WorldWideScience

Sample records for sliding thermal interface

  1. Thermal conductance of heat transfer interfaces for conductively cooled superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, T.L.; Walters, J.D.; Fikse, T.H.

    1996-01-01

    Minimizing thermal resistances across interfaces is critical for efficient thermal performance of conductively cooled superconducting magnet systems. Thermal conductance measurements have been made for a flexible thermal coupling, designed to accommodate magnet-to-cryocooler and cryocooler-to-shield relative motion, and an interface incorporating Multilam designed as a sliding thermal connector for cryocoolers. Temperature changes were measured across each interface as a function of heat input. Thermal conductances have been calculated for each interface, and the impact of each interface on conductively cooled magnet systems will be discussed

  2. A continuum treatment of sliding in Eulerian simulations of solid-solid and solid-fluid interfaces

    Science.gov (United States)

    Subramaniam, Akshay; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    A novel treatment of sliding is developed for use in an Eulerian framework for simulating elastic-plastic deformations of solids coupled with fluids. In this method, embedded interfacial boundary conditions for perfect sliding are imposed by enforcing the interface normal to be a principal direction of the Cauchy stress and appropriate consistency conditions ensure correct transmission and reflection of waves at the interface. This sliding treatment may be used either to simulate a solid-solid sliding interface or to incorporate an internal slip boundary condition at a solid-fluid interface. Sliding laws like the Coulomb friction law can also be incorporated with relative ease into this framework. Simulations of sliding interfaces are conducted using a 10th order compact finite difference scheme and a Localized Artificial Diffusivity (LAD) scheme for shock and interface capturing. 1D and 2D simulations are used to assess the accuracy of the sliding treatment. The Richmyer-Meshkov instability between copper and aluminum is simulated with this sliding treatment as a demonstration test case. Support for this work was provided through Grant B612155 from the Lawrence Livermore National Laboratory, US Department of Energy.

  3. Mechanism of sliding friction on a film-terminated fibrillar interface.

    Science.gov (United States)

    Shen, Lulin; Jagota, Anand; Hui, Chung-Yuen

    2009-03-03

    We study the mechanism of sliding friction on a film-terminated fibrillar interface. It has been shown that static friction increases significantly with increasing spacing between fibrils, and with increasing rate of loading. However, surprisingly, the sliding friction remains substantially unaffected both by geometry and by the rate of loading. The presence of the thin terminal film is a controlling factor in determining the sliding friction. Experimentally, and by a simple model in which the indenter is held up by the tension in the thin film, we show how the indenter maintains a nearly constant contact area that is independent of the fibril spacing, resulting in constant sliding friction. By this mechanism, using the film-terminated structure, one can enhance the static friction without affecting the sliding behavior.

  4. Effect of substrate surface on electromigration-induced sliding at hetero-interfaces

    International Nuclear Information System (INIS)

    Kumar, Praveen; Dutta, Indranath

    2013-01-01

    Electromigration (EM)-induced interfacial sliding between a metal film and Si substrate occurs when (i) only few grains exist across the width of the film and (ii) diffusivity through the interfacial region is significantly greater than diffusivity through the film. Here, the effect of the substrate surface layer on the kinetics of EM-induced interfacial sliding is assessed using Si substrates coated with various thin film interlayers. The kinetics of interfacial sliding, and therefore the EM-driven mass flow rate, strongly depends on the type of the interlayer (and hence the substrate surface composition), such that strongly bonded interfaces with slower interfacial diffusivity produce slower sliding. (paper)

  5. Computation of Acoustic Waves Through Sliding-Zone Interfaces Using an Euler/Navier-Stokes Code

    Science.gov (United States)

    Rumsey, Christopher L.

    1996-01-01

    The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for two- and three-dimensional model problems. A simple but general interpolation scheme at the patched boundary passes acoustic waves without distortion, provided that a sufficiently small time step is taken. A guideline is provided for the maximum permissible time step or zone speed that gives an acceptable error introduced by the sliding-zone interface.

  6. Design of a Computer-Controlled, Random-Access Slide Projector Interface. Final Report (April 1974 - November 1974).

    Science.gov (United States)

    Kirby, Paul J.; And Others

    The design, development, test, and evaluation of an electronic hardware device interfacing a commercially available slide projector with a plasma panel computer terminal is reported. The interface device allows an instructional computer program to select slides for viewing based upon the lesson student situation parameters of the instructional…

  7. Bifurcation of elastic solids with sliding interfaces

    Science.gov (United States)

    Bigoni, D.; Bordignon, N.; Piccolroaz, A.; Stupkiewicz, S.

    2018-01-01

    Lubricated sliding contact between soft solids is an interesting topic in biomechanics and for the design of small-scale engineering devices. As a model of this mechanical set-up, two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so this formulation is the objective of the present paper. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or `spring-type' interfacial conditions are not able to predict bifurcations in tension, while experiments-one of which, ad hoc designed, is reported-show that these bifurcations are a reality and become possible when the correct sliding interface model is used. The presented results introduce a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact.

  8. In-Situ TEM Study of Interface Sliding and Migration in an Ultrafine Lamellar Structure

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L M

    2005-12-06

    The instability of interfaces in an ultrafine TiAl-({gamma})/Ti{sub 3}Al-({alpha}{sub 2}) lamellar structure by straining at room temperature has been investigated using in-situ straining techniques performed in a transmission electron microscope. The purpose of this study is to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations previously proposed to interpret the nearly linear creep behavior observed from ultrafine lamellar TiAl alloys. The results have revealed that both the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations.

  9. On the sliding friction at the interface between a fluid and a solid

    International Nuclear Information System (INIS)

    Minetti-Mezzetti, E.

    1976-01-01

    A method is reported to investigate the possible existence and the numerical value of the sliding friction coefficient β at the contact interface between a fluid and a solid. Some preliminary experimental results at the interface glycerol-aluminium give 1/β -4 . (author)

  10. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    Science.gov (United States)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  11. Micro and Nano-structure Development and Multiscale Physics at Sliding Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rigney; David; A.

    2006-06-01

    This final report describes research on the response of ductile materials to extreme loading conditions and high strain rates during impact combined with sliding friction. The work has involved a collaboration among two groups at Los Alamos National Laboratory and a tribology research grouup at The Ohio State University. The project involved experimental work and computer simulations at both laboratories and continuum mechanics analysis at OSU, supplemented by testing at AWE, Harwell, UK. Results demonstrated the importance of vorticity and mechanical mixing near the sliding interface in the development of nanocrystalline tribomaterial that is far from equilibrium. The work also revealed that strain rate sensitivity is an important materials property for determining the development of the velocity profile during sliding. As such, it is a property that is key to understanding the evolution of sliding behavior.

  12. Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability

    Directory of Open Access Journals (Sweden)

    Alexandra Krounis

    2015-12-01

    Full Text Available The limit equilibrium method (LEM is widely used for sliding stability evaluation of concrete gravity dams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously. However, the brittle behaviour of bonded concrete-rock contacts, in combination with the varying stress over the interface, implies that the failure of bonded dam-foundation interfaces occurs progressively. In addition, the spatial variation in cohesion may introduce weak spots where failure can be initiated. Nonetheless, the combined effect of brittle failure and spatial variation in cohesion on the overall shear strength of the interface has not been studied previously. In this paper, numerical analyses are used to investigate the effect of brittle failure in combination with spatial variation in cohesion that is taken into account by random fields with different correlation lengths. The study concludes that a possible existence of weak spots along the interface has to be considered since it significantly reduces the overall shear strength of the interface, and implications for doing so are discussed.

  13. Slide layout and integrated design (SLIDE) program

    International Nuclear Information System (INIS)

    Roberts, S.G.

    1975-01-01

    SLIDE is a FORTRAN IV program for producing 35 mm color slides on the Control Data CYBER-74. SLIDE interfaces with the graphics package, DISSPLA, on the CYBER-74. It was designed so that persons with no previous computer experience can easily and quickly generate their own textual 35 mm color slides for verbal presentations. SLIDE's features include seven different colors, five text sizes, ten tab positions, and two page sizes. As many slides as desired may be produced during any one run of the program. Each slide is designed to represent an 8 1 / 2 in. x 11 in. or an 11 in. x 8 1 / 2 in. page. The input data cards required to run the SLIDE program and the program output are described. Appendixes contain a sample program run showing input, output, and the resulting slides produced and a FORTRAN listing of the SLIDE program. (U.S.)

  14. Creep mechanisms of fully-lamellar TiAl based upon interface sliding

    International Nuclear Information System (INIS)

    Hsiung, L.M.; Nieh, T.G.

    1999-01-01

    Deformation mechanisms of fully lamellar TiAl with a refined microstructure (γ lamellae: 100 approximately 300 nm thick, α 2 lamellae: 10 approximately 50 nm thick) crept at 760 C have been investigated. As a result of a fine structure, the motion and multiplication of lattice dislocations within both γ and α 2 lamellae are limited at low creep stresses ( 2 and γ/γ interfaces (i.e., interface sliding) is proposed to be the dominant deformation mechanism at low stresses. Lattice dislocations impinged on lamellar interfaces are found to be the major obstacles impeding the motion of interfacial dislocations. The number of impinged lattice dislocations increases as the applied stress increases and, subsequently, causes the pileup of interfacial dislocations along the interfaces. Accordingly, deformation twinning activated by the pileup of interfacial dislocations is proposed to be the dominant deformation mechanism at high stresses (>400 MPa)

  15. In situ observation of a hydrogel-glass interface during sliding friction.

    Science.gov (United States)

    Yamamoto, Tetsurou; Kurokawa, Takayuki; Ahmed, Jamil; Kamita, Gen; Yashima, Shintaro; Furukawa, Yuichiro; Ota, Yuko; Furukawa, Hidemitsu; Gong, Jian Ping

    2014-08-14

    Direct observation of hydrogel contact with a solid surface in water is indispensable for understanding the friction, lubrication, and adhesion of hydrogels under water. However, this is a difficult task since the refractive index of hydrogels is very close to that of water. In this paper, we present a novel method to in situ observe the macroscopic contact of hydrogels with a solid surface based on the principle of critical refraction. This method was applied to investigate the sliding friction of a polyacrylamide (PAAm) hydrogel with glass by using a strain-controlled parallel-plate rheometer. The study revealed that when the compressive pressure is not very high, the hydrogel forms a heterogeneous contact with the glass, and a macro-scale water drop is trapped at the soft interface. The pre-trapped water spreads over the interface to decrease the contact area with the increase in sliding velocity, which dramatically reduces the friction of the hydrogel. The study also revealed that this heterogeneous contact is the reason for the poor reproducibility of hydrogel friction that has been often observed in previous studies. Under the condition of homogeneous full contact, the molecular origin of hydrogel friction in water is discussed. This study highlights the importance of direct interfacial observation to reveal the friction mechanism of hydrogels.

  16. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    Science.gov (United States)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  17. Carbon nanotube thermal interfaces and related applications

    OpenAIRE

    Hodson, Stephen L

    2016-01-01

    The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical cond...

  18. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    Science.gov (United States)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  19. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  20. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering

    Science.gov (United States)

    Lee, Eungkyu; Luo, Tengfei

    2018-01-01

    Thermal transport across solid interfaces can play critical roles in the thermal management of electronics. In this letter, we use non-equilibrium molecular dynamics simulations to investigate the isotope effect on the thermal transport across SiC/GaN interfaces. It is found that engineered isotopes (e.g., 10% 15N or 71Ga) in the GaN layer can increase the interfacial thermal conductance compared to the isotopically pure case by as much as 23%. Different isotope doping features, such as the isotope concentration, skin depth of the isotope region, and its distance from the interface, are investigated, and all of them lead to increases in thermal conductance. Studies of spectral temperatures of phonon modes indicate that interfacial thermal transport due to low-frequency phonons (transport. This work may provide insights into interfacial thermal transport and useful guidance to practical material design.

  1. Thermal hydraulic behavior of SCWR sliding pressure startup

    International Nuclear Information System (INIS)

    Fu Shengwei; Zhou Chong; Xu Zhihong; Yang Yanhua

    2011-01-01

    The modification to ATHLET-SC code is introduced in this paper, which realizes the simulation of trans-critical transients using two-phase model. With the modified code, the thermal-hydraulic dynamic behavior of the mixed SCWR core during the startup process is simulated. The startup process is similar to the design of SCLWR-H sliding pressure startup. The results show that maximum temperature of cladding-surface does not exceed 650℃ in the whole startup process, and the sudden change of water properties in the trans-critical transients will not cause harmful influence to the heat transfer of the fuel cladding. (authors)

  2. Carbon nanotube thermal interfaces and related applications

    Science.gov (United States)

    Hodson, Stephen L.

    The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical conducting elements. Within the community of TIM engineers, the vision driving the development of CNT TIMs was born from measurements that revealed impressively high thermal conductivities of individual CNTs. This vision was then projected to efforts focused on packing many individual CNTs on a single substrate that efficiently conduct heat in parallel and ultimately through many contact regions at CNT-to-substrate contacts. This thesis encompasses a comprehensive investigation of the viability of carbon nanotube based thermal interface materials (CNT TIMs) to efficiently conduct heat across two contacting materials. The efforts in this work were initially devoted to engaging CNT TIMs with an opposing substrate using two bonding techniques. Using palladium hexadecanethiolate, Pd(SC16H35)2 the CNT ends were bonded to an opposing substrate (one-sided interface) or opposing CNT array (two-sided interface) to enhance contact conductance while maintaining a compliant joint. The palladium weld is particularly attractive for its mechanical stability at high temperatures. The engagement of CNT TIMs with an opposing substrate was also achieved by inserting a solder foil between the CNT TIM and opposing substrate and subsequently raising the temperature of the interface above the eutectic point of the solder foil. This bonding technique creates a strong weld that not only reduces the thermal resistance significantly but also minimizes the change in thermal resistance with an applied

  3. Interface thermal characteristics of flip chip packages - A numerical study

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Mujumdar, A.S.

    2009-01-01

    Flip chip ball grid array (FC-BGA) packages are commonly used for high inputs/outputs (I/O) ICs; they have been proven to provide good solutions for a variety of applications to maximize thermal and electrical performance. A fundamental limitation to such devices is the thermal resistance at the top of the package, which is characterized θ JC parameter. The die-to-lid interface thermal resistance is identified as a critical issue for the thermal management of electronic packages. This paper focuses on the effect of the interface material property changes on the interface thermal resistance. The effect of package's junction to case (Theta-JC or θ JC ) thermal performance is investigated for bare die, flat lid and cup lid packages using a validated thermal model. Thermal performance of a cup or flat lid attached and bare die packages were investigated for different interface materials. Improved Theta-JC performance was observed for the large die as compared to the smaller die. Several parametric studies were carried out to understand the effects of interface bond line thickness (BLT), different die sizes, the average void size during assembly and thermal conductivity of interface materials on package thermal resistance

  4. Effect of thermal interface on heat flow in carbon nanofiber composites.

    Science.gov (United States)

    Gardea, F; Naraghi, M; Lagoudas, D

    2014-01-22

    The thermal transport process in carbon nanofiber (CNF)/epoxy composites is addressed through combined micromechanics and finite element modeling, guided by experiments. The heat exchange between CNF constituents and matrix is studied by explicitly accounting for interface thermal resistance between the CNFs and the epoxy matrix. The effects of nanofiber orientation and discontinuity on heat flow and thermal conductivity of nanocomposites are investigated through simulation of the laser flash experiment technique and Fourier's model of heat conduction. Our results indicate that when continuous CNFs are misoriented with respect to the average temperature gradient, the presence of interfacial resistance does not affect the thermal conductivity of the nanocomposites, as most of the heat flow will be through CNFs; however, interface thermal resistance can significantly alter the patterns of heat flow within the nanocomposite. It was found that very high interface resistance leads to heat entrapment at the interface near to the heat source, which can promote interface thermal degradation. The magnitude of heat entrapment, quantified via the peak transient temperature rise at the interface, in the case of high thermal resistance interfaces becomes an order of magnitude more intense as compared to the case of low thermal resistance interfaces. Moreover, high interface thermal resistance in the case of discontinuous fibers leads to a nearly complete thermal isolation of the fibers from the matrix, which will marginalize the contribution of the CNF thermal conductivity to the heat transfer in the composite.

  5. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  6. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  7. Remote Controlling and Monitoring of Microscopic Slides

    International Nuclear Information System (INIS)

    Mustafa, G.; Qadri, M.T.; Daraz, U.

    2016-01-01

    Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope's stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert's opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of the slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist in viewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients. (author)

  8. Thermal transport across metal–insulator interface via electron–phonon interaction

    International Nuclear Information System (INIS)

    Zhang, Lifa; Wang, Jian-Sheng; Li, Baowen; Lü, Jing-Tao

    2013-01-01

    The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green’s function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling. (paper)

  9. Analysis of dual-phase-lag thermal behaviour in layered films with temperature-dependent interface thermal resistance

    International Nuclear Information System (INIS)

    Liu, K-C

    2005-01-01

    This work analyses theoretically the dual-phase-lag thermal behaviour in two-layered thin films with an interface thermal resistance, which is predicted by the radiation boundary condition model. The effect of the interface thermal resistance on the transmission-reflection phenomenon, induced by a pulsed volumetric source adjacent to the exterior surface of one layer, is investigated. Due to the difference between the two layers in the relaxation times, τ q and τ T , and the nonlinearity of the interfacial boundary condition, complexity is introduced and some mathematical difficulties are involved in solving the present problem. A hybrid application of the Laplace transform method and a control-volume formulation are used along with the linearization technique. The results show that the effect of the thermophysical properties on the behaviour of the energy passing across the interface gradually reduces with increasing interface thermal resistance. The lagging thermal behaviour depends on the magnitude of τ T and τ q more than on the ratio of τ T /τ q

  10. Triaxial slide-hold-slide shear experiment of sedimentary rock under drain condition

    International Nuclear Information System (INIS)

    Kishida, Kiyoshi; Yano, Takao; Elsworth, Derek; Yasuhara, Hideaki; Nakashima, Shinichiro

    2011-01-01

    When discussing the mechanical and hydro-mechanical properties of rock masses under the long-term holding, the variation of rock structure and the change of shear band condition should be discussed in considering the effect of thermal and chemical influences. In this research, the triaxial shear experiment under drain condition was conducted through sedimentary rock, and in the residual stress state, the slide-hold-slide processes were applied to these triaxial experiments. The experiments were carried out in 3 kinds of confining conditions and 2 kinds of thermal conditions. Consequently, the healing phenomena can be observed and the shear strength recovery is also confirmed in process of the holding time. (author)

  11. Sliding wear characteristics of carburized steels and thermally refined steels implanted with nitrogen ions

    International Nuclear Information System (INIS)

    Terashima, Keiichi; Koda, Hiroyuki; Takeuchi, Eiichi.

    1995-01-01

    In order to concretely examine the application of surface reforming by ion implantation, nitrogen ion implantation was applied to the thermally refined steels S45C and SCM440 and the carburized steel SCM415, which are high versatile steels for mechanical structures, and their friction and wear characteristics were examined. The results are summarized as follows. In the surface-reformed material, in which nitrogen was implanted for the purpose of improving the seizure durability of the carburized steel, the load-frictional coefficient curve in lubricated sliding friction was similar to that of the material without implantation, but it was recognized that the load at which seizure occurred reached 2000 kgf or more, and as the amount of implantation was more, the material withstood higher load. In the lubricated sliding friction using a pin-ring type wear testing machine of the thermally refined steels and those to which implantation was applied, it was recognized that the specific wear amount was less in the implanted steels than in those without implantation. The results of the analysis of the implanted surface layers and the friction surfaces are reported. (K.I.)

  12. Tribology. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts.

    Science.gov (United States)

    Gosvami, N N; Bares, J A; Mangolini, F; Konicek, A R; Yablon, D G; Carpick, R W

    2015-04-03

    Zinc dialkyldithiophosphates (ZDDPs) form antiwear tribofilms at sliding interfaces and are widely used as additives in automotive lubricants. The mechanisms governing the tribofilm growth are not well understood, which limits the development of replacements that offer better performance and are less likely to degrade automobile catalytic converters over time. Using atomic force microscopy in ZDDP-containing lubricant base stock at elevated temperatures, we monitored the growth and properties of the tribofilms in situ in well-defined single-asperity sliding nanocontacts. Surface-based nucleation, growth, and thickness saturation of patchy tribofilms were observed. The growth rate increased exponentially with either applied compressive stress or temperature, consistent with a thermally activated, stress-assisted reaction rate model. Although some models rely on the presence of iron to catalyze tribofilm growth, the films grew regardless of the presence of iron on either the tip or substrate, highlighting the critical role of stress and thermal activation. Copyright © 2015, American Association for the Advancement of Science.

  13. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    Science.gov (United States)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  14. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  15. Thermal boundary resistance at Si/Ge interfaces by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Tianzhuo Zhan

    2015-04-01

    Full Text Available In this study, we investigated the temperature dependence and size effect of the thermal boundary resistance at Si/Ge interfaces by non-equilibrium molecular dynamics (MD simulations using the direct method with the Stillinger-Weber potential. The simulations were performed at four temperatures for two simulation cells of different sizes. The resulting thermal boundary resistance decreased with increasing temperature. The thermal boundary resistance was smaller for the large cell than for the small cell. Furthermore, the MD-predicted values were lower than the diffusion mismatch model (DMM-predicted values. The phonon density of states (DOS was calculated for all the cases to examine the underlying nature of the temperature dependence and size effect of thermal boundary resistance. We found that the phonon DOS was modified in the interface regions. The phonon DOS better matched between Si and Ge in the interface region than in the bulk region. Furthermore, in interface Si, the population of low-frequency phonons was found to increase with increasing temperature and cell size. We suggest that the increasing population of low-frequency phonons increased the phonon transmission coefficient at the interface, leading to the temperature dependence and size effect on thermal boundary resistance.

  16. Effect of Interface Structure on Thermal Boundary Conductance by using First-principles Density Functional Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    GAO Xue; ZHANG Yue; SHANG Jia-Xiang

    2011-01-01

    We choose a Si/Ge interface as a research object to investigate the infiuence of interface disorder on thermal boundary conductance. In the calculations, the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials, while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory. The results show that interface disorder limits thermal transport. The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance. This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.%We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.It is well known that interfaces can play a dominant role in the overall thermal transport characteristics of structures whose length scale is less than the phonon mean free path.When heat flows across an interface between two different materials,there exists a temperature jump at the interface.Thermal boundary conductance (TBC),which describes the efficiency of heat flow at material interfaces,plays an importance role in the transport of thermal energy in nanometerscale devices,semiconductor superlattices,thin film multilayers and nanocrystalline materials.[1

  17. Characterization of the heat transfer properties of thermal interface materials

    Science.gov (United States)

    Fullem, Travis Z.

    Physicists have studied the thermal conductivity of solids for decades. As a result of these efforts, thermal conduction in crystalline solids is well understood; there are detailed theories describing thermal conduction due to electrons and phonons. Phonon scattering and transmission at solid/solid interfaces, particularly above cryogenic temperatures, is not well understood and more work is needed in this area. The desire to solve engineering problems which require good thermal contact between mating surfaces has provided enhanced motivation for furthering the state of the art on this topic. Effective thermal management is an important design consideration in microelectronic systems. A common technique for removing excess heat from an electronic device is to attach a heatsink to the device; it is desirable to minimize the thermal resistance between the device and the heatsink. This can be accomplished by placing a thermal interface material (TIM) between the two surfaces. Due to the ever-increasing power densities found in electronic components, there is a desire to design better TIMs, which necessitates the ability to characterize TIM bondlines and to better understand the physics of heat conduction through TIM bondlines. A micro Fourier apparatus which employs Pt thin film thermometers of our design has been built and is capable of precisely quantifying the thermal resistance of thermal interface materials. In the present work several types of commercially available TIMs have been studied using this apparatus, including: greases, filled epoxies, and thermally conductive pads. In the case of filled epoxies, bondlines of various thicknesses, ranging from thirty microns to several hundred microns, have been measured. The microstructure of these bondlines has been investigated using optical microscopy and acoustic microscopy. Measured values of thermal conductivity are considered in terms of microstructural features such as percolation networks and filler particle

  18. Thermal interface material characterization for cryogenic electronic packaging solutions

    Science.gov (United States)

    Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.

    2017-12-01

    As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.

  19. Degradation Characterization of Thermal Interface Greases

    Energy Technology Data Exchange (ETDEWEB)

    Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackman, Gregory [DuPont; Wong, Arnold [DuPont; Meth, Jeffery [DuPont

    2018-02-12

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization of several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.

  20. Sliding friction at poly(vinyl alcohol)-modified carbon nanotube interfaces

    Science.gov (United States)

    Zhang, Xiaohua

    2018-01-01

    The sliding friction between adjacent carbon nanotubes (CNTs) determines greatly the mechanical property of CNT assembly materials. In order to enhance the intertube friction, polymer molecules are often introduced between CNTs. This paper reveals a new energy dissipation mechanism for the deformed CNT contacts by poly(vinyl alcohol) (PVA). When PVA is introduced into a CNT bundle, most segments of the polymer chain lay on the grooves of adjacent CNTs, while several short segments span over the contact CNTs by inducing a structural deformation on the tubular structure. During the tube sliding, the deformation is recovered and a new one is formed at the next position, contributing to new energy dissipation to prevent the tube sliding. As a result, the friction force can be enhanced by up to eight-fold. This study indicates that a network of transverse polymer chains and longitudinal CNTs is important towards high mechanical properties.

  1. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    Science.gov (United States)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  2. Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance

    International Nuclear Information System (INIS)

    Amama, Placidus B; Cola, Baratunde A; Sands, Timothy D; Xu, Xianfan; Fisher, Timothy S

    2007-01-01

    Multi-walled carbon nanotubes (MWCNTs) with systematically varied diameter distributions and defect densities were reproducibly grown from a modified catalyst structure templated in an amine-terminated fourth-generation poly(amidoamine) (PAMAM) dendrimer by microwave plasma-enhanced chemical vapor deposition. Thermal interface resistances of the vertically oriented MWCNT arrays as determined by a photoacoustic technique reveal a strong correlation with the quality as assessed by Raman spectroscopy. This study contributes not only to the development of an active catalyst via a wet chemical route for structure-controlled MWCNT growth, but also to the development of efficient and low-cost MWCNT-based thermal interface materials with thermal interface resistances ≤10 mm 2 K W -1

  3. Carbon nanotubes for thermal interface materials in microelectronic packaging

    Science.gov (United States)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment

  4. Filler-depletion layer adjacent to interface impacts performance of thermal interface material

    Directory of Open Access Journals (Sweden)

    Susumu Yada

    2016-01-01

    Full Text Available When installing thermal interface material (TIM between heat source and sink to reduce contact thermal resistance, the interfacial thermal resistance (ITR between the TIM and heat source/sink may become important, especially when the TIM thickness becomes smaller in the next-generation device integration. To this end, we have investigated ITR between TIM and aluminum surface by using the time-domain thermoreflectance method. The measurements reveal large ITR attributed to the depletion of filler particles in TIM adjacent to the aluminum surface. The thickness of the depletion layer is estimated to be about 100 nm. As a consequence, the fraction of ITR to the total contact thermal resistance becomes about 20% when the TIM thickness is about 50 μm (current thickness, and it exceeds 50% when the thickness is smaller than 10 μm (next-generation thickness.

  5. Novel Thermal Analysis Model of the Foot-Shoe Sole Interface during Gait Motion

    Directory of Open Access Journals (Sweden)

    Yasuhiro Shimazaki

    2018-02-01

    Full Text Available Excessive heat at the foot-shoe sole interface negatively affects a human’s thermal comfort. An understanding of the thermal behavior at this interface is important for alleviating this discomfort. During gait motion, a human’s body weight cyclically compresses a shoe sole (commonly constructed of viscoelastic materials, generating heat during loading. To evaluate the thermal effects of this internal heat generation on foot comfort, we developed and empirically validated a thermal analysis model during gait motion. A simple, one-dimensional prediction model for heat conduction with heat generation during compressive loading was used. Heat generation was estimated as a function of the shoe sole’s material properties (e.g., elastic modulus and various gait parameters. When compared with experimental results, the proposed model proved effective in predicting thermal behavior at the foot-shoe sole interface under various conditions and shows potential for improving a human’s thermal comfort during gait motion through informed footwear design.

  6. Whole slide imaging for educational purposes

    Directory of Open Access Journals (Sweden)

    Liron Pantanowitz

    2012-01-01

    Full Text Available Digitized slides produced by whole slide image scanners can be easily shared over a network or by transferring image files to optical or other data storage devices. Navigation of digitized slides is interactive and intended to simulate viewing glass slides with a microscope (virtual microscopy. Image viewing software permits users to edit, annotate, analyze, and easily share whole slide images (WSI. As a result, WSI have begun to replace the traditional light microscope, offering a myriad of opportunities for education. This article focuses on current applications of WSI in education and proficiency testing. WSI has been successfully explored for graduate education (medical, dental, and veterinary schools, training of pathology residents, as an educational tool in allied pathology schools (e.g., cytotechnology, for virtual tracking and tutoring, tele-education (tele-conferencing, e-learning, virtual workshops, at tumor boards, with interactive publications, and on examinations. WSI supports flexible and cost-effective distant learning and augments problem-oriented teaching, competency evaluation, and proficiency testing. WSI viewed on touchscreen displays and with tablet technology are especially beneficial for education. Further investigation is necessary to develop superior WSI applications that better support education and to design viewing stations with ergonomic tools that improve the WSI-human interface and navigation of virtual slides. Studies to determine the impact of training pathologists without exposure to actual glass slides are also needed.

  7. Degradation Characterization of Thermal Interface Greases: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackman, G. S. [DuPont Experimental Station; Wong, A. [DuPont Experimental Station; Meth, J. S. [DuPont Experimental Station

    2017-08-03

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization of several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.

  8. Static and dynamic friction in sliding colloidal monolayers.

    Science.gov (United States)

    Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    2012-10-09

    In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments that besides reproducing the main experimentally observed features give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton-antisoliton pair nucleation at the large static friction threshold F(s) when the two lattices are commensurate and pinned. The frictional work directly extracted from particles' velocities can be analyzed as a function of classic tribological parameters, including speed, spacing, and amplitude of the periodic potential (representing, respectively, the mismatch of the sliding interface and the corrugation, or "load"). These and other features suggestive of further experiments and insights promote colloid sliding to a unique friction study instrument.

  9. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    Science.gov (United States)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  10. Characterization of a dielectric microdroplet thermal interface material with dispersed nanoparticles

    International Nuclear Information System (INIS)

    Hamdan, A.; Sahli, F.; Richards, R.; Richards, C.

    2012-01-01

    This work presents the fabrication and characterization of a dielectric microdroplet thermal interface material (TIM). Glycerin droplets, 1 μL, were tested as TIMs in this study. Copper nanoparticles having a diameter of 25 nm were dispersed in glycerin at different volume fractions to enhance its thermal conductivity. An increase of 57.5% in the thermal conductivity of glycerin was measured at a volume fraction of 15%. A minimum thermal interface resistance of 30.37 mm 2 K/W was measured for the glycerin microdroplets at a deformed droplet height of 10.2 μm. Good agreement between experimental measurements and the predictions of a model based on Maxwell’s equation of rules of mixtures was obtained. The effect of nanoparticles' size on the effective thermal conductivity of glycerin was studied. Nanoparticles with diameters of 60–80 and 300 nm were dispersed in glycerin at a volume fraction of 5%, and their results were compared to those of the 25 nm particles.

  11. Investigation on the Interface Characteristics of the Thermal Barrier Coating System through Flat Cylindrical Indenters

    Directory of Open Access Journals (Sweden)

    Shifeng Wen

    2014-01-01

    Full Text Available Thermal barrier coating (TBC systems are highly advanced material systems and usually applied to insulate components from large and prolonged heat loads by utilizing thermally insulating materials. In this study, the characteristics of the interface of thermal barrier coating systems have been simulated by the finite-element method (FEM. The emphasis was put on the stress distribution at the interface which is beneath the indenter. The effect of the interface roughness, the thermally grown oxide (TGO layer's thickness, and the modulus ratio (η of the thin film with the substrate has been considered. Finite-element results showed that the influences of the interface roughness and the TGO layer's thickness on stress distribution were important. At the same time, the residual stress distribution has been investigated in detail.

  12. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Immunology of VL · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Strategies To Design Drugs · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25 · Slide 26 · Slide 27 · Slide 28.

  13. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Slide 2 · Membrane Phospholipids · Slide 4 · NAE and NAPE · Biological and Pharmacological properties · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25.

  14. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17.

  15. Tailoring the contact thermal resistance at metal-carbon nanotube interface

    Energy Technology Data Exchange (ETDEWEB)

    Firkowska, Izabela; Boden, Andre; Vogt, Anna-Maria; Reich, Stephanie [Department of Physics, Freie Universitaet, Arnimallee 14, 14195 Berlin (Germany)

    2011-11-15

    Copper-decorated carbon nanotubes (CNTs) were synthesized and used as conductive filler to improve the heat transport capabilities of copper matrix. Thermal properties, i.e., thermal diffusivity and thermal conductivity, of copper composite were measured and compared with those containing pristine and functionalized CNTs. Experimental results revealed that composites enriched with nanohybrids where Cu nanoparticles were covalently bonded to CNTs had thermal conductivity four times higher than those containing the same content of pristine CNTs. Evaluation of thermal interface resistance in copper-CNTs composites by means of the flash method. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Slide 1

    Indian Academy of Sciences (India)

    Slide 5 · Slide 6 · Second Question How Did this Shift in ToT Come About? Slide 8 · Second Question How Did this Shift in ToT Come About? Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 17 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25 · Slide 26 · Slide 27 · Slide 30 · India's Globalization.

  17. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.

    Science.gov (United States)

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui; King, Charles; Catalano, Massimo; Oh, Jun Kyun; Talib, Ansam J; Scholar, Ethan A; Verkhoturov, Stanislav V; Cagin, Tahir; Sokolov, Alexei V; Kim, Moon J; Matin, Kaiser; Narumanchi, Sreekant; Akbulut, Mustafa

    2017-03-22

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm 2 K/W for a typical bond-line thickness of 30-50 μm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.

  18. Thermal transport in lithium ion batteries: An experimental investigation of interfaces and granular materials

    Science.gov (United States)

    Gaitonde, Aalok Jaisheela Uday

    Increasing usage and recent accidents due to lithium-ion (Li-ion) batteries exploding or catching on fire has inspired research on the characterization and thermal management of these batteries. In cylindrical 18650 cells, heat generated during the battery's charge/discharge cycle is poorly dissipated to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work presents a technique to measure the thermal conduction across the metallic case-plastic separator interface, which ultimately limits heat transfer out of the jelly roll. The polymeric separator and metallic case are harvested from discharged commercial 18650 battery cells for thermal testing. A miniaturized version of the reference bar method enables measurements of the interface resistance between the case and the separator by establishing a temperature gradient across a multilayer stack consisting of two reference layers of known thermal conductivity and the case-separator sample. The case-separator interfacial conductance is reported for a range of case temperatures and interface pressures. The mean thermal conductance across the case-separator interface is 670 +/- 275 W/(m2K) and no significant temperature or pressure dependence is observed. The effective thermal conductivity of the battery stack is measured to be 0.27 W/m/K and 0.32 W/m/K in linear and radial configurations, respectively. Many techniques for fabricating battery electrodes involve coating particles of the active materials on metallic current collectors. The impact of mechanical shearing on the resultant thermal properties of these packed particle beds during the fabrication process has not yet been studied. Thus, the final portion of this thesis designs and validates a measurement system to measure the effects of mechanical shearing on the thermal conductivity of packed granular beds. This system

  19. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Matsyagandhya A case of genetic disorder · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Active Site with Molybdopterin Ligation · Disadvantage of a Chemist to Model the Cofactor · Slide 10 · Slide 11 · Slide 12 · Active Site Investigation · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  20. Milestone Deliverable: FY18-Q1: Deploy production sliding mesh capability with linear solver benchmarking.

    Energy Technology Data Exchange (ETDEWEB)

    Domino, Stefan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    This milestone was focused on deploying and verifying a “sliding-mesh interface,” and establishing baseline timings for blade-resolved simulations of a sub-MW-scale turbine. In the ExaWind project, we are developing both sliding-mesh and overset-mesh approaches for handling the rotating blades in an operating wind turbine. In the sliding-mesh approach, the turbine rotor and its immediate surrounding fluid are captured in a “disk” that is embedded in the larger fluid domain. The embedded fluid is simulated in a coordinate system that rotates with the rotor. It is important that the coupling algorithm (and its implementation) between the rotating and inertial discrete models maintains the accuracy of the numerical methods on either side of the interface, i.e., the interface is “design order.”

  1. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.

    Science.gov (United States)

    Wei, Xingfei; Zhang, Teng; Luo, Tengfei

    2017-10-04

    Thermal transport across hard-soft interfaces is critical to many modern applications, such as composite materials, thermal management in microelectronics, solar-thermal phase transition, and nanoparticle-assisted hyperthermia therapeutics. In this study, we use equilibrium molecular dynamics (EMD) simulations combined with the Green-Kubo method to study how molecularly heterogeneous structures of the self-assembled monolayer (SAM) affect the thermal transport across the interfaces between the SAM-functionalized gold and organic liquids (hexylamine, propylamine and hexane). We focus on a practically synthesizable heterogeneous SAM featuring alternating short and long molecular chains. Such a structure is found to improve the thermal conductance across the hard-soft interface by 46-68% compared to a homogeneous nonpolar SAM. Through a series of further simulations and analyses, it is found that the root reason for this enhancement is the penetration of the liquid molecules into the spaces between the long SAM molecule chains, which increase the effective contact area. Such an effect is similar to the fins used in macroscopic heat exchanger. This "molecular fin" structure from the heterogeneous SAM studied in this work provides a new general route for enhancing thermal transport across hard-soft material interfaces.

  2. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    CERN Document Server

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  3. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles.

    Science.gov (United States)

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-08

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism.

  4. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.

    Science.gov (United States)

    Wang, Yu; Yang, Chunhui; Pei, Qing-Xiang; Zhang, Yingyan

    2016-03-01

    Owing to the superior thermal properties of graphene, graphene-reinforced polymer nanocomposites hold great potential as the thermal interface materials (TIMs) dissipating heat for electronic packages. However, this application is greatly hindered by the high thermal resistance at the interface between graphene and polymer. In this paper, some important aspects of the improvement of the thermal transport across the interface between graphene and epoxy in graphene-epoxy nanocomposites, including the effectiveness of covalent and noncovalent functionalization, isotope doping, and acetylenic linkage in graphene are systematically investigated using molecular dynamics (MD) simulations. The simulation results show that the covalent and noncovalent functionalization techniques could considerably reduce the graphene-epoxy interfacial thermal resistance in the nanocomposites. Among different covalent functional groups, butyl is more effective than carboxyl and hydroxyl in reducing the interfacial thermal resistance. Different noncovalent functional molecules, including 1-pyrenebutyl, 1-pyrenebutyric acid, and 1-pyrenebutylamine, yield a similar amount of reductions. Moreover, it is found that the graphene-epoxy interfacial thermal resistance is insensitive to the carbon isotope doping in graphene, while it can be reduced moderately by replacing the sp(2) bonds in graphene with acetylenic linkages.

  5. Interface bond relaxation on the thermal conductivity of Si/Ge core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng; He, Yan; Ouyang, Gang, E-mail: gangouy@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081 (China); Sun, Changqing [School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-01-15

    The thermal conductivity of Si/Ge core-shell nanowires (CSNWs) is investigated on the basis of atomic-bond-relaxation consideration and continuum mechanics. An analytical model is developed to clarify the interface bond relaxation of Si/Ge CSNWs. It is found that the thermal conductivity of Si core can be modulated through covering with Ge epitaxial layers. The change of thermal conductivity in Si/Ge CSNWs should be attributed to the surface relaxation and interface mismatch between inner Si nanowire and outer Ge epitaxial layer. Our results are in well agreement with the experimental measurements and simulations, suggesting that the presented method provides a fundamental insight of the thermal conductivity of CSNWs from the atomistic origin.

  6. Modelling the initiation of basal sliding

    Science.gov (United States)

    Mantelli, E.; Schoof, C.

    2017-12-01

    The initiation of basal sliding is a thermally-controlled process that affects ice speed, englacial heat transport, and melt water production at the bed, and ultimately influences the large-scale dynamics of ice sheets. From a modelling perspective, describing the onset of sliding in thin-film models suitable for ice sheet scale simulations is problematic. In particular, previous work concluded that, under shallow-ice mechanics, the scenario of a hard switch from frozen to molten bed leads to an infinite vertical velocity at the onset, and higher-order mechanical formulations are needed to describe sliding initiation. An alternative view considers the occurrence of subtemperate sliding, which allows for a smooth sliding velocity across the onset. However, the sliding velocity decreases rapidly as temperature drops below the melting point, thus raising the issue of whether a mechanical model that does not resolve the ice sheet thickness scale is ever appropriate to model the onset of sliding. In this study we first present a boundary layer model for the hard switch scenario. Our analysis, which considers a thermo-mechanically coupled Stokes flow near the onset, shows that the abrupt onset of sliding is never possible. In fact, the acceleration of ice flow deflects the flowlines towards the bed, which freezes again immediately downstream to the onset. This leads to the conclusion that the sliding velocity must change smoothly across the onset, thus the temperature dependence of sliding needs to be taken into account. In this context, we examine a limiting case of standard temperature-dependent sliding laws, where sliding onset takes the form of an extended transition region interposed between fully frozen and temperate bed. In the transition region basal temperature is at the melting point, and the sliding velocity varies smoothly as dictated by the energy budget of the bed. As the extent of this region is not small compared to the ice sheet length scale, we couple

  7. SAGE III on ISS Lessons Learned on Thermal Interface Design

    Science.gov (United States)

    Davis, Warren

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.

  8. Slide 1

    Indian Academy of Sciences (India)

    Slide 25 · Life course epidemiology and chronic diseases · Models · Slide 28 · Slide 29 · Slide 30 · New Delhi Birth Cohort · New Delhi Birth Cohort (NDBC) · Slide 33 · Slide 34 · Slide 35 · Slide 36 · Slide 37 · Slide 38 · Slide 39 · CONCLUSIONS Urban Children and Adolescents · CONCLUSIONS New Delhi Birth Cohort.

  9. A damage mechanics based general purpose interface/contact element

    Science.gov (United States)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  10. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    Science.gov (United States)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  11. Tribology of the lubricant quantized sliding state.

    Science.gov (United States)

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  12. Reliability of thermal interface materials: A review

    International Nuclear Information System (INIS)

    Due, Jens; Robinson, Anthony J.

    2013-01-01

    Thermal interface materials (TIMs) are used extensively to improve thermal conduction across two mating parts. They are particularly crucial in electronics thermal management since excessive junction-to-ambient thermal resistances can cause elevated temperatures which can negatively influence device performance and reliability. Of particular interest to electronic package designers is the thermal resistance of the TIM layer at the end of its design life. Estimations of this allow the package to be designed to perform adequately over its entire useful life. To this end, TIM reliability studies have been performed using accelerated stress tests. This paper reviews the body of work which has been performed on TIM reliability. It focuses on the various test methodologies with commentary on the results which have been obtained for the different TIM materials. Based on the information available in the open literature, a test procedure is proposed for TIM selection based on beginning and end of life performance. - Highlights: ► This paper reviews the body of work which has been performed on TIM reliability. ► Test methodologies for reliability testing are outlined. ► Reliability results for the different TIM materials are discussed. ► A test procedure is proposed for TIM selection BOLife and EOLife performance.

  13. The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces

    Science.gov (United States)

    Ye, Ning

    Understanding heat transport at nanometer and sub-nanometer lengthscales is critical to solving a wide range of technological challenges related to thermal management and energy conversion. In particular, finite Interfacial Thermal Conductance (ITC) often dominates transport whenever multiple interfaces are closely spaced together or when heat originates from sources that are highly confined by interfaces. Examples of the former include superlattices, thin films, quantum cascade lasers, and high density nanocomposites. Examples of the latter include FinFET transistors, phase-change memory, and the plasmonic transducer of a heat-assisted magnetic recording head. An understanding of the physics of such interfaces is still lacking, in part because experimental investigations to-date have not bothered to carefully control the structure of interfaces studied, and also because the most advanced theories have not been compared to the most robust experimental data. This thesis aims to resolve this by investigating ITC between a range of clean and structurally well-characterized metal-semiconductor interfaces using the Time-Domain Thermoreflectance (TDTR) experimental technique, and by providing theoretical/computational comparisons to the experimental data where possible. By studying the interfaces between a variety of materials systems, each with unique aspects to their tunability, I have been able to answer a number of outstanding questions regarding the importance of interfacial quality (epitaxial/non-epitaxial interfaces), semiconductor doping, matching of acoustic and optical phonon band structure, and the role of phonon transport mechanisms apart from direct elastic transmission on ITC. In particular, we are able to comment on the suitability of the diffuse mismatch model (DMM) to describe the transport across epitaxial interfaces. To accomplish this goal, I studied interfacial thermal transport across CoSi2, TiSi2, NiSi and PtSi - Si(100) and Si(111), (silicides

  14. Dynamic strain measurements in a sliding microstructured contact

    International Nuclear Information System (INIS)

    Bennewitz, Roland; David, Jonathan; Lannoy, Charles-Francois de; Drevniok, Benedict; Hubbard-Davis, Paris; Miura, Takashi; Trichtchenko, Olga

    2008-01-01

    A novel experiment is described which measures the tangential strain development across the contact between a PDMS (polydimethylsiloxane) block and a glass surface during the initial stages of sliding. The surface of the PDMS block has been microfabricated to take the form of a regular array of pyramidal tips at 20 μm separation. Tangential strain is measured by means of light scattering from the interface between the block and surface. Three phases are observed in all experiments: initial shear deformation of the whole PDMS block, a pre-sliding tangential compression of the tip array with stepwise increase of the compressive strain, and sliding in stick-slip movements as revealed by periodic variation of the strain. The stick-slip sliding between the regular tip array and the randomly rough counter surface always takes on the periodicity of the tip array. The fast slip can cause either a sudden increase or a sudden decrease in compressive strain

  15. Slide 1

    Indian Academy of Sciences (India)

    Potency of Stem Cells · Slide 3 · Slide 4 · Slide 5 · World Wide Clinical trials using MSCs · Slide 7 · Bone Marrow derived Human MSCs (hMSC) in culture · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Fetal MSCs · Morphology of murine fetal heart derived stem cells (fHSCs) · Growth Kinetics of fHSCs · Phenotype of ...

  16. Superlubric sliding of graphene nanoflakes on graphene.

    Science.gov (United States)

    Feng, Xiaofeng; Kwon, Sangku; Park, Jeong Young; Salmeron, Miquel

    2013-02-26

    The lubricating properties of graphite and graphene have been intensely studied by sliding a frictional force microscope tip against them to understand the origin of the observed low friction. In contrast, the relative motion of free graphene layers remains poorly understood. Here we report a study of the sliding behavior of graphene nanoflakes (GNFs) on a graphene surface. Using scanning tunneling microscopy, we found that the GNFs show facile translational and rotational motions between commensurate initial and final states at temperatures as low as 5 K. The motion is initiated by a tip-induced transition of the flakes from a commensurate to an incommensurate registry with the underlying graphene layer (the superlubric state), followed by rapid sliding until another commensurate position is reached. Counterintuitively, the average sliding distance of the flakes is larger at 5 K than at 77 K, indicating that thermal fluctuations are likely to trigger their transitions from superlubric back to commensurate ground states.

  17. Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space

    Science.gov (United States)

    Kunnath, R.

    2012-12-01

    The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.

  18. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    Science.gov (United States)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with

  19. Study of confinement and sliding friction of fluids using sum frequency generation spectroscopy

    Science.gov (United States)

    Nanjundiah, Kumar

    2007-12-01

    Friction and wear are important technologically. Tires on wet roads, windshield wipers and human joints are examples where nanometer-thick liquids are confined between flexible-rigid contact interfaces. Fundamental understanding of the structure of these liquids can assist in the design of products such as artificial joints and lubricants for Micro-electromechanical systems [MEMS]. Prior force measurements have suggested an increase in apparent viscosity of confined liquid and sometimes solid-like responses. But, these have not given the state of molecules under confinement. In the present study, we have used a surface sensitive, non-linear optical technique (infrared-visible sum frequency generation spectroscopy [SFG]) to investigate molecular structure at hidden interfaces. SFG can identify chemical groups, concentration and orientation of molecules at an interface. A friction cell was developed to study sliding of a smooth elastomeric lens against a sapphire surface. Experiments were done with dry sliding as well as lubricated sliding in the presence of linear alkane liquids. SFG spectra at the alkane/sapphire interface revealed ordering of the confined alkane molecules. These were more ordered than alkane liquid, but less ordered than alkane crystal. Cooling of the confined alkane below its melting temperature [TM] led to molecular orientation that was different from that of bulk crystal next to a sapphire surface. Molecules were oriented with their symmetry axis parallel to the surface normal. In addition, the melting temperature [Tconf] under confinement for a series of linear alkanes (n =15--27) showed a surprising trend. Intermediate molecular weights showed melting point depression. The T conf values suggested that melting started at the alkane/sapphire interface. In another investigation, confinement of water between an elastomeric PDMS lens and sapphire was studied. SFG spectra at the sapphire/water/PDMS interface revealed a heterogeneous morphology. The

  20. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    Science.gov (United States)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  1. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  2. Simulations of atomic-scale sliding friction

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Stoltze, Per

    1996-01-01

    Simulation studies of atomic-scale sliding friction have been performed for a number of tip-surface and surface-surface contacts consisting of copper atoms. Both geometrically very simple tip-surface structures and more realistic interface necks formed by simulated annealing have been studied....... Kinetic friction is observed to be caused by atomic-scale Stick and slip which occurs by nucleation and subsequent motion of dislocations preferably between close-packed {111} planes. Stick and slip seems ro occur in different situations. For single crystalline contacts without grain boundaries...... pinning of atoms near the boundary of the interface and is therefore more easily observed for smaller contacts. Depending on crystal orientation and load, frictional wear can also be seen in the simulations. In particular, for the annealed interface-necks which model contacts created by scanning tunneling...

  3. Screening and dotting virtual slides: A new challenge for cytotechnologists

    Directory of Open Access Journals (Sweden)

    Walid E Khalbuss

    2013-01-01

    Full Text Available Digital images are increasingly being used in cytopathology. Whole-slide imaging (WSI is a digital imaging modality that uses computerized technology to scan and convert entire cytology glass slides into digital images that can be viewed on a digital display using the image viewer software. Digital image acquisition of cytology glass slides has improved significantly over the years due to the use of liquid-based preparations and advances in WSI scanning technology such as automatic multipoint pre-scan focus technology or z-stack scanning technology. Screening cytotechnologists are responsible for every cell that is present on an imaged slide. One of the challenges users have to overcome is to establish a technique to review systematically the entire imaged slide and to dot selected abnormal or significant findings. The scope of this article is to review the current user interface technology available for virtual slide navigation when screening digital slides in cytology. WSI scanner vendors provide tools, built into the image viewer software that allow for a more systematic navigation of the virtual slides, such as auto-panning, keyboard-controlled slide navigation and track map. Annotation tools can improve communication between the screener and the final reviewer or can be used for education. The tracking functionality allows recording of the WSI navigation process and provides a mechanism for confirmation of slide coverage by the screening cytotechnologist as well as a useful tool for quality assurance. As the WSI technology matures, additional features and tools to support navigation of a cytology virtual slide are anticipated.

  4. Relationship between the real contact area and contact force in pre-sliding regime

    International Nuclear Information System (INIS)

    Song Baojiang; Yan Shaoze

    2017-01-01

    The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper. With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu’s method is used for measurement. Through an experimental study performed on polymethyl methacrylate (PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge. (paper)

  5. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  6. Effect of friction on the slide guide in an elevator system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X-g; Li, H-g; Meng, G [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240 (China)], E-mail: xingang.zhang@gmail.com

    2008-02-15

    The slide guide in an elevator moves in contact against the guide rail. This kind of surface contact exhibits a highly non-linear hysteretic friction behaviour which hampers greatly the riding quality of the elevator system. This paper presents an experimental investigation on this type of phenomenon through measuring the contact friction force between the interface of the slide guide and the rail under different combination of input parameters. The experiment shows frictional behaviours including pre-sliding/gross-sliding regimes, transition behaviour between them, time lag, and velocity (weakening and strengthening) dependence. In addition, it is found that different materials in contact, lubrications and friction duration have strong impacts on evaluation of the friction characteristics. The observations in the test provide an insight into relationships between different friction behaviours and can be used to validate the appropriate theoretical friction models.

  7. Dynamic study of a sliding interface wear process of TiAlN and CrN multi-layers by X-ray absorption

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    reactions at the interface. The basic physical and chemical processes on the nano-scale are, however, not yet known fully. Thus, the work presented here is a contribution to the knowledge of the area. The main objectives of this dynamical investigation are to show that real time and in-situ tribology...... in France. The contact under investigation (TiAlN/CrN/TiAlN (2000nm/1000nm/2000nm) multi-layer system) was exposed to a reciprocating sliding motion under a normal load. Simultaneously, the contact zone was submitted to a direct, focused and monochromatic SR photon beam. In this way we have studied...

  8. Interface thermal resistance of nanostructured FeCoCu film and Si substrate

    Science.gov (United States)

    Nikolaenko, Yuri M.; Medvedev, Yuri V.; Genenko, Yuri A.; Ghafari, Mohammad; Hahn, Horst

    2006-05-01

    Results of measurement of thermal resistance (RFS ) of film substrate interface of 10 nm (Fe1-x Cox )1-y Cuy film on Si substrate with 50 nm SiO2 sublayer are presented. The estimated magnitude is two orders greater then RFS of epitaxial manganite films on StTiO3 substrate with and without sublayer. The significant increase of RFS is explained by granular structure of film with average size of grain about 10 nm. In this case the additional thermal barier in the film-substrate interface is appeared. It provides the change of regime of phonons propagation from ballistic to diffusion one. The principle possibility of variation of RFS in wide range as a task of nanotechnology is discussed.

  9. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking.

    Science.gov (United States)

    Uetani, Kojiro; Ata, Seisuke; Tomonoh, Shigeki; Yamada, Takeo; Yumura, Motoo; Hata, Kenji

    2014-09-03

    Electrostatic flocking is applied to create an array of aligned carbon fibers from which an elastomeric thermal interface material (TIM) can be fabricated with a high through-plane thermal conductivity of 23.3 W/mK. A high thermal conductivity can be achieved with a significantly low filler level (13.2 wt%). As a result, this material retains the intrinsic properties of the matrix, i.e., elastomeric behavior. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High thermal stability of abrupt SiO2/GaN interface with low interface state density

    Science.gov (United States)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-04-01

    The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.

  11. Experimental verification of agreement between thermal and real time visual melt-solid interface positions in vertical Bridgman grown germanium

    Science.gov (United States)

    Barber, P. G.; Fripp, A. L.; Debnam, W. J.; Woodell, G.; Berry, R. F.; Simchick, R. T.

    1996-03-01

    Measurements of the liquid-solid interface position during crystal growth were made by observing the discontinuity of the temperature gradient with movable thermocouples in a centerline, quartz capillary placed inside a sealed quartz ampoule of germanium in a vertical Bridgman furnace. Simultaneously, in situ, real time visual observations, using X-ray imaging technology, determined the position of the melt-solid interface. The radiographically detected interface position was several millimeters from the thermal interface position and the direction of displacement depended upon the direction of thermocouple insertion. Minimization of this spurious heat flow was achieved by using an unclad thermocouple that had each of its two wire leads entering the capillary from different ends of the furnace. Using this configuration the visual interface coincided with the thermal interface. Such observations show the utility of using in situ, real time visualization to record the melt-solid interface shape and position during crystal growth; and they suggest improvements in furnace and ampoule designs for use in high thermal gradients.

  12. Thermal analysis of charring materials based on pyrolysis interface model

    Directory of Open Access Journals (Sweden)

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  13. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  14. Influence of the solid-gas interface on the effective thermal parameters of a two-layer structure in photoacoustic experiments

    International Nuclear Information System (INIS)

    Aguirre, N Munoz; Perez, L MartInez; Garibay-Febles, V; Lozada-Cassou, M

    2004-01-01

    From the theoretical point of view, the influence of the solid-gas interface on the effective thermal parameters in a two-layer structure of the photoacoustic technique is discussed. It is shown that the effective thermal parameters depend strongly upon the thermal resistance value associated with the solid-gas interface. New expressions for the effective thermal conductivity and thermal diffusivity in the low frequency limit are obtained. In the high frequency limit, the 'resonant' behaviour of the effective thermal diffusivity is maintained and a new complex dependence on frequency of the effective thermal conductivity is shown

  15. A metallization and bonding approach for high performance carbon nanotube thermal interface materials

    International Nuclear Information System (INIS)

    Cross, Robert; Graham, Samuel; Cola, Baratunde A; Fisher, Timothy; Xu Xianfan; Gall, Ken

    2010-01-01

    A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220 deg. C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm 2 K W -1 for bonded VACNT films 25-30 μm in length and 10 mm 2 K W -1 for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm -2 at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.

  16. Hydrophobins as aqueous lubricant additive for a soft sliding contact

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Røn, Troels; Pakkanen, Kirsi I.

    2015-01-01

    lubrication characteristic is dominant via ‘self-healing’ mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO...

  17. Effects of Roughness and Inertia on Precursors to Frictional Sliding

    Science.gov (United States)

    Robbins, Mark O.; Salerno, K. Michael

    2012-02-01

    Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)

  18. Bis(triisopropylsilylethynyl)pentacene/Au(111) interface: Coupling, molecular orientation, and thermal stability

    KAUST Repository

    Gnoli, Andrea; Ü stü nel, Hande; Toffoli, Daniele; Yu, Liyang; Catone, D.; Turchini, Stefano; Lizzit, Silvano; Stingelin, Natalie; Larciprê te, Rosanna

    2014-01-01

    The assembly and the orientation of functionalized pentacene at the interface with inorganics strongly influence both the electric contact and the charge transport in organic electronic devices. In this study electronic spectroscopies and theoretical modeling are combined to investigate the properties of the bis(triisopropylsilylethynyl)pentacene (TIPS-Pc)/Au(111) interface as a function of the molecular coverage to compare the molecular state in the gas phase and in the adsorbed phase and to determine the thermal stability of TIPS-Pc in contact with gold. Our results show that in the free molecule only the acene atoms directly bonded to the ligands are affected by the functionalization. Adsorption on Au(111) leads to a weak coupling which causes only modest binding energy shifts in the TIPS-Pc and substrate core level spectra. In the first monolayer the acene plane form an angle of 33 ± 2° with the Au(111) surface at variance with the vertical geometry reported for thicker solution-processed or evaporated films, whereas the presence of configurational disorder was observed in the multilayer. The thermal annealing of the TIPS-Pc/Au(111) interface reveals the ligand desorption at ∼470 K, which leaves the backbone of the decomposed molecule flat-lying on the metal surface as in the case of the unmodified pentacene. The weak interaction with the metal substrate causes the molecular dissociation to occur 60 K below the thermal decomposition taking place in thick drop-cast films.

  19. Bis(triisopropylsilylethynyl)pentacene/Au(111) interface: Coupling, molecular orientation, and thermal stability

    KAUST Repository

    Gnoli, Andrea

    2014-10-02

    The assembly and the orientation of functionalized pentacene at the interface with inorganics strongly influence both the electric contact and the charge transport in organic electronic devices. In this study electronic spectroscopies and theoretical modeling are combined to investigate the properties of the bis(triisopropylsilylethynyl)pentacene (TIPS-Pc)/Au(111) interface as a function of the molecular coverage to compare the molecular state in the gas phase and in the adsorbed phase and to determine the thermal stability of TIPS-Pc in contact with gold. Our results show that in the free molecule only the acene atoms directly bonded to the ligands are affected by the functionalization. Adsorption on Au(111) leads to a weak coupling which causes only modest binding energy shifts in the TIPS-Pc and substrate core level spectra. In the first monolayer the acene plane form an angle of 33 ± 2° with the Au(111) surface at variance with the vertical geometry reported for thicker solution-processed or evaporated films, whereas the presence of configurational disorder was observed in the multilayer. The thermal annealing of the TIPS-Pc/Au(111) interface reveals the ligand desorption at ∼470 K, which leaves the backbone of the decomposed molecule flat-lying on the metal surface as in the case of the unmodified pentacene. The weak interaction with the metal substrate causes the molecular dissociation to occur 60 K below the thermal decomposition taking place in thick drop-cast films.

  20. The thermal structure of an air–water interface at low wind speeds

    OpenAIRE

    Handler, R. A.; Smith, G. B.; Leighton, R. I.

    2011-01-01

    High-resolution infrared imagery of an air–water interface at wind speeds of 1 to 4 ms−1 wasobtained. Spectral analysis of the data reveals several important features of the thermal structureof the so-called cool skin. At wind speeds for which wind waves are not generated, the interfacialboundary layer appears to be composed of buoyant plumes that are stretched by the surfaceshear as they reach the interface. The plumes appear to form overlapping laminae with ahead–tail...

  1. Flexural resonance mechanism of thermal transport across graphene-SiO2 interfaces

    Science.gov (United States)

    Ong, Zhun-Yong; Qiu, Bo; Xu, Shanglong; Ruan, Xiulin; Pop, Eric

    2018-03-01

    Understanding the microscopic mechanism of heat dissipation at the dimensionally mismatched interface between a two-dimensional (2D) crystal and its substrate is crucial for the thermal management of devices based on 2D materials. Here, we study the lattice contribution to thermal (Kapitza) transport at graphene-SiO2 interfaces using molecular dynamics (MD) simulations and non-equilibrium Green's functions (NEGF). We find that 78 percent of the Kapitza conductance is due to sub-20 THz flexural acoustic modes, and that a resonance mechanism dominates the interfacial phonon transport. MD and NEGF estimate the classical Kapitza conductance to be hK ≈ 10 to 16 MW K-1 m-2 at 300 K, respectively, consistent with existing experimental observations. Taking into account quantum mechanical corrections, this value is approximately 28% lower at 300 K. Our calculations also suggest that hK scales as T2 at low temperatures (T < 100 K) due to the linear frequency dependence of phonon transmission across the graphene-SiO2 interface at low frequencies. Our study sheds light on the role of flexural acoustic phonons in heat dissipation from graphene to its substrate.

  2. A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J. [Purdue Univ., West Lafayette, IN (United States). Dept. of Nuclear Engineering; Wang, W. [SCIENTECH, Inc., Rockville, MD (United States); Mousseau, V.A.; Ebert, D.D. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1999-03-01

    A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model.

  3. A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J.; Mousseau, V.A.; Ebert, D.D.

    1999-01-01

    A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model

  4. Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2015-01-01

    The remarkable thermal properties of graphene and carbon nanotubes (CNTs) have been the subject of intensive investigations for the thermal management of integrated circuits. However, the small contact area of CNTs and the large anisotropic heat conduction of graphene have hindered...... their applications as effective thermal interface materials (TIMs). Here, a covalently bonded graphene–CNT (G-CNT) hybrid is presented that multiplies the axial heat transfer capability of individual CNTs through their parallel arrangement, while at the same time it provides a large contact area for efficient heat...... extraction. Through computer simulations, it is demonstrated that the G-CNT outperforms few-layer graphene by more than 2 orders of magnitude for the c-axis heat transfer, while its thermal resistance is 3 orders of magnitude lower than the state-of-the-art TIMs. We show that heat can be removed from the G...

  5. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Directory of Open Access Journals (Sweden)

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  6. Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma

    KAUST Repository

    Bond, D.

    2017-11-03

    We computationally investigate the Richtmyer–Meshkov instability of a density interface with a single-mode perturbation in a two-fluid, ion–electron plasma with no initial magnetic field. Self-generated magnetic fields arise subsequently. We study the case where the density jump across the initial interface is due to a thermal discontinuity, and select plasma parameters for which two-fluid plasma effects are expected to be significant in order to elucidate how they alter the instability. The instability is driven via a Riemann problem generated precursor electron shock that impacts the density interface ahead of the ion shock. The resultant charge separation and motion generates electromagnetic fields that cause the electron shock to degenerate and periodically accelerate the electron and ion interfaces, driving Rayleigh–Taylor instability. This generates small-scale structures and substantially increases interfacial growth over the hydrodynamic case.

  7. Modeling of cross-plane interface thermal conductance between graphene nano-ribbons

    International Nuclear Information System (INIS)

    Varshney, Vikas; Lee, Jonghoon; Farmer, Barry L; Voevodin, Andrey A; Roy, Ajit K

    2014-01-01

    Using non-equilibrium molecular dynamics for thermal energy transfer, we investigate the interfacial thermal conductance between non-covalently interacting graphene nano-ribbons (GNRs) of varying lengths and widths in a cross-contact (x-shaped) geometry. Our results show that the out-of-plane conductance between GNRs can vary significantly (up to a factor of 4) depending upon their geometric parameters. We observe that when plotted against aspect ratio, the predicted interface thermal conductance values fit excellently on a single master-plot with a logarithmic scaling, suggesting the importance of GNR aspect ratio towards thermal conductance. We propose a model based on incorporating different thermal conductance characteristics of edge and inner interacting regions which predicts the observed logarithmic dependence on aspect ratio. We also study the effect of graphene edge roughness, temperature, and strain on out-of-plane thermal conductance and discuss the observed results based on local vibrational characteristics of atoms within interacting region, number of interacting phonons, and the degree to which they interact across the interaction zone. (paper)

  8. Experimental evidence of the thermal effect of lubricating oil sprayed in sliding-vane air compressors

    Directory of Open Access Journals (Sweden)

    Gianluca Valenti

    2014-11-01

    Full Text Available A way to increase the efficiency of positive-displacement air compressor is spraying the lube oil to exploit it not only as lubricating and sealing agent but also as thermal ballast. This work seeks the experimental evidence in sliding-vane compressors by measuring the air standard volume flow rate and the electrical power input of three diverse configurations. The first configuration, taken as the reference, employs a conventional injection system comprising calibrated straight orifices. The other two, referred to as advanced, adopt smaller orifices and pressure-swirl full-cone nozzles designed for the purpose; the third configuration utilizes a pump to boost the oil pressure. The laser imagining technique shows that the nozzles generate sprays that break-up within a short distance into spherical droplets, ligaments, ramifications and undefined structures. Tests on the packaged compressors reveal that the advanced configurations provide almost the same air flow rate while utilizing half of the oil because the sprays generate a good sealing. Moreover, the sprayed oil is acting as a thermal ballast because the electrical input is reduced by 3.5% and 3.0%, respectively, if the pump is present or not , while the specific energy requirement, accounting for the slightly reduced air flow, by 2.4% and 2.9%, respectively.

  9. SLIDES: a program to draw slides and posters

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, R.; Schofield, J.

    1977-04-01

    SLIDES is a program which takes text and commands as input and prepares lettered slides and posters. When run on the time-sharing computer, the program can display its output on an interactive graphics terminal; in batch, it can direct its graphical output to a variety of plotters. The program uses DISSPLA graphical subroutines and standard ANL plotter subroutines. This report contains material written for the beginning user, who should be able to produce useful slides or posters by following the examples. This report also serves as a complete reference for the SLIDES program. 4 figures.

  10. Surface Modification Of The High Temperature Porous Sliding Bearings With Solid Lubricant Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Weinert H.

    2015-09-01

    Full Text Available A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear characteristics of the sleeves and to determine the influence of sealing of the sliding interface on these characteristics. It is found that application of WS2 sold lubricant nano- and micro-particles and preservation of a particle leakage out of interface allows to achieve at the high temperature the friction coefficients comparable to those at ambient temperature.

  11. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  12. Thermal-structural Analysis and Fatigue Life Evaluation of a Parallel Slide Gate Valve in Accordance with ASME B and PVC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Han, Jeong Sam [Andong Nat’l Univ., Andong (Korea, Republic of); Jae Seung Choi [Key Valve Technologies Ltd., Siheung (Korea, Republic of)

    2017-02-15

    A parallel slide gate valve (PSGV) is located between the heat recovery steam generator (HRSG) and the steam turbine in a combined cycle power plant (CCPP). It is used to control the flow of steam and runs with repetitive operations such as startups, load changes, and shutdowns during its operation period. Therefore, it is necessary to evaluate the fatigue damage and the structural integrity under a large compressive thermal stress due to the temperature difference through the valve wall thickness during the startup operations. In this paper, the thermal-structural analysis and the fatigue life evaluation of a 16-inch PSGV, which is installed on the HP steam line, is performed according to the fatigue life assessment method described in the ASME B and PVC VIII-2; the method uses the equivalent stress from the elastic stress analysis.

  13. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    Science.gov (United States)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  14. Slide 1

    Indian Academy of Sciences (India)

    Projected Rainfall (Weighted Mean CDF; A1B scenario) · Slide 18 · Imprecise Probability · Bounds for Probability of Drought · Slide 21 · Possibility Distribution of GCMs and Scenarios · Mahanadi River Basin - Streamflow · Projections for future monsoon inflows to Hirakud Reservoir · Slide 25 · Rule curve for adaptive policies.

  15. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    Science.gov (United States)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic

  16. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    Science.gov (United States)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  17. A control approach for the operation of DG units under variations of interfacing impedance in grid-connected mode

    DEFF Research Database (Denmark)

    Hoseini, S. Kazem; Pouresmaeil, E.; Hosseinnia, S. H.

    2016-01-01

    . However, the converter-based DG interface is subjected to the unexpected uncertainties, which highly influence performance of control loop of DG unit and operation of interfaced converter. The interfacing impedance seen by interfaced VSC may considerably vary in power grid, and the stability of interfaced...... converter is highly sensitive to the impacts of this impedance changes; then, DG unit cannot inject appropriate currents. To deal with the instability problem, a control method based on fractional order active sliding mode is proposed in this paper, which is less sensitive to variations of interfacing...... impedance. A fractional sliding surface, which demonstrates the desired dynamics of system is developed and then, the controller is designed in two phases as sliding and reaching phases to keep the control loop stable. Stability issues of the control method are discussed in details and the conditions...

  18. Thermal conductance of the AlN/Si and AlN/SiC interfaces calculated with taking into account the detailed phonon spectra of the materials and the interface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M. [LNIO, ICD, CNRS (FRE2848), Universite de Technologie de Troyes, 10010-Troyes (France); Pereira, S.; Correia, M.R. [CICECO and I3N, University of Aveiro, Aveiro-3810-193 (Portugal); Masri, P. [GES, CNRS-UMR 5650, Universite de Montpellier II, Montpellier-34095 (France)

    2010-01-15

    We present a calculation of the thermal conductance (TC) of the interface between aluminium nitride (AlN) and silicon (Si) and that between AlN and silicon carbide (SiC) with taking into account the detailed phonon spectra of the materials, as obtained from first principles calculations, and the interface conditions. On the basis of the results obtained, we discuss the relation between the interface TC, the interface conditions, and the mismatches between the acoustic waves velocities and the phonon densities of states of the materials in contact. Our calculation method is expected to provide a reliable tool for thermal management strategy, independently from the substrate choice (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Numeric simulations of en-masse space closure with sliding mechanics.

    Science.gov (United States)

    Kojima, Yukio; Fukui, Hisao

    2010-12-01

    En-masse sliding mechanics have been typically used for space closure. Because of friction created at the bracket-wire interface, the force system during tooth movement has not been clarified. Long-term tooth movements in en-masse sliding mechanics were simulated with the finite element method. Tipping of the anterior teeth occurred immediately after application of retraction forces. The force system then changed so that the teeth moved almost bodily, and friction occurred at the bracket-wire interface. Net force transferred to the anterior teeth was approximately one fourth of the applied force. The amount of the mesial force acting on the posterior teeth was the same as that acting on the anterior teeth. Irrespective of the amount of friction, the ratio of movement distances between the posterior and anterior teeth was almost the same. By increasing the applied force or decreasing the frictional coefficient, the teeth moved rapidly, but the tipping angle of the anterior teeth increased because of the elastic deflection of the archwire. Finite element simulation clarified the tooth movement and the force system in en-masse sliding mechanics. Long-term tooth movement could not be predicted from the initial force system. The friction was not detrimental to the anchorage. Increasing the applied force or decreasing the friction for rapid tooth movement might result in tipping of the teeth. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces

    International Nuclear Information System (INIS)

    Lin Shangchao; Buehler, Markus J

    2013-01-01

    The intrinsic interfacial thermal resistance at graphene/organic interfaces, as a result of mismatches in the phonon vibrational spectra of the two materials, diminishes the overall heat transfer performance of graphene/organic nanocomposites. In this paper, we use molecular dynamics (MD) simulations to design alkyl-pyrene molecules that can non-covalently functionalize graphene surfaces in contact with a model organic phase composed of octane. The alkyl-pyrene molecules possess phonon-spectra features of both graphene and octane and, therefore, can serve as phonon-spectra linkers to bridge the vibrational mismatch at the graphene/octane interface. In support of this hypothesis, we find that the best linker candidate can enhance the out-of-plane graphene/organic interfacial thermal conductance by ∼22%, attributed to its capability to compensate the low-frequency phonon mode of graphene. We also find that the length of the alkyl chain indirectly affects the interfacial thermal conductance through different orientations of these chains because they dictate the contribution of the out-of-plane high-frequency carbon–hydrogen bond vibrations to the overall phonon transport. This study advances our understanding of the less destructive non-covalent functionalization method and design principles of suitable linker molecules to enhance the thermal performance of graphene/organic nanocomposites while retaining the intrinsic chemical, thermal, and mechanical properties of pristine graphene. (paper)

  1. DURABILITY AND TRIBOLOGICAL PROPERTIES OF THERMALLY SPRAYED WC CERMET COATING IN LUBRICATED ROLLING WITH SLIDING CONTACT

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2010-09-01

    Full Text Available Durability and tribological properties of thermally sprayed WC-Cr-Ni cermet coating were investigated experimentally in lubricated rolling with sliding contact conditions. By means of the high energy type flame spraying (Hi-HVOF method, the coating was formed onto the axially ground and circumferentially ground roller specimens made of a thermally refined carbon steel. In the experiments, the WC cermet coated steel roller was mated with the carburized hardened steel roller without coating in line contact condition. The coated roller was mated with the smooth non-coated roller under a contact pressure of 1.0 or 1.2 GPa, and it was mated with the rough non-coated roller under a contact pressure of 0.6 or 0.8 GPa. As a result, it was found that in general, the coating on the circumferentially ground substrate shows a lower durability compared with that on the axially ground substrate and this difference appears more distinctly for the higher contact pressure for both smooth mating surface and rough mating surface. It was also found that there are significant differences in the tribological properties of WC cermet coating depending on the contact pressure. In addition, depending on the smooth or rough mating surface, remarkable differences in the tribological properties were found.

  2. In situ observation of a hydrogel-glass interface during sliding friction

    OpenAIRE

    Yamamoto, Tetsurou; Kurokawa, Takayuki; Ahmed, Jamil; Kamita, Gen; Yashima, Shintaro; Furukawa, Yuichiro; Ota, Yuko; Furukawa, Hidemitsu; Gong, Jian Ping

    2014-01-01

    Direct observation of hydrogel contact with a solid surface in water is indispensable for understanding the friction, lubrication, and adhesion of hydrogels under water. However, this is a difficult task since the refractive index of hydrogels is very close to that of water. In this paper, we present a novel method to in situ observe the macroscopic contact of hydrogels with a solid surface based on the principle of critical refraction. This method was applied to investigate the sliding frict...

  3. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    Directory of Open Access Journals (Sweden)

    Ya Feng

    2014-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  4. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-04-21

    We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.

  5. An experimental and theoretical investigation of stick-slip, steady-state and roughness dominated sliding in fiber-reinforced composites

    International Nuclear Information System (INIS)

    Mackin, T.J.

    1995-01-01

    The mechanical properties of fiber reinforced composites depends strongly upon the properties of the fiber/matrix interface. Enhanced fracture resistance and strain to failure are synonymous with debonding and sliding of the reinforcement phase. Thus, the two key properties of the composite are the interfacial toughness and the post-debond sliding stress. After debonding a variety of interfacial sliding phenomena are noted, including: stick-slip, steady-state, and roughness dominated sliding. The interfacial properties, including the coefficient of friction, the radial clamping pressure, asperity amplitude, the elastic properties of the constituents, and the compliance of the test machine, each play a role in the operative sliding phenomenon. Experiments have been conducted to explore each of these phenomena. In addition, models have been developed that rationalize all of the observed behavior

  6. Graphene nanocomposites as thermal interface materials for cooling energy devices

    Science.gov (United States)

    Dmitriev, A. S.; Valeev, A. R.

    2017-11-01

    The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.

  7. Analysis of Thermo-Mechanical Distortions in Sliding Components : An ALE Approach

    NARCIS (Netherlands)

    Owczarek, P.; Geijselaers, H.J.M.

    2008-01-01

    A numerical technique for analysis of heat transfer and thermal distortion in reciprocating sliding components is proposed. In this paper we utilize the Arbitrary Lagrangian Eulerian (ALE) description where the mesh displacement can be controlled independently from the material displacement. A

  8. Seismic response of a sliding polar crane for a nuclear power plant

    International Nuclear Information System (INIS)

    Rieck, P.; Schlund, H.

    1981-01-01

    In the analysis, the bridge crane design is mathematically modeled in the vertical and lateral directions. The bridge crane system is postulated to vibrate in a linear-elastic fashion, until the dynamic reactions occurring at the crane wheel/support interface exceed the available resisting friction, at which time sliding is initiated. Sliding is postulated to continue until the relative velocity of the crane and supporting structure is zero, at which time a linear-elastic vibration mode is again developed. The analysis considers the variation in static and dynamic coefficients of friction and the variation of available friction resistance due to the crane vertical response. The initiation of sliding is modeled as an instantaneous event requiring a redescription of the crane system physical properties and coordinate system. Transfer from the vibrating system to the sliding system is governed by maintaining conservation of energy. Seismic excitation is defined using design floor response spectra appropriate for the crane system location. The design spectra are decomposed into a spectrum of acceleration time history harmonic motions which, when applied to a spectrum of single degree-of-freedom damped spring-mass oscillators, redevelops the original design spectra. The spectrum of acceleration times histories is used as base excitation to the mathematical model. Analytical results include sliding displacements and velocities, number of time sliding occurs, cumulative sliding displacements, and system kinetic and potential energy. A description of the crane system configuration and the development of the effective mass and stiffness values used in the analysis of the vibrating and sliding systems is presented. The equations of motions coupling the horizontal and vertical responses during the vibrating and sliding phases are presented. A discussion evaluating the applicability of the results, and how the results can be used for design, is also presented. (orig.)

  9. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  10. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  11. SlideToolkit: an assistive toolset for the histological quantification of whole slide images.

    Directory of Open Access Journals (Sweden)

    Bastiaan G L Nelissen

    Full Text Available The demand for accurate and reproducible phenotyping of a disease trait increases with the rising number of biobanks and genome wide association studies. Detailed analysis of histology is a powerful way of phenotyping human tissues. Nonetheless, purely visual assessment of histological slides is time-consuming and liable to sampling variation and optical illusions and thereby observer variation, and external validation may be cumbersome. Therefore, within our own biobank, computerized quantification of digitized histological slides is often preferred as a more precise and reproducible, and sometimes more sensitive approach. Relatively few free toolkits are, however, available for fully digitized microscopic slides, usually known as whole slides images. In order to comply with this need, we developed the slideToolkit as a fast method to handle large quantities of low contrast whole slides images using advanced cell detecting algorithms. The slideToolkit has been developed for modern personal computers and high-performance clusters (HPCs and is available as an open-source project on github.com. We here illustrate the power of slideToolkit by a repeated measurement of 303 digital slides containing CD3 stained (DAB abdominal aortic aneurysm tissue from a tissue biobank. Our workflow consists of four consecutive steps. In the first step (acquisition, whole slide images are collected and converted to TIFF files. In the second step (preparation, files are organized. The third step (tiles, creates multiple manageable tiles to count. In the fourth step (analysis, tissue is analyzed and results are stored in a data set. Using this method, two consecutive measurements of 303 slides showed an intraclass correlation of 0.99. In conclusion, slideToolkit provides a free, powerful and versatile collection of tools for automated feature analysis of whole slide images to create reproducible and meaningful phenotypic data sets.

  12. Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonlinear Sliding Surface

    OpenAIRE

    Yong-Kun Lu

    2015-01-01

    An adaptive fuzzy integral sliding-mode controller using nonlinear sliding surface is designed for the speed regulator of a field-oriented induction motor drive in this paper. Combining the conventional integral sliding surface with fractional-order integral, a nonlinear sliding surface is proposed for the integral sliding-mode speed control, which can overcome the windup problem and the convergence speed problem. An adaptive fuzzy control term is utilized to approximate the uncertainty. The ...

  13. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  14. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2015-01-12

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  15. Role of fluttering dislocations in the thermal interface resistance between a silicon crystal and plastic solid 4He

    Science.gov (United States)

    Amrit, Jay; Ramiere, Aymeric; Volz, Sebastian

    2018-01-01

    A quantum solid (solid 4He) in contact with a classical solid defines a new class of interfaces. In addition to its quantum nature, solid 4He is indeed a very plastic medium. We examine the thermal interface resistance upon solidification of superfluid 4He in contact with a silicon crystal surface (111) and show that dislocations play a crucial role in the thermal interface transport. The growth of solid 4He and the measurements are conducted at the minimum of the melting curve of helium (0.778 K and ˜25 bar ). The results display a first-order transition in the Kapitza resistance from a value of RK ,L=(80 ±8 ) c m2K /W at a pressure of 24.5 bar to a value of RK ,S=(41.7 ±8 ) c m2K /W after the formation of solid helium at ˜25.2 bar . The drop in RK ,S is only of a factor of ˜2 , although transverse phonon modes in solid 4He now participate in heat transmission at the interface. We provide an explanation for the measured RK ,S by considering the interaction of thermal phonons with vibrating dislocations in solid 4He. We demonstrate that this mechanism, also called fluttering, induces a thermal resistance RF l∝NdT-6 , where T is the temperature and Nd is the density of dislocations. We estimate that for dislocation densities on the order of ˜107c m-2 , RF l predominates over the boundary resistance RK ,S. These fundamental findings shed light on the role of dislocations and provide a quantitative explanation for previous experiments which showed no measurable change in the Kapitza resistance between Cu and superfluid 4He upon solidification of the latter. This demonstrates the possibility of using dislocations as an additional means to tailor thermal resistances at interfaces, formed especially with a plastic material.

  16. Metallic Nanocomposites as Next-Generation Thermal Interface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagabandi, Nirup [Texas A& M University; Oh, Jun Kyun [Texas A& M University; Akbulut, Mustafa [Texas A& M University; Yegin, Cengiz [Texas A& M University

    2017-07-27

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownian motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the

  17. Laboratory studies of frictional sliding and the implications of precursory seismicity

    Science.gov (United States)

    Selvadurai, Paul A.

    The dynamic transition from slow to rapid sliding along a frictional interface is of interest to geophysicists, engineers and scientists alike. In our direct shear experiment, we simulated a pre-existing frictional fault similar to those occurring naturally in the Earth. The laboratory study reported here has incorporated appropriate sensors that can detect foreshock events on the fringe of a nucleation zone prior to a gross fault rupture (main shock). During loading we observed foreshocks sequences as slip transitioned from slow to rapid sliding. These laboratory-induced foreshocks showed similar acoustic characteristics and spatio-temporal evolution as those detected in nature. Through direct observation (video camera), foreshocks were found to be the rapid, localized (millimeter length scale) failure of highly stresses asperities formed along the interface. The interface was created by the meshing of two rough polymethyl methacrylate (PMMA) bodies in a direct shear configuration. A carefully calibrated pressure sensitive film was used to map the contact junctions (asperities) throughout the interface at a range of applied normal loads Fn. Foreshocks were found to coalesce in a region of the fault that exhibited a more dense distribution of asperities (referred to as the seismogenic region). Microscopy of the interface in the seismogenic region displayed a variety of surface roughness at various length scales. This may have been introduced from the surface preparation techniques use to create a mature interface. The mature interface consisted of 'flat-topped' asperity regions with separating sharp valleys. The 'flat-topped' sections spanned millimetric length scales and were considerably flatter (nanometric roughness) that the roughness exhibited at longer length scales (tens of millimeters). We believe that the smoother, 'flat-topped' sections were responsible for the individual asperity formation (determining their size and strength), whereas the longer length

  18. Evaluation of using ferrofluid as an interface material for a field-reversible thermal connector

    Science.gov (United States)

    Yousif, Ahmed S.

    The electrical functionality of an avionics chassis is limited due to heat dissipation limits. The limits arise due to the fact that components in an avionic computer boxes are packed very compactly, with the components mounted onto plug-in cards, and the harsh environment experienced by the chassis limits how heat can be dissipated from the cards. Convective and radiative heat transfer to the ambient are generally not possible. Therefore it is necessary to have heat transferred from the components conducted to the edge of the plug-in cards. The heat then needs to conduct from the card edge to a cold block that not only holds the card in place, but also removes the generated heat by some heat transfer fluid that is circulated through the cold block. The interface between the plug-in card and the cold block typically has a high thermal resistance since it is necessary for the card to have the capability to be re-workable, meaning that the card can be removed and then returned to the chassis. Reducing the thermal resistance of the interface is the objective of the current study and the topic of this thesis. The current design uses a pressure interface between the card and cold block. The contact pressure is increased through the addition of a wedgelock, which is a field-reversible mechanical connector. To use a wedgelock, the cold block has channels milled on the surface with widths that are larger than the thickness of the plug-in card and the un-expanded wedgelock. The card edge is placed in the channel and placed against one of the channel walls. A wedgelock is then placed between the card and the other channel wall. The wedgelock is then expanded by using either a screw or a lever. As the wedgelock expands it fills in the remaining channel gap and bears against the other face of the plug-in card. The majority of heat generated by the components on the plug-in card is forced to conduct from the card into the wall of the cold block, effectively a single sided, dry

  19. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  20. An analysis of the sliding pressure start-up of SCWR

    International Nuclear Information System (INIS)

    Wang, F.; Yang, J.; Li, H.; Zhang, Y.; Zhang, J.; Shan, J.; Gou, J.; Zhang, B.; Chen, C.

    2012-01-01

    In this paper, the preliminary sliding pressure start-up system and scheme of supercritical water-cooled reactor in CGNPC (CGN-SCWR) were proposed. Thermal-hydraulic behavior in start-up procedures was analyzed in detail by employing advanced reactor subchannel analysis software ATHAS. The maximum cladding temperature (MCT for short) and core power of fuel assembly during the whole start-up process were investigated comparatively. The results show that the recommended start-up scheme meets the design requirements from the perspective of thermal-hydraulic. (authors)

  1. Thermal interface pastes nanostructured for high performance

    Science.gov (United States)

    Lin, Chuangang

    Thermal interface materials in the form of pastes are needed to improve thermal contacts, such as that between a microprocessor and a heat sink of a computer. High-performance and low-cost thermal pastes have been developed in this dissertation by using polyol esters as the vehicle and various nanoscale solid components. The proportion of a solid component needs to be optimized, as an excessive amount degrades the performance, due to the increase in the bond line thickness. The optimum solid volume fraction tends to be lower when the mating surfaces are smoother, and higher when the thermal conductivity is higher. Both a low bond line thickness and a high thermal conductivity help the performance. When the surfaces are smooth, a low bond line thickness can be even more important than a high thermal conductivity, as shown by the outstanding performance of the nanoclay paste of low thermal conductivity in the smooth case (0.009 mum), with the bond line thickness less than 1 mum, as enabled by low storage modulus G', low loss modulus G" and high tan delta. However, for rough surfaces, the thermal conductivity is important. The rheology affects the bond line thickness, but it does not correlate well with the performance. This study found that the structure of carbon black is an important parameter that governs the effectiveness of a carbon black for use in a thermal paste. By using a carbon black with a lower structure (i.e., a lower DBP value), a thermal paste that is more effective than the previously reported carbon black paste was obtained. Graphite nanoplatelet (GNP) was found to be comparable in effectiveness to carbon black (CB) pastes for rough surfaces, but it is less effective for smooth surfaces. At the same filler volume fraction, GNP gives higher thermal conductivity than carbon black paste. At the same pressure, GNP gives higher bond line thickness than CB (Tokai or Cabot). The effectiveness of GNP is limited, due to the high bond line thickness. A

  2. Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.

    Directory of Open Access Journals (Sweden)

    Bernd Lahrmann

    Full Text Available Liquid-based cytology (LBC in conjunction with Whole-Slide Imaging (WSI enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-layer scanning. Here, we present a solution that overcomes these limitations in two steps: first, we make sure that focus points are only set on cells. Secondly, we check the total slide focus quality. From a first analysis we detected that superficial dust can be separated from the cell layer (thin layer of cells on the glass slide itself. Then we analyzed 2,295 individual focus points from 51 LBC slides stained for p16 and Ki67. Using the number of edges in a focus point image, specific color values and size-inclusion filters, focus points detecting cells could be distinguished from focus points on artifacts (accuracy 98.6%. Sharpness as total focus quality of a virtual LBC slide is computed from 5 sharpness features. We trained a multi-parameter SVM classifier on 1,600 images. On an independent validation set of 3,232 cell images we achieved an accuracy of 94.8% for classifying images as focused. Our results show that single-layer scanning of LBC slides is possible and how it can be achieved. We assembled focus point analysis and sharpness classification into a fully automatic, iterative workflow, free of user intervention, which performs repetitive slide scanning as necessary. On 400 LBC slides we achieved a scanning-time of 13.9±10.1 min with 29.1±15.5 focus points. In summary, the integration of semantic focus information into whole-slide imaging allows automatic high-quality imaging of LBC slides and subsequent biomarker analysis.

  3. Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.

    Science.gov (United States)

    Lahrmann, Bernd; Valous, Nektarios A; Eisenmann, Urs; Wentzensen, Nicolas; Grabe, Niels

    2013-01-01

    Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-layer scanning. Here, we present a solution that overcomes these limitations in two steps: first, we make sure that focus points are only set on cells. Secondly, we check the total slide focus quality. From a first analysis we detected that superficial dust can be separated from the cell layer (thin layer of cells on the glass slide) itself. Then we analyzed 2,295 individual focus points from 51 LBC slides stained for p16 and Ki67. Using the number of edges in a focus point image, specific color values and size-inclusion filters, focus points detecting cells could be distinguished from focus points on artifacts (accuracy 98.6%). Sharpness as total focus quality of a virtual LBC slide is computed from 5 sharpness features. We trained a multi-parameter SVM classifier on 1,600 images. On an independent validation set of 3,232 cell images we achieved an accuracy of 94.8% for classifying images as focused. Our results show that single-layer scanning of LBC slides is possible and how it can be achieved. We assembled focus point analysis and sharpness classification into a fully automatic, iterative workflow, free of user intervention, which performs repetitive slide scanning as necessary. On 400 LBC slides we achieved a scanning-time of 13.9±10.1 min with 29.1±15.5 focus points. In summary, the integration of semantic focus information into whole-slide imaging allows automatic high-quality imaging of LBC slides and subsequent biomarker analysis.

  4. Slide 1

    Indian Academy of Sciences (India)

    Game Theory · Strategic Form Games (Normal Form Games) · Example : Prisoner's Dilemma · Dominant Strategy Equilibrium · Nash Equilibrium · Nash's Theorem · Slide 17 · Slide 18 · Example 1: Mechanism Design Fair Division of a Cake · Example 2: Mechanism Design Truth Elicitation through an Indirect Mechanism.

  5. Comparing the Richtmyer-Meshkov instability of thermal and ion-species interfaces in two-fluid plasmas

    Science.gov (United States)

    Wheatley, Vincent; Bond, Daryl; Li, Yuan; Samtaney, Ravi; Pullin, Dale

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) of a shock accelerated perturbed density interface is important in both inertial confinement fusion and astrophysics, where the materials involved are typically in the plasma state. Initial density interfaces can be due to either temperature or ion-species discontinuities. If the Atwood number of the interfaces and specific heat ratios of the fluids are matched, these two cases behave similarly when modeled using the equations of either hydrodynamics or magnetohydrodynamics. In the two-fluid ion-electron plasma model, however, there is a significant difference between them: In the thermal interface case, there is a discontinuity in electron density that is also subject to the RMI, while for the ion-species interface case there is not. It will be shown via ideal two-fluid plasma simulations that this causes substantial differences in the dynamics of the flow between the two cases. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.

  6. Attractors near grazing–sliding bifurcations

    International Nuclear Information System (INIS)

    Glendinning, P; Kowalczyk, P; Nordmark, A B

    2012-01-01

    In this paper we prove, for the first time, that multistability can occur in three-dimensional Fillipov type flows due to grazing–sliding bifurcations. We do this by reducing the study of the dynamics of Filippov type flows around a grazing–sliding bifurcation to the study of appropriately defined one-dimensional maps. In particular, we prove the presence of three qualitatively different types of multiple attractors born in grazing–sliding bifurcations. Namely, a period-two orbit with a sliding segment may coexist with a chaotic attractor, two stable, period-two and period-three orbits with a segment of sliding each may coexist, or a non-sliding and period-three orbit with two sliding segments may coexist

  7. Temperature dependant thermal and mechanical properties of a metal-phase change layer interface using the time resolved pump probe technique

    International Nuclear Information System (INIS)

    Schick, V; Battaglia, J-L; Kusiak, A; Rossignol, C; Wiemer, C

    2011-01-01

    Time Resolved Pump Probe (TRPP) technique has been implemented to study the thermal and mechanical properties of Ge 2 Sb 2 Te 5 (GST) film deposited on a silicon substrate. According to the knowledge of the thermal properties of the GST layer, the temperature dependant Thermal Boundary Resistance (TBR) at the metal-GST interface is evaluated. Measuring the acoustic oscillation and more particularly its damping leads to characterize the adhesion at the metal - GST interface. This quantity can be efficiently related to the temperature dependent TBR in the 25 deg. C - 400 deg. C range. The TBR increases with temperature and follows the changes of the crystalline structure of materials. A linear relation between the acoustic reflection coefficient and the logarithm of the thermal boundary resistance is found.

  8. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    Science.gov (United States)

    Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  9. Long-term subglacial sliding patterns based on a sliding law with cavitation

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.

    In ice-sheet models and glacial landscape evolution models, subglacial sliding rates are often related to basal shear stress by a power-law. However, the power-law relationship implies that the subglacial bed can provide unlimited levels of basal drag as sliding rates increases, which is recognized...... as an inadequate assumption, particularly when the effects of subglacial cavities are considered (Schoof 2005). We have implemented a glacial sliding law suggested by Schoof (2005) in a depth-integrated higher-order ice-sheet model (Egholm et al. 2011) and coupled this to a model for glacial hydrology. The sliding...... law includes an upper bound to the basal drag and depends on the effects of longitudinal and transverse stress components for obtaining force balance along the glacier bed. Computational experiments indicate that high annually averaged sliding rates concentrate along valley sides when basal melt...

  10. Sliding wear behavior of E-glass-epoxy/MWCNT composites: An experimental assessment

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2016-03-01

    Full Text Available This investigation has evaluated the sliding wear properties of E-glass-epoxy/MWCNT (multiwalled carbon nanotube composite and Epoxy/MWCNT composite. Four different reinforcements (0, 0.5,1 and 1.5 wt % of MWCNTs are dispersed into an epoxy resin. Design of experiments (DOE and Analysis of variance (ANOVA are employed to understand the relationship between control factors (Percentage of reinforcement, Sliding distance, Sliding velocity and Normal load and response measures (specific wear rate and friction coefficient. The control variables such as sliding distance (300, 600, 900 and 1200 m and normal loads of 10, 15, 20 and 25 N and at sliding velocities of 1, 2, 3 and 4 m/s are chosen for this study. It is observed that that the specific wear rate and friction coefficient can be reduced by the addition of MWCNTs. Scanning electron microscopy (SEM is used to observe the worn surfaces of the samples. Compared with neat epoxy, the composites with MWCNTs showed a lower mass loss, friction coefficient and wear rate and these parameters decreased with the increase of MWCNT percentage. Microscopic investigation of worn out sample fracture surface has revealed that fiber debonding happens when the stresses at the fiber matrix interface exceeds the interfacial strength, causing the fiber to debond from the matrix. The optimum control variables have been derived to reduce both wear and friction coefficient of composites.

  11. Effective lecture slides

    International Nuclear Information System (INIS)

    Lim, Jae Hoon

    1986-01-01

    Lawyers, with their constant opportunity for practice, show a talent for public oratory that few doctors can equal. However, the physician, despite his more modest and hesitant delivery, has one great advantage over the most experienced lawyer. He is allowed to use slides. Slides of good quality conceal defects in oratory and they make for a confident speaker and a contented audience. By contrast, smudged, complicated or ill prepared slides may draw attention to minor defects in delivery and make the audience inattentive.

  12. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  13. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    International Nuclear Information System (INIS)

    Hansen, E. K.

    2015-01-01

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  14. Modelling of the Contact Condition at the Tool/Matrix Interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2003-01-01

    a known contact condition at the contact interface, e.g. either as pure sliding or sticking. The present model uses Coulomb’s law of friction for the sliding condition and the material yield shear stress for the sticking condition to model the contact forces. The model includes heat generation...

  15. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    Directory of Open Access Journals (Sweden)

    Vincenzo Della Mea

    Full Text Available The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  16. Sliding right into disaster : left-to-right sliding windows leak

    NARCIS (Netherlands)

    Bernstein, D.J.; Breitner, J.; Genkin, D.; Groot Bruinderink, L.; Heninger, N.; Lange, T.; van Vredendaal, C.; Yarom, Y.; Fischer, W.; Homma, N.

    2017-01-01

    It is well known that constant-time implementations of modular exponentiation cannot use sliding windows. However, software libraries such as Libgcrypt, used by GnuPG, continue to use sliding windows. It is widely believed that, even if the complete pattern of squarings and multiplications is

  17. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    Science.gov (United States)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  18. Lumped parameter modeling of a two-phase thermal-hydraulic channel with interface tracking

    International Nuclear Information System (INIS)

    Jo, J.H.; Kaufman, J.M.; Ruger, C.J.; Stein, S.

    1978-01-01

    A nonhomogenous, thermal nonequilibrium model for one-dimensional two-phase flow in a heated channel has been formulated in lumped parameter form. The channel is divided into a variable number of flow regimes separated by moving interfaces. The model can be used to predict the behavior of a LWR core and both primary and secondary sides of a steam generator under transient conditions. (author)

  19. Selected Landscape Plants. Slide Script.

    Science.gov (United States)

    McCann, Kevin

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important woody ornamental landscape plants. Included in the script are narrations for use with a total of 253 slides illustrating 92 different plants. Several slides are used to illustrate each plant: besides a view of…

  20. Thermal impedance at the interface of contacting bodies: 1-D examples solved by semi-derivatives

    Directory of Open Access Journals (Sweden)

    Hristov Jordan

    2012-01-01

    Full Text Available Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances of two bodies with different initial temperatures contacting at the interface ( x = 0 at t = 0 . The approach is purely analytic and uses only semi-derivatives (half-time and semi-integrals in the Riemann-Liouville sense. The example solved clearly reveals that the fractional calculus is more effective in calculation the thermal resistances than the entire domain solutions.

  1. Effect of the interface on the mechanical properties and thermal conductivity of bismuth telluride films

    Science.gov (United States)

    Lai, Tang-Yu; Wang, Kuan-Yu; Fang, Te-Hua; Huang, Chao-Chun

    2018-02-01

    Bismuth telluride (Bi2Te3) is a type of thermoelectric material used for energy generation that does not cause pollution. Increasing the thermoelectric conversion efficiency (ZT) is one of the most important steps in the development of thermoelectric components. In this study, we use molecular dynamics to investigate the mechanical properties and thermal conductivity of quintuple layers of Bi2Te3 nanofilms with different atomic arrangements at the interface and study the effects of varying layers, angles, and grain boundaries. The results indicate that the Bi2Te3 nanofilm perfect substrate has the ideal Young’s modulus and thermal conductivity, and the maximum yield stress is observed for a thickness of ∼90 Å. As the interface changed, the structural disorder of atomic arrangement affected the mechanical properties; moreover, the phonons encounter lattice disordered atomic region will produce scattering reduce heat conduction. The results of this investigation are helpful for the application of Bi2Te3 nanofilms as thermoelectric materials.

  2. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    Science.gov (United States)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  3. Metallic Nanocomposites as Next-Generation Thermal Interface Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagabandi, Nirup [Texas A& M University; Oh, Jun K. [Texas A& M University; Akbulut, Mustafa [Texas A& M University; Yegin, Cengiz [Texas A& M University

    2017-09-14

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownian motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the

  4. Mapping stain distribution in pathology slides using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Background: Whole slide imaging (WSI offers a novel approach to digitize and review pathology slides, but the voluminous data generated by this technology demand new computational methods for image analysis. Materials and Methods: In this study, we report a method that recognizes stains in WSI data and uses kernel density estimator to calculate the stain density across the digitized pathology slides. The validation study was conducted using a rat model of acute cardiac allograft rejection and another rat model of heart ischemia/reperfusion injury. Immunohistochemistry (IHC was conducted to label ED1 + macrophages in the tissue sections and the stained slides were digitized by a whole slide scanner. The whole slide images were tessellated to enable parallel processing. Pixel-wise stain classification was conducted to classify the IHC stains from those of the background and the density distribution of the identified IHC stains was then calculated by the kernel density estimator. Results: The regression analysis showed a correlation coefficient of 0.8961 between the number of IHC stains counted by our stain recognition algorithm and that by the manual counting, suggesting that our stain recognition algorithm was in good agreement with the manual counting. The density distribution of the IHC stains showed a consistent pattern with those of the cellular magnetic resonance (MR images that detected macrophages labeled by ultrasmall superparamagnetic iron-oxide or micron-sized iron-oxide particles. Conclusions: Our method provides a new imaging modality to facilitate clinical diagnosis. It also provides a way to validate/correlate cellular MRI data used for tracking immune-cell infiltration in cardiac transplant rejection and cardiac ischemic injury.

  5. ACTINET-I3 Summer School on Analytical Innovation in the field of actinide recycling - Slides of the presentations

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Nash, K.L.; Puget, P.; Szabo, Z.; Vallet, V.; Berthon, L.; Duhamet, J.; Wipff, G.; Dufreche, J.F.; Walter, P.; Thiebaut, D.; Toulhoat, P.; Aupiais, J.; Amatore, C.

    2011-01-01

    This conference dealt with 3 main topics: analytical innovation in separation processes (hyphenated techniques, analytical chips,...), actinide recycling (extraction, interfaces, processes,...) and chemistry and thermodynamics of actinides. This document is composed of the slides of the presentations

  6. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    Science.gov (United States)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  7. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  8. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, R.; Vanossi, A. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Benassi, A. [CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Tosatti, E. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  9. Slide system for machine tools

    Science.gov (United States)

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  10. At-line gas chromatographic-mass spectrometric analysis of fatty acid profiles of green microalgae using a direct thermal desorption interface

    NARCIS (Netherlands)

    Blokker, P.; Pel, R.; Akoto, L.; Udo, A.; Brinkman, U.A.Th.; Vreuls, R.J.J.

    2002-01-01

    Thermally assisted hydrolysis and methylation¯gas chromatography (THM¯GC) is an important tool to analyse fatty acid in complex matrices. Since THM¯GC has major drawbacks such as isomerisation when applied to fatty acids in natural matrices, a direct thermal desorption (DTD) interface and an

  11. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  12. Glacier seismology: eavesdropping on the ice-bed interface

    Science.gov (United States)

    Walter, F.; Röösli, C.

    2015-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  13. Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly (ether-ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haoxiang; Kumar, Satish, E-mail: satish.kumar@me.gatech.edu [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Chen, Liang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi (China); Varshney, Vikas [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Universal Technology Corporation, Dayton, Ohio 45432 (United States); Roy, Ajit K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2016-09-07

    Carbon nanostructures such as carbon nanotube (CNT), graphene, and carbon fibers can be used as fillers in amorphous polymers to improve their thermal properties. In this study, the effect of covalent bonding of CNT with poly(ether ketone) (PEK) on interfacial thermal interactions is investigated using non-equilibrium molecular dynamics simulations. The number of covalent bonds between (20, 20) CNT and PEK is varied in the range of 0–80 (0%–6.25%), and the thermal boundary conductance is computed. The analysis reveals that covalent functionalization of CNT atoms can enhance the thermal boundary conductance by an order of magnitude compared to the non-functionalized CNT-PEK interface at a high degree of CNT functionalization. Besides strengthening the thermal coupling, covalent functionalization is also shown to modify the phonon spectra of CNT. The transient spectral energy analysis shows that the crosslinks cause faster energy exchange from CNT to PEK in different frequency bands. The oxygen atom of hydroxyl group of PEK contributes energy transfer in the low frequency band, while aromatic and carbonyl carbon atoms play a more significant role in high frequency bands. In addition, by analyzing the relaxation time of the spectral temperature of different frequency bands of CNT, it is revealed that with increasing number of bonds, both lower frequency vibrational modes and higher frequency modes efficiently couple across the CNT-PEK interface and contribute in thermal energy transfer from CNT to the matrix.

  14. Using slides to test for changes in crown defoliation assessment methods. Part I: Visual assessment of slides.

    Science.gov (United States)

    Dobbertin, Matthias; Hug, Christian; Mizoue, Nobuya

    2004-11-01

    In this study we used photographs of tree crowns to test whether the assessment methods for tree defoliation in Switzerland have changed over time. We randomly selected 24 series of slides of Norway spruce with field assessments made between 1986 and 1995. The slides were randomly arranged and assessed by three experts without prior knowledge of the year when the slide was taken or the tree number. Defoliation was assessed using the Swiss reference photo guide. Although the correlations between the field assessments and slide assessments were high (Spearman's rank correlation coefficient ranged between 0.79 and 0.83), we found significant differences between field and slide assessments (4.3 to 9% underprediction by the slide assessors) and between the slide assessments. However, no significant trends in field assessment methods could be detected. When the mean differences between field and slide assessments were subtracted, in some years, field assessors consistently underpredicted (1990, 1992) or overpredicted defoliation (1987, 1991). Defoliation tended to be overpredicted in slides taken against the light, and underpredicted for trees with more than 25% crown overlap. We conclude that slide series can be used to detect changes in assessment methods. However, potential observer bias calls for more objective methods of assessment.

  15. Kapitza thermal conductance at the interface between Lennard-Jones crystals using non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-01-01

    We characterize the thermal Kapitza conductance between Lennard-Jones solids using non-equilibrium molecular dynamics simulations. We consider a series of perfect interfaces between mass-mismatched solids. We show that both the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM) fail to predict the interfacial conductance even for large acoustic mismatched solids. This poor agreement may be explained by the use of equilibrium distributions of phonons in the expression of the conductance. On the other hand, we show that an extension of AMM taking into account the out-of-equilibrium phonon distribution on both sides of the interface leads to a good agreement with the simulation results, even for interfaces between almost similar materials. This opens the way to understand interfacial heat transport across real semi-conductors and dielectrics.

  16. Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor

    Directory of Open Access Journals (Sweden)

    Tokiya Yamaji

    2017-01-01

    Full Text Available In the modern society with a variety of information electronic devices, human interfaces increase their importance in a boundary of a human and a device. In general, the human is required to get used to the device. Even if the device is designed as a universal device or a high-usability device, the device is not suitable for all users. The usability of the device depends on the individual user. Therefore, personalized and customized human interfaces are effective for the user. To create customized interfaces, we propose rapid prototyping human interfaces using stretchable strain sensors. The human interfaces comprise parts formed by a three-dimensional printer and the four strain sensors. The three-dimensional printer easily makes customized human interfaces. The outputs of the interface are calculated based on the sensor’s lengths. Experiments evaluate three human interfaces: a sheet-shaped interface, a sliding lever interface, and a tilting lever interface. We confirm that the three human interfaces obtain input operations with a high accuracy.

  17. The effect of human-mattress interface's temperature on perceived thermal comfort.

    Science.gov (United States)

    Califano, R; Naddeo, A; Vink, P

    2017-01-01

    In recent years, methods that allow for an objective evaluation of perceived comfort, in terms of postural, physiological, cognitive and environmental comfort, have received a great deal of attention from researchers. This paper focuses on one of the factors that influences physiological comfort perception: the temperature difference between users and the objects with which they interact. The first aim is to create a measuring system that does not affect the perceived comfort during the temperatures' acquisition. The main aim is to evaluate how the temperature at the human-mattress interface can affect the level of perceived comfort. A foam mattress has been used for testing in order to take into account the entire back part of the human body. The temperature at the interface was registered by fourteen 100 Ohm Platinum RTDs (Resistance Temperature Detectors) placed on the mattress under the trunk, the shoulders, the buttocks, the legs, the thighs, the arms and the forearms of the test subject. 29 subjects participated in a comfort test in a humidity controlled environment. The test protocol involved: dress-code, anthropometric-based positioning on mattress, environment temperature measuring and an acclimatization time before the test. At the end of each test, each of the test subject's thermal sensations and the level of comfort perception were evaluated using the ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) scale. The data analyses concerned, in the first instance, correlations between the temperature at the interface and comfort levels of the different parts of the body. Then the same analyses were performed independently of the body parts being considered. The results demonstrated that there was no strong correlation among the studied variables and that the total increase of temperature at interface is associated with a reduction in comfort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    Science.gov (United States)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  19. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chieduko, Victor [UQM Technologies, Inc.; Lall, Rajiv [UQM Technologies, Inc.; Gilbert, Alan [UQM Technologies, Inc.

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. The results were compared to currently available models for contact resistance, and one model was adapted for prediction of TCR in future motor designs.

  20. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface

    Science.gov (United States)

    Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.

    2018-01-01

    Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.

  1. Gastric mucus and mucuslike hydrogels: Thin film lubricating properties at soft interfaces

    DEFF Research Database (Denmark)

    Røn, Troels; Patil, Navin J.; Ajalloueian, Fatemeh

    2017-01-01

    to be superior at hydrophilic tribological interfaces compared to hydrophobic ones. Facile spreading of all mucus samples at hydrophilic steel–polydimethylsiloxane (PDMS) interfaces allowed for the retainment of the lubricating films over a wide range of speed, slide/roll ratio, and external load. In contrast......, poor wetting at hydrophobic PDMS–PDMS interfaces led to depletion of the mucus samples from the interface with increasing speed. Among the different mucus models investigated in this study, fluid mixtures of commercially available porcine gastric mucin (PGM) and polyacrylic acid (PAA) displayed...

  2. Atomic structure and thermal stability of interfaces between metallic glass and embedding nano-crystallites revealed by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.Z.; Yang, G.Q.; Xu, B.; Qi, C.; Kong, L.T., E-mail: konglt@sjtu.edu.cn; Li, J.F.

    2015-10-25

    Molecular dynamics simulations were performed to investigate the atomic structure and thermal stability of interfaces formed between amorphous Cu{sub 50}Zr{sub 50} matrix and embedding B2 CuZr nano-crystallites. The interfaces are found to be rather abrupt, and their widths show negligible dependence on the nano-crystallite size. Local atomic configuration in the interfacial region is dominated by geometry characterized by Voronoi polyhedra <0,5,2,6> and <0,4,4,6>, and the contents of these polyhedra also exhibit apparent size dependence, which in turn results in an increasing trend in the interfacial energy against the nano-crystallite size. Annealing of the interface models at elevated temperatures will also enrich these characterizing polyhedra. While when the temperature is as high as the glass transition temperature of the matrix, growth of the nano-crystallites will be appreciable. The growth activation energy also shows size dependence, which is lower for larger nano-crystallites, suggesting that large nano-crystallites are prone to grow upon thermal disturbance. - Highlights: • Special clusters characterizing the local geometry are abundant in the interfaces. • Their content varies with the size of the embedding nano-crystallite. • In turn, size dependences in interfacial thermodynamics and kinetics are observed.

  3. Coefficient of Friction Measurements for Thermoplastics and Fiber Composites under Low Sliding Velocity and High Pressure

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Svendsen, G.; Hiller, Jochen

    2012-01-01

    Friction materials for typical brake applications are normally designed considering thermal stability as the major performance criterion. There are however brake applications with very limited sliding velocities, where the generated heat is insignificant. In such cases it is possible that frictio...

  4. Influence of normal loads and sliding velocities on friction properties of engineering plastics sliding against rough counterfaces

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Chowdhury, M A; Rahaman, M L; Oumer, A N

    2016-01-01

    Friction properties of plastic materials are very important under dry sliding contact conditions for bearing applications. In the present research, friction properties of engineering plastics such as polytetrafluoroethylene (PTFE) and nylon are investigated under dry sliding contact conditions. In the experiments, PTFE and nylon slide against different rough counterfaces such as mild steel and stainless steel 316 (SS 316). Frictional tests are carried out at low loads 5, 7.5 and 10 N, low sliding velocities 0.5, 0.75 and 1 m/s and relative humidity 70%. The obtained results reveal that friction coefficient of PTFE increases with the increase in normal loads and sliding velocities within the observed range. On the other hand, frictional values of nylon decrease with the increase in normal loads and sliding velocities. It is observed that in general, these polymers show higher frictional values when sliding against SS 316 rather than mild steel. During running-in process, friction coefficient of PTFE and nylon steadily increases with the increase in rubbing time and after certain duration of rubbing, it remains at steady level. At identical operating conditions, the frictional values are significantly different depending on normal load, sliding velocity and material pair. It is also observed that in general, the influence of normal load on the friction properties of PTFE and nylon is greater than that of sliding velocity. (paper)

  5. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    International Nuclear Information System (INIS)

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S.

    1992-01-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses

  6. Sliding force measurements of the LHC RF contact Plug In Modules at 15 K and in UHV

    CERN Document Server

    Artoos, K; Renaglia, T; CERN. Geneva. TS Department

    2008-01-01

    Some sliding RF contacts mounted in the Plug In Modules in the LHC interconnects failed during a thermal cycle between 4.2 K and room temperature. Some of the gold-coated copper-beryllium RF fingers buckled during the warm up of the machine, indicating that one or more parameters during operation (e.g. the friction coefficient) could be different from what was used in the calculations. This report describes the measurement of the longitudinal forces acting on the sliding RF fingers at operating vacuum and temperatures.

  7. Sliding force measurements on the LHC RF contact Plug In Modules at 15 K and in UHV

    CERN Document Server

    Artoos, K; Renaglia, T

    2008-01-01

    Some sliding RF contacts mounted in the Plug In Modules in the LHC interconnects failed during a thermal cycle between 4.2 K and room temperature. Gold-coated copperberyllium RF fingers buckled during the warm up of the machine, indicating that one or more parameters during operation (e.g. the friction coefficient under vacuum) could be different from what was used in the calculations. This report describes the measurement of the longitudinal forces acting on the sliding RF fingers at operating vacuum and temperatures.

  8. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  9. Frictional sliding tests on combined coal-rock samples

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2014-06-01

    Full Text Available A test system was developed to understand the sliding mechanism of coal-rock structure. The test system was composed by a double-shear testing model and an acousto-optic monitoring system in association with a digital camera and an acoustic emission (AE instrument. The tests can simulate the movement of activated faults and the sliding in coal-rock structure. In this regard, instable sliding conditions of coal-rock samples, sliding types under different conditions, displacement evolution law, and AE characteristics during sliding process were investigated. Several sliding types were monitored in the tests, including unstable continuous sliding, unstable discontinuous sliding, and stable sliding. The sliding types have close relation with the axial loads and loading rates. Larger axial load and smaller loading rate mean that unstable sliding is less likely to occur. The peak shear stress was positively correlated with the axial load when sliding occurred, whereas the displacement induced by unstable sliding was uncorrelated with the axial load. A large number of AE events occurred before sliding, and the AE rate decreased after stable sliding. The results show that the tests can well simulate the process of structural instability in a coal bump, and are helpful in the understanding of fault activation and the physical processes during squeezing process of roof and floor.

  10. The influence of reciprocating sliding wear on the oxidation behaviour of Fe-12Cr steel

    International Nuclear Information System (INIS)

    Smith, A.F.

    1989-01-01

    Medium-chromium ferritic alloys are used extensively in advanced gas cooled reactors (AGRs). Under certain conditions these alloys can undergo breakaway oxidation in which the rate-limiting step is located at the oxide/metal interface rather than the more usual gas/oxide interface; this results in linear oxidation kinetics. Repeated removal of oxide layers can expose chromium-depleted metal to the oxidizing gas and promote nucleation of breakaway oxidation. The question has been addressed as to whether high temperature sliding wear processes can also disrupt the surface so as to make the material potentially susceptible to breakaway oxidation. High temperature reciprocating wear tests of Fe-12Cr material in both low and high pressure reactor gas have been carried out. As expected, compact adhesive load-bearing oxide and mixed oxide/metal beds form in wear regions. These contacting features wear at very low rates of less than 10 -16 m 3 (Nm) -1 . Preformed oxides wear at sufficiently low rates at high temperature as to preclude the possibility of exposure of the underlying metal to the reactor gas. It is thus unlikely that sliding wear processes will accelerate the tendency for initiation of breakaway oxidation. (author)

  11. Frictional forces in an SOFC stack with sliding seals

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T; Oishi, N; Namikawa, T; Yamazaki, Y [Tokyo Institute of Technology, Tokyo (Japan)

    1996-06-05

    The detrimental thermal stresses in planar SOFC stacks can be reduced using sliding seals. In the proposal planar stack the electrolyte film is sandwiched by YSZ support rings to release the thermal stresses. In order to estimate the strength of the support ring, the frictional forces between heat resistant alloy and YSZ were measured at 900{degree}C. The coefficient of friction between Hastelloy X and YSZ increased when they were measured lifter 144h heating. However, the coefficient of friction between HA-214 and YSZ did not increase. The measurement and a calculation of the stresses in the support rings led the result that a thickness of 0.6mm was necessary for 200mm diameter support rings under a stack pressure of 0.1kgcm{sup -2}. 6 refs., 9 figs., 1 tab.

  12. Mechanics of slide dams

    International Nuclear Information System (INIS)

    Young, G.A.

    1970-01-01

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  13. Mechanics of slide dams

    Energy Technology Data Exchange (ETDEWEB)

    Young, G A [Engineering, Agbabian-Jacobsen Associates, Los Angeles (United States)

    1970-05-15

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  14. Ultrathin SiO{sub 2} layer formed by the nitric acid oxidation of Si (NAOS) method to improve the thermal-SiO{sub 2}/Si interface for crystalline Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Taketoshi; Nakajima, Hiroki; Irishika, Daichi; Nonaka, Takaaki; Imamura, Kentaro; Kobayashi, Hikaru, E-mail: h.kobayashi@sanken.osaka-u.ac.jp

    2017-02-15

    Highlights: • The density of interface states at the SiO{sub 2}/Si interface is decreased by NAOS. • The minority carrier lifetime is increased by the NAOS treatment. • Great interfacial properties of the NAOS layer are kept after thermal oxidation. - Abstract: A combination of the nitric acid oxidation of Si (NAOS) method and post-thermal oxidation is found to efficiently passivate the SiO{sub 2}/n-Si(100) interface. Thermal oxidation at 925 °C and annealing at 450 °C in pure hydrogen atmosphere increases the minority carrier lifetime by three orders of magnitude, and it is attributed to elimination of Si dangling bond interface states. Fabrication of an ultrathin, i.e., 1.1 nm, NAOS SiO{sub 2} layer before thermal oxidation and H{sub 2} annealing further increases the minority carrier lifetime by 30% from 8.6 to 11.1 ms, and decreased the interface state density by 10% from 6.9 × 10{sup 9} to 6.3 × 10{sup 9}eV{sup −1} cm{sup −2}. After thermal oxidation at 800 °C, the SiO{sub 2} layer on the NAOS-SiO{sub 2}/Si(100) structure is 2.26 nm thick, i.e., 0.24 nm thicker than that on the Si(100) surface, while after thermal oxidation at 925 °C, it is 4.2 nm thick, i.e., 0.4 nm thinner than that on Si(100). The chemical stability results from the higher atomic density of a NAOS SiO{sub 2} layer than that of a thermal oxide layer as reported in Ref. [28] (Asuha et al., 2002). Higher minority carrier lifetime in the presence of the NAOS layer indicates that the NAOS-SiO{sub 2}/Si interface with a low interface state density is preserved after thermal oxidation, which supports out-diffusion oxidation mechanism, by which a thermal oxide layer is formed on the NAOS SiO{sub 2} layer.

  15. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    Science.gov (United States)

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  16. Effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon films

    Science.gov (United States)

    Choi, Woong; Lee, Jung-Kun; Findikoglu, Alp T.

    2006-12-01

    The authors report studies of the effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon (ACSi) films by means of capacitance-voltage (C-V) measurements. C-V curves were measured on metal-oxide-semiconductor (MOS) capacitors fabricated on ⟨001⟩-oriented ACSi films on polycrystalline substrates. From high-frequency C-V curves, the authors calculated a decrease of interface trap density from 2×1012to1×1011cm-2eV-1 as the grain mosaic spread in ACSi films improved from 13.7° to 6.5°. These results demonstrate the effectiveness of grain alignment as a process technique to achieve significantly enhanced performance in small-grained (⩽1μm ) polycrystalline Si MOS-type devices.

  17. A friction test between steel and a brittle material at high contact pressures and high sliding velocities

    Directory of Open Access Journals (Sweden)

    Picart D.

    2012-08-01

    Full Text Available Our aim is to characterize the interface behaviour between an aggregate material and steel. This work focuses on contact pressures and sliding velocities reaching 100 MPa and 10 m/s. The set-up consists in a cylindrical sample of the aggregate material which slips into a steel tube. The tube is both a confinement vessel and a sliding surface. Thanks to confinement, the material can be tested under high stresses without failure. The interface pressure is generated by an axial compression. The sample is pressed on a spring, so it can be simultaneously compressed and rubbed on the tube. The set-up has been tested in the case of a quasi-static loading and the 100 MPa pressure has been reached. Then the set-up was mounted on a Split Hopkinson Pressure Bar device in order to reach higher velocities. Numerical simulations have been realized to check the feasibility and the relevance of this dynamic test. These results are analysed and compared to the experimental ones.

  18. RecutClub.com: An open source, whole slide image-based pathology education system

    Directory of Open Access Journals (Sweden)

    Paul A Christensen

    2017-01-01

    Full Text Available Background: Our institution's pathology unknown conferences provide educational cases for our residents. However, the cases have not been previously available digitally, have not been collated for postconference review, and were not accessible to a wider audience. Our objective was to create an inexpensive whole slide image (WSI education suite to address these limitations and improve the education of pathology trainees. Materials and Methods: We surveyed residents regarding their preference between four unique WSI systems. We then scanned weekly unknown conference cases and study set cases and uploaded them to our custom built WSI viewer located at RecutClub.com. We measured site utilization and conference participation. Results: Residents preferred our OpenLayers WSI implementation to Ventana Virtuoso, Google Maps API, and OpenSlide. Over 16 months, we uploaded 1366 cases from 77 conferences and ten study sets, occupying 793.5 GB of cloud storage. Based on resident evaluations, the interface was easy to use and demonstrated minimal latency. Residents are able to review cases from home and from their mobile devices. Worldwide, 955 unique IP addresses from 52 countries have viewed cases in our site. Conclusions: We implemented a low-cost, publicly available repository of WSI slides for resident education. Our trainees are very satisfied with the freedom to preview either the glass slides or WSI and review the WSI postconference. Both local users and worldwide users actively and repeatedly view cases in our study set.

  19. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups

    Science.gov (United States)

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-01

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  20. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  1. Comparing whole slide digital images versus traditional glass slides in the detection of common microscopic features seen in dermatitis

    Directory of Open Access Journals (Sweden)

    Nikki S Vyas

    2016-01-01

    Full Text Available Background: The quality and limitations of digital slides are not fully known. We aimed to estimate intrapathologist discrepancy in detecting specific microscopic features on glass slides and digital slides created by scanning at ×20. Methods: Hematoxylin and eosin and periodic acid-Schiff glass slides were digitized using the Mirax Scan (Carl Zeiss Inc., Germany. Six pathologists assessed 50-71 digital slides. We recorded objective magnification, total time, and detection of the following: Mast cells; eosinophils; plasma cells; pigmented macrophages; melanin in the epidermis; fungal bodies; neutrophils; civatte bodies; parakeratosis; and sebocytes. This process was repeated using the corresponding glass slides after 3 weeks. The diagnosis was not required. Results: The mean time to assess digital slides was 176.77 s and 137.61 s for glass slides (P < 0.001, 99% confidence interval [CI]. The mean objective magnification used to detect features using digital slides was 18.28 and 14.07 for glass slides (P < 0.001, 99.99% CI. Parakeratosis, civatte bodies, pigmented macrophages, melanin in the epidermis, mast cells, eosinophils, plasma cells, and neutrophils, were identified at lower objectives on glass slides (P = 0.023-0.001, 95% CI. Average intraobserver concordance ranged from κ = 0.30 to κ = 0.78. Features with poor to fair average concordance were: Melanin in the epidermis (κ = 0.15-0.58; plasma cells (κ = 0.15-0.49; and neutrophils (κ = 0.12-0.48. Features with moderate average intrapathologist concordance were: parakeratosis (κ = 0.21-0.61; civatte bodies (κ = 0.21-0.71; pigment-laden macrophages (κ = 0.34-0.66; mast cells (κ = 0.29-0.78; and eosinophils (κ = 0.31-0.79. The average intrapathologist concordance was good for sebocytes (κ = 0.51-1.00 and fungal bodies (κ = 0.47-0.76. Conclusions: Telepathology using digital slides scanned at ×20 is sufficient for detection of histopathologic features routinely encountered in

  2. Time Dependent Frictional Changes in Ice due to Contact Area Changes

    Science.gov (United States)

    Sevostianov, V.; Lipovsky, B. P.; Rubinstein, S.; Dillavou, S.

    2017-12-01

    Sliding processes along the ice-bed interface of Earth's great ice sheets are the largest contributor to our uncertainty in future sea level rise. Laboratory experiments that have probed sliding processes have ubiquitously shown that ice-rock interfaces strengthen while in stationary contact (Schulson and Fortt, 2013; Zoet et al., 2013; McCarthy et al., 2017). This so-called frictional ageing effect may have profound consequences for ice sheet dynamics because it introduces the possibility of basal strength hysteresis. Furthermore this effect is quite strong in ice-rock interfaces (more than an order of magnitude more pronounced than in rock-rock sliding) and can double in frictional strength in a matter of minutes, much faster than most frictional aging (Dieterich, 1972; Baumberger and Caroli, 2006). Despite this importance, the underling physics of frictional ageing of ice remain poorly understood. Here we conduct laboratory experiments to image the microscopic points of contact along an ice-glass interface. We optically measure changes in the real area of contact over time using measurements of this reflected optical light intensity. We show that contact area increases with time of stationary contact. This result suggests that thermally enhanced creep of microscopic icy contacts is responsible for the much larger frictional ageing observed in ice-rock versus rock-rock interfaces. Furthermore, this supports a more physically detailed description of the thermal dependence of basal sliding than that used in the current generation of large scale ice sheet models.

  3. Tunable thermal link

    Science.gov (United States)

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  4. Self-adapted sliding scale spectroscopy ADC

    International Nuclear Information System (INIS)

    Xu Qichun; Wang Jingjin

    1992-01-01

    The traditional sliding scale technique causes a disabled range that is equal to the sliding length, thus reduces the analysis range of a MCA. A method for reduce ADC's DNL, which is called self-adapted sliding scale method, has been designed and tested. With this method, the disabled range caused by a traditional sliding scale method can be eliminated by a random trial scale and there is no need of an additional amplitude discriminator with swing threshold. A special trial-and-correct logic is presented. The tested DNL of the spectroscopy ADC described here is less than 0.5%

  5. An updated nuclear criticality slide rule

    International Nuclear Information System (INIS)

    Hopper, C.M.; Broadhead, B.L.

    1998-04-01

    This Volume 2 contains the functional version of the updated nuclear criticality slide rule (more accurately, sliding graphs) that is referenced in An Updated Nuclear Criticality Slide Rule: Technical Basis, NUREG/CR-6504, Vol. 1 (ORNL/TM-13322/V1). This functional slide rule provides a readily usable open-quotes in-handclose quotes method for estimating pertinent nuclear criticality accident information from sliding graphs, thereby permitting (1) the rapid estimation of pertinent criticality accident information without laborious or sophisticated calculations in a nuclear criticality emergency situation, (2) the appraisal of potential fission yields and external personnel radiation exposures for facility safety analyses, and (3) a technical basis for emergency preparedness and training programs at nonreactor nuclear facilities. The slide rule permits the estimation of neutron and gamma dose rates and integrated doses based upon estimated fission yields, distance from the fission source, and time-after criticality accidents for five different critical systems. Another sliding graph permits the estimation of critical solution fission yields based upon fissile material concentration, critical vessel geometry, and solution addition rate. Another graph provides neutron and gamma dose-reduction factors for water, steel, and concrete. Graphs from historic documents are provided as references for estimating critical parameters of various fissile material systems. Conversion factors for various English and metric units are provided for quick reference

  6. Thermal Resistance across Interfaces Comprising Dimensionally Mismatched Carbon Nanotube-Graphene Junctions in 3D Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Jungkyu Park

    2014-01-01

    Full Text Available In the present study, reverse nonequilibrium molecular dynamics is employed to study thermal resistance across interfaces comprising dimensionally mismatched junctions of single layer graphene floors with (6,6 single-walled carbon nanotube (SWCNT pillars in 3D carbon nanomaterials. Results obtained from unit cell analysis indicate the presence of notable interfacial thermal resistance in the out-of-plane direction (along the longitudinal axis of the SWCNTs but negligible resistance in the in-plane direction along the graphene floor. The interfacial thermal resistance in the out-of-plane direction is understood to be due to the change in dimensionality as well as phonon spectra mismatch as the phonons propagate from SWCNTs to the graphene sheet and then back again to the SWCNTs. The thermal conductivity of the unit cells was observed to increase nearly linearly with an increase in cell size, that is, pillar height as well as interpillar distance, and approaches a plateau as the pillar height and the interpillar distance approach the critical lengths for ballistic thermal transport in SWCNT and single layer graphene. The results indicate that the thermal transport characteristics of these SWCNT-graphene hybrid structures can be tuned by controlling the SWCNT-graphene junction characteristics as well as the unit cell dimensions.

  7. Numerical Modelling of Tsunami Generated by Deformable Submarine Slides: Parameterisation of Slide Dynamics for Coupling to Tsunami Propagation Model

    Science.gov (United States)

    Smith, R. C.; Collins, G. S.; Hill, J.; Piggott, M. D.; Mouradian, S. L.

    2015-12-01

    Numerical modelling informs risk assessment of tsunami generated by submarine slides; however, for large-scale slides modelling can be complex and computationally challenging. Many previous numerical studies have approximated slides as rigid blocks that moved according to prescribed motion. However, wave characteristics are strongly dependent on the motion of the slide and previous work has recommended that more accurate representation of slide dynamics is needed. We have used the finite-element, adaptive-mesh CFD model Fluidity, to perform multi-material simulations of deformable submarine slide-generated waves at real world scales for a 2D scenario in the Gulf of Mexico. Our high-resolution approach represents slide dynamics with good accuracy, compared to other numerical simulations of this scenario, but precludes tracking of wave propagation over large distances. To enable efficient modelling of further propagation of the waves, we investigate an approach to extract information about the slide evolution from our multi-material simulations in order to drive a single-layer wave propagation model, also using Fluidity, which is much less computationally expensive. The extracted submarine slide geometry and position as a function of time are parameterised using simple polynomial functions. The polynomial functions are used to inform a prescribed velocity boundary condition in a single-layer simulation, mimicking the effect the submarine slide motion has on the water column. The approach is verified by successful comparison of wave generation in the single-layer model with that recorded in the multi-material, multi-layer simulations. We then extend this approach to 3D for further validation of this methodology (using the Gulf of Mexico scenario proposed by Horrillo et al., 2013) and to consider the effect of lateral spreading. This methodology is then used to simulate a series of hypothetical submarine slide events in the Arctic Ocean (based on evidence of historic

  8. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Saks, N.S.

    1996-01-01

    We have combined thermally stimulated-current (TSC) and capacitance endash voltage (C endash V) measurements to estimate oxide, interface, and effective border trap densities in 6 endash 23 nm thermal, N 2 O, and N 2 O-nitrided oxides exposed to ionizing radiation or high-field electron injection. Defect densities depend strongly on oxide processing, but radiation exposure and moderate high-field stress lead to similar trapped hole peak thermal energy distributions (between ∼1.7 and ∼2.0 eV) for all processes. This suggests that similar defects dominate the oxide charge trapping properties in these devices. Radiation-induced hole and interface trap generation efficiencies (0.1%endash 1%) in the best N 2 O and N 2 O-nitrided oxides are comparable to the best radiation hardened oxides in the literature. After ∼10 Mrad(SiO 2 ) x-ray irradiation or ∼10 mC/cm 2 constant current Fowler endash Nordheim injection, effective border trap densities as high as ∼5x10 11 cm -2 are inferred from C endash V hysteresis. These measurements suggest irradiation and high-field stress cause similar border trap energy distributions. In each case, even higher densities of compensating trapped electrons in the oxides (up to 2x10 12 cm -2 ) are inferred from combined TSC and C endash V measurements. These trapped electrons prevent conventional C endash V methods from providing accurate estimates of the total oxide trap charge density in many irradiation or high-field stress studies. Fewer compensating electrons per trapped hole (∼26%±5%) are found for irradiation of N 2 O and N 2 O-nitrided oxides than for thermal oxides (∼46%±7%). (Abstract Truncated)

  9. Vibrational energy flow through the green fluorescent protein-water interface: communication maps and thermal boundary conductance.

    Science.gov (United States)

    Xu, Yao; Leitner, David M

    2014-07-17

    We calculate communication maps for green fluorescent protein (GFP) to elucidate energy transfer pathways between the chromophore and other parts of the protein in the ground and excited state. The approach locates energy transport channels from the chromophore to remote regions of the protein via residues and water molecules that hydrogen bond to the chromophore. We calculate the thermal boundary conductance between GFP and water over a wide range of temperature and find that the interface between the protein and the cluster of water molecules in the β-barrel poses negligible resistance to thermal flow, consistent with facile vibrational energy transfer from the chromophore to the β-barrel waters observed in the communication maps.

  10. Histopathology slide projector: a simple improvisation.

    Science.gov (United States)

    Agarwal, Akhilesh K R; Bhattacharya, Nirjhar

    2008-07-01

    The ability to examine histopathology and other hematological slides under microscope is a necessary and important service which should be available in every health facility. The slides need to be projected on to a screen. We describe an inexpensive and easily constructed technique for projecting magnified images of slides using a simple microscope. It is effective both for making observations and for use as a teaching aid.

  11. Whole Slide Images for primary diagnostics in pathology

    NARCIS (Netherlands)

    Al-Janabi, S.

    2013-01-01

    Whole slide imaging is the process of digitizing glass slides resulting in the creation of Whole Slide Images (WSI). WSI are usually explored with the aid of an image viewer in a manner that closely simulates examining glass slides with a conventional microscope, permitting the manipulation of an

  12. MEMS-based contact stress field measurements at a rough elastomeric layer: local test of Amontons’ friction law in static and steady sliding regimes

    Directory of Open Access Journals (Sweden)

    Debrégeas G.

    2010-06-01

    Full Text Available We present the results of recent friction experiments in which a MEMS-based sensing device is used to measure both the normal and tangential stress fields at the base of a rough elastomer film in frictional contact with smooth, rigid, glass indentors. We consider successively multicontacts under (i static normal loading by a spherical indentor and (ii frictional steady sliding conditions against a cylindrical indentor, for an increasing normal load. In both cases, the measured fields are compared to elastic calculations assuming (i a smooth interface and (ii Amontons’ friction law. In the static case, significant deviations are observed which decrease with increasing load and which vanish when a lubricant is used. In the steady sliding case, Amontons’ law reproduces rather satisfactorily the experiments provided that the normal/tangential coupling at the contact interface is taken into account. We discuss the origin of the difference between the Amontons fields and the measured ones, in particular the effect of the finite normal and tangential compliances of the multicontact interface.

  13. X-ray photoelectron spectroscopy study of Schottky barrier formation and thermal stability of the LaB6/GaAs(001) c (4 x 4) interface

    International Nuclear Information System (INIS)

    Yokotsuka, T.; Narusawa, T.; Uchida, Y.; Nakashima, H.

    1987-01-01

    Schottky barrier formation and thermal stability of the LaB 6 /GaAs(001) c (4 x 4) interface were investigated by x-ray photoelectron spectroscopy. Results show an excellent thermal stability without any appreciable interface reactions such as interdiffusion. Band bending induced by LaB 6 deposition is found to depend on the evaporation condition. However, the Fermi level pinning position does not change due to heat treatments between 300 and 700 0 C. This indicates that LaB 6 is a promising gate material for GaAs integrated circuits

  14. Fabrication of carbon nanotube thermal interface material on aluminum alloy substrates with low pressure CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Z L; Zhang, K; Yuen, M M F, E-mail: megzl@ust.hk [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Hong Kong)

    2011-07-01

    High quality vertically aligned carbon nanotube (VACNT) arrays have been synthesized on bulk Al alloy (Al6063) substrates with an electron-beam (E-beam) evaporated Fe catalyst using low pressure chemical vapor deposition (LPCVD). The pretreatment process of the catalyst was shown to play a critical role. This was studied comprehensively and optimized to repeatedly grow high quality VACNT arrays within a wide range of thicknesses of catalyst layer (2-11 nm) and acetylene (C{sub 2}H{sub 2}) flow rates (100-300 sccm). The thermal performance of the resulting VACNT arrays was evaluated. The minimum interfacial thermal resistance of the Si/VACNT/Al interfaces achieved so far is only 4 mm{sup 2} K W{sup -1}, and the average value is 14.6 mm{sup 2} K W{sup -1}.

  15. New nanocomposite surfaces and thermal interface materials based on mesoscopic microspheres, polymers and graphene flakes

    Science.gov (United States)

    Dmitriev, Alex A.; Dmitriev, Alex S.; Makarov, Petr; Mikhailova, Inna

    2018-04-01

    In recent years, there has been a great interest in the development and creation of new functional energy mate-rials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and data centers). In this paper, the technology of obtaining new nanocomposites based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphene flakes of different volumetric concentration using epoxy polymers, as well as the addition of monodisperse microspheres are described. Data are given on the measurement of the contact angle and thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  16. SurfaceSlide: a multitouch digital pathology platform.

    Directory of Open Access Journals (Sweden)

    Yinhai Wang

    Full Text Available BACKGROUND: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. METHODOLOGY: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. CONCLUSION: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human-digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.

  17. Tribological characteristics of Si3N4-based composites in unlubricated sliding against steel ball

    International Nuclear Information System (INIS)

    Liu, C.-C.; Huang, J.-L.

    2004-01-01

    The dry-sliding wear mechanism of Si 3 N 4 -based composites against AISI-52100 steel ball was studied using a ball-on-disc mode in a reciprocation motion. The addition of TiN particles can increase the fracture toughness of Si 3 N 4 -based composites. The fracture toughness of Si 3 N 4 -based composites played an important role for wear behavior. The Si 3 N 4 -based composites exhibits a small friction and wear coefficient compared to monolithic Si 3 N 4 . Atomic force microscopy (AFM) studies displayed fine wear grooves along the sliding traces. The subsurface deformation shows that the microcrack propagation extends along the TiN/Si 3 N 4 grain interface. The wear mechanisms were determined with scanning electron microscopy, transmission electron microscopy, X-ray diffraction and atomic force microscopy

  18. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    Science.gov (United States)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  19. Is the lag screw sliding effective in the intramedullary nailing in A1 and A2 AO-OTA intertrochanteric fractures? A prospective study of Sliding and None-sliding lag screw in Gamma-III nail

    Directory of Open Access Journals (Sweden)

    Zhu Yi

    2012-09-01

    Full Text Available Abstract Object To compare the Sliding with Non-sliding lag screw of a gamma nail in the treatment of A1 and A2 AO-OTA intertrochanteric fractures. Materials and methods 80 patients were prospectively collected. In each group, AO/OTA 31-A were classified into group A. AO/OTA 31-A2.1 was classified as group B. We classified the A2.2 and A2.3 as group C. According to the set-screw locking formation of Gamma-III, the cases were randomly allocated to Sliding subgroup and Non-sliding subgroup in A, B and C groups. Follow-ups were performed 1, 3, 6 and 12 months postoperatively. Results In the Sliding group, the bone healing rate 3, 6, 12 months postoperatively reached 85.00%, 97.50%, 100% in group A, B and C. Meanwhile, in Non-sliding group, postoperatively, bone healing rate were 90.00%, 95.00% and 97.50% in group A, B and C, respectively. Both differences were not significant. Lower limb discrepancy between Sliding and Non-sliding pattern was significantly different in group C which represent fracture types of AO/OTA 31-A2.2 and A2.3 (0.573 ± 0.019 mm in Non-sliding group, 0.955 mm ± 0.024 mm in Sliding group, P Conclusions As a result, we can conclude that the sliding distance is minimal in Gamma nails and it is related to the comminuted extent of the intertrochanteric area in A1 and A2 AO-OTA intertrochanteric fractures. For treating these kinds of fractures, the sliding of the lag screw of an Gamma nail does not improve any clinical results and in certain cases, such as highly comminuted A1 and A2 fractures, can therefore even benefit from a locked lag screw by tightening the set-screw.

  20. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  1. A 3D graphene interface (Si-doped) of Ag matrix with excellent electronic transmission and thermal conductivity via nano-assembly modification

    Science.gov (United States)

    Ye, Xianzhu; Li, Ming; Zhang, Yafei

    2018-04-01

    The wide development of electronic materials requires higher load capacity and high temperature resistance. In this study, a novel architecture was fabricated consisting of a 3D reduced graphene oxide (rGO)-Si interface using a simple nano-assembly sintering to achieve high current capacity and excellent thermal features. Via the analysis of catalytic oxidation for methanol, the loading catalytic activity of nano-Ag still remained to a certain extent for the composite with 0.8 vol.% rGO. The final Ag-rGO composite apparently possesses a higher initial oxidation temperature and lower rate of oxidation for internal passing and shielding, and the thermal conductivity is significantly enhanced from 344 to 407 W m‑1 K‑1. Importantly, with a 3D synergistic transportation network, the resistivity of the Ag-rGO composite is much lower than pure Ag, and with a longer conductive time under a stress condition of current density of 6.0  ×  104 A cm‑2. Thermal-electronic features demonstrate that the dispersed graphene interface can efficiently suppress the primary failure pathways (high temperature) in Ag matrix and make it uniquely efficient for the advancement of microscale and thermal-management electronics.

  2. Adaptive Sliding Mode Control Method Based on Nonlinear Integral Sliding Surface for Agricultural Vehicle Steering Control

    Directory of Open Access Journals (Sweden)

    Taochang Li

    2014-01-01

    Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.

  3. Applications of sliding mode control in science and engineering

    CERN Document Server

    Lien, Chang-Hua

    2017-01-01

    Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

  4. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    International Nuclear Information System (INIS)

    Kochetov, R; Andritsch, T; Morshuis, P H F; Smit, J J; Korobko, A V; Picken, S J

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two- and three-phase Lewis-Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and micro- particles were used, namely aluminium oxide, aluminium nitride, magnesium oxide and silicon dioxide with average particle size between 20 nm and 20 μm. It is shown that the filler-matrix interface plays a dominant role in the thermal conduction process of the nanocomposites. The two-phase model was proposed as an initial step for describing systems containing 2 constituents, i.e. an epoxy matrix and an inorganic filler. The three-phase model was introduced to specifically address the properties of the interfacial zone between the host polymer and the surface modified nanoparticles.

  5. Slide Buyers Guide. 1974 Edition.

    Science.gov (United States)

    DeLaurier, Nancy

    Designed for studio art instructors, museum education programs, public libraries, high school teachers, and those who buy slides for teaching art history at the college level, this guide lists sources of slides in the United States and over 20 foreign countries. All U.S. sources are listed first, commercial sources are alphabetical by name and…

  6. Standardization of whole slide image morphologic assessment with definition of a new application: Digital slide dynamic morphometry

    Directory of Open Access Journals (Sweden)

    Giacomo Puppa

    2011-01-01

    Full Text Available Background: In histopathology, the quantitative assessment of various morphologic features is based on methods originally conceived on specific areas observed through the microscope used. Failure to reproduce the same reference field of view using a different microscope will change the score assessed. Visualization of a digital slide on a screen through a dedicated viewer allows selection of the magnification. However, the field of view is rectangular, unlike the circular field of optical microscopy. In addition, the size of the selected area is not evident, and must be calculated. Materials and Methods: A digital slide morphometric system was conceived to reproduce the various methods published for assessing tumor budding in colorectal cancer. Eighteen international experts in colorectal cancer were invited to participate in a web-based study by assessing tumor budding with five different methods in 100 digital slides. Results: The specific areas to be tested by each method were marked by colored circles. The areas were grouped in a target-like pattern and then saved as an .xml file. When a digital slide was opened, the .xml file was imported in order to perform the measurements. Since the morphometric tool is composed of layers that can be freely moved on top of the digital slide, the technique was named digital slide dynamic morphometry. Twelve investigators completed the task, the majority of them performing the multiple evaluations of each of the cases in less than 12 minutes. Conclusions: Digital slide dynamic morphometry has various potential applications and might be a useful tool for the assessment of histologic parameters originally conceived for optical microscopy that need to be quantified.

  7. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    Science.gov (United States)

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  8. Three-dimensional (3D) plasma micro-nanotextured slides for high performance biomolecule microarrays: Comparison with epoxy-silane coated glass slides.

    Science.gov (United States)

    Tsougeni, Katerina; Ellinas, Kosmas; Koukouvinos, George; Petrou, Panagiota S; Tserepi, Angeliki; Kakabakos, Sotirios E; Gogolides, Evangelos

    2018-05-01

    Glass slides coated with a poly(methyl methacrylate) layer and plasma micro-nanotextured to acquire 3D topography (referred as 3D micro-nanotextured slides) were evaluated as substrates for biomolecule microarrays. Their performance is compared with that of epoxy-coated glass slides. We found that the proposed three-dimensional (3D) slides offered significant improvements in terms of spot intensity, homogeneity, and reproducibility. In particular, they provided higher spot intensity, by a factor of at least 1.5, and significantly improved spot homogeneity when compared to the epoxy-silane coated ones (intra-spot and between spot coefficients of variation ranging between 5 and 15% for the 3D micro-nanotextured slides and between 25 and 85% for the epoxy-silane coated ones). The latter was to a great extent the result of a strong "coffee-ring" effect observed for the spots created on the epoxy-coated slides; a phenomenon that was severely reduced in the 3D micro-nanotextured slides. The 3D micro-nanotextured slides offered in addition higher signal to noise ratio values over a wide range of protein probe concentrations and shelf-life over one year without requirement for specific storage conditions. Finally, the protocols employed for protein probe immobilization were extremely simple. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. PC-AT to gamma camera interface Anugami-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Sonalkar, S.Y.; Kataria, S.K.

    2000-01-01

    The gamma camera interface ANUGAMI-S is an image acquisition system used in nuclear medicine centres and hospitals. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable parameters with image display and related acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. The paper describes the system details and gated acquisition achieved on the present system. (author)

  10. Effects of HfO{sub 2}/Co interface and Co/HfO{sub 2} interface on anomalous Hall behavior in perpendicular Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Long [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Guang [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Teng, Jiao, E-mail: tengjiao@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Qi-Xun; Liu, Yi-Wei; Li, Xu-Jing [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-07-01

    Highlights: • Anomalous Hall effect in perpendicular Co/Pt multilayers is studied. • Thermally stable AHE feature is obtained in [Pt/Co]{sub 3}/HfO{sub 2}/Pt multilayers. • Good thermal stability is due to enhanced intrinsic and side-jump contributions. - Abstract: Effects of the HfO{sub 2}/Co interface and the Co/HfO{sub 2} interface on thermal stability of anomalous Hall effect (AHE) in perpendicular Co/Pt multilayers have been studied. It is observed that thermally stable AHE behavior cannot be obtained in perpendicular Co/Pt multilayers with the HfO{sub 2}/Co interface, mainly due to Co-Pt interdiffusion during annealing. In contrast, thermally stable AHE feature is observed in perpendicular Co/Pt multilayers with the Co/HfO{sub 2} interface despite Co-Pt interdiffusion, which is owing to the enhancement of the side jump and intrinsic contributions to the AHE through interfacial modification after annealing.

  11. PC-AT to gamma camera interface ANUGAMI-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gopalakrishnan, K.R.

    1997-01-01

    PC-AT to gamma camera interface is an image acquisition system used in nuclear medicine centres and hospitals. The interface hardware and acquisition software have been designed and developed to meet most of the routine clinical applications using gamma camera. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable frame sizes, orientation and colour palettes. A complete emulation of camera console has been provided along with persistence scope and acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. (author). 4 refs., 3 figs

  12. Ergometer rowing with and without slides

    DEFF Research Database (Denmark)

    Larsen, Anders Holsgaard; Jensen, K

    2010-01-01

    A rowing ergometer can be placed on a slide to imitate 'on-water' rowing. The present study examines I) possible differences in biomechanical and physiological variables of ergometer rowing with and without slides and II) potential consequences on training load during exercise. 7 elite oars......-women rowed in a randomized order in a slide or stationary ergometer at 3 predefined submaximal and at maximal intensity. Oxygen uptake was measured and biomechanical variables of the rowing were calculated based upon handle force (force transducer) and velocity/length (potentiometer) of the stroke. Stroke...

  13. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  14. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  15. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces.

    Science.gov (United States)

    Chou, Ying-Nien; Chang, Yung; Wen, Ten-Chin

    2015-05-20

    We introduced a thermosettable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bioadhesion, as influenced by the thermosetting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200 °C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bioinert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol % showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol % was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermosettable materials in a bioinert interface for medical devices, such as the thermosettable coating on a stainless steel blood-compatible metal stent investigated in this study.

  16. Seismic behavior with sliding of overhead travelling crane

    International Nuclear Information System (INIS)

    Komori, Akio; Ueki, Takashi; Hirata, Masami; Hoshii, Tsutomu; Kashiwazaki, Akihiro.

    1989-01-01

    In this study, the seismic behavior of an overhead travelling crane with the sliding between travelling wheels and rails is examined. First, the dynamic characteristic test of the actual crane installed in a reactor building and the sliding test of the rigid-element model to observe the basic sliding characteristic were performed. Next, to examine the dynamic response with sliding, shaking tests using the scaled model of an actual crane were conducted. From these results, useful design information about seismic behavior of an overhead travelling crane was obtained. It was also observed that numerical predictions considering sliding behavior have good agreement with the experimental results and are applicable to seismic design. (author)

  17. Accurate Sliding-Mode Control System Modeling for Buck Converters

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper shows that classical sliding mode theory fails to correctly predict the output impedance of the highly useful sliding mode PID compensated buck converter. The reason for this is identified as the assumption of the sliding variable being held at zero during sliding mode, effectively...... approach also predicts the self-oscillating switching action of the sliding-mode control system correctly. Analytical findings are verified by simulation as well as experimentally in a 10-30V/3A buck converter....

  18. Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites

    Science.gov (United States)

    Hsueh, Chun-Hway

    1992-11-01

    Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.

  19. Preparing Scientific Papers, Posters, and Slides.

    Science.gov (United States)

    Lefor, Alan Kawarai; Maeno, Misato

    2016-01-01

    Publications and presentations are important in academic medicine. The ability to present information in a standard fashion is critically important. Papers, posters, and slides must be prepared appropriately to maximize their chance of being accepted. The first step is to use word processing software correctly. English language usage must conform to standard scientific English usage. Abbreviations should be avoided as much as possible. Numerical data must be presented with the appropriate number of significant figures. The first step in preparing a paper is to decide the target journal. Papers should always be written in 12 point Times New Roman font, while slides and posters should be in Arial or Helvetica. The Results section must contain actual data with appropriate statistical analysis. Take great care to prepare figures and tables according to the journal's instructions. Posters must be prepared to allow easy reading at a distance of 2m. Use a white background and dark letters. The majority of the area of your poster should be Results, and there is no need to include the abstract or references on a poster. Slide presentations should be limited to about one slide for each minute of the talk. Avoid the use of animations and excessive use of color. Do not use abbreviations on slides. Following these simple guidelines will meet the requirements of most journals and allow your audience to appreciate the data on your posters and slides. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. Quantitative sputter profiling at surfaces and interfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Etzkorn, H.W.

    1981-01-01

    The key problem in quantitative sputter profiling, that of a sliding depth scale has been solved by combined Auger/X-ray microanalysis. By means of this technique and for the model system Ge/Si (amorphous) the following questions are treated quantitatively: shape of the sputter profiles when sputtering through an interface and origin of their asymmetry; precise location of the interface plane on the depth profile; broadening effects due to limited depth of information and their correction; origin and amount of bombardment induced broadening for different primary ions and energies; depth dependence of the broadening, and basic limits to depth resolution. Comparisons are made to recent theoretical calculations based on recoil mixing in the collision cascade and very good agreement is found

  1. Second order sliding mode control for a quadrotor UAV.

    Science.gov (United States)

    Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang

    2014-07-01

    A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law

    Science.gov (United States)

    Lipovsky, Bradley Paul; Dunham, Eric M.

    2017-04-01

    The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.

  3. Adaptive contact elements for three-dimensional fluid-structure interfaces

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1985-01-01

    A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem

  4. Adaptive contact elements for three-dimensional fluid-structure interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.

    1985-01-01

    A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem.

  5. Establishment of Measurement Techniques for Sliding Bubble on a Horizontal Tube

    International Nuclear Information System (INIS)

    Kim, Yu-Na Kim; Park, Goon-Cherl; Cho, Hyoung-Kyu

    2015-01-01

    The mechanistic wall boiling model includes many parameters relevant with bubble behaviors, such as the bubble departure diameter, bubble lift-off diameter, bubble waiting time, etc. Although there have been a large number of studies investigating bubble behavior, the subjects of observation are almost bubbles on a plane or vertical tube. Since the bubble motion is highly influenced by the directions of gravitational force and the heating surfaces, it is expected that the bubble behavior on a horizontal tube is largely different from those on the other geometry. The heat exchanger of APR+ has horizontal U-tube configuration installed in a water pool, of which diameter is 50mm. The study aims to establish measurement techniques for sliding bubbles on a horizontal tube. The measurement parameters include the diameter, interface area, volume, and velocity of the bubble. Additionally, in order to analyze the force acting on the bubble, liquid velocity measurement method was proposed. This paper presents the procedure of the measurement; the phase separation technique, 3-D reconstruction technique, and velocity measurement techniques. For visualization of the sliding bubble behavior, bubble and liquid velocity measurement methods were established which use two high speed cameras and a continuous LASER for the PTV and PIV. Three steps for the bubble shape and velocity measurement (the phase separation, 3-D reconstruction, and velocity calculation), were successfully set up and verified. A PIV technique which uses two different time duration for two regions where the velocity difference is huge was proposed and tested. Using these methods, various information regarding a sliding bubble can be obtained such as bubble and liquid velocities, shape, volume, surface area etc

  6. Tribochemical interactions of Si-doped DLC film against steel in sliding contact

    International Nuclear Information System (INIS)

    Yoon, Eui Sung; Pham, Duc Cuong; Ahn, Hyo Sok; Oh, Jae Eung

    2007-01-01

    This study concerns the effects of tribochemical interactions at the interface of Si-DLC (silicon-doped diamond-like carbon) film and steel ball in sliding contact on tribological properties of the film. The Si-DLC film was over-coated on pure DLC coating by radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) with different Si concentration. Friction tests against steel ball using a reciprocating type tribotester were performed in ambient environment. X-Ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) were used to study the chemical characteristics and elemental composition of the films and mating balls after tests. Results showed a darkgray film consisting of carbon, oxygen and silicon on the worn steel ball surface with different thickness. On the contrary, such film was not observed on the surface of the ball slid against pure DLC coating. The oxidation of Si-DLC surface and steel ball was also found at particular regions of contact area. This demonstrates that tribochemical interactions occurred at the contact area of Si-DLC and steel ball during sliding to form a tribofilm (so called transfer film) on the ball specimen. While the pure DLC coating exhibited high coefficient of friction (∼0.06), the Si-DLC film showed a significant lower coefficient of friction (∼0.022) with the presence of tribofilm on mating ball surface. However, the Si-DLC film possesses a very high wear rate in comparison with the pure DLC. It was found that the tribochemical interactions strongly affected tribological properties of the Si-DLC film in sliding against steel

  7. Slide less pathology”: Fairy tale or reality?

    Science.gov (United States)

    Indu, M; Rathy, R; Binu, MP

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, “slide less digital” pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI. PMID:27601824

  8. Frictional Heating During Sliding of two Semi-Spaces with Arbitrary Thermal Nonlinearity

    Directory of Open Access Journals (Sweden)

    Och Ewa

    2014-12-01

    Full Text Available Analytical and numerical solution for transient thermal problems of friction were presented for semi limited bodies made from thermosensitive materials in which coefficient of thermal conductivity and specific heat arbitrarily depend on the temperature (materials with arbitrary non-linearity. With the constant power of friction assumption and imperfect thermal contact linearization of nonlinear problems formulated initial-boundary thermal conductivity, using Kirchhoff transformation is partial. In order to complete linearization, method of successive approximations was used. On the basis of obtained solutions a numerical analysis of two friction systems in which one element is constant (cermet FMC-845 and another is variable (grey iron ChNMKh or aluminum-based composite alloy AL MMC was conducted

  9. Nanoscale thermal transport. II. 2003-2012

    Science.gov (United States)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  10. Color standardization and optimization in Whole Slide Imaging

    Directory of Open Access Journals (Sweden)

    Yagi Yukako

    2011-03-01

    Full Text Available Abstract Introduction Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters, image processing and display factors in the digital systems themselves. Method We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&E stained slides (looking like tiny Macbeth color chart; the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI. The other slide is an H&E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research. Discussion As a first step, the two slide method (above was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available. We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality – color.

  11. Experimental and analytical combined thermal approach for local tribological understanding in metal cutting

    International Nuclear Information System (INIS)

    Artozoul, Julien; Lescalier, Christophe; Dudzinski, Daniel

    2015-01-01

    Metal cutting is a highly complex thermo-mechanical process. The knowledge of temperature in the chip forming zone is essential to understand it. Conventional experimental methods such as thermocouples only provide global information which is incompatible with the high stress and temperature gradients met in the chip forming zone. Field measurements are essential to understand the localized thermo-mechanical problem. An experimental protocol has been developed using advanced infrared imaging in order to measure temperature distribution in both the tool and the chip during an orthogonal or oblique cutting operation. It also provides several information on the chip formation process such as some geometrical characteristics (tool-chip contact length, chip thickness, primary shear angle) and thermo-mechanical information (heat flux dissipated in deformation zone, local interface heat partition ratio). A study is carried out on the effects of cutting conditions i.e. cutting speed, feed and depth of cut on the temperature distribution along the contact zone for an elementary operation. An analytical thermal model has been developed to process experimental data and access more information i.e. local stress or heat flux distribution. - Highlights: • A thermal analytical model is proposed for orthogonal cutting process. • IR thermography is used during cutting tests. • Combined experimental and modeling approaches are applied. • Heat flux and stress distribution at the tool-chip interface are determined. • The decomposition into sticking and sliding zones is defined.

  12. Thermal morphing anisogrid smart space structures: thermal isolation design and linearity evaluation

    Science.gov (United States)

    Phoenix, Austin A.

    2017-04-01

    To meet the requirements for the next generation of space missions, a paradigm shift is required from current structures that are static, heavy and stiff, toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A novel morphing structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The anisogrid structure is able to achieve high precision morphing control through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables new mission architectures. This effort attempts to address limits to the author's previous work by incorporating the impact of thermal coupling that was initially neglected. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure in order to address the thermal losses between active members. To evaluate the isolation design the stiffness and thermal conductivity of these isolating interfaces need to be addressed. This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties.

  13. COST meeting - Polarization and AGN II - Abstracts and slides

    International Nuclear Information System (INIS)

    Kishimoto, M.; Rouan, D.; Tadhunter, C.; Lopez Rodriguez, E.; Braibant, L.; Pasetto, A.; Matt, G.; Afanasiev, V.; Lira, P.; Hutsemekers, D.; Sluse, D.; Marin, F.; Tamborra, F.; Yankova, K.; Laing, R.; Lico, R.; Agudo, I.; Hovatta, T.; Jermak, H.; Chen, X.; Myserlis, I.; Cellone, S.A.; Chidiac, C.; Chakraborty, N.; Bozhilov, V.

    2016-01-01

    This meeting is the 2. COST workshop on Polarization and Active Galactic Nuclei (AGN). Accreting supermassive black holes in active galactic nuclei are the most powerful, long-lasting sources in the universe. Emitting over ten orders of magnitude in photon energy or more, the radiation of AGN encodes information about a multitude of astrophysical processes: accretion, thermal and non-thermal radiative transfer, acceleration of outflows and jets, shock physics, special and general relativity. Observationally, AGN appear as numerous types and polarization studies have played a key role in establishing the idea of a unifying AGN geometry. The topics covered at the meeting include the following: 1) Polarimetry of AGN from the radio to gamma-rays; 2) Tools for modeling and data analysis of AGN polarization; 3) Polarization due to magnetic fields and dust in AGN; 4) Polarization of AGN inflows, outflows and jets; 5) Spectropolarimetry and polarization variability of AGN; and 6) From Sgr A* to the most luminous quasars: what can polarimetry do for AGN (super-)unification? This document is made up of the abstracts and slides of the presentations

  14. Railway bridge monitoring during construction and sliding

    Science.gov (United States)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Vurpillot, Samuel

    1997-05-01

    The Moesa railway bridge is a composite steel concrete bridge on three spans of 30 m each. The 50 cm thick concrete deck is supported on the lower flanges of two continuous, 2.7 m high I-beams. The bridge has been constructed alongside an old metallic bridge. After demolishing this one, the new bridge has been slid for 5 m by 4 hydraulic jacks and positioned on the refurbished piles of the old bridge. About 30 fiber optic, low-coherence sensors were imbedded in the concrete deck to monitor its deformations during concrete setting and shrinkage, as well as during the bridge sliding phase. In the days following concrete pour it was possible to follow its thermal expansion due to the exothermic setting reaction and the following thermal and during shrinkage. The deformations induced by the additional load produced by the successive concreting phases were also observed. During the bridge push, which extended over six hours, the embedded and surface mounted sensors allowed the monitoring of the curvature variations in the horizontal plane due to the slightly uneven progression of the jacks. Excessive curvature and the resulting cracking of concrete could be ruled out by these measurements. It was also possible to observe the bridge elongation under the heating action of the sun.

  15. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    International Nuclear Information System (INIS)

    Xiang, H.; Komvopoulos, K.

    2013-01-01

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  16. Sliding stones of Racetrack Playa, Death Valley, USA: The roles of rock thermal conductivity and fluctuating water levels

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Hooke, R. L.; Ryan, A.; Fercana, G.; McKinney, E.; Schwebler, K. P.

    2013-01-01

    Roč. 195, 1 August (2013), s. 110-117 ISSN 0169-555X Institutional support: RVO:67985831 Keywords : Endorheic * Finite element modeling * hydrogeology * Racetrack playa * sliding stones Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.577, year: 2013

  17. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Technical Department, Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313008 (China); Song, Hui [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, Wenqing, E-mail: wqliu@staff.shu.edu.cn [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Institute of Materials, Shanghai University, Shanghai 200072 (China); Xia, Shuang; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 200072 (China); Su, Cheng; Ding, Wenyan [Technical Department, Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313008 (China)

    2015-12-15

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ′/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. - Highlights: • Solute atoms segregated at interfaces were analyzed in an austenitic stainless steel. • The comparison of segregation in different interfaces was studied by APT. • The evolution of interface segregation during aging treatment was discussed.

  18. Thermal modeling of head disk interface system in heat assisted magnetic recording

    Energy Technology Data Exchange (ETDEWEB)

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu [Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Min Kim, Hyung [Department of Mechanical System Engineering, Kyonggi University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  19. Determination of the frictional coefficient of the implant-antler interface: experimental approach.

    Science.gov (United States)

    Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph

    2012-10-01

    The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.

  20. Modeling the Sliding/Falling Ladder Paradox

    Science.gov (United States)

    Fox, William P.; Fox, James B.

    2003-01-01

    Recently we were presented with an interesting twist to the sliding ladder problem viewed in the related rates section of most calculus textbooks. Our problem concerning a sliding ladder that eventually hits the ground. At first, those attempting this problem fell into the calculus trap using only related rates. Previous work for this problem…

  1. Sliding hiatal hernia in dogs

    OpenAIRE

    JOLANTA SPUŻAK; KRZYSZTOF KUBIAK; MARCIN JANKOWSKI; MACIEJ GRZEGORY; KAMILA GLIŃSKA-SUCHOCKA; JÓZEF NICPOŃ; VASYL VLIZLO; IGOR MAKSYMOVYCH

    2010-01-01

    Introduction Sliding hiatal hernia is a disorder resulting from a displacement of the abdominal part of the oesophagus and/or a part of the stomach into the thoracic cavity through the oesophageal hiatus of the diaphragm. The disorder may be congenital or acquired. Congenital hernia follows disturbances in the embryonic development. In the literature the predisposition to congenital sliding hiatal hernia is observed in the dogs of shar-pei and chow-chow breeds. Pathogenesis of acquired slidin...

  2. Casting thermal simulation

    International Nuclear Information System (INIS)

    Shamsuddin bin Sulaiman

    1994-01-01

    The whole of this study is concerned with process simulation in casting processes. This study describes the application of the finite element method as an aid to simulating the thermal design of a high pressure die casting die by analysing the cooling transients in the casting cycle. Two types of investigation were carried out to model the linear and non-linear cooling behavior with consideration of a thermal interface effect. The simulated cooling for different stages were presented in temperature contour form. These illustrate the successful application of the Finite Element Method to model the process and they illustrate the significance of the thermal interface at low pressure

  3. A Thermal Hydraulic Model of Melt Lubrication in Railgun Armatures

    National Research Council Canada - National Science Library

    Kothmann, R

    2003-01-01

    ... wear of 7075 aluminum sliding against ETP copper for face pressures ranging from 6 to 22 ksi. Discrepancies between calculated and experimental results are attributed to uncertainties in modeling the complex phase change behavior of aluminum alloy 7075 and uncertain conditions at the rail interface.

  4. Sliding behaviors of elastic cylindrical tanks under seismic loading

    International Nuclear Information System (INIS)

    Kobayashi, N.

    1993-01-01

    There is a paper that reports on the occurrence of sliding in several oil tanks on Alaskan earthquake of 1964. This incident appears to be in need of further investigation for the following reasons: First, in usual seismic designing of cylindrical tanks ('tanks'), sliding is considered to occur when the lateral inertial force exceeds the static friction force. When the tank in question can be taken as a rigid body, this rule is known to hold true. If the tank is capable of undergoing a considerable amount of elastic deformation, however, its applicability has not been proved. Second, although several studies have been done on the critical conditions for static sliding the present author is unaware of like ones made on the dynamic sliding, except for the pioneering work of Sogabe, in which they have empirically indicated possibility of sliding to occur under the force of sloshing. Third, this author has shown earlier on that tanks, if not anchored properly, will start rocking, inducing uplifting of the base plate, even at a relatively small seismic acceleration of 10 gal or so. The present study has been conducted with these observations for the background. Namely, based on a notion that elastic deformation given rise to by rocking oscillation should be incorporated as an important factor in any set of critical conditions for the onset of sliding, a series of shaking table experiments were performed for rigid steel block to represent the rigid tanks ('rigid model') and a model tank having a same sort of plate thickness-to-diameter ratio as industrial tanks to represent the elastic cylindrical tanks ('elastic model'). Following observations have been obtained for the critical condition of the onset of sliding: (1) sliding of rigid tanks will occur when the lateral force given rise to by oscillation exceeds the static, or the Coulombic, friction force. (2) if vertical oscillation is imposed on the lateral oscillation, the lateral force needed to induce sliding of a

  5. [Three-dimensional finite element analysis on mechanical behavior of the bone remodeling and bone integration between the bone-implant interface after hip replacement].

    Science.gov (United States)

    Li, Yong-Jiang; Zhang, Li-Cheng; Zhang, Mei-Chao; Yang, Guo-Jing; Lin, Rui-Xin; Cai, Chun-Yuan; Zhong, Shi-Zhen

    2014-04-01

    To discuss the primary stability of the fixed interface between the cementless prosthesis and femur, and its influence on bone ingrowth and secondary stability under the roughened surface and press fit of different prostheses by finite element analysis. :A three-dimensional finite element module of total hip arthroplasty (THA) was developed with Mimics software. There was a collection of data when simulating hip arthroplasty. The frictional coefficient between the fixed interface was 0,0.15,0.40 and 1.00 representing the roughness of prosthesis surface. The press fit was 0, 0.01,0.05 and 0.10 mm according to the operation. The Vion Mises stress distribution and the contact pressure,friction stress and relative sliding displacement between the interface were analysed and compared when simulating the maneuver of climbing stairs. At a fixed press fit of 0.05 mm,the contact pressure between the interface was 230 , 231, 222 and 275 MN under four different frictional coefficient (0,0. 15,0.40 and 1.00) with little change; the relative sliding displacement was 0.529, 0.129, 0.107 and 0.087 mm with a consistent and obvious decline. As the fixed frictional coefficient was 0.40,the contact pressure between the interface were 56.0,67.7 ,60.4 and 49.6 MN under four different press fit (0, 0.01, 0.05 and 0.10 mm) with a reduction; the relative sliding displacement was 0.064,0.062,0.043 and 0.042 mm with an obvious decline, and there was a maximal friction stress when press fit of 0.01 mm. There is a dynamic process of the bone remodeling and bone integration between the interface after hip replacement, determining the long-term outcome. The interface clearance and the frictional coefficient are the key factors of the bone integration.

  6. Expected sliding distance of vertical slit caisson breakwater

    Science.gov (United States)

    Kim, Dong Hyawn

    2017-06-01

    Evaluating the expected sliding distance of a vertical slit caisson breakwater is proposed. Time history for the wave load to a vertical slit caisson is made. It consists of two impulsive wave pressures followed by a smooth sinusoidal pressure. In the numerical analysis, the sliding distance for an attack of single wave was shown and the expected sliding distance during 50 years was also presented. Those results were compared with a vertical front caisson breakwater without slit. It was concluded that the sliding distance of a vertical slit caisson may be over-estimated if the wave pressure on the caisson is evaluated without considering vertical slit.

  7. Sliding mode control on electro-mechanical systems

    Directory of Open Access Journals (Sweden)

    Vadim I. Utkin

    2002-01-01

    Full Text Available The first sliding mode control application may be found in the papers back in the 1930s in Russia. With its versatile yet simple design procedure the methodology is proven to be one of the most powerful solutions for many practical control designs. For the sake of demonstration this paper is oriented towards application aspects of sliding mode control methodology. First the design approach based on the regularization is generalized for mechanical systems. It is shown that stability of zero dynamics should be taken into account when the regular form consists of blocks of second-order equations. Majority of applications in the paper are related to control and estimation methods of automotive industry. New theoretical methods are developed in the context of these studies: sliding made nonlinear observers, observers with binary measurements, parameter estimation in systems with sliding mode control.

  8. Student perceptions of digital versus traditional slide use in undergraduate education.

    Science.gov (United States)

    Solberg, Brooke L

    2012-01-01

    Digitized slides provide a number of intriguing benefits for educators. Before their implementation, however, educators should consider student opinion related to their use. This mixed-methods study directly compared Medical Laboratory Science (MLS) student perceptions of learning experiences in both digital and traditional slide laboratory settings. Results suggested that the majority of students preferred learning with digital slides, and numerous reasons for this preference were identified. Survey responses indicated that students using digital slides tended to view their performances, instructor feedback, and their learning environment more positively than students using traditional slides. Apprehensions about digital slide use were also detected from students preferring traditional slides. These findings provide a guide on how best to exploit both digital and traditional slides in an educational setting.

  9. Geomorphology, stability and mobility of the Currituck slide

    Science.gov (United States)

    Locat, J.; Lee, H.; ten Brink, Uri S.; Twichell, D.; Geist, E.; Sansoucy, M.

    2009-01-01

    Over the last 100,000??years, the U.S. Atlantic continental margin has experienced various types of mass movements some of which are believed to have taken place at times of low sea level. At one of these times of low sea level a significant trigger caused a major submarine mass movement off the coast of Virginia: the Currituck slide which is believed to have taken place between 24 and 50??ka ago. This slide removed a total volume of about 165??km3 from this section of the continental slope. The departure zone still shows a very clean surface that dips at 4?? and is only covered by a thin veneer of postglacial sediment. Multibeam bathymetric and seismic survey data suggest that this slide took place along three failures surfaces. The morphology of the source area suggests that the sediments were already at least normally consolidated at the time of failure. The slide debris covers an area as much as 55??km wide that extends 180??km from the estimated toe of the original slope. The back analysis of slide initiation indicates that very high pore pressure, a strong earthquake, or both had to be generated to trigger slides on such a low failure plane angle. The shape of the failure plane, the fact that the surface is almost clear of any debris, and the mobility analysis, all support the argument that the slides took place nearly simultaneously. Potential causes for the generation of high pore pressures could be seepage forces from coastal aquifers, delta construction and related pore pressure generation due to the local sediment loading, gas hydrates, and earthquakes. This slide, and its origin, is a spectacular example of the potential threat that submarine mass movements can pose to the US Atlantic coast and underline the need to further assess the potential for the generation of such large slides, like the Grand Banks 1927 landslide of similar volume. ?? 2008 Elsevier B.V.

  10. Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites

    International Nuclear Information System (INIS)

    Wu, Jianhua; Zhang, Hailong; Zhang, Yang; Li, Jianwei; Wang, Xitao

    2012-01-01

    Highlights: ► Al–Cu/diamond composites have been produced by a squeeze casting method. ► Cu alloying is an effective approach to promoting interface bonding between metal matrix and diamond. ► Alloying Cu to Al matrix improves thermal conductivity and reduces coefficient of thermal expansion of the composites. -- Abstract: Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10 −6 to 6 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al 2 Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.

  11. Acceleration Characteristics of a Rock Slide Using the Particle Image Velocimetry Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    2016-01-01

    Full Text Available The Particle Image Velocimetry (PIV technique with high precision and spatial resolution is a suitable sensor for flow field experiments. In this paper, the PIV technology was used to monitor the development of a displacement field, velocity field and acceleration field of a rock slide. It was found that the peak acceleration of the sliding surface appeared earlier than the peak acceleration of the sliding body. The characteristics of the rock slide including the short failure time, high velocities, and large accelerations indicate that the sliding forces and energy release rate of the slope are high. The deformation field showed that the sliding body was sliding outwards along the sliding surface while the sliding bed moved in an opposite direction. Moving upwards at the top of the sliding bed can be one of the warning signs for rock slide failure.

  12. Chiral cell sliding drives left-right asymmetric organ twisting

    Science.gov (United States)

    Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru

    2018-01-01

    Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified ‘cell sliding,’ a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. PMID:29891026

  13. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  14. NEMD simulations for ductile metal sliding

    Energy Technology Data Exchange (ETDEWEB)

    Hammerberg, James E [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Ravelo, Ramon J [Los Alamos National Laboratory; Holian, Brad L [Los Alamos National Laboratory

    2011-01-31

    We have studied the sliding behavior for a 19 M Al(110)/Al(110) defective crystal at 15 GPa as a function of relative sliding velocity. The general features are qualitatively similar to smaller scale (1.4 M) atom simulations for Al(111)/Al(110) nondefective single crystal sliding. The critical velocity, v{sub c}, is approximately the same for the defective crystal as the size scaled v{sub c}. The lower velocity tangential force is depressed relative to the perfect crystal. The critical temperature, T*, is depressed relative to the perfect crystal. These conclusions are consistent with a lower value for f{sub c} for the defective crystal. The detailed features of structural transformation and the high velocity regime remain to be mapped.

  15. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.

    Science.gov (United States)

    Li, Hui; Song, Hui; Liu, Wenqing; Xia, Shuang; Zhou, Bangxin; Su, Cheng; Ding, Wenyan

    2015-12-01

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Decay Rates of Interactive Hyperbolic-Parabolic PDE Models with Thermal Effects on the Interface

    International Nuclear Information System (INIS)

    Lasiecka, I.; Lebiedzik, C.

    2000-01-01

    We consider coupled PDE systems comprising of a hyperbolic and a parabolic-like equation with an interface on a portion of the boundary. These models are motivated by structural acoustic problems. A specific prototype consists of a wave equation defined on a three-dimensional bounded domain Ω coupled with a thermoelastic plate equation defined on Γ 0 -a flat surface of the boundary Ω. Thus, the coupling between the wave and the plate takes place on the interface Γ 0 . The main issue studied here is that of uniform stability of the overall interactive model. Since the original (uncontrolled) model is only strongly stable, but not uniformly stable, the question becomes: what is the 'minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary nonlinear dissipation placed only on a suitable portion of the part of the boundary which is complementary to Γ 0 , suffices for the stabilization of the entire structure. This result is new with respect to the literature on several accounts: (i) thermoelasticity is accounted for in the plate model; (ii) the plate model does not account for any type of mechanical damping, including the structural damping most often considered in the literature; (iii) there is no mechanical damping placed on the interface Γ 0 ; (iv) the boundary damping is nonlinear without a prescribed growth rate at the origin; (v) the undamped portions of the boundary partial Ω are subject to Neumann (rather than Dirichlet) boundary conditions, which is a recognized difficulty in the context of stabilization of wave equations, due to the fact that the strong Lopatinski condition does not hold. The main mathematical challenge is to show how the thermal energy is propagated onto the hyperbolic component of the structure. This is achieved by using a recently developed sharp theory of boundary traces corresponding to wave and plate equations, along with the analytic

  17. Nanoscale thermal transport. II. 2003–2012

    International Nuclear Information System (INIS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  18. Develop and Manufacture an airlock sliding tray

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-26

    The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  19. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    Science.gov (United States)

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  20. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    Science.gov (United States)

    Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.

    2018-03-01

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  1. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  2. Mechanism for ion-induced mixing of GaAs-AlGaAs interfaces by rapid thermal annealing

    International Nuclear Information System (INIS)

    Kahen, K.B.; Rajeswaran, G.; Lee, S.T.

    1988-01-01

    A mechanism for the transient-enhanced interdiffusion of GaAs-AlGaAs interfaces during rapid thermal annealing of ion-implanted heterostructures is proposed. The model is based on the solution of the coupled diffusion equations involving the excess vacancies and the post-implantation Al distribution following ion implantation. Both initial distributions are obtained from the solution of a three-dimensional Monte Carlo simulation of ion implantation into a heterostructure sample. In general, the model is valid for time frames within which impurity diffusion does not occur appreciably so that impurity-enhanced diffusion remains a weak effect

  3. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  4. Invariant polygons in systems with grazing-sliding.

    Science.gov (United States)

    Szalai, R; Osinga, H M

    2008-06-01

    The paper investigates generic three-dimensional nonsmooth systems with a periodic orbit near grazing-sliding. We assume that the periodic orbit is unstable with complex multipliers so that two dominant frequencies are present in the system. Because grazing-sliding induces a dimension loss and the instability drives every trajectory into sliding, the system has an attractor that consists of forward sliding orbits. We analyze this attractor in a suitably chosen Poincare section using a three-parameter generalized map that can be viewed as a normal form. We show that in this normal form the attractor must be contained in a finite number of lines that intersect in the vertices of a polygon. However the attractor is typically larger than the associated polygon. We classify the number of lines involved in forming the attractor as a function of the parameters. Furthermore, for fixed values of parameters we investigate the one-dimensional dynamics on the attractor.

  5. The influence of reciprocating sliding wear on the oxidation behaviour of Fe-12Cr steel

    International Nuclear Information System (INIS)

    Smith, A.F.

    1988-04-01

    Medium-chromium ferritic alloys are used extensively in the boiler and core sections of advanced gas cooled reactors. It was discovered in the early 1970s, that under certain conditions these alloys could undergo the phenomenon known as breakaway oxidation. In this type of oxidation the rate limiting step is located at the oxide/metal interface rather than the more usual gas/oxide interface and results in linear oxidation kinetics. It has been shown that repeated removal of oxide layers can expose chromium depleted metal to the oxidising gas and promote nucleation of breakaway oxidation. The question has been addressed as to whether high temperature sliding wear processes can also disrupt the surface so as to make the material potentially susceptible to breakaway oxidation. To this end high temperature reciprocating wear of Fe-12Cr material in both low and high pressure reactor gas has been investigated. (author)

  6. A comparative study of the mechanical behaviour of thermally oxidised commercially pure titanium and zirconium.

    Science.gov (United States)

    Alansari, A; Sun, Y

    2017-10-01

    The objective of this study is to compare the mechanical behaviour of thermally oxidised commercially pure titanium (CP-Ti) and commercially pure zirconium (CP-Zr). For this purpose, these two bio-metals were thermally oxidised under the same condition (650°C for 6h) and the oxidised specimens were characterised using various analytical and experimental techniques, including oxygen uptake analysis, layer thickness and hardness measurements, scratch tests, dry sliding friction and wear tests and tribocorrosion tests in Ringer's solution. The results show that under the present thermal oxidation condition, 4 times more oxygen is introduced into CP-Zr than into CP-Ti and the oxide layer produced on CP-Zr is nearly 6 times thicker than that on CP-Ti. Thermally oxidised CP-Zr possesses a higher hardness, a deeper hardening depth and better scratch resistance than thermally oxidised CP-Ti. Under dry sliding and tribocorrosion conditions, thermally oxidised CP-Zr also possesses much better resistance to material removal and a higher load bearing capacity than thermally oxidised CP-Ti. Thus, thermally oxidised Zr possesses much better mechanical behaviour than thermally oxidised Ti. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  8. Atomistic Simulation of Frictional Sliding Between Cellulose Iß Nanocrystals

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    Sliding friction between cellulose Iß nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be...

  9. Chaos control using sliding-mode theory

    International Nuclear Information System (INIS)

    Nazzal, Jamal M.; Natsheh, Ammar N.

    2007-01-01

    Chaos control means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, a nonlinear Sliding-Mode Controller (SMC) is presented. Two nonlinear chaotic systems are chosen to be our case study in this paper, the well known Chua's circuit and Lorenz system. The study shows the effectiveness of the designed nonlinear Sliding-Mode Controller

  10. A sharp interface immersed boundary method for vortex-induced vibration in the presence of thermal buoyancy

    Science.gov (United States)

    Garg, Hemanshul; Soti, Atul K.; Bhardwaj, Rajneesh

    2018-02-01

    We report the development of an in-house fluid-structure interaction solver and its application to vortex-induced vibration (VIV) of an elastically mounted cylinder in the presence of thermal buoyancy. The flow solver utilizes a sharp interface immersed boundary method, and in the present work, we extend it to account for the thermal buoyancy using Boussinesq approximation and couple it with a spring-mass system of the VIV. The one-way coupling utilizes an explicit time integration scheme and is computationally efficient. We present benchmark code verifications of the solver for natural convection, mixed convection, and VIV. In addition, we verify a coupled VIV-thermal buoyancy problem at a Reynolds number, Re = 150. We numerically demonstrate the onset of the VIV in the presence of the thermal buoyancy for an insulated cylinder at low Re. The buoyancy is induced by two parallel plates, kept in the direction of flow and symmetrically placed around the cylinder. The plates are maintained at the hot and cold temperature to the same degree relative to the ambient. In the absence of the thermal buoyancy (i.e., the plates are at ambient temperature), the VIV does not occur for Re ≤ 20 due to stable shear layers. By contrast, the thermal buoyancy induces flow instability and the vortex shedding helps us to achieve the VIV at Re ≤ 20, lower than the critical value of Re (≈21.7), reported in the literature, for a self-sustained VIV in the absence of the thermal buoyancy. The present simulations show that the lowest Re to achieve VIV in the presence of the thermal buoyancy is around Re ≈ 3, at Richardson number, Ri = 1. We examine the effect of the reduced velocity (UR), mass ratio (m), Prandtl number (Pr), Richardson number (Ri) on the displacement of the cylinder, lift coefficient, oscillation frequency, the phase difference between displacement and lift force, and wake structures. We obtain a significantly larger vibration amplitude of the cylinder over a wide

  11. Lempel-Ziv Compression in a Sliding Window

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Fischer, Johannes

    2017-01-01

    result, we combine a simple modification and augmentation of the suffix tree with periodicity properties of sliding windows. We also apply this new technique to obtain an algorithm for the approximate rightmost LZ77 problem that uses O(n(log z + loglogn)) time and O(n) space and produces a (1 + ϵ......We present new algorithms for the sliding window Lempel-Ziv (LZ77) problem and the approximate rightmost LZ77 parsing problem. Our main result is a new and surprisingly simple algorithm that computes the sliding window LZ77 parse in O(w) space and either O(n) expected time or O(n log log w + z log...

  12. The experiment research of the friction sliding isolation structure

    Science.gov (United States)

    Zhang, Shirong; Li, Jiangle; Wang, Sheliang

    2018-04-01

    This paper investigated the theory of the friction sliding isolation structure, The M0S2 solid lubricant was adopted as isolation bearing friction materials, and a new sliding isolation bearing was designed and made. The formula of the friction factor and the compression stress was proposed. The feasibility of the material MoS2 used as the coating material in a friction sliding isolation system was tested on the 5 layers concrete frame model. Two application experiment conditions were presented. The results of the experiment research indicated that the friction sliding isolation technology have a good damping effect.

  13. Interface Shape and Convection During Solidification and Melting of Succinonitrile

    Science.gov (United States)

    Degroh, Henry C., III; Lindstrom, Tiffany

    1994-01-01

    An experimental study was conducted of the crystal growth of succinonitrile during solidification, melting, and no-growth conditions using a horizontal Bridgman furnace and square glass ampoule. For use as input boundary conditions to numerical codes, thermal profiles on the outside of the ampoule at five locations around its periphery were measured along the ampoule's length. Temperatures inside the ampoule were also measured. The shapes of the s/l interface in various two dimensional planes were quantitatively determined. Though interfaces were nondendritic and noncellular, they were not flat, but were highly curved and symmetric in only one unique longitudinal y-z plane (at x=O). The shapes of the interface were dominated by the primary longitudinal flow cell characteristic of shallow cavity flow in horizontal Bridgman; this flow cell was driven by the imposed furnace temperature gradient and caused a 'radical' thermal gradient such that the upper half of the ampoule was hotter than the bottom half. We believe that due to the strong convection, the release of latent heat does not significantly influence the thermal conditions near the interface. We hope that the interface shape and thermal data presented in this paper can be used to optimize crystal growth processes and validate numerical models.

  14. Control uncertain Genesio-Tesi chaotic system: Adaptive sliding mode approach

    International Nuclear Information System (INIS)

    Dadras, Sara; Momeni, Hamid Reza

    2009-01-01

    An adaptive sliding mode control (ASMC) technique is introduced in this paper for a chaotic dynamical system (Genesio-Tesi system). Using the sliding mode control technique, a sliding surface is determined and the control law is established. An adaptive sliding mode control law is derived to make the states of the Genesio-Tesi system asymptotically track and regulate the desired state. The designed control scheme can control the uncertain chaotic behaviors to a desired state without oscillating very fast and guarantee the property of asymptotical stability. An illustrative simulation result is given to demonstrate the effectiveness of the proposed adaptive sliding mode control design.

  15. No further risk of underwater slides?; Skredfaren over?

    Energy Technology Data Exchange (ETDEWEB)

    Haarvik, Linda; Kvalstad, Tore

    2002-07-01

    The Ormen Lange oil field of the Norwegian Sea is situated in the middle of the enormous Storegga submarine slide that occurred about 8000 years ago. The danger is probably over, but it is unclear what caused the slide. The Norwegian Geotechnical Institute has begun a comprehensive research project in order to increase the knowledge of how oil- and gas exploitation at great depths can be safeguarded against geological hazards like slides, earthquakes, flood waves and clay volcanos. This is motivated by the fact that oil exploration has moved to greater depths, where the conditions for development are very different from those at shallower depths. Future developers will have to consider the discovery of traces of old slides along the Norwegian continental shelf all the way to Spitsbergen.

  16. 1963 Vajont rock slide: a comparison between 3D DEM and 3D FEM

    Science.gov (United States)

    Crosta, Giovanni; Utili, Stefano; Castellanza, Riccardo; Agliardi, Federico; Bistacchi, Andrea; Weng Boon, Chia

    2013-04-01

    Data on the exact location of the failure surface of the landslide have been used as the starting point for the modelling of the landslide. 3 dimensional numerical analyses were run employing both the discrete element method (DEM) and a Finite Element Method (FEM) code. In this work the focus is on the prediction of the movement of the landlside during its initial phase of detachment from Mount Toc. The results obtained by the two methods are compared and conjectures on the observed discrepancies of the predictions between the two methods are formulated. In the DEM simulations the internal interaction of the sliding blocks and the expansion of the debris is obtained as a result of the kinematic interaction among the rock blocks resulting from the jointing of the rock mass involved in the slide. In the FEM analyses, the c-phi reduction technique was employed along the predefine failure surface until the onset of the landslide occurred. In particular, two major blocks of the landslide were identified and the stress, strain and displacement fields at the interface between the two blocks were analysed in detail.

  17. A Transformational Approach to Slip-Slide Factoring

    Science.gov (United States)

    Steckroth, Jeffrey

    2015-01-01

    In this "Delving Deeper" article, the author introduces the slip-slide method for solving Algebra 1 mathematics problems. This article compares the traditional method approach of trial and error to the slip-slide method of factoring. Tools that used to be taken for granted now make it possible to investigate relationships visually,…

  18. Sliding Mode Attitude Control for Magnetic Actuated Satellite

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1998-01-01

    control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis attitude control. This paper deals with three-axis stabilization of a low earth orbit satellite. The problem of controlling...... the spacecraft attitude using only magnetic torquing is realized in the form of the sliding mode control. A three dimensional sliding manifold is proposed, and it is shown that the satellite motion on the sliding manifold is asymptotically stable...

  19. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image.

    Science.gov (United States)

    Banavar, Spoorthi Ravi; Chippagiri, Prashanthi; Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background . Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated "slide scanners" which can provide a "whole slide digital image." These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods . In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results . The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion . With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost.

  20. Sliding Mode Control of PMSG Wind Turbine Based on Enhanced Exponential Reaching Law

    DEFF Research Database (Denmark)

    Mozayan, Seyed Mehdi; Saad, Maarouf; Vahedi, Hani

    2016-01-01

    This paper proposes a Sliding Mode Control (SMC) based scheme for a variable speed, direct-driven Wind Energy Conversion Systems (WECS) equipped with Permanent Magnet Synchronous Generator (PMSG) connected to the grid. In this work, diode rectifier, boost converter, Neutral Point Clamped (NPC......) inverter and L filter are used as the interface between the wind turbine and grid. This topology has abundant features such as simplicity for low and medium power wind turbine applications. It is also less costly than back-to-back two-level converters in medium power applications. SMC approach demonstrates...... is explored by simulation study on a 4 kW wind turbine, and then verified by experimental tests for a 2 kW set-up....

  1. Investigation of slide-away discharges in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Lu Hongwei; Hu Liqun; Lin Shiyao; Zhong Guoqian; Zhou Ruijie

    2010-01-01

    In tokamak plasmas, the discharge will go into 'runaway' discharges if the density decays to the critical ones. The discharge will go into 'slide-away' discharges if the density reaches a lower level. The slide-away discharge is characterized by high confinement and lots of superthermal electrons which constitute a large part of plasma current. In HT-7 Tokamak, the slide-away discharges have been achieved by decreasing the plasma density. The relation ship between plasma current and the critical density of slide-away discharge was investigated. It was also found that the increase of density in slide-away discharge can make the confinement poor. And also, lots of superthermal electrons lost from the vacuum chamber. (authors)

  2. Whole-slide imaging in pathology: the potential impact on PACS

    Science.gov (United States)

    Horii, Steven C.

    2007-03-01

    Pathology, the medical specialty charged with the evaluation of macroscopic and microscopic aspects of disease, is increasingly turning to digital imaging. While the conventional tissue blocks and glass slides form an "archive" that pathology departments must maintain, digital images acquired from microscopes or digital slide scanners are increasingly used for telepathology, consultation, and intra-facility communication. Since many healthcare facilities are moving to "enterprise PACS" with departments in addition to radiology using the infrastructure of such systems, some understanding of the potential of whole-slide digital images is important. Network and storage designers, in particular, are very likely to be impacted if a significant number of such images are to be moved on, or stored (even temporarily) in, enterprise PACS. As an example, a typical commercial whole-slide imaging system typically generates 15 gigabytes per slide scanned (per focal plane). Many of these whole-slide scanners have a throughput of 1000 slides per day. If that full capacity is used and all the resulting digital data is moved to the enterprise PACS, it amounts to 15 terabytes per day; the amount of data a large radiology department might generate in a year or two. This paper will review both the clinical scenarios of whole-slide imaging as well as the resulting data volumes. The author will emphasize the potential PACS infrastructure impact of such huge data volumes.

  3. Digital versus traditional: are diagnostic accuracy rates similar for glass slides versus whole slide images in a non-gynaecological external quality assurance setting?

    Science.gov (United States)

    Ross, Jennifer; Greaves, Janelle; Earls, Peter; Shulruf, Boaz; Van Es, Simone L

    2018-04-17

    The Royal College of Pathologists of Australasia Quality Assurance Programs introduced virtual microscopy cases into its cytopathology non-gynaecological program after a short pilot phase, to address the challenges of providing a purely glass slide-based external quality assurance program to multiple participants both locally and internationally. The use of whole slide image (WSI) cases has facilitated a more robust program in relation to standardised material and statistical analysis, with access to a wider variety of specimen types and diagnostic entities. Diagnostic accuracy rates on 56 WSI were assessed against the reference diagnosis. A portion (12) of these WSI slides had been used in glass slide format in previous EQA surveys, and the results of these were compared to the responses received as glass slide cases. Overall diagnostic accuracy for the 56 WSI cases was acceptable in comparison to the reference diagnosis. When these 12 cases were analysed individually, for seven of the twelve cases, virtual format was found to be not inferior to glass slides for diagnostic accuracy. For one case, accuracy using WSI for diagnosis was superior to glass format. Diagnostic accuracy, using WSI for cases in our external quality assurance program is acceptable. As the use of digital microscopy in a large scale external quality assurance program (eQAP) offers extensive advantages over a glass slide-based format, our results encourage future comparison of diagnostic accuracy for virtual compared to glass slide format at a point in time where pathologists are becoming increasingly familiar with virtual microscopy in everyday practice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Photoelectric properties by interface effect of organic/inorganic(CuPc/PbTe) multilayer prepared by pulsed laser deposition and thermal evaporation

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Tabata, H; Kawai, T

    1999-01-01

    Highly crystallized CuPc/PbTe multilayer are prepared at substrate temperature from room temperature to 300 .deg. C by pulsed laser deposition and thermal evaporation method. From the measurement of AFM image, these all film exhibits composed of round grains and flat matrix. For observation the interface effect of multilayer, we measured the transverse current-voltage characteristics in the dark and under illumination. The photocarrier is generated in the CuPc layer and the electron-hole pairs are separated by the steep incline of the potential near the CuPc/PbTe interface. The CuPc/PbTe multilayers in the in-plane current-voltage curve exhibit larger photoconduction effect than that of CuPc single layer.

  5. Interfacing of thermal ionization mass spectrometer with PC/XT and related software development

    International Nuclear Information System (INIS)

    Moorthy, A.D.; Gurba, P.B.; Rajendrakumar; Singh, R.K.; Bajpai, D.D.; Coelho, G.J.M.; Das, K.V.; Indurkar, V.S.

    1992-01-01

    A completely automated Thermal Ionization Mass Spectrometer (TIMS), is used in Power Reactor Fuel Reprocessing Plant (PREFRE) Tarapur for precise and accurate measurement of isotopic composition and concentration determination of special nuclear materials (Uranium and Plutonium) for the purpose of input accounting of the plant. It is provided with one Hewlett-Packard, H-9845B desktop computer to control various instrument parameters and perform automatic analysis of 13 samples in sequence. The computer gave fairly good service for six years with intermittent minor maintenance before it developed major problems. In view of the fact that its repair and maintenance cost is several times the cost of locally available computer, it was decided to replace the imported Hewlett-Packard 9845B desktop computer with PC/XT. This report describes the interfacing of TIMS with PC/XT and the related Software development. (author). 3 refs., 8 figs., 2 annexures

  6. Advances in sliding mode control concept, theory and implementation

    CERN Document Server

    Janardhanan, S; Spurgeon, Sarah

    2013-01-01

    The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear an...

  7. PSO based neuro fuzzy sliding mode control for a robot manipulator

    Directory of Open Access Journals (Sweden)

    M. Vijay

    2017-05-01

    Full Text Available This paper presents the control strategy of two degrees of freedom (2DOF rigid robot manipulator based on the coupling of artificial neuro fuzzy inference system (ANFIS with sliding mode control (SMC. Initially SMC with proportional integral derivative (PID sliding surface is adapted to control the robot manipulator. The parameters of the sliding surface are obtained by minimizing a quadratic performance indices using particle swarm optimization (PSO. Variations of SMC i.e. boundary sliding mode control (BSMC and boundary sliding mode control with PID sliding surface (PIDBSMC are developed for optimized performance index. Finally an ANFIS adaptive controller is proposed to generate the adaptive control signal and found to be more robust with regard to disturbances in input torque.

  8. FRICTION TORQUE IN THE SLIDE BEARINGS

    Directory of Open Access Journals (Sweden)

    BONDARENKO L. N.

    2016-09-01

    Full Text Available Summary. Problem statement. Until now slide bearings are used widely in engineering. But the calculation is made on obsolete method that is based on undetermined parameters such as wear of the bearing shell. It is accepted in the literature that if the shaft and liner material are homogeneous, the workpiece surface are cylindrical as they wear and contact between them occurs at all points contact arc. Research objective. The purpose of this study is determine a friction torque in the slide bearings of power-basis parameters. Conclusions. Since the friction is primarily responsible for wear of cinematic pairs “pin – liner” and “pivot – liner” slide bearings. It is shown that the friction torquesof angles wrap, that are obtained by the formulas and given in literature, are not only qualitatively but also quantitatively, namely, the calculation by literature to the formulas the friction torques are proportional to the angle wrap and the calculation by improved formulas the friction torques are inversely proportional to the angle wrap due to the reduction the normal pressure. Underreporting friction torque at large angle wrap is between 40 and 15 %. The difference in the magnitude of friction torque in the run-in and run-out cinematic pairs with real method of machining is 2...3 %, which it is possible to declare of reducing the finish of contacting surface of slide bearings.

  9. A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.

    Science.gov (United States)

    Smith, E R; Müller, E A; Craster, R V; Matar, O K

    2016-12-06

    Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.

  10. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  11. [Heritage Education Lesson Plans and Slide Presentations].

    Science.gov (United States)

    Van Buren, Maurie

    Field tested in 27 schools and in grades four through twelve, this teaching unit stresses heritage education through the study of southern U.S. architectural styles for homes from the pioneer log structures to the 1950s ranch home. Each of the four lessons in this unit focuses around a slide presentation of 20 slides designed to fit into one…

  12. Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tae-Won; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been

  13. Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity

    International Nuclear Information System (INIS)

    Cho, Tae-Won; Sohn, Dong-Seong

    2014-01-01

    The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been

  14. Sensorless Sliding Mode Vector Control of Induction Motor Drives

    OpenAIRE

    Gouichiche Abdelmadjid; Boucherit Mohamed Seghir; Safa Ahmed; Messlem Youcef

    2012-01-01

    In this paper we present the design of sliding mode controllers for sensorless field oriented control of induction motor. In order to improve the performance of controllers, the motor speed is controlled by sliding mode regulator with integral sliding surface. The estimated rotor speed used in speed feedback loop is calculated by an adaptive observer based on MRAS (model reference adaptive system) technique .the validity of the proposed scheme is demonstrated by experimental results.

  15. Origin of interface states and oxide charges generated by ionizing radiation

    International Nuclear Information System (INIS)

    Sah, C.T.

    1976-01-01

    The randomly located trivalent silicon atoms are shown to account for the thermally generated interface states at the SiO 2 -Si interface. The interface state density is greatly reduced in water containing ambients at low temperatures (450 0 C) by forming trivalent silicon hydroxide bonds. Interface states are regenerated when the /triple bond/Si-OH bonds are broken by ionizing radiation and the OH ions are drifted away. In the bulk of the oxide film, the trivalent silicon and the interstitial oxygen donor centers are shown to be responsible for the heat and radiation generated positive space charge build-up (oxide charge) in thermally grown silicon oxide

  16. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    Directory of Open Access Journals (Sweden)

    Sumio Ishijima

    Full Text Available It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.

  17. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives

    Directory of Open Access Journals (Sweden)

    Farahani N

    2015-06-01

    Full Text Available Navid Farahani,1 Anil V Parwani,2 Liron Pantanowitz2 1Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 2Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Abstract: Significant technologic gains have led to the adoption of innovative digital imaging solutions in pathology. Whole slide imaging (WSI, which refers to scanning of conventional glass slides in order to produce digital slides, is the most recent imaging modality being employed by pathology departments worldwide. WSI continues to gain traction among pathologists for diagnostic, educational, and research purposes. This article provides a technologic review of WSI platforms and covers clinical and nonclinical pathology applications of these imaging systems. Barriers to adoption of WSI include limiting technology, image quality, problems with scanning all materials (eg, cytology slides, cost, digital slide storage, inability to handle high-throughput routine work, regulatory barriers, ergonomics, and pathologists' reluctance. Emerging issues related to clinical validation, standardization, and forthcoming advances in the field are also addressed. Keywords: digital, imaging, microscopy, pathology, validation, whole slide image, telepathology

  18. SlideDog / Siim Sein

    Index Scriptorium Estoniae

    Sein, Siim

    2015-01-01

    SlideDog on multimeediumi esitluse tööriist, mis võimaldab ühendada PowerPointi esitlused, PDF-failid, Prezi esitlused, videoklipid, helifailid, veebilehed ja palju muud üheks sujuvaks esitluskogemuseks konverentsil, seminaril või muul üritusel

  19. Mechanism to synthesize a ‘moving optical mark’ at solid-ambient interface for the estimation of thermal diffusivity of solid

    Directory of Open Access Journals (Sweden)

    Settu Balachandar

    2016-01-01

    Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.

  20. Fuzzy Backstepping Sliding Mode Control for Mismatched Uncertain System

    Directory of Open Access Journals (Sweden)

    H. Q. Hou

    2014-06-01

    Full Text Available Sliding mode controllers have succeeded in many control problems that the conventional control theories have difficulties to deal with; however it is practically impossible to achieve high-speed switching control. Therefore, in this paper an adaptive fuzzy backstepping sliding mode control scheme is derived for mismatched uncertain systems. Firstly fuzzy sliding mode controller is designed using backstepping method based on the Lyapunov function approach, which is capable of handling mismatched problem. Then fuzzy sliding mode controller is designed using T-S fuzzy model method, it can improve the performance of the control systems and their robustness. Finally this method of control is applied to nonlinear system as a case study; simulation results are also provided the performance of the proposed controller.

  1. A Simple Measurement of the Sliding Friction Coefficient

    Science.gov (United States)

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  2. Adaptive Sliding Mode Observer for a Class of Systems

    OpenAIRE

    D.Elleuch; T.Damak

    2010-01-01

    In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown tha...

  3. Ferguson rock slide buries California State Highway near Yosemite National Park

    Science.gov (United States)

    Harp, Edwin L.; Reid, Mark E.; Godt, Jonathan W.; DeGraff, Jerome V.; Gallegos, Alan J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material.

  4. Gravitational sliding of the Mt. Etna massif along a sloping basement

    Science.gov (United States)

    Murray, John B.; van Wyk de Vries, Benjamin; Pitty, Andy; Sargent, Phil; Wooller, Luke

    2018-04-01

    Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year-1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes.

  5. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Song Huimin; Zhang Qiaogen; Li Yinghong; Jia Min; Wu Yun

    2011-01-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  6. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    Science.gov (United States)

    Song, Huimin; Li, Yinghong; Zhang, Qiaogen; Jia, Min; Wu, Yun

    2011-10-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  7. Was the Scanner Calibration Slide used for its intended purpose?

    Directory of Open Access Journals (Sweden)

    Zong Yaping

    2011-04-01

    Full Text Available Abstract In the article, Scanner calibration revisited, BMC Bioinformatics 2010, 11:361, Dr. Pozhitkov used the Scanner Calibration Slide, a key product of Full Moon BioSystems to generate data in his study of microarray scanner PMT response and proposed a mathematic model for PMT response 1. In the end, the author concluded that "Full Moon BioSystems calibration slides are inadequate for performing calibration," and recommended "against using these slides." We found these conclusions are seriously flawed and misleading, and his recommendation against using the Scanner Calibration Slide was not properly supported.

  8. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.

    Science.gov (United States)

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D

    2015-12-15

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. First exploration of a single thermal interface between the two dominant phases of the interstellar medium

    Science.gov (United States)

    Gry, Cecile

    2017-08-01

    Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.

  10. Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle

    Science.gov (United States)

    Chen, Hongbin

    2018-03-01

    Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.

  11. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  12. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  13. Slide-based ergometer rowing

    DEFF Research Database (Denmark)

    Vinther, Anders; Alkjær, T; Kanstrup, I-L

    2012-01-01

    Force production profile and neuromuscular activity during slide-based and stationary ergometer rowing at standardized submaximal power output were compared in 14 male and 8 female National Team rowers. Surface electromyography (EMG) was obtained in selected thoracic and leg muscles along with sy...

  14. Presentation = Speech + Slides

    Directory of Open Access Journals (Sweden)

    Derik Badman

    2008-12-01

    Full Text Available Back in October, Aaron Schmidt posted “HOWTO give a good presentation” to his blog walking paper. His second bullet point of “thoughts” on good presentations is: Please don’t fill your slides with words. Find some relevant and pretty pictures to support what you’re saying. You can use the pictures to remind yourself what you’re going [...

  15. An Evaluation of the Effectiveness of Stereo Slides in Teaching Geomorphology.

    Science.gov (United States)

    Giardino, John R.; Thornhill, Ashton G.

    1984-01-01

    Provides information about producing stereo slides and their use in the classroom. Describes an evaluation of the teaching effectiveness of stereo slides using two groups of 30 randomly selected students from introductory geomorphology. Results from a pretest/postttest measure show that stereo slides significantly improved understanding. (JM)

  16. [High-frequency components of occlusal sound in sliding movement].

    Science.gov (United States)

    Nagai, K

    1990-03-01

    We postulated that high-frequency components of the occlusal sound occurring due to the characteristic vibration of teeth can be useful data for confirmation of the stability in occlusion, and studied the high-frequency components in the cases both of an experimental sliding movement and a normal occlusion. The results obtained were as follows. 1. A study on high-frequency components of the occlusal sound in an experimental sliding movement. 1) A study on wave type of the occlusal sound revealed one damped oscillation in an impact form and two in a slide form. 2) Spectrum analysis of the damped oscillation showed a similar spectrum pattern with a peak existing between 16KHz or more and 17KHz or less in both impact and slide cases. 2. A study on high-frequency components of the occlusal sound in a normal occlusion case. 1) The wave type in occlusal sound we have observed in a normal occlusion group and in a prosthetic or operative group was as follows: One damped oscillation shown in an impact form and two damped oscillation in a slide form which were the same as those shown in the case where an interference device was attached. 2) Duration of the sliding movement was short in a normal occlusion group, but was prolonged in a prosthetic or operative group. 3) The incidence of the wave type in occlusal sound was 56.7% in a prosthetic or operative group as compared to 87.8% in a normal occlusion group in an impact form. In contrast, the incidence was 43.3% in a prosthetic or operative group as compared to 12.2% in a normal occlusion group in a slide form. Such difference in the incidence between the wave types suggested that high-frequency components of occlusal sound can be an index for judgement of the stability in occlusion.

  17. Measurements of interface fracture properties of composite materials

    International Nuclear Information System (INIS)

    Ashkenazi, D.; Bank-Sills, L.; Travitzky, N.; Eliasi, R.

    1998-01-01

    In this investigation, interface Fracture properties are measured. To this end, glass/epoxy Brazilian disk specimens are studied. In order to calibrate the specimen, a numerical procedure is used. The finite element method is employed to derive stress intensity factors as a function of loading angle and crack length. By means of the weight friction method together with finite elements, a correction to the stress intensity factors for residual thermal stresses is obtained. These are combined to determine the critical interface energy release rate as a function of phase angle Tom the measured load and crack length at Fracture. A series of tests on a glass/epoxy material pair were carried out. It may be observed from the results that the residual thermal stresses resulting from the material mismatch greatly affect the interface toughness values

  18. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  19. Controllable sliding bearings and controllable lubrication principles-an overview

    DEFF Research Database (Denmark)

    Santos, Ilmar F.

    2018-01-01

    -mechanical actuators have been coupled to such bearings. Depending on (i) the actuator type; (ii) the actuation principle, i.e., hydraulic, pneumatic, piezoelectric or magnetic among others; and (iii) how such an actuator is coupled to the sliding bearings, different regulation and control actions of fluid film...... bearing gap and its preload via moveable and compliant sliding surfaces; and (d) the control of the lubricant viscosity. All four parameters, i.e., pressure, flow (velocity profiles), gap and viscosity, are explicit parameters in the modified form of Reynolds' equations for active lubrication....... In this framework, this paper gives one main original contribution to the state-of-the-art of radial sliding bearings and controllable lubrication: a comprehensive overview about the different types of controllable sliding bearings and principles used by several authors. The paper ends with some conclusive remarks...

  20. Hermite- Padé projection to thermal radiative and variable ...

    African Journals Online (AJOL)

    The combined effect of variable thermal conductivity and radiative heat transfer on steady flow of a conducting optically thin viscous fluid through a channel with sliding wall and non-uniform wall temperatures under the influence of an externally applied homogeneous magnetic field are analyzed in the present study.

  1. Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, Zabiholah; Araghi, Houshang, E-mail: araghi@aut.ac.ir

    2016-11-25

    In this paper, thermal conductivity of graphene/paraffin nanocomposite using micromechanical model has been studied. The behavior of thermal conductivity of nanocomposite as a function of volume fraction of graphene is studied. Then is shown that as the interfacial thermal resistance at the graphene–paraffin interface decreases, the thermal conductivity of nanocomposite increases. In order to reduce the interfacial thermal resistance, functional groups in the interface between graphene and paraffin are used. It can be observed that using functional groups of hydrogen, methyl and phenyl in the interface of nanocomposite, contributes to the improvement of the thermal conductivity. Moreover, as the rate of coverage of the surface of graphene with functional groups of H, CH{sub 3} and C{sub 6}H{sub 5} increases, the thermal conductivity of nanocomposite improves. - Highlights: • Thermal conductivity nanocomposite exhibit nonlinear behavior with volume faction. • Phenyl is better to form the thermal conductivity network in paraffin. • The thickness of interfacial layer can be obtained 12.75 nm.

  2. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    Science.gov (United States)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  3. Hierarchical Fuzzy Feature Similarity Combination for Presentation Slide Retrieval

    Directory of Open Access Journals (Sweden)

    A. Kushki

    2009-02-01

    Full Text Available This paper proposes a novel XML-based system for retrieval of presentation slides to address the growing data mining needs in presentation archives for educational and scholarly settings. In particular, contextual information, such as structural and formatting features, is extracted from the open format XML representation of presentation slides. In response to a textual user query, each extracted feature is used to compute a fuzzy relevance score for each slide in the database. The fuzzy scores from the various features are then combined through a hierarchical scheme to generate a single relevance score per slide. Various fusion operators and their properties are examined with respect to their effect on retrieval performance. Experimental results indicate a significant increase in retrieval performance measured in terms of precision-recall. The improvements are attributed to both the incorporation of the contextual features and the hierarchical feature combination scheme.

  4. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  5. A history of slide rules for blackbody radiation computations

    Science.gov (United States)

    Johnson, R. Barry; Stewart, Sean M.

    2012-10-01

    During the Second World War the importance of utilizing detection devices capable of operating in the infrared portion of the electromagnetic spectrum was firmly established. Up until that time, laboriously constructed tables for blackbody radiation needed to be used in calculations involving the amount of radiation radiated within a given spectral region or for other related radiometric quantities. To rapidly achieve reasonably accurate calculations of such radiometric quantities, a blackbody radiation calculator was devised in slide rule form first in Germany in 1944 and soon after in England and the United States. In the immediate decades after its introduction, the radiation slide rule was widely adopted and recognized as a useful and important tool for engineers and scientists working in the infrared field. It reached its pinnacle in the United States in 1970 in a rule introduced by Electro Optical Industries, Inc. With the onset in the latter half of the 1970s of affordable, hand-held electronic calculators, the impending demise of the radiation slide rule was evident. No longer the calculational device of choice, the radiation slide rule all but disappeared within a few short years. Although today blackbody radiation calculations can be readily accomplished using anything from a programmable pocket calculator upwards, with each device making use of a wide variety of numerical approximations to the integral of Planck's function, radiation slide rules were in the early decades of infrared technology the definitive "workhorse" for those involved in infrared systems design and engineering. This paper presents a historical development of radiation slide rules with many versions being discussed.

  6. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  7. Adaptive Tracking and Obstacle Avoidance Control for Mobile Robots with Unknown Sliding

    Directory of Open Access Journals (Sweden)

    Mingyue Cui

    2012-11-01

    Full Text Available An adaptive control approach is proposed for trajectory tracking and obstacle avoidance for mobile robots with consideration given to unknown sliding. A kinematic model of mobile robots is established in this paper, in which both longitudinal and lateral sliding are considered and processed as three time-varying parameters. A sliding model observer is introduced to estimate the sliding parameters online. A stable tracking control law for this nonholonomic system is proposed to compensate the unknown sliding effect. From Lyapunov-stability analysis, it is proved, regardless of unknown sliding, that tracking errors of the controlled closed-loop system are asymptotically stable, the tracking errors converge to zero outside the obstacle detection region and obstacle avoidance is guaranteed inside the obstacle detection region. The efficiency and robustness of the proposed control system are verified by simulation results.

  8. Minimized thermal conductivity in highly stable thermal barrier W/ZrO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich [University of Goettingen, Institut fuer Materialphysik, Goettingen (Germany)

    2016-10-15

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO{sub 2} in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO{sub 2}, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO{sub 2}. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO{sub 2} multilayers as desired thermally stable, low-conductivity materials. (orig.)

  9. Performance of a malaria microscopy image analysis slide reading device

    Directory of Open Access Journals (Sweden)

    Prescott William R

    2012-05-01

    Full Text Available Abstract Background Viewing Plasmodium in Romanovsky-stained blood has long been considered the gold standard for diagnosis and a cornerstone in management of the disease. This method however, requires a subjective evaluation by trained, experienced diagnosticians and establishing proficiency of diagnosis is fraught with many challenges. Reported here is an evaluation of a diagnostic system (a “device” consisting of a microscope, a scanner, and a computer algorithm that evaluates scanned images of standard Giemsa-stained slides and reports species and parasitaemia. Methods The device was challenged with two independent tests: a 55 slide, expert slide reading test the composition of which has been published by the World Health Organization (“WHO55” test, and a second test in which slides were made from a sample of consenting subjects participating in a malaria incidence survey conducted in Equatorial Guinea (EGMIS test. These subjects’ blood was tested by malaria RDT as well as having the blood smear diagnosis unequivocally determined by a worldwide panel of a minimum of six reference microscopists. Only slides with unequivocal microscopic diagnoses were used for the device challenge, n = 119. Results On the WHO55 test, the device scored a “Level 4” using the WHO published grading scheme. Broken down by more traditional analysis parameters this result was translated to 89% and 70% sensitivity and specificity, respectively. Species were correctly identified in 61% of the slides and the quantification of parasites fell within acceptable range of the validated parasitaemia in 10% of the cases. On the EGMIS test it scored 100% and 94% sensitivity/specificity, with 64% of the species correct and 45% of the parasitaemia within an acceptable range. A pooled analysis of the 174 slides used for both tests resulted in an overall 92% sensitivity and 90% specificity with 61% species and 19% quantifications correct. Conclusions In its

  10. Molecular dynamics study on interfacial thermal conductance of unirradiated and irradiated SiC/C

    International Nuclear Information System (INIS)

    Wang, Qingyu; Wang, Chenglong; Zhang, Yue; Li, Taosheng

    2014-01-01

    SiC f /SiC composite materials have been considered as candidate structural materials for several types of advanced nuclear reactors. Both experimental and computer simulations studies have revealed the degradation of thermal conductivity for this material after irradiation. The objective of this study is to investigate the effect of SiC/graphite interface structure and irradiation on the interfacial thermal conductance by using molecular dynamics simulation. Five SiC/graphite composite models were created with different interface structures, and irradiation was introduced near the interfaces. Thermal conductance was calculated by means of reverse-NEMD method. Results show that there is a positive correlation between the interfacial energy and interfacial C–Si bond quantity, and irradiated models showed higher interfacial energy compared with their unirradiated counterparts. Except the model with graphite atom plane parallel to the interface, the interfacial thermal conductance of unirradiated and irradiated (1000 eV) models, increases as the increase of interfacial energy, respectively. For all irradiated models, lattice defects are of importance in impacting the interfacial thermal conductance depending on the interface structure. For the model with graphite layer parallel to the interface, the interfacial thermal conductance increased after irradiation, for the other models the interfacial thermal conductance decreased. The vibrational density of states of atoms in the interfacial region was calculated to analyze the phonon mismatch at the interface

  11. Survey: interpolation methods for whole slide image processing.

    Science.gov (United States)

    Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T

    2017-02-01

    Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Embeddability behaviour of tin-based bearing material in dry sliding

    International Nuclear Information System (INIS)

    Zeren, Adalet

    2007-01-01

    In this study, tin-based bearing material has been investigated in dry sliding conditions. The low Sb content (7%) is known as SAE 12 and is Sn-Sb-Cu alloy and is widely used in the automotive industry. Wear and friction characteristics were determined with respect to sliding distance, sliding speed and bearing load, using a Tecquipment HFN type 5 journal bearing test equipment. Scanning electron microscopy (SEM) and energy-disperse X-ray spectrography (EDX) are used to understand the tribological events, especially embeddability. Thus, the purpose of this study is to investigate the tribological properties of tin-based bearing alloy used especially in heavy industrial service conditions. Tests were carried out in dry sliding conditions, since despite the presence of lubricant film, under heavy service conditions dry sliding may occur from time to time, causing local wear. As a result of local wear, bearing materials and bearing may be out of their tolerance limits in their early lifetime. Embeddability is an important property due to inversely affecting the hardness and the strength of the bearing

  13. Crystalline misfit-angle implications for solid sliding

    International Nuclear Information System (INIS)

    Manini, Nicola; Braun, O.M.

    2011-01-01

    For the contact of two finite portions of interacting rigid crystalline surfaces, we compute the pinning energy barrier dependency on the misfit angle and contact area. This simple model allows us to investigate a broad contact-size and angular range, thus obtaining the statistical properties of the energy barriers opposing sliding for a single asperity. These data are used to generate the distribution of static frictional thresholds for the contact of polycrystals, as in dry or even lubricated friction. This distribution is used as the input of a master equation to predict the sliding properties of macroscopic contacts. -- Highlights: → The pinning energy barrier depends on the misfit angle and contact area. → We compute this dependence for a idealized rigid model. → We obtain a distribution of static frictional thresholds. → It is used as input of a master-equation model for macroscopic surfaces in contact. → Overall we predict a transition from stick-slip to smooth sliding.

  14. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  15. Modeling of Instabilities and Self-organization at the Frictional Interface

    Science.gov (United States)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a

  16. Role of Interfaces in Mechanical Properties of Polycrystalline Materials

    Indian Academy of Sciences (India)

    Commercial Applications · Slide 9 · Slide 10 · Grain Boundary Sliding and Slip · Slide 12 · Slide 13 · Role of Grain Boundaries · Superplasticity in Zirconia · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Scaling Relationship · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25 · Slide 26 · Slide 27 · Slide 28 · Creep in Electrodeposited ...

  17. Atomic composition of WC/ and Zr/O-terminated diamond Schottky interfaces close to ideality

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Araújo, D. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Fiori, A. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Traoré, A. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Villar, M.P. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Eon, D.; Muret, P.; Pernot, J. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Teraji, T. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2017-02-15

    Highlights: • Metal/O-terminated diamond interfaces are analyzed by a variety of TEM techniques. • Thermal treatment is shown to modify structural and chemical interface properties. • Electrical behavior vs annealing is shown to be related with interface modification. • Interfaces are characterized with atomic resolution to probe inhomogeneities. • Oxide formation and modification is demonstrated in both Schottky diodes. - Abstract: Electrical and nano-structural properties of Zr and WC-based Schottky power diodes are compared and used for investigating oxide-related effects at the diamond/metal interface. Differences in Schottky barrier heights and ideality factors of both structures are shown to be related with the modification of the oxygen-terminated diamond/metal interface configuration. Oxide formation, oxide thickness variations and interfacial oxygen redistribution, associated with thermal treatment are demonstrated. Ideality factors close to ideality (n{sub WC} = 1.02 and n{sub Zr} = 1.16) are obtained after thermal treatment and are shown to be related with the relative oxygen content at the surface (OCR{sub WC} = 3.03 and OCR{sub Zr} = 1.5). Indeed, thermal treatment at higher temperatures is shown to promote an escape of oxygen for the case of the WC diode, while it generates a sharper accumulation of oxygen at the metal/diamond interface for the case of Zr diode. Therefore, the metal-oxygen affinity is shown to be a key parameter to improve diamond-based Schottky diodes.

  18. Application of whole slide image markup and annotation for pathologist knowledge capture.

    Science.gov (United States)

    Campbell, Walter S; Foster, Kirk W; Hinrichs, Steven H

    2013-01-01

    The ability to transfer image markup and annotation data from one scanned image of a slide to a newly acquired image of the same slide within a single vendor platform was investigated. The goal was to study the ability to use image markup and annotation data files as a mechanism to capture and retain pathologist knowledge without retaining the entire whole slide image (WSI) file. Accepted mathematical principles were investigated as a method to overcome variations in scans of the same glass slide and to accurately associate image markup and annotation data across different WSI of the same glass slide. Trilateration was used to link fixed points within the image and slide to the placement of markups and annotations of the image in a metadata file. Variation in markup and annotation placement between WSI of the same glass slide was reduced from over 80 μ to less than 4 μ in the x-axis and from 17 μ to 6 μ in the y-axis (P < 0.025). This methodology allows for the creation of a highly reproducible image library of histopathology images and interpretations for educational and research use.

  19. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    Directory of Open Access Journals (Sweden)

    Yanchao Yin

    2017-01-01

    Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.

  20. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    Science.gov (United States)

    2015-09-01

    thank my Mom, Dad , Allison, Jessica, and father-in-law, Tom, for always being there to listen and encourage me. xxiv THIS PAGE INTENTIONALLY...thermal conductivity is temperature measurement inaccuracies. A probe constructed of a poor thermally conductive material when inserted into a hot...interface- resistance-measurement-using-a-transient-method/ [26] H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich , “Thermal conductivity of exfoliated

  1. Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Minh-Duc Tran

    2015-01-01

    Full Text Available This paper presents a high-performance nonsingular terminal sliding mode control method for uncertain second-order nonlinear systems. First, a nonsingular terminal sliding mode surface is introduced to eliminate the singularity problem that exists in conventional terminal sliding mode control. By using this method, the system not only can guarantee that the tracking errors reach the reference value in a finite time with high-precision tracking performance but also can overcome the complex-value and the restrictions of the exponent (the exponent should be fractional number with an odd numerator and an odd denominator in traditional terminal sliding mode. Then, in order to eliminate the chattering phenomenon, a super-twisting higher-order nonsingular terminal sliding mode control method is proposed. The stability of the closed-loop system is established using the Lyapunov theory. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.

  2. A Novel Approach to Sliding Mode Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Hongwei Xia

    2013-01-01

    Full Text Available This paper is concerned with the sliding mode control for a class of linear systems with time-varying delays. By utilizing a novel Lyapunov-Krasovskii functional and combining it with the delay fractioning approach as well as the free-weighting matrix technology, a sufficient condition is established such that the resulting sliding mode dynamics is asymptotically stable. Then, a sliding mode controller for reaching motion is synthesized to guarantee that the trajectories of the resulting closed-loop system can be driven onto a prescribed sliding surface and maintained there for all subsequent time. A numerical example is provided to illustrate the effectiveness of the proposed design approach.

  3. Optimizing Student Learning: Examining the Use of Presentation Slides

    Science.gov (United States)

    Strauss, Judy; Corrigan, Hope; Hofacker, Charles F.

    2011-01-01

    Sensory overload and split attention result in reduced learning when instructors read slides with bullet points and complex graphs during a lecture. Conversely, slides containing relevant visual elements, when accompanied by instructor narration, use both the visual and verbal channels of a student's working memory, thus improving the chances of…

  4. Digital and traditional slides for teaching cellular morphology: a comparative analysis of learning outcomes.

    Science.gov (United States)

    Solberg, Brooke L

    2012-01-01

    Recent advances in technology have brought forth an intriguing new tool for teaching hematopoietic cellular identification skills: the digital slide. Although digitized slides offer a number of appealing options for educators, little research has been done to examine how their utilization would impact learning outcomes. To fill that void, this study was designed to examine student performance, skill retention and transferability, and self-efficacy beliefs amongst undergraduate MLS students learning cellular morphology with digital versus traditional slides. Results showed that students learning with digital slides performed better on assessments containing only traditional slide specimens than students learning with traditional slides, both immediately following the learning activity and after a considerable duration of time. Students learning with digital slides also reported slightly higher levels of self-efficacy related to cellular identification. The findings of this study suggest that students learning cellular identification skills with digital slides are able to transfer that skill directly to traditional slides, and that their ability to identify cells is not negatively affected in present or future settings.

  5. Subcritical crack growth along polymer interfaces

    Science.gov (United States)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v

  6. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  7. Uncovering the Fundamental Nature of Tribological Interfaces: High-Resolution Tribology and Spectroscopy of Ultrahard Nanostructured Diamond Films for MEMS and Beyond

    National Research Council Canada - National Science Library

    Carpick, Robert W; Gilbert, P. U; Sumant, Anirudha V

    2007-01-01

    .... The new insights include the paradigm-shifting demonstration that the low friction of diamond films is not due to the formation of graphite at the sliding interface as widely thought, but rather due to the passivation of dangling bonds by dissociative adsorption of species such as water.

  8. Vector Radix 2 × 2 Sliding Fast Fourier Transform

    Directory of Open Access Journals (Sweden)

    Keun-Yung Byun

    2016-01-01

    Full Text Available The two-dimensional (2D discrete Fourier transform (DFT in the sliding window scenario has been successfully used for numerous applications requiring consecutive spectrum analysis of input signals. However, the results of conventional sliding DFT algorithms are potentially unstable because of the accumulated numerical errors caused by recursive strategy. In this letter, a stable 2D sliding fast Fourier transform (FFT algorithm based on the vector radix (VR 2 × 2 FFT is presented. In the VR-2 × 2 FFT algorithm, each 2D DFT bin is hierarchically decomposed into four sub-DFT bins until the size of the sub-DFT bins is reduced to 2 × 2; the output DFT bins are calculated using the linear combination of the sub-DFT bins. Because the sub-DFT bins for the overlapped input signals between the previous and current window are the same, the proposed algorithm reduces the computational complexity of the VR-2 × 2 FFT algorithm by reusing previously calculated sub-DFT bins in the sliding window scenario. Moreover, because the resultant DFT bins are identical to those of the VR-2 × 2 FFT algorithm, numerical errors do not arise; therefore, unconditional stability is guaranteed. Theoretical analysis shows that the proposed algorithm has the lowest computational requirements among the existing stable sliding DFT algorithms.

  9. Robust synchronization of unified chaotic systems via sliding mode control

    International Nuclear Information System (INIS)

    Yan Junjuh; Yang Yisung; Chiang Tsungying; Chen Chingyuan

    2007-01-01

    This paper investigates the chaos synchronization problem for a class of uncertain master-slave unified chaotic systems. Based on the sliding mode control technique, a robust control scheme is established which guarantees the occurrence of a sliding motion of error states even when the parameter uncertainty and external perturbation are present. Furthermore, a novel proportional-integral (PI) switching surface is introduced for determining the synchronization performance of systems in the sliding mode motion. Simulation results are proposed to demonstrate the effectiveness of the method

  10. Integral Suture-Handling Techniques for Arthroscopic Sliding Knots

    OpenAIRE

    Kanchanatawan, Wichan; Kongtharvonskul, Jatupon; Dorjiee, Gem; Suppauksorn, Sunikom; Pornvoranunt, Umpire; Karchana, Pongsakorn

    2016-01-01

    In arthroscopic tissue repair, the final step is achieving adequate tissue approximation with a secure knot. The sliding knot is widely preferred over the nonsliding knot, with numerous publications describing knot configurations. However, in the literature there are few published descriptions of suture-handling techniques, even though they are fundamental to arthroscopic knot tying. We describe integral suture-handling techniques for arthroscopic sliding knots to improve the surgeon's perfor...

  11. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    Science.gov (United States)

    Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364

  12. Adaptive Sliding Control for a Class of Fractional Commensurate Order Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Jian Yuan

    2015-01-01

    Full Text Available This paper proposes adaptive sliding mode control design for a class of fractional commensurate order chaotic systems. We firstly introduce a fractional integral sliding manifold for the nominal systems. Secondly we prove the stability of the corresponding fractional sliding dynamics. Then, by introducing a Lyapunov candidate function and using the Mittag-Leffler stability theory we derive the desired sliding control law. Furthermore, we prove that the proposed sliding manifold is also adapted for the fractional systems in the presence of uncertainties and external disturbances. At last, we design a fractional adaptation law for the perturbed fractional systems. To verify the viability and efficiency of the proposed fractional controllers, numerical simulations of fractional Lorenz’s system and Chen’s system are presented.

  13. New Sliding Puzzle with Neighbors Swap Motion

    OpenAIRE

    Prihardono, Ariyanto; Kawagoe, Kenichi

    2015-01-01

    The sliding puzzles (15-puzzle, 8-puzzle, 5-puzzle) are known to have 2 kind of puz-zle: solvable puzzle and unsolvable puzzle. In this thesis, we make a new puzzle with only 1 kind of it, solvable puzzle. This new puzzle is made by adopting sliding puzzle with several additional rules from M13 puzzle; the puzzle that is formed form The Mathieu group M13. This puzzle has a movement that called a neighbors swap motion, a rule of movement that enables every neighboring points to swap. This extr...

  14. Modelling of the Vajont rockslide displacements by delayed plasticity of interacting sliding blocks

    Science.gov (United States)

    Castellanza, riccardo; Hedge, Amarnath; Crosta, Giovanni; di Prisco, Claudio; Frigerio, Gabriele

    2015-04-01

    In order to model complex sliding masses subject to continuous slow movements related to water table fluctuations it is convenient to: i) model the time-dependent mechanical behaviour of the materials by means of a viscous-plastic constitutive law; ii) assume the water table fluctuation as the main input to induce displacement acceleration; iii) consider, the 3D constrains by maintaining a level of simplicity such to allow the implementation into EWS (Early Warning System) for risk management. In this work a 1D pseudo-dynamic visco-plastic model (Secondi et al. 2011), based on Perzyna's delayed plasticity theory is applied. The sliding mass is considered as a rigid block subject to its self weight, inertial forces and seepage forces varying with time. All non-linearities are lumped in a thin layer positioned between the rigid block and the stable bedrock. The mechanical response of this interface is assumed to be visco-plastic. The viscous nucleus is assumed to be of the exponential type, so that irreversible strains develop for both positive and negative values of the yield function; the sliding mass is discretized in blocks to cope with complex rockslide geometries; the friction angle is assumed to reduce with strain rate assuming a sort of strain - rate law (Dietrich-Ruina law). To validate the improvements introduced in this paper the simulation of the displacements of the Vajont rockslide from 1960 to the failure, occurred on October the 9th 1963, is perfomed. It will be shown that, in its modified version, the model satisfactorily fits the Vajont pre-collapse displacements triggered by the fluctuation of the Vajont lake level and the associated groundwater level. The model is able to follow the critical acceleration of the motion with a minimal change in friction properties.The discretization in interacting sliding blocks confirms its suitability to model the complex 3D rockslide behaviour. We are currently implementing a multi-block model capable to include

  15. An interface between I-DEAS and DYNA3D

    International Nuclear Information System (INIS)

    Andress, J.C.

    1986-01-01

    The I-DEAS software package can be used interactively to generate 3-dimensional finite element models for subsequent analysis. This memorandum describes techniques which allow I-DEAS to be used for the generation of finite element models for the code DYNA3D which is being used at Winfrith for impact analysis. In particular, it is shown how impacting and sliding interfaces can be defined conveniently even though the I-DEAS software does not directly support this feature of the DYNA3D code. A simple example is included to illustrate the use of the techniques described in this memorandum. (author)

  16. ON LAND SLIDE DETECTION USING TERRASAR-X OVER EARTHEN LEVEES

    Directory of Open Access Journals (Sweden)

    M. Mahrooghy

    2012-08-01

    Full Text Available Earthen levees have an important role to protect large areas of inhabited and cultivated land in the US from flooding. Failure of the levees can threaten the loss of life and property. One of the problems which can lead to a complete failure during a high water event is a slough slide. In this research, we are trying to detect such slides using X-band SAR data. Our methodology consists of the following four steps: 1 segmentation of the levee area from background; 2 extracting features including backscatter features and texture features; 3 training a back propagation neural network classifier using ground-truth data; and 4 testing the area of interest and validation of the results using ground truth data. A dual-polarimetric X-band image is acquired from the German TerraSAR-X satellite. Ground-truth data include the slides and healthy area. The study area is an approximately 1 km stretch of levee along the lower Mississippi River in the United States. The output classification shows the two classes of healthy and slide areas. The results show classification accuracies of approximately 67% for detecting the slide pixels.

  17. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  18. Glass and crystallization like transitions at low temperature in Zr-Cu based glasses by internal friction measurements

    Directory of Open Access Journals (Sweden)

    Aboki A.T.

    2011-05-01

    Full Text Available Low temperature β internal friction peak evolution upon thermal cycles shows two peculiar peaks similar to high temperature internal friction peak. The modulus softening associated to these peaks suggest a phase transformation phenomenon and the relaxation time τo in order of 10-23–10-35s, close to that observed in grains boundary sliding are due to interface motions in the amorphous structure under combined thermal and mechanical energies.

  19. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    International Nuclear Information System (INIS)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges; Fleming, Austin; Ban, Heng

    2016-01-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  20. Linear Motor With Air Slide

    Science.gov (United States)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  1. Computing Diameter in the Streaming and Sliding-Window Models (Preprint)

    National Research Council Canada - National Science Library

    Feigenbaum, Joan; Kannan, Sampath; Zhang, Jian

    2002-01-01

    We investigate the diameter problem in the streaming and sliding-window models. We show that, for a stream of n points or a sliding window of size n, any exact algorithm for diameter requires Omega(n) bits of space...

  2. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-01-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary

  3. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  4. Shifting gears higher - digital slides in graduate education - 4 years experience at Semmelweis University

    Directory of Open Access Journals (Sweden)

    Molnár Béla

    2010-11-01

    Full Text Available Abstract Background The spreading of whole slide imaging or digital slide systems in pathology as an innovative technique seems to be unstoppable. Successful introduction of digital slides in education has played a crucial role to reach this level of acceptance. Practically speaking there is no university institute where digital materials are not built into pathology education. At the 1st. Department of Pathology and Experimental Cancer Research, Semmelweis University optical microscopes have been replaced and for four years only digital slides have been used in education. The aim of this paper is to summarize our experiences gathered with the installation of a fully digitized histology lab for graduate education. Methods We have installed a digital histology lab with 40 PCs, two slide servers - one for internal use and one with external internet access. We have digitized hundreds of slides and after 4 years we use a set of 126 slides during the pathology course. A Student satisfaction questionnaire and a Tutor satisfaction questionnaire have been designed, both to be completed voluntarily to have feed back from the users. The page load statistics of the external slide server were evaluated. Results The digital histology lab served ~900 students and ~1600 hours of histology practice. The questionnaires revealed high satisfaction with digital slides. The results also emphasize the importance of the tutors' attitude towards digital microscopy as a factor influencing the students' satisfaction. The constantly growing number of page downloads from the external server confirms this satisfaction and the acceptance of digital slides. Conclusions We are confident, and have showed as well, that digital slides have got numerous advantages over optical slides and are more suitable in education.

  5. Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gui, Wen-Jun; Lin, Shi-Qiang; Chen, Yuan-Yuan; Zhang, Xian-En; Bi, Li-Jun; Jiang, Tao

    2011-02-11

    The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Diagnostic interface problems on TFTR

    International Nuclear Information System (INIS)

    Goldfarb, S.

    1977-01-01

    Diagnostic equipment on TFTR has functional interfaces with many machine systems. Salient requirements include plasma access, environmental resistance to thermal, magnetic and radiation effects, automated data acquisition and controls, remote handling and personnel safety. Problems imposed by these requirements and the solutions being considered are described

  7. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  8. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    Science.gov (United States)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  9. A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-06-01

    Full Text Available The deformation and failure of soft rock affected by hydro-mechanical (HM effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. Keywords: Soft rock, Hydro-mechanical (HM effect, Mineral dissolution-diffusion, Grain sliding model

  10. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, D.

    2014-11-01

    The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.

  11. Baseball and softball sliding injuries: incidence and correlates during one high school league varsity season.

    Science.gov (United States)

    Stovak, Mark; Parikh, Amit; Harvey, Anne T

    2012-11-01

    To estimate injury rates associated with sliding in high school baseball and softball. Prospective cohort study. Community high school athletic events. Ten high school varsity baseball and softball teams over 1 season. All sliding attempts were recorded during each game and recorded as headfirst, feetfirst, or diveback. Base type, playing surface, and field conditions were also noted. Injury exposure rates by game exposures and sliding/diveback exposures. Data were collected from 153 baseball games and 166 softball games. A greater proportion of slides were associated with injury in softball than in baseball (42.0 and 4.9 per 1000 slides; P softball (55 vs 35 per 1000 slides; P = 0.74). More powerful studies are required to determine whether efforts to prevent baseball sliding injuries at the high school level should focus on better education in sliding technique or changes in equipment. Softball players are vulnerable to injury when wearing inadequate protective sliding apparel.

  12. Tribological properties of ceramics evaluated at low sliding speeds

    International Nuclear Information System (INIS)

    Hayashi, Kazunori; Kano, Shigeki

    1998-03-01

    Low speed tribological properties of stainless steel, ceramics and hard metals were investigated in air at room temperature and in nitrogen atmosphere at high temperature for the consideration of sliding type support structure in intermediate heat exchanger of fast reactor. The following results are obtained. (1) In low speed friction measurements in air at room temperature, friction coefficients of ceramics and hard metals were smaller than that of stainless steel. Surface roughness of the specimens increased the friction force and silicon carbide showed the smallest friction coefficient among the specimens with mirror polished surface. (2) From the results of friction measurements at various sliding speeds in air at room temperature, friction coefficients of ceramics and hard metals were always stable and lower than that of stainless steel. Among ceramics, PSZ showed the smallest friction and silicon carbide showed the most stable friction at any sliding speeds. (3) Friction coefficients of silicon carbide and silicon nitride in nitrogen atmosphere at high temperature showed low values as measured at room temperature. On the contrary, friction coefficient of stainless steel measured in nitrogen atmosphere at high temperature were higher than that measured at room temperature, over 1. (4) In the reciprocal sliding tests in nitrogen atmosphere at high temperature, friction coefficient of stainless steel were over 1. On the contrary, the friction coefficients of ceramics were less than 1 instead of chipping during the slidings. (author)

  13. Frequency-shaped and observer-based discrete-time sliding mode control

    CERN Document Server

    Mehta, Axaykumar

    2015-01-01

    It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than th...

  14. Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Svendsen, Gustav Winther; Hiller, Jochen

    2013-01-01

    that friction materials which are untypical for brake applications, like thermoplastics and fibre composites, can offer superior performance in terms of braking torque, wear resistance and cost than typical brake linings. In this paper coefficient of friction measurements for various thermoplastic and fibre......Friction materials for typical brake applications are normally designed considering thermal stability as the major performance criterion. There are, however, brake applications with very limited sliding velocities, where the generated heat is insignificant. In such cases it is possible...... in order to interpret the changes of friction observed during the running-in phase....

  15. 3D DEM analyses of the 1963 Vajont rock slide

    Science.gov (United States)

    Boon, Chia Weng; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.

  16. Real-time image processing and control interface for remote operation of a microscope

    Science.gov (United States)

    Leng, Hesong; Wilder, Joseph

    1999-08-01

    A real-time image processing and control interface for remote operation of a microscope is presented in this paper. The system has achieved real-time color image display for 640 X 480 pixel images. Multi-resolution image representation can be provided for efficient transmission through the network. Through the control interface the computer can communicate with the programmable microscope via the RS232 serial ports. By choosing one of three scanning patterns, a sequence of images can be saved as BMP or PGM files to record information on an entire microscope slide. The system will be used by medical and graduate students at the University of Medicine and Dentistry of New Jersey for distance learning. It can be used in many network-based telepathology applications.

  17. Geometry of the free-sliding Bernoulli beam

    Directory of Open Access Journals (Sweden)

    Moreno Giovanni

    2016-12-01

    Full Text Available If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam.

  18. Investigation of material transfer in sliding friction-topography or surface chemistry?

    OpenAIRE

    Westlund, V.; Heinrichs, J.; Olsson, M.; Jacobson, S.

    2016-01-01

    To differentiate between the roles of surface topography and chemical composition on influencing friction and transfer in sliding contact, a series of tests were performed in situ in an SEM. The initial sliding during metal forming was investigated, using an aluminum tip representing the work material, put into sliding contact with a polished flat tool material. Both DLC-coated and uncoated tool steel was used. By varying the final polishing step of the tool material, different surface topogr...

  19. Towards a numerical run-out model for quick-clay slides

    Science.gov (United States)

    Issler, Dieter; L'Heureux, Jean-Sébastien; Cepeda, José M.; Luna, Byron Quan; Gebreslassie, Tesfahunegn A.

    2015-04-01

    Highly sensitive glacio-marine clays occur in many relatively low-lying areas near the coasts of eastern Canada, Scandinavia and northern Russia. If the load exceeds the yield stress of these clays, they quickly liquefy, with a reduction of the yield strength and the viscosity by several orders of magnitude. Leaching, fluvial erosion, earthquakes and man-made overloads, by themselves or combined, are the most frequent triggers of quick-clay slides, which are hard to predict and can attain catastrophic dimensions. The present contribution reports on two preparatory studies that were conducted with a view to creating a run-out model tailored to the characteristics of quick-clay slides. One study analyzed the connections between the morphological and geotechnical properties of more than 30 well-documented Norwegian quick-clay slides and their run-out behavior. The laboratory experiments by Locat and Demers (1988) suggest that the behavior of quick clays can be reasonably described by universal relations involving the liquidity index, plastic index, remolding energy, salinity and sensitivity. However, these tests should be repeated with Norwegian clays and analyzed in terms of a (shear-thinning) Herschel-Bulkley fluid rather than a Bingham fluid because the shear stress appears to grow in a sub-linear fashion with the shear rate. Further study is required to understand the discrepancy between the material parameters obtained in laboratory tests of material from observed slides and in back-calculations of the same slides with the simple model by Edgers & Karlsrud (1982). The second study assessed the capability of existing numerical flow models to capture the most important aspects of quick-clay slides by back-calculating three different, well documented events in Norway: Rissa (1978), Finneidfjord (1996) and Byneset (2012). The numerical codes were (i) BING, a quasi-two-dimensional visco-plastic model, (ii) DAN3D (2009 version), and (iii) MassMov2D. The latter two are

  20. Hand ultrasound: a high-fidelity simulation of lung sliding.

    Science.gov (United States)

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  1. Injection of holes at indium tin oxide/dendrimer interface: An explanation with new theory of thermionic emission at metal/organic interfaces

    International Nuclear Information System (INIS)

    Peng Yingquan; Lu Feiping

    2006-01-01

    The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III)

  2. 3D finite element modeling of sliding wear

    Science.gov (United States)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  3. Evolution of interface and surface structures of ZnO/Al2 O3 multilayers upon rapid thermal annealing

    Science.gov (United States)

    Liu, H. H.; Chen, Q. Y.; Chang, C. F.; Hsieh, W. C.; Wadekar, P. V.; Huang, H. C.; Liao, H. H.; Seo, H. W.; Chu, W. K.

    2015-03-01

    ZnO ∖Al2O3 multilayers were deposited on sapphires by atomic layer deposition at 85°C. This low substrate temperature ensures good interface smoothness useful for study of interfacial reaction or interdiffusion. Our study aimed at the effects of rapid thermal annealing at different annealing temperatures, times and PAr:PO2. XRR and XRD techniques were used to investigate the kinetics from which various terms of the activation energies could be determined. HR-TEM and electron diffraction were carried out to correlate the microstructures and interfacial alignments as a result of the reactions. AFM were used to assist SEM profiling of the surface morphological evolution in association with the TEM observations.

  4. Hydrodynamic sliding bearings vs. roller bearings. Segmented sliding bearings for higher rotational speed; Hydrodynamische Gleitlager versus Waelzlager. Segmentgleitlager fuer hoehere Drehzahlen

    Energy Technology Data Exchange (ETDEWEB)

    Hagenhoff, M.; Sauer, M. [Main-Metall-Giesserei Fritz Schorr GmbH und Co. KG, Altenglan (Germany)

    2004-10-01

    Hydrodynamic sliding bearings are considered only in cases when roller bearings reach their speed limits and there is no other solution. However, this view neglects the fact that there are modern, optimised sliding bearings which have more advantages over roller bearings than should be expected. Many producers of sliding bearings also have computer programs enabling them to offer customised solutions, i.e. optimal adaptation of the bearings to their specific operating conditions. (orig.) [German] Hydrodynamische Gleitlager werden oft erst dann in Betracht gezogen, wenn man an die Drehzahlgrenzen von Waelzlagern stoesst und keine andere sinnvolle Alternative mehr in Frage kommt. Dabei uebersieht man leicht, dass es moderne, optimierte Gleitlagerkonstruktionen gibt, die weitaus haeufiger ihre Staerken im Vergleich zu Waelzlagern ausspielen koennen als zunaechst vermutet. Viele Gleitlagerhersteller haben zudem heute Berechnungsprogramme zur Verfuegung, die eine optimale Anpassung der Lager an die speziellen Betriebsbedingungen erlauben. (orig.)

  5. Experimental Study on the Force-Bearing Performance of Masonry Structures with a Marble-Graphite Slide Seismic Isolator at the Foundation

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-11-01

    Full Text Available As part of the search for a seismic isolator for low-rise buildings, this paper proposes a marble-graphite slide seismic isolation system composed of marble-graphite slides, an upper foundation beam, the lower counterpart of the upper beam, and the corresponding stop blocks, with the stop blocks consisting of restrictive screws, positioning plates, nut connectors and stop holes linking the two foundation beams. To provide the desired isolation performance, plain mortar bars can be included at the beam interface to better control the initiating loads for foundation slippage. Tests of low-reversed cyclic loading were performed on four different masonry specimens: a recycled brick wall, a clay brick wall, an integrated recycled brick wall with flay ash blocks sandwiched between, and its clay brick counterpart. The four specimens were provided with marble-graphite slide isolators placed at the foundations. The isolator thickness was 20 mm, and the graphite and the marble served as a lubricant and a bearing, respectively. This paper then analyses all of the specimens in terms of the damage that occurred, the initiating load for slippage, the hysteretic performance, the bearing capacity and the performance of the stop blocks. The results indicate that mortar bars embedded in the marble-graphite slide isolator offer effective control of the initiating load, and the isolation system delivers good hysteretic performance. The stop blocks are capable of withstanding a large-magnitude earthquake and are a good choice for constraining the slippage displacement. Damage or failure of the specimens occurs only when the low-reversed cyclic loading continues after slippage takes place. The design is shown to be an outstanding and flexible seismic scheme for use in low-rise buildings.

  6. Sliding behavior of oil droplets on nanosphere stacking layers with different surface textures

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Wu, Fang-Lin; Chen, Wei-Yu

    2010-01-01

    Two facile coating techniques, gravitational sediment and spin coating, were applied for the creation of silica sphere stacking layers with different textures onto glass substrates that display various sliding abilities toward liquid drops with different surface tensions, ranged from 25.6 to 72.3 mN/m. The resulting silica surface exhibits oil repellency, long-period durability > 30 days, and oil sliding capability. The two-tier texture offers a better roll-off ability toward liquid drops with a wide range of γ L , ranged from 30.2 to 72.3 mN/m, i.e., when the sliding angle (SA) ad ) appears to describe the sliding behavior within the W ad region: 2.20-3.03 mN/m. The smaller W ad , the easier drop sliding (i.e., the smaller SA value) takes place on the surfaces. The W ad value ∼3.03 mN/m shows a critical kinetic barrier for drop sliding on the silica surfaces from stationary to movement states. This work proposes a mathematical model to simulate the sliding behavior of oil drops on a nanosphere stacking layer, confirming the anti-oil contamination capability.

  7. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, H.; Curtin, W.A. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  8. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  9. Thermal performance of a phase change material on a nickel-plated surface

    International Nuclear Information System (INIS)

    Nurmawati, M.H.; Siow, K.S.; Rasiah, I.J.

    2004-01-01

    Thermal control becomes increasingly vital with IC chips becoming faster and smaller. The need to keep chips within acceptable operating temperatures is a growing challenge. Thermal interface materials (TIM) form the interfaces that improve heat transfer from the heat-generating chip to the heat dissipating thermal solution. One of the most commonly used materials in today's electronics industry is phase change material (PCM). Typically, the heat spreader is a nickel-plated copper surface. The compatibility of the PCM to this surface is crucial to the performance of the TIM. In this paper, we report on the performance of this interface. To that end, an instrument to suitably measure critical parameters, like the apparent and contact thermal resistance of the TIM, is developed according to the ASTM D5470 and calibrated. A brief theory of TIM is described and the properties of the PCM were investigated using the instrument. Thermal resistance measurements were made to investigate the effects of physical parameters like pressure, temperature and supplied power on the thermal performance of the material on nickel-plated surface. Conclusions were drawn on the effectiveness of the interface and their application in IC packages

  10. Tribological Behaviour of W-DLC against an Aluminium Alloy Subjected to Lubricated Sliding

    Directory of Open Access Journals (Sweden)

    S. Bhowmick

    2015-09-01

    Full Text Available Diamond like carbon (DLC coatings mitigate aluminium adhesion and reduce friction under the ambient conditions but their tribological behaviour under lubricated sliding need to be further investigated. In this study, tribological tests were performed to evaluate the friction and wear characteristics of W-DLC and H-DLC coatings sliding against an aluminium alloy (319 Al under unlubricated (40 % RH and lubricated sliding conditions. For unlubricated sliding, coefficient of friction (COF values of H-DLC and W-DLC were 0.15 and 0.20. A lower COF value of 0.11 was observed when W-DLC was tested using lubricant oil incorporating sulphur while the H-DLC’s COF remained almost unchanged. The mechanisms responsible for the low friction of W-DLC observed during lubricated sliding were revealed by studying the compositions of the coating surfaces and the transfer layers formed on 319 Al. Micro-Raman spectroscopy indicated that the transfer layers formed during lubricated sliding of W-DLC incorporated tungsten disulphide (WS2.

  11. Flexible Structural Design for Side-Sliding Force Reduction for a Caterpillar Climbing Robot

    Directory of Open Access Journals (Sweden)

    Weina Cui

    2012-11-01

    Full Text Available Due to sliding force arising from the closed chain mechanism among the adhering points of a climbing caterpillar robot (CCR, a sliding phenomenon will happen at the adhering points, e.g., the vacuum pads or claws holding the surface. This sliding force makes the attachment of the climbing robot unsteady and reducesthe motion efficiency. According to the new bionic research on the soft-body structure of caterpillars, some flexible structures made of natural rubber bars are applied in CCRs correspondingly as an improvement to the old rigid mechanical design of the robotic structure. This paper firstly establishes the static model of the sliding forces, the distortion of flexible bars and the driving torques of joints. Then, a method to reduce the sliding force by exerting a compensating angle to an active joint of the CCR is presented. The analyses and experimental results indicate that the flexible structure and the compensating angle method can reduce the sliding forces remarkably.

  12. Simplex sliding mode control for nonlinear uncertain systems via chaos optimization

    International Nuclear Information System (INIS)

    Lu, Zhao; Shieh, Leang-San; Chen, Guanrong; Coleman, Norman P.

    2005-01-01

    As an emerging effective approach to nonlinear robust control, simplex sliding mode control demonstrates some attractive features not possessed by the conventional sliding mode control method, from both theoretical and practical points of view. However, no systematic approach is currently available for computing the simplex control vectors in nonlinear sliding mode control. In this paper, chaos-based optimization is exploited so as to develop a systematic approach to seeking the simplex control vectors; particularly, the flexibility of simplex control is enhanced by making the simplex control vectors dependent on the Euclidean norm of the sliding vector rather than being constant, which result in both reduction of the chattering and speedup of the convergence. Computer simulation on a nonlinear uncertain system is given to illustrate the effectiveness of the proposed control method

  13. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  14. A Disposable Polymer Lab-On-A-Slide For Point-Of-Care Diagnostics Of Methicillin-Resistant Staphylococcus Aureus (Mrsa)

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Skov, Julia

    2013-01-01

    This paper reports the design, fabrication and experimental verification of a polymer microfluidic labon-a-slide for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA). MRSA cells were captured in a lysis chamber using magnetic beads, followed by thermal lysis. The released DNA...... was transferred into a second chamber for polymerase chain reaction (PCR) amplification. Fluidic control in the device was accomplished by pneumatic actuation of a micropump and five microvalves integrated on the device. The mecA gene from MRSA was successfully amplified by real-time PCR within 35 min. Presence...

  15. Sliding mode controller for a photovoltaic pumping system

    Science.gov (United States)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  16. Sliding Adhesion Dynamics of Isolated Gecko Setal Arrays

    Science.gov (United States)

    Sponberg, Simon; Autumn, Kellar

    2003-03-01

    The tokay gecko (Gekko gecko) can adhere to nearly any surface through van der Waals interactions of the specialized setae (b-keratin "hairs") of its toe pads. Our recent research has suggested that a gecko is substantially overbuilt for static adhesion requiring as little as 0.03of its theoretical adhesive capacity. We performed the first sliding adhesion experiments on this novel biological adhesive to determine its response to dynamic loading. We isolated arrays of setae and constructed a precision controlled Robo-toe to study sliding effects. Our results indicate that, unlike many typical adhesives, gecko setal arrays exhibit an increased frictional force upon sliding (mk > ms) which further increases with velocity, suggesting that perturbation rejection may be an evolutionary design principle underlying the evolution of the gecko adhesive. We compare these dynamic properties with those of other adhesives and explore the impacts of these results on the design of artificial adhesives.

  17. Optimal Image Data Compression For Whole Slide Images

    Directory of Open Access Journals (Sweden)

    J. Isola

    2016-06-01

    Differences in WSI file sizes of scanned images deemed “visually lossless” were significant. If we set Hamamatsu Nanozoomer .NDPI file size (using its default “jpeg80 quality” as 100%, the size of a “visually lossless” JPEG2000 file was only 15-20% of that. Comparisons to Aperio and 3D-Histech files (.svs and .mrxs at their default settings yielded similar results. A further optimization of JPEG2000 was done by treating empty slide area as uniform white-grey surface, which could be maximally compressed. Using this algorithm, JPEG2000 file sizes were only half, or even smaller, of original JPEG2000. Variation was due to the proportion of empty slide area on the scan. We anticipate that wavelet-based image compression methods, such as JPEG2000, have a significant advantage in saving storage costs of scanned whole slide image. In routine pathology laboratories applying WSI technology widely to their histology material, absolute cost savings can be substantial.  

  18. Electrically and Thermally Conducting Nanocomposites for Electronic Applications

    Directory of Open Access Journals (Sweden)

    Daryl Santos

    2010-02-01

    Full Text Available Nanocomposites made up of polymer matrices and carbon nanotubes are a class of advanced materials with great application potential in electronics packaging. Nanocomposites with carbon nanotubes as fillers have been designed with the aim of exploiting the high thermal, electrical and mechanical properties characteristic of carbon nanotubes. Heat dissipation in electronic devices requires interface materials with high thermal conductivity. Here, current developments and challenges in the application of nanotubes as fillers in polymer matrices are explored. The blending together of nanotubes and polymers result in what are known as nanocomposites. Among the most pressing current issues related to nanocomposite fabrication are (i dispersion of carbon nanotubes in the polymer host, (ii carbon nanotube-polymer interaction and the nature of the interface, and (iii alignment of carbon nanotubes in a polymer matrix. These issues are believed to be directly related to the electrical and thermal performance of nanocomposites. The recent progress in the fabrication of nanocomposites with carbon nanotubes as fillers and their potential application in electronics packaging as thermal interface materials is also reported.

  19. Experimental visualization coalesced interaction of sliding bubble near wall in vertical narrow rectangular channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2011-01-01

    The characteristic of the coalesced sliding bubble was visually observed by wide side and narrow side of the narrow rectangular channel using high speed digital camera. The results show that the coalesced time among the sliding bubbles is quick, and the new formation of coalesced bubble is not lift-off, and it continues to slide along the heated surface in low heat flux for the isolated bubble region. The influence region is about 2 times projected area of the sliding bubble when the sliding bubbles begin to interact. The sliding bubble velocities increase duo to the interaction among the bubbles, which contributes to enhance heat transfer of this region. Finally, the effect of coalesced interaction of growing bubble in the nucleation sites on bubble lift-off was discussed and analysed. (authors)

  20. Automated robust registration of grossly misregistered whole-slide images with varying stains

    Science.gov (United States)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  1. Material transfer mechanisms between aluminum and fluorinated carbon interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sen, F.G. [NSERC/General Motors of Canada Industrial Research Chair, Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4 (Canada); Qi, Y. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T., E-mail: aalpas@uwindsor.ca [NSERC/General Motors of Canada Industrial Research Chair, Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4 (Canada)

    2011-04-15

    First-principles calculations and sliding contact experiments were conducted to elucidate material transfer mechanisms between aluminum and fluorinated carbon (diamond, diamond-like carbon (DLC)) surfaces. An interface model that examined interactions between Al (1 1 1) and F-terminated diamond (1 1 1) surfaces revealed that F atoms would transfer to the Al surface in increasing quantities with an increase in the contact pressure, and this F transfer would lead to the formation of a stable AlF{sub 3} compound at the Al surface. The presence of AlF{sub 3} on the transfer layers formed at the Al counterface placed in sliding contact against DLC containing 3 at.% F was confirmed by both X-ray photoelectron spectroscopy and cross-sectional focussed-ion beam transmission electron microscopy analyses. The coefficient of friction (COF) of the DLC coating was high initially due to deformation and wear of Al counterface, but formation of -OH and -H passivated C-rich transfer layers on Al reduced the COF to a low steady-state value of 0.20. The repulsive forces generated between the two F-passivated surfaces further decreased the COF to 0.14.

  2. Material transfer mechanisms between aluminum and fluorinated carbon interfaces

    International Nuclear Information System (INIS)

    Sen, F.G.; Qi, Y.; Alpas, A.T.

    2011-01-01

    First-principles calculations and sliding contact experiments were conducted to elucidate material transfer mechanisms between aluminum and fluorinated carbon (diamond, diamond-like carbon (DLC)) surfaces. An interface model that examined interactions between Al (1 1 1) and F-terminated diamond (1 1 1) surfaces revealed that F atoms would transfer to the Al surface in increasing quantities with an increase in the contact pressure, and this F transfer would lead to the formation of a stable AlF 3 compound at the Al surface. The presence of AlF 3 on the transfer layers formed at the Al counterface placed in sliding contact against DLC containing 3 at.% F was confirmed by both X-ray photoelectron spectroscopy and cross-sectional focussed-ion beam transmission electron microscopy analyses. The coefficient of friction (COF) of the DLC coating was high initially due to deformation and wear of Al counterface, but formation of -OH and -H passivated C-rich transfer layers on Al reduced the COF to a low steady-state value of 0.20. The repulsive forces generated between the two F-passivated surfaces further decreased the COF to 0.14.

  3. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.

    Science.gov (United States)

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity

  4. The simplex method for nonlinear sliding mode control

    Directory of Open Access Journals (Sweden)

    Bartolini G.

    1998-01-01

    Full Text Available General nonlinear control systems described by ordinary differential equations with a prescribed sliding manifold are considered. A method of designing a feedback control law such that the state variable fulfills the sliding condition in finite time is based on the construction of a suitable simplex of vectors in the tangent space of the manifold. The convergence of the method is proved under an obtuse angle condition and a way to build the required simplex is indicated. An example of engineering interest is presented.

  5. ATLAS EventIndex Data Collection Supervisor and Web Interface

    CERN Document Server

    Garcia Montoro, Carlos; The ATLAS collaboration

    2016-01-01

    The EventIndex project consists in the development and deployment of a complete catalogue of events for the ATLAS experiment at the LHC accelerator at CERN. In 2015 the ATLAS experiment has produced 12 billion real events in 1 million files, and 5 billion simulated events in 8 million files. The ATLAS EventIndex is running in production since mid- 2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure. A subset of this information is copied to an Oracle relational database. These slides present two components of the ATLAS EventIndex: its data collection supervisor and its web interface partner.

  6. On decentralized adaptive full-order sliding mode control of multiple UAVs.

    Science.gov (United States)

    Xiang, Xianbo; Liu, Chao; Su, Housheng; Zhang, Qin

    2017-11-01

    In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. CRITICAL VELOCITY OF CONTROLLABILITY OF SLIDING FRICTION BY NORMAL OSCILLATIONS IN VISCOELASTIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Mikhail Popov

    2016-12-01

    Full Text Available Sliding friction can be reduced substantially by applying ultrasonic vibration in the sliding plane or in the normal direction. This effect is well known and used in many applications ranging from press forming to ultrasonic actuators. One of the characteristics of the phenomenon is that, at a given frequency and amplitude of oscillation, the observed friction reduction diminishes with increasing sliding velocity. Beyond a certain critical sliding velocity, there is no longer any difference between the coefficients of friction with or without vibration. This critical velocity depends on material and kinematic parameters and is a key characteristic that must be accounted for by any theory of influence of vibration on friction. Recently, the critical sliding velocity has been interpreted as the transition point from periodic stick-slip to pure sliding and was calculated for purely elastic contacts under uniform sliding with periodic normal loading. Here we perform a similar analysis of the critical velocity in viscoelastic contacts using a Kelvin material to describe viscoelasticity. A closed-form solution is presented, which contains previously reported results as special cases. This paves the way for more detailed studies of active control of friction in viscoelastic systems, a previously neglected topic with possible applications in elastomer technology and in medicine.

  8. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  9. Robust synchronization of drive-response chaotic systems via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Li, W.-L.; Chang, K.-M.

    2009-01-01

    A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.

  10. Clinical utility of an automated instrument for gram staining single slides.

    Science.gov (United States)

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-06-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis.

  11. Sliding mode control for uncertain unified chaotic systems with input nonlinearity

    International Nuclear Information System (INIS)

    Chiang, T.-Y.; Hung, M.-L.; Yan, J.-J.; Yang, Y.-S.; Chang, J.-F.

    2007-01-01

    This paper investigates the stabilization problem for a class of unified chaotic systems subject to uncertainties and input nonlinearity. Using the sliding mode control technique, a robust control law is established which stabilizes the uncertain unified chaotic systems even when the nonlinearity in the actuators is present. A novel adaptive switching surface is introduced to simplify the task of assigning the stability of the closed-loop system in the sliding mode motion. An illustrative example is given to demonstrate the effectiveness of the proposed sliding mode control design

  12. Comparative study of tool machinery sliding systems; comparison between plane and cylindrical basic shapes

    Science.gov (United States)

    Glăvan, D. O.; Babanatsas, T.; Babanatis Merce, R. M.; Glăvan, A.

    2018-01-01

    The paper brings in attention the importance that the sliding system of a tool machinery is having in the final precision of the manufacturing. We are basically comparing two type of slides, one constructed with plane surfaces and the other one with circular cross-sections (as known as cylindrical slides), analysing each solution from the point of view of its technology of manufacturing, of the precision that the particular slides are transferring to the tool machinery, cost of production, etc. Special attention is given to demonstrate theoretical and to confirm by experimental works what is happening with the stress distribution in the case of plane slides and cylindrical slides, both in longitudinal and in cross-over sections. Considering the results obtained for the stress distribution in the transversal and longitudinal cross sections, by composing them, we can obtain the stress distribution on the semicircular slide. Based on the results, special solutions for establishing the stress distribution between two surfaces without interact in the contact zone have been developed.

  13. Characterization of transfer layers on steel surfaces sliding against diamondlike carbon in dry nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Bindal, C.; Pagan, J. [Argonne National Lab., IL (United States); Wilbur, P. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering

    1995-03-01

    Transfer layers on sliding steel surfaces play important roles in tribological performance of diamondlike carbon films. This study investigated the nature of transfer layers formed on M50 balls during sliding against diamondlike carbon (DLC) films (1.5 {mu}m thick) prepared by ion-beam deposition. Long-duration sliding tests were performed with steel balls sliding against the DLC coatings in dry nitrogen at room temperature and zero humidity. Test results indicated that the friction coefficients of test pairs were initially 0.12 but decreased steadily with sliding distance to 0.02-0.03 and remained constant throughout the tests, which lasted for more than 250,000 sliding cycles (30 km). This low-friction regime appeared to coincide with the formation of a carbon-rich transfer layer on the sliding surfaces of M50 balls. Micro-laser-Raman spectroscopy and electron microscopy were used to elucidate the structure and chemistry of these transfer layers and to reveal their possible role in the wear and friction behavior of DLC-coated surfaces.

  14. Method for limiting movement of a thermal shield for a nuclear reactor, and thermal shield displacement limiter therefor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Boyd, C.H.

    1989-01-01

    This patent describes a method of limiting the movement of a thermal shield of a nuclear reactor. It comprises: machining at least four (4) pockets in upper portions of a thermal shield circumferentially about a core barrel of a nuclear reactor to receive key-wave inserts; tapping bolt holes in the pockets of the thermal shield to receive bolts; positioning key-wave inserts into the pockets of the thermal shield to be bolted in place with the bolt holes; machining dowel holes at least partially through the positioned key-way inserts and the thermal shield to receive dowel pins; positioning dowel pins in the dowel holes in the key-way insert and thermal shield to tangentially restrain movement of the thermal shield relative to the core barrel; sliding limiter keys into the key-way inserts and bolting the limiter keys to the core barrel to tangentially restrain movement of the thermal shield relative and the core barrel while allowing radial and axial movement of the thermal shield relative to the core barrel; machining dowel holes through the limiter key and at least partially through the core barrel to receive dowel pins; positioning dowel pins in the dowel holes in the limiter key and core barrel to restrain tangential movement of the thermal shield relative to the core barrel of the nuclear reactor

  15. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    Science.gov (United States)

    Brain, D. A.; Schneider, N. M.; Beyer, R. A.

    2010-12-01

    Planetary science is a field that evolves rapidly, motivated by spacecraft mission results. Exciting new mission results are generally communicated rather quickly to the public in the form of press releases and news stories, but it can take several years for new advances to work their way into college textbooks. Yet it is important for students to have exposure to these new advances for a number of reasons. In some cases, new work renders older textbook knowledge incorrect or incomplete. In some cases, new discoveries make it possible to emphasize older textbook knowledge in a new way. In all cases, new advances provide exciting and accessible examples of the scientific process in action. To bridge the gap between textbooks and new advances in planetary sciences we have developed content on new discoveries for use by undergraduate instructors. Called 'Discoveries in Planetary Sciences', each new discovery is summarized in a 3-slide PowerPoint presentation. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts, and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/. Sixteen slide sets have been released so far covering topics spanning all sub-disciplines of planetary science. Results from the following spacecraft missions have been highlighted: MESSENGER, the Spirit and Opportunity rovers, Cassini, LCROSS, EPOXI, Chandrayan, Mars Reconnaissance Orbiter, Mars Express, and Venus Express. Additionally, new results from Earth-orbiting and ground-based observing platforms and programs such as Hubble, Keck, IRTF, the Catalina Sky Survey, HARPS, MEarth, Spitzer, and amateur astronomers have been highlighted. 4-5 new slide sets are

  16. Whole slide imaging of unstained tissue using lensfree microscopy

    Science.gov (United States)

    Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2016-04-01

    Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.

  17. Sliding mode fuzzy control for a once-through stream generator

    International Nuclear Information System (INIS)

    Zhang Guifeng; Shi Xiaocheng; Sun Tieli; Xiong Jinkui; Zhang Hongguo

    2007-01-01

    A once-through steam generator is important equipment in nuclear power plant, so its control level is high. A Sliding Mode Fuzzy Controller inherits the robustness property of Sliding Mode Control and the interpolation property of Fuzzy Logic Control. The robustness property of variable structure system makes the control system insensitive for different burthen variety and different outside disturbance. Fuzzy control predigests the device of control system and alleviates the chattering which variable structure system causes. So the control system can be made more ideal. The paper describes the design method of Sliding Mode Fuzzy Controller without its system model for a once-through steam generator. And the simulation results show that satisfying control results can be got. (authors)

  18. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  19. Parameter studies of sediments in the Storegga Slide region

    Science.gov (United States)

    Yang, S. L.; Kvalstad, T.; Solheim, A.; Forsberg, C. F.

    2006-09-01

    Based on classification tests, oedometer tests, fall-cone tests and triaxial tests, physical and mechanical properties of sediments in the Storegga Slide region were analysed to assess parameter interrelationships. The data show good relationships between a number of physical and mechanical parameters. Goodness of fit between compression index and various physical parameters can be improved by multiple regression analysis. The interclay void ratio and liquidity index correlate well with the undrained shear strength of clay. Sediments with higher water content, liquid limit, activity, interclay void ratio, plasticity index and liquidity index showed higher compression index and/or lower undrained shear strength. Some relationships between parameters were tested by using data from two other sites south of the Storegga Slide. A better understanding of properties of sediments in regions such as that of the Storegga Slide can be obtained through this approach.

  20. Interlayer thermal conductance within a phosphorene and graphene bilayer.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng

    2016-11-24

    Monolayer graphene possesses unusual thermal properties, and is often considered as a prototype system for the study of thermal physics of low-dimensional electronic/thermal materials, despite the absence of a direct bandgap. Another two-dimensional (2D) atomic layered material, phosphorene, is a natural p-type semiconductor and it has attracted growing interest in recent years. When a graphene monolayer is overlaid on phosphorene, the hybrid van der Waals (vdW) bilayer becomes a potential candidate for high-performance thermal/electronic applications, owing to the combination of the direct-bandgap properties of phosphorene with the exceptional thermal properties of graphene. In this work, the interlayer thermal conductance at the phosphorene/graphene interface is systematically investigated using classical molecular dynamics (MD) simulation. The transient pump-probe heating method is employed to compute the interfacial thermal resistance (R) of the bilayer. The predicted R value at the phosphorene/graphene interface is 8.41 × 10 -8 K m 2 W -1 at room temperature. Different external and internal conditions, i.e., temperature, contact pressure, vacancy defect, and chemical functionalization, can all effectively reduce R at the interface. Numerical results of R reduction as a function of temperature, interfacial coupling strength, defect ratio, or hydrogen coverage are reported with the most R reduction amounting to 56.5%, 70.4%, 34.8% and 84.5%, respectively.

  1. Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

    Directory of Open Access Journals (Sweden)

    Guohuan Xiong

    2018-03-01

    Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.

  2. Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control

    International Nuclear Information System (INIS)

    Jawaada, Wafaa; Noorani, M. S. M.; Al-Sawalha, M. Mossa

    2012-01-01

    An anti-synchronization scheme is proposed to achieve the anti-synchronization behavior between chaotic systems with fully unknown parameters. A sliding surface and an adaptive sliding mode controller are designed to gain the anti-synchronization. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally numerical results are presented to justify the theoretical analysis

  3. Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen

    2005-01-01

    This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness...

  4. Sliding Mode Disturbance Observer-Based Fractional Second-Order Nonsingular Terminal Sliding Mode Control for PMSM Position Regulation System

    Directory of Open Access Journals (Sweden)

    Hong-Ru Li

    2015-01-01

    Full Text Available This paper investigates the position regulation problem of permanent magnet synchronous motor (PMSM subject to parameter uncertainties and external disturbances. A novel fractional second-order nonsingular terminal sliding mode control (F2NTSMC is proposed and the finite time stability of the closed-loop system is ensured. A sliding mode disturbance observer (SMDO is developed to estimate and make feedforward compensation for the lumped disturbances of the PMSM system. Moreover, the finite-time convergence of estimation errors can be guaranteed. The control scheme combining F2NTSMC and SMDO can not only improve performance of the closed-loop system and attenuate disturbances, but also reduce chattering effectively. Simulation results show that the proposed control method can obtain satisfactory position tracking performance and strong robustness.

  5. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    Science.gov (United States)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  6. SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures

    International Nuclear Information System (INIS)

    Podder, T

    2016-01-01

    Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system. Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.

  7. SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system. Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.

  8. Friction of elastomer-on-glass system and direct observation of its frictional interface

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro

    2007-01-01

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers

  9. Seismic isolation of nuclear power plants using sliding isolation bearings

    Science.gov (United States)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for

  10. Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system

    International Nuclear Information System (INIS)

    Ghamati, Mina; Balochian, Saeed

    2015-01-01

    In this paper two adaptive sliding mode controls for synchronizing the state trajectories of the Genesio–Tesi system with unknown parameters and external disturbance are proposed. A switching surface is introduced and based on this switching surface, two adaptive sliding mode control schemes are presented to guarantee the occurrence of the sliding motion. The stability and robustness of the two proposed schemes are proved using Lyapunov stability theory. The effectiveness of our introduced schemes is provided by numerical simulations

  11. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  12. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    Science.gov (United States)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  13. Ribosomes slide on lysine-encoding homopolymeric A stretches

    Science.gov (United States)

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  14. Virtual slides: application in pulmonary pathology consultations.

    Directory of Open Access Journals (Sweden)

    Michał Wojciechowski

    2008-02-01

    Full Text Available The Virtual Slide (VS is an interactive microscope emulator that presents a complete digitized tissue section via the Internet. A successful implementation of VS has been observed for educational, research venues and quality control. VS acquisition for consultative pathology is not so common. The purpose of this study was to explore the efficacy and usability of VS in the consultative pulmonary telepathology. 20 lung tumors entered the study. The performance was programmed for 2 medical centers specialized in pulmonary pathology (beginner and advancer in telepathology. A high-quality VSs were prepared by Coolscope (Nikon, Eclipsnet VSL, Japan, and were evaluated via the Internet. The cases were reviewed for the second time with conventional light microscope. VS diagnostic accuracy and the interobserver variability were evaluated. Also the time taken by examiners to render the diagnoses and time needed to scan the microscopic slide were analyzed. Percentage concordance between original glass-slides diagnosis and diagnosis for VSs was very high. Pathologists found the download speed of VSs adequate; experience in telepathology reduced the time of VS diagnosis. VS implementation suggests advantages for teleconsulation and education but also indicate some technical limitations. This is the first Polish trial of VS implementation in telepathology consultative service.

  15. A photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets.

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Hayasaka, Yuika; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2011-11-02

    A novel photoactivated artificial muscle model unit is reported. Here we show that organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale and the interlayer spaces in the layered hybrid structure shrink and expand vertically by photoirradiation. The sliding movement of the system on a giant scale is the first example of an artificial muscle model unit having much similarity with that in natural muscle fibrils. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) relative to the molecular size of ~1 nm by means of a reversible sliding mechanism.

  16. Modifications of the Cornell University TRIGA reactor thermal column

    International Nuclear Information System (INIS)

    Aderhold, Howard C.

    1984-01-01

    Full text: The thermal column has been modified to provide a horizontal beam suitable for neutron radiography. A hole of circular cross-section was cut along the axis of the thermal column through graphite and lead from the outer surface of the 'sliding block' to a point about 10 cm short of the curved end of the thermal column. The section through the sliding block is 15.2 cm in diameter and the remaining section is 10.2 cm in diameter. The outer or 15.2-cm section is lined with a 6-mm thick Boral sleeve, and the inner or 10.2-cm section contains a tapered collimator of Pd-Cd alloy inside a 3-mm thick Boral sleeve, a defining aperture formed by a 2.5-cm diameter hole in a 6-mm Boral plate, and, at the core end, a 5.1-cm thick bismuth absorber disk. All of these components are enclosed in an aluminum housing. From the sliding block outwards - a distance of 122 cm across the hohlraum and through the graphite at the exit end, plus another 122 cm through the rolling door - no drilling was necessary since removable plugs could be taken out to form a tapered hole of square cross section with stepped widths of 30.5, 33.0, and 38.1 cm. An aluminum housing fitting snugly in this hole is lined with Boral or a gadolinium-bearing paint and is joined with a rubber gasket to the inner housing, so that the entire length can be purged with helium. This system provides an l/d ratio of 1/140 and a useful beam area at the exposure point of 38 cm x 38 cm. At 480 kW, the neutron flux there is 10 6 n/cm 2 sec and the gamma flux is 17 R/hr. Figure 2 is a reproduction of the first radiograph taken with the facility. (author)

  17. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    Science.gov (United States)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  18. Feasibility Study of Interlayer Slide Monitoring Using Postembedded Piezoceramic Smart Aggregates

    Directory of Open Access Journals (Sweden)

    Jianchao Wu

    2018-01-01

    Full Text Available Utilizing embedded transducers is an effective approach to monitor a landslide. However, for existing structures, sensors can only be postembedded, which involves drilling and grouting, and may change the original state of the structure, which calls for the need to study the effectiveness of postembedded transducers. The main focus of this paper is the feasibility study of the interlayer slide detection using postembedded piezoceramic smart aggregates (SAs. In this study, a small landslide structure that involves a weak layer is studied and two pairs of SAs were embedded in predetermined positions inside the structure. To study the difference, one pair of transducer was preembedded and the other pair was postembedded. Within each pair, one SA was employed as an actuator to generate stress waves, and another SA used as a sensor to detect wave responses. Active-sensing approach was developed to perform continuous monitoring during structural loading that was used to induce an interlayer slide. The occurrence of interlayer slide attenuates wave energy and decreases signal intensity. A wavelet-packed index was proposed to detect the occurrence and development of interlayer slide. Experimental results demonstrated that SA installation through postembedding process is an innovative yet effective approach to monitor interlayer slide.

  19. Experimental Investigation on Caisson Breakwater Sliding

    DEFF Research Database (Denmark)

    Ruol, Piero; Martin, Paolo; Andersen, Thomas Lykke

    2014-01-01

    This note presents wave flume experiments, carried out at Aalborg University, measuring the horizontal sliding distance of a vertical breakwater in 1:40 scale. Horizontal and uplift wave induced pressures were accurately measured simultaneously with the caisson movements. Caissons of different...

  20. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  1. An Ultra-High Speed Whole Slide Image Viewing System

    Directory of Open Access Journals (Sweden)

    Yukako Yagi

    2012-01-01

    Full Text Available Background: One of the goals for a Whole Slide Imaging (WSI system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed.

  2. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  3. Superplasticity of Inconel 718 after processing by high-pressure sliding (HPS)

    Czech Academy of Sciences Publication Activity Database

    Takizawa, Y.; Kajita, T.; Král, Petr; Masuda, T.; Watanabe, K.; Yumoto, M.; Otagiri, Y.; Sklenička, Václav; Horita, Z.

    2017-01-01

    Roč. 682, JAN (2017), s. 603-612 ISSN 0921-5093 Institutional support: RVO:68081723 Keywords : High-pressure sliding (HPS) * Severe plastic deformation (SPD) * Ni-based superalloy * Superplasticity * Grain boundary sliding * Lattice diffusion Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 3.094, year: 2016

  4. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  5. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  6. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Sedigh, Ali Khaki

    2009-01-01

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  7. Hierarchical sliding mode control for under-actuated cranes design, analysis and simulation

    CERN Document Server

    Qian, Dianwei

    2015-01-01

    This book reports on the latest developments in sliding mode overhead crane control, presenting novel research ideas and findings on sliding mode control (SMC), hierarchical SMC and compensator design-based hierarchical sliding mode. The results, which were previously scattered across various journals and conference proceedings, are now presented in a systematic and unified form. The book will be of interest to researchers, engineers and graduate students in control engineering and mechanical engineering who want to learn the methods and applications of SMC.

  8. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding

    International Nuclear Information System (INIS)

    Jia, S.G.; Liu, P.; Ren, F.Z.; Tian, B.H.; Zheng, M.S.; Zhou, G.S.

    2005-01-01

    The wear behavior of a Cu-Ag-Cr alloy contact wire against a copper-base sintered alloy strip was investigated. Wear tests were conducted under laboratory conditions with a special sliding wear apparatus that simulated train motion under electrical current conditions. The initial microstructure of the Cu-Ag-Cr alloy contact wire was analyzed by transmission electron microscopy. Worn surfaces of the Cu-Ag-Cr alloy wire were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the wear rate of the Cu-Ag-Cr wire increased with increasing electrical current and sliding. Within the studied range of electrical current, the wear rate increases with increasing electrical current and sliding speed. Compared with the Cu-Ag contact wire under the same testing conditions, the Cu-Ag-Cr alloy wire has much better wear resistance. Adhesive, abrasive, and electrical erosion wear are the dominant mechanisms during the electrical sliding processes

  9. Thermal characterisation of ceramic/metal joining techniques for fusion applications using X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Ll.M., E-mail: llion.evans@ccfe.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Margetts, L. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Manchester M13 9PL (United Kingdom); Casalegno, V. [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Leonard, F.; Lowe, T.; Lee, P.D. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Schmidt, M.; Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-06-15

    This work investigates the thermal performance of four novel CFC–Cu joining techniques. Two involve direct casting and brazing of Cu onto a chromium modified CFC surface, the other two pre-coat a brazing alloy with chromium using galvanisation and sputtering processes. The chromium carbide layer at the interface has been shown to improve adhesion. Thermal conductivity across the join interface was measured by laser flash analysis. X-ray tomography was performed to investigate micro-structures that might influence the thermal behaviour. It was found that thermal conductivity varied by up to 72%. Quantification of the X-ray tomography data showed that the dominant feature in reducing thermal conductivity was the lateral spread of voids at the interface. Correlations were made to estimate the extent of this effect.

  10. Whole slide images and digital media in pathology education, testing, and practice: the Oklahoma experience.

    Science.gov (United States)

    Fung, Kar-Ming; Hassell, Lewis A; Talbert, Michael L; Wiechmann, Allan F; Chaser, Brad E; Ramey, Joel

    2012-01-01

    Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute.

  11. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.

    Science.gov (United States)

    Shen, Shijian; Nie, Xin; Zhang, Xinggan

    2018-02-03

    Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  12. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode

    Directory of Open Access Journals (Sweden)

    Shijian Shen

    2018-02-01

    Full Text Available Gaofen-3 (GF-3 is China’ first C-band multi-polarization synthetic aperture radar (SAR satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP and PFA (Polar Format Algorithm imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  13. Are slide-hold-slide tests a good analogue for the seismic cycle?

    Science.gov (United States)

    van den Ende, Martijn; Niemeijer, André; Marketos, George; Spiers, Christopher

    2017-04-01

    Earthquakes are among the most disruptive of natural hazards known to man. Owing to their destructive potential and poor predictability, earthquakes and unstable frictional sliding in general receive considerable attention, both in experimental and in modelling studies. For reliable seismic hazard assessments, accurate predictions of the failure strength of seismogenic faults is paramount. To study the time-dependent restrengthening (or "healing") of faults in a laboratory setting, the slide-hold-slide (SHS) method is commonly employed as an analogue for the seismic cycle. Using this method, it is assumed that the rate of restrengthening as observed in SHS tests is similar to the rate of restrengthening of natural faults during the interseismic phase. However, the dynamic and kinematic boundary conditions of SHS tests are inherently different to those of a fault that is being tectonically loaded. As such, it can be questioned whether SHS tests (in which the interseismic period is characterised by stress relaxation) yield the same rate of restrengthening as would be expected from laboratory stick-slip or natural seismic cycles (characterised by a more complex stress history). This question could in principle be addressed experimentally by comparing the results from SHS tests with the stress drop and recurrence time of regular stick-slips. However, due to technical limitations, direct comparison between SHS and stick-slips is non-trivial, and uncertainties in extrapolating the laboratory results remain. To assess the validity of SHS tests as an analogue for the seismic cycle, we simulate laboratory SHS tests as well as stick-slips using the Discrete Element Method (DEM). DEM is a particle-based numerical technique that is suitable for modelling granular media, such as fault gouges. Its constitutive relations are linked to grain-scale micro-processes, and, in the work presented here, we incorporate pressure solution creep and frictional sliding. The simultaneous

  14. Detection of the HTLV-I gene on cytologic smear slides.

    Science.gov (United States)

    Kashima, Kenji; Nagahama, Junji; Sato, Keiji; Tanamachi, Hiroyuki; Gamachi, Ayako; Daa, Tsutomu; Nakayama, Iwao; Yokoyama, Shigeo

    2002-01-01

    To apply the polymerase chain reaction (PCR) for detection of the HTLV-I gene from cytologic smear slides. Samples were from seven cases of serum anti-ATL antibody (ATLA)-positive T-cell lymphoma and three from ATLA-negative T-cell lymphoma. Six of the seven ATLA-positive cases were confirmed to be ATLL by Southern blotting. From the seventh case a fresh sample for blotting could not obtained. DNA was extracted from the cytologic smear slides of all 10 cases; they had been stained with Papanicolaou or May-Giemsa stain, digested with proteinase K and precipitated with phenol and ethanol. The target sequence in the pX region of the HTLV-I gene was amplified by PCR. All seven ATLA-positive cases, including one that had not yet been confirmed by Southern blotting, showed a single band, as predicted, while the three ATLA-negative cases showed no band. If cytologic smear slides are available but a fresh sample is not, the PCR method should provide evidence that the virus is present since in our study sufficient DNA templates were successfully extracted from the stained cytologic smear slides for detection of the virus.

  15. Autonomous Locator of Thermals (ALOFT) Autonomous Soaring Algorithm

    Science.gov (United States)

    2015-04-03

    thermal identification, a sliding window of past data is used. Only data stored in the queues is remembered; after the time length of the queue...53) Each queue is cut down to ensure that data is only stored for the correct window of queue time length, tmax. This starts with...determination are handed back to the calling function. 2D Nonlinear Regression This nonlinear regression is the heart and soul of the ALOFT

  16. Determining solid-fluid interface temperature distribution during phase change of cryogenic propellants using transient thermal modeling

    Science.gov (United States)

    Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2018-04-01

    Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.

  17. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  18. Thermal energy at the nanoscale

    CERN Document Server

    Fisher, Timothy S

    2014-01-01

    These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons -- are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established. Readership: Students and professionals in physics and engineering.

  19. Tribological Investigation of SiC/Al Composite under Dry Sliding Friction

    Directory of Open Access Journals (Sweden)

    DAI Liquan

    2016-12-01

    Full Text Available The effect of sliding distances on aluminum matrix composite reinforced by silicon carbide particle with volume fraction of 9% was investigated. Friction behavior and wear resistance of the composite with distances of 5000 r, 10000 r and 20000 r were studied under dry sliding conditions of the same speed and load(200 r/min, 45 N. The results show that the friction coefficient in long-range sliding process displays three stages:wearing zone, stable zone and accelerating zone. The matrix surface produces severe adhesion because of the rising temperature and then leads plastic areas, in which both friction coefficient and wear rate are increased.

  20. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  1. Kinect-Based Sliding Mode Control for Lynxmotion Robotic Arm

    Directory of Open Access Journals (Sweden)

    Ismail Ben Abdallah

    2016-01-01

    Full Text Available Recently, the technological development of manipulator robot increases very quickly and provides a positive impact to human life. The implementation of the manipulator robot technology offers more efficiency and high performance for several human’s tasks. In reality, efforts published in this context are focused on implementing control algorithms with already preprogrammed desired trajectories (passive robots case or trajectory generation based on feedback sensors (active robots case. However, gesture based control robot can be considered as another channel of system control which is not widely discussed. This paper focuses on a Kinect-based real-time interactive control system implementation. Based on LabVIEW integrated development environment (IDE, a developed human-machine-interface (HMI allows user to control in real time a Lynxmotion robotic arm. The Kinect software development kit (SDK provides a tool to keep track of human body skeleton and abstract it into 3-dimensional coordinates. Therefore, the Kinect sensor is integrated into our control system to detect the different user joints coordinates. The Lynxmotion dynamic has been implemented in a real-time sliding mode control algorithm. The experimental results are carried out to test the effectiveness of the system, and the results verify the tracking ability, stability, and robustness.

  2. Continuing Medical Education Speakers with High Evaluation Scores Use more Image-based Slides

    Directory of Open Access Journals (Sweden)

    Ferguson, Ian

    2017-01-01

    Full Text Available Although continuing medical education (CME presentations are common across health professions, it is unknown whether slide design is independently associated with audience evaluations of the speaker. Based on the conceptual framework of Mayer’s theory of multimedia learning, this study aimed to determine whether image use and text density in presentation slides are associated with overall speaker evaluations. This retrospective analysis of six sequential CME conferences (two annual emergency medicine conferences over a three-year period used a mixed linear regression model to assess whether postconference speaker evaluations were associated with image fraction (percentage of image-based slides per presentation and text density (number of words per slide. A total of 105 unique lectures were given by 49 faculty members, and 1,222 evaluations (70.1% response rate were available for analysis. On average, 47.4% (SD=25.36 of slides had at least one educationally-relevant image (image fraction. Image fraction significantly predicted overall higher evaluation scores [F(1, 100.676=6.158, p=0.015] in the mixed linear regression model. The mean (SD text density was 25.61 (8.14 words/slide but was not a significant predictor [F(1, 86.293=0.55, p=0.815]. Of note, the individual speaker [χ2 (1=2.952, p=0.003] and speaker seniority [F(3, 59.713=4.083, p=0.011] significantly predicted higher scores. This is the first published study to date assessing the linkage between slide design and CME speaker evaluations by an audience of practicing clinicians. The incorporation of images was associated with higher evaluation scores, in alignment with Mayer’s theory of multimedia learning. Contrary to this theory, however, text density showed no significant association, suggesting that these scores may be multifactorial. Professional development efforts should focus on teaching best practices in both slide design and presentation skills.

  3. Continuing Medical Education Speakers with High Evaluation Scores Use more Image-based Slides.

    Science.gov (United States)

    Ferguson, Ian; Phillips, Andrew W; Lin, Michelle

    2017-01-01

    Although continuing medical education (CME) presentations are common across health professions, it is unknown whether slide design is independently associated with audience evaluations of the speaker. Based on the conceptual framework of Mayer's theory of multimedia learning, this study aimed to determine whether image use and text density in presentation slides are associated with overall speaker evaluations. This retrospective analysis of six sequential CME conferences (two annual emergency medicine conferences over a three-year period) used a mixed linear regression model to assess whether post-conference speaker evaluations were associated with image fraction (percentage of image-based slides per presentation) and text density (number of words per slide). A total of 105 unique lectures were given by 49 faculty members, and 1,222 evaluations (70.1% response rate) were available for analysis. On average, 47.4% (SD=25.36) of slides had at least one educationally-relevant image (image fraction). Image fraction significantly predicted overall higher evaluation scores [F(1, 100.676)=6.158, p=0.015] in the mixed linear regression model. The mean (SD) text density was 25.61 (8.14) words/slide but was not a significant predictor [F(1, 86.293)=0.55, p=0.815]. Of note, the individual speaker [χ 2 (1)=2.952, p=0.003] and speaker seniority [F(3, 59.713)=4.083, p=0.011] significantly predicted higher scores. This is the first published study to date assessing the linkage between slide design and CME speaker evaluations by an audience of practicing clinicians. The incorporation of images was associated with higher evaluation scores, in alignment with Mayer's theory of multimedia learning. Contrary to this theory, however, text density showed no significant association, suggesting that these scores may be multifactorial. Professional development efforts should focus on teaching best practices in both slide design and presentation skills.

  4. Discrete-Time Sliding-Mode Control of Uncertain Systems with Time-Varying Delays via Descriptor Approach

    Directory of Open Access Journals (Sweden)

    Maode Yan

    2008-01-01

    Full Text Available This paper considers the problem of robust discrete-time sliding-mode control (DT-SMC design for a class of uncertain linear systems with time-varying delays. By applying a descriptor model transformation and Moon's inequality for bounding cross terms, a delay-dependent sufficient condition for the existence of stable sliding surface is given in terms of linear matrix inequalities (LMIs. Based on this existence condition, the synthesized sliding mode controller can guarantee the sliding-mode reaching condition of the specified discrete-time sliding surface for all admissible uncertainties and time-varying delays. An illustrative example verifies the effectiveness of the proposed method.

  5. Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system

    Directory of Open Access Journals (Sweden)

    Sabah Miqoi

    2017-03-01

    Full Text Available In this paper a new maximum power point tracking method based on fuzzy sliding mode control is proposed, and employed in a PV water pumping system based on a DC-DC boost converter, to produce maximum power from the solar panel hence more speed in the DC motor and more water quantity. This method combines two different tracking techniques sliding mode control and fuzzy logic; our controller is based on sliding mode control, then to give better stability and enhance the power production a fuzzy logic technique was added. System modeling, sliding method definition and the new control method presentation are represented in this paper. The results of the simulation that are compared to both sliding mode controller and perturbation and observation method demonstrate effectiveness and robustness of the proposed controller.

  6. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  7. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  8. Identification of mycobacterium tuberculosis in sputum smear slide using automatic scanning microscope

    Science.gov (United States)

    Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri

    2015-04-01

    Sputum smear observation has an important role in tuberculosis (TB) disease diagnosis, because it needs accurate identification to avoid high errors diagnosis. In development countries, sputum smear slide observation is commonly done with conventional light microscope from Ziehl-Neelsen stained tissue and it doesn't need high cost to maintain the microscope. The clinicians do manual screening process for sputum smear slide which is time consuming and needs highly training to detect the presence of TB bacilli (mycobacterium tuberculosis) accurately, especially for negative slide and slide with less number of TB bacilli. For helping the clinicians, we propose automatic scanning microscope with automatic identification of TB bacilli. The designed system modified the field movement of light microscope with stepper motor which was controlled by microcontroller. Every sputum smear field was captured by camera. After that some image processing techniques were done for the sputum smear images. The color threshold was used for background subtraction with hue canal in HSV color space. Sobel edge detection algorithm was used for TB bacilli image segmentation. We used feature extraction based on shape for bacilli analyzing and then neural network classified TB bacilli or not. The results indicated identification of TB bacilli that we have done worked well and detected TB bacilli accurately in sputum smear slide with normal staining, but not worked well in over staining and less staining tissue slide. However, overall the designed system can help the clinicians in sputum smear observation becomes more easily.

  9. Static frictional resistance with the slide low-friction elastomeric ligature system.

    Science.gov (United States)

    Jones, Steven P; Ben Bihi, Saida

    2009-11-01

    This ex-vivo study compared the static frictional resistance of a low-friction ligation system against a conventional elastomeric module, and studied the effect of storage in a simulated oral environment on the static frictional resistance of both ligation systems. Eighty stainless steel brackets were tested by sliding along straight lengths of 0.018 inch round and 0.019 x 0.025 inch rectangular stainless steel wires ligated with either conventional elastomerics or the Slide system (Leone, Florence, Italy). During the tests the brackets and wires were lubricated with artificial saliva. A specially constructed jig assembly was used to hold the bracket and archwire securely. The jig was clamped in an Instron universal load testing machine. Crosshead speed was controlled via a microcomputer connected to the Instron machine. The static frictional forces at 0 degree bracket/wire angulation were measured for both systems, fresh from the pack and after storage in artificial saliva at 37 degrees C for 24 hours. The results of this investigation demonstrated that the Slide ligatures produced significantly lower static frictional resistance than conventional elastomeric modules in the fresh condition and after 24 hours of storage in a simulated oral environment (p static frictional resistance of conventional elastomeric modules and the Slide system (p = 0.525). The claim by the manufacturer that the Slide system produces lower frictional resistance than conventional elastomeric modules is upheld.

  10. Reciprocating sliding wear of Inconel 600 tubing in room temperature air

    International Nuclear Information System (INIS)

    Kim, Hun; Choi, Jong Hyun; Kim, Jun Ki; Hong, Hyun Seon; Kim, Seon Jin

    2003-01-01

    The sliding wear behavior of the material of a steam generator in a nuclear power station (Inconel 600) was investigated at room temperature. Effects of the wear parameters such as material combination, sliding distance and contact stress were examined with various mating materials including 304 austenitic stainless steel, Inconel 600 and Al-Cu alloy 2011. In the prediction of the wear volume by Archard's wear equation, the standard error range was calculated to be ±4.04x10 -9 m 3 and the reliability to be 71.9% for the combination of Inconel 600 and 304 stainless steel. The error range was considered to be relatively broad because the wear coefficient in Archard's equation was assumed to be a constant, regardless of the changes in the mechanical properties during the wear. In the present study, the sliding wear behavior turned out to be influenced by the material combination; the wear volume of 304 stainless steel did not linearly increase with the sliding distance, while that of other material combinations exhibited linear increases. Based on the experimental results, the wear coefficient was modified as a function of the sliding distance. The calculation with the modified wear equation showed that the error range narrowed down to ±2.60x10 -9 m 3 and the reliability increased to 75.3%, compared to Archard's original equation

  11. Dry sliding wear behavior of epoxy composite reinforced with short palmyra fibers

    International Nuclear Information System (INIS)

    Biswal, Somen; Satapathy, Alok

    2016-01-01

    The present work explores the possibility of using palmyra fiber as a replacement for synthetic fiber in conventional polymer composites for application against wear. An attempt has been made in this work to improve the sliding wear resistance of neat epoxy by reinforcing it with short palmyra fibers (SPF). Epoxy composites with different proportions (0, 4, 8 and 12 wt. %) of SPF are fabricated by conventional hand lay-up technique. Dry sliding wear tests are performed on the composite samples using a pin-on-disc test rig as per ASTM G 99-05 standards under various operating parameters. Design of experiment approach based on Taguchi's L16 Orthogonal Arrays is used for the analysis of the wear. This parametric analysis reveals that the SPF content is the most significant factor affecting the wear process followed by the sliding velocity. The sliding wear behavior of these composites under an extensive range of test conditions is predicted by a model based on the artificial neural network (ANN). A well trained ANN has been used to predict the sliding wear response of epoxy based composites over a wide range. (paper)

  12. Adaptive sliding mode control of tri-layer conjugated polymer actuators

    International Nuclear Information System (INIS)

    Wang, Xiangjiang; Alici, Gursel; Nguyen, Chuc Huu

    2013-01-01

    This paper proposes an adaptive sliding mode control methodology to enhance the positioning ability of conducting polymer actuators typified by tri-layer conjugated polymer actuators. This is motivated by the search for an effective control strategy to command such actuators to a desired configuration in the presence of parametric uncertainties and unmodeled disturbances. After analyzing the stability of the adaptive sliding mode control system, experiments were conducted to demonstrate its satisfactory tracking ability, based on a series of experimental results. Implementation of the control law requires a valid model of the conducting polymer actuator and boundaries of the uncertainties and disturbances. Based on the theoretical and experimental results presented, the adaptive sliding mode control methodology is very attractive in the field of smart actuators which contain significant uncertainties and disturbances. (paper)

  13. Electrophoretic transport of biomolecules across liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Thomas; Hardt, Steffen [Center of Smart Interfaces, TU Darmstadt, Petersenstrasse 32, D-64287 Darmstadt (Germany); Muenchow, Goetz, E-mail: hardt@csi.tu-darmstadt.de [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, D-55129 Mainz (Germany)

    2011-05-11

    The mass transfer resistance of a liquid-liquid interface in an aqueous two-phase system composed of poly(ethylene glycol) and dextran is investigated. Different types of proteins and DNA stained with fluorescent dyes serve as probes to study the transport processes close to the interface. A microfluidic device is employed to enable the electrophoretic transport of biomolecules from one phase to another. The results obtained for proteins can be explained solely via the different electrophoretic mobilities and different affinities of the molecules to the two phases, without any indications of a significant mass transfer resistance of the liquid-liquid interface. By contrast, DNA molecules adsorb to the interface and only desorb under an increased electric field strength. The desorption process carries the signature of a thermally activated escape from a metastable state, as reflected in the exponential decay of the fluorescence intensity at the interface as a function of time.

  14. Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques

    International Nuclear Information System (INIS)

    Kiran, T.S.; Prasanna Kumar, M.; Basavarajappa, S.; Viswanatha, B.M.

    2014-01-01

    Highlights: • ZA-27 alloy is used as matrix material and reinforced with SiC and Gr particles. • Heat treatment was carried out for all specimen. • Dry sliding wear test was done on pin-on-disc apparatus by Taguchi technique. • ZA-27/9SiC–3Gr showed superior wear resistance over the base alloy. • Ceramic mixed mechanical layer on contact surface of composite was formed. - Abstract: Dry sliding wear behavior of zinc based alloy and composite reinforced with SiCp (9 wt%) and Gr (3 wt%) fabricated by stir casting method was investigated. Heat treatment (HT) and aging of the specimen were carried out, followed by water quenching. Wear behavior was evaluated using pin on disc apparatus. Taguchi technique was used to estimate the parameters affecting the wear significantly. The effect of HT was that it reduced the microcracks, residual stresses and improved the distribution of microconstituents. The influence of various parameters like applied load, sliding speed and sliding distance on wear behavior was investigated by means and analysis of variance (ANOVA). Further, correlation between the parameters was determined by multiple linear regression equation for each response. It was observed that the applied load significantly influenced the wear volume loss (WVL), followed by sliding speed implying that increase in either applied load or sliding speed increases the WVL. Whereas for composites, sliding distance showed a negative influence on wear indicating that increase in sliding distance reduces WVL due to the presence of reinforcements. The wear mechanism of the worn out specimen was analyzed using scanning electron microscopy. The analysis shows that the formation and retention of ceramic mixed mechanical layer (CMML) plays a major role in the dry sliding wear resistance

  15. The effects of various reinforcements on dry sliding wear behaviour of AA 6061 nanocomposites

    International Nuclear Information System (INIS)

    Jeyasimman, D.; Narayanasamy, R.; Ponalagusamy, R.; Anandakrishnan, V.; Kamaraj, M.

    2014-01-01

    Highlights: • Wear and friction coefficient of nanocomposites were investigated. • The worn surface morphologies of nanocomposites were analysed. • The wear rate was increased with increasing load and sliding velocity. • The friction coefficient was decreased with increasing load and sliding velocity. - Abstract: The present work aims to investigate the dry sliding wear behaviour of AA 6061 nanocomposites reinforced with various nanolevel reinforcements, such as titanium carbide (TiC), gamma phase alumina (γ-Al 2 O 3 ) and hybrid (TiC + Al 2 O 3 ) nanoparticles with two weight percentages (wt.%) prepared by 30 h of mechanical alloying (MA). The tests were performed using a pin-on-disk wear tester by sliding these pin specimens at sliding speeds of 0.6, 0.9 and 1.2 m/s against an oil-hardened non-shrinking (OHNS) steel disk at room temperature. Wear tests were conducted for normal loads of 5, 7 and 10 N at different sliding speeds at room temperature. The variations of the friction coefficient and the wear rate with the sliding distances (500 m, 1000 m and 1600 m) for different normal loads and sliding velocities were plotted and investigated. To observe the wear characteristics and to investigate the wear mechanism, the morphologies of the worn surfaces were analysed using a scanning electron microscope (SEM). The formation of an oxide layer on the worn surface was examined by energy dispersive spectroscopy (EDS). The wear rate was found to increase with the load and sliding velocity for all prepared nanocomposites. Hybrid (TiC + Al 2 O 3 ) reinforced AA 6061 nanocomposites had lower wear rates and friction coefficients compared with TiC and Al 2 O 3 reinforced AA 6061 nanocomposites

  16. Mechanisms of thermally induced threshold voltage instability in GaN-based heterojunction transistors

    International Nuclear Information System (INIS)

    Yang, Shu; Liu, Shenghou; Liu, Cheng; Lu, Yunyou; Chen, Kevin J.

    2014-01-01

    In this work, we attempt to reveal the underlying mechanisms of divergent V TH -thermal-stabilities in III-nitride metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) and MOS-Channel-HEMT (MOSC-HEMT). In marked contrast to MOSC-HEMT featuring temperature-independent V TH , MIS-HEMT with the same high-quality gate-dielectric/III-nitride interface and similar interface trap distribution exhibits manifest thermally induced V TH shift. The temperature-dependent V TH of MIS-HEMT is attributed to the polarized III-nitride barrier layer, which spatially separates the critical gate-dielectric/III-nitride interface from the channel and allows “deeper” interface trap levels emerging above the Fermi level at pinch-off. This model is further experimentally validated by distinct V G -driven Fermi level movements at the critical interfaces in MIS-HEMT and MOSC-HEMT. The mechanisms of polarized III-nitride barrier layer in influencing V TH -thermal-stability provide guidelines for the optimization of insulated-gate III-nitride power switching devices

  17. Use of a multi-thermal washer for DNA microarrays simplifies probe design and gives robust genotyping assays

    DEFF Research Database (Denmark)

    Petersen, J.; Poulsen, Lena; Petronis, S.

    2008-01-01

    is called a multi-thermal array washer (MTAW), and it has eight individually controlled heating zones, each of which corresponds to the location of a subarray on a slide. Allele-specific oligonucleotide probes for nine mutations in the beta-globin gene were spotted in eight identical subarrays at positions......DNA microarrays are generally operated at a single condition, which severely limits the freedom of designing probes for allele-specific hybridization assays. Here, we demonstrate a fluidic device for multi-stringency posthybridization washing of microarrays on microscope slides. This device...

  18. Study of the tribological properties of ZrO2 obtained by thermal spraying using the interferometric microscopy

    International Nuclear Information System (INIS)

    Guilemany, J. M.; Armada, S.; Miguel, J. M.

    2001-01-01

    Thermal barrier coatings have a limited mechanical and tribological properties. The sintering thermal treatments can be used to improve these properties. in the present paper the evolution of some mechanical and tribological properties with different time of sintering at 1000 degree centigree is evaluated. It was observed that the sintering thermal treatment produce an increase of the wear resistance, the hardness and the Young modulus. The Ball on disk test were done using a sliding pair of ZrO 2 and steel and the main wear mechanisms for each case were studied. It was observed that the intersplat delamination and the brittle fracture where the main wear mechanisms during sliding process. The wear tracks were studied with scanning electron microscopy (SEM) and scanning white light interferometry (SWLI) so as to quantify the wear for each case. It was necessary to do a gold sputtering to increase the electric conductivity and reflection of the ZrO 2 samples for their study by SEM and SWLI respectively. (Author) 6 refs

  19. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation

    International Nuclear Information System (INIS)

    La Peiqing; Ma Jiqiang; Zhu, Yuntian T.; Yang Jun; Liu Weimin; Xue Qunji; Valiev, Ruslan Z.

    2005-01-01

    This paper reports the tribological properties of ultrafine-grained (UFG) Ti prepared by severe plastic deformation under dry sliding against AISI52100 steel in ambient environment and at varying load and sliding speed. Worn surfaces of the UFG Ti were examined with a scanning electron microscope and X-ray photoelectron spectroscope. It was found that the wear rate of the UFG Ti under dry sliding was of the magnitude of 10 -3 mm 3 m -1 , which is lower than that of the annealed coarse-grained (CG) Ti. The wear rate of the UFG Ti increased with the load, while it decreased with the sliding speed. The friction coefficient of the UFG Ti was in the range of 0.45-0.60, slightly lower than that of the CG Ti, and did not change with the load and sliding time after the initial transient period. The friction coefficient increased with increasing sliding speed to a maximum point and then decreased. The wear mechanism of the UFG Ti was micro-ploughing and delamination. The worn surfaces were covered by a TiO 2 layer. These results demonstrated that UFG structures improved the wear resistance but did not significantly affect the friction coefficient of Ti

  20. Clinical Utility of an Automated Instrument for Gram Staining Single Slides

    Science.gov (United States)

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-01-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis. PMID:20410348