Licence and construction project; Bergbahnen Engstligenalp AG - Gesamterneuerung Kleinwasserkraftwerk. Konzessions- und Bauprojekt - Technischer Bericht mit Beilagen

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M.

    2009-05-15

    This report for the Swiss Federal Office of Energy (SFOE) deals with the total renewal of a small hydro scheme operated by the Engstligenalp aerial cableway in Switzerland. The cableway operator considers itself as part of the national effort to support sustainability. The refurbished hydropower installation will produce power for around 500 homes. The hydrology of the catchment area involved, quantities of water available and residual water conditions as well as the existing installations are described and discussed. Stipulations concerning landscape conservation are noted. The renewal project is discussed and details are given on the dam, water intake, pressure pipe and regulation. The new underground facilities for the horizontal-axis turbine, generator and electrical equipment are described. Finally environmental aspects, energy production and economic viability are discussed.

  7. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    Science.gov (United States)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  8. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Environmental assessment statement

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Solid, liquid, and gaseous by-products and wastes are generated during coal storage and processing, gasification, and gas cleanup. Recovery systems have been designed to collect and utilize by-products. Wastes will be placed in storage areas designed to prevent release of the materials to the environment. The coal gasification plant along with the solid waste disposal area will occupy approximately 115 acres. To prevent, to the fullest extent possible, degradation of groundwater and surface water resources, the coal stockpile, landfill, collection pond, settling basin, and drainage ditches will be constructed to prevent the seepage of potential contaminants into groundwater or the drainage of runoff into surface waters. Cooling water is the primary water requirement of the project. None of the water utilized in the gasification plant will be released into the area surface water system, but will be either recycled or directed into the settling basin. The gasification facility has the potential of emitting a broad spectrum of pollutants into the atmosphere. However, effective emission control procedures such as off-gas recycling, hydrogen sulfide removal, particulate removal, and flaring will be applied to minimize the plant's emissions. The necessity of monitoring the more exotic pollutants such as acid gases, trace elements, metal carbonyls, and a multitude of organic compounds, will be determined as the gasification facility becomes more of a reality and the latest literature and research developments can be surveyed to evaluate the emission rates, biological significance, and monitoring techniques for these pollutants.

  9. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  10. Urban Lighting Project for a Small Town: Comparing Citizens and Authority Benefits

    Directory of Open Access Journals (Sweden)

    Lucia Cellucci

    2015-10-01

    Full Text Available The smart and resilient city evolves by slow procedures of mutation without radical changes, increasing the livability of its territory. The value of the city center in a Smart City can increase through urban lighting systems: its elements on the territory can collect and convey data to increase services to city users; the electrical system becomes the so-called Smart Grid. This paper presents a study of smart lighting for a small town, a touristic location inside a nature reserve on the Italian coast. Three different approaches have been proposed, from minimal to more invasive interventions, and their effect on the territory has been investigated. Based on street typology and its surroundings, the work analyzes the opportunity to introduce smart and useful services for the citizens starting from a retrofitting intervention. Smart city capabilities are examined, showing how it is possible to provide new services to the cities through ICT (Information and Communication Technology without deep changes and simplifying the control of basic city functions. The results evidence an important impact on annual energy costs, suggesting smart grid planning not only for metropolis applications, but also in smaller towns, such as the examined one.

  11. Reduce blurring and distortion in a projection type virtual image display using integrated small optics

    Science.gov (United States)

    Hasegawa, Tatsuya; Yendo, Tomohiro

    2015-03-01

    Head Up Display (HUD) is being applied to automobile. HUD displays information as far virtual image on the windshield. Existing HUD usually displays planar information. If the image corresponding to scenery on the road like Augmented Reality (AR) is displayed on the HUD, driver can efficiently get the information. To actualize this, HUD covering large viewing field is needed. However existing HUD cannot cover large viewing field. Therefore we have proposed system consisting of projector and many small diameter convex lenses. However observed virtual image has blurring and distortion . In this paper, we propose two methods to reduce blurring and distortion of images. First, to reduce blurring of images, distance between each of screen and lens comprised in lens array is adjusted. We inferred from the more distant the lens from center of the array is more blurred that the cause of blurring is curvature of field of lens in the array. Second, to avoid distortion of images, each lens in the array is curved spherically. We inferred from the more distant the lens from center of the array is more distorted that the cause of distortion is incident angle of ray. We confirmed effectiveness of both methods.

  12. The influence of satellite populations of emerald ash borer on projected economic damage in U.S. communities, 2010-2020

    Science.gov (United States)

    Kent F. Kovacs; Rodrigo J. Mercader; Robert G. Haight; Nathan W. Siegert; Deborah G. McCullough; Andrew M. Liebhold

    2011-01-01

    The invasion spread of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is characterized by the formation of satellite populations that expand and coalesce with the continuously invading population front. As of January 2010, satellite infestations have been detected in 13 states and two Canadian provinces. Understanding...

  13. MuSAE: A European Project for the Diffusion of Energy and Environmental Planning in Small-Medium Sized Municipalities

    Directory of Open Access Journals (Sweden)

    Giorgio Baldinelli

    2015-12-01

    Full Text Available The basic idea of the EU LIFE+ 2011 project MuSAE (“Municipalities Subsidiarity for Actions on Energy”, code LIFE11 ENV/IT/000016 consists of transferring the skills and experience related to energy planning, acquired by the leading beneficiary, the Municipality of Perugia, to three small- or medium-sized Umbrian Municipalities (Marsciano, Umbertide and Lisciano Niccone. This transfer is aimed, among other objectives, at the drafting of the Municipal Energy and Environmental Plan (MEEP and the opening of an energy information office in each partner Municipality, in cooperation with CIRIAF and Umbria Region. The present paper provides a summary of MuSAE activities, analyzing the procedures and modalities of implementation of the various phases of the MEEPs, on the basis of the experience gained over the years through the collaboration with the Municipality of Perugia and adapted to smaller territories such as those represented by the other partner Municipalities. A summary of the dissemination activities and pilot projects is also presented, testifying the first concrete results of the planning activity developed by each administration within the project.

  14. A project optimization for small watercourses restoration in the northern part of the Volga-Akhtuba floodplain by the geoinformation and hydrodynamic modeling

    Science.gov (United States)

    Voronin, Alexander; Vasilchenko, Ann; Khoperskov, Alexander

    2018-03-01

    The project of small watercourses restoration in the northern part of the Volga-Akhtuba floodplain is considered together with the aim of increasing the watering of the territory during small and medium floods. The topography irregularity, the complex structure of the floodplain valley consisting of large number of small watercourses, the presence of urbanized and agricultural areas require careful preliminary analysis of the hydrological safety and efficiency of geographically distributed project activities. Using the digital terrain and watercourses structure models of the floodplain, the hydrodynamic flood model, the analysis of the hydrological safety and efficiency of several project implementation strategies has been conducted. The objective function values have been obtained from the hydrodynamic calculations of the floodplain territory flooding for virtual digital terrain models simulating alternatives for the geographically distributed project activities. The comparative efficiency of several empirical strategies for the geographically distributed project activities, as well as a two-stage exact solution method for the optimization problem has been studied.

  15. Preparing the Production of a New Product in Small and Medium-Sized Enterprises by Using the Method of Projects Management

    Science.gov (United States)

    Bijańska, Jolanta; Wodarski, Krzysztof; Wójcik, Janusz

    2016-06-01

    Efficient and effective preparation the production of new products is important requirement for a functioning and development of small and medium-sized enterprises. One of the methods, which support the fulfilment of this condition is project management. This publication presents the results of considerations, which are aimed at developing a project management model of preparation the production of a new product, adopted to specificity of small and medium-sized enterprises.

  16. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    Science.gov (United States)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  17. Thermal Modeling Analysis Of CST Media In The Small Column Ion Exchange Project

    International Nuclear Information System (INIS)

    Lee, S.

    2010-01-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds

  18. Matrix of risk and premium for the developing of small hydropower projects; Matriz de risco e premio para o desenvolvimento de projetos de PCHs (Pequenas Centrais Hidroeletricas)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Afonso Henriques Moreira; Garcia, Marco Aurelio R.A.; Cruz, Ricardo A. Passos da

    2008-07-01

    The aim of this paper is to propose a method for valuation of assets of small hydroelectric plants in different stages of maturation. To this end, we adopted the principle of risk premium, associated with a portion of the profitability of the project (internal rate of return-IRR) in every stage of development. In other words: the more mature the project, the lower your risk and consequently lower the corresponding premium, adopting as a total prize the IRR expected to the project.

  19. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  20. Reconstruction of tomographic images from projections of a small number of views by means of mathematical programming

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1985-01-01

    Fundamental studies have been made on the application of mathematical programming to the reconstruction of tomographic images from projections of a small number of views without requiring any circular symmetry nor periodicity. Linear programming and quadratic programming were applied to minimize the quadratic sum of the residue and to finally obtain optimized reconstruction images. The mathematical algorithms were verified by the method of computer simulation, and the relationship between the number of picture elements and the number of iterations necessary for convergence was also investigated. The methods of linear programming and quadratic programming require fairly simple mathematical procedures, and strict solutions can be obtained within a finite number of iterations. Their only draw back is the requirement of a large quantity of computer memory. But this problem will be desolved by the advent of large fast memory devices in the near future. (Aoki, K.)

  1. Designing Agricultural Development Projects for the Small Scale Farmers: Some Lessons from the World Bank Assistance Small Holder Oil Palm Development Scheme in Nigeria

    Science.gov (United States)

    Orewa, S. I.

    The study was carried out to investigate farmers reasons for intercropping their oil palm farms with food and other cash crops rather than the sole oil palm planting arrangement specified for participation in the World Bank Assistance Smallholder Oil Palm development project financed during the 1975-83 period. The study was conducted at the Ekuku-Agbor Tree Crop Unit Zone (to the East) and Mosogar Tree Crop Unit Zone (to the Southwest) of the old Bendel State of Nigeria. A total of 35 oil palm farmers were randomly selected from each zone for the study. The study tried to identify the size of oil palm cultivated, types of food and cash crops planted and the proportion consumed and sold and the sufficiency of labour for various farm activities. The study showed that the average oil palm farm size at Ekuku-Agbor zone was smaller (about 1.57 ha) and more fragmented while for Mosogar zone it was 2.28 ha. However a greater percentage (over 65%) of the farms at both locations were within 0.01-2.00 ha farm size range which could be said to be relatively small. The study revealed that among other factors the farmers desire to ensure adequate family food needs which equates to food security and some cash to meet regular family financial needs necessitated their intercropping of the oil palm farms. Others include the need to maximize the returns from the use of labour which they considered a major limiting factor in farm maintenance and to take advantage of the relative high unit price of cassava and its products that prevailed then by cultivating on any available land space including the palm plantations and thereby increasing their farm income.

  2. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  3. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  4. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  5. Management of small digital collections with Omeka: the MoRE experience (A Museum of REfused and unrealised art projects

    Directory of Open Access Journals (Sweden)

    Alberto Salarelli

    2016-11-01

    Full Text Available This article examines the main features of Omeka, a free and open source CMS (Content Management System for online digital collections developed by the Roy Rosenzweig Center for History and New Media at George Mason University. Omeka presents very interesting features: first, a remarkable ease of use that, however, does not affect its multiple functions; secondly, it provides tools to create, in an innovative way, virtual exhibitions for archives, libraries and museums in order to promote their collections on the web; thirdly, its extreme adaptability to collection size: in fact Omeka is used by large and celebrated institutions such as the New York Public Library and Europeana, but also by many small initiatives including MoRE (A Museum of REfused and unrealized art projects. Specifically, the second part of the article describes, in brief, the objectives and characteristics of this virtual museum dedicated to contemporary unrealized artworks; it is an experimental project, still under development, devised by a working group of the University of Parma (Italy, who found in Omeka the most suitable IT solution to collect and expose these unique museum materials.

  6. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the front-end readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10/100/1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micromegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies wi...

  7. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the frontend readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10=100=1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micormegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies will...

  8. Satellite tracking of threatened species

    Science.gov (United States)

    Williams, M.; Lunsford, A.; Ellis, D.; Robinson, J.; Coronado, P.; Campbell, W.

    1998-01-01

    In 1990, a joint effort of two U.S. federal agencies, NASA Goddard Space Flight Center (GSFC) and the Patuxent Wildlife Research Center, began. We initially joined forces in a project that used satellite telemetry to discover the winter home of a tiny dwindling population of Siberian Cranes. Since then several projects have emerged, and a web site was created to follow some of these activities. This web site is called the Satellite Tracking of Threatened Species and its location is http://sdcd.gsfc.nasa.gov/ISTO/satellite_tracking. It describes the overall program, and links you to three subsections that describe the projects in more detail: Satellite Direct Readout, Birdtracks, and Birdworld.

  9. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  10. Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project

    Directory of Open Access Journals (Sweden)

    Heinz Ruth A

    2003-09-01

    Full Text Available Abstract Background Subtractive hybridization methods are valuable tools for identifying differentially regulated genes in a given tissue avoiding redundant sequencing of clones representing the same expressed genes, maximizing detection of low abundant transcripts and thus, affecting the efficiency and cost effectiveness of small scale cDNA sequencing projects aimed to the specific identification of useful genes for breeding purposes. The objective of this work is to evaluate alternative strategies to high-throughput sequencing projects for the identification of novel genes differentially expressed in sunflower as a source of organ-specific genetic markers that can be functionally associated to important traits. Results Differential organ-specific ESTs were generated from leaf, stem, root and flower bud at two developmental stages (R1 and R4. The use of different sources of RNA as tester and driver cDNA for the construction of differential libraries was evaluated as a tool for detection of rare or low abundant transcripts. Organ-specificity ranged from 75 to 100% of non-redundant sequences in the different cDNA libraries. Sequence redundancy varied according to the target and driver cDNA used in each case. The R4 flower cDNA library was the less redundant library with 62% of unique sequences. Out of a total of 919 sequences that were edited and annotated, 318 were non-redundant sequences. Comparison against sequences in public databases showed that 60% of non-redundant sequences showed significant similarity to known sequences. The number of predicted novel genes varied among the different cDNA libraries, ranging from 56% in the R4 flower to 16 % in the R1 flower bud library. Comparison with sunflower ESTs on public databases showed that 197 of non-redundant sequences (60% did not exhibit significant similarity to previously reported sunflower ESTs. This approach helped to successfully isolate a significant number of new reported sequences

  11. Satellite Eye for Galathea 3. Annual report 2006

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Sørensen, Peter; Pedersen, Leif Toudal

    The Satellite Eye for Galathea 3 project is collecting satellite images from many satellites and, in particular, from the European ENVISAT satellite along the Galathea 3 global route. The expedition takes place from 11 August 2006 to 27 April 2007. Prior to the expedition several satellite images...... Vædderen, pupils in the classrooms and the public at any moment can take a look at the conditions seen from the eyes of the Earth observing satellites....

  12. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  13. Report on the Stanford/KACST/AMES UVLED small satellite mission to demonstrate charge management of an electrically isolated proof mass for drag-free operation

    Science.gov (United States)

    Saraf, Shailendhar

    A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.

  14. VEGA, a small launch vehicle

    Science.gov (United States)

    Duret, François; Fabrizi, Antonio

    1999-09-01

    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  15. Optimizing Low Light Level Imaging Techniques and Sensor Design Parameters using CCD Digital Cameras for Potential NASA Earth Science Research aboard a Small Satellite or ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — For this project, the potential of using state-of-the-art aerial digital framing cameras that have time delayed integration (TDI) to acquire useful low light level...

  16. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  17. Mismatch and misalignment: dark haloes and satellites of disc galaxies

    Science.gov (United States)

    Deason, A. J.; McCarthy, I. G.; Font, A. S.; Evans, N. W.; Frenk, C. S.; Belokurov, V.; Libeskind, N. I.; Crain, R. A.; Theuns, T.

    2011-08-01

    We study the phase-space distribution of satellite galaxies associated with late-type galaxies in the GIMIC suite of simulations. GIMIC consists of resimulations of five cosmologically representative regions from the Millennium Simulation, which have higher resolution and incorporate baryonic physics. Whilst the disc of the galaxy is well aligned with the inner regions (r˜ 0.1r200) of the dark matter halo, both in shape and angular momentum, there can be substantial misalignments at larger radii (r˜r200). Misalignments of >45° are seen in ˜30 per cent of our sample. We find that the satellite population aligns with the shape (and angular momentum) of the outer dark matter halo. However, the alignment with the galaxy is weak owing to the mismatch between the disc and dark matter halo. Roughly 20 per cent of the satellite systems with 10 bright galaxies within r200 exhibit a polar spatial alignment with respect to the galaxy - an orientation reminiscent of the classical satellites of the Milky Way. We find that a small fraction (˜10 per cent) of satellite systems show evidence for rotational support which we attribute to group infall. There is a bias towards satellites on prograde orbits relative to the spin of the dark matter halo (and to a lesser extent with the angular momentum of the disc). This preference towards co-rotation is stronger in the inner regions of the halo where the most massive satellites accreted at relatively early times are located. We attribute the anisotropic spatial distribution and angular momentum bias of the satellites at z= 0 to their directional accretion along the major axes of the dark matter halo. The satellite galaxies have been accreted relatively recently compared to the dark matter mass and have experienced less phase-mixing and relaxation - the memory of their accretion history can remain intact to z= 0. Understanding the phase-space distribution of the z= 0 satellite population is key for studies that estimate the host halo

  18. The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change

    Directory of Open Access Journals (Sweden)

    Theresa M. Modrick

    2015-03-01

    Full Text Available Study region: Small watersheds (O[25 km2] in the mountain regions of southern California comprise the study region. Study focus: This paper examines changes in flash flood occurrence in southern California resulting from projected climatic change. The methodology synthesizes elements of meteorological modeling, hydrology and geomorphology into an integrated modeling approach to define flash flood occurrence in a systematic and consistent way on a regional basis with high spatial and temporal resolution appropriate for flash flooding. A single climate model with three-dimensional atmospheric detail was used as input to drive simulations for historical and future periods. New hydrological insights for the region: Results indicate an increase in flash flood occurrence for the study region. For two distributed hydrologic models employed, the increase in flash flood occurrence frequency is on average between 30% and 40%. Regional flash flood occurrence is characterized by near saturation of the upper soil layer, and wider ranges in lower soil layer saturation and in precipitation. Overall, a decrease in the total number of precipitation events was found, although with increased precipitation intensity, increased event duration, and higher soil saturation conditions for the 21st century. This combination could signify more hazardous conditions, with fewer precipitation events but higher rainfall intensity and over soils with higher initial soil moisture saturation, leading to more frequent occurrence of flash floods. Keywords: Flash flooding, Climate change, Soil moisture, Precipitation, Distributed hydrologic modeling

  19. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  20. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.

  1. Ocean surface waves and winds over the north Indian Ocean from satellite altimeter - preliminary results of SAC-NIO joint project

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Rajkumar, R.; Gairola, R.M.; Gohil, B.S.; Vethamony, P.; Rao, L.V.G.

    the respective correlation coefficients. Preliminary results with limited processed data showed that the correlation coefficients are approximately 0.6. Sample maps of wave and wind (satellite derived) in 2.5 degrees x 2.5 degrees grids have been prepared...

  2. 小微企业项目融资途径研究%Research on Financing Way of Small Micro Enterprise Project

    Institute of Scientific and Technical Information of China (English)

    崔英伟

    2013-01-01

    Small micro enterprise is an important part of the market economy, which accounts for more than 90 percent of all small micro enterprises. It is an important force of promoting the economic growth and the main carrier of job enlargement. However, small micro enterprise is the vulnerable groups, and it has difficulties in project financing and development. Based on the analysis of the present situation of small micro enterprise project financing, this paper elaborates on the definition of small micro enterprise, analyzes the causes, putting reference for small micro enterprise project financing.%小微企业是市场经济的重要组成部分,小微企业数量占我国企业总数的百分之九十以上,已成为拉动经济增长的重要力量,成为吸纳社会就业的主要载体.然而小微企业作为企业中的弱势群体,存在着项目融资难、发展难的问题.本文在分析小微企业项目融资现状的基础上,阐述了小微企业的定义,分析小微企业项目融资难的成因,有针对性的为小微企业项目融资提出借鉴和参考.

  3. Exobiology of icy satellites

    Science.gov (United States)

    Simakov, M. B.

    At the beginning of 2004 the total number of discovered planets near other stars was 119 All of them are massive giants and met practically in all orbits In a habitable zone from 0 8 up to 1 1 AU at less 11 planets has been found starting with HD 134987 and up to HD 4203 It would be naive to suppose existence of life in unique known to us amino-nucleic acid form on the gas-liquid giant planets Nevertheless conditions for onset and evolutions of life can be realized on hypothetical satellites extrasolar planets All giant planets of the Solar system have a big number of satellites 61 of Jupiter 52 of Saturn known in 2003 A small part of them consist very large bodies quite comparable to planets of terrestrial type but including very significant share of water ice Some from them have an atmosphere E g the mass of a column of the Titan s atmosphere exceeds 15 times the mass of the Earth atmosphere column Formation or capture of satellites is a natural phenomenon and satellite systems definitely should exist at extrasolar planets A hypothetical satellite of the planet HD 28185 with a dense enough atmosphere and hydrosphere could have biosphere of terrestrial type within the limits of our notion about an origin of terrestrial biosphere As an example we can see on Titan the largest satellite of Saturn which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance The most recent models of the Titan s interior lead to the conclusion that a substantial liquid layer

  4. Quebec firm develops satellite monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-09-01

    Satellite-based technology that gives project owners an affordable way to monitor and control wind turbine operation, even in remote sites, is announced. Called Satwind, the system can be adapted to any scale, ranging from simple, low-cost units for small wind turbines to advanced versions designed to handle more complex wind-diesel installations, as well as large turbines used in offshore projects. Current installations include a turbine in the Tunisian desert and two Quebec wind-diesel plants accessible only by helicopter. The system can be operated directly from a cell-phone, in a user-friendly Internet manner, without the need to be connected to a complex centralized wind farm monitoring system.

  5. Digging up your dirt. High school students combine small-scale respiration and soil carbon measurements with satellite imagery in hands-on inquiry activities.

    Science.gov (United States)

    Kemper, K.; Throop, H.

    2015-12-01

    One of the greatest impacts on the global carbon cycle is changes in land use. Making this concept relevant and inquiry-based for high school students is challenging. Many are familiar with reconstructing paleo-climate from ice core data, but few have a connection to current climate research. Many students ask questions like 'What will our area be like in 20 years?' or 'How much does planting trees help?' while few have the scientific language to engage in a discussion to answer these questions. Our work connects students to climate change research in several ways: first, teacher Keska Kemper engaged in field research with Dr. Heather Throop creating a 'teacher in the field' perspective for students in the classroom. Dr. Throop met with Keska Kemper's students several times to develop an inquiry-based field study. Students predicted and then measured rates of respiration between different soil types in an urban park close to their school. Students then could compare their results from Portland, Oregon to Throop's work across a rain gradient in Australia. Discussions about percent tree cover and soil carbon helped students see connections between land use changes and changes in carbon cycling. Last, students examined satellite imagery to determine percent tree cover and numberss of trees to compare to soil carbon in the same region. Students were able to examine imagery over the last 30 years to visualize land use changes in the greater Portland area.

  6. Local stakeholder participation in CDM and new climate mitigation mechanisms – case study of a small scale hydropower project in China

    DEFF Research Database (Denmark)

    Dong, Yan; Olsen, Karen Holm; Filzmoser, Eva

    2014-01-01

    and China’s stakeholder participation policies in environment impact assessment at project level, the PDD of this project and similar projects were analyzed providing an overall impression of the stakeholder participations process and results in such projects. Afterwards, we focused on a single case, where...... that the Clean Development Mechanism (CDM) Executive Board should collect information on practices for local stakeholder consultation in collaboration with the Designated National Authorities (DNA) Forum and provide technical assistance for the development of guidelines for local stakeholder participation......, if a country requests assistance. Learning from a case study of how local stakeholder participation is practiced in CDM in a small scale hydropower project in China, this paper identifies the strengths and weaknesses of how the concept is applied in practice. To understand the execution of both CDM policies...

  7. South Louisiana Enhanced Oil Recovery/Sequestration R&D Project Small Scale Field Tests of Geologic Reservoir Classes for Geologic Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hite, Roger [Blackhorse Energy LLC, Houston, TX (United States)

    2016-10-01

    The project site is located in Livingston Parish, Louisiana, approximately 26 miles due east of Baton Rouge. This project proposed to evaluate an early Eocene-aged Wilcox oil reservoir for permanent storage of CO2. Blackhorse Energy, LLC planned to conduct a parallel CO2 oil recovery project in the First Wilcox Sand. The primary focus of this project was to examine and prove the suitability of South Louisiana geologic formations for large-scale geologic sequestration of CO2 in association with enhanced oil recovery applications. This was to be accomplished through the focused demonstration of small-scale, permanent storage of CO2 in the First Wilcox Sand. The project was terminated at the request of Blackhorse Energy LLC on October 22, 2014.

  8. SmallSat Database

    Science.gov (United States)

    Petropulos, Dolores; Bittner, David; Murawski, Robert; Golden, Bert

    2015-01-01

    The SmallSat has an unrealized potential in both the private industry and in the federal government. Currently over 70 companies, 50 universities and 17 governmental agencies are involved in SmallSat research and development. In 1994, the U.S. Army Missile and Defense mapped the moon using smallSat imagery. Since then Smart Phones have introduced this imagery to the people of the world as diverse industries watched this trend. The deployment cost of smallSats is also greatly reduced compared to traditional satellites due to the fact that multiple units can be deployed in a single mission. Imaging payloads have become more sophisticated, smaller and lighter. In addition, the growth of small technology obtained from private industries has led to the more widespread use of smallSats. This includes greater revisit rates in imagery, significantly lower costs, the ability to update technology more frequently and the ability to decrease vulnerability of enemy attacks. The popularity of smallSats show a changing mentality in this fast paced world of tomorrow. What impact has this created on the NASA communication networks now and in future years? In this project, we are developing the SmallSat Relational Database which can support a simulation of smallSats within the NASA SCaN Compatability Environment for Networks and Integrated Communications (SCENIC) Modeling and Simulation Lab. The NASA Space Communications and Networks (SCaN) Program can use this modeling to project required network support needs in the next 10 to 15 years. The SmallSat Rational Database could model smallSats just as the other SCaN databases model the more traditional larger satellites, with a few exceptions. One being that the smallSat Database is designed to be built-to-order. The SmallSat database holds various hardware configurations that can be used to model a smallSat. It will require significant effort to develop as the research material can only be populated by hand to obtain the unique data

  9. An evaluation of satellite data for estimating the area of small forestland in the southern lower peninsula of Michigan. Ph.D. Thesis

    Science.gov (United States)

    Karteris, M. A. (Principal Investigator)

    1980-01-01

    A winter black and white band 5, a winter color, a fall color, and a diazo color composite of the fall scene were used to assess the use and potential of LANDSAT images for mapping and estimating acreage of small scattered forest tracts in Barry County, Michigan. Forests as small as 2.5 acres were mapped from each LANDSAT data source. The maps for each image were compared with an available forest-type map. Mapping errors detected were categorized as boundary and identification errors. The most frequently misclassified areas were agriculture lands, treed-bogs, brushlands and lowland and mixed hardwood stands. Stocking level affected interpretation more than stand size. The overall level of the interpretation performance was expressed through the estimation of classification, interpretation, and mapping accuracies. These accuracies ranged from 74 between 74% and 98%. Considering errors, accuracy, and cost, winter color imagery is the best LANDSAT alternative for mapping small forest tracts. However, since the availability of cloud-free winter images of the study area is significantly lower than images for other seasons, a diazo enhanced image of a fall scene is recommended as the best next best alternative.

  10. Creating Small Learning Communities: Lessons from the Project on High-Performing Learning Communities about "What Works" in Creating Productive, Developmentally Enhancing, Learning Contexts

    Science.gov (United States)

    Felner, Robert D.; Seitsinger, Anne M.; Brand, Stephen; Burns, Amy; Bolton, Natalie

    2007-01-01

    Personalizing the school environment is a central goal of efforts to transform America's schools. Three decades of work by the Project on High Performance Learning Communities are considered that demonstrate the potential impact and importance of the creation of "small learning environments" on student motivation, adjustment, and well-being.…

  11. The Challenge of Implementing an ERP System in a Small and Medium Enterprise--A Teaching Case of ERP Project Management

    Science.gov (United States)

    Xu, Hongjiang; Rondeau, Patrick J.; Mahenthiran, Sakthi

    2011-01-01

    Enterprise Resource Planning (ERP) system implementation projects are notoriously risky. While large-scale ERP cases continue to be developed, relatively few new ERP cases have been published that further ERP implementation education in small to medium size firms. This case details the implementation of a new ERP system in a medium sized…

  12. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  13. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    noise signal level exceeds 10 times the normal background. EXPERIMENTS FOR SATELLITE ASTRONOMY 615 ANTENNA MONOPOLE -., PREAMPLFE = BANDPASS-FILTER...OUTPUT TO AND DETECTOR TELEMETRYCHANNELS (18) CALIBRATION NOISE MATRIX CLOCK NOISE SOURCE ’ON’ SOURCE COMMAND F ROM PROGRAMERP ANTENNA MONOPOLE FIGURE 13...Animal Tempera- ture Sensing for Studying the Effect of Prolonged Orbital Flight on the Circadian Rhythms of Pocket Mice . Unmanned Spacecraft Meeting

  14. Using a "small wind" demonstration project to support public extension and education in renewable energy and STEM disciplines

    Science.gov (United States)

    O'brien-gayes, P. T.

    2012-12-01

    The City of North Myrtle Beach SC has erected three small-scale wind turbines for educational purposes. These turbines are tied directly into the local power grid. This allows for a unique study opportunity through which to teach renewable energy strategies. The study focuses on inter-site variability spread out over four miles of beach. Each location is subject to different wind fields responding to local structures. The study focuses on inter-site variability to cross reference energy production with the wind and weather conditions. Public and K-12 outreach is a primary objective of the program. Using demonstration turbines and by analyzing the wind, weather and site conditions outreach efforts are focused on highlighting renewable energy concepts. This also allows focus on STEM disciplines and critical thinking in analyzing data to compare the sites and different turbine production. Engaging in the STEM disciplines the projects crosses over science, technology, engineering, and mathematical boundaries creating an interdisciplinary scientific experience for students. In addition, this allows for introduction of techniques and developing technologies. It also allows students to consider challenges and possible solutions to issues of increased power production and cost efficiency. Through connecting the touchstone of experiential learning; a hands-on experience actively engages students in experimental application and problem solving. By looking locally at renewable energy in Horry County South Carolina students are engaged in seeing how projects impact science and economic development in the region. The Congressional Research Service (CRS) Report for Congress reports a considerable need expand and enhance the o preparation of students, teachers and practitioners in the areas of science, technology, engineering and mathematics. "When compared to other nations, the math and science achievement of U.S. pupils and the rates of STEM degree attainment appear

  15. Economic and Environmental Performances of Small-Scale Rural PV Solar Projects under the Clean Development Mechanism: The Case of Cambodia

    Directory of Open Access Journals (Sweden)

    Ellen De Schepper

    2015-09-01

    Full Text Available The two core objectives of the Clean Development Mechanism (CDM are cost-effective emission reduction and sustainable development. Despite the potential to contribute to both objectives, solar projects play a negligible role under the CDM. In this research, the greenhouse gas mitigation cost is used to evaluate the economic and environmental performances of small-scale rural photovoltaic solar projects. In particular, we compare the use of absolute and relative mitigation costs to evaluate the attractiveness of these projects under the CDM. We encourage the use of relative mitigation costs, implying consideration of baseline costs that render the projects profitable. Results of the mitigation cost analysis are dependent on the baseline chosen. To overcome this drawback, we complement the analysis with a multi-objective optimization approach, which allows quantifying the trade-off between economic and environmental performances of the optimal technologies without requiring a baseline.

  16. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  17. Next generation satellite communications networks

    Science.gov (United States)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  18. Financial feasibility analysis on small medium reactor nuclear power plant (SMR NPP) project in Indonesia under uncertainty

    International Nuclear Information System (INIS)

    Nuryanti; Suparman; Mochamad Nasrullah; Elok Satiti Amitayani; Wiku Lulus Widodo

    2015-01-01

    NPP SMR is one alternative to overcome the Outside Java Bali region's dependence on diesel power plant. One crucial issue in the NPP project (including SMR) would be financing, associated with the capital-intensive nature of the project. In addition, the SMR NPP project also be vulnerable in occurrence of some uncertainties. Therefore, this study aimed to analyze the financial feasibility of SMR NPP project by accommodating the possibility of the uncertainties. The methodology used is probabilistic analysis which was performed by Monte Carlo technique. This technique simulates the relationship between the uncertainty variables with financial feasibility indicators. The results showed that in probabilistic approach, SMR NPP project is considered feasible on the 'most probable value' of electricity selling price of 15 cents/kWh, indicated by positive average value of NPV (US$ 135,324,004) and the average value of both of IRRs are bigger than MARR (IRR project = 10.65 %, IRR Equity = 14.29 %, while MARR = 10 %). The probability of rejection of the SMR project was about 20 %. The three main variables that are most influential in the project were: selling price of electricity, investment cost and inflation rate. (author)

  19. Introducing a New Learning and Teaching Evaluation Planning Framework for Small Internally Funded Projects in Higher Education

    Science.gov (United States)

    Huber, Elaine

    2017-01-01

    Scholarly evaluation practices in learning and teaching projects are under-reported in the literature. In order for robust evaluative measures to be implemented, a project requires a well-designed evaluation plan. This research study describes the development of a practical evaluation planning framework through an action research approach, using…

  20. Commercial satellite broadcasting for Europe

    Science.gov (United States)

    Forrest, J. R.

    1988-12-01

    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  1. Evaluating an EU-project on improving sustainable competences in micro, small and medium seized Danish tourism enterprises

    DEFF Research Database (Denmark)

    Kvistgaard, Peter

    2006-01-01

    , to many students of public policy, constitutes a serious problem. The aim of this contribution is to pass on thoughts and lessons from a formative impact evaluation of a specific tourism development project in the region of Northern Jutland, Denmark. One exception to the apparent rule.......From the mid 1980s till present, the tourism sector in Denmark - as well as in other parts of the world (Vernon et al. 2005) - has seen an increasing number of short and long-term development projects in the form of public-private partnerships. The main body of the tourism development projects...... to conclude with any kind of certainty whether or not the projects have actually had the effects that was promised and wished for. So far, there exists relatively little hard and/or soft ‘evidence’ of the positive or negative consequences of using public money for tourism development projects in Denmark. This...

  2. Tacos, tiendas and mezcal : an actor-network perspective on small-scale entrepreneurial projects in Western mexico

    NARCIS (Netherlands)

    Verschoor, G.M.

    1997-01-01

    The role of small firms in developing countries is a subject of continuous interest in both academic and policy circles. Small firms account for a large part of economic activity, and their employment share is remarkable. Yet, although considerable knowledge about them exists, some of the

  3. Cyber security for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: dave.trask@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Jung, C. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); MacDonald, M., E-mail: marienna.macdonald@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  4. Cyber security for remote monitoring and control of small reactors

    International Nuclear Information System (INIS)

    Trask, D.; Jung, C.; MacDonald, M.

    2014-01-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  5. Activities of Canadian Satellite Communications, Inc.

    Science.gov (United States)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  6. Security Concepts for Satellite Links

    Science.gov (United States)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  7. Data distribution in the OLFAR satellite swarm

    NARCIS (Netherlands)

    Budianu, A.; Willink-Castro, T.J.; Engelen, S.; Rajan, R.T.; Rajan, Raj; Smith, D.M.P.; Meijerink, Arjan; Bentum, Marinus Jan

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a radio telescope for very low frequencies (below 30 MHz) by using a swarm of 50 or more nano-satellites. Spread in a 100-km diameter cloud, the satellites will form a very large aperture capable of sensing the

  8. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  9. Small-scale hydro-power plant in Quinto - Preliminary project; Progetto minicentrale idroelettrica, Ri Secco - Quinto. Programma piccole centrali idrauliche. Progetto di massima

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, R. [Reali e Guscetti SA, Ambri (Switzerland); Rosselli, P. [Celio Engineering SA, Ambri (Switzerland)

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at a project for the realisation of a small hydro-power plant on the alpine stream 'Ri Secco' in the municipality of Quinto, southern Switzerland. The Ri Secco partly flows in a steep canyon. The elevation difference of 810 or 620 m (depending on the location of the water deviation from the stream) is favorable to the installation of a small-scale high-head power plant. The report presents details on the hydrological data and the dimensioning of the installation. Several variants are considered, which also include two possible penstock diameters for each weir location. The electricity production expected is discussed, as is the economic viability of the project.

  10. Removal of radon by aeration testing of various aeration techniques for small water works. For European Commission under Contract No FI4PCT960054 TENAWA project

    CERN Document Server

    Salonen, L; Mehtonen, J; Mjoenes, L; Raff, O; Turunen, H

    2002-01-01

    Capability of various aeration techniques to remove radon from water in small waterworks was studied as a part of project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water), which was carried out during 1997-1999 on a cost-shared basis (contract No. F14PCT960054) with The European Commission (CEC) under the supervision of the Directorate-General XII Radiation Protection Research Unit. In TENAWA project both laboratory and field experiments were performed in order to find reliable methods and equipment for removing natural radionuclides from ground water originating either from private wells or small waterworks. Because such techniques are more often needed in private households than at waterworks, the main emphasis of the research was aimed to solve the water treatment problems related to the private water supplies, especially bedrock wells. Radon was the most important radionuclide to be removed from water at waterworks whereas the removal of other radionuclides ( sup 2 sup 3 sup 4...

  11. Do asteroids have satellites

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.; Paolicchi, P.; Zappala, V.

    1989-01-01

    A substantial body of indirect evidence suggests that some asteroids have satelities, although none has been detected unambiguously. Collisions between asteroids provide physically plausible mechanisms for the production of binaries, but these operate with low probability; only a small minority of asteroids are likely to have satellites. The abundance of binary asteroids can constrain the collisional history of the entire belt population. The allowed angular momentum of binaries and their rate of tidal evolution limit separations to no more than a few tens of the primary's radii. Their expected properties are consistent with failure to detect them by current imaging techniques

  12. The Direct Satellite Connection: Definitions and Prospects.

    Science.gov (United States)

    Wigand, Rolf T.

    1980-01-01

    Defines direct satellite broadcasting as the transmission of broadcast signals via high-powered satellites that permit direct reception of television or radio programs by means of small antennas. Outlines American, European, and Japanese plans for direct-to-home television reception and implications for the broadcasting industry. (JMF)

  13. 76 FR 22122 - Section 8 Housing Choice Voucher Program-Demonstration Project of Small Area Fair Market Rents in...

    Science.gov (United States)

    2011-04-20

    ... Expensive Neighborhoods Comment: One commenter appeared to oppose the concept of small area FMRs, noting... information on poverty and racial concentration by ZIP Code. HUD Response: HUD must select areas with as many...

  14. Audio Satellites: Overhearing Everyday Life

    DEFF Research Database (Denmark)

    Kirkegaard, Jonas Rasmussen; Breinbjerg, M.; Højlund, M. K.

    2017-01-01

    around or displaced arbitrarily in a given landscape. In the web browser, the different sound streams from the individual satellites can be mixed together to form a cooperative soundscape. The project thus allows people to tune into and explore the overheard soundscape of everyday life in a collaborative...

  15. Renewable energy projects in small island countries funded under the United Nation trust found for new and renewable source of energy (NRSE)

    International Nuclear Information System (INIS)

    Gururaja, J.

    1999-01-01

    The NRSE trust fund established with financial support from the Italian Government has succeeded in catalyzing a number of energy projects in small island developing countries. These projects have elicited a great deal of interest by local communities and opened up prospects for further utilization of locally available energy resources. The projects have created a positive impact on the quality of life of people in dispersed locations in small island developing countries by focusing on provision of renewable energy based electricity services such as solar PV lighting for homes, schools, and hospitals; radio, TV, VCR as well as medicine refrigerators. Thus it has become evident that renewable energy technologies such as solar and wind systems can have an important role to play in improving the quality of life of people in these small island countries. Market potential for these technologies is indeed substantial. However constraints and barriers still exist. One of the principal barriers is still the high initial cost of solar devices. Innovative financing including microcredit facilities needs to be explored. Efforts are also needed to strengthen local capacity to undertake assembly of components and systems, and also in the installation, maintenance, and service of renewable energy devices. Entrepreneurial activities need to be fostered through further strengthening of skills in this area. (EHS)

  16. Renewable energy projects in small island countries funded under the United Nation trust found for new and renewable source of energy (NRSE)

    Energy Technology Data Exchange (ETDEWEB)

    Gururaja, J. [Energy and Transport Branch, Division for Sustainabel Development, Department of Economic and Social Affairs, United Nations, NY (United States)

    1999-11-01

    The NRSE trust fund established with financial support from the Italian Government has succeeded in catalyzing a number of energy projects in small island developing countries. These projects have elicited a great deal of interest by local communities and opened up prospects for further utilization of locally available energy resources. The projects have created a positive impact on the quality of life of people in dispersed locations in small island developing countries by focusing on provision of renewable energy based electricity services such as solar PV lighting for homes, schools, and hospitals; radio, TV, VCR as well as medicine refrigerators. Thus it has become evident that renewable energy technologies such as solar and wind systems can have an important role to play in improving the quality of life of people in these small island countries. Market potential for these technologies is indeed substantial. However constraints and barriers still exist. One of the principal barriers is still the high initial cost of solar devices. Innovative financing including microcredit facilities needs to be explored. Efforts are also needed to strengthen local capacity to undertake assembly of components and systems, and also in the installation, maintenance, and service of renewable energy devices. Entrepreneurial activities need to be fostered through further strengthening of skills in this area. (EHS)

  17. The Mobile Satellite Services Market.

    Science.gov (United States)

    Anderson, Samuel

    Mobile satellite (MSAT) technology is the basis for a new component of the telecommunications industry capable of providing services to small inexpensive subscriber terminals located almost any place in the world. The market for MSAT space segment capacity (bandwidth and power) is a natural monopoly that can be logically and technically…

  18. Proposal of a new model to improve the collection of small WEEE: a pilot project for the recovery and recycling of toys.

    Science.gov (United States)

    Solé, Miquel; Watson, Jenna; Puig, Rita; Fullana-i-Palmer, Pere

    2012-11-01

    A new collection model was designed and tested in Catalonia (Spain) to foster the separate collection and recycling of electrical and electronic toys, with the participation of selected primary and secondary schools, as well as waste collection points and municipalities. This project approach is very original and important because small household WEEE has low rates of collection (16-21% WEEE within the EU or 5-7% WEEE in Spain) and no research on new approaches to enhance the collection of small WEEE is found in the literature. The project was successful in achieving enhanced toys collection and recycling rates, which went up from the national Spanish average of 0.5% toys before the project to 1.9 and 6% toys during the two project years, respectively. The environmental benefits of the campaign were calculated through a life-cycle approach, accounting for the avoided impact afforded by the reuse of the toys and the recycling of the valuable materials contained therein (such as metals, batteries and circuit boards) and subtracting the additional environmental burdens associated with the establishment of the collection campaign.

  19. The Small Helm Project: an academic activity addressing international corruption for undergraduate civil engineering and construction management students.

    Science.gov (United States)

    Benzley, Steven E

    2006-04-01

    This paper presents an academic project that addresses the issue of international corruption in the engineering and construction industry, in a manner that effectively incorporates several learning experiences. The major objectives of the project are to provide the students a learning activity that will 1) make a meaningful contribution within the disciplines being studied; 2) teach by experience a significant principle that can be valuable in numerous situations during an individual's career, and 3) engage the minds, experiences, and enthusiasm of the participants in a real ethical challenge that is prevalent in all of their chosen professional fields. The paper describes the full details of the project, the actual implementation of it during Winter Semester 2005, the experiences gained during the initial trial, and the modifications and improvements incorporated for future implementation.

  20. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...