WorldWideScience

Sample records for skin tumors induced

  1. Radiation-induced malignant tumors of skin and their histogenesis

    International Nuclear Information System (INIS)

    Li Guomin; Chen Yunchi; Yang Yejing

    1987-01-01

    Seven cases of radiation-induced malignant tumors and 60 cases of chronic radiation damage of skin are reported. Severe hyperplasia, false epitheliomatoid hyperpiasia and atypical proliferation of epithelia and atypical proliferation of fibrohistocytes were the main changes found in chronic radiation damage of skin. The development of malignant tumors from chronic radiation damage of skin can be divided into 4 periods: necrotic and degenerative change period, benign proliferative period, atypical proliferative period and malignant change period. The incidence of hyperplastic changes of skin is related to the time elapse after irradiation and the integrated dose of radiation. The longer the duration after irradiation and the larger the integrated dose are, the higher will be the incidence of hyperplastic changes

  2. Monoclonal antibodies reactive with common tumor antigens on UV-induced tumors also react with hyperplastic UV-irradiated skin

    International Nuclear Information System (INIS)

    Spellman, C.W.; Beauchamp, D.A.

    1986-01-01

    Most murine skin tumors induced by ultraviolet light (UVB, 280-340 nm) can be successfully transplanted only into syngeneic hosts that have received subcarcinogenic doses of UVB. The tumor susceptible state is long-lived and mediated by T suppressor cells that control effector responses against common antigens on UV-induced tumors. Because antigen specific suppression arises prior to the appearance of a tumor, questions arise about the source of the original antigen. They have previously reported transplantation studies indicating that UV-irradiated skin is antigenically cross-reactive with UV-induced tumors. They now report on flow cytometry analyses showing that a series of MoAb reactive with common antigens expressed by UV-induced tumors are also reactive on cells from UV-irradiated skin. Various antigens appear at different times in the UV irradiation scheme, and some persist while others are transient. They speculate that the common antigens detected may be the ones to which functional suppression is directed. If true, these results suggest that successful tumors need not escape host defenses to emerge. Rather, tumors may arise and grow progressively if they express antigens that cross-react with specificities to which the host has previously mounted a suppressive response

  3. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    International Nuclear Information System (INIS)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-01-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis

  4. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daya-Grosjean, Leela [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: daya@igr.fr; Sarasin, Alain [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  5. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice

    International Nuclear Information System (INIS)

    Dinkova-Kostova, Albena T.; Jenkins, Stephanie N.; Wehage, Scott L.; Huso, David L.; Benedict, Andrea L.; Stephenson, Katherine K.; Fahey, Jed W.; Liu Hua; Liby, Karen T.; Honda, Tadashi; Gribble, Gordon W.; Sporn, Michael B.; Talalay, Paul

    2008-01-01

    Inducible phase 2 enzymes constitute a primary line of cellular defense. The oleanane dicyanotriterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile (TP-225) is a very potent inducer of these systems. Topical application of TP-225 to SKH-1 hairless mice increases the levels of NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) and protects against UV radiation-induced dermal thickening. Daily topical treatments of 10 nmol of TP-225 to the backs of mice that were previously subjected to low-level chronic UVB radiation (30 mJ/cm 2 /session, twice a week for 17 weeks), led to 50% reduction in multiplicity of skin tumors. In addition, the total tumor burden of squamous cell carcinomas was reduced by 5.5-fold. The identification of new agents for protection against UV radiation-induced skin cancer and understanding of their mechanism(s) of action is especially important in view of the fact that human skin cancers represent a significant source of increasing morbidity and mortality

  6. Ability of PABA to protect mammalian skin from ultraviolet light-induced skin tumors and actinic damage

    International Nuclear Information System (INIS)

    Snyder, D.S.; May, M.

    1975-01-01

    Application of 5% para-aminobenzoic acid (PABA) to hairless mice one hour prior to ultraviolet light (UVL) irradiation will almost totally protect these animals from developing tumors induced by chronic exposure to UVL in the 290 to 320 nm range in conjunction with a chemical carcinogen. Mice exposed to UVL and not protected by PABA developed primarily squamous cell carcinomas. Two months after cessation of chronic UVL exposure, the non-PABA-treated irradiated mouse skin appeared thickened, yellow, and wrinkled while showing elevated DNA synthesis, hyperplasia, hypergranulosis, and increased amounts of elastotic material. The PABA-treated skin was grossly normal

  7. UV-induced skin damage

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T.

    2003-01-01

    Solar radiation induces acute and chronic reactions in human and animal skin. Chronic repeated exposures are the primary cause of benign and malignant skin tumors, including malignant melanoma. Among types of solar radiation, ultraviolet B (290-320 nm) radiation is highly mutagenic and carcinogenic in animal experiments compared to ultraviolet A (320-400 nm) radiation. Epidemiological studies suggest that solar UV radiation is responsible for skin tumor development via gene mutations and immunosuppression, and possibly for photoaging. In this review, recent understanding of DNA damage caused by direct UV radiation and by indirect stress via reactive oxygen species (ROS) and DNA repair mechanisms, particularly nucleotide excision repair of human cells, are discussed. In addition, mutations induced by solar UV radiation in p53, ras and patched genes of non-melanoma skin cancer cells, and the role of ROS as both a promoter in UV-carcinogenesis and an inducer of UV-apoptosis, are described based primarily on the findings reported during the last decade. Furthermore, the effect of UV on immunological reaction in the skin is discussed. Finally, possible prevention of UV-induced skin cancer by feeding or topical use of antioxidants, such as polyphenols, vitamin C, and vitamin E, is discussed

  8. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  9. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients

    International Nuclear Information System (INIS)

    Dumaz, N.; Drougard, C.; Sarasin, A.; Daya-Grosjean, L.

    1993-01-01

    The UV component of sunlight is the major carcinogen involved in the etiology of skin cancers. The authors have studied the rare, hereditary syndrome xeroderma pigmentosum (XP), which is characterized by a very high incidence of cutaneous tumors on exposed skin at an early age, probably due to a deficiency in excision repair of UV-induced lesions. It is interesting to determine the UV mutation spectrum in XP skin tumors in order to correlate the absence of repair of specific DNA lesions and the initiation of skin tumors. The p53 gene is frequently mutated in human cancers and represents a good target for studying mutation spectra since there are >100 potential sites for phenotypic mutations. Using reverse transcription-PCR and single-strand conformation polymorphism to analyze >40 XP skin tumors (mainly basal and squamous cell carcinomas), the authors have found that 40% (17 out of 43) contained at least one point mutation on the p53 gene. All the mutations were located at dipyrimidine sites, essentially at CC sequences, which are hot spots for UV-induced DNA lesions. Sixty-one percent of these mutations were tandem CC → TT mutations considered to be unique to UV-induced lesions; these mutations are not observed in internal human tumors. All the mutations, except two, must be due to translesion synthesis of unrepaired dipyrimidine lesions left on the nontranscribed strand. These results show the existence of preferential repair of UV lesions [either pyrimidine dimers or pyrimidine-pyrimidone (6-4) photoproducts] on the transcribed strand in human tissues

  10. A case of radiation-induced skin ulcer, cerebral meningioma and skin cancer

    International Nuclear Information System (INIS)

    Matsuo, Yuki; Yano, Kenji

    2000-01-01

    We report a case of radiation-induced skin ulcer, cerebral meningioma, and skin cancer in a 69-year-old woman who had undergone local irradiation and application of radium directly to the skin for actinomycosis of the face at the age of twenty. Some forty to fifty years later, a skin ulcer in the preauricular area in the center of the radiodermatitis, cerebral meningioma in the right sphenoid ridge, and a keratotic skin tumor in the right auricle all developed within the previously irradiated region. The cerebral meningioma was extirpated. The skin ulcer was excised and covered with a forearm flap. After the skin tumor was excised and the subcutaneous tumor in the postauricular area was excised, the postoperative histopathological diagnosis was squamous cell carcinoma with lymph node metastasis. It was considered that the squamous cell carcinoma was derived from irradiated keratosis. Four months later, right neck lymph node dissection was performed. Both the meningioma and squamous cell carcinoma satisfied Cahan's criteria for radiation-induced tumors. So we diagnosed these as radiation-induced cerebral meningioma and squamous cell carcinoma. We haven't detected any recurrence of the squamous cell carcinoma for two years. We learned from this case that chronic radiation disturbances cause an irreversible reaction and various radiolesions, including malignancies, can occur after a long period of latency. It is important to never underestimate a small lesion in the irradiated area, to plan early preventive surgical treatment to remove skin that may have been over-subjected to irradiation, and to continue long-term follow-up for patients with chronic radiodermatitis. (author)

  11. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    International Nuclear Information System (INIS)

    Morison, W.L.; Kelley, S.P.

    1985-01-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans

  12. A case of radiation-induced skin ulcer, cerebral meningioma and skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Yuki; Yano, Kenji [Kure National Hospital, Hiroshima (Japan)

    2000-10-01

    We report a case of radiation-induced skin ulcer, cerebral meningioma, and skin cancer in a 69-year-old woman who had undergone local irradiation and application of radium directly to the skin for actinomycosis of the face at the age of twenty. Some forty to fifty years later, a skin ulcer in the preauricular area in the center of the radiodermatitis, cerebral meningioma in the right sphenoid ridge, and a keratotic skin tumor in the right auricle all developed within the previously irradiated region. The cerebral meningioma was extirpated. The skin ulcer was excised and covered with a forearm flap. After the skin tumor was excised and the subcutaneous tumor in the postauricular area was excised, the postoperative histopathological diagnosis was squamous cell carcinoma with lymph node metastasis. It was considered that the squamous cell carcinoma was derived from irradiated keratosis. Four months later, right neck lymph node dissection was performed. Both the meningioma and squamous cell carcinoma satisfied Cahan's criteria for radiation-induced tumors. So we diagnosed these as radiation-induced cerebral meningioma and squamous cell carcinoma. We haven't detected any recurrence of the squamous cell carcinoma for two years. We learned from this case that chronic radiation disturbances cause an irreversible reaction and various radiolesions, including malignancies, can occur after a long period of latency. It is important to never underestimate a small lesion in the irradiated area, to plan early preventive surgical treatment to remove skin that may have been over-subjected to irradiation, and to continue long-term follow-up for patients with chronic radiodermatitis. (author)

  13. Cell-type-specific roles for COX-2 in UVB-induced skin cancer

    Science.gov (United States)

    Herschman, Harvey

    2014-01-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308

  14. Loss of Endogenous Interleukin-12 Activates Survival Signals in Ultraviolet-Exposed Mouse Skin and Skin Tumors

    Directory of Open Access Journals (Sweden)

    Syed M. Meeran

    2009-09-01

    Full Text Available Interleukin-12 (IL-12-deficiency promotes photocarcinogenesis in mice; however, the molecular mechanisms underlying this effect have not been fully elucidated. Here, we report that long-term exposure to ultraviolet (UV radiation resulted in enhancement of the levels of cell survival kinases, such as phosphatidylinositol 3-kinase (PI3K, Akt (Ser473, p-ERK1/2, and p-p38 in the skin of IL-12p40 knockout (IL-12 KO mice compared with the skin of wild-type mice. UV-induced activation of nuclear factor-κB (NF-κB/p65 in the skin of IL-12 KO mice was also more prominent. The levels of NF-κB-targeted proteins, such as proliferating cell nuclear antigen (PCNA, cyclooxygenase-2, cyclin D1, and inducible nitric oxide synthase, were higher in the UV-exposed skin of IL-12 KO mice than the UV-exposed skin of wild types. In short-term UV irradiation experiments, subcutaneous treatment of IL-12 KO mice with recombinant IL-12 (rIL-12 or topical treatment with oridonin, an inhibitor of NF-κB, resulted in the inhibition of UV-induced increases in the levels of PCNA, cyclin D1, and NF-κB compared with non-rIL-12- or non-oridonin-treated IL-12 KO mice. UV-induced skin tumors of IL-12 KO mice had higher levels of PI3K, p-Akt (Ser473, p-ERK1/2, p-p38, NF-κB, and PCNA and fewer apoptotic cells than skin tumors of wild types. Together, these data suggest that the loss of endogenous IL-12 activates survival signals in UV-exposed skin and that may lead to the enhanced photocarcinogenesis in mice.

  15. MR imaging manifestations of skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-hyon; Kim, Jee Young [The Catholic University of Korea, Department of Diagnostic Radiology, St. Vincent' s Hospital, Suwon, Gyeonggi-do (Korea); Chun, Kyung Ah [The Catholic University of Korea, Department of Diagnostic Radiology, Uijeongbu St. Mary Hospital, Uijeongbu, Gyeonggi-do (Korea); Jee, Won-Hee [The Catholic University of Korea, Department of Diagnostic Radiology, Kangnam St. Mary' s Hospital, Seoul (Korea); Sung, Mi-Sook [The Catholic University of Korea, Department of Diagnostic Radiology, Holy family Hospital, Bucheon, Gyeonggi-do (Korea)

    2008-11-15

    In this study, we evaluated MR imaging findings of skin tumors and categorized them into four types: (1) discrete mass lesions of the dermis and epidermis, (2) mass lesions of the subcutis with or without abutment to the skin, (3) diffuse or localized skin thickening without a true mass, and (4) a skin mass with bone destruction. The categorization of MR images may be useful in the differential diagnosis of skin tumors. (orig.)

  16. A case of radiation-induced skin cancer of the neck

    International Nuclear Information System (INIS)

    Matsushita, Tetsuya; Susuki, Takeo; Kikui, Tomoko; Masada, Yoshiko; Tahara, Shinya.

    1994-01-01

    The authors discuss the case of radiation-induced skin cancer of the neck in a 76-year-old woman who had undergone irradiation of tubercular lymphadenitis of the cervix while in her low teens. Some fifty years later, a squamous cell carcinoma developed in the irradiated region and in due course deeply invaded the sternocleidomastoidous muscle. Thus, a radical neck dissection was performed and the tumor and the lymph tissue removed en bloc, after which reconstruction was accomplished by using a latissimus dorsi musculocutaneous flap. With regard to the lessons learned from treating this case, three points are considered important and are listed below. When treating radiation-induced skin cancer patients, the head and neck regions should be examined in detail for the presence of other tumors. The excision of the skin surrounding the tumor should be as wide as possible, so as to remove skin that may have been also over-subjected to irradiation. The remaining skin surrounding the defect left by the excision is atrophic and thin. (author)

  17. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. We assessed the photochemopreventive effect of several clinically used chemical peeling agents on the ultraviolet (UV)-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, 10% or 35% trichloroacetic acid (TCA) in distilled water at the right back of UV-irradiated hairless mice every 2 weeks in case of glycolic acid, salicylic acid, and 10% TCA and every 4 weeks in case of 35% TCA for totally 18 weeks after the establishment of photoaged mice by irradiation with UVA+B range light three times a week for 10 weeks at a total dose of 420 J/cm(2) at UVA and 9.6 J/cm(2) at UVB. Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of P53 expression, and mRNA expression of cyclooxygenase (COX)-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also non-treated area. Peeling suppressed clonal retention of p53 positive abnormal cells and reduced mRNA expression of COX-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid, and TCA could serve tumor prevention by removing photodamaged cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters.

    Science.gov (United States)

    Fujiki, H; Suganuma, M; Yoshizawa, S; Kanazawa, H; Sugimura, T; Manam, S; Kahn, S M; Jiang, W; Hoshina, S; Weinstein, I B

    1989-01-01

    Three okadaic acid class tumor promoters, okadaic acid, dinophysistoxin-1, and calyculin A, have potent tumor-promoting activity in two-stage carcinogenesis experiments on mouse skin. DNA isolated from tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA) and each of these tumor promoters revealed the same mutation at the second nucleotide of codon 61 (CAA----CTA) in the c-Ha-ras gene, determined by the polymerase chain reaction procedure and DNA sequencing. Three potent 12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, TPA, teleocidin, and aplysiatoxin, showed the same effects. These results provide strong evidence that this mutation in the c-Ha-ras gene is due to a direct effect of DMBA rather than a selective effect of specific tumor promoters.

  19. Gene expression in skin tumors induced in hairless mice by chronic exposure to ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Sato, Hiromi; Tanaka, Misao; Kobayashi, Shizuko; Suzuki, Junko S.; Ogiso, Manabu; Tohyama, Chiharu

    1997-01-01

    We investigated the expressions of c-Ha-ras, c-jun, c-fos, c-myc genes and p53 protein in the development of skin tumours induced by chronic exposure to UVB without a photosensitizer using hairless mice. When mice were exposed to UVB at a dose of 2 kJ/m 2 three times a week, increased c-Ha-ras and c-myc transcripts were detected after only 5 weeks of exposure, while no tumour appeared on the exposed skin. The increase in gene expression continued until 25 weeks, when tumours, identified pathologically as mainly squamous cell carcinomas (SCC), developed in the dorsal skin. In these SCC, overexpression of c-fos mRNA was also observed along with the increases in c-Ha-ras and c-myc. A single dose of UVB (2 kJ/m 2 ) applied to the backs of hairless mice transiently induced overexpression of the early event genes c-fos, c-jun and c-myc, but not c-Ha-ras, in the exposed area of skin. Accumulation of p53 protein was determined by Western blotting analysis of immunohistochemistry using monoclonal antibodies PAb 240 or 246, which recognize mutant or wide type, respectively. In the SCC, a mutant p53 protein accumulated in the cytoplasm and nucleus. After single-dose irradiation, the increased wild-type p53 protein was observed in the nuclei of epidermal cells. The present results suggest that overexpression of the c-fos, c-myc and c-Ha-ras genes, and the mutational changes in p53 protein might be associated with skin photocarcinogenesis. Moreover, overexpression of the c-Ha-ras and c-myc genes might be an early event in the development of UVB-induced skin tumors in mice. (author)

  20. Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors

    Directory of Open Access Journals (Sweden)

    Shanawaz Mohammed Ghouse

    2018-01-01

    Full Text Available Summary: High numbers of mast cells populate the stroma of many types of neoplasms, including human papilloma virus-induced benign and malignant tumors in man and mouse. Equipped with numerous pattern recognition receptors and capable of executing important pro-inflammatory responses, mast cells are considered innate sentinels that significantly impact tumor biology. Mast cells were reported to promote human papilloma virus (HPV-induced epithelial hyperproliferation and neo-angiogenesis in an HPV-driven mouse model of skin cancer. We analyzed HPV-induced epithelial hyperplasia and squamous cell carcinoma formation, as well as growth of tumors inoculated into the dermis, in mice lacking skin mast cells. Unexpectedly, the absence of mast cells had no effect on HPV-induced epithelial growth or angiogenesis, on growth kinetics of inoculated tumors, or on the immunological tumor micro-milieu. Thus, the conspicuous recruitment of mast cells into tumor tissues cannot necessarily be equated with important mast cell functions in tumor growth. : Mast cells accumulate in high numbers in many human tumors, and they are widely viewed as important promoters of tumor growth. Ghouse et al. show that growth, angiogenesis, and the immunological micro-milieu of tumors growing in mice genetically deficient for mast cells are unchanged compared to control tumors. Keywords: mast cells, HPV-induced skin cancer, tumor angiogenesis, tumor micro-milieu

  1. Radiation-induced cancer of the skin in man

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro; Moriya, Kumiko; Kobayashi, Toshio

    1981-01-01

    Eight cases of radiation induced cancer of the skin observed at the Shinshu University during 30 years from 1951 to 1938 were reported. All of the tumors were squamous cell carcinomas; 7 out of 8 cases occurred in males. Primary conditions for which irradiation was given were 6 cases of benign disorders of various skin disease and 2 cases of spinal tuberculosis. The mean age at which these patients were first subjected to radiation therapy was 31 years. At the time when the diagnosis of skin cancer was established, the mean age was 47 years, with a range from 35 to 58 years. The latent period distributed between 9 and 28 years, with the average of 16.4 years. The estimated radiation doses sufficient to induce cancer of the skin was found to be some thousands R or more, the lowest irradiation dose being about 2,000 R. There was no close correlation between the radiation dose and the latent period, nor between the age of the patient at the time of irradiation and the latent period. The tumors usually occurred in the skin areas where extensive irradiation changes were shown, especially in ulcerative area. (author)

  2. Involvement of activation-induced cytidine deaminase in skin cancer development.

    Science.gov (United States)

    Nonaka, Taichiro; Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Yamamoto, Norio; Asato, Ryo; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro; Kinoshita, Kazuo

    2016-04-01

    Most skin cancers develop as the result of UV light-induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus-dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics.

  3. Studies into the transplantation biology of ultraviolet light-induced tumors

    International Nuclear Information System (INIS)

    Daynes, R.A.; Spellman, C.W.; Woodward, J.G.; Stewart, D.A.

    1977-01-01

    The majority of skin tumors induced in mice by ultraviolet (uv) light are rejected when implanted into normal syngeneic recipients. Subcarcinogenic levels of uv light exposure render the normally resistant mice susceptible to tumor challenge. The immunoregulatory effect of uv light appears to be additive, since the growth rate of a tumor transplant is dependent upon the length of uv exposure administered prior to implantation. This suppressive influence does not appear to be directly mediated by the uv light, because the amputation of uv-irradiated tail skin allows for a retention of tumor resistance in otherwise tumor-susceptible hosts. uv-irradiated mice could also be immunized against uv tumors, which suggests that immune recognition of tumor-specific transplantation antigens has not been inhibited. The ability of uv exposure to alter normal immunological reactivity to uv-induced tumors is possibly an integral factor in the mechanism underlying uv carcinogenesis

  4. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    International Nuclear Information System (INIS)

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-01-01

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C → A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C → T, two C → A, one C → G, and one A → T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab

  5. Radiation-induced skin cancer and radiodermatitis of the head and neck

    International Nuclear Information System (INIS)

    van Vloten, W.A.; Hermans, J.; van Daal, W.A.

    1987-01-01

    From a cohort of 2400 patients who had been irradiated 19 to 48 years previously for benign diseases in the head and neck region a randomly selected group of 605 patients was selected and traced back. From the 360 patients alive, 257 were examined clinically and 49 were examined by questionnaire for radiation-induced skin tumors and radiodermatitis. In 21 patients, a total of 30 skin tumors were diagnosed. In 8 of 21 patients, 10 skin carcinomas were detected at recall. A dose-effect relationship of 40 carcinomas/10(4) persons/Gy for a median follow-up period of 41 years for the area exposed was calculated. The severity of radiodermatitis is associated with a higher prevalence of skin cancer. The number of radiation-induced skin cancers rises with the post-treatment time. Because of these late radiation effects, radiotherapy of benign skin lesions is contraindicated, especially now that other therapy modalities are available

  6. Pulsed laser radiation therapy of skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  7. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  8. A case of likely radiation-induced synchronous esophageal and skin carcinoma following post-operative radiation for breast cancer

    International Nuclear Information System (INIS)

    Kanogawa, Naoya; Shimada, Hideaki; Kainuma, Osamu; Cho, Akihiro; Yamamoto, Hiroshi; Itami, Makiko; Nagata, Matsuo

    2009-01-01

    A 71-year-old woman was admitted in January 2008 with on upper thoracic esophageal squamous cell carcinoma and a right chest wall skin tumor. When she was 32 years old, she had a radical mastectomy for right breast cancer and received postoperative radiation. Due to the presence of lung adhesions, trans-thoracic esophagectomy could not be done; thus, a blunt dissection was performed. She was discharged on the 19 th postoperative day. On pathology, a pT2N0M0 (pStage II) esophageal tumor was diagnosed. A resection of her skin tumor underwent 79 days after the esophageal surgery; on pathology, the skin tumor was diagnosed as a basal cell carcinoma. Since the esophageal tumor and the skin tumor occurred in the same area that had received radiation therapy, these tumors were diagnosed as being radiation-induced secondary tumors. In the English language medical literature, several reports of radiation-induced esophageal cancer occurring as a second cancer after radiotherapy for breast cancer have been published. Radiation-induced esophageal cancer rates may increase in Japan given the number of women who previously received radiotherapy for breast cancer. (author)

  9. P63 marker Expression in Usual Skin Cancers Compared With Non Tumoral Skin Lesions

    Directory of Open Access Journals (Sweden)

    Abdolhamid Esmaili

    2017-07-01

    Full Text Available Background: Non-melanoma skin cancers including basal cell carcinoma and squamous cell carcinoma are the most common cancers in human. The aim of this study was to determine the expression of P63 marker in usual skin cancers compared with non-tomoral skin lesions. Materials and Methods: In this cross-sectional study, sampling was performed from archival blocks of Shahid Mohammadi hospital patients during 2010-2011. 60 samples (including 30 samples of non tumoral skin lesions and 30 samples of basal cell carcinoma and squamous cell carcinoma were studied and evaluation of p63 gene expression was done with Immunohistochemistry method. T-test and Chi-square were used for analysis of data. Results: P63 gene were expressed in 4 cases (13.33 % of non tumoral lesions and all tumoral lesions (100 %. In tumoral lesions, 5 cases (16.66 % showed 1+ severity experssion, 11 cases (36.66% 2 + severity experssion and 14 cases (46.66 % 3+severity experssion. All 4 non tumoral lesions shoed 1+ severity experssion of P63gene. Conclusion: The results of this study indicated that the incidence and severity of gene expression of P63 can be use for differentiation between basal cell carcinoma and squamous cell carcinoma as well as non-tumoral skin lesions. 

  10. Dermal Delivery of Constructs Encoding Cre Recombinase to Induce Skin Tumors in PtenLoxP/LoxP;BrafCA/+ Mice

    Directory of Open Access Journals (Sweden)

    Marcel A. Deken

    2016-12-01

    Full Text Available Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness of the Tyr::CreERT2 system, hampering long-term experiments. To address this problem, we investigated several approaches to optimally provide local delivery of Cre recombinase, including injection of lentiviral particles, DNA tattoo administration and particle-mediated gene transfer, to induce melanomas in PtenLoxP/LoxP;BrafCA/+ mice lacking the Tyr::CreERT2 allele. We found that dermal delivery of the Cre recombinase gene under the control of a non-specific CAG promoter induced the formation of melanomas, but also keratoacanthoma and squamous cell carcinomas. Delivery of Cre recombinase DNA under the control of melanocyte-specific promoters in PtenLoxP/LoxP;BrafCA/+ mice resulted in sole melanoma induction. The growth rate and histological features of the induced tumors were similar to 4-hydroxytamoxifen-induced tumors in Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ mice, while the onset of spontaneous tumors was prevented completely. These novel induction methods will allow long-term experiments in mouse models of skin malignancies.

  11. Radiation-induced vascular lesions of the skin: an overview

    NARCIS (Netherlands)

    Flucke, U.E.; Requena, L.; Mentzel, T.

    2013-01-01

    Radiation-induced cutaneous vascular neoplasms occur infrequently and comprise benign, so-called atypical vascular lesions (AVL) and angiosarcomas (AS), often being high-grade malignant tumors. Both arise most frequently within previously irradiated skin in breast-conserving-treated mammary cancer

  12. Laser-induced fluorescence for the detection of esophageal and skin cancer

    Science.gov (United States)

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.; Julius, Clark E.; Overholt, Suzanne; Phan, Mary N.

    2003-07-01

    Laser-induced fluorescence (LIF) is used for in-vivo cancer diagnosis of the esophagus and skin cancer. For esophageal measurements a fiberoptic probe inserted through an endoscope was used. Autofluorescence of normal and malignant tissues were measured directly on patient skin without requiring an endoscope. Measurement of the fluorescence signal from the tissue was performed using laser excitation at 410 nm. The methodology was applied to differentiate normal and malignant tumors of the esophagus and malignant skin lesions. The results of this LIF approach were compared with histopathology results of the biopsy samples and indicated excellent agreement in the classification of normal and malignant tumors for the samples investigated.

  13. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  14. Echosonography and surgical therapy of facial skin tumors

    Directory of Open Access Journals (Sweden)

    Pešić Zoran U.

    2002-01-01

    Full Text Available In the second half of the 20 century, echosonography has been used in many medical specialties. In 1992 and 1993 highfrequencies echosonography was used in the examination of irritant and allergic skin lesions in order to examine the effects of different therapeuthical agents on the skin lesions [1-4]. Hoffmann used highfrequencies echosonography in the examination of healing of skin lesions [3]. By their incidence skin tumors are the largest group of newly discovered tumors, and their usual location is on the face [5-7]. By clinical examination it is not possible to precisely determine the depth of tumor border; therefore, the radically performed surgical excision is the only correct surgical treatment. The aim of this study was to estimate the results of preoperatively performed high frequencies echosonography in order to reduce the number of incorrectly performed surgical excisions of skin tumors. The group was composed of 40 patients with 45 tumors, who first underwent echosonographic diagnostic procedure (20 MHz, Hadsund electronic, Hadsund Technology, Denmark and then surgical excision; patients in control group (45 patients with 45 tumors were only subjected to surgical excision. Excised tumors were then pathohistologically analyzed, and measurements of tumor depth progression were performed. Margins of pathohistological specimen were controlled for the presence of tumor cells. Results of measurements of tumor depth obtained by echosonography and pathohistological measurements were compared. By Jate's modification of c2 test results regarding correct and incorrect surgical excision in patients and control group were compared. By linear regression analysis results of tumor depth obtained by echosonographic and pathohistologic examinations were compared. Hypoechogen zone echosonographic results were used like criteria for tumor expansion. Results of tumor depth measurements are presented in Table 1. Linear regression analysis showed (R = 0

  15. Short-term biomarkers of tumor promotion in mouse skin treated with petroleum middle distillates.

    Science.gov (United States)

    Walborg, E F; DiGiovanni, J; Conti, C J; Slaga, T J; Freeman, J J; Steup, D R; Skisak, C M

    1998-10-01

    Topical application of certain petroleum middle distillates (PMD) to mice produces skin tumors after long latency, and initiation/promotion protocols indicate that this effect is associated with their tumor promoting activity. Since induction of sustained, potentiated epidermal hyperplasia is predictive of promoting activity, five compositionally distinct PMD [hydrodesulfurized kerosene (API 81-07); hydrodesulfurized PMD (API 81-10); odorless light petroleum hydrocarbons; severely hydrotreated light vacuum distillate (LVD); and lightly refined paraffinic oil (LRPO)] were assessed for their effects on epidermal hyperplasia. PMD were administered (2 x/week for 2 weeks) to skin of CD-1 mice. Four quantitative biomarkers of epidermal hyperplasia were evaluated: epidermal thickness, number of nucleated epidermal cells per unit length of basement membrane, labeling (BrdUrd) index of epidermal cells, and induction of epidermal ornithine decarboxylase (ODC) activity. As positive controls, 12-O-tetradecanoylphorbol-13-acetate (TPA) and n-dodecane were utilized. PMD-induced skin irritation was evaluated visually and/or histopathologically. All five PMD produced dose-dependent, skin irritation and epidermal hyperplasia. On a weight basis the magnitude of the maximal PMD-induced effects was similar to that produced by n-dodecane, but > 1000-fold less than that produced by TPA. Epidermal hyperplasia and subacute skin irritancy produced by the five PMD were similar. Of the four short-term markers of tumor promotion assessed, labeling index and epidermal ODC activity were predictive of the relative promoting activities of those PMD for which tumorigenicity bioassay data are available, i.e., API 81-07 > API 81-10 > LRPO. An apparent discrepancy to the predictability of epidermal ODC activity occurred with LRPO:toluene [1:1 (v/v)]. This mixture is nontumorigenic, yet significantly induced epidermal ODC activity. This mixture, however, produced severe epidermal toxicity that

  16. Chronic ionizing radiation exposure as a tumor promoter in mouse skin

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Trivedi, A.

    1992-01-01

    We have tested a chronic exposure to 90 Y beta-radiation as a tumor promoter in mouse skin previously exposed to a chemical tumor initiator. Three different tests of radiation as a stage I tumor promoter, in skin subsequently given chemical stage II promotion, all indicated that the beta-radiation acted as a weak stage I skin tumor promoter. It showed no action as either a stage II or complete tumor promoter. (author)

  17. Moist skin care can diminish acute radiation-induced skin toxicity

    International Nuclear Information System (INIS)

    Momm, F.; Weissenberger, C.; Bertelt, S.; Henke, M.

    2003-01-01

    Background: Radiation treatment may induce acute skin reactions. There are several methods of managing them. Validity of these methods, however, is not sufficiently studied. We therefore investigated, whether moist skin care with 3% urea lotion will reduce acute radiation skin toxicity. Patients and Methods: 88 patients with carcinomas of the head and neck undergoing radiotherapy with curative intent (mean total dose 60 Gy, range: 50-74 Gy) were evaluated weekly for acute skin reactions according to the RTOG-CTC score. In 63 patients, moist skin care with 3% urea lotion was performed. The control group consisted of 25 patients receiving conventional dry skin care. The incidence of grade I, II, and III reactions and the radiation dose at occurrence of a particular reaction were determined and statistically analyzed using the log-rank test. The dose-time relations of individual skin reactions are described. Results: At some point of time during radiotherapy, all patients suffered from acute skin reactions grade I, > 90% from grade II reactions. 50% of patients receiving moist skin care experienced grade I reactions at 26 Gy as compared to 22 Gy in control patients (p = 0.03). Grade II reactions occurred at 51 Gy versus 34 Gy (p = 0.006). Further, 22% of the patients treated with moist skin care suffered from acute skin toxicity grade III as compared to 56% of the controls (p = 0.0007). Conclusion: Moist skin care with 3% urea lotion delays the occurrence and reduces the grade of acute skin reactions in percutaneously irradiated patients with head and neck tumors. (orig.)

  18. Tumor induction and hair follicle damage for different electron penetrations in rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.; Sinclair, I.P.; Albert, R.E.; Vanderlaan, M.

    1976-01-01

    The penetration and dose of an electron beam were varied in an attempt to locate the depth in growing-phase rat skin where irradiation was most effective in inducing tumors and morphological damage to the hair follicles. The hair was plucked to initiate the growing phase of the hair cycle, and 12 days later the dorsal skin was irradiated with electrons penetrating 0.5, 1.0, or 2.0 mm at doses from 500 to 4000 rad. Differences in the curves of tumor incidence as a function of dose for different penetrations were best resolved by plotting the results against the 0.4 mm dose, while comparable curves for destruction of the follicles were best resolved by the 0.8 mm dose. Since 0.8 mm corresponded approximately to the depth of the follicles, these results indicated that the target tissues for follicular damage and tumor induction were separated in depth and that the target for tumor induction was probably located in the region above or near the midpoint of the follicles. When the radiation penetrated sufficiently to reach the entire follicle, the number of tumors produced was not significantly greater than the number observed previously in resting-phase skin, and it was inferred that the additional size and greater mitotic activity of the growing-phase follicles at the time of irradiation did not increase the probability of tumor induction

  19. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation.

    Science.gov (United States)

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O

    2012-05-07

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.

  20. ADNEXAL SKIN TUMORS IN ZARIA, NIGERIA

    African Journals Online (AJOL)

    ANNALS

    Forty-six lesions (88.5%) were benign and six (11.5%) malignant. Conclusion: Adnexal skin tumors have distinct histological patterns which differentiates them from other cutaneous tumors. They are commonly distributed in the head, neck and trunk. The commonest variants are those of eccrine sweat gland origin. Malignant ...

  1. Early skin tumor detection from microscopic images through image processing

    International Nuclear Information System (INIS)

    Siddiqi, A.A.; Narejo, G.B.; Khan, A.M.

    2017-01-01

    The research is done to provide appropriate detection technique for skin tumor detection. The work is done by using the image processing toolbox of MATLAB. Skin tumors are unwanted skin growth with different causes and varying extent of malignant cells. It is a syndrome in which skin cells mislay the ability to divide and grow normally. Early detection of tumor is the most important factor affecting the endurance of a patient. Studying the pattern of the skin cells is the fundamental problem in medical image analysis. The study of skin tumor has been of great interest to the researchers. DIP (Digital Image Processing) allows the use of much more complex algorithms for image processing, and hence, can offer both more sophisticated performance at simple task, and the implementation of methods which would be impossibly by analog means. It allows much wider range of algorithms to be applied to the input data and can avoid problems such as build up of noise and signal distortion during processing. The study shows that few works has been done on cellular scale for the images of skin. This research allows few checks for the early detection of skin tumor using microscopic images after testing and observing various algorithms. After analytical evaluation the result has been observed that the proposed checks are time efficient techniques and appropriate for the tumor detection. The algorithm applied provides promising results in lesser time with accuracy. The GUI (Graphical User Interface) that is generated for the algorithm makes the system user friendly. (author)

  2. Liposomalization of oxaliplatin induces skin accumulation of it, but negligible skin toxicity.

    Science.gov (United States)

    Nishida, Kentaro; Kashiwagi, Misaki; Shiba, Shunsuke; Muroki, Kiwamu; Ohishi, Akihiro; Doi, Yusuke; Ando, Hidenori; Ishida, Tatsuhiro; Nagasawa, Kazuki

    2017-12-15

    Liposomalization causes alteration of the pharmacokinetics of encapsulated drugs, and allows delivery to tumor tissues through passive targeting via an enhanced permeation and retention (EPR) effect. PEGylated liposomal doxorubicin (Doxil ® , Lipo-DXR), a representative liposomal drug, is well-known to reduce cardiotoxicity and increase the anti-tumor activity of DXR, but to induce the hand-foot syndrome (HFS) as a result of skin DXR accumulation, which is one of its severe adverse effects. We have developed a new liposomal preparation of oxaliplatin (l-OHP), an important anti-tumor drug for treatment of colorectal cancer, using PEGylated liposomes (Lipo-l-OHP), and showed that Lipo-l-OHP exhibits increased anti-tumor activity in tumor-bearing mice compared to the original preparation of l-OHP. However, whether Lipo-l-OHP causes HFS-like skin toxicity similar to Lipo-DXR remains to be determined. Administration of Lipo-l-OHP promoted accumulation of platinum in rat hind paws, however, it caused negligible morphological and histological alterations on the plantar surface of the paws. Administration of DiI-labeled empty PEGylated liposomes gave almost the same distribution profile of dyes into the dermis of hind paws with DXR as in the case of Lipo-DXR. Treatment with Lipo-l-OHP, Lipo-DXR, DiI-labeled empty PEGylated liposomes or empty PEGylated liposomes caused migration of CD68 + macrophages into the dermis of hind paws. These findings suggest that the skin toxicity on administration of liposomalized drugs is reflected in the proinflammatory characteristics of encapsulated drugs, and indicate that Lipo-l-OHP with a higher anti-cancer effect and no HFS may be an outstanding l-OHP preparation leading to an improved quality of life of cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cytomorphology of skin adnexal tumors: A tale of two scalp swellings

    Directory of Open Access Journals (Sweden)

    Hemlata Panwar

    2018-01-01

    Full Text Available The primary and metastatic tumors of the skin can be effectively diagnosed by fine needle aspiration cytology (FNAC; however, the cytomorphological features of skin adnexal tumors are rarely described in the literature. We hereby describe the cytological features of two histologically confirmed cases of benign skin adnexal tumors. Case 1 is of a 46-year-old female who presented with an elevated firm nodule over the scalp. A cytological diagnosis of benign adnexal tumor possibly of sebaceous origin was given. The nodule was excised and histopathological examination confirmed the diagnosis of sebaceoma. Case 2 is of a 19-year-old male who presented with a pigmented scalp swelling. Cytomorphological features were suggestive of benign skin adnexal tumor with foci of melanin pigment. The swelling was excised and histopathological examination confirmed the diagnosis of eccrine poroma. To the best of our knowledge, only one previous report of sebaceoma and no report of eccrine poroma describing the cytological findings of these two tumors exist. We report these two cases of benign skin adnexal tumors to discuss the cytological features and the potential diagnostic dilemma that they pose to the cytologist.

  4. Molecular Mechanisms of Mouse Skin Tumor Promotion

    International Nuclear Information System (INIS)

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion

  5. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    Science.gov (United States)

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Analysis of hyperspectral fluorescence images for poultry skin tumor inspection

    Science.gov (United States)

    Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.

    2004-02-01

    We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.

  7. Imatinib induced severe skin reactions and neutropenia in a patient with gastrointestinal stromal tumor

    International Nuclear Information System (INIS)

    Hwang, Jun-Eul; Yoon, Ju-Young; Bae, Woo-Kyun; Shim, Hyun-Jeong; Cho, Sang-Hee; Chung, Ik-Joo

    2010-01-01

    Imatinib mesylate has been used for the treatment of unresectable or metastatic gastrointestinal stromal tumors (GIST). The current recommended dose of imatinib is 400 mg/day that is increased to 800 mg/day in cases with disease progression. However, imatinib can be associated with diverse adverse events, which has limited its use. We report a case of severe adverse skin reactions with neutropenic fever during imatinib treatment in a patient with GIST. A 71-year-old man was admitted with a one month history of epigastric pain and a palpable mass in the right upper quadrant. An abdominal CT scan revealed a 20 × 19 cm intraabdominal mass with tumor invasion into the peritoneum. Needle biopsy was performed and the results showed spindle shaped tumor cells that were positive for c-KIT. The patient was diagnosed with unresectable GIST. Imatinib 400 mg/day was started. The patient tolerated the first eight weeks of treatment. However, about three months later, the patient developed a grade 4 febrile neutropenia and a grade 3 exfoliative skin rash. The patient recovered from this serious adverse events after discontinuation of imatinib with supportive care. However, the skin lesions recurred whenever the patient received imatinib over 100 mg/day. Therefore, imatinib 100 mg/day was maintained. Despite the low dose imatinib, follow up CT showed a marked partial response without grade 3 or 4 toxicities. The recommended dose of imatinib for the treatment of GIST is 400 mg/day but patients at risk for adverse drug reaction may benefit from lower doses. Individualized treatment is needed for such patients, and we may also try sunitinib as a alternative drug

  8. ADA-07 Suppresses Solar Ultraviolet-Induced Skin Carcinogenesis by Directly Inhibiting TOPK.

    Science.gov (United States)

    Gao, Ge; Zhang, Tianshun; Wang, Qiushi; Reddy, Kanamata; Chen, Hanyong; Yao, Ke; Wang, Keke; Roh, Eunmiri; Zykova, Tatyana; Ma, Weiya; Ryu, Joohyun; Curiel-Lewandrowski, Clara; Alberts, David; Dickinson, Sally E; Bode, Ann M; Xing, Ying; Dong, Zigang

    2017-09-01

    Cumulative exposure to solar ultraviolet (SUV) irradiation is regarded as the major etiologic factor in the development of skin cancer. The activation of the MAPK cascades occurs rapidly and is vital in the regulation of SUV-induced cellular responses. The T-LAK cell-originated protein kinase (TOPK), an upstream activator of MAPKs, is heavily involved in inflammation, DNA damage, and tumor development. However, the chemopreventive and therapeutic effects of specific TOPK inhibitors in SUV-induced skin cancer have not yet been elucidated. In the current study, ADA-07, a novel TOPK inhibitor, was synthesized and characterized. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that ADA-07 interacted with TOPK at the ATP-binding pocket and inhibited its kinase activity. Western blot analysis showed that ADA-07 suppressed SUV-induced phosphorylation of ERK1/2, p38, and JNKs and subsequently inhibited AP-1 activity. Importantly, topical treatment with ADA-07 dramatically attenuated tumor incidence, multiplicity, and volume in SKH-1 hairless mice exposed to chronic SUV. Our findings suggest that ADA-07 is a promising chemopreventive or potential therapeutic agent against SUV-induced skin carcinogenesis that acts by specifically targeting TOPK. Mol Cancer Ther; 16(9); 1843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Incidence of malignant skin tumors in 14,140 patients after grenz-ray treatment for benign skin disorders

    International Nuclear Information System (INIS)

    Lindeloef, B.E.; Eklund, G.

    1986-01-01

    During the years 1949 to 1975, 14,237 patients received therapeutic doses of grenz rays for the treatment of benign skin disorders such as chronic eczema, psoriasis, and warts. The records of 14,140 of these patients (99.3%) formed the basis for an epidemiologic study of the incidence of skin malignancies in this population. Information about the patients, diagnoses, doses, and sites of treatment was obtained from separate records. The follow-up time was 15 years on the average. We searched the Swedish Cancer Registry, Stockholm, for records reporting the incidence of malignant skin tumors in the study population (incidences of basal cell carcinoma are not registered). The expected number of malignancies was calculated on the basis of age- and sex-standardized incidence data from the Swedish Cancer Registry. In 58 patients, a malignant skin tumor was diagnosed more than five years after grenz-ray therapy had first been administered. Nineteen patients had malignant melanomas, and 39 patients had other malignant skin tumors. The expected number of melanomas was 17.8, and that of other malignant skin tumors was 26.9. None of the patients with melanomas, and only eight of the patients with other malignant skin tumors, had received grenz-ray therapy at the site of the tumor. Six of these eight patients had also been exposed to other known carcinogens. Four hundred eighty-one patients had received an accumulated high dose of grenz rays (greater than or equal to 10 000 rad [greater than or equal to 100 Gy]) on one and the same area. No malignancies were found on those areas. Although we cannot exclude grenz-ray therapy as a risk factor in the development of nonmelanoma skin malignancies, this risk, if any, is small, if recommendations for therapy are followed

  10. Anti-tumor activity of Aloe vera against DMBA/croton oil-induced skin papillomagenesis in Swiss albino mice.

    Science.gov (United States)

    Saini, M; Goyal, Pradeep Kumar; Chaudhary, Geeta

    2010-01-01

    Human populations are increasingly exposed to various carcinogens such as chemicals, radiation, and viruses in the environment. Chemopreventive drugs of plant origin are a promising strategy for cancer control because they are generally nontoxic or less toxic than synthetic che-mopreventive agents, and can be effective at different stages of carcinogenesis. The present investigation was undertaken to explore the antitumor activity of topical treatment with aloe vera (Aloe vera) gel, oral treatment with aloe vera extract, and topical and oral treatment with both gel and extract in stage-2 skin carcinogenesis in Swiss albino mice induced by 7,12-dim ethylbenz(a)anthracene (DMBA) and promoted croton (Croton tiglium) oil. The animals were randomly divided into 4 groups and treated as follows: Group I, DMBA + croton oil only (controls); Group II, DMBA + croton oil + topical aloe vera gel; Group III, DMBA + croton oil + oral aloe vera extract; Group I V, DMBA + croton oil + topical aloe vera gel + oral aloe vera extract. Results showed that body weight was significantly increased from 78.6% in the control group (Group I) to 92.5%, 87.5%, and 90.0% in Groups II, III, and I V, respectively. A 100% incidence of tumor development was noted in Group I, which was decreased to 50%, 60%, and 40% in Groups II, III, and I V, respectively. Also in Groups II, III, and IV, the cumulative number of papillomas was reduced significantly from 36 to 12, 15, and 11; tumor yield from 3.6 to 1.2, 1.5, and 1.1; and tumor burden from 3.6 to 2.4, 2.50, and 2.75, respectively, after treatment with aloe vera. Conversely, the average latent period increased significantly from 4.9 (Group I) to 5.23, 5.0, and 6.01 weeks in Groups II, III, and I V, respectively. We conclude that aloe vera protects mice against DMBA/croton oil-induced skin papillomagenesis, likely due to the chemopreventive activity of high concentrations of antioxidants such as vitamins A, C, and E; glutathione peroxidase; several

  11. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  12. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  13. Loss of a putative tumor suppressor locus after gamma-ray-induced neoplastic transformation of HeLa x Skin fibroblast human cell hybrids

    International Nuclear Information System (INIS)

    Mendonca, M.S.; Redpath, J.L.; Fasching, C.L.

    1995-01-01

    The nontumorigenic HeLa x skin fibroblast hybrid cell line, CGL1, can be induced to re-express HeLa tumor-associated cell surface antigen, p75-IAP (intestinal alkaline phosphatase), with resulting neoplastic transformation, by exposure to γ radiation. This has allowed the human hybrid system to be developed into a quantitative in vitro model for radiation-induced neoplastic transformation of human cells. Recently, several γ-ray-induced IAP-expression mutants (GIMs) of the nontumorigenic HeLa x skin fibroblast hybrid CGL1 were isolated and all were tumorigenic when injected subcutaneously into nude mice. Control cell lines which were negative for p75-IAP (CONs) were also isolated from irradiated populations, and none were found to be tumorigenic. We have now begun to investigate the molecular basis of radiation-induced neoplastic transformation in this system by studying the potential genetic linkage between p75/IAP expression, tumorigenicity and damage to a putative tumor suppressor locus on fibroblast chromosome 11. Previous analysis of rare spontaneous segregants has indicated that this locus is involved in the regulation of tumorigenicity and in the expression of the HeLa tumor-associated cell surface marker intestinal alkaline phosphatase (p75-IAP) in this system. Therefore, analysis by restriction fragment length polymorphism and chromosome painting have been performed for chromosome 11, and for chromosome 13 as a control, for the p75/IAP-positive GIM and p75/IAP-negative CON cell lines. We report that in five of eight of the GIMs large-scale damage to the fibroblast chromosome 11's is evident (four GIMs have lost one complete copy of a fibroblast chromosome 11 heavily damaged). None of the CONs, however (0/5), have lost a complete copy of either fibroblast chromosome 11. No large-scale damage to the control chromosome 13's was detected in the GIMs or CONs. 49 refs., 3 figs., 2 tabs

  14. Effect of skin tumor properties on laser penetration

    CSIR Research Space (South Africa)

    Karsten, AE

    2009-06-01

    Full Text Available Computer modeling can be a valuable tool to determine the absorption of laser light in different skin layers. For this study, the optical properties of three different skin tumors were used in the model to evaluate the effect on penetration depth...

  15. Tumor-associated proteins in rat submandibular gland induced by DMBA and irradiation

    International Nuclear Information System (INIS)

    Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1997-01-01

    This study was performed in order to identify changes of the plasma membrane proteins in rat submandibular gland tumors induced by 7,12-dimethylbenz[a]anthracene [DMBA] and X-irradiation. Two kinds of tumor associated membrane proteins (protein A and B) were isolated with 3 M KCl extraction from rat submandibular gland tumors induced by DMBA and X-irradiation. To identify their antigenicities, immunoelectrophoresis and double immunodiffusion was carried out with various proteins extracted from liver, heart, skin and pancreas of adult rats and from embryonic liver, heart and skin. The rabbit antisera against the protein A did not cross-react with any of the proteins extracted from the above mentioned tissues, suggesting that protein A might be tumor specific antigen. However, the rabbit antisera against protein B was precipitated with proteins extracted from the liver of adult and embryonic rats. Polyacrylamide gel electrophoresis of these two proteins (A and B) showed that protein A was a dimer with molecular weights of 69,000 and 35,000 dalton, whereas protein B was a monomer with molecular weight of 50,000 dalton.

  16. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action

    International Nuclear Information System (INIS)

    Chilampalli, Chandeshwari; Guillermo, Ruth; Zhang, Xiaoying; Kaushik, Radhey S; Young, Alan; Zeman, David; Hildreth, Michael B; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-01-01

    Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm 2 , 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr 705 ), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various

  17. Verification of skin dose according to the location of tumor in Tomotherapy

    International Nuclear Information System (INIS)

    Yoon, Bo Reum; Park, Su Yeon; Park, Byoung Suk; KIm, Jong Sik; Song, Ki Won

    2014-01-01

    To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5 mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5 mm and 10 mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3 mm and 5 mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5 mm and 3 mm respectively. If placed 5 mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10 mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5 mm and 3 mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10 mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2-17.1% whereas if the tumor is 5 mm away from the ceiling part, the figure decreased to 2.8-9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment

  18. 2-deoxy-d-glucose (2-DG) inhibits radiation induced carcinogenesis (skin tumors) in mice

    International Nuclear Information System (INIS)

    Singh, Saurabh; Bhuria, Vikas; Pandey, Sanjay; Saluja, Daman; Dwarakanath, B.S.

    2014-01-01

    One of the late effects of radiation exposure i.e. carcinogenesis is exemplified by atomic bomb survivors, radiotherapy patients and occupational workers. Enhanced glucose metabolism (Warburg's effect) is a fundamental metabolic change in transformed cells which drives tumorigenesis. It is suggested that Dietary Energy Restriction (DER) that targets glucose metabolism may afford protection against radiation-induced carcinogenesis. However, DER is practically difficult to sustain in humans. Therefore, we have hypothesized that the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), a potential energy restriction mimetic agent (ERMA) may impair the process of tumorigenesis as an alternative to DER. In the present studies we investigated the effects of dietary 2-DG on radiation induced papillomas in mice. Swiss albino mice (male) were irradiated with a fractionated dose schedule (1.5 Gy ionizing radiation/week for four weeks) focally on the shaved back followed by the application of tumor promoting agent (TPA) once weekly till the termination of the study. Mice were administered 2-DG (0.2% and 0.4% w/v) containing water starting a week after last irradiation. A significant reduction in the tumor incidence, tumor burden, besides increase in the latency period was observed in the 2-DG fed mice. The average tumor incidence (papillomas formation) was reduced to 25% and 37% in 0.2% and 0.4% 2-DG group respectively from 47% in the control group with a significant delay in the onset. Under these conditions, 2-DG considerably enhanced the level of reduced glutathione (GSH) with a concomitant decrease in the lipid peroxidation. 2-DG fed tumor bearing mice showed decrease in splenic CD4 + to CD8 + T-cell ratio and prevented the tumor induced augmentation of T-regulatory cells (CD4 + CD25 + ) which correlated with an increase in CD8 + (CTLs) cells. Dietary 2-DG also reduced the tumor associated and radiation induced angiogenesis. These observations suggest that dietary 2-DG

  19. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  20. Automated Estimation of Melanocytic Skin Tumor Thickness by Ultrasonic Radiofrequency Data.

    Science.gov (United States)

    Andrekute, Kristina; Valiukeviciene, Skaidra; Raisutis, Renaldas; Linkeviciute, Gintare; Makstiene, Jurgita; Kliunkiene, Renata

    2016-05-01

    High-frequency (>20-MHz) ultrasound (US) is a noninvasive preoperative tool for assessment of melanocytic skin tumor thickness. Ultrasonic melanocytic skin tumor thickness estimation is not always easy and is related to the experience of the clinician. In this article, we present an automated thickness measurement method based on time-frequency analysis of US radiofrequency signals. The study was performed on 52 thin (≤1-mm) melanocytic skin tumors (46 melanocytic nevi and 6 melanomas). Radiofrequency signals were obtained with a single-element focused transducer (fundamental frequency, 22 MHz; bandwidth, 12-28 MHz). The radiofrequency data were analyzed in the time-frequency domain to make the tumor boundaries more noticeable. The thicknesses of the tumors were evaluated by 3 different metrics: histologically measured Breslow thickness, manually measured US thickness, and automatically measured US thickness. The results showed a higher correlation coefficient between the automatically measured US thickness and Breslow thickness (r= 0.83; Pmeasured US thickness (r = 0.68; P measurement algorithm was 96.55%, and the specificity was 78.26% compared with histologic measurement. The sensitivity of the manually measured US thickness was 75.86%, and the specificity was 73.91%. The efficient automated tumor thickness measurement method developed could be used as a tool for preoperative assessment of melanocytic skin tumor thickness. © 2016 by the American Institute of Ultrasound in Medicine.

  1. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sandeep C.; Singh, Tripti; Kapur, Puneet; Weng, Zhiping; Arumugam, Aadithya; Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States)

    2013-05-01

    Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (p < 0.05) and volume (p < 0.005) as compared to UVB (alone)-irradiated vehicle-treated mice. An increase in TUNEL-positive cells in skin lesions was accompanied by the enhanced Bax:Bcl-2 ratio. The expression of pro-apoptotic Bax was increased whereas anti-apoptotic Bcl-2 reduced. However, proliferation was identified as the major target of NO-sulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial–mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways. - Highlights: ► NO-sulindac is a potent chemopreventive agent for UVB-induced skin cancer. ► NO

  2. What is the microscopic tumor extent beyond clinically delineated gross tumor boundary in nonmelanoma skin cancers?

    Science.gov (United States)

    Choo, Richard; Woo, Tony; Assaad, Dalal; Antonyshyn, Oleh; Barnes, Elizabeth A; McKenzie, David; Fialkov, Jeffrey; Breen, Dale; Mamedov, Alexander

    2005-07-15

    To quantify the microscopic tumor extension beyond clinically delineated gross tumor boundary in nonmelanoma skin cancers. A prospective, single arm, study. Preoperatively, a radiation oncologist outlined the boundary of a gross lesion, and drew 5-mm incremental marks in four directions from the delineated border. Under local anesthesia, the lesion was excised, and resection margins were assessed microscopically by frozen section. Once resection margins were clear, the microscopic tumor extent was calculated using the presurgical incremental markings as references. A potential relationship between the distance of microscopic tumor extension and other variables was analyzed. A total of 71 lesions in 64 consecutive patients, selected for surgical excision with frozen-section-assisted assessment of resection margins, were accrued. The distance of microscopic tumor extension beyond a gross lesion varied from 1 mm to 15 mm, with a mean of 5.2 mm. A margin of 10 mm was required to provide a 95% chance of obtaining clear resection margins. The microscopic tumor extent was positively correlated with the size of gross lesion, but not with other variables. The distance of microscopic tumor extension beyond a gross nonmelanoma skin cancer was variable, with a mean of 5.2 mm. Such information is critical for the proper radiation planning of skin cancer therapy.

  3. Evaluation of the Photoprotective Effect of Dongchongxiacao (Paecilomyces japonica) Extract against Ultraviolet Radiation-induced Skin Wrinkling and Cancer

    International Nuclear Information System (INIS)

    Lee, Hae June; Moon, Chang Jong; Kim, Jong Choon; Kim Sung Ho; Jung, Uhee; Jo, Sung Kee; Jang, Jong Sik

    2012-01-01

    To evaluate the ability of Dongchongxiacao (Paecilomyces japonica ) extract (PJE) to protect the skin from photo damage, the gross and microscopic changes in the skin of hairless mice and PJE-treated mice exposed chronically to ultraviolet (UV) were examined. The skin of the UV-irradiated mice showed characteristic signs of photo aging, such as deep wrinkles across the back. PJE-treated mice showed a significantly decreased wrinkling score. By the 22nd week, 88.9% (i.p. with saline) or 44.4% (topical administration with cream base) of the UV-irradiated mice developed at least one tumor. PJE delayed tumor onset significantly. PJE (i.p.) was also effective in reducing the occurrence of UV radiation-induced skin tumors and reduced the number of tumors per mouse. After 22 weeks of treatment, 80.0% (i.p.) and 75.0% (topical) of the mice treated with PJE were tumor-free. Tumor multiplicity was reduced by 96.2% (i.p.) in the PJE treated groups. It is noted that skin that is chronically exposed to UV is subject to photo aging and photo carcinogenesis and regular use of PJE would prevent these photo damaging effects of UV.

  4. Expression of p63 and Cyclooxygenase-2 and Their Correlation in Skin Tumors

    Institute of Scientific and Technical Information of China (English)

    WU Yan; LIU Houjun; LI Jiawen

    2007-01-01

    To study the expression of p63 and cyclooxygenase-2 (cox-2) in skin tumors and evaluate the correlation between p63 and cox-2, the expressions of cox-2 and p63 were measured by streptavidin-peroxidase complex immunohistochemical technique in 17 cases of skin squamous cell carcinoma (SCC), 19 cases of Bowen's disease(Bowen), 11 cases of actinic keratosis(AK), 12 cases of seborreic keratosis(SK) and 13 specimens of normal skin. Our results showed that the expression of p63 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while the expression of p63 in seborreic keratosis was significantly higher than that in normal skin. The expression of cox-2 in skin squamous cell carcinoma,Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while no statistical difference was noted in the expression of cox-2 between seborreic keratosis and normal skin. Cox-2 expression was positively correlated with the high p63 expression in malignant skin tumors. The increased expression of cox-2 and p63 may play an important role in the development of skin tumors and work synergetically in malignant skin tumors.

  5. Radiation-induced skin carcinomas of the head and neck

    International Nuclear Information System (INIS)

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr.

    1991-01-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy

  6. What is the microscopic tumor extent beyond clinically delineated gross tumor boundary in nonmelanoma skin cancers?

    International Nuclear Information System (INIS)

    Choo, Richard; Woo, Tony; Assaad, Dalal; Antonyshyn, Oleh; Barnes, Elizabeth A.; McKenzie, David; Fialkov, Jeffrey; Breen, Dale; Mamedov, Alexander

    2005-01-01

    Purpose: To quantify the microscopic tumor extension beyond clinically delineated gross tumor boundary in nonmelanoma skin cancers. Methods and Materials: A prospective, single arm, study. Preoperatively, a radiation oncologist outlined the boundary of a gross lesion, and drew 5-mm incremental marks in four directions from the delineated border. Under local anesthesia, the lesion was excised, and resection margins were assessed microscopically by frozen section. Once resection margins were clear, the microscopic tumor extent was calculated using the presurgical incremental markings as references. A potential relationship between the distance of microscopic tumor extension and other variables was analyzed. Results: A total of 71 lesions in 64 consecutive patients, selected for surgical excision with frozen-section-assisted assessment of resection margins, were accrued. The distance of microscopic tumor extension beyond a gross lesion varied from 1 mm to 15 mm, with a mean of 5.2 mm. A margin of 10 mm was required to provide a 95% chance of obtaining clear resection margins. The microscopic tumor extent was positively correlated with the size of gross lesion, but not with other variables. Conclusions: The distance of microscopic tumor extension beyond a gross nonmelanoma skin cancer was variable, with a mean of 5.2 mm. Such information is critical for the proper radiation planning of skin cancer therapy

  7. Skin metastasis from conventional giant cell tumor of bone: conceptual significance

    International Nuclear Information System (INIS)

    Tyler, W.; Barrett, T.; Frassica, F.; McCarthy, E.

    2002-01-01

    A conventional giant cell tumor of the proximal femur recurred twice locally and developed pulmonary nodules. The lung lesions were felt to be an example of ''benign'' metastases. Eight months after the initial presentation, the patient developed a single skin nodule on the contralateral leg. Histologic features of the skin nodule showed conventional giant cell tumor identical to the bone lesion. This nodule is a manifestation of arterial metastasis typical of any malignant tumor and seemingly contradicts the concept of ''benign '' metastasis. (orig.)

  8. Investigation on the effect of developed product and new food for radiation-induced skin damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Kim, Jong Chun; Bae, Chun Sik; Kim, Se Ra; Lee, Hae Jun; Bang, Dae Won; Lee, Jin Hee; Kim, Joong Sun; Ki, Sun Ah; Song, Myung Seop [Chonnam National University, Gwangju (Korea, Republic of)

    2007-07-15

    In vivo evaluation of the developed pilot product on the skin protection against UV irradiation and screening of new candidate materials. Project Results are Establishment of experimental methods for 3 morphological indices of UV-induced skin damages -Establishment of experimental methods for whitening effect evaluation -Evaluation of HemoHIM administration on the skin damage indices -Evaluation of HemoHIM skin application on the skin damage indices -Evaluation of HemoTonic administration on the skin damage indices -Evaluation of HemoTonic skin application on the skin damage indices -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 1 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 2 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 3 -Evaluation of HemoHIM on the antiinflamatory effects in the TNBS-induced colitis -Evaluation of HemoHIM on the anti-wrinkle effects in the skin -Evaluation of HemoHIM on the protective effects on the skin tissue (epidermal thickening, dermal cellularity, dermal cyst) -Evaluation of HemoHIM on the protective effects on the skin tumor development

  9. Investigation on the effect of developed product and new food for radiation-induced skin damage

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Kim, Jong Chun; Bae, Chun Sik; Kim, Se Ra; Lee, Hae Jun; Bang, Dae Won; Lee, Jin Hee; Kim, Joong Sun; Ki, Sun Ah; Song, Myung Seop

    2007-07-01

    In vivo evaluation of the developed pilot product on the skin protection against UV irradiation and screening of new candidate materials. Project Results are Establishment of experimental methods for 3 morphological indices of UV-induced skin damages -Establishment of experimental methods for whitening effect evaluation -Evaluation of HemoHIM administration on the skin damage indices -Evaluation of HemoHIM skin application on the skin damage indices -Evaluation of HemoTonic administration on the skin damage indices -Evaluation of HemoTonic skin application on the skin damage indices -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 1 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 2 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 3 -Evaluation of HemoHIM on the antiinflamatory effects in the TNBS-induced colitis -Evaluation of HemoHIM on the anti-wrinkle effects in the skin -Evaluation of HemoHIM on the protective effects on the skin tissue (epidermal thickening, dermal cellularity, dermal cyst) -Evaluation of HemoHIM on the protective effects on the skin tumor development

  10. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  11. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    Science.gov (United States)

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  12. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng/ml) in the a......Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (pendogenous MMP-1...

  13. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in Vivo

    Science.gov (United States)

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce ODC activity at least as much as 3 ug of 12-O-tetradecanoylphorbol-13-acetate (TPA). ODC induction peaks...

  14. Detection of new MHC mutations in mice by skin grafting, tumor transplantation and monoclonal antibodies: a comparison

    International Nuclear Information System (INIS)

    Egorov, I.K.; Egorov, O.S.

    1988-01-01

    Two mechanisms of major histocompatibility complex (MHC) mutations have been described in mice: gene conversion and homologous but unequal recombination. However, the knowledge of mutations in MHC is incomplete because studies have been limited almost exclusively to two haplotypes, H-2/sup b/ and H-2/sup d/, while hundreds of haplotypes exist in nature; it has been biased by the use of only one procedure of screening for mutation, skin grafting. The authors used three procedures to screen for MHC mutations: (1) conventional techniques of skin grafting, (2) syngeneic tumor transplantation and (3) typing with monoclonal anti-MHC antibodies (mAbs) and complement. The faster technique of tumor transplantation detected mutants similar to those discovered by skin grafting technique. Screening with mAbs allowed us to detect both mutants that are capable of rejecting standard skin grafts and those that are silent in skin grafting tests, and which therefore resulted in a higher apparent mutation frequency. Two mutants of the H-2/sup a/ haplotype were found that carry concomitant class I and class II antigenic alterations. Both MHC mutants silent in skin grafting tests and mutants carrying concomitant class I and class II alterations have never been studied before and are expected to reveal new mechanisms of generating MHC mutations. 1-Ethyl-1-nitrosourea (ENU) failed to induce de novo MHC mutations in our skin grafting series

  15. Laser induced autofluorescence for diagnosis of non-melanoma skin cancer

    Science.gov (United States)

    Drakaki, E.; Makropoulou, M.; Serafetinides, A. A.; Merlemis, N.; Kalatzis, I.; Sianoudis, I. A.; Batsi, O.; Christofidou, E.; Stratigos, A. J.; Katsambas, A. D.; Antoniou, Ch.

    2015-01-01

    Non melanoma skin cancer is one of the most frequent malignant tumors among humans. A non-invasive technique, with high sensitivity and high specificity, would be the most suitable method for basal cell carcinoma (BCC) or other malignancies diagnostics, instead of the well established biopsy and histopathology examination. In the last decades, a non-invasive, spectroscopic diagnostic method was introduced, the laser induced fluorescence (LIF), which could generate an image contrast between different states of skin tissue. The noninvasiveness consists in that this biophotonic method do not require tissue sample excision, what is necessary in histopathology characterization and biochemical analysis of the skin tissue samples, which is worldwide used as an evaluation gold standard. The object of this study is to establish the possibilities of a relatively portable system for laser induced skin autofluorescence to differentiate malignant from nonmalignant skin lesions. Unstained human skin samples, excised from humans undergoing biopsy examination, were irradiated with a Nd:YAG-3ω laser (λ=355 nm, 6 ns), used as an excitation source for the autofluorescence measurements. A portable fiber-based spectrometer was used to record fluorescence spectra of the sites of interest. The ex vivo results, obtained with this spectroscopic technique, were correlated with the histopathology results. After the analysis of the fluorescence spectra of almost 60 skin tissue areas, we developed an algorithm to distinguish different types of malignant lesions, including inflammatory areas. Optimization of the data analysis and potential use of LIF spectroscopy with 355 nm Nd:YAG laser excitation of tissue autofluorescence for clinical applications are discussed.

  16. Induction of short-term biomarkers of tumor promotion in skin of CD-1 mice by petroleum middle distillates: preliminary observations.

    Science.gov (United States)

    Skisak, C; DiGiovanni, J; Conti, C J; Slaga, T J; Sharma, S; Sagartz, J W; Walborg, E F

    1995-01-01

    The induction of sustained epidermal hyperplasia in mouse skin has been shown to be a reliable predictor of tumor promoting activity for chemicals as diverse as phorbol esters, anthralins, n-dodecane and organic peroxides (DiGiovanni, 1992). The results contained herein demonstrate that API 81-07 and API 81-10, petroleum middle distillates that exhibit tumor promoting activity in mouse skin, induce epidermal hyperplasia and ODC activity. Other petroleum middle distillates (odorless light petroleum hydrocarbons, a light vacuum distillate, and a mineral seal oil) were also shown to share these activities. It should be emphasized that the relevance of these observations to human skin remains unresolved; however, the availability of these short-term biomarkers offers the opportunity to address the issue by performing comparative investigations on the effects of petroleum middle distillates on human skin xenografted to athymic (nude) mice. Such studies are being initiated.

  17. Tumor Suppressor Function of CYLD in Nonmelanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    K. C. Masoumi

    2011-01-01

    Full Text Available Ubiquitin and ubiquitin-related proteins posttranslationally modify substrates, and thereby alter the functions of their targets. The ubiquitination process is involved in various physiological responses, and dysregulation of components of the ubiquitin system has been linked to many diseases including skin cancer. The ubiquitin pathways activated among skin cancers are highly diverse and may reflect the various characteristics of the cancer type. Basal cell carcinoma and squamous cell carcinoma, the most common types of human skin cancer, are instances where the involvement of the deubiquitination enzyme CYLD has been recently highlighted. In basal cell carcinoma, the tumor suppressor protein CYLD is repressed at the transcriptional levels through hedgehog signaling pathway. Downregulation of CYLD in basal cell carcinoma was also shown to interfere with TrkC expression and signaling, thereby promoting cancer progression. By contrast, the level of CYLD is unchanged in squamous cell carcinoma, instead, catalytic inactivation of CYLD in the skin has been linked to the development of squamous cell carcinoma. This paper will focus on the current knowledge that links CYLD to nonmelanoma skin cancers and will explore recent insights regarding CYLD regulation of NF-κB and hedgehog signaling during the development and progression of these types of human tumors.

  18. Morphological changes in skin tumors caused by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moskalik, K G; Lipova, V A; Neyshtadt, E L

    1979-01-01

    Morphological changes induced by treating melanomas, basaloma and flatcell skin cancers with a pulsed neodymium laser at 1060 nm, pulse length 1 msec and energy 250 to 500 J/cm/sup 2/, were studied using impressions and scrapings from the affected area. Nuclear pyknosis, nuclear and cellular elongation, vacuolization, frequent complete loss of cytoplasm, particulaly in the zone of direct irradiation, and loss of cellular structure were seen. These dystrophic changes increased with closeness to the zone of direct irradiation, culminating in necrosis. Formed and decomposed blood elements and melanin accumulated in the intracellular spaces, due to disruption of capillaries and small arteries and veins. Fewer and more aggregated melanoblasts were found after melanoma irradiation. Nuclear chromatin fusion, cytoplasmic changes and altered cell shape were observed. Basaloma cells were clustered and elongated after irradiation, with many fibrous structures and loss of cellular elements. Cytoplasmic vacuolization and lysis, bare nuclei, karyolysis, karyorrhexis and karyopyknosis were seen in corneous flat-cell cancer. In the few cases in which malignant cells were found under the scab from the first treatment the procedure was repeated. The morphological changes induced by pulsed laser irradiation are very similar to electrocoagulation necrosis, but are more localized. The ability of low and middle energy lasers to induce thrombosis and coagulation in vascular walls reduced the probability of hematogenic tumor cell dissemination. Cytological examination is highly effective in determining the degree of radical skin cancer healing due to laser treatment. 12 references, 2 figures.

  19. Inhibitory effect of flavonoids from citrus plants on Epstein-Barr virus activation and two-stage carcinogenesis of skin tumors.

    Science.gov (United States)

    Iwase, Y; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H; Kawaii, S; Yano, M; Mou, X Y; Takayasu, J; Tokuda, H; Nishino, H

    2000-06-01

    To search for possible anti-tumor promoters, thirteen flavones (1-13) obtained from the peel of Citrus plants were examined for their inhibitory effects on the Epstein-Barr virus early antigen (EBV-EA) activation by a short-term in vitro assay. Of these flavones, 3,5,6,7,8,3',4'-heptamethoxyflavone (HPT) (13) exhibited significant inhibitory effects on the EBV-EA activation induced by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, compound 13 exhibited remarkable inhibitory effects on mouse skin tumor promotion in an in vivo two-stage carcinogenesis test.

  20. JWA deficiency suppresses dimethylbenz[a]anthracene-phorbol ester induced skin papillomas via inactivation of MAPK pathway in mice.

    Directory of Open Access Journals (Sweden)

    Zhenghua Gong

    Full Text Available Our previous studies indicated that JWA plays an important role in DNA damage repair, cell migration, and regulation of MAPKs. In this study, we investigated the role of JWA in chemical carcinogenesis using conditional JWA knockout (JWA(Δ2/Δ2 mice and two-stage model of skin carcinogenesis. Our results indicated that JWA(Δ2/Δ2 mice were resistant to the development of skin papillomas initiated by 7, 12-dimethylbenz(aanthracene (DMBA followed by promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA. In JWA(Δ2/Δ2 mice, the induction of papilloma was delayed, and the tumor number and size were reduced. In primary keratinocytes from JWA(Δ2/Δ2 mice, DMBA exposure induced more intensive DNA damage, while TPA-promoted cell proliferation was reduced. The further mechanistic studies showed that JWA deficiency blocked TPA-induced activation of MAPKs and its downstream transcription factor Elk1 both in vitro and in vivo. JWA(Δ2/Δ2 mice are resistance to tumorigenesis induced by DMBA/TPA probably through inhibition of transcription factor Elk1 via MAPKs. These results highlight the importance of JWA in skin homeostasis and in the process of skin tumor development.

  1. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes.

    Science.gov (United States)

    Madonna, Stefania; Scarponi, Claudia; Morelli, Martina; Sestito, Rosanna; Scognamiglio, Pasqualina Liana; Marasco, Daniela; Albanesi, Cristina

    2017-04-11

    Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.

  2. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion.

    Science.gov (United States)

    Potthoff, K; Hofheinz, R; Hassel, J C; Volkenandt, M; Lordick, F; Hartmann, J T; Karthaus, M; Riess, H; Lipp, H P; Hauschild, A; Trarbach, T; Wollenberg, A

    2011-03-01

    Anti-epidermal growth factor receptor treatment strategies, i.e. monoclonal antibodies such as cetuximab and panitumumab, or epidermal growth factor receptor (EGFR) small molecule tyrosine kinase inhibitors, such as erlotinib and gefitinib, have expanded the treatment options for different tumor types. Dermatologic toxic effects are the most common side-effects of EGFR inhibitor therapy. They can profoundly affect the patient's quality of life. The aim of this study was to provide interdisciplinary expert recommendations on how to treat patients with skin reactions undergoing anti-EGFR treatment. An expert panel from Germany with expertise in medical oncology, dermatology or clinical pharmacology was convened to develop expert recommendations based on published peer-reviewed literature. The expert recommendations for the state-of-the-art treatment of skin reactions induced by EGFR inhibitor therapy include recommendations for diagnostics and grading as well as grade-specific and stage-adapted treatment approaches and preventive measures. It was concluded that EGFR-inhibitor-related dermatologic reactions should always be treated combining basic care of the skin and a specific therapy adapted to stage and grade of skin reaction. For grade 2 and above, specific treatment recommendations for early- and later-stage skin reactions induced by EGFR-inhibitor therapy were proposed. This paper presents a German national expert opinion for the treatment of skin reactions in patients receiving EGFR inhibitor therapy.

  3. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  4. Tumor Suppressor Function of CYLD in Non melanoma Skin Cancer

    International Nuclear Information System (INIS)

    Masoumi, K. C.; Hallgren, G. S.; Massoumi, R.

    2011-01-01

    Ubiquitin and ubiquitin-related proteins post translationally modify substrates, and thereby alter the functions of their targets. The ubiquitination process is involved in various physiological responses, and dysregulation of components of the ubiquitin system has been linked to many diseases including skin cancer. The ubiquitin pathways activated among skin cancers are highly diverse and may reflect the various characteristics of the cancer type. Basal cell carcinoma and squamous cell carcinoma, the most common types of human skin cancer, are instances where the involvement of the deubiquitination enzyme CYLD has been recently highlighted. In basal cell carcinoma, the tumor suppressor protein CYLD is repressed at the transcriptional levels through hedgehog signaling pathway. Downregulation of CYLD in basal cell carcinoma was also shown to interfere with TrkC expression and signaling, thereby promoting cancer progression. By contrast, the level of CYLD is unchanged in squamous cell carcinoma, instead, catalytic inactivation of CYLD in the skin has been linked to the development of squamous cell carcinoma. This paper will focus on the current knowledge that links CYLD to non melanoma skin cancers and will explore recent insights regarding CYLD regulation of NF-κB and hedgehog signaling during the development and progression of these types of human tumors.

  5. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo

    DEFF Research Database (Denmark)

    Wang, Z; Pedersen, Esben Ditlev Kølle; Basse, A

    2010-01-01

    that Rac1 is essential for DMBA/TPA-induced skin tumor formation. This corresponded to a decreased keratinocyte hyperproliferation, although apoptosis was not detectably altered. Activated Rac1 promoted Erk-dependent hyperproliferation by Pak1-mediated Mek activation independent of Mek1 phosporylation...

  6. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    Science.gov (United States)

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.

  7. Selenium inhibits UV-light-induced skin carcinogenesis in hairless mice

    International Nuclear Information System (INIS)

    Overvad, Kim; Thorling, E.B.; Bjerring, Peter; Ebbesen, Peter

    1985-01-01

    Female hairless inbred hr/hr mice were exposed to UV-B irradiation from Philips TL 40W/13 fluorescent tubes. Fractionated irradiation, given as single daily doses 5 days a week, was gradually increased from 0.04 to 0.4 J/cm 2 over 2 weeks. Irradiation at 0.4 J/cm 2 was continued for 20 weeks. Selenium supplementation given as sodium selenite in the drinking water at 2, 4 and 8 mg/l began 3 weeks before UV-irradiation and continued thereafter. Development of skin tumors was followed by weekly examinations. Statistical analyses revealed significant dose-dependent selenium-mediated protection against UV-light-induced skin cancer. Leukemia developed in 5 of 150 UV-irradiated mice as opposed to none in a group of 60 unirradiated mice. (author)

  8. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs

  9. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  10. Quercitrin protects skin from UVB-induced oxidative damage

    International Nuclear Information System (INIS)

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries

  11. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Dan A. Erkes

    2014-01-01

    Full Text Available Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD using animal contact hypersensitivity (CHS models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1 ex vivo haptenation, (2 in situ haptenation, (3 epifocal hapten application, and (4 antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.

  12. Differential effects of topical vitamin E and C E Ferulic® treatments on ultraviolet light B-induced cutaneous tumor development in Skh-1 mice.

    Directory of Open Access Journals (Sweden)

    Erin M Burns

    Full Text Available Because of the ever-increasing incidence of ultraviolet light B (UVB-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®. Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits.

  13. Differential effects of topical vitamin E and C E Ferulic® treatments on ultraviolet light B-induced cutaneous tumor development in Skh-1 mice.

    Science.gov (United States)

    Burns, Erin M; Tober, Kathleen L; Riggenbach, Judith A; Kusewitt, Donna F; Young, Gregory S; Oberyszyn, Tatiana M

    2013-01-01

    Because of the ever-increasing incidence of ultraviolet light B (UVB)-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®). Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits.

  14. Virtual microscopy: an evaluation of its validity and diagnostic performance in routine histologic diagnosis of skin tumors

    DEFF Research Database (Denmark)

    Nielsen, Patricia Switten; Lindebjerg, Jan; Rasmussen, Jan

    2010-01-01

    Digitization of histologic slides is associated with many advantages, and its use in routine diagnosis holds great promise. Nevertheless, few articles evaluate virtual microscopy in routine settings. This study is an evaluation of the validity and diagnostic performance of virtual microscopy...... in routine histologic diagnosis of skin tumors. Our aim is to investigate whether conventional microscopy of skin tumors can be replaced by virtual microscopy. Ninety-six skin tumors and skin-tumor-like changes were consecutively gathered over a 1-week period. Specimens were routinely processed, and digital...... slides were captured on Mirax Scan (Carl Zeiss MicroImaging, Göttingen, Germany). Four pathologists evaluated the 96 virtual slides and the associated 96 conventional slides twice with intermediate time intervals of at least 3 weeks. Virtual slides that caused difficulties were reevaluated to identify...

  15. PRIMARY PREVENTION OF MALIGNANT SKIN TUMORS – PHOTOPROTECTION

    Directory of Open Access Journals (Sweden)

    Ana Benedičič - Pilih

    2001-12-01

    Full Text Available Background. The incidence of skin cancer is increasing in the world as well as in our country. Decades of research have increased the understanding of the ethiopathogenetic influences and risk factors for development of malignant skin tumors and stimulated efforts to promote their prevention. There are successes of prevention programs in some places in the world expressing with the reduction of mortality because of the cutaneous malignant melanoma. A primary prevention of a skin cancer attempts to change population knowledge, attitudes and beliefs about sunlight, leading to reduce of sunlight exposure.Conclusions. In this article we are discussing guidelines for photoprevention. The best approach to it is a reduction in the overall exposure to sunlight. The natural protection with the use of shade, clothing and hats is promoted as the best protection. Sunscreens are assumed as an important component of adjuvant photoprotection based on their convenience of use and also on their widespread promotion. While it has been argued that all tanning is a manifestation of skin injury, avoiding of artificial tanning devices is proposed also.

  16. Sunscreens for delay of ultraviolet induction of skin tumors

    International Nuclear Information System (INIS)

    Wulf, H.C.; Poulsen, T.; Brodthagen, H.; Hou-Jensen, K.

    1982-01-01

    Sunscreens with different sun protection factors (SPFs) have been tested for their capability of delaying or preventing actinic damage and skin cancer development in groups of hairless, pigmented mice exposed to artificial ultraviolet (UV) light of increasing intensity. The dose delivered was less than or equal to 1 minimal erythema dose (MED) in the group of untreated mice, so that the mice to which sunscreens were applied never obtained a sunburn after UV exposure. The quality of UV light was similar to bright midday sun at a latitude of 56 degrees (city of Copenhagen). Tumorigenesis was demonstrated to be delayed corresponding to the SPF claimed by the manufacturer, but almost all of the UV-irradiated mice developed skin tumors. Histologic examination revealed actinic degeneration and tumors of squamous cell type with marked variation in differentiation. Metastases to lymph nodes and lungs were found in only 10%. Toxic reactions, such as eczematous-like skin reactions, dark coloring, and amyloidosis, were observed predominantly in the group treated with the sunscreen of highest SPF value. Long-term investigations seem to be necessary to unveil these problems--in particular, the specific SPF value, in sunscreens, that should be recommended to the public for prevention or delay of actinic damage and/or cancer development

  17. FLUORESCENT DIAGNOSTICS OF MALIGNANT SKIN TUMORS WITH CHLORIN SERIES PHOTOSENSITIZERS

    Directory of Open Access Journals (Sweden)

    E. V. Yaroslavtseva-Isaeva

    2018-01-01

    Full Text Available The article shows possibilities in fluorescence imaging of malignant skin tumors with chlorin series photosensitizers (PS photolon and fotoditazin. The regularities of photosensitizer accumulation from the data of local fluorescence spectroscopy depending on the PS and its dose, the clinical picture and the histological form of the malignant skin neoplasm is investigated. It is shown that the level and selectivity of PS accumulation in the tumor focus depends on the PS dose. In studies on 10 patients with basal cell skin cancer after the introduction of fotoditazin at a dose less than 1 mg/kg, fluorescent contrast between tumor and healthy tissue varied between 1.3 and 9.5, the average was 2.8±0.3; for patients who had the administered fotoditazin dose of 1 mg/kg, fluorescent contrast was 2.9±0.4, varying from 1.4 to 5. In a study with 127 patients after the introduction of photolon in the dose of 0.7-1 mg/kg, the average value of the fluorescence intensity in relative units in the intact skin was 6.9±0.3 (min 4.6, max 12.2, at a dose of 1.1 to 1.4 mg/kg – 8.0±0.3 (min 4.6, max 12.5, at a dose of 1.5-2 mg/kg – 9.9±0.7 (min 5.7, max 20.3. It is also shown that fluorescence intensity of malignant neoplasm of the skin with the same dose of the photosensitizer depends on the neoplasm’s clinical and histological forms. So, 3 hours after the introduction of photolon at a dose of 1.3 mg/kg the average fluorescent contrast in the surface type of skin cancer was 2.7±0.5, in the nodal form – 2.3±0.2, in erosive-ulcerative form – 3.6±0.3. In patients with nodular form of squamous skin cancer after the introduction of photolon at a dose of 1.3 mg/kg fluorescent contrast was significantly higher (p<0.05 (average of 2.8±0.2 than in the nodular form of basal cell carcinoma after the introduction of photolon at the same dose (average of 2.1±0.2.

  18. Neuroendocrine tumor of the skin of head and neck

    Directory of Open Access Journals (Sweden)

    Stošić Srboljub

    2005-01-01

    Full Text Available Background. Merkel cell carcinom is a rare neuroendrocine tumor of skin which manifests it self through aggressive growth and early regional metastasis. It develops mainly in older population. Locally, the tumor spreads intracutaneously. Case report. We showed two cases (females of 89 and 70 years old hospitalized within the last two years. The first patient was treated surgically three times. After the surgery, the patient was treated with radio therapy, and died 3 years from the beginning of the treatment. The second patient with this neuroendocrine tumor with the high malignancy potential and huge regional metastasis, was treated surgically, and died a month and a half after the operation. Conclusion. These two cases confirmed the aggressive and recidivant growth of this tumor with the difficult pathologic investigation, and the extremely bad prognosis inspite of the treatment.

  19. Importance of tumor size and repopulation for radiocurability of skin cancer

    International Nuclear Information System (INIS)

    Maciejewski, B.A.; Zajusz, A.; Lange, D.

    1993-01-01

    Data on 946 skin cancers treated by radiation were used to estimate the importance of repopulation. Six different treatment regimes were used, from a single dose to 74 Gy given in 47 fractions. High local control of the small skin cancers (L 1 cm) was independent of dose fractionation. For large tumors, only 74 Gy in 47 fractions was the optimal treatment. Time factor analysis showed a steep increase in the NTD50 values between day 28 and 65 of treatment. This implies that tumor clonogen repopulation starts around 4 weeks of treatment. The present results show a three-component dose-response curve instead of the two-component curves which were found for head and neck and bladder cancer. (author) 1 tab., 2 figs., 15 refs

  20. Fractional laser exposure induces neutrophil infiltration (N1 phenotype into the tumor and stimulates systemic anti-tumor immune response.

    Directory of Open Access Journals (Sweden)

    Masayoshi Kawakubo

    Full Text Available Ablative fractional photothermolysis (aFP using a CO2 laser generates multiple small diameter tissue lesions within the irradiation field. aFP is commonly used for a wide variety of dermatological indications, including treatment of photodamaged skin and dyschromia, drug delivery and modification of scars due to acne, surgical procedures and burns. In this study we explore the utility of aFP for treating oncological indications, including induction of local tumor regression and inducing anti-tumor immunity, which is in marked contrast to current indications of aFP.We used a fractional CO2 laser to treat a tumor established by BALB/c colon carcinoma cell line (CT26.CL25, which expressed a tumor antigen, beta-galactosidase (beta-gal. aFP treated tumors grew significantly slower as compared to untreated controls. Complete remission after a single aFP treatment was observed in 47% of the mice. All survival mice from the tumor inoculation rejected re-inoculation of the CT26.CL25 colon carcinoma cells and moreover 80% of the survival mice rejected CT26 wild type colon carcinoma cells, which are parental cells of CT26.CL25 cells. Histologic section of the FP-treated tumors showed infiltrating neutrophil in the tumor early after aFP treatment. Flow cytometric analysis of tumor-infiltrating lymphocytes showed aFP treatment abrogated the increase in regulatory T lymphocyte (Treg, which suppresses anti-tumor immunity and elicited the expansion of epitope-specific CD8+ T lymphocytes, which were required to mediate the tumor-suppressing effect of aFP.We have demonstrated that aFP is able to induce a systemic anti-tumor adaptive immunity preventing tumor recurrence in a murine colon carcinoma in a mouse model. This study demonstrates a potential role of aFP treatments in oncology and further studies should be performed.

  1. Blue light-induced oxidative stress in live skin.

    Science.gov (United States)

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Role of vitamin D3 in modulation of ΔNp63α expression during UVB induced tumor formation in SKH-1 mice.

    Directory of Open Access Journals (Sweden)

    Natasha T Hill

    Full Text Available ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR and phosphatase and tensin homologue deleted on chromosome ten (PTEN. Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.

  3. Protective effect of Ocimum sanctum on 3-methylcholanthrene, 7,12-dimethylbenz(a)anthracene and aflatoxin B1 induced skin tumorigenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Shipra; Shukla, Yogeshwer; Paul, Bhola N; Chowdhuri, D Kar; Khanna, Subhash K [Industrial Toxicology Research Centre, Mahatma Gandhi Marg, P.O. Box 80, Lucknow-226001 (India); Das, Mukul [Industrial Toxicology Research Centre, Mahatma Gandhi Marg, P.O. Box 80, Lucknow-226001 (India)

    2007-11-01

    A study on the protective effect of alcoholic extract of the leaves of Ocimum sanctum on 3-mthylcholanthrene (MCA), 7,12-dimethylbenzanthracene (DMBA) and aflatoxin B{sub 1} (AFB{sub 1}) induced skin tumorigenesis in a mouse model has been investigated. The study involved pretreatment of mice with the leaf extract prior to either MCA application or tetradecanoyl phorbol acetate (TPA) treatment in a two-stage tumor protocol viz a viz, DMBA/TPA and AFB1/TPA. The results of the present study indicate that the pretreatment with alcoholic extract of the leaves of O. sanctum decreased the number of tumors in MCA, DMBA/TPA and AFB1/TPA treated mice. The skin tumor induced animals pretreated with alcoholic extract led to a decrease in the expression of cutaneous {gamma}-glutamyl transpeptidase (GGT) and glutathione-S-transferase-P (GST-P) protein. The histopathological examination of skin tumors treated with leaf extract showed increased infiltration of polymorphonuclear, mononuclear and lymphocytic cells, decreased ornithine decarboxylase activity with concomitant enhancement of interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}) in the serum, implying the in vivo antiproliferative and immunomodulatory activity of leaf extract. The decrease in cutaneous phase I enzymes and elevation of phase II enzymes in response to topical application of leaf extract prior to MCA, AFB1, DMBA/TPA and AFB1/TPA treatment indicate the possibility of impairment in reactive metabolite(s) formation and thereby reducing skin carcinogenicity. Furthermore, pretreatment of leaf extract in the carcinogen induced animals resulted in elevation of glutathione levels and decrease in lipid peroxidation along with heat shock protein expression, indicating a scavenging or antioxidant potential of the extract during chemical carcinogenesis. Thus it can be concluded that leaf extract of O. sanctum provides protection against chemical carcinogenesis in one or more of the

  4. A novel mechanism of skin tumor promotion involving interferon-gamma (IFNγ)/signal transducer and activator of transcription-1 (Stat1) signaling.

    Science.gov (United States)

    Bozeman, Ronald; Abel, Erika L; Macias, Everardo; Cheng, Tianyi; Beltran, Linda; DiGiovanni, John

    2015-08-01

    The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1(-/-) ) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1(-/-) mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1. © 2014 Wiley Periodicals, Inc.

  5. Facial reconstruction for radiation-induced skin cancer

    International Nuclear Information System (INIS)

    Panje, W.R.; Dobleman, T.J.

    1990-01-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction

  6. Preventative topical diclofenac treatment differentially decreases tumor burden in male and female Skh-1 mice in a model of UVB-induced cutaneous squamous cell carcinoma

    Science.gov (United States)

    Oberyszyn, Tatiana M.

    2013-01-01

    Ultraviolet B (UVB) light is the major environmental carcinogen contributing to non-melanoma skin cancer (NMSC) development. There are over 3.5 million NMSC diagnoses in two million patients annually, with men having a 3-fold greater incidence of squamous cell carcinoma (SCC) compared with women. Chronic inflammation has been linked to tumorigenesis, with a key role for the cyclooxygenase-2 (COX-2) enzyme. Diclofenac, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, currently is prescribed to patients as a short-term therapeutic agent to induce SCC precursor lesion regression. However, its efficacy as a preventative agent in patients without evidence of precursor lesions but with significant UVB-induced cutaneous damage has not been explored. We previously demonstrated in a murine model of UVB-induced skin carcinogenesis that when exposed to equivalent UVB doses, male mice had lower levels of inflammation but developed increased tumor multiplicity, burden and grade compared with female mice. Because of the discrepancy in the degree of inflammation between male and female skin, we sought to determine if topical treatment of previously damaged skin with an anti-inflammatory COX-2 inhibitor would decrease tumor burden and if it would be equally effective in the sexes. Our results demonstrated that despite observed sex differences in the inflammatory response, prolonged topical diclofenac treatment of chronically UVB-damaged skin effectively reduced tumor multiplicity in both sexes. Unexpectedly, tumor burden was significantly decreased only in male mice. Our data suggest a new therapeutic use for currently available topical diclofenac as a preventative intervention for patients predisposed to cutaneous SCC development before lesions appear. PMID:23125227

  7. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun; Kang, Jeong Wook [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Dong Won [Department of Plastic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Oh, Sang Ho [Department of Dermatology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Yun-Sil [College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewah Womans University, Seoul 120-750 (Korea, Republic of); Lee, Eun-Jung [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  8. Fractionated laser resurfacing corrects the inappropriate UVB response in geriatric skin

    OpenAIRE

    Spandau, Dan F; Lewis, Davina A.; Somani, Ally-Khan; Travers, Jeffrey B.

    2012-01-01

    Non-melanoma skin cancer is a disease primarily afflicting geriatric patients as evidenced by the fact that 80% of all non-melanoma skin cancers are diagnosed in patients over the age of 60 years. As such, geriatric skin responds to cancer-inducing UVB irradiation in a manner that allows the establishment of tumor cells. Currently, the only effective treatment for non-melanoma skin cancer is the removal of the tumors after they appear, indicating the need for a more cost-effective prophylacti...

  9. EGFR Activation and Ultraviolet Light‐Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Taghrid B. El-Abaseri

    2007-01-01

    Full Text Available The epidermal growth factor receptor (EGFR regulates the proliferation of keratinocytes through multiple mechanisms that differ depending on the localization of the cell within the skin. Ultraviolet (UV irradiation, the main etiologic factor in the development of skin cancer, also activates the receptor. In this review, we discuss how the UV-induced activation of EGFR regulates the response of the skin to UV. UV-induced EGFR activation increases keratinocyte proliferation, suppresses apoptosis, and augments and accelerates epidermal hyperplasia in response to UV. Pharmacological inhibition of the UV-induced activation of EGFR in a genetically initiated mouse skin tumorigenesis model suppresses tumorigenesis and the activation of mitogen-activated protein (MAP kinases and phosphatidyl inositol-3-kinase (PI3K/AKT signaling pathways. EGFR has pleiotropic, complex, and cell-type-specific functions in cutaneous keratinocytes; suggesting that the receptor is an appropriate target for the development of molecularly targeted therapies for skin cancer and other pathologies.

  10. Studies on reconstruction of large skin defects following mammary tumor excision in dogs

    Directory of Open Access Journals (Sweden)

    Sabarish Babu Malli Sadhasivan

    2017-12-01

    Full Text Available Aim: The main objective of the study was to describe the use of skin fold advancement flaps (SFAFs and other reconstructive techniques for closure of large skin defects following mammary tumor excision in dogs. Materials and Methods: Twelve dogs underwent reconstruction of large ventral skin defects following mammary tumor excision with wide margins. Skin fold flaps (flank fold flap and elbow fold flap were elevated from the flank and elbow region, respectively, and transposed and sutured onto the large ventral skin defect following mastectomy in all the dogs. In addition to the skin fold flaps, other reconstructive techniques such as undermining, walking sutures, and tension-relieving suture techniques were followed during surgery in the closure of large skin defects without skin tension and compromising limb mobility. The skin flap viability was assessed subjectively by gross observation of the flap such as color, temperature, capillary perfusion, and cosmetic appearance, and scoring (1-4 was done. Tissue samples were collected from a surgical site on days 3, 6, and 12 post-operatively for histopathological evaluation and healing status of the skin flap. Results: All the surgical wounds healed primarily, without any major complications and the skin flap remained healthy throughout the healing process post-operatively. Distal flap necrosis was noticed in one case and necrosis of skin flap between two suture lines was noticed in another case in which the necrotized distal portion healed by secondary intention after 7 days. The mean survival of subdermal plexus flap in the above cases was 98% which was a subjective evaluation based on surface area of the skin defect measured by Image 'J software and the flap dimensions. The average healing of skin flap in days was 14.91±0.86. Conclusion: The SFAFs along with other reconstructive techniques help in the reconstruction of large ventral skin defects following mastectomy in dogs without much

  11. Skin tumor area extraction using an improved dynamic programming approach.

    Science.gov (United States)

    Abbas, Qaisar; Celebi, M E; Fondón García, Irene

    2012-05-01

    Border (B) description of melanoma and other pigmented skin lesions is one of the most important tasks for the clinical diagnosis of dermoscopy images using the ABCD rule. For an accurate description of the border, there must be an effective skin tumor area extraction (STAE) method. However, this task is complicated due to uneven illumination, artifacts present in the lesions and smooth areas or fuzzy borders of the desired regions. In this paper, a novel STAE algorithm based on improved dynamic programming (IDP) is presented. The STAE technique consists of the following four steps: color space transform, pre-processing, rough tumor area detection and refinement of the segmented area. The procedure is performed in the CIE L(*) a(*) b(*) color space, which is approximately uniform and is therefore related to dermatologist's perception. After pre-processing the skin lesions to reduce artifacts, the DP algorithm is improved by introducing a local cost function, which is based on color and texture weights. The STAE method is tested on a total of 100 dermoscopic images. In order to compare the performance of STAE with other state-of-the-art algorithms, various statistical measures based on dermatologist-drawn borders are utilized as a ground truth. The proposed method outperforms the others with a sensitivity of 96.64%, a specificity of 98.14% and an error probability of 5.23%. The results demonstrate that this STAE method by IDP is an effective solution when compared with other state-of-the-art segmentation techniques. The proposed method can accurately extract tumor borders in dermoscopy images. © 2011 John Wiley & Sons A/S.

  12. Poly-MVA attenuates 7,12- dimethylbenz[a]anthracene initiated and croton oil promoted skin papilloma formation on mice skin.

    Science.gov (United States)

    Veena, Ravindran K; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K; Antonawich, Francis

    2017-09-01

    Chemopreventive agents which exhibit activities such as anti-inflammation, inhibition of carcinogen induced mutagenesis and scavenging of free radical might play a decisive role in the inhibition of chemical carcinogenesis either at the initiation or promotion stage. Many synthesized palladium (Pd) complexes tested experimentally for antitumor activity are found effective. Poly-MVA is a liquid blend preparation containing B complex vitamins, ruthenium with Pd complexed with alpha lipoic acid as the major ingredients. The antitumor effect of Poly-MVA was evaluated against 7,12-dimethylbenz[a] anthracene-initiated croton oil-promoted papilloma formation on mice skin. Skin tumor was initiated with a single application of 390 nmol of DMBA in 20 µl acetone. The effect of Poly-MVA against croton oil- induced inflammation and lipid peroxidation on the mice skin was also evaluated. Topical application of Poly-MVA (100 µl, twice weekly for 18 weeks) 30 minutes prior to each croton oil application, significantly decreased the tumor incidence (11%) and the average number of tumor per animals. Application of Poly-MVA (100 µl) before croton oil significantly (p < 0.05) protected the mouse skin from inflammation (36%) and lipid peroxidation (14%) when compared to the croton oil alone treated group. Experimental results indicate that Poly-MVA attenuate the tumor promoting effects of croton oil and the effect may probably be due to its anti-inflammatory and antioxidant activity.

  13. Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors

    Directory of Open Access Journals (Sweden)

    Dapkute D

    2017-11-01

    Full Text Available Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs are naturally attracted to wounds and sites of inflammation, as well as tumors. Such characteristics enable MSCs to be used in cellular hitchhiking of nanoparticles. In this study, MSCs extracted from the skin connective tissue were investigated as transporters of semiconductor nanocrystals quantum dots (QDs.Materials and methods: Cytotoxicity of carboxylated CdSe/ZnS QDs was assessed by lactate dehydrogenase cell viability assay. Quantitative uptake of QDs was determined by flow cytometry; their intracellular localization was evaluated by confocal microscopy. In vitro tumor-tropic migration of skin-derived MSCs was verified by Transwell migration assay. For in vivo migration studies of QD-loaded MSCs, human breast tumor-bearing immunodeficient mice were used.Results: QDs were found to be nontoxic to MSCs in concentrations no more than 16 nM. The uptake studies showed a rapid QD endocytosis followed by saturating effects after 6 h of incubation and intracellular localization in the perinuclear region. In vitro migration of MSCs toward MDA-MB-231 breast cancer cells and their conditioned medium was up to nine times greater than the migration toward noncancerous breast epithelial cells MCF-10A. In vivo, systemically administered QD-labeled MSCs were mainly located in the tumor and metastatic tissues, evading most healthy organs with the

  14. Inhibition of Neoplastic Transformation and Chemically-Induced Skin Hyperplasia in Mice by Traditional Chinese Medicinal Formula Si-Wu-Tang

    Directory of Open Access Journals (Sweden)

    Mandy M. Liu

    2017-03-01

    Full Text Available Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT, comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women’s diseases. In our previous studies, the antioxidant Nrf2 pathways were strongly induced by SWT in vitro and in vivo. Since Nrf2 activation has been associated with anticarcinogenic effects, the purpose of this study is to evaluate SWT’s activity of cancer prevention. In the Ames test, SWT demonstrated an antimutagenic activity against mutagenicity induced by the chemical carcinogen 7,12-dimethylbenz(aanthracene (DMBA. In JB6 P+ cells, a non-cancerous murine epidermal model for studying tumor promotion, SWT inhibited epidermal growth factor (EGF-induced neoplastic transformation. The luciferase reporter gene assays demonstrated that SWT suppressed EGF-induced AP-1 and TNF-α-induced NF-κB activation, which are essential factors involved in skin carcinogenesis. In a DMBA-induced skin hyperplasia assay in ‘Sensitivity to Carcinogenesis’ (SENCAR mice, both topical and oral SWT inhibited DMBA-induced epidermal hyperplasia, expression of the proliferation marker Proliferating cell nuclear antigen (PCNA, and H-ras mutations. These findings demonstrate, for the first time, that SWT prevents tumor promoter and chemical-induced carcinogenesis in vitro and in vivo, partly by inhibiting DNA damage and blocking the activation of AP-1 and NF-κB.

  15. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    International Nuclear Information System (INIS)

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Pandey, Haushila P.; Das, Mukul

    2014-01-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [ 3 H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF

  16. An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice.

    Science.gov (United States)

    Wang, Hui; Zhang, Jia-xiang; Li, Shu-long; Wang, Feng; Zha, Wan-sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-xing

    2015-01-01

    Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization. © The Author(s) 2015.

  17. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Science.gov (United States)

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  18. Differential gene expression between skin and cervix induced by the E7 oncoprotein in a transgenic mouse model

    Science.gov (United States)

    Ibarra Sierra, E; Díaz Chávez, J; Cortés-Malagón, EM; Uribe-Figueroa, L; Hidalgo-Miranda, A; Lambert, PF; Gariglio, P

    2013-01-01

    HPV16 E7 oncoprotein expression in K14E7 transgenic mice induces cervical cancer after 6 months of treatment with the co-carcinogen 17β-estradiol. In untreated mice, E7 also induces skin tumors late in life albeit at low penetrance. These findings indicate that E7 alters cellular functions in cervix and skin so as to predispose these organs to tumorigenesis. Using microarrays, we determined the global genes expression profile in cervical and skin tissue of young adult K14E7 transgenic mice without estrogen treatment. In these tissues, the E7 oncoprotein altered the transcriptional pattern of genes involved in several biological processes including signal transduction, transport, metabolic process, cell adhesion, apoptosis, cell differentiation, immune response and inflammatory response. Among the E7-dysregulated genes were ones not previously known to be involved in cervical neoplasia including DMBT1, GLI1 and 17βHSD2 in cervix, as well as MMP2, 12, 14, 19 and 27 in skin. PMID:22980503

  19. Dramatic response to nivolumab in xeroderma pigmentosum skin tumor.

    Science.gov (United States)

    Chambon, Fanny; Osdoit, Sophie; Bagny, Kelly; Moro, Anne; Nguyen, Jacqueline; Réguerre, Yves

    2018-02-01

    We report the case of a 6-year-old female with xeroderma pigmentosum (XP) who developed a nonoperable scalp tumor, treated with anti-programmed cell death protein 1 (anti-PD-1) therapy (nivolumab). She presented with a sarcomatoid carcinoma of the scalp with bone lysis as well as vascular and meningeal contact. Nivolumab was initiated because it has emerged as a promising immunotherapy. We observed a dramatic tumor response with excellent tolerance. However, while on nivolumab therapy she developed two large skin melanomas and several squamous cell carcinomas, which have been resected. These results demonstrate that cancer immunotherapy in patients with XP can be impressive but complex and warrants further investigation. © 2017 Wiley Periodicals, Inc.

  20. Erlotinib-induced rash spares previously irradiated skin

    International Nuclear Information System (INIS)

    Lips, Irene M.; Vonk, Ernest J.A.; Koster, Mariska E.Y.; Houwing, Ronald H.

    2011-01-01

    Erlotinib is an epidermal growth factor receptor inhibitor prescribed to patients with locally advanced or metastasized non-small cell lung carcinoma after failure of at least one earlier chemotherapy treatment. Approximately 75% of the patients treated with erlotinib develop acneiform skin rashes. A patient treated with erlotinib 3 months after finishing concomitant treatment with chemotherapy and radiotherapy for non-small cell lung cancer is presented. Unexpectedly, the part of the skin that had been included in his previously radiotherapy field was completely spared from the erlotinib-induced acneiform skin rash. The exact mechanism of erlotinib-induced rash sparing in previously irradiated skin is unclear. The underlying mechanism of this phenomenon needs to be explored further, because the number of patients being treated with a combination of both therapeutic modalities is increasing. The therapeutic effect of erlotinib in the area of the previously irradiated lesion should be assessed. (orig.)

  1. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    Science.gov (United States)

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  2. Influence of low-energy laser radiation on normal skin and certain tumor tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, S.D.; Karpenko, O.M.

    For some years, the authors' Institute has studied the influence of various types of low-energy laser radiation on normal tissue and the growth of tumors. Radiation at 3 and 30 J/cm/sup 2/ causes an increase in biological activity of various cell elements, manifested as an increase in mitotic activity of the cells in the basal layer of the epidermis, conglomeration of chromatin in the cell nuclei and an increase in degranulation of fat cells in the process of their migration to the reticular layer. Also noted was an increase in content of fibroblastic and lymphohistocytic elements in the dermis, as well as an increase in collagenization of connective tissue. It was found that irradiation of the skin by helium-neon, cadmium-helium and nitrogen lasers before and after grafting of the cells of various tumors modifies the course of the tumor process. This effect is apparently related to the fact that systematic irradiation results in changes creating a favorable background for survival and proliferation of tumor cells in the skin tissue medium. The changes facilitate an increase in survival and growth of both pigmented and nonpigmented tumors. Low power radiation stimulates the activity of the cells or cell structures; medium power stimulates their activity; high power suppresses activity.

  3. Possibilities of the reduction of a dose of metronidazole during irradiation of tumor with subsequent induced hyperglycemia

    International Nuclear Information System (INIS)

    Vinskaya, N.P.; Voloshina, E.A.; Kozin, S.V.

    1989-01-01

    The therapeutic efficacy of a scheme of polyradiomodification with metronidazole (MZ) administration was investigated in experiments on mice with Ehrlich carcinoma before local irradiation of tumors and with subsequent induced hyperglycemia (IH) depending on a MZ dose. For equally effective potentiation of the effect of radiation on a tumor during a combined use of MZ and postradiation IH a 4-fold lower dose of the drug was required as combined to MZ used alone. The combined effect of the modifiers was superadditive. The use of IH in this scheme not only potentiated skin radiation reactions on a tumor growth zone but also slighly weakened their expression

  4. Clear cell hidradenocarcinoma of the breast: a very rare breast skin tumor.

    Science.gov (United States)

    Mezzabotta, Maurizio; Declich, Paolo; Cardarelli, Mery; Bellone, Stefano; Pacilli, Paolo; Riggio, Eliana; Pallino, Antonio

    2012-01-01

    Hidradenocarcinoma is an uncommon malignant intradermal tumor of sweat gland origin with a predilection for the face and extremities. It is encountered equally in males and females, usually in the second half of life. These tumors tend to be locally aggressive. In our case, the tumor was located relatively superficially but without any apparent connection to the overlying skin. The typical disease course includes local and sometimes multiple recurrences, and some patients develop regional lymph node and distant metastases. These type of tumors in the parenchyma of the breast are extremely rare. We report a case of hidradenocarcinoma in a 77-year-old woman who presented with a palpable inflammatory nodule in the right breast.

  5. Photocarcinogenesis and Skin Cancer Prevention Strategies.

    Science.gov (United States)

    Seebode, Christina; Lehmann, Janin; Emmert, Steffen

    2016-03-01

    In this review the basic principles of UV-induced carcinogenesis are summarized and the state of the art diagnosis and therapeutic strategies are discussed. The prevalent keratinocyte-derived neoplasms of the skin are basal cell and squamous cell carcinomas. Cutaneous melanoma is less frequent but associated with high mortality. Common risk factors for all three tumor entities include sun exposure and DNA-repair deficiencies. Photocarcinogenesis follows a multistep model of cancer development in which ultraviolet-induced DNA damage leads to mutations resulting in activation of oncogenes or silencing of tumor-suppressor genes. This ends in a cellular mutator phenotype even more prone to mutation acquisition. DNA repair, especially the nucleotide excision repair (NER) pathway, counteracts mutation formation and skin cancer development. This is vividly demonstrated by the NER-defective disorder xeroderma pigmentosum. Primary skin cancer preventative strategies, therefore, include reduction of DNA photodamage by protection from the sun. Secondary preventative strategies include skin cancer screening. This implies standard examination techniques with the naked eye, an epiluminescence microscope, or digital epiluminescence microscopy. More advanced techniques include confocal laser scan microscopy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    Science.gov (United States)

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  7. Radiation-induced cancer in Japan

    International Nuclear Information System (INIS)

    Yamashita, Shoji; Sekizuka, Eiichi; Yamashita, Hisao; Takami, Akira; Kubo, Atsushi

    2001-01-01

    Results of two questionnaire surveys on radiation-induced malignant tumors conducted in 1977 and 1984 in Japan are briefly summarized. A total of 234 universities and general hospitals (139 in 1977, and 95 in 1984) responded and provided data from 1945 to 1977 and from 1978 to 1984. The number of patients with benign disease who developed secondary malignant tumors following radiation therapy was 150 in the first survey (1977) and 86 in the second survey (1984). The underlying benign diseases of these patients included tuberculous lymphadenitis, skin disease, hemangioma, and thyroid disease, and the most frequent radiation-induced malignant tumors in these patients were malignant tumors of the pharynx (80), cancer of the larynx (26), malignant tumors of the thyroid gland (22), cancer of the esophagus (219), and skin cancer (21). In patients with head and neck diseases the highest correlation between underlying benign disease and radiation-induced malignant tumors was between cervical tuberculous lymphadenitis and tumors of the pharynx (67 patients), followed by cancer of the larynx (19), and malignant tumors of the thyroid gland (11). There were also correlations between thyroid disease and malignant tumors of the thyroid gland (8 patients), hemangioma and skin cancer (7), and skin disease and skin cancer (8). The ratio of the observed values to predicted values (O/E ratio) in these patients was highest for cancer of the pharynx (118), followed by cancer of the parotid gland (42), skin cancer (31), cancer of the esophagus (22), malignant tumors of the thyroid gland (21), and cancer of the larynx (16). The number of patients with malignant tumors who developed secondary malignant tumors following radiation therapy was 140 in 1977 and 108 in 1984, and the underlying malignant tumors in these patients included tumors of the uterus (106), breast (32), and head and neck (80). The most frequent secondary malignant tumors were soft tissue tumors, followed by leukemia, and

  8. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  9. Studies on the tumor initiation/promotion potential of six middle distillates (MDs) in mouse skin.

    Science.gov (United States)

    Jungen, H; Mellert, W; Wenzel-Hartung, R

    1995-08-01

    Six middle distillates (MDs) were tested for tumor initiating/promoting activity after application to the skin of 30 male CD-1 (ICR) BR mice per group. As the control, 7,12-dimethylbenz[a]-anthracene (DMBA) was used for initiation followed by 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion. For assessing the tumor-initiating activity, 50 microliters of neat MDs was administered for 5 days with subsequent TPA promotion. In the promotion bioassay, after DMBA initiation 50 microliters of the neat MDs was administered twice weekly until Week 28. For the examination of complete carcinogenic activity, one MD was given without DMBA initiation. Hyperkeratosis, hyperplasia, and dermal inflammation, occurring during the initiation with the MDs, were completely reversible during the 2-week treatment-free period after initiation. Similar skin findings were observed during promotion with the MDs. Regarding the number of affected animals and the severity of the response, TPA was more irritating than the MDs. The initiation study revealed skin tumors for the DMBA/TPA control (30/30), MD 57,389 (14/30), MD 57,396 (5/30), MD 57,383 (4/30) and MD 57,324 (2/30). The promotion study revealed tumor induction by MDs 57,389 (9/30), 57,324 (1/30), 57,393 (1/30), and 57,396 (1/30). Two of 30 animals treated with MD 57,389 developed tumors without DMBA initiation thus indicating that it also is a complete carcinogen. MD 57,399 caused neither initiating nor promoting effects. The tumors observed were diagnosed histopathologically predominantly as squamous cell papillomas.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Caffeine decreases phospho-Chk1 (Ser317) and increases mitotic cells with cyclin B1 and caspase 3 in tumors from UVB-treated mice.

    Science.gov (United States)

    Lu, Yao-Ping; Lou, You-Rong; Peng, Qing-Yun; Nghiem, Paul; Conney, Allan H

    2011-07-01

    Oral administration of caffeine to mice inhibits UVB-induced carcinogenesis, and these results are paralleled by epidemiology studies indicating that caffeinated coffee and tea intake (but not decaffeinated beverage intake) is associated with decreased incidence of nonmelanoma skin cancer. Topical applications of caffeine to the skin of SKH-1 mice that had previously been treated with UVB inhibited subsequent skin tumor development and stimulated apoptosis in tumors but not in nontumor areas of the epidermis. This study sought to determine the basis of these differential effects on tumor versus nontumor sites that can be induced by caffeine, long after all UVB treatment has ceased. The activation status of the ATR/Chk1 pathway in UVB-induced tumors and uninvolved skin was determined by quantitating phospho-Chk1 (Ser317) and induction of lethal mitosis in vivo in the presence and absence of topical caffeine treatment. In the absence of caffeine, we found that UVB-induced tumors often had islands of phospho-Chk1 (Ser317) staining cells that were not present in nontumor areas of the epidermis. Treatment of mice with topical caffeine significantly diminished phospho-Chk1 (Ser317) staining and increased the number of mitotic cells that expressed cyclin B1 and caspase 3 in tumors, consistent with caffeine-induced lethal mitosis selectively in tumors. We hypothesize that compared with adjacent uninvolved skin, UVB-induced skin tumors have elevated activation of, and dependence on, the ATR/Chk1 pathway long after UVB exposure has ceased and that caffeine can induce apoptosis selectively in tumors by inhibiting this pathway and promoting lethal mitosis.

  11. Effect of hyperthermia on epithelial microneoplastic cell populations induced by irradiation of rat skin

    International Nuclear Information System (INIS)

    Gragtmans, N.J.; McGregor, J.F.

    1983-01-01

    Two groups of male rats of the Charles River CD stock received a dose of 1,600 rad beta-radiation (700 rad/min) on the skin of the dorsum. Two months later, the site of irradiation of one of the groups was treated with hyperthermia at 44 degrees C for 2.5 minutes. A third control group received only the hyperthermic treatment. Over 90% of the animals in the 2 irradiated groups developed skin tumors (benign and malignant epithelial) at the irradiated site. There was no significant difference between these 2 groups in incidence of animals with tumors, incidence of tumors, distribution of tumor types, or rate of tumor appearance. The incidence of animals with tumors in the control group was less than 4% at any time

  12. Origin of malignant tumors of the upper respiratory and digestive tracts and the ear. Pt. 4. Malignant tumors caused by irradiation. B. Special part

    Energy Technology Data Exchange (ETDEWEB)

    Leicher, H [Mainz Univ. (Germany, F.R.). Hals-, Nasen- und Ohrenklinik

    1979-12-01

    The problem of radiation induced tumors is explained in detail in the following chapters: 1. Malignant tumors in dial painters using luminous paint, 2. Malignant tumors after injection of Thorotrast, 3. Bronchial tumors in Uran-mineworkers, 4. Malignant tumors caused by radium-compresses and radium-moulages, 5. Thyroid cancer caused by irradiation, 6. Leukemia and malignant tumors following the atomic bomb detonation in Hiroshima and Nakasaki, 7. Malignant tumors in Lupus vulgaris, 8. Development of malignant tumors following the irradiation of praecancerous alterations, of benign tumors and other benign changes in head and neck, 9. Radiation induced soft-tissue and bone sarcoma in the skull, 10. Radiation-induced cancers in hypopharynx diverticula, 11. Radiation-induced cancers in the antethoracic skin graft esophagus, 12. Radiation-induced second-tumors, 13. Cancer caused by ultraviolet rays, 14. Increase of hematogenic metastases by irradiation. 15. Malignant tumors caused by irradiation of the fetus in utero.

  13. Radionuclide therapy of skin cancers and Bowen's disease using specially designed skin patch: A pilot study in an animal model and clinical trial

    International Nuclear Information System (INIS)

    Lee, J. D.; Park, K. K.; Lee, M. G.; Lee, J. T.; Yoo, H. S.; Kim, E. H.; Rhim, K. J.; Kim, Y. M.; Park, K. B.; Kim, J. R.

    1997-01-01

    Skin cancer is the most common malignant tumors in human. Therapeutic modalities of the skin cancers are local destruction, radiotherapy and surgery. External radiation therapy leads to good results, however, overall 5-6 weeks of treatment period is needed to deliver optimal radiation dose to tumors. In this study, β-emitting radionuclide, Ho-166, impregnated in a specially designed patch was utilized to superficial skin cancers and Bowen's disease for local irradiation. Methods; Animal study was employed in 10 mice with chemically induced skin tumors. Five- mm size patches containing 22.2 -72.15 MBq(0.6 - 1.95 mCi) of Ho-166 were applied to the tumor surface for 1 -2 hr. In clinical trial, patients with squamous carcinoma(n=3), basal cell carcinoma(n=1), and Bowen's disease(n=1) were treated with patches containing 273.8 - 999 MBq (7.4 - 27 mCi) of Ho-166 for 30 minutes to 1 hour. Pathologic examination was performed 4 - 7 weeks after the treatment in animal model. Skin biopsy was performed 8 weeks post-treatment in four patients. Results; Tumor destruction was seen 1 week post the treatment, however, radiation dermatitis or ulceration developed at the site of radionuclide application. Those reactions healed gradually with fibrosis or epithelialization, which was confirmed pathologically. No significant adverse reaction to radiation except subcutaneous fibrosis was found. Conclusion; Superficial skin tumors could be successfully treated by topical application of β-emitting radionuclides. (author)

  14. Prospective evaluation of radiation-induced skin toxicity in a race/ethnically diverse breast cancer population

    International Nuclear Information System (INIS)

    Wright, Jean L.; Takita, Cristiane; Reis, Isildinha M.; Zhao, Wei; Lee, Eunkyung; Nelson, Omar L.; Hu, Jennifer J.

    2016-01-01

    We evaluated predictors of radiation-induced skin toxicity in a prospective study of a tri-racial/ethnic breast cancer population. We evaluated patient demographics, tumor characteristics, and treatment variables in the first 392 patients in a prospective study assessing radiation-induced skin toxicity. Logistic regression analyses were conducted to evaluate potential predictors of skin toxicity. The study consists of 59 non-Hispanic whites (NHW; 15%), 241 Hispanic Whites (HW; 62%), 79 black or African Americans (AA; 20%), and 13 others (3%). Overall, 48% developed grade 0–1 skin toxicity, 49.8% grade 2, and 2.2% grade 3 by the National Cancer Institute's Common Toxicity Criteria for Adverse Events (CTCAE) scale. Twenty-one percent developed moist desquamation. In multivariate analysis, higher body mass index (BMI; OR = 2.09; 95%CI = 1.15, 3.82), higher disease stage (OR = 1.82; 95%CI = 1.06, 3.11), ER-positive/PR-negative status (OR = 2.74; 95%CI = 1.26, 5.98), and conventionally fractionated regimens (OR = 3.25; 95%CI = 1.76, 6.01) were significantly associated with higher skin toxicity grade after adjustment for age, race, ethnicity, ER status, and breast volume. BMI specifically predicted for moist desquamation, but not degree of erythema. In this racially and ethnically diverse cohort of breast cancer patients receiving radiation to the intact breast, risk factors including BMI, disease stage, and conventionally fractionated radiation predicted for higher skin toxicity grade, whereas age, race, ethnicity, and breast volume did not. BMI specifically predicted for moist desquamation, suggesting that preventive measures to address this particular outcome should be investigated

  15. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  16. Salient points in reconstruction of nasal skin after tumor ablation with local flaps

    Directory of Open Access Journals (Sweden)

    Ali Ebrahimi

    2016-01-01

    Full Text Available Objective: A variety of nasal skin reconstruction methods are available to meet the esthetic patient's needs. In this article, we review some of modifications of these procedures and share our experience in reconstruction of different parts of the nasal skin following skin tumor ablation. Patients and Methods : From January 2010 to January 2014, 171 patients underwent nasal skin reconstruction after excising cancerous lesions of the involved nasal skin. The patient's history, pre- and post-operation photographs, and the surgery data were collected and assessed. Demographic data related to the type of cancer, defect size and location, type of reconstruction were collected. Results: A variety of local flaps were used based on location and defect features. Nearly all flaps healed primarily without postsurgical significant complications. Conclusion: According to the results and the outcomes of the operations, we concluded that a certain flaps are more effective than others in nasal skin reconstruction. Local flap reconstruction of the nose has good esthetic result with low complication rate.

  17. Radiolabeled F(ab')2-cetuximab for theranostic purposes in colorectal and skin tumor-bearing mice models.

    Science.gov (United States)

    Bellaye, P-S; Moreau, M; Raguin, O; Oudot, A; Bernhard, C; Vrigneaud, J-M; Dumont, L; Vandroux, D; Denat, F; Cochet, A; Brunotte, F; Collin, B

    2018-05-17

    This study aimed to investigate theranostic strategies in colorectal and skin cancer based on fragments of cetuximab, an anti-EGFR mAb, labeled with radionuclide with imaging and therapeutic properties, 111 In and 177 Lu, respectively. We designed F(ab') 2 -fragments of cetuximab radiolabeled with 111 In and 177 Lu. 111 In-F(ab') 2 -cetuximab tumor targeting and biodistribution were evaluated by SPECT in BalbC nude mice bearing primary colorectal tumors. The efficacy of 111 In-F(ab') 2 -cetuximab to assess therapy efficacy was performed on BalbC nude mice bearing colorectal tumors receiving 17-DMAG, an HSP90 inhibitor. Therapeutic efficacy of the radioimmunotherapy based on 177 Lu-F(ab') 2 -cetuximab was evaluated in SWISS nude mice bearing A431 tumors. Radiolabeling procedure did not change F(ab') 2 -cetuximab and cetuximab immunoreactivity nor affinity for HER1 in vitro. 111 In-DOTAGA-F(ab') 2 -cetuximab exhibited a peak tumor uptake at 24 h post-injection and showed a high tumor specificity determined by a significant decrease in tumor uptake after the addition of an excess of unlabeled-DOTAGA-F(ab') 2 -cetuximab. SPECT imaging of 111 In-DOTAGA-F(ab') 2 -cetuximab allowed an accurate evaluation of tumor growth and successfully predicted the decrease in tumor growth induced by 17-DMAG. Finally, 177 Lu-DOTAGA-F(ab') 2 -cetuximab radioimmunotherapy showed a significant reduction of tumor growth at 4 and 8 MBq doses. 111 In-DOTAGA-F(ab') 2 -cetuximab is a reliable and stable tool for specific in vivo tumor targeting and is suitable for therapy efficacy assessment. 177 Lu-DOTAGA-F(ab') 2 -cetuximab is an interesting theranostic tool allowing therapy and imaging.

  18. The role of natural and UV-induced skin pigmentation on low-fluence IPL-induced side effects

    DEFF Research Database (Denmark)

    Thaysen-Petersen, Daniel; Lin, Jennifer Y; Nash, Jf

    2014-01-01

    BACKGROUND AND OBJECTIVES: The risk of adverse skin effects following light-based hair removal is greater in pigmented skin based on the theory of selective photothermolysis. Thus sunlight-induced pigment i.e., facultative pigmentation, increases the risk of adverse skin effects, perhaps dispropo...... pigmentation regardless of the origin, i.e., constitutive versus UV induced....

  19. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaojun [The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Park, Eunmi [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Fischer, Susan M. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78967 (United States); Hu, Yinling, E-mail: huy2@mail.nih.gov [Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701 (United States)

    2013-02-15

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.

  20. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Xia, Xiaojun; Park, Eunmi; Fischer, Susan M.; Hu, Yinling

    2013-01-01

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside

  1. Flavonols Protect Against UV Radiation-Induced Thymine Dimer Formation in an Artificial Skin Mimic.

    Science.gov (United States)

    Maini, Sabia; Fahlman, Brian M; Krol, Ed S

    2015-01-01

    Exposure of skin to ultraviolet light has been shown to have a number of deleterious effects including photoaging, photoimmunosuppression and photoinduced DNA damage which can lead to the development of skin cancer. In this paper we present a study on the ability of three flavonols to protect EpiDerm™, an artificial skin mimic, against UV-induced damage. EpiDerm™ samples were treated with flavonol in acetone and exposed to UVA (100 kJ/m(2) at 365 nm) and UVB (9000 J/m(2) at 310 nm) radiation. Secretion of matrix metalloproteinase-1 (MMP-1) and tumor necrosis factor-α (TNF-a) were determined by ELISA, cyclobutane pyrimidine dimers were quantified using LC-APCI-MS. EpiDerm™ treated topically with quercetin significantly decreased MMP-1 secretion induced by UVA (100 µM) or UVB (200 µM) and TNF-a secretion was significantly reduced at 100 µM quercetin for both UVA and UVB radiation. In addition, topically applied quercetin was found to be photostable over the duration of the experiment. EpiDerm™ samples were treated topically with quercetin, kaempferol or galangin (52 µM) immediately prior to UVA or UVB exposure, and the cyclobutane thymine dimers (T-T (CPD)) were quantified using an HPLC-APCI MS/MS method. All three flavonols significantly decreased T-T (CPD) formation in UVB irradiated EpiDerm™, however no effect could be observed for the UVA irradiation experiments as thymine dimer formation was below the limit of quantitation. Our results suggest that flavonols can provide protection against UV radiation-induced skin damage through both antioxidant activity and direct photo-absorption. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  2. Safety considerations to avoid current-induced skin burns in MRI

    International Nuclear Information System (INIS)

    Knopp, M.V.; Metzner, R.; Kaick, G. van; Brix, G.; Bundesamt fuer Strahlenschutz, Oberschleissheim

    1998-01-01

    The safety aspects of radiological methods continue to evolve. In this paper we report on two cases of skin burns in MRI caused by induced electrical current. A second- and a third-degree skin burn occurred during imaging in a 1.5 T system. The electromagnetic radiofrequency field inadvertently led to electrical currents caused by a conducting loop through the extremities and trunk. Skin burns induced by electrical current may occur in extremely rare cases even with standard MR imaging protocols operating within all current safety guidelines by inadvertently forming a closed conducting loop. By avoiding focal skin to skin contact of the extremities, this extremely rare adverse event can be avoided. (orig.) [de

  3. Radiation induced skin cancer the chest wall 30 years later from breast cancer operation

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kouji; Togawa, Tamotsu; Hasegawa, Takeshi; Matsunami, Hidetoshi; Ikeda, Tsuneko [Matsunami General Hospital, Kasamatsu, Gifu (Japan); Matsuo, Youichi

    1998-10-01

    This paper describes the skin cancer on the frontal chest wall induced by postoperative irradiation 30 years later from mastectomy. The patients was a 62-year-old woman, who received mastectomy of the right breast cancer (invasive ductal carcinoma, comedo type) at 31 years old, and received the postoperative radiotherapy of total 11,628 rad over 38 times. On the first medical examination in author`s hospital, the patient had an ulcer of about 10 cm diameter and was diagnosed the radiation induced skin cancer (well differentiated squamous cell carcinoma) in the biopsy. Because of the general condition of the patient was extremely bad and the skin cancer had highly developed, the excision was thought to be impossible. The radiotherapy (16 Gy) and combined local chemotherapy by OK 432 and Bleomycin were performed. In spite of the short term treatment, these therapies were effective on the reduction of the tumor size and the hemostasis, and brought the patient the improvement of QOL. The general condition of the patient improved to be stable and she recovered enough to go out from the hospital for 6 months. After 10 months, she showed anorexia and dyspnea and died after about 1 year from the admission. The present case is extremely rare, and it is required the radical therapy like the excision of chest wall at early stage. (K.H.)

  4. The abdominal skin of female Sprague-Dawley rats is more sensitive than the back skin to drug-induced phototoxicity.

    Science.gov (United States)

    Kuga, Kazuhiro; Yasuno, Hironobu; Sakai, Yumi; Harada, Yumiko; Shimizu, Fumi; Miyamoto, Yumiko; Takamatsu, Yuki; Miyamoto, Makoto; Sato, Keiichiro

    2017-11-01

    In vivo phototoxicity studies are important to predict drug-induced phototoxicity in humans; however, a standard methodology has not established. To determine differences in sensitivity to drug-induced phototoxicity among various skin sites, we evaluated phototoxic reactions in the back and abdominal skin of female Sprague-Dawley rats orally dosed with phototoxic drugs (pirfenidone, 8-methoxysoraren, doxycycline, and lomefloxacin) or a non-phototoxic drug (gatifloxacin) followed by solar-simulated light irradiation comprising 18J/cm 2 ultraviolet A. Tissue reactions were evaluated by macroscopic and microscopic examination and immunohistochemistry for γ-H2AX, and tissue concentrations of pirfenidone, doxycycline, and lomefloxacin were measured by tandem mass spectrometry. In addition, the thicknesses of the skin layers at both sites were measured in drug-naïve rats. The abdominal skin showed more severe reactions to all phototoxic drugs than the back skin, whereas the minimal erythema dose in drug-naïve rats and skin concentrations of each drug were comparable between the sites. Furthermore, histopathological lesions and γ-H2AX-positive cells in the abdominal skin were detected in deeper layers than in the back skin. The stratum corneum and dermis in the abdominal skin were significantly thinner than in the back skin, indicating a difference in the depth of light penetration and potentially contributing to the site differences observed in sensitivity to phototoxicity. Gatifloxacin did not induce any phototoxic reactions at either site. In conclusion, the abdominal skin is more sensitive to drug-induced phototoxicity than the back skin and may represent a preferable site for irradiation in this rat phototoxicity model. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Radiotherapy-Induced Skin Reactions Induce Fibrosis Mediated by TGF-β1 Cytokine

    Directory of Open Access Journals (Sweden)

    Cherley Borba Vieira de Andrade

    2017-04-01

    Full Text Available Purpose: This study aimed to investigate radiation-induced lesions on the skin in an experimental animal model. Methods and Materials: Cutaneous wounds were induced in Wistar rats by 4 MeV energy electron beam irradiation, using a dose rate of 240 cGy/min, for 3 different doses (10 Gy, 40 Gy, and 60 Gy. The skin was observed 5, 10, and 25 days (D after ionizing radiation exposition. Results: Infiltrate inflammatory process was observed in D5 and D10, for the 40 Gy and 60 Gy groups, and a progressive increase of transforming growth factor β1 is associated with this process. It could also be noted a mischaracterization of collagen fibers at the high-dose groups. Conclusion: It was observed that the lesions caused by ionizing radiation in rats were very similar to radiodermatitis in patients under radiotherapy treatment. Advances in Knowledge: This study is important to develop strategies to prevent radiation-induced skin reactions.

  6. Analysis of 3D OCT images for diagnosis of skin tumors

    Science.gov (United States)

    Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.; Khramov, Alexander G.

    2018-04-01

    Skin cancer is one of the fastest growing type of cancer. It represents the most commonly diagnosed malignancy, surpassing lung, breast, colorectal and prostate cancer. So, diagnostics for different types of skin cancer on early stages is a very high challenge for medicine industry. New optical imaging techniques have been developed in order to improve diagnostics precision. Optical coherence tomography (OCT) is based on low-coherence interferometry to detect the intensity of backscattered infrared light from biological tissues by measuring the optical path length. OCT provides the advantage of real-time, in vivo, low-cost imaging of suspicious lesions without having to proceed directly to a tissue biopsy. The post-processing techniques can be used for improving the precision of diagnostics and providing solutions to overcome limitations for OCT. Image processing can include noise filtration and evaluation of textural, geometric, morphological, spectral, statistic and other features. The main idea of this investigation is using information received from multiple analyze on 2D- and 3D-OCT images for skin tumors differentiating. At first, we tested the computer algorithm on OCT data hypercubes and separated B- and C-scans. Combination of 2D and 3D data give us an opportunity to receive common information about tumor (geometric and morphological characteristics) and use more powerful algorithms for features evaluation (fractal and textural) on these separated scans. These groups of features provide closer connection to classical wide-used ABCDE criteria (Asymmetry, Border irregularity, Color, Diameter, Evolution). We used a set of features consisting of fractal dimension, Haralick's, Gabor's, Tamura's, Markov random fields, geometric features and many others. We could note about good results on the test sets in differentiation between BCC and Nevus, MM and Healthy Skin. We received dividing MM from Healthy Skin with sensitivity more 90% and specificity more 92% (168 B

  7. A case grafted with polyglycolic acid sheets and fibrin glue for protection after temporary resection of a metastatic cervical skin tumor.

    Science.gov (United States)

    Matsuzuka, Takashi; Suzuki, Masahiro; Ikeda, Masakazu; Sato, Kaoru; Fujimoto, Junko; Hosaka, Rumi; Tanji, Yuko; Soeda, Shu; Murono, Shigeyuki

    2018-04-01

    The aim of this case report was to evaluate the usefulness of a grafting with polyglycolic acid sheet and a fibrin glue spray (PGA sheet grafting) after resection of a cervical skin tumor. A 61-year-old woman presented with left cervical skin tumor resistance to chemo-radiotherapy. She had been undergoing multimodal therapy for ovarian serous papillary adenocarcinoma for the previous six years. Although she had a poor general condition and a cervical skin tumor of 9cm in diameter, which was painful and easy bleeding, had offensive smell, she hoped to return to her job. Under local anesthesia, resection was performed, and PGA sheet grafting were used to shield the skin defect. After resection, she was relieved from pain, and could stay home without daily wound treatment. One and half months after resection, the wound was almost epithelialized. The PGA sheets consist of soft, elastic, nonwoven fabric made of PGA. In recent years, PGA sheet grafting has been widely used in the reconstruction and was chosen to shield the skin defect for this case. PGA sheet grafting after resection of cervical skin tumor can be an acceptable method for palliative care to relieve pain, bleeding, offensive smell, and ugly appearance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  9. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Science.gov (United States)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. PMID:25560673

  10. Effect of heme oxygenase-1 on radiation-induced skin injury

    International Nuclear Information System (INIS)

    Song Chuanjun; Meng Xingjun; Xie Ling; Chen Qing; Zhou Jundong; Zhang Shuyu; Wu Jinchang

    2012-01-01

    Objective: To investigate the effect of heme oxygenase-1 (HO-1) on the acute radiation-induced skin injury by gene transfer. Methods: Thirty-three male SD rats were randomly divided into three groups as PBS-injected group, Ad-EGFP-injected group and Ad-HO-1-injected group (n=11). In each group, three rats were used for determining the expression of target gene and the other rats were irradiated on the buttock skin with 40 Gy electron beam generated by a linear accelerator. Immediately after irradiation, rats were administered with a subcutaneous injection of PBS, Ad-EGFP or Ad-HO-1, respectively. Subsequently, the skin reactions were measured twice a week using the semi-quantitative skin injury scale. Results: The strong positive expression of HO-1 was observed in subcutaneous dermal tissue after injection of Ad-HO-1. Compared to the PBS-injected group or the Ad-EGFP-injected group, a significant mitigation of skin injury was observed in Ad-HO-1-injected mice 14 d after irradiation (q=0.000-0.030, P<0.05). Conclusions: HO-1 could significantly mitigate radiation-induced acute skin injury and Ad-HO-1 could be used to treat radiation-induced skin injury. (authors)

  11. Experimental skin carcinoma by UVB application

    Directory of Open Access Journals (Sweden)

    Andrada Iftode

    2016-12-01

    Full Text Available OBJECTIVES AND BACKGROUND The aim of this research study was to evaluate the harmful effects at skin level induced by concomitant and repeated exposure to three toxic agents: UVB radiation, DMBA and TPA. MATERIALS AND METHODS Experimental mice were divided in thw following groups (n=5 mice/group: group 1 – healthy mice, group 2 – mice exposed to UVB – radiation and topical administration of acetone and group 3 – mice exposed to UVB – radiation and topical application of DMBA and TPA solutions (phase I - double tumor initiation and phase II - tumor promotion. RESULTS Application of these compounds led to the development of skin papilloma and to significant changes in skin parameters. CONCLUSIONS The barrier function of the skin was degraded in UVB exposed mice. DMBA and TPA depended on carcinogens schedule and corelated with skin carcinoma. Graphical abstract: Schematic protocol of experimental skin carcinoma REFERENCES 1. Lee Ja, Ko Jh, Jung Bg, Kim Th, Hong Ji, Park Ys, Lee Bj. Fermented Prunus mume with Probiotics Inhibits 7,12- Dimethylbenz[a]anthracene and 12-OTetradecanoyl phorbol-13-acetate Induced Skin Carcinogenesis through Alleviation of Oxidative Stress. Asian Pac J Cancer Prev. 2013;14:2973-2978. 2. Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, NassiriKashani M, Naghizadeh MM, Dowlati Y. Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region. Scientific World Journal. 2012; doi.org/10.1100/2012/386936 3. Gheorgheosu (Coricovac D, Borcan F, Balasz NI, Soica C, Simu G, Kemeny L, Dehelean CA. Evaluation of skin parameters in C57BL/6J mice exposed to chemical and environmental factors using non-invasive methods. J Agroalim Proc Technol. 2014;20:14-20.

  12. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Sun Yang; Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm 2 ) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  13. Radiation-induced tumors of the nervous system

    International Nuclear Information System (INIS)

    Bernstein, M.; Laperriere, N.

    1991-01-01

    Therapeutic and nontherapeutic ionizing radiation has long been recognized as a putative carcinogenic agent, but the evidence that radiation causes tumors is circumstantial at worst and statistically significant at best. There are no distinct histological, biochemical, cytogenetic, or clinical criteria that can be used to determine if an individual tumor was caused directly by previous irradiation of the anatomic area. Additional supportive evidence for radiation-induced tumors includes a position correlation between radiation dose and tumor incidence (usually in the low dose range) and experimental induction of the same neoplasm in appropriate animal models. even if these criteria are fulfilled, coincidental development of a second tumor can never be discounted in an individual patient, particularly if there is an underlying diathesis to develop multiple tumors of different histology, such as in Recklinghausen's disease, or if there is an strong family history for the development of neoplastic disease. In this paper, the authors critically evaluate the available evidence to support the hypothesis that radiation induces tumors in the nervous system. The current concepts of radiation carcinogenesis are discussed and are followed by a discussion of animal data and clinical experience in humans. Finally, a brief discussion on treatment of radiation-induced nervous system tumors is presented

  14. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical–Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin

  15. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R 2 = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q 2 ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and

  16. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Orlicky, David J. [Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); White, Carl W. [Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@UCDenver.edu [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  18. Combination chemoprevention with diclofenac, calcipotriol and difluoromethylornithine inhibits development of non-melanoma skin cancer in mice

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2013-01-01

    Background/Aim: With increasing incidence of non-melanoma skin cancer (NMSC), focus on chemoprevention of this disease is growing. The aim of this study was to evaluate topical combination therapies as chemoprevention of UV radiation-induced tumors in a mouse model.......Background/Aim: With increasing incidence of non-melanoma skin cancer (NMSC), focus on chemoprevention of this disease is growing. The aim of this study was to evaluate topical combination therapies as chemoprevention of UV radiation-induced tumors in a mouse model....

  19. Protective molecular mechanisms of resveratrol in UVR-induced Skin carcinogenesis.

    Science.gov (United States)

    Aziz, Saba W; Aziz, Moammir H

    2018-01-01

    Skin cancer is a major health problem worldwide. It is the most common cancer in the United States and poses a significant healthcare burden. Excessive UVR exposure is the most common cause of skin cancer. Despite various precautionary measures to avoid direct UVR exposure, the incidence of skin cancer and mortality related to it remains high. Furthermore, the current treatment options are expensive and have side effects including toxicity to normal cells. Thus, a safe and effective approach is needed to prevent and treat skin cancer. Chemopreventive strategy using naturally occurring compounds, such as resveratrol, is a promising approach to reduce the incidence of UVR-induced skin cancer and delay its progression. This review highlights the current body of evidence related to chemopreventive role of resveratrol and its molecular mechanisms in UVR-induced skin carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Resveratrol anti-ultraviolet-induced guinea pig skin injury

    International Nuclear Information System (INIS)

    Li Wenxing; Zhao Ying

    2014-01-01

    Objective: To Estimate on the protection effect of Stilbene on skin damage induced by ultraviolet radiation. Methods: After the normal skin in guinea pig under the intervene of Resveratrol was irradiated with over- dose of ultraviolet rays (UVB and UVA), the samples in every group were matched and compared. Results: The skin tissue in the Resveratrol intervene group irradiated by ultraviolet rays didn't change obviously as compared with that in the self-control group. But, the damage skin tissue in the control group irradiated by ultraviolet did change significantly as compared with that in the Stilbene intervene group. Conclusion: Resveratrol is a good material to protect the skin from damage effect by ultraviolet radiation. (authors)

  1. Tumor-induced hypophosphatemic osteomalacia: Report of three cases

    International Nuclear Information System (INIS)

    Kim, Soh Hyun; Oh, Bong Hyun; Hnag, Eui Hwan; Lee, Sang Rae

    1995-01-01

    Tumor-induced hypophosphatemic osteomalacia has been rarely reported. The clinical and radiographic features of tumor-induced hypophosphatemic osteomalacia are similar to that of hyperparathyroidism, but it is distinguished from hyperparathyroidism on the basis of its different biochemical features, such as normal serum calcium concern tration, decreased serum phosphorus concentration, and elevated serum alkaline phosphatase level. The importance of laboratory features of the metabolic disease is emphasized. Since rescetion of a coexisting tumor without additional treatment lead to prompt a increase in serum phosphorous, recovery of clinical symptom, and remineralization of bone an accurate diagnosis should be established as quickly as possible. We have recently experienced three cases of tumor - induced hypophosphathemic osteomalacia. The clinical , radiographic, and laboratory features were dramatically improved after resection of coexisting tumors.

  2. Tumor-induced hypophosphatemic osteomalacia: Report of three cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soh Hyun; Oh, Bong Hyun; Hnag, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1995-02-15

    Tumor-induced hypophosphatemic osteomalacia has been rarely reported. The clinical and radiographic features of tumor-induced hypophosphatemic osteomalacia are similar to that of hyperparathyroidism, but it is distinguished from hyperparathyroidism on the basis of its different biochemical features, such as normal serum calcium concern tration, decreased serum phosphorus concentration, and elevated serum alkaline phosphatase level. The importance of laboratory features of the metabolic disease is emphasized. Since rescetion of a coexisting tumor without additional treatment lead to prompt a increase in serum phosphorous, recovery of clinical symptom, and remineralization of bone an accurate diagnosis should be established as quickly as possible. We have recently experienced three cases of tumor - induced hypophosphathemic osteomalacia. The clinical , radiographic, and laboratory features were dramatically improved after resection of coexisting tumors.

  3. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  4. Development of one control and one tumor-specific induced pluripotent stem cell line from laryngeal carcinoma patient

    Directory of Open Access Journals (Sweden)

    Yamin Zhang

    2017-12-01

    Full Text Available Skin fibroblasts and tumor fibroblasts were extracted from a 64-year old male patient clinically diagnosed with laryngeal carcinoma. Control and tumor specific induced pluripotent stem cells were reprogrammed with 5 reprogramming factors, Klf-4, c-Myc, Oct-4, Sox-2, and Lin-28, using the messenger RNA reprogramming system. The transgene-free iPSC lines showed pluripotency, confirmed by immunofluorescence staining. The iPSC lines also showed normal karyotype, and could form embryoid bodies in vitro and differentiate into the 3 germ layers in vivo. This in vitro cellular model can be used to study the oncogenesis and pathogenesis of laryngeal carcinoma.

  5. Usefulness of V-Y Advancement Flap for Defects after Skin Tumor Excision

    Directory of Open Access Journals (Sweden)

    Ki Hyun Kwon

    2012-11-01

    Full Text Available BackgroundAfter skin tumor excision on the face, extremities, or trunk, the choice of treatment for a skin defect is highly variable. Many surgeons prefer to use a local flap rather than a skin graft or free flap for small- or moderately-sized circular defects. We have used unilateral or bilateral V-Y advancement flaps, especially on the face. Here we evaluated the functional and aesthetic results of this technique.MethodsAll of the patients were pathologically diagnosed with squamous cell carcinoma (SCC, basal cell carcinoma (BCC, or malignant melanoma or premalignant lesion (Bowen's disease. Thirty-two patients underwent V-Y advancement flap repair (11 unilateral and 21 bilateral from January 2007 to June 2011. We analyzed the patients' age and satisfaction, and location and size of defect. The patients were followed up for 6 months or more.ResultsThere were 22 women and 10 men. The ages ranged from 47 to 93 years with a mean age of 66 years. The causes were SCC in 15 cases, BCC in 13 cases, malignant melanoma in 1 case, Bowen's disease in 2 cases, and another cause in 1 case. The tumor locations were the face in 28 patients, and the scalp, upper limb, and flank each in one patient. All of the flaps survived and the aesthetic results were good. Postoperative recovery was usually rapid, and no complication or tumor recurrence was observed.ConclusionsThe V-Y advancement flap is often used not only for facial circular defects but also for defects of the trunk and extremities. Its advantages are less scarring and superior aesthetic results as compared with other local flap methods, because of less scarification of adjacent tissue and because it is an easy surgical technique.

  6. Vascular thermal adaptation in tumors and normal tissue in rats

    International Nuclear Information System (INIS)

    Nah, Byung Sik; Choi, Ihl-Bohng; Oh, Won Young; Osborn, James L.; Song, Chang W.

    1996-01-01

    Purpose: The vascular thermal adaptation in the R3230 adenocarcinoma, skin and muscle in the legs of Fischer rats was studied. Methods and Materials: The legs of Fischer rats bearing the R3230 AC adenocarcinoma (subcutaneously) were heated once or twice with a water bath, and the blood flow in the tumor, skin and muscle of the legs was measured with the radioactive microsphere method. Results: The blood flow in control R3230 AC tumors was 23.9 ml/100 g/min. The tumor blood flow increased about 1.5 times in 30 min and then markedly decreased upon heating at 44.5 deg. C for 90 min. In the tumors preheated 16 h earlier at 42.5 deg. C for 60 min, reheating at 44.5 deg. C increased the tumor blood flow by 2.5-fold in 30 min. Contrary to the decline in blood flow following an initial increase during the 44.5 deg. C heating without preheating, the tumor blood flow remained elevated throughout the 90 min reheating at 44.5 deg. C. These results indicated that thermal adaptation or thermotolerance developed in the tumor vasculatures after the preheating at 42.5 deg. C for 60 min. The magnitude of vascular thermal adaptation in the tumors 24 h and 48 h after the preheating, as judged from the changes in blood flow, were smaller than that 16 h after the preheating. Heating at 42.5 deg. C for 60 min induced vascular thermal adaptation also in the skin and muscle, which peaked in 48 h and 24 h, respectively, after the heating. Conclusion: Heating at 42.5 deg. C for 1 h induced vascular thermal adaptation in the R3230 AC tumor, skin, and muscle of rats that peaked 16-48 h after the heating. When the tumor blood vessels were thermally adapted, the tumor blood flow increased upon heating at temperatures that would otherwise reduce the tumor blood flow. Such an increase in tumor blood flow may hinder raising the tumor temperature while it may increase tumor oxygenation.

  7. Mouse Models of the Skin: Models to Define Mechanisms of Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Wheeler, D. L.; Verma, A. K.; Denning, M. F.

    2013-01-01

    The multistep model of mouse skin carcinogenesis has facilitated identification of irreversible genetic events of initiation and progression, and epigenetic events of tumor promotion. Mouse skin tumor initiation can be accomplished by a single exposure to a sufficiently small dose of a carcinogen, and this step is rapid and irreversible. However, promotion of skin tumor formation requires a repeated and prolonged exposure to a promoter, and that tumor promotion is reversible. Investigations focused on the mechanisms of mouse carcinogenesis have resulted in the identifications of potential molecular targets of cancer induction and progression useful in planning strategies for human cancer prevention trials. This special issue contains eight papers that focus on mouse models used to study individual proteins expressed in the mouse skin and the role they play in differentiation, tissue homeostasis, skin carcinogenesis, and chemo prevention of skin cancer.

  8. Radiophosphorus (32P)-test on precancerosis and malignant tumors of the skin

    International Nuclear Information System (INIS)

    Biersack, H.J.; Rodermund, O.E.; Meurin, G.; Winkler, C.; Bonn Univ.

    1976-01-01

    In 21 patients with a variety of skin tumors (squamous cell carcinomas, malignant melanomas, basal cell epitheliomas and mycosis fungoides) or precancerous lesions (Bowen's disease, actinic keratosis, junctional nevus cell nevus) the radioactive phosphorus uptake test demonstrates a sign ficantly increased concentration of P 32 in those tumors. There were no false negative tests. The possibility of differentiation of malignant melanoma from benign nevus cell nevus and the early recognition of cutaneous metastases is described. Furthermore recurrence of previously irradiated or excised basal cell epitheliomas can be detected without a biopsy. No hematological side-effects were observed. (orig.) [de

  9. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy.

    Science.gov (United States)

    Qin, Si-Yong; Feng, Jun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Liu, Xiang-Ji; Luo, Guo-Feng; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-02-12

    Graphene oxide (GO)-based theranostic nanohybrid is designed for tumor induced imaging and potential combinational tumor therapy. The anti-tumor drug, Doxorubicin (DOX) is chemically conjugated to the poly(ethylenimine)-co-poly(ethylene glycol) (PEI-PEG) grafted GO via a MMP2-cleavable PLGLAG peptide linkage. The therapeutic efficacy of DOX is chemically locked and its intrinsic fluorescence is quenched by GO under normal physiological condition. Once stimulated by the MMP2 enzyme over-expressed in tumor tissues, the resulting peptide cleavage permits the unloading of DOX for tumor therapy and concurrent fluorescence recovery of DOX for in situ tumor cell imaging. Attractively, this PEI-bearing nanohybrid can mediate efficient DNA transfection and shows great potential for combinational drug/gene therapy. This tumor induced imaging and potential combinational therapy will open a window for tumor treatment by offering a unique theranostic approach through merging the diagnostic capability and pathology-responsive therapeutic function. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Skin manifestations of growth hormone-induced diseases.

    Science.gov (United States)

    Kanaka-Gantenbein, Christina; Kogia, Christina; Abdel-Naser, Mohamed Badawy; Chrousos, George P

    2016-09-01

    The human skin is a well-organized organ bearing different types of cells in a well-structured interference to each other including epidermal and follicular keratinocytes, sebocytes, melanocytes, dermal papilla cells and fibroblasts, endothelial cells, sweat gland cells as well as nerves. Several hormones act on different cell types of the skin, while it is also considered an endocrine organ secreting hormones that act at several sites of the organism. GH receptors are found in almost all cell types forming the skin, while IGF-1 receptors' expression is restricted to the epidermal keratinocytes. Both Growth Hormone (GH) excess, as in the case of Acromegaly in adults, or Gigantism in growing children, and GH deficiency states lead to skin manifestations. In case of GH excess the main dermatological findings are skin thickening, coarsening of facial features, acrochordons, puffy hands and feet, oily skin and hyperhidrosis, while GH deficiency, on the contrary, is characterized by thin, dry skin and disorder of normal sweating. Moreover, special disorders associated with GH excess may have specific characteristics, as is the case of café-au-lait spots in Neurofibromatosis, or big café-au-lait skin hyperpigmented regions with irregular margins, as is the case in McCune-Albright syndrome. Meticulous examination of the skin may therefore contribute to the final diagnosis in cases of GH-induced disorders.

  11. Innate sensing of microbial products promotes wound-induced skin cancer

    Science.gov (United States)

    Hoste, Esther; Arwert, Esther N.; Lal, Rohit; South, Andrew P.; Salas-Alanis, Julio C.; Murrell, Dedee F.; Donati, Giacomo; Watt, Fiona M.

    2015-01-01

    The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer. PMID:25575023

  12. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, F.; Roeder, F.; Debus, J.; Huber, P.E. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology; Kirsner, A.; Weber, K.J. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Peschke, P. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology

    2013-08-15

    Background: Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. Materials and methods: The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. Results: DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. Conclusion: DCA induced tumor-specific radiosensitization in vitro but not in vivo

  13. The skin microbiome: Is it affected by UV-induced immune suppression?

    Directory of Open Access Journals (Sweden)

    Vijaykumar Patra

    2016-08-01

    Full Text Available Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation UV-R from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides (AMPs, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs that interfere with UV-induced immune suppression.

  14. Drug delivery strategies for chemoprevention of UVB-induced skin cancer: A review.

    Science.gov (United States)

    Bagde, Arvind; Mondal, Arindam; Singh, Mandip

    2018-01-01

    Annually, more skin cancer cases are diagnosed than the collective incidence of the colon, lung, breast, and prostate cancer. Persistent contact with sunlight is a primary cause for all the skin malignancies. UVB radiation induces reactive oxygen species (ROS) production in the skin which eventually leads to DNA damage and mutation. Various delivery approaches for the skin cancer treatment/prevention have been evolving and are directed toward improvements in terms of delivery modes, therapeutic agents, and site-specificity of therapeutics delivery. The effective chemoprevention activity achieved is based on the efficiency of the delivery system used and the amount of the therapeutic molecule deposited in the skin. In this article, we have discussed different studies performed specifically for the chemoprevention of UVB-induced skin cancer. Ultra-flexible nanocarriers, transethosomes nanocarriers, silica nanoparticles, silver nanoparticles, nanocapsule suspensions, microemulsion, nanoemulsion, and polymeric nanoparticles which have been used so far to deliver the desired drug molecule for preventing the UVB-induced skin cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The role of dermal irritation in the skin tumor promoting activity of petroleum middle distillates.

    Science.gov (United States)

    Nessel, C S; Freeman, J J; Forgash, R C; McKee, R H

    1999-05-01

    Petroleum middle distillates (PMDs), a class of hydrocarbons which boil between 350-700 degrees F, are tumor promoters in mouse skin. The promotional activity is produced under conditions that also result in local changes, including chronic irritation and epidermal hyperplasia. The present study was conducted by comparing equal weekly doses of irritating and minimally or nonirritating test materials, to assess whether tumor promotion was a secondary response to these effects. Four PMDs, C10-C14 normal paraffins (NP), lightly refined paraffinic oil (LRPO), Jet Fuel A (JF), and steam-cracked gas oil (SCGO), were evaluated. Test materials were applied undiluted (2x/week) or as 28.6% (7x/week) or 50% (4x/week) concentrations in mineral oil for 52 weeks following initiation with dimethylbenzanthracene (DMBA). When applied undiluted, all materials produced moderate irritation and significant increase in tumor incidence. When NP, LRPO, or JF were applied in mineral oil diluent, skin irritation was generally ameliorated and few, if any, tumors were produced. SCGO was irritating and produced a significant increase in tumor frequency when administered in mineral-oil diluent. These data indicate that the promotional activity of straight-run PMDs is likely related to chronic irritation at the application site and not to dose. Thus, when used appropriately in the absence of prolonged irritation, these materials should not present a tumorigenic hazard to humans.

  16. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  17. Chemical peeling by SA-PEG remodels photo-damaged skin: suppressing p53 expression and normalizing keratinocyte differentiation.

    Science.gov (United States)

    Dainichi, Teruki; Amano, Satoshi; Matsunaga, Yukiko; Iriyama, Shunsuke; Hirao, Tetsuji; Hariya, Takeshi; Hibino, Toshihiko; Katagiri, Chika; Takahashi, Motoji; Ueda, Setsuko; Furue, Masutaka

    2006-02-01

    Chemical peeling with salicylic acid in polyethylene glycol vehicle (SA-PEG), which specifically acts on the stratum corneum, suppresses the development of skin tumors in UVB-irradiated hairless mice. To elucidate the mechanism through which chemical peeling with SA-PEG suppresses skin tumor development, the effects of chemical peeling on photodamaged keratinocytes and cornified envelopes (CEs) were evaluated in vivo. Among UVB-irradiated hairless mice, the structural atypia and expression of p53 protein in keratinocytes induced by UVB irradiation were intensely suppressed in the SA-PEG-treated mice 28 days after the start of weekly SA-PEG treatments when compared to that in the control UVB-irradiated mice. Incomplete expression of filaggrin and loricrin in keratinocytes from the control mice was also improved in keratinocytes from the SA-PEG-treated mice. In photo-exposed human facial skin, immature CEs were replaced with mature CEs 4 weeks after treatment with SA-PEG. Restoration of photodamaged stratum corneum by treatment with SA-PEG, which may affect remodeling of the structural environment of the keratinocytes, involved the normalization of keratinocyte differentiation and suppression of skin tumor development. These results suggest that the stratum corneum plays a protective role against carcinogenesis, and provide a novel strategy for the prevention of photo-induced skin tumors.

  18. Topical application of ST266 reduces UV-induced skin damage

    Directory of Open Access Journals (Sweden)

    Guan L

    2017-11-01

    Full Text Available Linna Guan,1 Amanda Suggs,1 Emily Galan,1 Minh Lam,1 Elma D Baron1,2 1Department of Dermatology, Case Western Reserve University, 2Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA Abstract: Ultraviolet radiation (UVR has a significant impact on human skin and is the major environmental factor for skin cancer formation. It is also believed that 80% of the signs of skin aging are attributed to UVR. UVR induces inflammatory changes in the skin via the increase in oxidative stress, DNA damage vascular permeability, and fluctuation in a myriad of cytokines. Acutely, UVR causes skin inflammation and DNA damage, which manifest as sunburn (erythema. ST266 is the secretome of proprietary amnion-derived cells that have been shown to reduce inflammation and accelerate healing of various wounds by promoting migration of keratinocytes and fibroblasts in preclinical animal studies. We hypothesized that ST266 has anti-inflammatory effects that can be used to reduce ultraviolet (UV erythema and markers of inflammation. In this study, we examined the in vivo effects of ST266 on post UV-irradiated skin by measuring erythema, level of cyclobutane pyrimidine dimer (CPD, and expression level of xeroderma pigmentosum, complementation group A (XPA. We demonstrated that ST266 has the potential to reduce the acute effects of UV-induced skin damage when applied immediately after the initial exposure. In addition, ST266 is shown to reduce erythema, increase XPA DNA repair protein, and decrease damaged DNA. Keywords: ST266, photoaging, erythema, CPD, XPA, UV-induced DNA damage

  19. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  20. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  1. Surfactant-induced skin irritation and skin repair. Evaluation of the acute human irritation model by noninvasive techniques.

    Science.gov (United States)

    Wilhelm, K P; Freitag, G; Wolff, H H

    1994-06-01

    Although the induction of irritant dermatitis by surfactants has been extensively studied in recent years, our understanding of the repair phase of irritant dermatitis is limited. We investigated qualitative and quantitative differences in surfactant-induced irritant skin reactions from short-term exposure to three structurally different surfactants. Sodium lauryl sulfate (SLS), dodecyl trimethyl ammonium bromide (DTAB), and potassium soap were the model irritants. Surfactant solutions (0.5%) were applied for 24 hours to the volar aspect of the forearm of 11 volunteers. Irritant reactions were assessed until complete healing was indicated by visual assessment and by various aspects of skin function, that is, transepidermal water loss (TEWL), erythema (skin color reflectance), and stratum that is, transepidermal water loss (TEWL), erythema (skin color reflectance), and stratum corneum hydration (electrical capacitance). SLS and DTAB induced similar degrees of erythema, whereas SLS induced significantly higher TEWL increase. Although both erythema and TEWL were highest 1 hour after exposure to surfactants, skin dryness was a symptom with delayed onset, justifying the long observation period in this study. Minimum hydration values were measured as late as 7 days after surfactant exposure. Dryness was significantly more pronounced in areas exposed to SLS than in areas exposed to DTAB. Complete repair of the irritant reaction induced by either SLS or DTAB was achieved 17 days after surfactant exposure. Stratum corneum hydration was the last feature to return to baseline values. Potassium soap did not significantly influence any skin function. We emphasize the importance of extended periods needed before a patient with irritant contact dermatitis can be reexposed to irritant substances. The evaluation of the irritation potential of diverse surfactants depended significantly on the feature (erythema vs hydration and TEWL) measured.

  2. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms.

    Science.gov (United States)

    Chang, Tsong-Min; Yang, Ting-Ya; Niu, Yu-Lin; Huang, Huey-Chun

    2018-06-15

    Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus . It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS) production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3)) inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice) model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC), procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs) such as c-Jun N-terminal protein kinase (JNK) and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3) inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application of D

  3. Molecular analysis of radiation-induced experimental tumors in mice

    International Nuclear Information System (INIS)

    Niwa, O.; Muto, M.; Suzuki, F.

    1992-01-01

    Molecular analysis was made on mouse tumors induced by radiation and chemicals. Expression of oncogenes was studied in 12 types of 178 mouse tumors. Southern blotting was done on tumors in which overexpression of oncogenes was noted. Amplification of the myc oncogene was found in chemically induced sarcomas, but not those induced by radiations. Radiogenic thymomas were studied in detail. These thymomas were induced in two different ways. The first was thymomas induced by direct irradiation of F1 mice between C57BL/6NxC3H/He. Southern analysis of DNA revealed deletion of specific minisatellite bands in these tumors. DNA from directly induced thymomas induced focus formation when transfected into normal Golden hamster cells. The mouse K-ras oncogene was detected in these transformants. The second type of thymomas was induced by X-irradiation of thymectomized B10.thy1.2 mice in which normal thymus from congenic B10,thy1.1. mice was grafted. Thymomas of the donor origin was analysed by transfection and the transformants by DNA from those indirectly induced thymomas did not contain activated ras oncogenes. (author)

  4. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades

    Directory of Open Access Journals (Sweden)

    Lalita Subedi

    2017-01-01

    Full Text Available The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP- 1-mediated aging; MAPK-AP-1/NF-κB-TNF-α/IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR that produces the antiaging compound resveratrol (R as a treatment for skin aging. This resveratrol-enriched rice (RR overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes.

  5. Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond.

    Science.gov (United States)

    Reichrath, Jörg; Saternus, Roman; Vogt, Thomas

    2017-09-15

    The skin represents a pivotal organ for the human body's vitamin D endocrine system, being both the site of ultraviolet (UV)-B-induced vitamin D synthesis and a target tissue for the pluripotent effects of 1,25(OH) 2 D 3 and other biologically active vitamin D metabolites. As many other steroid hormones, 1,25(OH) 2 D 3 exerts its effects via two independent signal transduction pathways: the classical genomic and the non-genomic pathway. While non-genomic effects of 1,25(OH) 2 D 3 are in part exerted via effects on intracellular calcium, genomic effects are mediated by the vitamin D receptor (VDR). Recent findings convincingly support the concept of a new function of the VDR as a tumor suppressor in skin, with key components of the vitamin D endocrine system, including VDR, CYP24A1, CYP27A1, and CYP27B1 being strongly expressed in non-melanoma skin cancer (NMSC). It has now been shown that anti-tumor effects of VDR, that include some of its ligand-induced growth-regulatory effects, are at least in part mediated by interacting in a highly coordinated manner with the p53 family (p53/p63/p73) in response to a large number of alterations in cell homeostasis, including UV-induced DNA damage, a hallmark for skin photocarcinogenesis. Considering the relevance of the vitamin D endocrine system for carcinogenesis of skin cancer, it is not surprising that low 25(OH)D serum concentrations and genetic variants (SNPs) of the vitamin D endocrine system have been identified as potential risk factors for occurrence and prognosis of skin malignancies. In conclusion, an increasing body of evidence now convincingly supports the concept that the vitamin D endocrine system is of relevance for photocarcinogenesis and progression of NMSC and that its pharmacologic modulation by vitamin D, 1,25(OH) 2 D 3, and analogs represents a promising new strategy for prevention and/or treatment of these malignancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    Science.gov (United States)

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  7. Tumor-induced osteomalacia

    Science.gov (United States)

    Chong, William H; Molinolo, Alfredo A; Chen, Clara C; Collins, Michael T

    2012-01-01

    Tumor-induced osteomalacia (TIO) is a rare and fascinating paraneoplastic syndrome in which patients present with bone pain, fractures, and muscle weakness. The cause is high blood levels of the recently identified phosphate and vitamin D-regulating hormone, fibroblast growth factor 23 (FGF23). In TIO, FGF23 is secreted by mesenchymal tumors that are usually benign, but are typically very small and difficult to locate. FGF23 acts primarily at the renal tubule and impairs phosphate reabsorption and 1α-hydroxylation of 25-hydroxyvitamin D, leading to hypophosphatemia and low levels of 1,25-dihydroxy vitamin D. A step-wise approach utilizing functional imaging (F-18 fluorodeoxyglucose positron emission tomography and octreotide scintigraphy) followed by anatomical imaging (computed tomography and/or magnetic resonance imaging), and, if needed, selective venous sampling with measurement of FGF23 is usually successful in locating the tumors. For tumors that cannot be located, medical treatment with phosphate supplements and active vitamin D (calcitriol or alphacalcidiol) is usually successful; however, the medical regimen can be cumbersome and associated with complications. This review summarizes the current understanding of the pathophysiology of the disease and provides guidance in evaluating and treating these patients. Novel imaging modalities and medical treatments, which hold promise for the future, are also reviewed. PMID:21490240

  8. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Directory of Open Access Journals (Sweden)

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  9. Evaluation of the contribution of chronic skin irritation and selected compositional parameters to the tumorigenicity of petroleum middle distillates in mouse skin.

    Science.gov (United States)

    Freeman, J J; Federici, T M; McKee, R H

    1993-07-28

    Two-year skin carcinogenicity studies were conducted in C3H mice to assess the effects of irritation and selected compositional parameters on the carcinogenic potential of four petroleum liquids. Three samples (lightly refined paraffinic oil, LRPO; lightly hydrodesulfurized specialty oil, LHSO; jet fuel, JF) can be generically classified as middle distillates, i.e. distillation occurs between 350 and 700 degrees F (175-370 degrees C). The fourth sample was a Steam Cracked Gas Oil (SCGO) that distilled within the same range. In studies that assess the effects of irritation on tumorigenicity, LRPO was tested undiluted or was diluted to 50% and 25% in either mineral oil (which eliminated irritation of the skin) or toluene (which did not). Undiluted LRPO elicited tumors in 8% of the mice. Both dilution procedures eliminated tumorigenic potential. Thus, it was possible to maintain a visible level of skin irritation equivalent to that elicited by undiluted LRPO without inducing tumors. SCGO elicited a chronic irritant state grossly equivalent to LRPO but was not tumorigenic. Jet Fuel A (JF) was tested undiluted using both a standard skin painting protocol and an intermittent dosing schedule in which treatment was suspended periodically to allow skin irritation to resolve. The standard treatment protocol of JF resulted in both marked skin irritation and tumors in 44% of the mice. However, using the intermittent schedule, the tumor yield was reduced to 2%. Collectively these data demonstrate that tumor formation is not a necessary sequelae to chronic skin irritation. Conversely, prevention of a marked chronic irritant state was accompanied by decreased tumor yield. These data suggest that the chronic irritant state may be a necessary but not sufficient condition for tumor formation. In studies to assess the effects of compositional parameters, a lightly hydrodesulfurized specialty oil (LHSO) similar to LRPO but refined to have negligible levels of sulfur compounds (3 ppm

  10. Tumor-induced osteomalacia

    Directory of Open Access Journals (Sweden)

    Pablo Florenzano

    2017-12-01

    Full Text Available Tumor-induced osteomalacia (TIO is a rare paraneoplastic syndrome clinically characterized by bone pain, fractures and muscle weakness. It is caused by tumoral overproduction of fibroblast growth factor 23 (FGF23 that acts primarily at the proximal renal tubule, decreasing phosphate reabsorption and 1α-hydroxylation of 25 hydroxyvitamin D, thus producing hypophosphatemia and osteomalacia. Lesions are typically small, benign mesenchymal tumors that may be found in bone or soft tissue, anywhere in the body. In up to 60% of these tumors, a fibronectin-1(FN1 and fibroblast growth factor receptor-1 (FGFR1 fusion gene has been identified that may serve as a tumoral driver. The diagnosis is established by the finding of acquired chronic hypophosphatemia due to isolated renal phosphate wasting with concomitant elevated or inappropriately normal blood levels of FGF23 and decreased or inappropriately normal 1,25-OH2-Vitamin D (1,25(OH2D. Locating the tumor is critical, as complete removal is curative. For this purpose, a step-wise approach is recommended, starting with a thorough medical history and physical examination, followed by functional imaging. Suspicious lesions should be confirmed by anatomical imaging, and if needed, selective venous sampling with measurement of FGF23. If the tumor is not localized, or surgical resection is not possible, medical therapy with phosphate and active vitamin D is usually successful in healing the osteomalacia and reducing symptoms. However, compliance is often poor due to the frequent dosing regimen and side effects. Furthermore, careful monitoring is needed to avoid complications such us secondary/tertiary hyperparathyroidism, hypercalciuria, and nephrocalcinosis. Novel therapeutical approaches are being developed for TIO patients, such as image-guided tumor ablation and medical treatment with the anti-FGF23 monoclonal antibody KRN23 or anti FGFR medications. The case of a patient with TIO is presented to

  11. Photobiological implications of melanin photoprotection after UVB-induced tanning of human skin but not UVA-induced tanning.

    Science.gov (United States)

    Coelho, Sergio G; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Hearing, Vincent J

    2015-03-01

    Repetitive suberythemal UVA and/or UVB exposures were used to generate comparable UV-induced tans in human skin over the course of 2 weeks. To evaluate the potential photoprotective values of those UVA- and/or UVB- induced tans and to avoid the confounding issue of residual UV-induced DNA damage, we waited 1 week before challenging those areas with a 1.5 MED of UVA+UVB after which we measure DNA damage. The results show that the type of UV used to induce skin pigmentation affects the redistribution of melanin in the skin and/or de novo melanin synthesis. The UVA-induced tans failed to even provide a minimal SPF of 1.5, which suggests that producing a tan with UVA-rich sunlamps prior to a holiday or vacation is completely counterproductive. Published 2014. This article is a US Government work and is in the public domain in the USA.

  12. Tumor-induced osteomalacia (TIO): atypical presentation.

    Science.gov (United States)

    Khaliq, Waseem; Cheripalli, Praveen; Tangella, Krishnarao

    2011-05-01

    Tumor-induced osteomalacia is a rare acquired condition characterized by phosphaturia, hypophosphatemia and osteomalacia. We report an unusual presentation in a 15-year-old healthy male with a two-week history of cough and chest pain. The chest radiograph showed right middle lobe opacity and chest CT revealed a mass in the extra pleural space. A biopsy showed chondro-myxoidstroma with osteoid formation. Diagnosis was confirmed with the above findings and hypophosphatemia. The patient's symptoms resolved after complete surgical excision of the mass. Tumor-induced osteomalacia, although a rare disorder, can be a diagnostic challenge, especially in patients presenting with atypical symptoms.

  13. Evaluation of tumor-induced osteomalacia with 111In-pentetreotide scintigraphy.

    Science.gov (United States)

    Palot Manzil, Fathima Fijula; Bhambhvani, Pradeep G; O'Malley, Janis P

    2013-12-01

    In cases of nonhereditary osteomalacia associated with hypophosphatemia and inadequate response to vitamin D supplementation, one should consider the possibility of tumor-induced osteomalacia, a paraneoplastic syndrome caused by small mesenchymal tumors often found in obscure locations. We present a case of tumor-induced osteomalacia in which (111)In-pentetreotide scintigraphy aided in accurate localization of the culprit brachial plexus tumor and cure after resection.

  14. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Burns, F.J.

    1987-01-01

    The work outlined in this report includes: epidermal DNA strand breaks and radiation penetration; activation of oncogenes in radiation induced rat skin tumors; and rat skin carcinogenesis by neon ions. The effect of radiation penetration on DNA single strand breaks has been studied extensively in rat and mouse epidermis. The results show clearly that the number of strand breaks per unit dose in the epidermal DNA is reduced by 50% to 65% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. This penetration effect on DNA strand breaks was not seen in mouse epidermal cell lines growing in plastic dishes. The results imply that DNA strand breakage in superficial cells is partially dependent on the radiation dose to underlying tissue. The phenomenon is not mediated by systemic interactions as it was observed in irradiated explanted skin. The oncogene activation pattern in the radiation-induced skin tumors was found to be tumor dependent. Either K-ras activation or c-myc amplification or both was observed in each tumor analyzed so far. Even benign fibromas exhibited c-myc amplification. The carcinogenicity of high penetration electrons (2.0 MeV) was determined in preparation for similar studies with a neon ion beam at the Berkeley Bevelac. The principal finding so far is a large excess of connective tissue tumors, fibromas (benign) and sarcomas (malignant). 59 refs., 1 tab

  15. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  16. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  17. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    International Nuclear Information System (INIS)

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors

  18. The comparison of nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) with Ki67 proliferation marker expression in common skin tumors.

    Science.gov (United States)

    Zduniak, Krzysztof; Agrawal, Siddarth; Symonowicz, Krzysztof; Jurczyszyn, Kamil; Ziółkowski, Piotr

    2014-03-01

    Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is a chromosomal protein of unknown function. Its amino acid composition and structure of its DNA binding domain resemble those of high mobility group A (HMGA) proteins which are associated with various malignancies. Since changes in expression of HMGA are considered as a marker of tumor progression, it is possible that similar changes in expression of NUCKS could be a useful tool in diagnosis of malignant skin tumors. To investigate this assumption we used specific antibodies against NUCKS for immunohistochemistry of squamous (SCC) and basal cell carcinoma (BCC) as well as keratoacanthoma (KA). We found high expression of NUCKS in nuclei of SCC and BCC cells which exceeded expression of the well-known proliferation marker Ki67. Expression of NUCKS in benign KA was much below that of malignant tumors. With the present study and based on our previous experience we would like to suggest the NUCKS protein as a novel proliferation marker for immunohistochemical evaluation of formalin-fixed and paraffin-embedded skin tumor specimens. We would like to emphasize that NUCKS abundance in malignant skin tumors is higher than that of the well-known proliferation marker Ki67, thus allowing more precise assessment of tumor proliferation potential.

  19. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    Directory of Open Access Journals (Sweden)

    Lipigorngoson Suwiwek

    2001-01-01

    Full Text Available Abstract Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(aanthracene (DMBA-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham. Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin.

  20. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    International Nuclear Information System (INIS)

    Limtrakul, Porn-ngarm; Anuchapreeda, Songyot; Lipigorngoson, Suwiwek; Dunn, Floyd W

    2001-01-01

    We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin

  1. Quantification of gravity-induced skin strain across the breast surface.

    Science.gov (United States)

    Sanchez, Amy; Mills, Chris; Haake, Steve; Norris, Michelle; Scurr, Joanna

    2017-12-01

    Quantification of the magnitude of skin strain in different regions of the breast may help to estimate possible gravity-induced damage whilst also being able to inform the selection of incision locations during breast surgery. The aim of this study was to quantify static skin strain over the breast surface and to estimate the risk of skin damage caused by gravitational loading. Fourteen participants had 21 markers applied to their torso and left breast. The non-gravity breast position was estimated as the mid-point of the breast positions in water and soybean oil (higher and lower density than breast respectively). The static gravity-loaded breast position was also measured. Skin strain was calculated as the percentage extension between adjacent breast markers in the gravity and non-gravity loaded conditions. Gravity induced breast deformation caused peak strains ranging from 14 to 75% across participants, with potentially damaging skin strain (>60%) in one participant and skin strains above 30% (skin resistance zone) in a further four participants. These peak strain values all occurred in the longitudinal direction in the upper region of the breast skin. In the latitudinal direction, smaller-breasted participants experienced greater strain on the outer (lateral) breast regions and less strain on the inner (medial) breast regions, a trend which was reversed in the larger breasted participants (above size 34D). To reduce tension on surgical incisions it is suggested that preference should be given to medial latitudinal locations for smaller breasted women and lateral latitudinal locations for larger breasted women. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The role of natural and UV-induced skin pigmentation on low-fluence IPL-induced side effects: a randomized controlled trial.

    Science.gov (United States)

    Thaysen-Petersen, Daniel; Lin, Jennifer Y; Nash, Jf; Beerwerth, Frank; Wulf, Hans C; Philipsen, Peter A; Haedersdal, Merete

    2014-02-01

    The risk of adverse skin effects following light-based hair removal is greater in pigmented skin based on the theory of selective photothermolysis. Thus sunlight-induced pigment i.e., facultative pigmentation, increases the risk of adverse skin effects, perhaps disproportionately. The aim of this study was to evaluate the influence of constitutive and facultative skin pigmentation on low-fluence intense pulsed light (IPL)-induced adverse skin effects. Twenty-one subjects with Fitzpatrick skin type II-IV were enrolled. Two buttock blocks were randomized to receive 0 or 8 solar simulated ultraviolet radiation (UVR) exposures of consecutively increasing Standard Erythema Doses (2-4 SED). Each block was subdivided into four sites, randomized to receive IPL of 0, 7, 8, or 10 J/cm(2) , once a week for 3 weeks. Biopsies were taken 16-24 hours after the first IPL exposure and subjects were seen 1 and 4 weeks after the last IPL exposure. Outcome measures were: (i) skin reactions, (ii) pain, (iii) mRNA expression of pigment-markers microphthalmia-associated transcription factor (MITF) and pro-opiomelanocortin (POMC), and (iv) clinical appearance of biopsy wounds. Skin pigmentation increased after UVR (baseline median 13.8%, after UVR 28.1%, P = 0.0001) in all skin types. Subjects reported low pain intensities (median 1.5, scale 0-10) and experienced transient erythema immediately after IPL exposure. No persistent erythema, blisters, crusting, textual, or pigment changes were observed. The risk of erythema and pain intensities increased with IPL dose and skin pigmentation (P skin reactions in skin with similar degree of natural and facultative pigmentation (P ≥ 0.104). Expression of cellular pigment-markers was not influenced by IPL exposure, neither in constitutive nor in facultative pigmented skin. Clinical appearance of biopsy wounds was unaffected by IPL exposure. The prevalence and intensity of low-fluence IPL-induced adverse skin effects depended on IPL

  3. Long-pulsed 1064-nm Nd: YAG laser ameliorates LL-37-induced rosacea-like skin lesions through promoting collagen remodeling in BALB/c mice.

    Science.gov (United States)

    Kim, Miri; Kim, Jongsic; Jeong, Seo-Won; Jo, Hyunmu; Park, Hyun Jeong

    2018-02-01

    Long-pulsed 1064-nm neodymium: yttrium-aluminum-garnet laser (LPND) effectively treats rosacea, although the underlying mechanism is unclear, to evaluate the histological effects and molecular mechanism of LPND on LL-37-induced rosacea-like skin lesions in mice. Intradermal injection of LL-37 was performed into the dorsal skin of BALB/c mice (n = 30) twice a day for 2 days. Fifteen mice were treated with LPND. After 48 h, the excised skin sample was stained for histology and type I collagen; transforming growth factor (TGF)-β, matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase (TIMP)-1, tumor necrosis factor (TNF)-α, and interleukin (IL)-1α mRNA levels were determined by real-time RT-PCR. Intradermal injection of LL-37 induced rosacea-like clinical features. LPND treatment significantly reduced erythema and increased dermal collagen production. Levels of Type I collagen, TGF-β, and MMP-1 mRNA were significantly higher in LPND-treated mice than in untreated mice. LPND may improve rosacea by ameliorating dermal connective tissue disorganization and elastosis through MMP-mediated dermal collagen remodeling.

  4. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  5. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    International Nuclear Information System (INIS)

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  6. Nanovectorized radiotherapy, a new strategy to induce anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Claire eVanpouille-Box

    2012-10-01

    Full Text Available Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radio-therapy. However, clinically-apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nano-devices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immuno-stimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  7. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  8. Chemopreventive efficacy of betel leaf extract and its constituents on 7,12-dimethylbenz(a)anthracene induced carcinogenesis and their effect on drug detoxification system in mouse skin.

    Science.gov (United States)

    Azuine, M A; Amonkar, A J; Bhide, S V

    1991-04-01

    Effects of topically applied betel leaf extract (BLE) and its constituents. beta-carotene, alpha-tocopherol, eugenol and hydroxychavicol on 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumors were evaluated in two strains of mice. BLE, beta-carotene and alpha-tocopherol, significantly inhibited the tumor formation by 83, 86, 86% in Swiss mice and 92, 94 and 89% in male Swiss bare mice respectively. Hydroxychavicol showed 90% inhibition in Swiss bare mice at 24 weeks of treatment. Eugenol showed minimal protection in both strains of mice. The mean latency period and survivors in BLE, beta-carotene, alpha-tocopherol and hydroxychavicol treated groups were remarkably high as compared to DMBA alone treated group. Intraperitoneal injection of betal leaf constituents showed a significant effect on both glutathione and glutathione S-transferase levels in the Swiss mouse skin.

  9. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  10. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia

    Directory of Open Access Journals (Sweden)

    Juan P. Cerliani

    2010-12-01

    Full Text Available We have previously demonstrated a crosstalk between fibroblast growth factor 2 (FGF2 and progestins inducing experimental breast cancer growth. The aim of the present study was to compare the effects of FGF2 and of medroxyprogesterone acetate (MPA on the mouse mammary glands and to investigate whether the antiprogestin RU486 was able to reverse the MPA- or FGF2-induced effects on both, mammary gland and tumor growth. We demonstrate that FGF2 administered locally induced an intraductal hyperplasia that was not reverted by RU486, suggesting that FGF2-induced effects are progesterone receptor (PR-independent. However, MPA-induced paraductal hyperplasia was reverted by RU486 and a partial agonistic effect was observed in RU486-treated glands. Using C4-HD tumors which only grow in the presence of MPA, we showed that FGF2 administered intratumorally was able to stimulate tumor growth as MPA. The histology of FGF2-treated tumors showed different degrees of gland differentiation. RU486 inhibited both, MPA or FGF2 induced tumor growth. However, only complete regression was observed in MPA-treated tumors. Our results support the hypothesis that stromal FGF2 activates PR inducing hormone independent tumor growth.

  11. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth.

    Directory of Open Access Journals (Sweden)

    Rumana Khanom

    Full Text Available Keratin subtypes are selectively expressed depending on the cell type. They not only provide structural support, but regulate the metabolic processes and signaling pathways that control the growth of the epithelium. KRT17 (keratin 17 is induced in the regenerative epithelium and acts on diverse signaling pathways. Here, we demonstrate that KRT17 is invariably and permanently induced in oral squamous cell carcinoma (OSCC, as revealed by immunohistochemistry and cDNA microarray analysis. Two representative OSCC cell lines; KRT17-weakly expressing Ca9-22 and KRT17-highly expressing HSC3 were used to establish KRT17-overexpressing Ca9-22 and KRT17-knockdown HSC3 cells. Analysis of these cells revealed that KRT17 promoted cell proliferation and migration by stimulating the Akt/mTOR pathway. KRT17 also upregulated the expression of SLC2A1 (solute carrier family 2 member 1/Glut1 and glucose uptake. To further investigate the effect of KRT17 on tumorigenesis, KRT17-knockout HSC3 cells were established and were transplanted to the cephalic skin of nude mice. The tumors that developed from KRT17-knockout HSC3 cells had a lower Ki-67 labeling index and were significantly smaller compared to the controls. These results indicate that KRT17 stimulates the Akt/mTOR pathway and glucose uptake, thereby facilitating tumor growth. We could not confirm the relationship between KRT17 and SFN (stratifin in the cells examined in this study. However, our study reinforces the concept that the cellular properties of cancer are regulated by a series of molecules similar to those found in wound healing. In OSCC, KRT17 acts as a pathogenic keratin that facilitates tumor growth through the stimulation of multiple signaling pathways, highlighting the importance of KRT17 as a multifunctional promoter of tumorigenesis.

  12. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    International Nuclear Information System (INIS)

    Song, Yao; Baba, Tomohisa; Li, Ying-Yi; Furukawa, Kaoru; Tanabe, Yamato; Matsugo, Seiichi; Sasaki, Soichiro; Mukaida, Naofumi

    2015-01-01

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization

  13. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yao; Baba, Tomohisa [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Li, Ying-Yi [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Furukawa, Kaoru; Tanabe, Yamato [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Matsugo, Seiichi [School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Sasaki, Soichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Mukaida, Naofumi, E-mail: mukaida@staff.kanazawa-u.ac.jp [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  14. Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin

    NARCIS (Netherlands)

    Middelkamp-Hup, Maritza A.; Pathak, Madhu A.; Parrado, Concepcion; Goukassian, David; Rius-Díaz, Francisca; Mihm, Martín C.; Fitzpatrick, Thomas B.; González, Salvador

    2004-01-01

    BACKGROUND: UV radiation induces damage to human skin. Protection of skin by an oral photoprotective agent would have substantial benefits. Objective We investigated the photoprotective effect of oral administration of an extract of the natural antioxidant Polypodium leucotomos (PL). METHODS: A

  15. PET measurements of hyperthermia-induced suppression of protein synthesis in tumors in relation to effects on tumor growth

    International Nuclear Information System (INIS)

    Daemen, B.J.; Elsinga, P.H.; Mooibroek, J.; Paans, A.M.; Wieringa, A.R.; Konings, A.W.; Vaalburg, W.

    1991-01-01

    Hyperthermia-induced metabolic changes in tumor tissue have been monitored by PET. Uptake of L-[1-11C]tyrosine in rhabdomyosarcoma tissue of Wag/Rij rats was dose-dependently reduced after local hyperthermia treatment at 42, 45, or 47 degrees C. Tumor blood flow, as measured by PET with 13NH3, appeared to be unchanged. The L-[1-11C]tyrosine uptake data were compared to uptake data of L-[1-14C]tyrosine and with data on the incorporation of L-[1-14C]tyrosine into tumor proteins. After intravenous injection, the 14C data were obtained from dissected tumor tissue. Heat-induced inhibition of the incorporation of L-[1-14C]tyrosine into tumor proteins tallied with the L-[1-11C]tyrosine uptake data. Heat-induced inhibition of amino acid uptake in the tumor correlated well with regression of tumor growth. It is concluded that PET using L-[1-11C]tyrosine is eligible for monitoring the effect of hyperthermia on tumor growth

  16. Proteomic Profiling of Radiation-Induced Skin Fibrosis in Rats: Targeting the Ubiquitin-Proteasome System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjie [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Cyrus Tang Hematology Center, Soochow University, Suzhou (China); Luo, Judong [Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou (China); Sheng, Wenjiong; Xue, Jiao; Li, Ming [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Ji, Jiang [Department of Dermatology, the Second Affiliated Hospital of Soochow University, Suzhou (China); Liu, Pengfei [Department of Gastroenterology, the Affiliated Jiangyin Hospital of Southeast University, Jiangyin (China); Zhang, Xueguang [Institute of Medical Biotechnology and Jiangsu Stem Cell Key Laboratory, Medical College of Soochow University, Suzhou (China); Cao, Jianping [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Zhang, Shuyu, E-mail: zhang.shuyu@hotmail.com [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Cyrus Tang Hematology Center, Soochow University, Suzhou (China)

    2016-06-01

    Purpose: To investigate the molecular changes underlying the pathogenesis of radiation-induced skin fibrosis. Methods and Materials: Rat skin was irradiated to 30 or 45 Gy with an electron beam. Protein expression in fibrotic rat skin and adjacent normal tissues was quantified by label-free protein quantitation. Human skin cells HaCaT and WS-1 were treated by x-ray irradiation, and the proteasome activity was determined with a fluorescent probe. The effect of proteasome inhibitors on Transforming growth factor Beta (TGF-B) signaling was measured by Western blot and immunofluorescence. The efficacy of bortezomib in wound healing of rat skin was assessed by the skin injury scale. Results: We found that irradiation induced epidermal and dermal hyperplasia in rat and human skin. One hundred ninety-six preferentially expressed and 80 unique proteins in the irradiated fibrotic skin were identified. Through bioinformatic analysis, the ubiquitin-proteasome pathway showed a significant fold change and was investigated in greater detail. In vitro experiments demonstrated that irradiation resulted in a decline in the activity of the proteasome in human skin cells. The proteasome inhibitor bortezomib suppressed profibrotic TGF-β downstream signaling but not TGF-β secretion stimulated by irradiation in HaCaT and WS-1 cells. Moreover, bortezomib ameliorated radiation-induced skin injury and attenuated epidermal hyperplasia. Conclusion: Our findings illustrate the molecular changes during radiation-induced skin fibrosis and suggest that targeting the ubiquitin-proteasome system would be an effective countermeasure.

  17. Enoxaparin-induced skin necrosis at injection site after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Max Haffner, BS

    2018-03-01

    Full Text Available Enoxaparin is a widely used low-molecular-weight heparin for perioperative thromboembolic prophylaxis. Enoxaparin-induced skin necrosis in the setting of arthroplasty has been rarely reported in the literature with varying outcomes and management decisions. Our patient developed skin necrosis at his injection site and thrombocytopenia 10 days following left total knee arthroplasty surgery and after receiving subcutaneous Lovenox injections postoperatively. The patient was started on an alternative anticoagulation based on a high suspicion for heparin-induced thrombocytopenia and the wound was monitored without surgical debridement. Our case highlights the key clinical management decisions when facing this potentially life-threatening adverse reaction. Keywords: Lovenox, Enoxaparin, Skin necrosis, Adverse reaction, Arthroplasty

  18. Bathing Effects of Various Seawaters on Allergic (Atopic Dermatitis-Like Skin Lesions Induced by 2,4-Dinitrochlorobenzene in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Choong Gon Kim

    2015-01-01

    Full Text Available We evaluated the preventive effects of four types of seawater collected in Republic of Korea on hairless mice with 2,4-dinitrochlorobenzene- (DNCB- induced allergic/atopic dermatitis (AD. The anti-inflammatory effects were evaluated by measuring tumor necrosis factor- (TNF- α and interleukins (ILs. Glutathione (GSH, malondialdehyde (MDA, superoxide anion, and inducible nitric oxide synthase (iNOS were measured to evaluate the antioxidant effects. Caspase-3 and poly (ADP-ribose polymerase (PARP were observed to measure the antiapoptotic effects; matrix metalloproteinase- (MMP- 9 levels were also evaluated. Mice with AD had markedly higher clinical skin severity scores and scratching behaviors; higher TNF-α and ILs (1β, 10, 4, 5, and 13 levels; higher MDA, superoxide anion, caspase-3, PARP, and MMP-9 levels; and greater iNOS activity. However, the severity of AD was significantly decreased by bathing in seawaters, but it did not influence the dermal collagen depositions and skin tissue antioxidant defense systems. These results suggest that bathing in all four seawaters has protective effects against DNCB-induced AD through their favorable systemic and local immunomodulatory effects, active cytoprotective antiapoptotic effects, inhibitory effects of MMP activity and anti-inflammatory and antioxidative effects.

  19. Will parental exposure to radiation induce tumor in sibling ?

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Takahashi, Tadateru; Toyota, Kazuhiro; Ito, Akihiro

    1991-01-01

    There are reports of possible risk of transmission of genetic trait(s) through the germ cell in acquired cancer from parent to sibling. We have confirmed that paternal exposure to 252 Cf neutron irradiation in mice induced sperm abnormality leading to dominant lethals and liver tumors at F 1 offspring. On the other hand, C3H male mice have been known to have high incidence of spontaneous hepatic tumors and increased hepatic tumor risk in F 1 offsprings maybe caused by the genetic transmission of the hepatoma-inducible-trait amplified by 252 Cf neutron irradiation. The present paper describes that paternal exposure to X-ray or chemicals induces heritable characteristics including anomalies and tumors in some special strains of mice and rats. Some possible mechanisms of transmission of genetic trait(s) are also discussed. (author) 52 refs

  20. Origin of induced pancreatic islet tumors: a radioautographic study

    International Nuclear Information System (INIS)

    Michels, J.E.; Bauer, G.E.; Dixit, P.K.

    1987-01-01

    Endocrine tumors of the pancreas are induced in a high percentage of young rats by injections of streptozotocin and nicotinamide (SZ/NA). Benign tumors first appear 20 to 36 weeks after drug injections. To determine the possible site of their origin, the incorporation of [ 3 H]thymidine into islets, ducts, acini, microtumors, and gross tumors was examined by radioautography of histologic sections at 1 to 36 weeks after drug injection. Drug treatment led to early (1- to 6-week) increases in nuclear 3 H labeling of exocrine pancreatic structures (ductal and acinar cells), which may involve DNA repair processes. A secondary increase in labeling of duct cells during the period of tumor emergence supports the assumption that SZ/NA-induced tumors are of ductal origin. Microtumors and gross tumors also exhibited markedly elevated rates of [ 3 H]thymidine incorporation compared to control islets. Nontumorous islet tissue, which exhibited a gradual decrease in volume due to B-cell destruction by the drug injection, showed about 10-fold higher 3 H labeling than islets of controls at all time points. The results suggest that in addition to ductal precursors, islets that survive SZ/NA-induced injury may also provide sites of focal endocrine cell differentiation to tumor tissue. Once established, both microtumors and gross tumors continue to grow by accelerated cell division

  1. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsong-Min Chang

    2018-06-01

    Full Text Available Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus. It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3 inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC, procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs such as c-Jun N-terminal protein kinase (JNK and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3 inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application

  2. Inhibition of Akt enhances the chemopreventive effects of topical rapamycin in mouse skin

    Science.gov (United States)

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R.; Liu, Zhonglin; Barber, Christie; Rusche, Jadrian J.; Petricoin, Emmanuel; Calvert, Valerie; Einspahr, Janine G.; Dickinson, Jesse; Stratton, Steven P.; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M.; Dong, Zigang; Alberts, David S.; Bowden, G. Timothy

    2016-01-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

  3. S100a8/NF-κB signal pathway is involved in the 800-nm diode laser-induced skin collagen remodeling.

    Science.gov (United States)

    Ren, Xiaolin; Ge, Minggai; Qin, Xiaofeng; Xu, Peng; Zhu, Pingya; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2016-05-01

    The 800-nm diode laser is widely used for hair removal and also promotes collagen synthesis, but the molecular mechanism by which dermis responses to the thermal damage induced by the 800-nm diode laser is still unclear. Ten 2-month-old mice were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for PCR, Western blot analysis, and histological study at day 3 or 30 after laser irradiation. The expression of S100a8 and its two receptors (advanced glycosylation end product-specific receptor, RAGE and toll-like receptor 4, TRL4) was upregulated at day 3 after laser treatments. P-p65 levels were also elevated, causing the increase of cytokine (tumor necrosis factor, TNF-α and interleukin 6, IL-6) and MMPs (MMP1a, MMP9). At day 30, PCR and Western blot analysis showed significant increase of type I and III procollagen in the dermis treated with laser. Importantly, skin structure was markedly improved in the laser-irradiated skin compared with the control. Thus, it seemed that S100a8 upregulation triggered NF-κB signal pathway through RAGE and TLR4, responding to laser-induced dermis wound healing. The involvement of the NF-κB pathway in MMP gene transcription promoted the turnover of collagen in the skin, accelerating new collagen synthesis.

  4. Late health effects of childhood nasopharyngeal radium irradiation: nonmelanoma skin cancers, benign tumors, and hormonal disorders

    NARCIS (Netherlands)

    Ronckers, Cécile M.; Land, Charles E.; Hayes, Richard B.; Verduijn, Pieter G.; Stovall, Marilyn; van Leeuwen, Flora E.

    2002-01-01

    Nasopharyngeal radium irradiation (NRI) was widely used from 1940 through 1970 to treat otitis serosa in children and barotrauma in airmen and submariners. We assessed whether NRI-exposed individuals were at higher risk for benign tumors, nonmelanoma skin cancer, thyroid disorders, and conditions

  5. Statistical observations on postirradiation skin malignancies reported in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Michiharu; Ogata, Katsumi; Inoue, Shouhei (Miyazaki Medical Coll., Kiyotake (Japan))

    1989-01-01

    A review was made on 412 cases of postirradiation skin malignancies reported in Japan up to March 1988. The ratio of male to female was 2:1. Histologically, squamous cell carcinoma occupied 60% of all cases. The incidence of sarcoma has recently been increased. Sixty percent of all skin malignancies resulted from irradiation for benign diseases. Radiotherapy has recently become the treatment of choice for malignancy. The incidence of malignancy resulting from occupational exposure has remained unchanged. The latency period before the development of radiation-induced malignancy varied in the following order with cause or primary disease: occupation>benign tumors>malignant tumors; and it varied with histology in the following order: basal cell epithelioma>squamous cell carcinoma>sarcoma. Malignant tumors treated with large doses of high energy photon beams were likely to develop sarcomas in a relatively short latency period of time. (N.K.).

  6. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    Energy Technology Data Exchange (ETDEWEB)

    Abel, E.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Boulware, S. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, T.; McIvor, E.; Powell, K.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); DiGiovanni, J.; Vasquez, K.M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, M.C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  7. Chromium-induced skin damage among Taiwanese cement workers.

    Science.gov (United States)

    Chou, Tzu-Chieh; Wang, Po-Chih; Wu, Jyun-De; Sheu, Shiann-Cherng

    2016-10-01

    Little research has been done on the relationships between chromium exposure, skin barrier function, and other hygienic habits in cement workers. Our purpose was to investigate chromium-induced skin barrier disruption due to cement exposure among cement workers. One hundred and eight cement workers were recruited in this study. Urinary chromium concentration was used to characterize exposure levels. The biological exposure index was used to separate high and low chromium exposure. Transepidermal water loss (TEWL) was used to assess the skin barrier function. TEWL was significantly increased in workers with high chromium exposure levels than those with low chromium exposure levels (p = 0.048). A positive correlation was also found between urinary chromium concentration and TEWL (R = 0.28, p = 0.004). After adjusting for smoking status and glove use, a significant correlation between urinary chromium concentrations and TEWL remained. Moreover, workers who smoked and had a high chromium exposure had significantly increased TEWL compared to nonsmokers with low chromium exposure (p = 0.01). Skin barrier function of cement workers may have been disrupted by chromium in cement, and smoking might significantly enhance such skin barrier perturbation with chromium exposure. Decreased chromium skin exposure and smoking cessation should be encouraged at work. © The Author(s) 2015.

  8. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Janis Ya-Xian Zhan

    2016-01-01

    Full Text Available Andrographolide sodium bisulfate (ASB, a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  9. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Science.gov (United States)

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent. PMID:26903706

  10. Impaired Skin Barrier Due to Sebaceous Gland Atrophy in the Latent Stage of Radiation-Induced Skin Injury: Application of Non-Invasive Diagnostic Methods

    Directory of Open Access Journals (Sweden)

    Hyosun Jang

    2018-01-01

    Full Text Available Radiation-induced skin injury can take the form of serious cutaneous damage and have specific characteristics. Asymptomatic periods are classified as the latent stage. The skin barrier plays a critical role in the modulation of skin permeability and hydration and protects the body against a harsh external environment. However, an analysis on skin barrier dysfunction against radiation exposure in the latent stage has not been conducted. Thus, we investigated whether the skin barrier is impaired by irradiation in the latent stage and aimed to identify the molecules involved in skin barrier dysfunction. We analyzed skin barrier function and its components in SKH1 mice that received 20 and 40 Gy local irradiation. Increased transepidermal water loss and skin pH were observed in the latent stage of the irradiated skin. Skin barrier components, such as structural proteins and lipid synthesis enzymes in keratinocyte, increased in the irradiated group. Interestingly, we noted sebaceous gland atrophy and increased serine protease and inflammatory cytokines in the irradiated skin during the latent period. This finding indicates that the main factor of skin barrier dysfunction in the latent stage of radiation-induced skin injury is sebaceous gland deficiency, which could be an intervention target for skin barrier impairment.

  11. UVA-induced protection of skin through the induction of heme oxygenase-1.

    Science.gov (United States)

    Xiang, Yuancai; Liu, Gang; Yang, Li; Zhong, Julia Li

    2011-12-01

    UVA (320-400 nm) and UVB (290-320 nm) are the major components of solar UV irradiation, which is associated with various pathological conditions. UVB causes direct damage to DNA of epidermal cells and is mainly responsible for erythema, immunosuppression, photoaging, and skin cancer. UVA has oxidizing properties that can cause damage or enhance UVB damaging effects on skin. On the other hand, UVA can also lead to high levels of heme oxygenase-1 (HO-1) expression of cells that can provide an antioxidant effect on skin as well as anti-inflammatory properties in mammals and rodents. Therefore, this review focuses on the potential protection of UVA wavebands for the skin immune response, instead of mechanisms that underlie UVA-induced damage. Also, the role of HO-1 in UVA-mediated protection against UVB-induced immunosuppression in skin will be summarized. Thus, this review facilitates further understanding of potential beneficial mechanisms of UVA irradiation, and using the longer UVA (UVA1, 340-400 nm) in combination with HO-1 for phototherapy and skin protection against sunlight exposure.

  12. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin

    Science.gov (United States)

    Chen, Tiejun; Hou, Hu; Lu, Jiaohan; Zhang, Kai; Li, Bafang

    2016-08-01

    The objective of this study was to investigate the effect of gelatin (SG) isolated from salmon skin and its hydrolysate (SGH) on photoaging skin, and the mechanism responsible for anti-photoaging. The average molecular weights of SG and SGH were 65 kDa and 873 Da, respectively. The amino acid compositions of SG and SGH were similar. Both of them were abundant in hydrophobic amino acids. Twenty-five peptides were identified from SGH. SG and SGH could improve UV irradiation-induced pathological changes of macroscopical tissue texture and skin morphology. Hydroxyproline content is an indicator of matrix collagen content, SG and SGH could inhibit the decrease of hydroxyproline content in photoaging skin in a dose dependent manner. In addition, SG and SGH could alleviate UV irradiation-induced oxidative damages to skin by increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), increasing the content of glutathione (GSH) and decreasing the content of malonaldehyde (MDA). Moreover, SG and SGH could enhance immune regulation system by increasing the thymus index. Thus, the anti-photoaging mechanisms of SG and SGH were by inhibiting the depletion of antioxidant defense components, involving in the synthesis of collagen and enhancing the function of immune system. Besides, SGH showed a better result in protecting skin from photoaging than SG.

  13. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  14. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-01-01

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  15. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    International Nuclear Information System (INIS)

    Kwon, Ho-Keun; Lee, Sung Haeng; Park, Zee Yong; Im, Sin-Hyeog; Hwang, Ji-Sun; So, Jae-Seon; Lee, Choong-Gu; Sahoo, Anupama; Ryu, Jae-Ha; Jeon, Won Kyung; Ko, Byoung Seob; Im, Chang-Rok

    2010-01-01

    Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8 + T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers

  16. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    Science.gov (United States)

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  17. Fractionated laser resurfacing corrects the inappropriate UVB response in geriatric skin.

    Science.gov (United States)

    Spandau, Dan F; Lewis, Davina A; Somani, Ally-Khan; Travers, Jeffrey B

    2012-06-01

    Non-melanoma skin cancer is a disease primarily afflicting geriatric patients as evidenced by the fact that 80% of all non-melanoma skin cancers are diagnosed in patients over the age of 60 years. As such, geriatric skin responds to cancer-inducing UVB irradiation in a manner that allows the establishment of tumor cells. Currently, the only effective treatment for non-melanoma skin cancer is the removal of the tumors after they appear, indicating the need for a more cost-effective prophylactic therapy. Geriatric volunteers were treated with fractionated laser resurfacing therapy on either sun-protected (upper buttocks) or chronically sun-exposed (dorsal forearm) skin. Fractionated laser resurfacing therapy was shown to decrease the occurrence of senescent fibroblasts in geriatric dermis, increase the dermal expression of IGF-1, and correct the inappropriate UVB response observed in untreated geriatric skin. These responses to fractionated laser resurfacing were equal to the effects seen previously using the more aggressive wounding following dermabrasion. Furthermore, fractionated laser resurfacing was equally effective in both sun-protected and sun-exposed skin. The ability of fractionated laser resurfacing treatment to protect against the occurrence of UVB-damaged proliferating keratinocytes indicates the potential of fractionated laser resurfacing to reduce or prevent aging-associated non-melanoma skin cancer.

  18. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Neera Tewari-Singh

    Full Text Available Chemical warfare agent sulfur mustard (HD inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p90%, and activation of transcription factors NF-κB and AP-1 (complete reversal. Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.

  19. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang (Cornell); (Guangdong); (UMM)

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  20. Tumors of the skin and soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    The majority of the body surface is covered by the skin. Many internal disorders are reflected in the condition of the skin. One of the major functions of the skin is protection of the other organ systems from a variety of environmental insults. In this role, the skin itself is exposed to factors that can ultimately cause chronic diseases and cancer. Since it is relatively easy to recognize skin abnormalities, most skin cancers are brought to professional attention sooner than other types of cancer. However, due to the close resemblance between many skin neoplasms and noncancerous dermatologic disorders, these neoplasms may be mistreated for months or even years. In veterinary oncology, as in human medicine, most cancers can be effectively treated or cured following an accurate diagnosis. Once diagnosed, skin neoplasms should be aggressively treated. If causal factors are known, exposure to these factors should be limited through removal of the agent (for chemical carcinogens) or limiting exposure to the agent (for other carcinogens such as sunlight). 10 tabs. (MHB)

  1. Skin aspergillosis induced in the region of radiation ulcer

    International Nuclear Information System (INIS)

    Niimura, Yumiko; Nakauchi, Yohichi; Ushijima, Tsugako

    1980-01-01

    A case of skin aspergillosis in the region of radiation ulcer which was caused by Aspergillus fumigatus was reported. The patient was a 51 year-old man. This fungal infection was probably induced by a local factor, that is, chronic radiation ulcer. Histological findings suggested that Aspergillus fumigatus which increased saprophytically at the beginning possessed parasitic nature gradually, invaded into connective tissues in the deep layer of true skin, and made radiation ulcer more intractable. (Tsunoda, M.)

  2. Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors.

    Science.gov (United States)

    Ye, Xuying; Yin, Huijuan; Lu, Yu; Zhang, Haixia; Wang, Han

    2016-10-12

    We evaluated the potential utility of hydrogels for delivery of the photosensitizing agents 5-aminolevulinic acid (ALA) and hematoporphyrin monomethyl ether (HMME) to rectal tumors. Hydrogel suppositories containing ALA or HMME were administered to the rectal cavity of BALB/c mice bearing subcutaneous tumors of SW837 rectal carcinoma cells. For comparison, ALA and HMME were also administered by three common photosensitizer delivery routes; local administration to the skin and intratumoral or intravenous injection. The concentration of ALA-induced protoporphyrin IX or HMME in the rectal wall, skin, and subcutaneous tumor was measured by fluorescence spectrophotometry, and their distribution in vertical sections of the tumor was measured using a fluorescence spectroscopy system. The concentration of ALA-induced protoporphyrin IX in the rectal wall after local administration of suppositories to the rectal cavity was 9.76-fold (1 h) and 5.8-fold (3 h) higher than in the skin after cutaneous administration. The maximal depth of ALA penetration in the tumor was ~3-6 mm at 2 h after cutaneous administration. Much lower levels of HMME were observed in the rectal wall after administration as a hydrogel suppository, and the maximal depth of tumor penetration was <2 mm after cutaneous administration. These data show that ALA more readily penetrates the mucosal barrier than the skin. Administration of ALA as an intrarectal hydrogel suppository is thus a potential delivery route for photodynamic therapy of rectal cancer.

  3. Studies of skin cancer and thyroid tumors after irradiation of the head and neck

    International Nuclear Information System (INIS)

    Shore, R.E.; Moseson, M.; Hildreth, N.

    1992-01-01

    Two longitudinal studies of children given medical X-irradiation to the head and neck are described, one of 2,650 infants who received x-ray treatment for enlarged thymus glands and the other of 2,200 children who received x-ray treatment for tinea capitis (ringworm of the scalp). The thymus study showed a dose-related excess of thyroid cancer and a long period of excess risk. The tinea study also showed an excess of thyroid tumors even though the thyroid dose was only about 0.06 Gy. An excess of non-melanotic skin cancers has also occurred in the tinea study, but no evidence for excess malignant melanomas. The skin cancer excess is not evident among blacks in the study, and, among Caucasians, it is more prominent among those with a light complexion. This suggests that host-susceptibility to ultraviolet effects is an important modifier of skin cancer risk from ionizing irradiation. (author)

  4. Successful treatment of tumor-induced osteomalacia with CT-guided percutaneous ethanol and cryoablation.

    Science.gov (United States)

    Tutton, Sean; Olson, Erik; King, David; Shaker, Joseph L

    2012-10-01

    Tumor-induced osteomalacia is a rare condition usually caused by benign mesenchymal tumors. When the tumor can be found, patients are usually managed by wide excision of the tumor. We report a 51-yr-old male with clinical and biochemical evidence of tumor-induced osteomalacia caused by a mesenchymal tumor in the right iliac bone. He declined surgery and appears to have been successfully managed by computed tomography-guided percutaneous ethanol ablation and percutaneous cryoablation. Our patient appears to have had an excellent clinical and biochemical response to computed tomography-guided percutaneous ethanol ablation and percutaneous cryoablation. We found one prior case of image-guided ablation using radiofrequency ablation for tumor-induced osteomalacia. Although the standard treatment for tumor-induced osteomalacia is wide excision of the tumor, image-guided ablation may be an option in patients who cannot have appropriate surgery or who decline surgery.

  5. Surgical treatment of tumor-induced osteomalacia: a retrospective review of 40 cases with extremity tumors.

    Science.gov (United States)

    Sun, Zhi-jian; Jin, Jin; Qiu, Gui-xing; Gao, Peng; Liu, Yong

    2015-02-26

    Tumor-induced osteomalacia (TIO) is a rare syndrome typically caused by mesenchymal tumors. It has been shown that complete tumor resection may be curative. However, to our knowledge, there has been no report of a large cohort to exam different surgical approaches. This study was aimed to assess outcomes of different surgical options of patients with tumor-induced osteomalacia at a single institution. Patients with extremity tumors treated in our hospital from January, 2004 to July, 2012 were identified. The minimum follow-up period was 12 months. Patient's demography, tumor location, preoperative preparation, type of surgeries were summarized, and clinical outcomes were recorded. Successful treatment was defined as significant symptom improvement, normal serum phosphorus and significant improvement or normalization of bone mineral density at the last follow-up. Differences between patients with soft tissue tumors and bone tumors were compared. There were 40 (24 male and 16 female) patients identified, with an average age of 44 years. The tumors were isolated in either soft tissue (25 patients) or bone (12 patients) and combined soft tissue and bone invasion was observed in 3 patients. For the primary surgery, tumor resection and tumor curettage were performed. After initial surgical treatment, six patients then received a second surgery. Four patients were found to have malignant tumors base on histopathology. With a minimum follow-up period of 12 months, 80% of patients (32/40) were treated successfully, including 50% of patients (2/4) with malignant tumors. Compared to patients with bone tumor, surgical results were better in patient with soft tissue tumor. Surgical treatment was an effective way for TIO. Other than tumor curettage surgery, tumor resection is the preferred options for these tumors.

  6. Effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in mice.

    Science.gov (United States)

    Satoh, T; Murata, M; Iwabuchi, N; Odamaki, T; Wakabayashi, H; Yamauchi, K; Abe, F; Xiao, J Z

    2015-01-01

    Probiotics have been shown to have a preventative effect on skin photoaging induced by short term UV irradiation, however, the underlying mechanisms and the effect of probiotics on skin photoaging induced by chronic UV irradiation remain unclear. In this study, we investigated the effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in hairless mice. Mice were irradiated with UVB three times weekly and orally administered B. breve B-3 (2×10(9) cfu/mouse /day) for 7 weeks. Nonirradiated mice and UVB-irradiated mice without probiotic treatment were used as controls. B. breve B-3 significantly suppressed the changes of transepidermal water loss, skin hydration, epidermal thickening and attenuated the damage to the tight junction structure and basement membrane induced by chronic UVB irradiation. Administration of B. breve B-3 tended to suppress the UV-induced interleukin-1β production in skin (P=0.09). These results suggest that B. breve B-3 could potentially be used to prevent photoaging induced by chronic UV irradiation.

  7. The spectrum of skin biopsies and excisions in a pediatric skin center.

    Science.gov (United States)

    Theiler, Martin; Neuhaus, Kathrin; Kerl, Katrin; Weibel, Lisa

    2017-12-01

    Little is known about the spectrum of pediatric skin disorders requiring biopsy/excision, their indication, impact on further management, and the accuracy of clinical diagnosis. We aimed to address these questions in the patient population seen at our Swiss University referral center for Pediatric Dermatology and Plastic Surgery. All skin biopsies/excisions performed in patients aged ≤ 16 years over a period of 2 years were retrospectively analyzed. A total of 506 samples were included. The majority of biopsies/excisions (n = 413, 82%) was performed for tumors, cysts, and hamartomas and 18% for other skin conditions. Malignant tumors were found in 12 samples (2%) from four patients. In 121 (24%) patients, the histopathology had an important impact on patient management. In 80 (16%) cases, the pathology did not match with the clinical diagnosis. In 382 (75%) cases, excision was the treatment of choice. Of these, the indication for surgery was based on patient's request in 181 (47%) cases. Surgical interventions for pediatric skin disorders are performed for diagnostic and therapeutic reasons. In this cohort, histopathology was essential for treatment in one quarter of cases. Skin tumors, cysts, and hamartomas often require excision during childhood, with families' request and esthetic considerations playing an important role. What is Known: • The spectrum of pediatric skin conditions has been studied in outpatient, inpatient, and emergency settings. • In contrast, no data exist on the spectrum of pediatric skin disorders undergoing biopsy/excision specifically. What is New: • We analyze biopsies/excisions in children, focusing on diagnosis, indication, and impact on patient management. • Surgical interventions for skin disorders in children are often performed for tumors and hamartomas with esthetic considerations playing a relevant role. If used for diagnostic purposes, they are often performed to confirm or rule out severe skin disease.

  8. Topical Treatment with Diclofenac, Calcipotriol (Vitamin-D3 Analog) and Difluoromethylornithine (DFMO) Does Not Prevent Nonmelanoma Skin Cancer in Mice

    DEFF Research Database (Denmark)

    Pommergaard, H C; Burcharth, J; Rosenberg, J

    2013-01-01

    Nonmelanoma skin cancer is a common cancer type with increasing incidence. The purpose of this study was to evaluate topical application of diclofenac, calcipotriol, and difluoromethylornithine as chemoprevention in a mouse model of ultraviolet light-induced skin tumors, since these agents have...

  9. Chronologic and actinically induced aging in human facial skin

    International Nuclear Information System (INIS)

    Gilchrest, B.A.; Szabo, G.; Flynn, E.; Goldwyn, R.M.

    1983-01-01

    Clinical and histologic stigmata of aging are much more prominent in habitually sun-exposed skin than in sun-protected skin, but other possible manifestations of actinically induced aging are almost unexplored. We have examined the interrelation of chronologic and actinic aging using paired preauricular (sun-exposed) and postauricular (sun-protected) skin specimens. Keratinocyte cultures derived from sun-exposed skin consistently had a shorter in vitro lifespan but increased plating efficiency compared with cultures derived from adjacent sun-protected skin of the same individual, confirming a previous study of different paired body sites. Electron microscopic histologic sections revealed focal abnormalities of keratinocyte proliferation and alignment in vitro especially in those cultures derived from sun-exposed skin and decreased intercellular contact in stratified colonies at late passage, regardless of donor site. One-micron histologic sections of the original biopsy specimens revealed no striking site-related keratinocyte alterations, but sun-exposed specimens had fewer epidermal Langerhans cells (p less than 0.001), averaging approximately 50 percent the number in sun-protected skin, a possible exaggeration of the previously reported age-associated decrease in this cell population. These data suggest that sun exposure indeed accelerates aging by several criteria and that, regardless of mechanism, environmental factors may adversely affect the appearance and function of aging skin in ways amenable to experimental quantitation

  10. Association of malignancy with rapid growth in early lesions induced by irradiation of rat skin

    International Nuclear Information System (INIS)

    McGregor, J.F.

    1979-01-01

    Epithelial lesions induced by irradiation of rat skin were studied to determine (a) the relationship of malignancy to dose, (b) the types of lesions and circumstances leading to overt malignancy, and (c) the growth rates of lesions progressing to malignancy versus those of lesions remaining benign. High doses of radiation were shown to be associated with the production of epidermal cancers, the maximum yield being obtained at 6,400 rads. Conversely, a peak yield of noncancerous lesions was obtained at 1,600 rads. This association between malignancy and high dose was consistent for cancers evolving from warts, cysts, and chronic ulcers. Although the proportion of warts among the induced lesions was much higher than that of the cysts or chronic ulcers (76, 14, and 10%, respectively), the likelihood of warts becoming cancerous was substantially lower (14, 23, and 21%). The combined data for all doses showed that the latency period of the epidermal cancers was significantly (P = 0.015) shorter than that of the benign tumors. Rapid growth rates were observed for warts, cysts, and chronic ulcers progressing to overt cancer, and these did not overlap at any point on the growth scale with rates for benign tumors. This finding suggested that the potential for malignant development had been established early in the carcinogenic process, very likely at induction

  11. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  12. cFLIP Regulates Skin Homeostasis and Protects against TNF-Induced Keratinocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Diana Panayotova-Dimitrova

    2013-10-01

    Full Text Available FADD, caspase-8, and cFLIP regulate the outcome of cell death signaling. Mice that constitutively lack these molecules die at an early embryonic age, whereas tissue-specific constitutive deletion of FADD or caspase-8 results in inflammatory skin disease caused by increased necroptosis. The function of cFLIP in the skin in vivo is unknown. In contrast to tissue-specific caspase-8 knockout, we show that mice constitutively lacking cFLIP in the epidermis die around embryonic days 10 and 11. When cFLIP expression was abrogated in adult skin of cFLIPfl/fl-K14CreERtam mice, severe inflammation of the skin with concomitant caspase activation and apoptotic, but not necroptotic, cell death developed. Apoptosis was dependent of autocrine tumor necrosis factor production triggered by loss of cFLIP. In addition, epidermal cFLIP protein was lost in patients with severe drug reactions associated with epidermal apoptosis. Our data demonstrate the importance of cFLIP for the integrity of the epidermis and for silencing of spontaneous skin inflammation.

  13. Cellular and molecular events leading to the development of skin cancer

    International Nuclear Information System (INIS)

    Melnikova, Vladislava O.; Ananthaswamy, Honnavara N.

    2005-01-01

    The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer

  14. Cellular and molecular events leading to the development of skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Melnikova, Vladislava O. [Department of Immunology, University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit 902, Houston, TX 77030 (United States); Ananthaswamy, Honnavara N. [Department of Immunology, University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit 902, Houston, TX 77030 (United States)]. E-mail: hanantha@mdanderson.org

    2005-04-01

    The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer.

  15. Human cell transformation in the study of sunlight-induced cancers in the skin of man

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Bennett, P.V.

    1988-01-01

    Human cell transformation provides a powerful approach to understanding - at the cellular and molecular levels - induction of cancers in the skin of man. A principal approach to this problem is the direct transformation of human skin cells by exposure to ultraviolet and/or near-UV radiation. The frequency of human cells transformed to anchorage independence increases with radiation exposure; the relative transforming efficiencies of different wavelengths implies that direct absorption by nucleic acids is a primary initial event. Partial reversal of potential transforming lesions by photoreactivation suggests that pyrimidine dimers, as well as other lesions, are important in UV transformation of human cells. Human cells can also be transformed by transfection with cloned oncogenes, or with DNAs from tumors or tumor cell lines. Cells treated by the transfection procedure (but without DNA) or cells transfected with DNAs from normal mammalian cells or tissues show only background levels of transformation. Human cells can be transformed to anchorage-independent growth by DNAs ineffective in transformation of NIH 3T3 cells (including most human skin cancers), permitting the analysis of oncogenic molecular changes even in tumor DNAs difficult or impossible to analyze in rodent cell systems. 29 refs.; 4 figs.; 1 table

  16. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  17. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers | Office of Cancer Genomics

    Science.gov (United States)

    Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis.

  18. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Science.gov (United States)

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  19. Phosphaturic mesenchymal tumor of the brain without tumor-induced osteomalacia in an 8-year-old girl: case report.

    Science.gov (United States)

    Ellis, Mark B; Gridley, Daniel; Lal, Suresh; Nair, Geetha R; Feiz-Erfan, Iman

    2016-05-01

    Phosphaturic mesenchymal tumor (mixed connective tissue variant) (PMT-MCT) are tumors that may cause tumor-induced osteomalacia and rarely appear intracranially. The authors describe the case of an 8-year-old girl who was found to have PMT-MCT with involvement of the cerebellar hemisphere and a small tumor pedicle breaching the dura mater and involving the skull. This was removed surgically in gross-total fashion without further complication. Histologically the tumor was confirmed to be a PMT-MCT. There was no evidence of tumor-induced osteomalacia. At the 42-month follow-up, the patient is doing well, has no abnormalities, and is free of recurrence. PMT-MCTs are rare tumors that may involve the brain parenchyma. A gross-total resection may be effective to cure these lesions.

  20. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, Stéphane, E-mail: stephane.mouret@irba.fr [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Nguon, Nina; Cléry-Barraud, Cécile [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Dorandeu, Frédéric [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Ecole du Val-de-Grâce, 1 place Alphonse Laveran, Paris (France); Boudry, Isabelle [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France)

    2013-10-15

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated in this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin damage.

  1. Camphor induces cold and warm sensations with increases in skin and muscle blood flow in human.

    Science.gov (United States)

    Kotaka, Tomohiko; Kimura, Shoji; Kashiwayanagi, Makoto; Iwamoto, Jun

    2014-01-01

    Application of camphor to the skin has been empirically thought to improve blood circulation. However, camphor's effects on blood circulation to the skin and on thermal sensation have not been well elucidated. In this study, we examined its effects on the quality of sensation as well as on skin and muscle blood flow in human. Nine adults (average age 37±9.4 years) participated in the study. Petroleum jelly containing 5%, 10%, 20% camphor, or 2% menthol was separately applied to the skin on the medial side of one forearm of each subject. Just after the application, camphor at each concentration induced a cold sensation in a dose-dependent manner. Within 10 min, each subject reported that the cold sensation had faded, after which it was replaced by a warm sensation. As reported previously, a cold sensation was induced by application of 2% menthol, but the subjects did not adapt to that sensation. In addition, menthol did not induce a warm sensation at all. Application of menthol has been shown to increase blood flow in the skin. Finally, we measured blood flow in skin and muscle after the application of camphor or menthol. Application of camphor or menthol separately induced increases in local blood flow in the skin and muscle. The present results indicate that camphor induces both cold and warm sensations and improves blood circulation.

  2. Osteomalacia inducida por tumor: hemangiopericitoma rinosinusal Tumor-induced osteomalacia: rhinosinusal hemangiopericytoma

    Directory of Open Access Journals (Sweden)

    Enriqueta M. Serafini

    2013-02-01

    Full Text Available La osteomalacia inducida por tumor es una rara enfermedad del metabolismo óseo caracterizada por el aumento en la excreción de fosfato a nivel renal seguido de hipofosfatemia. Es causada por agentes fosfatúricos producidos por determinados tumores. La resección total del tumor resulta en la completa reversión de las anormalidades bioquímicas, la desaparición de las manifestaciones clínicas y los hallazgos en los estudios por imágenes. Presentamos el caso de un varón de 61 años con cuadro clínico y laboratorio compatibles con osteomalacia oncogénica inducida por tumor mesenquimático de localización rinosinusal. En nuestro caso el diagnóstico histológico correspondió a una neoplasia de tipo vascular: hemangiopericitoma.Tumor-induced osteomalacia is a rare disease of bone metabolism. The characteristic of this disease is an increase in phosphate excretion followed by hypophosphatemia, due to phosphaturic agents produced by different types of tumors. Tumor resection results in complete resolution of clinical, biochemical and radiological abnormalities. We present the case of a 61 year old man with signs, symptoms and laboratory findings consistent with oncogenic osteomalacia due to a rhino-sinusal mesenchymal tumor. The histological diagnosis showed a vascular neoplasm: hemangiopericytoma.

  3. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation.

    Science.gov (United States)

    Nasuno, Masanao; Arimura, Yoshiaki; Nagaishi, Kanna; Isshiki, Hiroyuki; Onodera, Kei; Nakagaki, Suguru; Watanabe, Shuhei; Idogawa, Masashi; Yamashita, Kentaro; Naishiro, Yasuyoshi; Adachi, Yasushi; Suzuki, Hiromu; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-04-01

    The role of mesenchymal stem cells (MSCs) in tumorigenesis remains controversial. Therefore, our goal was to determine whether exogenous MSCs possess intrinsic antineoplastic or proneoplastic properties in azoxymethane (AOM)-induced carcinogenesis. Three in vivo models were studied: an AOM/dextran sulfate sodium colitis-associated carcinoma model, an aberrant crypt foci model, and a model to assess the acute apoptotic response of a genotoxic carcinogen (AARGC). We also performed in vitro coculture experiments. As a result, we found that MSCs partially canceled AOM-induced tumor initiation but not tumor promotion. Moreover, MSCs inhibited the AARGC in colonic epithelial cells because of the removal of O(6)-methylguanine (O(6) MeG) adducts through O(6) MeG-DNA methyltransferase activation. Furthermore, MSCs broadly affected the cell-cycle machinery, potentially leading to G1 arrest in vivo. Coculture of IEC-6 rat intestinal cells with MSCs not only arrested the cell cycle at the G1 phase, but also induced apoptosis. The anti-carcinogenetic properties of MSCs in vitro required transforming growth factor (TGF)-β signaling because such properties were completely abrogated by absorption of TGF-β under indirect coculture conditions. MSCs inhibited AOM-induced tumor initiation by preventing the initiating cells from sustaining DNA insults and subsequently inducing G1 arrest in the initiated cells that escaped from the AARGC. Furthermore, tumor initiation perturbed by MSCs might potentially dysregulate WNT and TGF-β-Smad signaling pathways in subsequent tumorigenesis. Obtaining a better understanding of MSC functions in colon carcinogenesis is essential before commencing the broader clinical application of promising MSC-based therapies for cancer-prone patients with inflammatory bowel disease. © AlphaMed Press.

  4. Molecular characterization of radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Guillet Bastide, K.

    2008-11-01

    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16 Ink4a protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  5. Skin cancers in elderly patients.

    Science.gov (United States)

    Malaguarnera, Giulia; Giordano, Maria; Cappellani, Alessandro; Berretta, Massimiliano; Malaguarnera, Michele; Perrotta, Rosario Emanuele

    2013-11-01

    Cancer in older people is a common problem worldwide. Among various types of cancer, skin cancers represent an important percentage. The principal risk factors are sun exposure, family history of skin cancer, fair skin color, but also the age plays an important role in the genesis of skin cancers. In older people there are a more prolonged exposure to carcinogenesis and a decreased functionality of reparation mechanisms of the cells so they acquire a selective advantage of growing and proliferating. At the same time age causes alteration in immune system by increasing NK-cells absolute number and decreasing both the endogenous and the lymphokine-induced lytic activities. The anti-tumor immune response is also mediated by the cytotoxic T- lymphocytes and in the elderly a strong reduction of T-cell function has been demonstrated. In elderly patients the diagnosis and the treatment of skin cancers can be different from younger counterpart. For example in older patients with melanoma is important to evaluate Breslow depth while higher mitotic rate has major value in younger patients. Moreover, the treatment should consider the performance status of patients and their compliance.

  6. Human atopic dermatitis skin-derived T cells can induce a reaction in mouse keratinocytes in vivo

    DEFF Research Database (Denmark)

    Martel, Britta C; Blom, Lars; Dyring-Andersen, Beatrice

    2015-01-01

    . In comparison, blood -derived in vitro differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in mouse skin through induction of a proliferative response in the mouse keratinocytes. This article is protected......In atopic dermatitis (AD), the inflammatory response between skin infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice...... through keratinocyte activation and consequently cause development of eczematous lesions. Punch biopsies of lesional skin from AD patients were used to establish skin-derived T cell cultures and which were transferred into NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that subcutaneous...

  7. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    International Nuclear Information System (INIS)

    Tiwari, Prakash; Gupta, Krishna P.

    2014-01-01

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations

  8. Differential role of basal keratinocytes in UV-induced immunosuppression and skin cancer

    NARCIS (Netherlands)

    J. Jans (Judith); G.A. Garinis (George); W. Schul; A. van Oudenaren (Adri); M.J. Moorhouse (Michael); M. Smid (Marcel); Y.-G. Sert (Yurda-Gul); A. van der Velde (Albertina); Y.M. Rijksen (Yvonne); F.R. de Gruijl (Frank); P.J. van der Spek (Peter); A. Yasui (Akira); J.H.J. Hoeijmakers (Jan); P.J. Leenen (Pieter); G.T.J. van der Horst (Gijsbertus)

    2006-01-01

    textabstractCyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) comprise major UV-induced photolesions. If left unrepaired, these lesions can induce mutations and skin cancer, which is facilitated by UV-induced immunosuppression. Yet the contribution of lesion and cell type

  9. In vivo study of the human skin by the method of laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Borisova, E.; Avramov, L.

    2000-01-01

    The goals of this study are to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced auto-fluorescence spectroscopy (LIAFS) for human skin and optimize of detection and diagnosis of hollow organs and skin. In recent years, there has been growing interest in the use of laser-induced fluorescence to discriminate disease from normal surrounding tissue. The most fluorescence studies have used exogenous fluorophores of this discrimination. The laser-induced auto-fluorescence which is used for diagnosis of tissues in the human body avoids administration of any drugs. In this study a technique for optical biopsy of in vivo human skin is presented. The auto-fluorescence characterization of tissue relies on different spectral properties of tissues. It was demonstrated a differentiation between normal skin and skin with vitiligo. Two main endogenous fluorophores in the human skin account for most of the cellular auto-fluorescence for excitation wavelength 337 nm reduced from of nicotinamide adenine dinucleotide and collagen. The auto-fluorescence spectrum of human skin depend on main internal absorbers which are blood and melanin. In this study was described the effect caused by blood and melanin content on the shape of the auto-fluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. (authors)

  10. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Directory of Open Access Journals (Sweden)

    Tobias Eggert

    Full Text Available Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL, while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  11. Radio-induced fibrosis of skin: contribution to its development and treatment

    International Nuclear Information System (INIS)

    Vozenin-Brotons, Marie-Catherine

    1999-01-01

    Fibrosis of skin is frequently observed after therapeutic and accidental irradiations, and is characterized by the appearance of activated fibroblasts called myo-fibroblasts and the accumulation of extracellular matrix compounds. We postulated that radiation fibrosis could be considered as a chronic scar, where constant production of activating signals are emitted, whereas no negative feed back regulation occur. However, recent studies demonstrated that radiation-induced fibrosis could be treated using therapeutic agents like the superoxide dismutase. In order to better understand the mechanisms leading to skin fibrosis, we studied both the early reactions and the late fibrotic tissue induced by high radiation doses in normal skin. In particular, we investigated in the role of growth factors in these reactions. The synthesis of TGF-β1 was found to be increased, both the epidermis and the dermis, immediately after irradiation. This overexpression sustained during the development and the persistence phases of fibrosis, suggesting that the immediate cellular response induce a cascade of activation for genes and proteins which will result in the late effect of radiation in skin. Furthermore, these observations showed that the TGF-β1 could be a target for anti-fibrotic treatment. In order to test this hypothesis and to investigate further in the mechanisms leading to fibrosis regression after SOD treatment, we develop normal and fibrosis-like reconstructed skin models. These reconstructed skins were treated with liposomal and carrier-free Cu/Zn SOD, and examined for their effects on cell number, apoptosis and phenotypic differentiation. The results showed that SOD did not induce myo-fibroblast cell death or apoptosis whereas it significantly reduced TGF-β1 expression, thus demonstrating that SOD might be considered as a potent antagonist of the major fibro-genic growth factor. We also found that SOD significantly lowered the levels of the myo-fibroblast marker

  12. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Shi, Yang; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation

  13. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yang, E-mail: yangshi_xz@126.com; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-05-22

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation.

  14. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation

    Directory of Open Access Journals (Sweden)

    Nikolaos Kourkoumelis

    2015-06-01

    Full Text Available Raman spectroscopy has emerged as a promising tool for real-time clinical diagnosis of malignant skin tumors offering a number of potential advantages: it is non-intrusive, it requires no sample preparation, and it features high chemical specificity with minimal water interference. However, in vivo tissue evaluation and accurate histopathological classification remain a challenging task for the successful transition from laboratory prototypes to clinical devices. In the literature, there are numerous reports on the applications of Raman spectroscopy to biomedical research and cancer diagnostics. Nevertheless, cases where real-time, portable instrumentations have been employed for the in vivo evaluation of skin lesions are scarce, despite their advantages in use as medical devices in the clinical setting. This paper reviews the advances in real-time Raman spectroscopy for the in vivo characterization of common skin lesions. The translational momentum of Raman spectroscopy towards the clinical practice is revealed by (i assembling the technical specifications of portable systems and (ii analyzing the spectral characteristics of in vivo measurements.

  15. Green tea polyphenol, (−)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tripti [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233 (United States)

    2013-12-01

    The green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG), has been shown to have anti-carcinogenic effects in several skin tumor models, and efforts are continued to investigate the molecular targets responsible for its cytotoxic effects to cancer cells. Our recent observation that β-catenin is upregulated in skin tumors suggested the possibility that the anti-skin carcinogenic effects of EGCG are mediated, at least in part, through its effects on β-catenin signaling. We have found that treatment of the A431 and SCC13 human skin cancer cell lines with EGCG resulted in reduced cell viability and increased cell death and that these cytotoxic effects were associated with inactivation of β-catenin signaling. Evidence of EGCG-induced inactivation of β-catenin included: (i) reduced accumulation of nuclear β-catenin; (ii) enhanced levels of casein kinase1α, reduced phosphorylation of glycogen synthase kinase-3β, and increased phosphorylation of β-catenin on critical serine{sup 45,33/37} residues; and (iii) reduced levels of matrix metalloproteinase (MMP)-2 and MMP-9, which are down-stream targets of β-catenin. Treatment of cells with prostaglandin E2 (PGE{sub 2}) enhanced the accumulation of β-catenin and enhanced β-catenin signaling. Treatment with either EGCG or an EP2 antagonist (AH6809) reduced the PGE{sub 2}-enhanced levels of cAMP, an upstream regulator of β-catenin. Inactivation of β-catenin by EGCG resulted in suppression of cell survival signaling proteins. siRNA knockdown of β-catenin in A431 and SCC13 cells reduced cell viability. Collectively, these data suggest that induction of cytotoxicity in skin cancer cells by EGCG is mediated by targeting of β-catenin signaling and that the β-catenin signaling is upregulated by inflammatory mediators. - Highlights: • EGCG inhibits cancer cell viability through inactivation of β-catenin signaling. • Inactivation of β-catenin involves the downregulation of inflammatory mediators. • EGCG

  16. Bleomycin-induced epithelial–mesenchymal transition in sclerotic skin of mice: Possible role of oxidative stress in the pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng-Fan, E-mail: zhouchengfan@sohu.com [Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022 (China); Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 (China); Zhou, Deng-Chuan [Department of Emergency Medicine and Critical Care Medicine, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022 (China); Zhang, Jia-Xiang; Wang, Feng; Cha, Wan-Sheng [Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 (China); Wu, Chang-Hao [Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey (United Kingdom); Zhu, Qi-Xing, E-mail: zqxing@yeah.net [Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022 (China); Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 (China)

    2014-06-15

    Epithelial–mesenchymal transition (EMT) derived myofibroblasts are partly responsible for the increased collagen synthesis and deposition that occur in tissue fibrosis; however EMT occurrence in skin fibrosis and its mechanism remain unknown. The aim of this study was to investigate whether epithelial cells undergo EMT and determine the role of oxidative stress in this process. BALB/c mice were subcutaneously injected with bleomycin (BLM) or phosphate buffer saline (PBS) into the shaved back daily for 2, 3, and 4 weeks. Skin collagen deposition was evaluated by histopathology and Western blotting. EMT characteristics in the skin were determined by histopathology and immunofluorescent staining for E-cadherin and vimentin, which were further evaluated by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). To investigate the role of oxidative stress in EMT, the antioxidant N-acetylcysteine (NAC) was intraperitoneally (100 mg/kg body weight/day) injected daily for 3 weeks. The epithelial suprabasal cells were detached from the basement membrane zone (BMZ) in the sclerotic skin treated with BLM. Immunofluorescent staining indicated vimentin-positive epithelial cells frequently occurring in the thickened epidermis of BLM-treated mice. Western blotting and RT-PCR showed that the expression of E-cadherin was significantly decreased but that of vimentin significantly increased in the skin treated with BLM. NAC attenuated BLM induced oxidative damage, changes in E-cadherin and vimentin expressions and collagen deposition in the sclerotic skin of mice. This study provides the first evidence that BLM induces the EMT of the epithelial cells superficial to the basement membrane zone in the skin fibrosis. Oxidative stress may contribute, at least in part, to BLM induced EMT and skin fibrosis in mice. - Highlights: • We provided the first evidence that EMT occurred in BLM-induced skin fibrosis. • Epithelial cells superficial to the BMZ underwent

  17. Bleomycin-induced epithelial–mesenchymal transition in sclerotic skin of mice: Possible role of oxidative stress in the pathogenesis

    International Nuclear Information System (INIS)

    Zhou, Cheng-Fan; Zhou, Deng-Chuan; Zhang, Jia-Xiang; Wang, Feng; Cha, Wan-Sheng; Wu, Chang-Hao; Zhu, Qi-Xing

    2014-01-01

    Epithelial–mesenchymal transition (EMT) derived myofibroblasts are partly responsible for the increased collagen synthesis and deposition that occur in tissue fibrosis; however EMT occurrence in skin fibrosis and its mechanism remain unknown. The aim of this study was to investigate whether epithelial cells undergo EMT and determine the role of oxidative stress in this process. BALB/c mice were subcutaneously injected with bleomycin (BLM) or phosphate buffer saline (PBS) into the shaved back daily for 2, 3, and 4 weeks. Skin collagen deposition was evaluated by histopathology and Western blotting. EMT characteristics in the skin were determined by histopathology and immunofluorescent staining for E-cadherin and vimentin, which were further evaluated by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). To investigate the role of oxidative stress in EMT, the antioxidant N-acetylcysteine (NAC) was intraperitoneally (100 mg/kg body weight/day) injected daily for 3 weeks. The epithelial suprabasal cells were detached from the basement membrane zone (BMZ) in the sclerotic skin treated with BLM. Immunofluorescent staining indicated vimentin-positive epithelial cells frequently occurring in the thickened epidermis of BLM-treated mice. Western blotting and RT-PCR showed that the expression of E-cadherin was significantly decreased but that of vimentin significantly increased in the skin treated with BLM. NAC attenuated BLM induced oxidative damage, changes in E-cadherin and vimentin expressions and collagen deposition in the sclerotic skin of mice. This study provides the first evidence that BLM induces the EMT of the epithelial cells superficial to the basement membrane zone in the skin fibrosis. Oxidative stress may contribute, at least in part, to BLM induced EMT and skin fibrosis in mice. - Highlights: • We provided the first evidence that EMT occurred in BLM-induced skin fibrosis. • Epithelial cells superficial to the BMZ underwent

  18. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  19. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  20. Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    Homer S. Black

    2016-02-01

    Full Text Available Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA in the prevention of non-melanoma skin cancer (NMSC. Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation (UVR induced carcinogenic expression. In contrast, increasing levels of dietary omega-6 FA increase UVR carcinogenic expression, with respect to a shorter tumor latent period and increased tumor multiplicity. Both omega-6 and omega-3 FA are essential FA, necessary for normal growth and maintenance of health and although these two classes of FA exhibit only minor structural differences, these differences cause them to act significantly differently in the body. Omega-6 and omega-3 FA, metabolized through the lipoxygenase (LOX and cyclooxygenase (COX pathways, lead to differential metabolites that are influential in inflammatory and immune responses involved in carcinogenesis. Clinical studies have shown that omega-3 FA ingestion protects against UVR-induced genotoxicity, raises the UVR-mediated erythema threshold, reduces the level of pro-inflammatory and immunosuppressive prostaglandin E2 (PGE2 in UVR-irradiated human skin, and appears to protect human skin from UVR-induced immune-suppression. Thus, there is considerable evidence that omega-3 FA supplementation might be beneficial in reducing the occurrence of NMSC, especially in those individuals who are at highest risk.

  1. Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer

    Science.gov (United States)

    Black, Homer S.; Rhodes, Lesley E.

    2016-01-01

    Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA) in the prevention of non-melanoma skin cancer (NMSC). Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation (UVR) induced carcinogenic expression. In contrast, increasing levels of dietary omega-6 FA increase UVR carcinogenic expression, with respect to a shorter tumor latent period and increased tumor multiplicity. Both omega-6 and omega-3 FA are essential FA, necessary for normal growth and maintenance of health and although these two classes of FA exhibit only minor structural differences, these differences cause them to act significantly differently in the body. Omega-6 and omega-3 FA, metabolized through the lipoxygenase (LOX) and cyclooxygenase (COX) pathways, lead to differential metabolites that are influential in inflammatory and immune responses involved in carcinogenesis. Clinical studies have shown that omega-3 FA ingestion protects against UVR-induced genotoxicity, raises the UVR-mediated erythema threshold, reduces the level of pro-inflammatory and immunosuppressive prostaglandin E2 (PGE2) in UVR-irradiated human skin, and appears to protect human skin from UVR-induced immune-suppression. Thus, there is considerable evidence that omega-3 FA supplementation might be beneficial in reducing the occurrence of NMSC, especially in those individuals who are at highest risk. PMID:26861407

  2. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  3. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  4. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  5. Diagnostic Modalities for FGF23-Producing Tumors in Patients with Tumor-Induced Osteomalacia

    Directory of Open Access Journals (Sweden)

    Seiji Fukumoto

    2014-06-01

    Full Text Available Fibroblast growth factor 23 (FGF23 is a hormone that is produced by osteocytes and regulates phosphate and vitamin D metabolism through binding to the Klotho-FGF receptor complex. Excessive actions of FGF23 cause several kinds of hypophosphatemic rickets/osteomalacia. Tumor-induced rickets/osteomalacia (TIO is a paraneoplastic syndrome caused by overproduction of FGF23 from the responsible tumors. Because TIO is cured by complete resection of the causative tumors, it is of great clinical importance to locate these tumors. Several imaging methods including skeletal survey by magnetic resonance imaging and octreotide scintigraphy have been used to identify the tumors that cause TIO. However, none of these imaging studies indicate that the detected tumors are actually producing FGF23. Recently, systemic venous sampling was conducted for locating FGF23-producing tumor in suspected patients with TIO and demonstrated that this test might be beneficial to a subset of patient. Further studies with more patients are necessary to establish the clinical utility of venous sampling in patients with TIO.

  6. Monitoring UV-induced signalling pathways in an ex vivo skin organ culture model using phospho-antibody array.

    Science.gov (United States)

    Lenain, Christelle; Gamboa, Bastien; Perrin, Agnes; Séraïdaris, Alexia; Bertino, Béatrice; Rival, Yves; Bernardi, Mathieu; Piwnica, David; Méhul, Bruno

    2018-05-01

    We investigated UV-induced signalling in an ex vivo skin organ culture model using phospho-antibody array. Phosphorylation modulations were analysed in time-course experiments following exposure to solar-simulated UV and validated by Western blot analyses. We found that UV induced P-p38 and its substrates, P-ERK1/2 and P-AKT, which were previously shown to be upregulated by UV in cultured keratinocytes and in vivo human skin. This indicates that phospho-antibody array applied to ex vivo skin organ culture is a relevant experimental system to investigate signalling events following perturbations. As the identified proteins are components of pathways implicated in skin tumorigenesis, UV-exposed skin organ culture model could be used to investigate the effect on these pathways of NMSC cancer drug candidates. In addition, we found that phospho-HCK is induced upon UV exposure, producing a new candidate for future studies investigating its role in the skin response to UV and UV-induced carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL-induced

  8. Benzo(a)pyrene metabolism, DNA-binding and UV-induced repair of DNA damage in cultured skin fibroblasts from a patient with unilateral multiple basal cell carcinoma

    International Nuclear Information System (INIS)

    Don, P.S.C.; Mukhtar, H.; Das, M.; Berger, N.A.; Bickers, D.R.

    1989-01-01

    The metabolism of benzo(a)pyrene (BP), and its subsequent binding to DNA, and the repair of UV-induced DNA damage were studied in fibroblasts cultured from the skin of a 61-year-old male who had multiple basal cell carcinoma (BCC) (>100) on his left upper trunk. Results suggest that BP metabolism and repair of DNA are altered in tumor-bearing site (TSB) cells and that patients with this type of metabolic profile may be at higher risk of the development of cutaneous neoplasms. It is also possible that fibroblasts from tumour bearing skin undergo some as yet unexplained alteration in carcinogen metabolism as a consequence of the induction of neoplasia. (author)

  9. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    International Nuclear Information System (INIS)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-01-01

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin

  10. ORIGINAL ARTICLES Warfarin-induced skin necrosis in HIV-1 ...

    African Journals Online (AJOL)

    F Bhaijee, H Wainwright, G Meintjes, R J Wilkinson, G Todd, E de Vries, D J Pepper. Warfarin-induced skin necrosis (WISN) is a rare complication of warfarin ..... first few days of warfarin therapy.2,11 Warfarin is a vitamin K antagonist and ...

  11. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Science.gov (United States)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  12. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  13. UV light B-mediated inhibition of skin catalase activity promotes Gr-1+ CD11b+ myeloid cell expansion.

    Science.gov (United States)

    Sullivan, Nicholas J; Tober, Kathleen L; Burns, Erin M; Schick, Jonathan S; Riggenbach, Judith A; Mace, Thomas A; Bill, Matthew A; Young, Gregory S; Oberyszyn, Tatiana M; Lesinski, Gregory B

    2012-03-01

    Skin cancer incidence and mortality are higher in men compared with women, but the causes of this sex discrepancy remain largely unknown. UV light exposure induces cutaneous inflammation and neutralizes cutaneous antioxidants. Gr-1(+)CD11b(+) myeloid cells are heterogeneous bone marrow-derived cells that promote inflammation-associated carcinogenesis. Reduced activity of catalase, an antioxidant present in the skin, has been associated with skin carcinogenesis. We used the outbred, immune-competent Skh-1 hairless mouse model of UVB-induced inflammation and non-melanoma skin cancer to further define sex discrepancies in UVB-induced inflammation. Our results demonstrated that male skin had relatively lower baseline catalase activity, which was inhibited following acute UVB exposure in both sexes. Further analysis revealed that skin catalase activity inversely correlated with splenic Gr-1(+)CD11b(+) myeloid cell percentage. Acute UVB exposure induced Gr-1(+)CD11b(+) myeloid cell skin infiltration, which was inhibited to a greater extent in male mice by topical catalase treatment. In chronic UVB studies, we demonstrated that the percentage of splenic Gr-1(+)CD11b(+) myeloid cells was 55% higher in male tumor-bearing mice compared with their female counterparts. Together, our findings indicate that lower skin catalase activity in male mice may at least in part contribute to increased UVB-induced generation of Gr-1(+)CD11b(+) myeloid cells and subsequent skin carcinogenesis.

  14. Evaluation of morphological changes of the skin after radiation-induced injury in Wistar rats

    International Nuclear Information System (INIS)

    Andrade, Cherley Borba Vieira de

    2010-01-01

    The cancer covers a heterogeneous group of more than 100 diseases with different etiology and prognosis. Radiotherapy is one of the most commonly used treatment modalities, aiming at the destruction of cancer cells, using ionizing radiation. One of the limiting factors of radiotherapy is that radiation promotes the death of tumor cells in addition to injure healthy tissue neighboring the tumor, and may cause their death. Irradiation of the skin, accidental or for therapeutic purposes can trigger many injuries culminating in fibrosis, which implies functional alteration of the body. The evaluation of morphological effects associated with skin irradiation becomes essential to develop more effective radiation strategies and decreased morbidity; and in case of accidents, proper handling of the victim.Evaluate radio-induced dermal changes using a Wistar rats model irradiated with 10, 40 and 60Gy. Male Wistar rats, aged approximately three months, were pre-anesthetized with midazolam and xylazine and anesthetized with sodium pentobarbital, shaved in the back, immobilized on polystyrene support in the prone position and irradiated with doses of 10, 40 and 60 Gy, with 4MeV nominal energy electron beams. The skin was irradiated in a 3cm 2 field, and used 0.5cm of tissue equivalent material, to obtain a homogeneous dose distribution. After irradiation, the animals remained on constant evaluation, and the lesions were recorded photographically. The animals were divided into groups and were killed on the irradiation day, 5, 10, 15, 25 and 100 days after irradiation. The skin was fixed in 10% formaldehyde; the samples were embedded in paraffin and cut. The sections were stained with hematoxylin-eosin, picrosirius red and immuno stained with antibody anti-TGF beta1. Another part of the tissue was fixed in 2.5% glutaraldehyde and processed for scanning electron microscopy. It was observed macroscopically the appearance of skin lesions similar to burns on the entire irradiated

  15. Elaboration of an algorithm for preserving a projective skin flap above the tumor when planning subcutaneous mastectomy from an aesthetically acceptable area in patients with breast nodule cancer

    Directory of Open Access Journals (Sweden)

    A. R. Khamitov

    2016-01-01

    Full Text Available Indications for the conservation of the skin flap over the tumor for potential offset of the operational access in aesthetically acceptable zone in patients with primary nodular breast cancer are discussed in the article. The survey results of 203 patients (T1–2N0–3M0 are analyzed. The study revealed that the risk factors affecting the skin flap involvement are the presence of the skin flattening as well as topographic and anatomical characteristics: tumor < 3 cm, located at a depth of < 0.46 ± 0.2 cm, tumor ≥ 3 cm located at a depth of < 1.66 cm. Based on the data the algorithm for immediate breast reconstruction from aesthetically acceptable zone for surgical oncologist is compiled.

  16. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    International Nuclear Information System (INIS)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-01-01

    Highlights: ► UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. ► NAC inhibits UVB induced Cyp-D expression, while H 2 O 2 facilitates it. ► Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. ► Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H 2 O 2 ) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H 2 O 2 -induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H 2 O 2 -induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D’s critical role in UVB/oxidative stress-induced skin cell death.

  17. The efficacy of Pistacia Terebinthus soap in the treatment of cetuximab-induced skin toxicity.

    Science.gov (United States)

    Tastekin, Didem; Tambas, Makbule; Kilic, Kemal; Erturk, Kayhan; Arslan, Deniz

    2014-12-01

    This open-labeled phase II, efficacy-finding study evaluated the efficiency and safety of Pistacia terebinthus soap in metastatic colorectal cancer patients who developed cetuximab induced skin toxicity. Patients who received cetuximab plus chemotherapy and developed Grade 2 or 3 skin toxicity were treated twice daily with a soap made of oil extracted from Pistacia terebinthus. During treatment, no topical or oral antibiotics, corticosteroids or other moisturizers were used. Patients were examined 1 week later and their photographs were taken. Fifteen mCRC patients who developed skin toxicity while receiving first-line CTX in combination with chemotherapy were included into the study. Eight patients were male and the median age was 58 (25-70). Sixty percent of the patients (n:9) had Grade 3 skin toxicity. Complete response rates in patients with Grade 2 and Grade 3 skin toxicities were 100 and 33%, respectively. In the remaining patients with Grade 3 toxicity the skin toxicity regressed to Grade 1. The objective response rate was 100%, and no delay, dose reduction or discontinuation of CTX treatment due to skin toxicity was necessary. Skin toxicity reoccurred in all patients when patients stopped administering the soap and therefore they used it throughout the cetuximab treatment. Pistacia terebinthus soap seemed to be used safely and effectively in the treatment of skin toxicity induced by Cetuximab.

  18. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway.

    Science.gov (United States)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-09-07

    UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H(2)O(2)) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H(2)O(2)-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H(2)O(2)-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    Science.gov (United States)

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  20. Kaempferol targets RSK2 and MSK1 to suppress ultraviolet radiation-induced skin cancer

    Science.gov (United States)

    Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2014-01-01

    Solar ultraviolet (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the USA. The mitogen-activated protein (MAP) kinase cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAP kinase cascades. In this study, phosphorylation of RSK and MSK1 was up-regulated in human squamous cell carcinoma (SCC) and solar UV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate solar UV-induced phosphorylation of CREB and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of solar UV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in solar UV-induced phosphorylation of cAMP response element-binding protein (CREB), c-Fos and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against solar UV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1. PMID:24994661

  1. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer.

    Science.gov (United States)

    Yao, Ke; Chen, Hanyong; Liu, Kangdong; Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2014-09-01

    Solar UV (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the United States. The MAPK cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress-activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAPK cascades. In this study, phosphorylation of RSK and MSK1 was upregulated in human squamous cell carcinoma (SCC) and SUV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples, and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate SUV-induced phosphorylation of cAMP-responsive element binding protein (CREB) and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of SUV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in SUV-induced phosphorylation of CREB, c-Fos, and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against SUV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1. ©2014 American Association for Cancer Research.

  2. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  3. Curcumin Protects against UVB-Induced Skin Cancers in SKH-1 Hairless Mouse: Analysis of Early Molecular Markers in Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Kuen-Daw Tsai

    2012-01-01

    Full Text Available Curcumin (CUR has been shown to possess a preventive effect against various cancers and interfere with multiple-cell signaling pathways. We evaluated the protective effects of CUR in regression of UVB-induced skin tumor formation in SKH-1 hairless mice and its underlying early molecular biomarkers associated with carcinogenesis. Mice irradiated with UVB at 180 mJ/cm2 twice per week elicited 100% tumor incidence at 20 weeks. Topical application of CUR prior to UVB irradiation caused delay in tumor appearance, multiplicity, and size. Topical application of CUR prior to and immediately after a single UVB irradiation (180 mJ/cm2 resulted in a significant decrease in UVB-induced thymine dimer-positive cells, expression of proliferative cell nuclear antigen (PCNA, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and apoptotic sunburn cells together with an increase in p53 and p21/Cip1-positive cell population in epidermis. Simultaneously, CUR also significantly inhibited NF-κB, cyclooxygenase-2 (COX-2, prostaglandin E2 (PGE2, and nitric oxide (NO levels. The results suggest that the protective effect of CUR against photocarcinogenesis is accompanied by downregulation of cell proliferative controls, involving thymine dimer, PCNA, apoptosis, transcription factors NF-κB, and of inflammatory responses involving COX-2, PGE2, and NO, while upregulation of p53 and p21/Cip1 to prevent DNA damage and facilitate DNA repair.

  4. Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs.

    Science.gov (United States)

    Reelfs, Olivier; Eggleston, Ian M; Pourzand, Charareh

    2010-03-01

    In humans, prolonged sunlight exposure is associated with various pathological states. The continuing drive to develop improved skin protection involves not only approaches to reduce DNA damage by solar ultraviolet B (UVB) but also the development of methodologies to provide protection against ultraviolet A (UVA), the oxidising component of sunlight. Furthermore identification of specific cellular events following ultraviolet (UV) irradiation is likely to provide clues as to the mechanism of the development of resulting pathologies and therefore strategies for protection. Our discovery that UVA radiation, leads to an immediate measurable increase in 'labile' iron in human skin fibroblasts and keratinocytes provides a new insight into UVA-induced skin damage, since iron is a catalyst of biological oxidations. The main purpose of this overview is to bring together some of the new findings related to mechanisms underlying UVA-induced iron release and to discuss novel approaches based on the use of multiantioxidants and light-activated caged-iron chelators for efficient protection of skin cells against UVA-induced iron damage.

  5. Red tattoos, ultraviolet radiation and skin cancer in mice.

    Science.gov (United States)

    Lerche, Catharina M; Heerfordt, Ida M; Serup, Jørgen; Poulsen, Thomas; Wulf, Hans Christian

    2017-11-01

    Ultraviolet radiation (UVR) induces skin cancer. The combination of UVR and red tattoos may be associated with increased risk of skin cancer due to potential carcinogens in tattoo inks. This combination has not been studied previously. Immunocompetent C3.Cg/TifBomTac hairless mice (n=99) were tattooed on their back with a popular red tattoo ink. This often used ink is banned for use on humans because of high content of the potential carcinogen 2-anisidine. Half of the mice were irradiated with three standard erythema doses UVR thrice weekly. Time to induction of first, second and third squamous cell carcinoma (SCC) was measured. All UV-irradiated mice developed SCCs. The time to the onset of the first and second tumor was identical in the red-tattooed group compared with the control group (182 vs 186 days and 196 vs 203 days, P=ns). Statistically, the third tumor appeared slightly faster in the red-tattooed group than in the controls (214 vs 224 days, P=.043). For the second and third tumor, the growth rate was faster in the red-tattooed group compared with the control (31 vs 49 days, P=.009 and 30 vs 38 days, P=.036). In conclusion, no spontaneous cancers were observed in skin tattooed with a red ink containing 2-anisidine. However, red tattoos exposed to UVR showed faster tumor onset regarding the third tumor, and faster growth rate of the second and third tumor indicating red ink acts as a cocarcinogen with UVR. The cocarcinogenic effect was weak and may not be clinically relevant. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Specific inhibition of cytotoxic memory cells produced against uv-induced tumors in uv-irradiation mice

    International Nuclear Information System (INIS)

    Thorn, R.M.

    1978-01-01

    Cytotoxic responses of uv-irradiated mice against syngeneic uv-induced tumors were measured by using a 51 Cr-release assay to determine if uv treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the ''memory'' response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of uv-treated mice against syngeneic, uv-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic uv-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, uv-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses

  7. Tumor necrosis factor-alpha induced enhancement of cryosurgery

    Science.gov (United States)

    Goel, Raghav; Paciotti, Guilio F.; Bischof, John C.

    2008-02-01

    Local recurrence of cancer after cryosurgery is related to the inability to monitor and predict destruction of cancer (temperatures > -40°C) within an iceball. We previously reported that a cytokine adjuvant TNF-α could be used to achieve complete cancer destruction at the periphery of an iceball (0 to -40°C). This study is a further development of that work in which cryosurgery was performed using cryoprobes operating at temperatures > -40°C. LNCaP Pro 5 tumor grown in a dorsal skin fold chamber (DSFC) was frozen at -6°C after TNF-α incubation for 4 or 24 hours. Tumors grown in the hind limb were frozen with a probe tip temperature of -40°C, 4 or 24 hours after systemic injection with TNF-α. Both cryosurgery alone or TNF-α treatment alone caused only a minimal damage to the tumor tissue at the conditions used in the study. The combination of TNF-α and cryosurgery produced a significant damage to the tumor tissue in both the DSFC and the hind limb model system. This augmentation in cryoinjury was found to be time-dependent with 4-hour time period between the two treatments being more effective than 24-hour. These results suggests the possibility of cryotreatment at temperatures > -40°C with the administration of TNF-α.

  8. Two different approaches in skin cancer therapy: using a photosensitizer/a natural product

    Science.gov (United States)

    Abraham, Annie; Gayathri, Devi D.; Cibin, T. R.; Ramaiah, D.

    2010-02-01

    This paper deals with two potential modes for the treatment of skin cancer-one a novel approach using a squaraine dye and the other using a natural product- the flavonoid fraction of Saraca asoka. Squaraine dye is a photosensitizing agent, which is preferentially taken up and retained by the tumor cells and when irradiated with high power visible light results in the selective destruction of the tumor cells by photodynamic therapy. The uniqueness of this mode of treatment lies in the selective destruction of tumor cells without affecting the neighbouring normal cells, which is much advantageous over radiation therapy now frequently used. The chemopreventive and therapeutic effects of the plant component are explored as well. The experimental models were Swiss albino mice in which skin tumor was induced by DMBA. Marked reduction in tumor volume and burden in the treated groups were observed. The reversal of biochemical enzyme markers like rhodanese, myeloperoxidase, β-D glucuronidase, lactate dehydrogenase, hexokinase and sialic acid to near normal levels were observed in the PDT and flavonoid fraction treated groups. The live photographs of the experimental animals and histopathological data further support the obtained results. The study assumes importance as it combines a traditional treatment mode and a novel aspect in cancer therapy using the same experimental models. Also this is the first report on PDT using a squaraine dye for skin cancer therapy in vivo.

  9. Maximum skin hyperaemia induced by local heating: possible mechanisms.

    Science.gov (United States)

    Gooding, Kim M; Hannemann, Michael M; Tooke, John E; Clough, Geraldine F; Shore, Angela C

    2006-01-01

    Maximum skin hyperaemia (MH) induced by heating skin to > or = 42 degrees C is impaired in individuals at risk of diabetes and cardiovascular disease. Interpretation of these findings is hampered by the lack of clarity of the mechanisms involved in the attainment of MH. MH was achieved by local heating of skin to 42-43 degrees C for 30 min, and assessed by laser Doppler fluximetry. Using double-blind, randomized, placebo-controlled crossover study designs, the roles of prostaglandins were investigated by inhibiting their production with aspirin and histamine, with the H1 receptor antagonist cetirizine. The nitric oxide (NO) pathway was blocked by the NO synthase inhibitor, NG-nitro-L-arginine methyl esther (L-NAME), and enhanced by sildenafil (prevents breakdown of cGMP). MH was not altered by aspirin, cetirizine or sildenafil, but was reduced by L-NAME: median placebo 4.48 V (25th, 75th centiles: 3.71, 4.70) versus L-NAME 3.25 V (3.10, 3.80) (p = 0.008, Wilcoxon signed rank test). Inhibition of NO production (L-NAME) resulted in a more rapid reduction in hyperaemia after heating (p = 0.011), whereas hyperaemia was prolonged in the presence of sildenafil (p = 0.003). The increase in skin blood flow was largely confined to the directly heated area, suggesting that the role of heat-induced activation of the axon reflex was small. NO, but not prostaglandins, histamine or an axon reflex, contributes to the increase in blood flow on heating and NO is also a component of the resolution of MH after heating. Copyright 2006 S. Karger AG, Basel.

  10. Surfactant-induced skin irritation and skin repair: evaluation of a cumulative human irritation model by noninvasive techniques.

    Science.gov (United States)

    Wilhelm, K P; Freitag, G; Wolff, H H

    1994-12-01

    Although surfactant-induced acute irritant dermatitis has been extensively studied, our understanding about the induction and repair of the clinically more relevant chronic form is limited. Our purpose was to investigate qualitative and quantitative differences in surfactant-induced irritant skin reactions from cumulative exposure to structurally unrelated surfactants and to compare the maximal irritant responses from this model with corresponding reactions noted in a previously reported acute irritation model. Sodium lauryl sulfate (SLS), dodecyl trimethyl ammonium bromide (DTAB), and potassium soap were the model irritants. Surfactant solutions (7.5%) were applied for 20 minutes daily (for 8 consecutive days excluding the weekend) to the volar aspect of the forearm of 11 volunteers. Irritant reactions were repeatedly assessed until complete healing was indicated by visual assessment and by measurements of transepidermal water loss (TEWL), erythema (skin color reflectance), and stratum corneum hydration (electrical capacitance). Maximum irritant responses were compared with corresponding reactions from an acute irritation model. TEWL was increased by SLS and DTAB to the same extent, but erythema was significantly higher in DTAB-treated skin. Skin dryness, as demonstrated by decreased capacitance values and increased scores for scaling and fissuring, was significantly more pronounced than in an acute irritation model for SLS and DTAB, although no difference was detected between the two surfactants. Potassium soap led to a slight increase in TEWL, whereas the remaining features were not significantly changed. This chronic irritation model appears to represent the clinical situation of irritant contact dermatitis with pronounced skin dryness more closely than the acute irritation model. The present study confirms that an extended time is needed for complete healing of irritant skin reactions. We also demonstrated that the evaluation of the irritation potential of

  11. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  12. Histogenesis and progression of ultraviolet light-induced tumors in hairless mice

    International Nuclear Information System (INIS)

    Kligman, L.H.; Kligman, A.M.

    1981-01-01

    Tumor histogenesis and progression were studied in UV-irradiated albino (Skh:hairless-1) and lightly pigmented (Skh:hairless-2) hairless mice. A strongly carcinogenic dose of UV light was used, producing 100% tumor incidence by 35 weeks. The light source emitted mainly UV radiation in the range of 280-320 nm and the less energetic UV radiation up to 400 nm. The resulting epidermal changes and neoplasms resembled those seen in the actinically damaged skin of humans. Microscopic lesions included benign hyperplasia, actinic keratoses, and squamous cell carcinoma in situ and with microinvasion. Clinical tumors were epithelial papillomas, fibropapillomas, keratoacanthomas, cystic keratomas, benign pigmented macules, cutaneous hornlike growths, exophytic and endophytic squamous cell carcinomas of several cytologic types, and fibrosarcomas. Even with this high dose of UV radiation, not all of the small tumors progressed to cancer. Many regressed, including some keratoacanthomas, whereas others remained small and benign for the lifetime of the mouse

  13. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin.

    Science.gov (United States)

    Jelveh, Salomeh; Kaspler, Pavel; Bhogal, Nirmal; Mahmood, Javed; Lindsay, Patricia E; Okunieff, Paul; Doctrow, Susan R; Bristow, Robert G; Hill, Richard P

    2013-08-01

    Radioprotection and mitigation effects of the antioxidants, Eukarion (EUK)-207, curcumin, and the curcumin analogs D12 and D68, on radiation-induced DNA damage or lipid peroxidation in murine skin were investigated. These antioxidants were studied because they have been previously reported to protect or mitigate against radiation-induced skin reactions. DNA damage was assessed using two different assays. A cytokinesis-blocked micronucleus (MN) assay was performed on primary skin fibroblasts harvested from the skin of C3H/HeJ male mice 1 day, 1 week and 4 weeks after 5 Gy or 10 Gy irradiation. Local skin or whole body irradiation (100 kVp X-rays or caesium (Cs)-137 γ-rays respectively) was performed. DNA damage was further quantified in keratinocytes by immunofluorescence staining of γ-histone 2AX (γ-H2AX) foci in formalin-fixed skin harvested 1 hour or 1 day post-whole body irradiation. Radiation-induced lipid peroxidation in the skin was investigated at the same time points as the MN assay by measuring malondialdehyde (MDA) with a Thiobarbituric acid reactive substances (TBARS) assay. None of the studied antioxidants showed significant mitigation of skin DNA damage induced by local irradiation. However, when EUK-207 or curcumin were delivered before irradiation they provided some protection against DNA damage. In contrast, all the studied antioxidants demonstrated significant mitigating and protecting effects on radiation-induced lipid peroxidation at one or more of the three time points after local skin irradiation. Our results show no evidence for mitigation of DNA damage by the antioxidants studied in contrast to mitigation of lipid peroxidation. Since these agents have been reported to mitigate skin reactions following irradiation, the data suggest that changes in lipid peroxidation levels in skin may reflect developing skin reactions better than residual post-irradiation DNA damage in skin cells. Further direct comparison studies are required to confirm

  14. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin

    International Nuclear Information System (INIS)

    Ananthaswamy, H.N.; Fisher, M.S.

    1981-01-01

    The numbers of ultraviolet light (uv)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus uv endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these uv-irradiated neonatal mice to photoreactivating (PR) light (cool white fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either uv-irradiated mice or uv-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of uv-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then uv, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or uv-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain

  15. Photoprotective effects of sulindac against ultraviolet B-induced phototoxicity in the skin of SKH-1 hairless mice

    International Nuclear Information System (INIS)

    Athar, Mohammad; An, Kathy P.; Tang Xiuwei; Morel, Kimberly D.; Kim, Arianna L.; Kopelovich, Levy; Bickers, David R.

    2004-01-01

    Sulindac is a nonsteroidal anti-inflammatory drug with demonstrated potency as a chemopreventive agent in animal models of carcinogenesis and in patients with familial adenomatous polyposis. Because tumor promotion is generally associated with exposure to pro-inflammatory stimuli, it is likely that anti-inflammatory agents may have potent antitumor effects. In human skin, sulindac reduces bradykinin-induced edema. In this study, we tested the hypothesis that the cyclooxygenase inhibitor sulindac can protect against ultraviolet (UVB)-induced injury that is crucial for the induction of cancer. Exposure of SKH-1 hairless mice to two consecutive doses of UVB (230 mJ/cm 2 ) induces various inflammatory responses including erythema, edema, epidermal hyperplasia, infiltration of polymorphonuclear leukocytes, etc. Topical application of sulindac (1.25-5.0 mg/0.2 ml acetone) to the dorsal skin of SKH-1 hairless mice either 1 h before or immediately after UVB exposure substantially inhibited these inflammatory responses in a dose-dependent manner. Oral administration of sulindac in drinking water (160 ppm) for 15 days before and during UVB irradiation similarly reduced these inflammatory responses. These potent anti-inflammatory effects of sulindac suggested the possibility that the drug could inhibit signaling processes that relate to carcinogenic insult by UVB. Accordingly, studies were conducted to assess the efficacy of sulindac in attenuating the expression of UVB-induced early surrogate molecular markers of photodamage and carcinogenesis. UVB exposure enhanced the expression of p53, c-fos, cyclins D1 and A, and PCNA 24 h after irradiation. Treatment of animals with either topical or oral administration of sulindac largely abrogated the expression of these UVB-induced surrogate markers. These results indicate that the cyclooxygenase inhibitor sulindac is effective in reducing UVB-induced events relevant to carcinogenesis and that this category of topically applied or

  16. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Chao [Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210024, Jiangsu (China); Yang, Bo [Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Yang, Zhi; Tu, Ying [Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Institute of Dermatology, Kunming 650032, Yunnan (China); Yang, Yan-li [Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210024, Jiangsu (China); He, Li, E-mail: heli2662@yahoo.com.cn [Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210024, Jiangsu (China); Bi, Zhi-Gang, E-mail: eltonbibenqhospital@yahoo.com.cn [Department of Dermatology, BenQ Medical Center, Nanjing Medical University, Nanjing 210019, Jiangsu (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. Black-Right-Pointing-Pointer NAC inhibits UVB induced Cyp-D expression, while H{sub 2}O{sub 2} facilitates it. Black-Right-Pointing-Pointer Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. Black-Right-Pointing-Pointer Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H{sub 2}O{sub 2}) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H{sub 2}O{sub 2}-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H{sub 2}O{sub 2}-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.

  17. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  18. Mechanisms of caffeine-induced inhibition of UVB carcinogenesis

    Directory of Open Access Journals (Sweden)

    Allan H Conney

    2013-06-01

    Full Text Available Sunlight-induced nonmelanoma skin cancer is the most prevalent cancer in the United States with more than 2 million cases per year. Several studies have shown an inhibitory effect of caffeine administration on UVB-induced skin cancer in mice, and these studies are paralleled by epidemiology studies that indicate an inhibitory effect of coffee drinking on nonmelanoma skin cancer in humans. Strikingly, decaffeinated coffee consumption had no such inhibitory effect.Mechanism studies indicate that caffeine has a sunscreen effect that inhibits UVB-induced formation of thymine dimers and sunburn lesions in the epidermis of mice. In addition, caffeine administration has a biological effect that enhances UVB-induced apoptosis thereby enhancing the elimination of damaged precancerous cells, and caffeine administration also enhances apoptosis in tumors. Caffeine administration enhances UVB-induced apoptosis by p53-dependent and p53-independent mechanisms. Exploration of the p53-independent effect indicated that caffeine administration enhanced UVB-induced apoptosis by inhibiting the UVB-induced increase in ATR-mediated formation of phospho-Chk1 (Ser345 and abolishing the UVB-induced decrease in cyclin B1 which resulted in caffeine-induced premature and lethal mitosis in mouse skin. In studies with cultured primary human keratinocytes, inhibition of ATR with siRNA against ATR inhibited Chk1 phosphorylation and enhanced UVB-induced apoptosis. Transgenic mice with decreased epidermal ATR function that were irradiated chronically with UVB had 69% fewer tumors at the end of the study compared with irradiated littermate controls with normal ATR function. These results, which indicate that genetic inhibition of ATR (like pharmacologic inhibition of ATR via caffeine inhibits UVB-induced carcinogenesis and supports the concept that ATR-mediated phosphorylation of Chk1 is an important target for caffeine’s inhibitory effect on UVB-induced carcinogenesis.

  19. Skin tightening.

    Science.gov (United States)

    Woolery-Lloyd, Heather; Kammer, Jenna N

    2011-01-01

    Skin tightening describes the treatment of skin laxity via radiofrequency (RF), ultrasound, or light-based devices. Skin laxity on the face is manifested by progressive loss of skin elasticity, loosening of the connective tissue framework, and deepening of skin folds. This results in prominence of submandibular and submental tissues. Genetic factors (chronological aging) and extrinsic factors (ultraviolet radiation) both contribute to skin laxity. There are many RF, ultrasound, and light-based devices directed at treating skin laxity. All of these devices target and heat the dermis to induce collagen contraction. Heating of the dermis causes collagen denaturation and immediate collagen contraction in addition to long-term collagen remodeling. Via RF, light, or ultrasound, these skin tightening devices deliver heat to the dermis to create new collagen and induce skin tightening. This chapter will provide an overview of the various skin tightening devices. Copyright © 2011 S. Karger AG, Basel.

  20. Immunotherapy in mice of virally induced tumors using syngeneic monoclonal antibodies

    NARCIS (Netherlands)

    D. Berends (Derk)

    1988-01-01

    textabstractThis thesis deals with one variant of immunotherapy, namely the use of tumor-specific antibodies to induce tumor destruction. The experimental work falls apart into four succeeding phases: a) definition of the model, which means the choice of the animal and the tumor, the generation

  1. Interstitial laser immunotherapy for treatment of metastatic mammary tumors in rats

    Science.gov (United States)

    Figueroa, Daniel; Joshi, Chet; Wolf, Roman F.; Walla, Jonny; Goddard, Jessica; Martin, Mallory; Kosanke, Stanley D.; Broach, Fred S.; Pontius, Sean; Brown, Destiny; Li, Xiaosong; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2011-03-01

    Thermal therapy has been used for cancer treatment for more than a century. While thermal effect can be direct, immediate, and controllable, it is not sufficient to completely eradicate tumors, particularly when tumors have metastasized locally or to the distant sites. Metastases are the major cause of treatment failure and cancer deaths. Current available therapies, such as surgery, radiation, and chemotherapy, only have limited curative effects in patients with late-stage, metastatic cancers. Immunotherapy has been considered as the ultimate approach for cancer treatment since a systemic, anti-tumor, immunological response can be induced. Using the combination of photothermal therapy and immunotherapy, laser immunotherapy (LIT),a novel immunotherapy modality for late-stage cancer treatment, has been developed. LIT has shown great promise in pre-clinical studies and clinical breast cancer and melanoma pilot trials. However, the skin color and the depth of the tumor have been challenges for effective treatment with LIT. To induce a thermal destruction zone of appropriate size without causing thermal damage on the skin, we have developed interstitial laser immunotherapy (ILIT) using a cylindrical diffuser. To determine the effectiveness of ILIT, we treated the DMBA-4 metastatic tumors in rats. The thermal damage in tumor tissue was studied using TTC immersion and hematoxolin and eosin (H & E) staining. Also observed was the overall survival of the treated animals. Our results demonstrated that the ILIT could impact a much larger tumor area, and it significantly reduced the surface damage compared with the early version of non-invasive LIT. The survival data also indicate that ILIT has the potential to become an effective tool for the treatment of deeper, larger, and metastatic tumors, with reduced side effects.

  2. Expression of telomerase reverse transcriptase in radiation-induced chronic human skin ulcer

    International Nuclear Information System (INIS)

    Zhao Po; Li Zhijun; Lu Yali; Zhong Mei; Gu Qingyang; Wang Dewen

    2001-01-01

    Objective: To investigate the expression of the catalytic subunit of telomerase, telomerase reverse transcriptase (TRT) and the possible relationship between the TRT and cancer transformation or poor healing in radiation-induced chronic ulcer of human skin. Methods: Rabbit antibody against human TRT and SP immunohistochemical method were used to detect TRT expression in 24 cases of formalin-fixed, paraffin-embed human skin chronic ulcer tissues induced by radiation, 5 cases of normal skin, 2 of burned skin, and 8 of carcinoma. Results: The positive rate for TRT was 58.3%(14/24) in chronic radiation ulcers, of which the strongly positive rate was 41.7%(10/24) and the weakly positive 16.7%(4/24), 0% in normal (0/5) and burned skin (0/2), and 100% in carcinoma (8/8). The strongly positive expression of TRT was observed almost always in the cytoplasm and nucleus of squamous epithelial cells of proliferative epidermis but the negative and partly weakly positive expression in the smooth muscles, endothelia of small blood vessels and capillaries, and fibroblasts. Chronic inflammtory cells, plasmacytes and lymphocytes also showed weakly positive for TRT. Conclusion: TRT expression could be involved in the malignant transformation of chronic radiation ulcer into squamous carcinoma, and in the poor healing caused by sclerosis of small blood vessels and lack of granulation tissue consisting of capillaries and fibroblasts

  3. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  4. Overexpression of p53, MDM2 proteins in some atr radiation-induced skin ulcers

    International Nuclear Information System (INIS)

    Gu Qingyang; Gao Yabing; Wang Dewen; Cui Yufang; Zhao Po; Yang Zhixiang; Zhou Jie

    2000-01-01

    An animal model of radiation-induced skin ulcer was set up with 140 rats, which were locally irradiated with 35-55 Gy γ-rays. The pathological changes were observed for 1 year. Immunohistochemical studies were performed in 72 rat radiation skin ulcer specimens using anti-p53 and anti-MDM2 proteins polyclonal antibodies. The results showed that the positive rate for overexpression of p53 protein was 9.7%, and for that of MDM2 was 19.4%. The overexpression of p53 was mainly seen in the nuclei of activated squamous epithelial cells, and in fibroblasts, endotheliocytes in deeper part of the skin ulcers. The overexpression of MDM2 had the same localizations. It is suggested that the changes of p53 and MDM2, genes and proteins, may be related to the cancer transformation and poor healing of radiation-induced skin ulcers

  5. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Kelly, G. [SouthWest Scientific Resources, Inc., Albuquerque, NM (United States)

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  6. l-Ergothioneine Protects Skin Cells against UV-Induced Damage—A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Karolina Bazela

    2014-03-01

    Full Text Available Many changes related to aging at the cellular level may be due to the physiological condition of mitochondria. One of the most common types of damage of mtDNA is the so-called “common deletion” referring to a deletion of 4977 base pairs. In the skin cells this phenomenon probably is caused by oxidative damage of mtDNA induced by UV. The present study was aimed at evaluating the effect of the antioxidant l-ergothioneine on UV-induced damage in skin cells. The effect of l-ergothioneine on the reduced glutathione level was studied. The presence of the “common deletion” in human fibroblasts irradiated with UVA and treated with l-ergothioneine was evaluated by a polymerase chain reaction. We have demonstrated that l-ergothioneine enhanced the level of reduced glutathione and protected cells from the induction of a photoaging-associated mtDNA “common deletion”. In view of our results, l-ergothioneine could be an effective skin care and anti-photoaging ingredient.

  7. The relevance of piroxicam for the prevention and treatment of nonmelanoma skin cancer and its precursors.

    Science.gov (United States)

    Campione, Elena; Paternò, Evelin Jasmine; Candi, Eleonora; Falconi, Mattia; Costanza, Gaetana; Diluvio, Laura; Terrinoni, Alessandro; Bianchi, Luca; Orlandi, Augusto

    2015-01-01

    Piroxicam (PXM), a nonsteroidal anti-inflammatory drug, is an enolic benzothiazine and a potent member of the oxicam series. The drug suppresses the synthesis of proinflammatory enzymes, such as cyclo-oxygenases-1 and -2 (COX-1 and 2), downregulates the production of prostaglandins (PGs) and tromboxanes, and inhibits polyamines production by blocking ornithine decarboxylase induction involved in nonmelanoma skin carcinogenesis. In addition, PXM is able to induce tumor cell apoptosis and suppresses metalloproteinase 2 activities. Skin carcinogenesis is a multistep process in which the accumulation of genetic events leads to a gradually dysplastic cellular expression, deregulation of cell growth, and carcinomatous progression. COX-1 upregulation plays a significant role in PG and vascular epidermal growth factor production supporting tumor growth. Increased level of PGs in premalignant and/or malignant cutaneous tumors is also favored by upregulation of COX-2 and downregulation of the tumor suppressor gene 15-hydroxy-prostaglandin dehydrogenase. Chemoprevention can be a hopeful approach to inhibit carcinoma occurrence before an invasive tumor develops. The chemopreventive effect of nonsteroidal anti-inflammatory drugs on nonmelanoma skin cancers has been established. In this study, we highlighted the different modalities of action of PXM on the pathogenesis of nonmelanoma skin cancer, analyzing and evaluating binding modes and energies between COX-1 or COX-2 and PXM by protein-ligand molecular docking. Our clinical experience about the local use of PXM on actinic keratoses and field cancerization is also reported, confirming its efficacy as target therapy.

  8. Neoplastic Multifocal Skin Lesions: Biology, Etiology, and Targeted Therapies for Nonmelanoma Skin Cancers.

    Science.gov (United States)

    Fernandes, Ana R; Santos, Ana C; Sanchez-Lopez, Elena; Kovačević, Andjekla B; Espina, Marta; Calpena, Ana C; Veiga, Francisco J; Garcia, Maria L; Souto, Eliana B

    2018-01-01

    Neoplastic skin lesions are multifocal, diffuse skin infiltrations of particular relevance in the differential diagnosis of ulcerative, nodular, or crusting skin lesions. Nonmelanoma skin cancers (NMSCs), namely, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and also actinic keratosis (AK), are the most common malignant tumors in humans. BCCs do not proliferate rapidly and most of the times do not metastasize, while SCCs are more infiltrative, metastatic, and destructive. AKs are precursor lesions of cutaneous SCCs. The classical therapy of NMSCs makes use of photodynamic therapy associated with chemotherapeutics. With improved understanding of the pathological mechanisms of tumor initiation, progression, and differentiation, a case is made towards the use of targeted chemotherapy with the intent to reduce the cytotoxicity of classical treatments. The present review aims to describe the current state of the art on the knowledge of NMSC, including its risks factors, oncogenes, and skin carcinogenesis, discussing the classical therapy against new therapeutic options. © 2017 S. Karger AG, Basel.

  9. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    Science.gov (United States)

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  10. Oral Administration of Vanillin Improves Imiquimod-Induced Psoriatic Skin Inflammation in Mice.

    Science.gov (United States)

    Cheng, Hui-Man; Chen, Feng-Yuan; Li, Chia-Cheng; Lo, Hsin-Yi; Liao, Yi-Fang; Ho, Tin-Yun; Hsiang, Chien-Yun

    2017-11-29

    Vanillin is one of the most widely used flavoring products worldwide. Psoriasis is a chronic inflammatory skin disorder. The interleukin-23 (IL-23)/interleukin-17 (IL-17) axis plays a critical role in psoriasis. Here, we analyzed the effect of vanillin on imiquimod (IMQ)-induced psoriatic skin inflammation in mice. Mice were treated topically with IMQ on the back skin and orally with various amounts of vanillin for 7 consecutive days. Vanillin significantly improved IMQ-induced histopathological changes of skin in a dose-dependent manner. The thickness and number of cell layers of epidermis were reduced by 29 ± 14.4 and 27.8 ± 11%, respectively, in mice given 100 mg/kg of vanillin. A microarray showed that a total of 9042 IMQ-upregulated genes were downregulated by vanillin, and the biological pathways involved in the immune system and metabolism were significantly altered by vanillin. The upregulated expressions of IL-23, IL-17A, and IL-17F genes were suppressed by vanillin, with fold changes of -3.07 ± 0.08, -2.06 ± 0.21, and -1.62 ± 0.21, respectively. Moreover, vanillin significantly decreased both the amounts of IL-17A and IL-23 and the infiltration of immune cells in the skin tissues of IMQ-treated mice. In conclusion, our findings suggested that vanillin was an effective bioactive compound against psoriatic skin inflammation. Moreover, the downregulation of IL-23 and IL-17 expression suggested that vanillin was a novel regulator of the IL-23/IL-17 axis.

  11. A tan in a test tube - in vitro models for investigating ultraviolet radiation-induced damage in skin.

    Science.gov (United States)

    Fernandez, Tara L; Dawson, Rebecca A; Van Lonkhuyzen, Derek R; Kimlin, Michael G; Upton, Zee

    2012-06-01

    Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed. © 2012 John Wiley & Sons A/S.

  12. Rapid allergen-induced interleukin-17 and interferon-γ secretion by skin-resident memory CD8(+) T cells

    DEFF Research Database (Denmark)

    Schmidt, Jonas D; Ahlström, Malin G; Johansen, Jeanne D

    2017-01-01

    , the mechanisms whereby TRM cells induce rapid recall responses need further investigation. OBJECTIVES: To study whether contact allergens induce local and/or global memory, and to determine the mechanisms involved in memory responses in the skin. METHODS: To address these questions, we analysed responses......BACKGROUND: Skin-resident memory T (TRM ) cells are associated with immunological memory in the skin. Whether immunological memory responses to allergens in the skin are solely localized to previously allergen-exposed sites or are present globally in the skin is not clear. Furthermore......, long-lasting local memory and a weaker, temporary global immunological memory response to the allergen that is mediated by IL-17A-producing and IFN-γ-producing CD8(+) TRM cells....

  13. Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue.

    Science.gov (United States)

    Bani, Daniele; Quattrini Li, Alessandro; Freschi, Giancarlo; Russo, Giulia Lo

    2013-09-01

    In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P ultrasound treatment caused a significant reduction of abdominal fat. This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.

  14. Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    International Nuclear Information System (INIS)

    Yang, Jie; Li, Jun-Wen; Wang, Lu; Chen, Zhaoli; Shen, Zhi-Qiang; Jin, Min; Wang, Xin-Wei; Zheng, Yufei; Qiu, Zhi-Gang; Wang, Jing-feng

    2008-01-01

    Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies. In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking. Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed. We conclude that VE might prevent lung tumor induced by smoking in Swiss mice

  15. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    International Nuclear Information System (INIS)

    Simonsson, Carl; Stenfeldt, Anna-Lena; Karlberg, Ann-Therese; Ericson, Marica B.; Jonsson, Charlotte A.M.

    2012-01-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  16. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Simonsson, Carl, E-mail: carl.simonsson@chem.gu.se [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Stenfeldt, Anna-Lena; Karlberg, Ann-Therese [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Ericson, Marica B., E-mail: marica.ericson@physics.gu.se [Department of Physics, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Jonsson, Charlotte A.M. [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden)

    2012-10-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  17. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  18. Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know.

    Science.gov (United States)

    Jaschke, Werner; Schmuth, Matthias; Trianni, Annalisa; Bartal, Gabriel

    2017-08-01

    For a long time, radiation-induced skin injuries were only encountered in patients undergoing radiation therapy. In diagnostic radiology, radiation exposures of patients causing skin injuries were extremely rare. The introduction of fast multislice CT scanners and fluoroscopically guided interventions (FGI) changed the situation. Both methods carry the risk of excessive high doses to the skin of patients resulting in skin injuries. In the early nineties, several reports of epilation and skin injuries following CT brain perfusion studies were published. During the same time, several papers reported skin injuries following FGI, especially after percutaneous coronary interventions and neuroembolisations. Thus, CT and FGI are of major concern regarding radiation safety since both methods can apply doses to patients exceeding 5 Gy (National Council on Radiation Protection and Measurements threshold for substantial radiation dose level). This paper reviews the problem of skin injuries observed after FGI. Also, some practical advices are given how to effectively avoid skin injuries. In addition, guidelines are discussed how to deal with patients who were exposed to a potentially dangerous radiation skin dose during medically justified interventional procedures.

  19. Epidermal changes following application of 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate to human skin transplanted to nude mice studied with histological species markers

    International Nuclear Information System (INIS)

    Graem, N.

    1986-01-01

    Effects of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) and of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on epidermis of human fetal and adult skin were studied in the nude mouse/human skin model. Human skin grafts on NC nude mice were exposed to two topical applications of 1 mg of DMBA in 50 microliter of acetone with an interval of 3 days and/or to applications of 10 micrograms of TPA in 50 microliter of acetone twice weekly. In some animals, it was attempted to augment the susceptibility of the grafts to the tumor-initiating effect of DMBA by pretreatment with TPA or ultraviolet light. The mice were sacrificed 8-32 wk after the initial treatment. Tumors did not appear in the central portions of any of the grafts, but epidermal tumors were seen at the graft border in 34.9% of the DMBA-treated animals. To identify human epidermis on the grafts and to determine the species origin of the induced tumors, two independently working histological marker methods were applied. (a) The first is detection of a human Blood Group B-like antigen present in mouse epidermis and in chemically induced murine epidermal tumors. This antigen cannot be demonstrated in human epidermis and in epidermal tumors of human patients. (b) The second is histological staining with the DNA-specific fluorochrome, bisbenzimide, displaying a characteristic pattern of 5-10 intranuclear fluorescent bodies in murine nonneoplastic epidermal cells and in murine epidermal tumor cells. Such a pattern is not seen in human epidermis and in epidermal tumors of human patients. The studies showed that TPA treatment resulted in epidermal hyperplasia in both the human epidermis and the adjacent mouse epidermis and that the induced tumors were derived from murine tissue

  20. Evidence that arsenite acts as a cocarcinogen in skin cancer

    International Nuclear Information System (INIS)

    Rossman, Toby G.; Uddin, Ahmed N.; Burns, Fredric J.

    2004-01-01

    Inorganic arsenic (arsenite and arsenate) in drinking water has been associated with skin cancers in several countries such as Taiwan, Chile, Argentina, Bangladesh, and Mexico. This association has not been established in the United States. In addition, inorganic arsenic alone in drinking water does not cause skin cancers in animals. We recently showed that concentrations as low as 1.25 mg/l sodium arsenite were able to enhance the tumorigenicity of solar UV irradiation in mice. The tumors were almost all squamous cell carcinomas (SCCs). These data suggest that arsenic in drinking water may need a carcinogenic partner, such as sunlight, in the induction of skin cancers. Arsenite may enhance tumorigenicity via effects on DNA repair and DNA damage-induced cell cycle effects, leading to genomic instability. Others have found that dimethlyarsinic acid (DMA), a metabolite of arsenite, can induce bladder cancers at high concentrations in drinking water. In those experiments, skin cancers were not produced. Taken together, these data suggest that arsenite (or possibly an earlier metabolite), and not DMA, is responsible for the skin cancers, but a second genotoxic agent may be a requirement. The differences between the US and the other arsenic-exposed populations with regard to skin cancers might be explained by the lower levels of arsenic in the US, less sun exposure, better nutrition, or perhaps genetic susceptibility differences

  1. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    Science.gov (United States)

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  2. Effects of experimental radiotherapy and hyperthermia on tumors and normal tissues in small animals

    International Nuclear Information System (INIS)

    Wondergem, J.

    1985-01-01

    Experiments on responses of tumors, implanted subcutaneously in the leg, to irradiation alone or combined with heat are reported. The influence of factors modifying the fraction of hypoxic cells (e.g. anesthesia of the animal and tumor volume) is also discussed. The radiosensitivity of developing lung tumors was examined for spontaneous as well as for artificial lung metastases. Both experimental tumor models were compared with regard to their value in experimental radiotherapy. Data obtained on the response of artificial metastases and lung tissue to combined treatment with irradiation and several drugs are presented. Data on damage of the mouse foot, as a result of heat and/or irradiation treatments are presented. In particular the influence of thermotolerance on thermal enhancement of the radiation induced skin reaction was studied. Tolerance of the skin of previously irradiated mice to retreatment with irradiation, to hyperthermia alone and combined with X-rays was assessed. (Auth.)

  3. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  4. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  5. Oral administration of Bifidobacterium breve attenuates UV-induced barrier perturbation and oxidative stress in hairless mice skin.

    Science.gov (United States)

    Ishii, Yuki; Sugimoto, Saho; Izawa, Naoki; Sone, Toshiro; Chiba, Katsuyoshi; Miyazaki, Kouji

    2014-07-01

    Recent studies have shown that some probiotics affect not only the gut but also the skin. However, the effects of probiotics on ultraviolet (UV)-induced skin damage are poorly understood. In this study, we aim to examine whether oral administration of live Bifidobacterium breve strain Yakult (BBY), a typical probiotic, can attenuate skin barrier perturbation caused by UV and reactive oxygen species (ROS) in hairless mice. The mice were orally supplemented with a vehicle only or BBY once a day for nine successive days. Mouse dorsal skin was irradiated with UV from days 6 to 9. The day after the final irradiation, the transepidermal water loss (TEWL), stratum corneum hydration, and oxidation-related factors of the skin were evaluated. We elucidated that BBY prevented the UV-induced increase in TEWL and decrease in stratum corneum hydration. In addition, BBY significantly suppressed the UV-induced increase in hydrogen peroxide levels, oxidation of proteins and lipids, and xanthine oxidase activity in the skin. Conversely, antioxidant capacity did not change regardless of whether BBY was administered or not. In parameters we evaluated, there was a positive correlation between the increase in TEWL and the oxidation levels of proteins and lipids. Our results suggest that oral administration of BBY attenuates UV-induced barrier perturbation and oxidative stress of the skin, and this antioxidative effect is not attributed to enhancement of antioxidant capacity but to the prevention of ROS generation.

  6. Systemic anti-tumor necrosis factor antibody treatment exacerbates endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; van Haren, M. A.; Verhagen, C.; Hoekzema, R.; Kijlstra, A.

    1995-01-01

    Tumor necrosis factor is released in the circulation and aqueous humor during endotoxin-induced uveitis, and induces acute uveitis when injected intraocularly in rats. To elucidate the role of tumor necrosis factor in the development of endotoxin-induced uveitis we analysed the effect of

  7. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  8. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  9. Epidermal Langerhans' cell induction of immunity against an ultraviolet-induced skin tumour

    International Nuclear Information System (INIS)

    Cavanagh, L.L.; Sluyter, R.; Henderson, K.G.; Barnetson, R.St.C.; Halliday, G.M.

    1996-01-01

    Lanerghans' cells (LC) have been shown experimentally to induce immune response against many antigens; however, their role in the initiation of anti-tumour immunity has received little attention. This study examined the ability of murine epidermal LC to induce immunity to an ultraviolet radiation (UV)-induced skin tumour. Freshly prepared epidermal cells (EC) were cultured for 2 or 20 hr with granulocyte-macrophage colony-stimulating factor (GM-CSF), pulsed with an extract of the UV-13-1 tumour, then used to immunize naive syngeneic mice. Delayed type hypersensitivity (DTH) was elicited 10 days after immunization by injection of UV-13-1 tumour cells into the ear pinna, and measured 24 hr later. EC cultured with GM-CSF for 2 hr induced anti-tumour DTH, as did EC cultured for 20 hr without GM-CSF. Conversely, EC cultured for 2 hr without GM-CSF, or EC cultured for 20 hr with GM-CSF were unable to induce a DTH. Induction of immunity required active presentation of tumour antigens by Ia + EC and was tumour specific. Thus Ia + epidermal cells are capable of inducing anti-tumour immunity to UV-induced skin tumours, but only when they contact antigen in particular states of maturation. (author)

  10. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  11. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    International Nuclear Information System (INIS)

    Lowe, N.J.; Breeding, J.

    1982-01-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study

  12. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1988-January 31, 1989

    International Nuclear Information System (INIS)

    Burns, F.J.; Garte, S.J.

    1988-01-01

    Progress is described in 3 general areas corresponding to the specific aims of the proposal, including DNA strand breaks in the epidermis as a function of radiation penetration; oncogene activation in radiation-induced rat skin cancers; and carcinogenesis in rat skin induced by the neon ion beam. Numerous experiments have established that DNA strand breaks per unit dose in the rat epidermis are reduced by about 60% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. The activation of oncogenes in the radiation-induced rat skin cancers followed a pattern. Four highly malignant cancers exhibited activation of K-ras and c-myc oncogenes, while the remaining 8 cancers exhibited only one or the other of these 2 oncogenes. Of 5 squamous carcinomas, 4 showed K-ras activation and 1 showed c-myc activation. Approximately 200 rats were exposed to the neon ion beam at the Bevalac in Berkeley, CA. The carcinogenicity of energetic electrons (2.0 MeV) was determined in conjunction with the neon ion experiment. It is too early to evaluate tumor incidence in the neon ion experiment, but for electrons an unusually large excess of connective tissue tumors, fibromas and sarcomas, have been observed so far. 59 refs., 2 tabs

  13. Gleditsia Saponin C Induces A549 Cell Apoptosis via Caspase-Dependent Cascade and Suppresses Tumor Growth on Xenografts Tumor Animal Model

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    2018-01-01

    Full Text Available Saponins are natural compounds and possess the most promising anti-cancer function. Here, a saponin gleditsia saponin C (GSC, extracted from gleditsiae fructus abnormalis, could induce apoptosis of lung tumor cell line A549 via caspase dependent cascade and this effect could be prevented by the caspase inhibitors. In addition, GSC induced cell death companied with an increase ratio of Bax:Bcl-2 and inhibition of ERK and Akt signaling pathways. Meanwhile, GSC suppressed TNFα inducing NF-κB activation and increased the susceptibility of lung cancer cell to TNFα induced apoptosis. Furthermore, on mouse xenograft model, GSC significantly suppressed tumor growth and induced cancer cell apoptosis, which validated the anti-tumor effect of GSC. Based on these results, GSC might be a promising drug candidate of anti-lung cancer for its potential clinical applications.

  14. Studies on the production and utilization of radioisotopes - Treatment of= skin cancer with Ho-166 skin patch in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Rok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, Jong Doo [Yonsei University, Seoul (Korea, Republic of)

    1995-07-01

    Skin cancers were developed in 8 ICR mice and 2 hairless mice by topical application of chemical compound (TDA and NPO) for 35 wks. Specially designed= Ho-166 skin patches were applied over the skin cancer for 1-2 hrs to deliver 8000 rads to the tumors. Complete, destruction of tumors as well as regeneration of epithelium were observed after the treatment. In conclusion, Ho-166 patch is a useful treatment modality in superficial skin cancers. 10 refs., 4 tabs., 4 figs. (author)

  15. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads

    International Nuclear Information System (INIS)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-01-01

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes

  16. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads.

    Science.gov (United States)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-05-21

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes.

  17. HPMA copolymer-bound doxorubicin induces immunogenic tumor cell death.

    Science.gov (United States)

    Sirova, M; Kabesova, M; Kovar, L; Etrych, T; Strohalm, J; Ulbrich, K; Rihova, B

    2013-01-01

    Treatment of murine EL4 T cell lymphoma with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates of doxorubicin (Dox) leads to complete tumor regression and to the development of therapy-dependent longlasting cancer resistance. This phenomenon occurs with two types of Dox conjugates tested, despite differences in the covalent linkage of Dox to the polymer carrier. Such a cancer resistance cannot fully express in conventional treatment with free Dox, due to substantial immunotoxicity of the treatment, which was not observed in the polymer conjugates. In this study, calreticulin (CRT) translocation and high mobility group box-1 protein (HMGB1) release was observed in EL4 cells treated with a conjugate releasing Dox by a pH-dependent manner. As a result, the treated tumor cells were engulfed by dendritic cells (DC) in vitro, and induced their expression of CD80, CD86, and MHC II maturation markers. Conjugates with Dox bound via an amide bond only increased translocation of HSPs to the membrane, which led to an elevated phagocytosis but was not sufficient to induce increase of the maturation markers on DCs in vitro. Both types of conjugates induced engulfment of the target tumor cells in vivo, that was more intense than that seen with free Dox. It means that the induction of anti-tumor immunity documented upon treatment of EL4 lymphoma with HPMA-bound Dox conjugates does not rely solely on CRT-mediated cell death, but involves multiple mechanisms.

  18. Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection.

    Science.gov (United States)

    Feng, Liangzhu; Tao, Danlei; Dong, Ziliang; Chen, Qian; Chao, Yu; Liu, Zhuang; Chen, Meiwan

    2017-05-01

    Current photodynamic therapy (PDT) is suffering from limited efficacy towards hypoxia tumors and severe post-treatment photo-toxicity such as light-induced skin damages. To make PDT more effective in cancer treatment while being patient-comfortable, herein, a hexylamine conjugated chlorin e6 (hCe6) as the photosensitizer together with a lipophilic near-infrared (NIR) dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) are co-encapsulated into polyethylene glycol (PEG) shelled liposomes. In the obtained DiR-hCe6-liposome, the photosensitizing effect of hCe6 is quenched by DiR via fluorescence resonance energy transfer (FRET). Interestingly, upon irradiation with a 785-nm NIR laser to photobleach DiR, both fluorescence and photodynamic effect of hCe6 in DiR-hCe6-liposome would be activated. Meanwhile, such NIR irradiation applied on tumors of mice with intravenous injection of DiR-hCe6-liposome could result in mild photothermal heating, which in turn would promote intra-tumor blood flow and relieve tumor hypoxia, contributing to the enhanced photodynamic tumor treatment. Importantly, compared to hCe6-loaded liposomes, DiR-hCe6-liposome without being activated by the 785-nm laser shows much lower skin photo-toxicity, demonstrating its great skin protection effect. This work demonstrates a promising yet simple strategy to prepare NIR-light-activatable photodynamic theranostics for synergistic cancer phototherapy, which is featured high specificity/efficacy in tumor treatment with minimal photo-toxicity towards the skin. Copyright © 2016. Published by Elsevier Ltd.

  19. Skin cancer induced by ultraviolet radiation and immunity

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1977-01-01

    It was clarified that an immunological mechanism, in which the resistance against ultraviolet radiation (UV)-induced neoplasm with strong antigenicity in the body disappeared, was introduced, when the mouse was exposed to UV for two to five weeks. It was also suggested that the immunological mechanism was an induction of T lymphocyte (inhibitive T cells) which had a function to specifically inhibit proliferation of lymphocyte clone which had anti-UV-induced neoplasm activity contained in lymphocyte mass of normal mouse. It can be thought that the action mechanism of this cells may inhibit a process of differentiation of T precursor cells of cell damage, which has anti-UV-induced neoplasm activity, into cell damage T cells. As a mechanism in which such inhibitive T cells are induced, the possibility that specific inhibitive T cells against antigens which are changed by UV would be induced after proteins, which receives some changes in consequence of skin injuries due to UV, are separated from cells as soluble antigens, is thought. Reports of experiments on these problems performed by many researchers were also described. (Tsunoda, M.)

  20. Ultraviolet B (UVB) induced DNA damage affects alternative splicing in skin cells

    International Nuclear Information System (INIS)

    Munoz, M.J.; Nieto Moreno, N.; Kornblihtt, A.R.

    2010-01-01

    The ultraviolet (UV) radiation from the Sun that reaches the Earth's surface is a combination of low (UVA, 320-400 nm) and high (UVB, 290-320 nm) energy light. UVB light causes two types of mutagenic DNA lesions: thymine dimers and (6-4) photo-products. UVB mutagenesis is a critical step in the generation of different forms of skin cancer, which develops almost exclusively in sun exposed areas. We have previously shown that RNA polymerase II (pol II) hyperphosphorylation induced by UVC (254 nm) irradiation of non-skin cells inhibits pol II elongation rates which in turn affects alternative splicing (AS) patterns, altering the synthesis of pro- and anti-apoptotic isoforms of key proteins like Bcl-x or Caspase 9 (C9). Since the UVC radiation is fully filtered by the ozone layer and AS regulation in skin pathologies has been poorly studied, we decided to extend our studies to human keratinocytes in culture treated with UVB (302 nm) light. We observed that pol II hyperphosphorylation is increased upon UVB irradiation, being this modification necessary for the observed change in AS of a model cassette exon. Moreover, UVB irradiation induces the proapoptotic mRNA isoforms of Bcl-x and C9 consistently with a key role of AS in skin response to DNA damage. (authors)

  1. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  2. Intravenous miR-144 inhibits tumor growth in diethylnitrosamine-induced hepatocellular carcinoma in mice.

    Science.gov (United States)

    He, Quan; Wang, Fangfei; Honda, Takashi; Lindquist, Diana M; Dillman, Jonathan R; Timchenko, Nikolai A; Redington, Andrew N

    2017-10-01

    Previous in vitro studies have demonstrated that miR-144 inhibits hepatocellular carcinoma cell proliferation, invasion, and migration. We have shown that miR-144, injected intravenously, is taken up by the liver and induces endogenous hepatic synthesis of miR-144. We hypothesized that administered miR-144 has tumor-suppressive effects on liver tumor development in vivo. The effects of miR-144 on tumorigenesis and tumor growth were tested in a diethylnitrosamine-induced hepatocellular carcinoma mouse model. MiR-144 injection had no effect on body weight but significantly reduced diethylnitrosamine-induced liver enlargement compared with scrambled microRNA. MiR-144 had no effect on diethylnitrosamine-induced liver tumor number but reduced the tumor size above 50%, as evaluated by magnetic resonance imaging (scrambled microRNA 23.07 ± 5.67 vs miR-144 10.38 ± 2.62, p hepatocellular carcinoma tumorigenesis. Exogenously delivered miR-144 may be a therapeutic strategy to suppress tumor growth in hepatocellular carcinoma.

  3. Skin Cancer Awareness and Sun Protection Behavior Before and Following Treatment Among Skin Cancer-Treated Patients.

    Science.gov (United States)

    Abedini, Robabeh; Nasimi, Maryam; Nourmohammad Pour, Pedram; Etesami, Ifa; Al-Asiri, Safa; Tohidinik, Hamid Reza

    2017-11-15

    There is little known about illness perception in patients with skin tumors. We conducted this study to investigate Iranian patients' understanding of skin tumors, and to evaluate their sun-protective behavior changes after treatment of skin cancer. Patients with a skin biopsy of basal cell carcinoma were asked to complete questionnaires. A total of 110 patients were enrolled in the study. Patients were mostly referred to our tumor clinic from rural areas. At the skin cancer perception investigation, 63% of patients did not consider their disease as a long-lasting situation. Besides, 45.4% of patients consider their illness as a serious condition which significantly affecting their lives. Our patients had a strong belief in treatment control (81%) and 81% of them also described worries about their skin cancer. The leading causes of skin cancer as assumed by patients were: history of skin cancer (37.4%), poor medical care in the past (36.4%), extreme sun exposure (31.5%), and lack of sun protection (27.5%). In regard to sun-protective behavior after treatment of skin cancer, 55.4% of patients showed no changes or even negative change in their sun-protective behavior, But 44.5% of the patients changed their sun-protective behavior in a positive way which was statically significant (P ≤ 0.001). Our study demonstrates how our patients with skin cancer perceive their disease and we need to educate our patients, considering diseases' aspects, causes and symptoms. This is of great value as dermatologists should be aware of patients' perceptions of their disease in order to improve patients' knowledge through educating more about different aspects of disease.

  4. Preclinical experiments for analysis of tumor regression due to negative pions

    International Nuclear Information System (INIS)

    Blattmann, H.; Cabeza, L.; Fritz-Niggli, H.

    To test the potential therapeutic value of negative pions in comparison with conventional x-rays, cobalt-60 γ rays, and high energy electrons and photons (Betatron), experimental analyses with induced tumors (transplant tumors) after irradiation are to be performed in vivo and in vitro (tumor cell suspensions, cell cultures, spontaneous tumors, carcinoma in ascites form); in addition to tumors primarily of mice, human cell tumors will be used; studies will also be made of cell kinetics with various cell types (normal cells, transformed (malignant) cells, beam-resistant, beam-sensitive types) using cell cultures from Chinese hamsters. An attempt will be made to compare slow- and fast-growing tumors. In a second phase, human tumors in conditioned animals will be tested in situ or as cell cultures. Skin, small intestine, regenerating liver and kidney, together with cell cultures, will serve as normal reaction systems

  5. Study of mast cell count in skin tags

    Directory of Open Access Journals (Sweden)

    Zaher Hesham

    2007-01-01

    Full Text Available Background: Skin tags or acrochordons are common tumors of middle-aged and elderly subjects. They consist of loose fibrous tissue and occur mainly on the neck and major flexures as small, soft, pedunculated protrusions. Objectives: The aim was to compare the mast cells count in skin tags to adjacent normal skin in diabetic and nondiabetic participants in an attempt to elucidate the possible role of mast cells in the pathogenesis of skin tags. Participants and Methods: Thirty participants with skin tags were divided into group I (15 nondiabetic participants and group II (15 diabetic participants. Three biopsies were obtained from each participant: a large skin tag, a small skin tag and adjacent normal skin. Mast cell count from all the obtained sections was carried out, and the mast cell density was expressed as the average mast cell count/high power field (HPF. Results: A statistically significant increase in mast cells count in skin tags in comparison to normal skin was detected in group I and group II. There was no statistically significant difference between mast cell counts in skin tags of both the groups. Conclusion: Both the mast cell mediators and hyperinsulinemia are capable of inducing fibroblast proliferation and epidermal hyperplasia that are the main pathologic abnormalities seen in all types of skin tags. However, the presence of mast cells in all examined skin tags regardless of diabetes and obesity may point to the possible crucial role of mast cells in the etiogenesis of skin tags through its interaction with fibroblasts and keratinocytes.

  6. Vasotocin- and mesotocin-induced increases in short-circuit current across tree frog skin.

    Science.gov (United States)

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2011-02-01

    In adult amphibian skin, Na(+) crosses from outside to inside. This Na(+) transport can be measured as the amiloride-blockable short-circuit current (SCC) across the skin. We investigated the effects of arginine vasotocin (AVT) and mesotocin (MT), and those of antagonists of the vasopressin and oxytocin receptors, on the SCC across Hyla japonica skin. (1) Both AVT (100 pmol/L or more) and MT (1 nmol/L or more) increased the SCC. (2) The AVT- and MT-induced increases in SCC recovered with time (downregulation). (3) These AVT/MT-induced effects were blocked by application of OPC-31260 (vasopressin V(2)-receptor antagonist). (4) The OPC-31260 concentration needed to block the AVT-induced response was lower upon post-application (after application of agonist) than upon pre-application (before application of agonist), suggesting the number of receptors may have decreased after AVT application. (5) Upon repeated application of AVT (100 pmol/L), the induced SCC increase did not differ significantly between the 1st and 2nd applications. (6) The time to reach the half-maximum value of the AVT-induced or MT-induced increase in SCC was not significantly different between washout and post-application of OPC-31260, suggesting that post-application of OPC-31260 cleared AVT and MT from their receptors. The effects of AVT, MT, and their antagonists in H. japonica, which is adapted to a terrestrial habitat, are compared with our previously published data on Rana catesbeiana (=Lithobates catesbeianus), which is adapted to a semiaquatic habitat.

  7. Royal jelly protects against ultraviolet B-induced photoaging in human skin fibroblasts via enhancing collagen production.

    Science.gov (United States)

    Park, Hye Min; Hwang, Eunson; Lee, Kwang Gill; Han, Sang-Mi; Cho, Yunhi; Kim, Sun Yeou

    2011-09-01

    Royal jelly (RJ) is a honeybee product containing proteins, carbohydrates, fats, free amino acids, vitamins, and minerals. As its principal unsaturated fatty acid, RJ contains 10-hydroxy-2-decenoic acid (10-HDA), which may have antitumor and antibacterial activity and a capacity to stimulate collagen production. RJ has attracted interest in various parts of the world for its pharmacological properties. However, the effects of RJ on ultraviolet (UV)-induced photoaging of the skin have not been reported. In this study we measured the 10-HDA content of RJ by high-performance liquid chromatography and tested the effects of RJ on UVB-induced skin photoaging in normal human dermal fibroblasts. The effects of RJ and 10-HDA on UVB-induced photoaging were tested by measuring procollagen type I, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-1 after UVB irradiation. The RJ contained about 0.211% 10-HDA. The UVB-irradiated human skin fibroblasts treated with RJ and 10-HDA had increased procollagen type I and TGF-β1 productions, but the level of MMP-1 was not changed. Thus RJ may potentially protect the skin from UVB-induced photoaging by enhancing collagen production.

  8. Bone scintigraphic patterns in patients of tumor induced osteomalacia

    International Nuclear Information System (INIS)

    Sood, Ashwani; Agarwal, Kanhaiyalal; Shukla, Jaya; Goel, Reema; Dhir, Varun; Bhattacharya, Anish; Rai Mittal, Bhagwant

    2013-01-01

    Tumor induced osteomalacia (TIO) or oncogenic osteomalacia is a rare condition associated with small tumor that secretes one of the phosphaturic hormones, i.e., fibroblast growth factor 23, resulting in abnormal phosphate metabolism. Patients may present with non-specific symptoms leading to delay in the diagnosis. Extensive skeletal involvement is frequently seen due to delay in the diagnosis and treatment. The small sized tumor and unexpected location make the identification of tumor difficult even after diagnosis of osteogenic osteomalacia. The bone scan done for the skeletal involvement may show the presence of metabolic features and the scan findings are a sensitive indicator of metabolic bone disorders. We present the bone scan findings in three patients diagnosed to have TIO

  9. Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene-induced rat mammary tumors

    International Nuclear Information System (INIS)

    Eechaute, W.; de Thibault de Boesinghe, L.; Lacroix, E.

    1983-01-01

    Mammary tumors were induced in rats by treatment with dimethylbenz(a)anthracene. Cytosol receptors for 17 beta-estradiol and progesterone were estimated by means of sucrose density gradient centrifugation, and the metabolism of [ 14 C]progesterone, [ 14 C]testosterone, and 17 beta-[ 14 C]estradiol by minced tumor tissue was studied. The estradiol receptor (ER) and progesterone receptor (PR) levels of the tumors varied considerably from less than 5 to 48 fmol/mg protein for ER and to 243 fmol/mg protein for PR. Considering a receptor level lower than 5 fmol/mg protein to be negative, four groups of tumors were found: ER-negative and PR-negative; ER-positive and PR-negative; ER-negative and PR-positive; ER-positive and PR-positive. In dimethylbenz(a)anthracene-induced tumor tissue, high 5 alpha-reductase and 20 alpha-hydroxysteroid dehydrogenase activities and somewhat lower 3 alpha-hydroxysteroid dehydrogenase and 6 alpha-hydroxylase activities were found. No aromatization was detectable. Steroids, especially estradiol, were also metabolized in a high degree to unextractable metabolites. It was concluded that steroid metabolism of dimethylbenz(a)anthracene-induced rat mammary tumors was not related to the ER and/or PR concentration of tumor tissue

  10. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  11. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  12. Attachment-inducing capacities of fish skin epithelial extracts on oncomiracidia of Benedenia seriolae (Monogenea: Capsalidae).

    Science.gov (United States)

    Yoshinaga, Tomoyoshi; Nagakura, Tatsuhiro; Ogawa, Kazuo; Fukuda, Yutaka; Wakabayashi, Hisatsugu

    2002-03-01

    Attachment-inducing capacities of skin epithelial extracts of yellowtail, Japanese flounder and red sea bream on oncomiracidia of the monogenean Benedenia seriolae were examined. Clear differences were not detected in the capacity among the fish species, although B. seriolae infects only yellowtail and its congeners in Seriola. This suggests that either the capacity is not host specific or host-specific attachment-inducing capacity cannot be detected by the assay method. Further, the attachment-inducing capacities were suppressed by wheat-germ lectin and concanavalin A in skin epithelial extracts of Japanese flounder and yellowtail, respectively. This suggests that some sugar-related chemical substances existing in fish epithelia induce the attachment of B. seriolae oncomiracidia.

  13. Experimentally induced tumors used for angiographic estimation of embolisation and cytostatic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, E P; Kraus, W; Fiebig, H H; Kauffmann, G; Hauenstein, K H

    1982-02-01

    In 12 rats tumors have been induced chemically by intraperitoneal application of dimethylnitrosamine. This method is simple and reliable and the effect of tumor embolization can be followed easily. Thymus aplastic nude mice with transplanted human tumors deserve strict care. Tumor microangiograms of 48 animals demonstrate a close similarity with angiograms of corresponding human tumors. The vascular pattern does not alterate after several transplantations, after cytostatic therapy a slight hypervascularisation developes.

  14. Black tattoos protect against UVR-induced skin cancer in mice.

    Science.gov (United States)

    Lerche, Catharina M; Sepehri, Mitra; Serup, Jørgen; Poulsen, Thomas; Wulf, Hans Christian

    2015-09-01

    Black tattoos may involve risk of cancer owing to polycyclic aromatic hydrocarbons including benzo(a)pyrene (BaP) in inks. Ultraviolet radiation (UVR) induces skin cancer. The combination of UVR and black tattoo may therefore potentially be very problematic, but has not been previously studied. Immunocompetent C3.Cg/TifBomTac mice (n = 99) were tattooed on the back with Starbrite Tribal Black(™) . This ink has a high content of the carcinogen BaP. Half of the mice were irradiated with three standard erythema doses UVR thrice weekly. Time to induction of first, second and third squamous cell carcinoma (SCC) was measured. Controls were 'tattooed' without ink. All irradiated mice developed SCCs while no malignant tumours were found in the nonirradiated group. In the tattooed and irradiated group, the development of the first, second and third SCC was significantly delayed in comparison with the irradiated controls without black tattoos (212, 232, 247 days vs. 163, 183, 191 days, P tattoos, remarkably, the development of UVR-induced skin cancer was delayed by the tattoos. Skin reflectance measurement indicated that the protective effect of black pigment in the dermis might be attributed to UVR absorption by black pigment below the epidermis and thereby reduction of backscattered radiation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors

    International Nuclear Information System (INIS)

    Chang, A.E.; Shu, S.Y.; Chou, T.; Lafreniere, R.; Rosenberg, S.A.

    1986-01-01

    A syngeneic transplantable sarcoma induced in C57BL/6 mice, MCA 105, was used in studies to examine host suppression on the adoptive immunotherapy of established intradermal and experimentally induced pulmonary and hepatic metastases. Fresh immune splenocytes were generated from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum. The adoptive immunotherapy of intradermal MCA 105 tumor with immune cells required prior immunosuppression of the recipient by sublethal irradiation with 500 R or T-cell depletion. The effect of whole-body sublethal irradiation appeared to eliminate a systemic host suppression mechanism, since partialbody irradiation involving the tumor-bearing area did not permit successful immunotherapy. Host irradiation was not required to achieve successful immunotherapy of experimentally induced pulmonary or hepatic metastases. In nonirradiated recipients bearing both intradermal and pulmonary tumors, host suppression did not affect the function of transferred immune cells to induce regression of pulmonary metastases. Thus, suppression of adoptive immunotherapy appears to be relevant to tumors confined to the skin and subcutaneous tissue but not to tumor in visceral sites, such as the lung and liver

  16. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response

    Science.gov (United States)

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D.; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions. PMID:26121474

  17. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    Science.gov (United States)

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400-700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  18. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Visible light (400-700 nm lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  19. Fishing gear-induced skin ulcerations in Baltic cod, Gadus morhua L

    DEFF Research Database (Denmark)

    Mellergaard, Stig; Bagge, O.

    1998-01-01

    In 1982 a high prevalence of skin ulcerations was observed in Baltic cod in the vicinity of the Danish island of Bornholm. In March the prevalence varied from G to 13%, and in May it had increased to between 26 and 48%. The ulcerations had a sequential development. The initial stage appeared...... from the nets, combined with bilateral occurrence of the ulcers, strongly indicates that the skin ulcers were induced by the fishing gear. Features of the pathology could be linked to the temporary retention of cod in trawl meshes....

  20. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Kim

    2015-01-01

    Full Text Available Thread embedding acupuncture (TEA is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P=0.001 versus UV in UVB irradiated mice and also inhibited degradation of collagen fibers (P=0.010 versus normal by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9. Western blot data showed that activation of c-Jun N-terminal kinase (JNK induced by UVB (P=0.002 versus normal group was significantly inhibited by TEA treatment (P=0.005 versus UV with subsequent alleviation of MMP-9 activation (P=0.048 versus UV. These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  1. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia

    DEFF Research Database (Denmark)

    Imel, Erik A; Peacock, Munro; Pitukcheewanont, Pisit

    2006-01-01

    Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tumors t...

  2. Tumor vascularity under hypertension induced by intravenous infusion of angiotensin II

    International Nuclear Information System (INIS)

    Kato, Toshio

    1986-01-01

    We studied whether or not the blood flow of tumors was increased by AT-II-induced hypertension in patients. Angiograms of 51 patients before and after intravenous infusion of AT-II were compared carefully from 5 points of view which suggested increased tumor blood flow. These were, 1) Contraction of small arteries feeding normal tissue, 2) Enhanced visualization of tumor vessels, 3) Enhanced visualization of tumor stain, 4) Increase of venous return from tumor-bearing region, and 5) Enhanced visualization of metastatic lymph nodes. The results were as follows. Contractions of small arteries feeding normal tissue [Finding 1)] were observed in 34 cases (66.6 %) and enhanced visualization of tumor vessels, tumor stain and so on [Finding 2)-5] were observed in 18 cases (35.3 %). Concequently, an increase of tumor blood flow was suggested in 40 cases (78.4 %). Blood flow of human tumors and normal tissue during the full course of induced hypertension with AT-II were measures by means of radionuclide angiography ( 99m Tc-RBC) and laser Doppler velocimetry. Activities of the tumor-bearing region and the mid-portion of the thigh (selected as normal tissue) were measured continuously by collimated scintillation detectors. In 26 measurements out of 31 (83.8 %), the activity in the thigh decreased promptly and returned to the baseline synchronously with the rise and fall of blood pressure. In contrast, in 11 measurements (34.4 %) the activity of the tumor-bearing region increased and returned to the baseline accompanying the change of blood pressure. Preliminary observations using laser Doppler velocimetry revealed an increase of blood flow in 5 tumors. In conclusion, the blood flow of human tumors was increased by AT-II, in agreement with the findings in animal tumors. (J.P.N.)

  3. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  4. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    Science.gov (United States)

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  5. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required?

    Directory of Open Access Journals (Sweden)

    David Parda

    2011-03-01

    Full Text Available Merkel’s cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.

  6. Resolution of PMA-Induced Skin Inflammation Involves Interaction of IFN-γ and ALOX15

    Directory of Open Access Journals (Sweden)

    Guojun Zhang

    2013-01-01

    Full Text Available Background. Acute inflammation and its timely resolution play important roles in the body’s responses to the environmental stimulation. Although IFN-γ is well known for the induction of inflammation, its role in the inflammation resolution is still poorly understood. Methodology and Principal Findings. In this study, we investigated the function of interferon gamma (IFN-γ during the resolution of PMA-induced skin inflammation in vivo. The results revealed that the expression levels of IL-6, TNF-α, and monocyte chemoattractant protein 1 (MCP-1 in skin decreased during the resolution stage of PMA-induced inflammation, while IFN-γ is still maintained at a relatively high level. Neutralization of endogenous IFN-γ led to accelerated reduction of epidermal thickness and decreased epithelial cell proliferation. Similarly, decreased infiltration of inflammatory cells (Gr1+ or CD11b+ cells and a significant reduction of proinflammatory cytokines were also observed upon the blockade of IFN-γ. Furthermore, neutralization of IFN-γ boosted ALOX15 expression of the skin during inflammation resolution. In accordance, application of lipoxin A4 (LXA4, a product of ALOX15 obtained a proresolution effect similar to neutralization of IFN-γ. These results demonstrated that through upregulating ALOX15-LXA4 pathway, blockage of IFN-γ can promote the resolution of PMA-induced skin inflammation.

  7. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P cryotherapy. PMID:26632263

  8. Homeostatic T Cell Expansion to Induce Anti-Tumor Autoimmunity in Breast Cancer

    National Research Council Canada - National Science Library

    Baccala, Roberto

    2007-01-01

    ... that (a) homeostatic T-cell proliferation consistently elicits anti-tumor responses; (b) irradiation is more effective than Tcell depletion by antibodies in inducing anti-tumor responses mediated by homeostatic T-cell proliferation...

  9. Tumor vaccine composed of C-class CpG oligodeoxynucleotides and irradiated tumor cells induces long-term antitumor immunity

    Directory of Open Access Journals (Sweden)

    Cerkovnik Petra

    2010-09-01

    Full Text Available Abstract Background An ideal tumor vaccine should activate both effector and memory immune response against tumor-specific antigens. Beside the CD8+ T cells that play a central role in the generation of a protective immune response and of long-term memory, dendritic cells (DCs are important for the induction, coordination and regulation of the adaptive immune response. The DCs can conduct all of the elements of the immune orchestra and are therefore a fundamental target and tool for vaccination. The present study was aimed at assessing the ability of tumor vaccine composed of C-class CpG ODNs and irradiated melanoma tumor cells B16F1 followed by two additional injections of CpG ODNs to induce the generation of a functional long-term memory response in experimental tumor model in mice (i.p. B16F1. Results It has been shown that the functional memory response in vaccinated mice persists for at least 60 days after the last vaccination. Repeated vaccination also improves the survival of experimental animals compared to single vaccination, whereas the proportion of animals totally protected from the development of aggressive i.p. B16F1 tumors after vaccination repeated three times varies between 88.9%-100.0%. Additionally, the long-term immune memory and tumor protection is maintained over a prolonged period of time of at least 8 months. Finally, it has been demonstrated that following the vaccination the tumor-specific memory cells predominantly reside in bone marrow and peritoneal tissue and are in a more active state than their splenic counterparts. Conclusions In this study we demonstrated that tumor vaccine composed of C-class CpG ODNs and irradiated tumor cells followed by two additional injections of CpG ODNs induces a long-term immunity against aggressive B16F1 tumors.

  10. Laser-induced capillary leakage for blood biomarker detection and vaccine delivery via the skin.

    Science.gov (United States)

    Wu, Jeffrey H; Li, Bo; Wu, Mei X

    2016-07-01

    Circulation system is the center for coordination and communication of all organs in our body. Examination of any change in its analytes or delivery of therapeutic drugs into the system consists of important medical practice in today's medicine. Two recent studies prove that brief illumination of skin with a low powered laser, at wavelengths preferentially absorbed by hemoglobin, increases the amount of circulating biomarkers in the epidermis and upper dermis by more than 1,000-fold. When probe-coated microneedle arrays are applied into laser-treated skin, plasma blood biomarkers can be reliably, accurately, and sufficiently quantified in 15∼30 min assays, with a maximal detection in one hr in a manner independent of penetration depth or a molecular mass of the biomarker. Moreover, the laser treatment permits a high efficient delivery of radiation-attenuated malarial sporozoites (RAS) into the circulation, leading to robust immunity against malaria infections, whereas similar immunization at sham-treated skin elicits poor immune responses. Thus this technology can potentially instruct designs of small, portable devices for onsite, in mobile clinics, or at home for point-of-care diagnosis and drug/vaccine delivery via the skin. Laser-induced capillary leakage (a) to induce extravasation of circualing molecules only (b) or facilitate entry of attenuated malaria sporozoites into the capillary (c). Skin illumination with a laser preferably absorbed by hemoglobin causes dilation of the capillary beneath the skin. The extravasated molecules can be sufficiently measured in the skin or guide sporozoites to enter the vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photoeffects of near ultraviolet light upon a polycyclic aromatic hydrocarbon exposed to mouse skin microsomes

    International Nuclear Information System (INIS)

    Peirano, W.B.

    1991-01-01

    Near ultraviolet (UV) light has been reported to both enhance and inhibit the tumor incidence in mice dermally exposed to benzo(a)pyrene (BaP) or polycyclic aromatic hydrocarbon (PAH) mixtures. Near UV light interacts with PAHs producing a variety of oxygenated products such as phenols, endoperoxides and quinones. However, little is known about BaP products formed from near UV irradiation of BaP-exposed mouse skin. Therefore, 14 C-BaP was incubated with 3-methylcholanthrene (3-MC) induced C 3 H/HeJ and DBA/2J mouse skin microsomes with or without a 365 nm light source. The results indicated that the concurrent 365 nm light irradiation of induced mouse skin microsomes and BaP greatly enhanced the total conversion of BaP to its products, approximately 3-fold for the C 3 H/HeJ and approximately 7-fold for the DBA/2J mouse microsomes, compared to the induced mouse skin microsomes and BaP alone. HPLC analyses of organic extracts indicated a more than additive enhancement of the formation of most of the individual cochromatographed BaP metabolites due to the combined interaction of 365 nm light with BaP and skin microsomes. Similar interactions were observed using benz(a)anthracene (BaA) in this system. These data show that near UV light alters the metabolic profile of PAHs produced by mouse skin microsomes

  12. Potent inhibition of tumoral hypoxia-inducible factor 1α by albendazole

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H; Cai, Zhao Y; Badar, Samina; Wangoo, Kiran; Poruchynsky, Marianne S; Morris, David L

    2010-01-01

    Emerging reports suggest resistance, increased tumor invasiveness and metastasis arising from treatment with drugs targeting vascular endothelial growth factor (VEGF). It is believed that increased tumoral hypoxia plays a prominent role in the development of these phenomena. Inhibition of tumoral hypoxia inducible factor (HIF-1α) is thus becoming an increasingly attractive therapeutic target in the treatment of cancer. We hypothesized that the anti-VEGF effect of albendazole (ABZ) could be mediated through inhibition of tumoral HIF-1α. In vitro, the effects of ABZ on HIF-1α levels in human ovarian cancer cells (OVCAR-3) were investigated using hypoxic chamber or desferrioxamine (DFO) induced-hypoxia. In vivo, the effects of ABZ (150 mg/kg, i.p., single dose) on the tumor levels of HIF-1α and VEGF protein and mRNA were investigated by western blotting, RT-PCR and real time-PCR. In vitro, ABZ inhibited cellular HIF-1α protein accumulation resulting from placement of cells under hypoxic chamber or exposure to DFO. In vivo, tumors excised from vehicle treated mice showed high levels of both HIF-1α and VEGF. Whereas, tumoral HIF-1α and VEGF protein levels were highly suppressed in ABZ treated mice. Tumoral VEGFmRNA (but not HIF-1αmRNA) was also found to be highly suppressed by ABZ. These results demonstrate for the first time the effects of an acute dose of ABZ in profoundly suppressing both HIF-1α and VEGF within the tumor. This dual inhibition may provide additional value in inhibiting angiogenesis and be at least partially effective in inhibiting tumoral HIF-1α surge, tumor invasiveness and metastasis

  13. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging

    Directory of Open Access Journals (Sweden)

    Hana Jung

    2016-09-01

    Full Text Available Solar ultraviolet (UV radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs, such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  14. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    Science.gov (United States)

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  15. Gamma knife radiosurgery of radiation-induced intracranial tumors: Local control, outcomes, and complications

    International Nuclear Information System (INIS)

    Jensen, Ashley W.; Brown, Paul D.; Pollock, Bruce E.; Stafford, Scott L.; Link, Michael J.; Garces, Yolanda I.; Foote, Robert L.; Gorman, Deborah A.; Schomberg, Paula J.

    2005-01-01

    Purpose: To determine local control (LC) and complication rates for patients who underwent radiosurgery for radiation-induced intracranial tumors. Methods and Materials: Review of a prospectively maintained database (2,714 patients) identified 16 patients (20 tumors) with radiation-induced tumors treated with radiosurgery between 1990 and 2004. Tumor types included typical meningioma (n = 17), atypical meningioma (n = 2), and schwannoma (n 1). Median patient age at radiosurgery was 47.5 years (range, 27-70 years). The median tumor margin dose was 16 Gy (range, 12-20 Gy). Median follow-up was 40.2 months (range, 10.8-146.2 months). Time-to-event outcomes were calculated with Kaplan-Meier estimates. Results: Three-year and 5-year LC rates were 100%. Three-year and 5-year overall survival rates were 92% and 80%, respectively. Cause-specific survival rates at 3 and 5 years were 100%. Three patients died: 1 had in-field progression 65.1 months after radiosurgery and later died of the tumor, 1 died of progression of a preexisting brain malignancy, and 1 died of an unrelated cause. One patient had increased seizure activity that correlated with development of edema seen on neuroimaging. Conclusions: LC, survival, and complication rates in our series are comparable to those in previous reports of radiosurgery for intracranial meningiomas. Also, LC rates with radiosurgery are at least comparable to those of surgical series for radiation-induced meningiomas. Radiosurgery is a safe and effective treatment option for radiation-induced intracranial tumors, most of which are typical meningiomas

  16. Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells.

    Science.gov (United States)

    Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka

    2011-05-01

    Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.

  17. Effects of UV irradiation on a living skin equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D; Gay, R J [Organogenesis Incorporated, Camton, MA (United States)

    1993-05-01

    The Living Skin Equivalent is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-''alpha, tumor necrosis factor-[alpha] and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of UV radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A. (Author).

  18. Effects of UV irradiation on a living skin equivalent

    International Nuclear Information System (INIS)

    Nelson, D.; Gay, R.J.

    1993-01-01

    The Living Skin Equivalent is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-''alpha, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of UV radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A. (Author)

  19. Search for the lowest irradiation dose from literatures on radiation-induced bone tumor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T; Morimoto, K [Tokyo Univ. (Japan). Faculty of Medicine

    1977-04-01

    A survey of past case reports of bone tumor induced by external radiation was carried out with the main object of finding the lowest irradiation dose. Search of the literature published since 1922 revealed 262 cases of radiation-induced bone tumor. These patients, except a patient with occupational exposure, had received radiation for treatment. The primary conditions as object of radiation therapy were nonmalignan bone diseases such as tuberclosis, giant cell tumor, fibrous dysplasia and bone cyst, and extra-skeletal diseases such as retinoblastoma, breast cancer and uterus cancer. The ratio of male to female patients with radiation-induced bone tumor was 1:1.3. The age of the patient ranged between 5 and 98 years, with an average of 37.6 years. Skeletal distribution of radiation-induced bone tumor was as follows: 20% the frontal and face bones, 17% the femur, 10% the humerus, 9% the vertebral column, and 44% other. The lowest absorbed dose reported was 800 rads in patients irradiated for the treatment of bone disease, but 1800 rads in patients with extra-skeletal disease. The latent period ranged between 2 and 42 years, with an average of 11.7 years. The histopathological findings were as follows: 60% osteosarcoma, 25% fibrosarcoma, 7% chondrosarcoma, and 8% other.

  20. Protection against polyoma virus-induced tumors is perforin-independent

    International Nuclear Information System (INIS)

    Byers, Anthony M.; Hadley, Annette; Lukacher, Aron E.

    2007-01-01

    CD8 T cells are necessary for controlling tumors induced by mouse polyoma virus (PyV), but the effector mechanism(s) responsible have not been determined. We examined the PyV tumorigenicity in C57BL/6 mice mutated in Fas or carrying targeted disruptions in the perforin gene or in both TNF receptor type I and type II genes. Surprisingly, none of these mice developed tumors. Perforin/Fas double-deficient radiation bone marrow chimeric mice were also resistant to PyV-induced tumors. Anti-PyV CD8 T cells in perforin-deficient mice were found not to differ from wild type mice with respect to phenotype, capacity to produce cytokines or maintenance of memory T cells, indicating that perforin does not modulate the PyV-specific CD8 T cell response. In addition, virus was cleared and persisted to similar extents in wild type and perforin-deficient mice. In summary, perforin/granzyme exocytosis is not an essential effector pathway for protection against PyV infection or tumorigenesis

  1. Specificity of antigens on UV radiation-induced antigenic tumor cell variants measured in vitro and in vivo

    International Nuclear Information System (INIS)

    Hostetler, L.W.; Romerdahl, C.A.; Kripke, M.L.

    1989-01-01

    The purpose of this study was to determine whether antigenic variants cross-react immunologically with the parental tumor and whether the UVR-associated antigen unique to UVR-induced tumors is also present on the variants. Antigenic (regressor) variants and nonimmunogenic (progressor) clones derived from UV-irradiated cultures of the C3H K1735 melanoma and SF19 spontaneous fibrosarcoma cell lines were used to address these questions. In an in vivo immunization and challenge assay, the antigenic variants did not induce cross-protection among themselves, but each induced immunity against the immunizing variant, the parent tumor cells, and nonimmunogenic clones derived from UV-irradiated parent cultures. Therefore, the variants can be used to induce in mice a protective immunity that prevents the growth of the parent tumor and nonimmunogenic clones, but not other antigenic variants. In contrast, immunization with cells of the parental tumor or the nonimmunogenic clones induced no protective immunity against challenge with any of the cell lines. Utilizing the K1735 melanoma-derived cell lines in vitro, T-helper (Th) cells isolated from tumor-immunized mice were tested for cross-reactivity by their ability to collaborate with trinitrophenyl-primed B-cells in the presence of trinitrophenyl-conjugated tumor cells. Also, the cross-reactivity of cytotoxic T-lymphocytes from tumor-immunized mice was assessed by a 4-h 51Cr-release assay. Antigenic variants induced cytotoxic T-lymphocytes and Th activity that was higher than that induced by the parent tumor and nonimmunogenic clones from the UVR-exposed parent tumor and cross-reacted with the parental tumor cells and nonimmunogenic clones, but not with other antigenic variants

  2. BMP7 Induces Dormancy of Prostatic Tumor Stem Cell in Bone

    Science.gov (United States)

    2013-07-01

    of NDRG1 is correlated with tumor progression and poor prog- nosis in patients with esophageal squamous cell carcinoma. Dis. Esophagus . 19:454–458...Dormancy of Prostatic Tumor Stem Cell in Bone PRINCIPAL INVESTIGATOR: Fei Xing, Ph.D...BMP7 Induces Dormancy of Prostatic Tumor Stem Cell in Bone 5b. GRANT NUMBER W81XWH-10-1-0666 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Fei

  3. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL tre...

  4. Controversial role of mast cells in skin cancers.

    Science.gov (United States)

    Varricchi, Gilda; Galdiero, Maria R; Marone, Giancarlo; Granata, Francescopaolo; Borriello, Francesco; Marone, Gianni

    2017-01-01

    Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. CK1α ablation in keratinocytes induces p53-dependent, sunburn-protective skin hyperpigmentation.

    Science.gov (United States)

    Chang, Chung-Hsing; Kuo, Che-Jung; Ito, Takamichi; Su, Yu-Ya; Jiang, Si-Tse; Chiu, Min-Hsi; Lin, Yi-Hsiung; Nist, Andrea; Mernberger, Marco; Stiewe, Thorsten; Ito, Shosuke; Wakamatsu, Kazumasa; Hsueh, Yi-An; Shieh, Sheau-Yann; Snir-Alkalay, Irit; Ben-Neriah, Yinon

    2017-09-19

    Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1 ) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14-Cre-ER T2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14-Cre-ER T2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte-stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn.

  6. Seven cases of radiation-induced cutaneous squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazunari; Yamamoto, Osamu; Suenaga, Yoshinori [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2000-09-01

    We report 7 cases of radiation-induced skin cancer. The diagnosis was based on the history of radiotherapy for benign skin diseases (5 cases) and of occupational exposures to medical doctors (2 cases). All cases were squamous cell carcinomas which arose from chronic radiodermatitis. The estimated latent period of these tumors ranged from 6 to 64 years, with an average of 29.9 years. After surgical treatments of the lesions, no local recurrences were observed in all cases. Benign skin diseases had sometimes been treated with low-energy radiation before the 1960s. Considering the estimated latent period, the peak time point of developing risk of radiation-induced skin cancer by such treatment has been already passed, however, the danger of it should not be ignored in future. In association with multiplicity of radiation usage, occupational exposure of radiation may develop the risk of occurrence of skin cancer in future. Therefore, we should recognize that radiation-induced skin cancer is not in the past. In the cases of chronic skin diseases showing warty keratotic growth, erosion and ulcer, we should include chronic radio-dermatitis in the differential diagnosis. It is necessary to recall all patients about the history of radiotherapy or radiation exposure. Rapid histopathological examination is mandatory because of the suspicion of radiation-induced skin cancer. (author)

  7. Seven cases of radiation-induced cutaneous squamous cell carcinoma

    International Nuclear Information System (INIS)

    Sugita, Kazunari; Yamamoto, Osamu; Suenaga, Yoshinori

    2000-01-01

    We report 7 cases of radiation-induced skin cancer. The diagnosis was based on the history of radiotherapy for benign skin diseases (5 cases) and of occupational exposures to medical doctors (2 cases). All cases were squamous cell carcinomas which arose from chronic radiodermatitis. The estimated latent period of these tumors ranged from 6 to 64 years, with an average of 29.9 years. After surgical treatments of the lesions, no local recurrences were observed in all cases. Benign skin diseases had sometimes been treated with low-energy radiation before the 1960s. Considering the estimated latent period, the peak time point of developing risk of radiation-induced skin cancer by such treatment has been already passed, however, the danger of it should not be ignored in future. In association with multiplicity of radiation usage, occupational exposure of radiation may develop the risk of occurrence of skin cancer in future. Therefore, we should recognize that radiation-induced skin cancer is not in the past. In the cases of chronic skin diseases showing warty keratotic growth, erosion and ulcer, we should include chronic radio-dermatitis in the differential diagnosis. It is necessary to recall all patients about the history of radiotherapy or radiation exposure. Rapid histopathological examination is mandatory because of the suspicion of radiation-induced skin cancer. (author)

  8. Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0163 TITLE: Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer ...Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Feng Yang, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: fyang@bcm.edu...W81XWH-13-1-0163 " Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer " Introduction AR signaling

  9. Incidence and nature of tumors induced in Sprague-Dawley rats by gamma-irradiation

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.; Faraggiana, T.

    1988-01-01

    In our previous studies carried out on inbred rats of the Sprague-Dawley strain, the tumor incidence was increased following irradiation (150 rads, 5 times, at weekly intervals), from 22 to 93% in females and from 5 to 59% in males. Experiments here reported suggest that 2 consecutive total-body gamma-irradiations of 150 rads each are sufficient to induce in rats the development of tumors, some malignant; 18 of 19 females (94.7%) developed tumors at an average age of 11.4 mo, and seven of the 14 males in this group (50%) developed tumors at an average age of 10.4 mo. In the second group, which received 3 consecutive gamma-irradiations, 20 of 23 females (86.9%) and 5 of 13 males (38.4%) developed tumors at average ages of 9.1 and 7.5 mo, respectively. In the third group, among rats which received 4 consecutive gamma-irradiations, 17 of 19 females (89.4%) and 4 of 12 males (33.3%) developed tumors at average ages of 9.4 and 10.5 mo, respectively. The etiology of tumors either developing spontaneously or induced by irradiation in rats remains to be clarified. Our attempts to detect virus particles by electron microscopy in such tumors or lymphomas have not been successful. As a working hypothesis, we are tempted to theorize that tumors or lymphomas developing spontaneously or induced by gamma irradiation in rats are caused by latent viral agents which are integrated into the cell genome and are cell associated, i.e., not separable from the rat tumor cells by conventional methods thus far used

  10. Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation.

    Science.gov (United States)

    Gimblet, Ciara; Meisel, Jacquelyn S; Loesche, Michael A; Cole, Stephen D; Horwinski, Joseph; Novais, Fernanda O; Misic, Ana M; Bradley, Charles W; Beiting, Daniel P; Rankin, Shelley C; Carvalho, Lucas P; Carvalho, Edgar M; Scott, Phillip; Grice, Elizabeth A

    2017-07-12

    Skin microbiota can impact allergic and autoimmune responses, wound healing, and anti-microbial defense. We investigated the role of skin microbiota in cutaneous leishmaniasis and found that human patients infected with Leishmania braziliensis develop dysbiotic skin microbiota, characterized by increases in the abundance of Staphylococcus and/or Streptococcus. Mice infected with L. major exhibit similar changes depending upon disease severity. Importantly, this dysbiosis is not limited to the lesion site, but is transmissible to normal skin distant from the infection site and to skin from co-housed naive mice. This observation allowed us to test whether a pre-existing dysbiotic skin microbiota influences disease, and we found that challenging dysbiotic naive mice with L. major or testing for contact hypersensitivity results in exacerbated skin inflammatory responses. These findings demonstrate that a dysbiotic skin microbiota is not only a consequence of tissue stress, but also enhances inflammation, which has implications for many inflammatory cutaneous diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ability of radiation therapists to assess radiation-induced skin toxicity

    International Nuclear Information System (INIS)

    Acharya, Urvi; Cox, Jennifer; Rinks, Marianne; Gaur, Pankaj; Back, Michael

    2013-01-01

    Radiation therapy has seen enhancement of the radiation therapist (RT) role, with RTs and nurses performing duties that were traditionally in the radiation oncologist's (RO) domain. This study aimed to assess whether RTs can consistently grade radiation-induced skin toxicity and their concordance with the gradings given by ROs. Digital photographs of skin reactions were taken at weeks 1, 3 and 6 of radiotherapy on nine patients with breast cancer. The randomly ordered photographs were reviewed once by eight ROs and four RO registrars and on two occasions separated by 6 weeks by 17 RTs. All graded the skin toxicities using the revised Radiation Therapy Oncology Group system. No significant difference was seen between the median scores of the RTs at the first scoring session and the RO/Registrar group. The RTs at both measurement times showed greater inter-rater reliability than the RO/Registrars (W=0.6866, time 1 and 0.6981 time 2, vs. 0.6517), with the experienced RTs the most consistent (W=0.7078). The RTs also showed high intra-rater reliability (rho=0.8461, P<0.0010). These results from RTs with no specific preparation indicate that experienced RTs could assess breast cancer skin toxicity as part of their role.

  12. β-HPV Infection Correlates with Early Stages of Carcinogenesis in Skin Tumors and Patient-Derived Xenografts from a Kidney Transplant Recipient Cohort.

    Science.gov (United States)

    Borgogna, Cinzia; Olivero, Carlotta; Lanfredini, Simone; Calati, Federica; De Andrea, Marco; Zavattaro, Elisa; Savoia, Paola; Trisolini, Elena; Boldorini, Renzo; Patel, Girish K; Gariglio, Marisa

    2018-01-01

    Many malignancies that occur in high excess in kidney transplant recipients (KTRs) are due to viruses that thrive in the setting of immunosuppression. Keratinocyte carcinoma (KC), the most frequently occurring cancer type in KTR, has been associated with skin infection by human papillomavirus (HPV) from the beta genus. In this report, we extend our previous investigation aimed at identifying the presence of active β-HPV infection in skin tumors from KTRs through detection of viral protein expression. Using a combination of antibodies raised against the E4 and L1 proteins of the β-genotypes, we were able to visualize infection in five tumors [one keratoacanthoma (KA), three actinic keratoses (AKs), and one seborrheic keratoses (SKs)] that were all removed from two patients who had been both transplanted twice, had developed multiple KCs, and presented with a long history of immunosuppression (>30 years). These infected tissues displayed intraepidermal hyperplasia and increased expression of the ΔNp63 protein, which extended into the upper epithelial layers. In addition, using a xenograft model system in nude mice displaying a humanized stromal bed in the site of grafting, we successfully engrafted three AKs, two of which were derived from the aforementioned KTRs and displayed β-HPV infection in the original tumor. Of note, one AK-derived xenograft, along with its ensuing lymph node metastasis, was diagnosed as squamous cell carcinoma (SCC). In the latter, both β-HPV infection and ΔNp63 expression were no longer detectable. Although the overall success rate of engrafting was very low, the results of this study show for the first time that β-HPV + and ΔNp63 + intraepidermal hyperplasia can indeed progress to an aggressive SCC able to metastasize. Consistent with a series of reports attributing a causative role of β-HPV at early stages of skin carcinogenesis through ΔNp63 induction and increased keratinocytes stemness, here we provide in vivo evidence that

  13. Inspection of arterial-induced skin vibration by Moire fringe with two-dimensional continuous wavelet transform

    Science.gov (United States)

    Wang, Chun-Hsiung; Chiu, Shih-Yung; Hsu, Yu-Hsiang; Lee, Shu-Sheng; Lee, Chih-Kung

    2017-06-01

    A non-contact arterial-induced skin vibration inspection system is implemented. This optical metrology system is constructed with shadow Moiré configuration and the fringe analysis algorithm. Developed with the Region of Interested (ROI) capturing technique and the Two-dimensional Wavelet Transform (2D-CWT) method, this algorithm is able to retrieve the height-correlated phase information from the shadow Moiré fringe patterns. Using a commercial video camera or a CMOS image sensor, this system could monitor the skin-vibration induced by the cyclic deformation of inner layered artery. The cross-sectional variation and the rhythm of heart cycle could be continuously measured for health monitoring purposes. The average vibration amplitude of the artery at the wrist ranges between 20 μm and 50 μm, which is quite subtle comparing with the skin surface structure. Having the non-stationary motion of human body, the traditional phase shifting (PS) technique can be very unstable due to the requirement of several frames of images, especially for case that artery is continuously pumping. To bypass this fundamental issue, the shadow Moiré technique is introduced to enhance the surface deformation characteristic. And the phase information is retrieved by the means of spectrum filtering instead of PS technique, which the phase is calculated from intensity maps of multiple images. The instantaneous surface can therefore be reconstructed individually from each frame, enabling the subtle arterial-induced skin vibration measurement. The comparative results of phase reconstruction between different fringe analysis algorithms will be demonstrated numerically and experimentally. And the electrocardiography (ECG) results will used as the reference for the validity of health monitoring potential of the non-contact arterial-induced skin vibration inspection system.

  14. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  15. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    Science.gov (United States)

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  16. Microemulsion Using Polyoxyethylene Sorbitan Trioleate and its Usage for Skin Delivery of Resveratrol to Protect Skin against UV-Induced Damage.

    Science.gov (United States)

    Yutani, Reiko; Teraoka, Reiko; Kitagawa, Shuji

    2015-01-01

    We examined the phase behavior of various polyoxyethylene sorbitan fatty acid ester (polysorbates)/ethanol/isopropyl myristate (IPM)/150 mM NaCl solution (NaClaq) systems in order to prepare a microemulsion containing a low ratio of ethanol, which is more suitable for in vivo application. Using polyoxyethylene sorbitan trioleate (Tween 85), which has a large lipophilic moiety, as a surfactant component, single-phase domain of the phase diagram was the largest of all the polysorbates examined, and in particular a large oil-rich single-phase domain was obtained. When the ratio of Tween 85 to ethanol was changed from 1 : 1 to 3 : 1, the oil-rich single-phase domain further expanded, which led to a reduced ethanol concentration in the preparation. Thus, we determined the composition of the microemulsion to be Tween 85 : ethanol : IPM : NaClaq=30 : 10 : 53 : 7, and used it for skin delivery of resveratrol. Microemulsion gel was also prepared by adding 6.5% Aerosil) 200 into the microemulsion for ease of topical application. When applied with each vehicle, delivery of resveratrol into guinea pig skin in vitro was significantly enhanced compared with that by IPM, and resveratrol incorporated into the skin by microemulsion gel decreased lipid peroxidation to 29.5% compared with that of the control. Pretreatment of guinea pig dorsal skin with the microemulsion gel containing resveratrol almost completely prevented UV-B-induced erythema formation in vivo. These findings demonstrate that the microemulsion using Tween 85 containing a minimal concentration of ethanol enhanced the skin delivery of resveratrol and the incorporated resveratrol exhibited a protective effect against UV-induced oxidative damage.

  17. Skin changes in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Andrade, Thiago Antônio Moretti; Masson-Meyers, Daniela Santos; Caetano, Guilherme Ferreira; Terra, Vânia Aparecida; Ovidio, Paula Payão; Jordão-Júnior, Alceu Afonso; Frade, Marco Andrey Cipriani

    2017-09-02

    Diabetes can cause serious health complications, which can affect every organ of the body, including the skin. The molecular etiology has not yet been clarified for all diabetic skin conditions. Thus, this study aimed to investigate the changes of diabetes in skin compared to non-diabetic skin in rats. Fifteen days after establishing the diabetic status, skin samples from the dorsum-cervical region were harvested for subsequent analysis of alterations caused by diabetes. Our results demonstrate that diabetes stimulated higher inflammation and oxidative stress in skin, but antioxidant defense levels were lower compared to the non-diabetic group (p skin changes compared to non-diabetic skin in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. LP-THAE induced tumor cell apoptosis of rabbit VX2 liver carcinoma

    International Nuclear Information System (INIS)

    Chen Shengli; Quan Yi; Huang Zicheng; Chen Guodong; Zhu Dongliang

    2007-01-01

    Objective: To research tumor cell apoptosis induced by Lp-THAE of rabbit VX2 liver implanted tumor. Methods: 27 New Zealand white rabbits implanted with VX2 tumor at left middle lobe of the liver divided into three groups: Group A(n= 9) Lp-THAE: treated through transhepatic artery catheterization; Group B(n=9) THAI and Group C(n=9) as control. The rabbits were executed at second to fifth day after treatment. HE dye microscopy was taken for counting the typical apoptosis cells and calculating apoptosis index (ApI). FITC-AnnexinV/PI assay was used for measuring apoptosis by flow cytometry. Results: The ApI of tumor central area and marginal area were (17.769±2.417)%, (4.129±1.172)%, P<0.01. The percentages of tumor cell apoptosis and tumor cell necrosis were (16.483±1.404)%, (9.478±0.964)%, P<0.01 and (43.559±5.053)%, (33.460±1.840)%, P=0.093. The total percentages of tumor cell apoptosis and necrosis were (60.042±13.979)%, (42.938±8.979)%, P< 0.01, at tumor center and marginal area in THAE group respectively. The ApI, percentages of tumor cell apoptosis and necrosis in THAE group were significantly higher than those of THAI group (P<0.01). The percentages of tumor cell apoptosis at tumor center area in THAE group were significantly higher than those of tumor marginal area(P<0.01). Conclusion: Induced tumor cell apoptosis and necrosis are two mechanisms of action for Lp-THAE treatment of liver carcinoma. (authors)

  19. Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy.

    Science.gov (United States)

    Son, Keum-Joo; Choi, Ki Ryung; Lee, Seog Jae; Lee, Hyunah

    2016-02-01

    Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT(+) CD11c(+) cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

  20. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    International Nuclear Information System (INIS)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-01-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm 2 ) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E 2 (PGE 2 ), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion. • Blackberry

  1. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    Energy Technology Data Exchange (ETDEWEB)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Shi, Xianglin [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion.

  2. The circadian clock controls sunburn apoptosis and erythema in mouse skin.

    Science.gov (United States)

    Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz

    2015-04-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.

  3. Investigation of pion-treated human skin nodules for therapeutic gain

    International Nuclear Information System (INIS)

    Kligerman, M.M.; Sala, J.M.; Wilson, S.; Yuhas, J.M.

    1978-01-01

    A patient with multiple metastatic tumor nodules in the skin, from a primary breast carcinoma, was treated with graded doses of pions and x rays to establish skin tolerance. She was followed up for 346 days, permitting observation of time to regrowth of the tumor nodules. All 16 of these had disappeared after treatment, without significant correlation with type of radiation or dose, or with nodule size. However, time to regrowth depended both on the type and the dose of radiation. Earlier, relative biological effectiveness (RBE), was established at 1.42 for acute skin injury. Using this RBE to normalize doses of pions and x rays causing equivalent acute skin injury, and plotting those doses vs time to regrowth of tumor nodules, yielded a therapeutic gain (37.5%) in favor of pions. No late skin or subcutaneous tissue changes were seen, and no qualitative difference between pions and x rays in late skin effects was observed

  4. Infrequent alterations of the P53 gene in rat skin cancers induced by ionising-radiation

    International Nuclear Information System (INIS)

    Jin, Y.; Burns, F.J.; Garte, S.J.; Hosselet, S.; New York Univ., NY

    1996-01-01

    Radiation carcinogenesis almost certainly involves multiple genetic alterations. Identification of such genetic alterations would provide information to help understand better the molecular mechanism or radiation carcinogenesis. The energy released by ionizing radiation has the potential to produce DNA strand breaks, major gene deletions or rearrangements, and other base damages. Alterations of the p53 gene, a common tumour suppressor gene altered in human cancers, were examined in radiation-induced rat skin cancers. Genomic DNA from a total of 33rat skin cancers induced by ionizing radiation was examined by Southern blot hybridization for abnormal restriction fragment patterns in the p53 gene. A abnormal p53 restriction pattern was found in one of 16 cancers induced by electron radiation and in one of nine cancers induced by neon ions. The genomic DNA from representative cancers, including the two with an abnormal restriction pattern was further examined by polymerase chain reaction amplification and direct sequencing in exons 5-8 of the p53 gene. The results showed that one restriction fragment length polymorphism (RFLP)-positive cancer induced by electron radiation had a partial gene deletion which was defined approximately between exons 2-8, while none of the other cancers showed sequence changes. Our results indicate that the alterations in the critical binding region of the p53 gene are infrequent in rat skin cancers induced by either electron or neon ion radiation. (Author)

  5. Improvement effect of corn silk, perilla leaf and grape stem extract mixture against UVB-induced skin damage and compound 48/80-induced pruritus

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byoung Ok; Shin, Jae Young; Che, Denis Nchang; Hwang, Young Min; Lee, Hyun Seo; Choi, Ji Won; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of); Ryu, Cheol [Hyangmiwon Corporation, Gimje (Korea, Republic of)

    2017-02-15

    This study was conducted to evaluate the synergistic protective effects of mixtures of corn silk, perilla leaf and grape stem extract (CPG mixture) against UVB-induced skin damage and compound 48/80-induced pruritus in mice. The results showed that treatment with CPG mixture exhibited much stronger suppressive effect on erythema and melanin index as well as melanin formation than treatment with ascorbic acid (AA) in UVB-irradiated mice. Moreover, the treatment with CPG mixture showed ameliorative effect on immune cell infiltration and collagen fiber destruction in UV-irradiated mice. The treatment with CPG mixture inhibited glutathione (GSH) depletion, lipid peroxidation and production of pro-inflammatory cytokines in UVB-irradiated mice. Furthermore, the treatment with CPG mixture inhibited compound 48/80-induced scratching behavior and histological changes in mice. Taken together, these results indicated that CPG mixture has potentials as functional and therapeutic materials against skin damage and itch-related skin diseases.

  6. Improvement effect of corn silk, perilla leaf and grape stem extract mixture against UVB-induced skin damage and compound 48/80-induced pruritus

    International Nuclear Information System (INIS)

    Cho, Byoung Ok; Shin, Jae Young; Che, Denis Nchang; Hwang, Young Min; Lee, Hyun Seo; Choi, Ji Won; Jang, Seon Il; Ryu, Cheol

    2017-01-01

    This study was conducted to evaluate the synergistic protective effects of mixtures of corn silk, perilla leaf and grape stem extract (CPG mixture) against UVB-induced skin damage and compound 48/80-induced pruritus in mice. The results showed that treatment with CPG mixture exhibited much stronger suppressive effect on erythema and melanin index as well as melanin formation than treatment with ascorbic acid (AA) in UVB-irradiated mice. Moreover, the treatment with CPG mixture showed ameliorative effect on immune cell infiltration and collagen fiber destruction in UV-irradiated mice. The treatment with CPG mixture inhibited glutathione (GSH) depletion, lipid peroxidation and production of pro-inflammatory cytokines in UVB-irradiated mice. Furthermore, the treatment with CPG mixture inhibited compound 48/80-induced scratching behavior and histological changes in mice. Taken together, these results indicated that CPG mixture has potentials as functional and therapeutic materials against skin damage and itch-related skin diseases

  7. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    Science.gov (United States)

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Amrita [Hampton University Skin of Color Research Institute, Hampton, VA 23668 (United States); Katdare, Meena, E-mail: mkatdare@gmail.com [Hampton University Skin of Color Research Institute, Hampton, VA 23668 (United States); Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA 23507 (United States)

    2015-08-14

    Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics.

  9. Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma

    International Nuclear Information System (INIS)

    Dasgupta, Amrita; Katdare, Meena

    2015-01-01

    Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics

  10. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, Ohtsura; Enoki, Yoshitaka; Yokoro, Kenjiro

    1989-03-01

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 /alpha/-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author).

  11. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Photoprotection of Buddleja cordata extract against UVB-induced skin damage in SKH-1 hairless mice.

    Science.gov (United States)

    Avila Acevedo, José Guillermo; Espinosa González, Adriana Montserrat; De Maria y Campos, Diana Matamoros; Benitez Flores, José del Carmen; Hernández Delgado, Tzasna; Flores Maya, Saul; Campos Contreras, Jorge; Muñoz López, José Luis; García Bores, Ana María

    2014-08-03

    In recent years, there has been considerable interest in using botanical agents to prevent skin damage resulting from solar UV-irradiation. Buddleja cordata is a plant that is known as "tepozan". Some people in Mexico use the leaves of this plant to treat tumours, abscesses, sores and burns. The purpose of this study is to investigate the photoprotective properties of Buddleja cordata methanolic extract (BCME) against UVB-induced skin damage in SKH-1 hairless mice at the macroscopic and histological levels. BCME was characterised to determine its spectroscopic, chromatographic and antioxidant (DPPH, superoxide and hydroxyl radicals) properties. To conduct the photoprotection studies, BCME was applied topically to the skin of SKH-1 mice before acute exposure to UVB for 10 minutes. The murine skin samples were used for macroscopic and histological studies to assess tissue damage. Penetration of active components of BCME into stratum corneum on the dorsal area of mice was investigated in vivo by the tape stripping method. Moreover, genotoxicity of BCME was evaluated in a Vicia faba cell root micronucleus model. BCME displayed absorbance over the entire UVB spectrum, and its principal components included verbascoside and linarin. BCME exhibited antioxidant activity and significantly scavenged hydroxyl radicals. BCME reduced erythema, sunburn cell production, vessel congestion and epidermal thickening of UVB irradiated mouse skin. BCME penetrate the skin of mice. BCME did not exhibit genotoxic activity in the micronucleus test. The topical administration of BCME protected against acute UVB-induced damage in mouse SKH-1 skin, and our results suggest that BCME may potentially prevent photodamage.

  13. Development and Characterization of VEGF165-Chitosan Nanoparticles for the Treatment of Radiation-Induced Skin Injury in Rats

    Directory of Open Access Journals (Sweden)

    Daojiang Yu

    2016-10-01

    Full Text Available Radiation-induced skin injury, which remains a serious concern in radiation therapy, is currently believed to be the result of vascular endothelial cell injury and apoptosis. Here, we established a model of acute radiation-induced skin injury and compared the effect of different vascular growth factors on skin healing by observing the changes of microcirculation and cell apoptosis. Vascular endothelial growth factor (VEGF was more effective at inhibiting apoptosis and preventing injury progression than other factors. A new strategy for improving the bioavailability of vascular growth factors was developed by loading VEGF with chitosan nanoparticles. The VEGF-chitosan nanoparticles showed a protective effect on vascular endothelial cells, improved the local microcirculation, and delayed the development of radioactive skin damage.

  14. Chemoprevention of skin cancer by the flavonoid fraction of Saraca asoka.

    Science.gov (United States)

    Cibin, T R; Devi, D Gayathri; Abraham, Annie

    2010-05-01

    Saraca asoka (Family - Caesalpiniaceae) has been widely used in the Ayurvedic (traditional Indian) system of medicine especially due to its wound healing property. The present study investigated the chemopreventive property of flavonoids from the flowers of Saraca asoka on 7,12 dimethyl benz(a)anthracene (DMBA) induced skin cancer in mice models. A single topical application of DMBA (100 microg/50 microL of acetone) followed after 2 weeks by three times a week treatment with croton oil (1% in acetone), for 20 weeks resulted in tumor induction. The topical application of the flavonoid fraction of S. asoka (FF S. asoka), 30 min prior to the application of croton oil thrice weekly for 20 weeks, caused a significant reduction in the number of tumors per mouse and the percentage of tumor-bearing mice. Also the latency period for the appearance of the first tumor was delayed by S. asoka pretreatment. In the flavonoid fraction (5 mg and 10 mg/kg body weight) treated animals, the levels of biochemical markers - rhodanese, myeloperoxidase, beta-D-glucuronidase, sialic acid, hexokinase and caspase 3 were significantly restored to near normal levels. These findings suggest the chemopreventive activity of flavonoids from S. asoka on two stage skin carcinogenesis. Histological data also support the chemopreventive potential of S. asoka. Copyright (c) 2009 John Wiley & Sons, Ltd.

  15. The Danish Nonmelanoma Skin Cancer Dermatology Database.

    Science.gov (United States)

    Lamberg, Anna Lei; Sølvsten, Henrik; Lei, Ulrikke; Vinding, Gabrielle Randskov; Stender, Ida Marie; Jemec, Gregor Borut Ernst; Vestergaard, Tine; Thormann, Henrik; Hædersdal, Merete; Dam, Tomas Norman; Olesen, Anne Braae

    2016-01-01

    The Danish Nonmelanoma Skin Cancer Dermatology Database was established in 2008. The aim of this database was to collect data on nonmelanoma skin cancer (NMSC) treatment and improve its treatment in Denmark. NMSC is the most common malignancy in the western countries and represents a significant challenge in terms of public health management and health care costs. However, high-quality epidemiological and treatment data on NMSC are sparse. The NMSC database includes patients with the following skin tumors: basal cell carcinoma (BCC), squamous cell carcinoma, Bowen's disease, and keratoacanthoma diagnosed by the participating office-based dermatologists in Denmark. Clinical and histological diagnoses, BCC subtype, localization, size, skin cancer history, skin phototype, and evidence of metastases and treatment modality are the main variables in the NMSC database. Information on recurrence, cosmetic results, and complications are registered at two follow-up visits at 3 months (between 0 and 6 months) and 12 months (between 6 and 15 months) after treatment. In 2014, 11,522 patients with 17,575 tumors were registered in the database. Of tumors with a histological diagnosis, 13,571 were BCCs, 840 squamous cell carcinomas, 504 Bowen's disease, and 173 keratoakanthomas. The NMSC database encompasses detailed information on the type of tumor, a variety of prognostic factors, treatment modalities, and outcomes after treatment. The database has revealed that overall, the quality of care of NMSC in Danish dermatological clinics is high, and the database provides the necessary data for continuous quality assurance.

  16. Membrane damage induced in cultured human skin fibroblasts by UVA irradiation

    International Nuclear Information System (INIS)

    Gaboriau, F.; Morliere, P.; Marquis, I.; Moysan, A.; Geze, M.; Dubertret, L.

    1993-01-01

    Irradiation of cultured human skin fibroblasts with ultraviolet light from 320 to 400 nm (UVA) leads to a decrease in the membrane fluidity exemplified by an enhanced fluorescence anisotropy of the lipophilic fluorescent probe 1-[4-trimethylamino)-phenyl]-6-phenylhexa-1,3,5-triene. This UVA-induced decrease in fluidity is associated with lactate dehydrogenase leakage in the supernatant. Vitamin E, an inhibitor of lipid peroxidation, exerts a protective effect on both phenomena. Therefore, this UVA-induced damage in membrane properties may be related to lipid peroxidation processes. Moreover, exponentially growing cells are more sensitive to these UVA-induced alterations than confluent cells. (Author)

  17. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin.

    Science.gov (United States)

    Katiyar, Santosh K

    2002-12-01

    It is well documented that ultraviolet (UV) light-induced immune suppression and oxidative stress play an important role in the induction of skin cancers. Earlier, we have shown that topical treatment of silymarin, a plant flavonoid from milk thistle (Silybum marianum L. Gaertn.), to mouse skin prevents photocarcinogenesis, but the preventive mechanism of photocarcinogenesis in vivo animal system by silymarin is not well defined and understood. To define the mechanism of prevention, we employed immunostaining, analytical assays and ELISA which revealed that topical treatment of silymarin (1 mg/cm2 skin area) to C3H/HeN mice inhibits UVB (90 mJ/cm2)-induced suppression of contact hypersensitivity (CHS) response to contact sensitizer dinitrofluorobenzene. Prevention of UVB-induced suppression of CHS by silymarin was found to be associated with the inhibition of infiltrating leukocytes, particularly CD11b+ cell type, and myeloperoxidase activity (50-71%). Silymarin treatment also resulted in significant reduction of UVB-induced immunosuppressive cytokine interleukin-10 producing cells and its production (58-72%, pskin cancer risk human population and ii) development of sunscreen containing silymarin as an antioxidant (chemopreventive agent) or silymarin can be supplemented in skin care products.

  18. Polaprezinc reduces paclitaxel-induced peripheral neuropathy in rats without affecting anti-tumor activity

    Directory of Open Access Journals (Sweden)

    Kuniaki Tsutsumi

    2016-06-01

    Full Text Available Paclitaxel, an anticancer drug, frequently causes painful peripheral neuropathy. In this study, we investigated the preventive effect of polaprezinc on paclitaxel-induced peripheral neuropathy in rats. Polaprezinc (3 mg/kg, p.o., once daily inhibited the development of mechanical allodynia induced by paclitaxel (4 mg/kg, i.p., on days 1, 3, 5 and 7 and suppressed the paclitaxel-induced increase in macrophage migration in dorsal root ganglion cells. In addition, polaprezinc did not affect the anti-tumor activity of paclitaxel in cultured cell lines or tumor-bearing mice. These results suggest a clinical indication for polaprezinc in the prevention of paclitaxel-induced neuropathy.

  19. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy.

    Science.gov (United States)

    Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina

    2005-05-01

    New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.

  20. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-01-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17β-estradiol (E 2 ). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E 2 -induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E 2 pellets, co-exposure to quercetin did not protect rats from E 2 -induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E 2 -treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E 2 group relative to those in the E 2 group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F 2α (8-iso-PGF 2α ) levels as a marker of oxidant stress showed that quercetin did not decrease E 2 -induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E 2 -induced oxidant stress and may exacerbate breast carcinogenesis in E 2 -treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E 2 and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E 2 and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E 2 -induced

  1. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  2. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  3. The effect of Mepitel Film on acute radiation-induced skin reactions in head and neck cancer patients: a feasibility study.

    Science.gov (United States)

    Wooding, Hayley; Yan, Jing; Yuan, Ling; Chyou, Te-Yu; Gao, Shanbao; Ward, Iain; Herst, Patries M

    2018-01-01

    Mepitel Film significantly decreases acute radiation-induced skin reactions in breast cancer patients. Here we investigated the feasibility of using Mepitel Film in head and neck cancer patients (ACTRN12614000932662). Out of a total of 36 head and neck cancer patients from New Zealand (NZ) (n = 24) and China (n = 12) recruited between June 2015 and December 2016, 33 patients complied with protocol. Of these, 11 NZ patients followed a management protocol; 11 NZ patients and 11 Chinese patients followed a prophylactic protocol. An area of the neck receiving a homogenous radiation dose of > 35 Gy was divided into two equal halves; one half was randomized to Film and the other to either Sorbolene cream (NZ) or Biafine cream (China). Skin reaction severity was measured by Radiation Induced Skin Reaction Assessment Scale and expanded Radiation Therapy Oncology Group toxicity criteria. Skin dose was measured by thermoluminescent dosimeters or gafchromic film. Film decreased overall skin reaction severity (combined Radiation Induced Skin Reaction Assessment Scale score) by 29% and moist desquamation rates by 37% in the Chinese cohort and by 27 and 28%, respectively in the NZ cohort. Mepitel Film did not affect head movements but did not adhere well to the skin, particularly in males with heavy beard stubble, and caused itchiness, particularly in Chinese patients. Mepitel Film reduced acute radiation-induced skin reactions in our head and neck cancer patients, particularly in patients without heavy stubble. Advances in knowledge: This is the first study to confirm the feasibility of using Mepitel Film in head and neck cancer patients.

  4. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P.

    2013-01-01

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with “stemness,” more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This “two-compartment” metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert “low-risk” breast cancer patients to “high-risk” status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results

  5. Two-step Raman spectroscopy method for tumor diagnosis

    Science.gov (United States)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).

  6. Blebbistatin, a myosin II inhibitor, suppresses Ca(2+)-induced and "sensitized"-contraction of skinned tracheal muscles from guinea pig.

    Science.gov (United States)

    Yumoto, Masatoshi; Watanabe, Masaru

    2013-01-01

    Blebbistatin, a potent inhibitor of myosin II, has inhibiting effects on Ca(2+)-induced contraction and contractile filament organization without affecting the Ca(2+)-sensitivity to the force and phosphorylation level of myosin regulatory light chain (MLC20) in skinned (cell membrane permeabilized) taenia cecum from the guinea pig (Watanabe et al., Am J Physiol Cell Physiol. 2010; 298: C1118-26). In the present study, we investigated blebbistatin effects on the contractile force of skinned tracheal muscle, in which myosin filaments organization is more labile than that in the taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration, but had little effects on the Ca(2+)- induced myosin light chain phosphorylation. Also blebbistatin at 10 μM and higher significantly suppressed GTP-γS-induced "sensitized" force development. Since the force inhibiting effects of blebbistatin on the skinned trachea were much stronger than those in skinned taenia cecum, blebbistatin might directly affect myosin filaments organization.

  7. UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B☆

    Science.gov (United States)

    Yang, Kuan; Boswell, Mikki; Walter, Dylan J.; Downs, Kevin P.; Gaston-Pravia, Kimberly; Garcia, Tzintzuni; Shen, Yingjia; Mitchell, David L.; Walter, Ronald B.

    2014-01-01

    Xiphophorus fish and interspecies hybrids represent long-standing models to study the genetics underlying spontaneous and induced tumorigenesis. The recent release of the Xiphophorus maculatus genome sequence will allow global genetic regulation studies of genes involved in the inherited susceptibility to UVB-induced melanoma within select backcross hybrids. As a first step toward this goal, we report results of an RNA-Seq approach to identify genes and pathways showing modulated transcription within the skin of X. maculatus Jp 163 B upon UVB exposure. X. maculatus Jp 163 B were exposed to various doses of UVB followed by RNA-Seq analysis at each dose to investigate overall gene expression in each sample. A total of 357 genes with a minimum expression change of 4-fold (p-adj fish skin to UVB exposure. PMID:24556253

  8. UV Radiation and the Skin

    Directory of Open Access Journals (Sweden)

    Timothy Scott

    2013-06-01

    Full Text Available UV radiation (UV is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  9. Radiation as an inducer of in-situ autologous vaccine in the treatment of solid tumors

    International Nuclear Information System (INIS)

    Ahmed, Mansoor M.

    2013-01-01

    Radiation therapy (RT) is conventionally used for local tumor control. Although local control of the primary tumor can prevent the development of subsequent systemic metastases, tumor irradiation is not effective in controlling pre-existing systemic disease. The concept of radiation-enhanced antigen presentation and immunomodulation allows the harnessing of tumor cell death induced by radiation as a potential source of tumor antigens for immunotherapy. Immunomodulation using RT is a novel strategy of in situ tumor vaccination where primary tumor irradiation can contribute to the control of pre-existing systemic metastatic disease. The absence of systemic immunosuppression (often associated with chemotherapy) and the generally lower toxicity makes radiation a desirable adjuvant regimen for immunotherapy and tumor vaccination strategies. Increased understanding of tumor immunology and the biology of radiation-mediated immune modulation should enhance the efficacy of combining these therapeutic modalities. Here we aim to provide an overview of the biology of radiation-induced immune modulation. (author)

  10. Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice.

    Science.gov (United States)

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yao, Ruiquing; Nabeshima, Kazumi; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi

    2016-07-01

    This study reports the effects of oral Aloe vera gel powder (AVGP) containing Aloe sterols on skin elasticity and the extracellular matrix in ultraviolet B (UVB)-irradiated hairless mice. Ten-week-old hairless mice were fed diets containing 0.3% AVGP for 8 weeks and irradiated UVB for 6 weeks. Mice treated with AVGP showed significant prevention of the UVB-induced decrease in skin elasticity. To investigate the mechanism underlying this suppression of skin elasticity loss, we measured the expression of matrix metalloproteinase (MMP)-2, -9, and -13. AVGP prevented both the UVB-induced increases in MMPs expressions. Moreover, we investigated hyaluronic acid (HA) content of mice dorsal skin and gene expression of HA synthase-2 (Has2). In the results, AVGP oral administration prevented UVB-induced decreasing in skin HA content and Has2 expression and attenuates the UVB-induced decrease in serum adiponectin, which promotes Has2 expression. These results suggested that AVGP has the ability to prevent the skin photoaging.

  11. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity.

    Science.gov (United States)

    Rösler, J; Niraula, B; Strack, V; Zdunczyk, A; Schilt, S; Savolainen, P; Lioumis, P; Mäkelä, J; Vajkoczy, P; Frey, D; Picht, T

    2014-03-01

    This article explores the feasibility of a novel repetitive navigated transcranial magnetic stimulation (rnTMS) system and compares language mapping results obtained by rnTMS in healthy volunteers and brain tumor patients. Fifteen right-handed healthy volunteers and 50 right-handed consecutive patients with left-sided gliomas were examined with a picture-naming task combined with time-locked rnTMS (5-10 Hz and 80-120% resting motor threshold) applied over both hemispheres. Induced errors were classified into four psycholinguistic types and assigned to their respective cortical areas according to the coil position during stimulation. In healthy volunteers, language disturbances were almost exclusively induced in the left hemisphere. In patients errors were more frequent and induced at a comparative rate over both hemispheres. Predominantly dysarthric errors were induced in volunteers, whereas semantic errors were most frequent in the patient group. The right hemisphere's increased sensitivity to rnTMS suggests reorganization in language representation in brain tumor patients. rnTMS is a novel technology for exploring cortical language representation. This study proves the feasibility and safety of rnTMS in patients with brain tumor. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea.

    Science.gov (United States)

    Almendros, Isaac; Wang, Yang; Becker, Lev; Lennon, Frances E; Zheng, Jiamao; Coats, Brittney R; Schoenfelt, Kelly S; Carreras, Alba; Hakim, Fahed; Zhang, Shelley X; Farré, Ramon; Gozal, David

    2014-03-01

    An increased cancer aggressiveness and mortality have been recently reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, enhances melanoma growth and metastasis in mice. To assess whether OSA-related adverse cancer outcomes occur via IH-induced changes in host immune responses, namely tumor-associated macrophages (TAMs). Lung epithelial TC1 cell tumors were 84% greater in mice subjected to IH for 28 days compared with room air (RA). In addition, TAMs in IH-exposed tumors exhibited reductions in M1 polarity with a shift toward M2 protumoral phenotype. Although TAMs from tumors harvested from RA-exposed mice increased TC1 migration and extravasation, TAMs from IH-exposed mice markedly enhanced such effects and also promoted proliferative rates and invasiveness of TC1 cells. Proliferative rates of melanoma (B16F10) and TC1 cells exposed to IH either in single culture or in coculture with macrophages (RAW 264.7) increased only when RAW 264.7 macrophages were concurrently present. Our findings support the notion that IH-induced alterations in TAMs participate in the adverse cancer outcomes reported in OSA.

  13. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth

    Science.gov (United States)

    Yin, Yuan; Cai, Xing; Chen, Xi; Liang, Hongwei; Zhang, Yujing; Li, Jing; Wang, Zuoyun; Chen, Xiulan; Zhang, Wen; Yokoyama, Seiji; Wang, Cheng; Li, Liang; Li, Limin; Hou, Dongxia; Dong, Lei; Xu, Tao; Hiroi, Takachika; Yang, Fuquan; Ji, Hongbin; Zhang, Junfeng; Zen, Ke; Zhang, Chen-Yu

    2014-01-01

    An increased population of CD4+CD25highFoxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4+ T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion. PMID:25223704

  14. Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin

    Directory of Open Access Journals (Sweden)

    Bing-rong Zhou

    2016-01-01

    Full Text Available Aim. We explored the effects of soy oligopeptides (SOP in ultraviolet B- (UVB- induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI, melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm2 for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs, p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage.

  15. The influence of septal lesions on sodium and water retention induced by Walker 256 tumor

    Directory of Open Access Journals (Sweden)

    F. Guimarães

    1999-03-01

    Full Text Available In the course of studies on the effects of septal area lesions on neuroimmunomodulation and Walker 256 tumor development, it was observed that tumor-induced sodium and water retention was less marked in lesioned than in non-lesioned rats. In the present study possible mechanisms involved in this phenomenon were investigated. The experiments were performed in septal-lesioned (LW; N = 15 and sham-operated (SW; N = 7 8-week-old male Wistar rats, which received multifocal simultaneous subcutaneous (sc inoculations of Walker 256 tumor cells about 30 days after the stereotaxic surgery. Control groups (no tumor, sham-operated food-restricted (SFR, N = 7 and lesioned food-restricted (LFR, N = 10 were subjected to a feeding pattern similar to that observed in tumor-bearing animals. Multifocal inoculation of Walker 256 tumor rapidly induces anorexia, which is paradoxically accompanied by an increase in body weight, as a result of renal Na+ and fluid retention. These effects of the tumor were also seen in LW rats, although the rise in fractional sodium balance during the early clinical period was significantly smaller than in SW rats (day 4: SW = 47.6 ± 6.4% and LW = 13.8 ± 5.2%; day 5: SW = 57.5 ± 3.5% and LW = 25.7 ± 4.8%; day 6: SW = 54.4 ± 3.8% and LW = 32.1 ± 4.4%; P<0.05, suggesting a temporary reduction in tumor-induced sodium retention. In contrast, urine output was significantly reduced in SW rats and increased in LW rats (LW up to -0.85 and SW up to 4.5 ml/100 g body weight, with no change in osmolar excretion. These temporary changes in the tumor's effects on LW rats may reflect a "reversal" of the secondary central antidiuretic response induced by the tumor (from antidiuretic to diuretic.

  16. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression.

    Science.gov (United States)

    Lara, Pedro C; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa M; Henríquez-Hernández, Luis Alberto; Bordón, Elisa; Fontes, Fausto; Rey, Agustín

    2009-08-06

    Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed.

  17. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression

    International Nuclear Information System (INIS)

    Lara, Pedro C; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa M; Henríquez-Hernández, Luis Alberto; Bordón, Elisa; Fontes, Fausto; Rey, Agustín

    2009-01-01

    Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed

  18. Second primary tumor and radiation induced neoplasma in the uterine cancer

    International Nuclear Information System (INIS)

    Sakurai, Tomoyasu; Nishio, Masamichi; Kagami, Yoshikazu; Murakami, Yoshitaka; Narimatsu, Naoto; Kanemoto, Toshitaka

    1984-01-01

    This report is concerned with multiple primary cancers developing in invasive uterine cancer. Second primary tumors were recorded 27 women with a total of 30 non-uterine cancer (exception of radiation-induced cancer). 17 patients of radiation-induced neoplasm were observed (Rectal cancer 4, soft part sarcoma 4, cancer of urinary bladder 3, bone tumor 3, uterin cancer 2 and cancer of Vulva 1). One case is 4 legions (corpus, sigma, thymoma and stomach), 2 cases are 3 lesions (uterine cervix, stomach and maxillay siuis: uterine cervix, thyroidal gland and radiation-induced soft part sarcoma). Only 5 of these 17 patients were known irradiated dose (50 Gy--55 Gy), however others unknown. The mean latent periods of 17 cases of radiation induced neoplasms are 19.4 years. 16 patients of late second cancers of the cervix appearing from 11 to 36 years (average 19.5 years) after initial radiotherapy were recorded. (author)

  19. MAPK Phosphatase-1 Deficiency Exacerbates the Severity of Imiquimod-Induced Psoriasiform Skin Disease

    Directory of Open Access Journals (Sweden)

    Weiheng Zhao

    2018-03-01

    Full Text Available Persistent activation of mitogen-activated protein kinase (MAPK is believed to be involved in psoriasis pathogenesis. MAPK phosphatase-1 (MKP-1 is an important negative regulator of MAPK activity, but the cellular and molecular mechanisms of MKP-1 in psoriasis development are largely unknown. In this study, we found that the expression of MKP-1 was decreased in the imiquimod (IMQ-induced psoriasiform mouse skin. MKP-1-deficient (MKP-1−/− mice were highly susceptible to IMQ-induced skin inflammation, which was associated with increased production of inflammatory cytokines and chemokines. MKP-1 acted on both hematopoietic and non-hematopoietic cells to regulate psoriasis pathogenesis. MKP-1 deficiency in macrophages led to enhanced p38 activation and higher expression of interleukin (IL-1β, CXCL2, and S100a8 upon R848 stimulation. Moreover, MKP-1 deficiency in the non-hematopoietic compartments led to an enhanced IL-22 receptor signaling and higher expression of CXCL1 and CXCL2 upon IMQ treatment. Collectively, our data suggest a critical role for MKP-1 in the regulation of skin inflammation.

  20. TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells.

    Directory of Open Access Journals (Sweden)

    Tiffany M Scharadin

    Full Text Available TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.

  1. A role for b-cell-depleting agents in treating psoriatic skin lesions induced by tumor necrosis factor-alpha antagonists: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Ancuta Codrina Mihaela

    2014-01-01

    Full Text Available Despite recent advances in understanding the pathological pathways, clinical pattern and management opportunities for new-onset psoriasis as a paradoxical adverse event in patients receiving TNF inhibitors for their immune-mediated disorder, there is a subset of patients who are either partial responders or non-responders, whatever the therapeutic scenario. We present the case of new-onset psoriasis and severe alopecia development in a case study of long-standing rheumatoid arthritis (RA treated with adalimumab (ADA and leflunomide. Since skin lesions and alopecia are resistant to the classic protocol (topical treatment, ADA discontinuation and RA becomes highly active, rituximab (RTX was started. Dramatic improvement in joint disease, total remission of alopecia and partial remission of pustular psoriasis were described after the first RTX cycle. Although B-cell-depleting agents result in controversial effects on psoriatic skin lesions, this is the first case of ADA-induced psoriasis and alopecia that improved under RTX, suggesting a possible role in treating such a patient population.

  2. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death

    International Nuclear Information System (INIS)

    Ozaki, Kei-ichi; Minoda, Ai; Kishikawa, Futaba; Kohno, Michiaki

    2006-01-01

    Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway is associated with the neoplastic phenotype of a large number of human tumor cells. Although specific blockade of the ERK pathway by treating such tumor cells with potent mitogen-activated protein kinase/ERK kinase (MEK) inhibitors completely suppresses their proliferation, it by itself shows only a modest effect on the induction of apoptotic cell death. However, these MEK inhibitors markedly enhance the efficacy of histone deacetylase (HDAC) inhibitors to induce apoptotic cell death: such an enhanced cell death is observed only in tumor cells in which the ERK pathway is constitutively activated. Co-administration of MEK inhibitor markedly sensitizes tumor cells to HDAC inhibitor-induced generation of reactive oxygen species, which appears to mediate the enhanced cell death induced by the combination of these agents. These results suggest that the combination of MEK inhibitors and HDAC inhibitors provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the ERK pathway is constitutively activated

  3. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.M.; Young, A.R

    2000-07-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  4. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    International Nuclear Information System (INIS)

    Sheehan, J.M.; Young, A.R.

    2000-01-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  5. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Griffin, Robert J; Dings, Ruud P M

    2017-12-09

    Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO₂) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.

  6. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents.

    OpenAIRE

    Hurley, P M

    1998-01-01

    Of 240 pesticides screened for carcinogenicity by the U.S. Environmental Protection Agency Office of Pesticide Programs, at least 24 (10%) produce thyroid follicular cell tumors in rodents. Thirteen of the thyroid carcinogens also induce liver tumors, mainly in mice, and 9 chemicals produce tumors at other sites. Some mutagenic data are available on all 24 pesticides producing thyroid tumors. Mutagenicity does not seem to be a major determinant in thyroid carcinogenicity, except for possibly ...

  7. Radiation-induced irreparable heritable changes in cells promoting their tumoral transformation

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vagabova, M.Eh.; Yurov, S.S.

    1988-01-01

    In experiments with model plant tumors (Kalanchoe-ti plasmid Agrobat. tumefaciens C-58D) it was shown that exposure of the recepient plant to low-level γ-radiation of Gy induced changes in cells that were not repaired over two months promoting tumoral transformations in them. Those changes were shown to persist in the offspring of the exposed somatic cells

  8. Influence of the Human Skin Tumor Type in Photodynamic Therapy Analysed by a Predictive Model

    Directory of Open Access Journals (Sweden)

    I. Salas-García

    2012-01-01

    Full Text Available Photodynamic Therapy (PDT modeling allows the prediction of the treatment results depending on the lesion properties, the photosensitizer distribution, or the optical source characteristics. We employ a predictive PDT model and apply it to different skin tumors. It takes into account optical radiation distribution, a nonhomogeneous topical photosensitizer spatial temporal distribution, and the time-dependent photochemical interaction. The predicted singlet oxygen molecular concentrations with varying optical irradiance are compared and could be directly related with the necrosis area. The results show a strong dependence on the particular lesion. This suggests the need to design optimal PDT treatment protocols adapted to the specific patient and lesion.

  9. Regulation of p53, nuclear factor κB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    International Nuclear Information System (INIS)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-κB), we also investigated the effect of bromelain on Cox-2 and NF-κB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-κB by blocking phosphorylation and subsequent degradation of IκBα. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-κB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects

  10. Cell-mediated immune response to syngeneic uv induced tumors. I. The presence of tumor associated macrophages and their possible role in the in vitro generation of cytotoxic lymphocytes

    International Nuclear Information System (INIS)

    Woodward, J.G.; Daynes, R.A.

    1978-01-01

    A primary in vitro sensitization system employing a chromium release assay was utilized to investigate reactivity of murine spleen cells toward syngeneic ultraviolet (uv) light induced fibrosarcomas. These tumors are immunologically rejected in vivo when implanted into normal syngeneic mice but grow progressively when implanted into syngeneic mice that had previously been irradiated with subcarcinogenic levels of uv light. Following appropriate sensitization, spleen cells from both normal and uv irradiated mice are capable of developing cytotoxic lymphocytes in vitro against the uv induced tumors. It was subsequently discovered that in situ uv induced tumors all contained macrophages of host origin that became demonstrable only after enzymatic dissociation of the tumor tissue. These macrophages were immunologically active in vitro as their presence in the stimulator cell population was necessary to achieve an optimum anti-tumor cytotoxic response following in vitro sensitization. Anti-tumor reactivity generated by mixing spleen cells and tumor cells in the absence of tumor derived macrophages could be greatly enhanced by the addition of normal syngeneic peritoneal macrophages. When in vitro anti-tumor reactivity of spleen cells from normal and uv treated mice was compared under these conditions we again found no significant difference in the magnitude of the responses. In addition, the cytotoxic cells generated in response to uv induced tumors appeared to be highly cross reactive with respect to their killing potential

  11. A case report of phosphaturic mesenchymal tumor-induced osteomalacia.

    Science.gov (United States)

    Wu, Weiqian; Wang, Chongyang; Ruan, Jianwei; Chen, Feng; Li, Ningjun; Chen, Fanghu

    2017-12-01

    Tumor-induced osteomalacia (TIO) is a rare and often misdiagnosed syndrome. Surgical resection is currently the first line treatment for TIO. Here we report the case of a 49-year-old woman presented with intermittent pain in the right chest and bilateral hip that had persisted for over two years. She was diagnosed of TIO caused by a phosphaturic mesenchymal tumor based on the following examinations. Laboratory tests revealed high serum alkaline phosphatase, high urinary phosphorus, hypophosphatemia and normal serum calcium levels. 18-FDG PET/CT indicated a systemic multi-site symmetrical pseudo fracture and a tumor in the 7th right rib. Curettage of the tumor was performed, and pathological analysis also confirmed our diagnoses as a phosphaturic mesenchymal tumor. At seven months post-surgery, the symptoms were relieved, proximal muscle strength was improved and serum levels of phosphorus and alkaline phosphatase normalized. The bilateral femoral neck and bilateral pubic bone fractures were blurred in the pelvic plain X-ray, suggesting that the fracture was healing. This case report strengthened the importance of recognition of this rare disease to avoid delay of diagnosis and surgical removal of the causative tumor is recommended. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  12. Improvement effect of gamma-irradiated complex leaf extract of date plum, persimmon and mulberry on UVB-induced skin damage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Cho, Byoung Ok; Che, Denis Nchang; Shin, Jae Young; Fang, Chong Zhou; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of)

    2016-11-15

    This study was conducted to evaluate the improvement effect of gamma-irradiated complex leaf extract of Date Plum, Persimmon and Mulberry (γ-DPME) on UVB induced skin damage. The samples were gamma irradiated at doses of 10 kGy. γ-DPME treatment tended to decrease UVB-induced immune cell infiltration and erthyderma index than the groups treated with non-gamma-irradiated DPME (n-DPME) and L-ascobic acid (AA). In addition, γ-DPME treatment significantly decreased skin thickness, melanin index and mast cell infiltration in UVB-irradiated skin. Moreover, γ-DPME treatment significantly decreased the compound 48/80-induced scratching behavior and immune cell infiltration than n-DPME group. These results show that gamma irradiation can be used to increase the physiological activities of DPME.

  13. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression.

    Science.gov (United States)

    1996-10-01

    AD GRANT NUMBER DAMDI7-94-J-4041 TITLE: Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression PRINCIPAL...October 1996 Annual (1 Sep 95 - 31 Aug 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cloning and Characterizing Genes Involved in Monoterpene Induced... Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method

  14. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  15. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  16. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  17. Genome-wide transcriptional profiling of skin and dorsal root ganglia after ultraviolet-B-induced inflammation.

    Directory of Open Access Journals (Sweden)

    John M Dawes

    Full Text Available Ultraviolet-B (UVB-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24, chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5, the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022. In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain.

  18. Nanodiamonds protect skin from ultraviolet B-induced damage in mice.

    Science.gov (United States)

    Wu, Meng-Si; Sun, Der-Shan; Lin, Yu-Chung; Cheng, Chia-Liang; Hung, Shih-Che; Chen, Po-Kong; Yang, Jen-Hung; Chang, Hsin-Hou

    2015-05-07

    Solar ultraviolet (UV) radiation causes various deleterious effects, and UV blockage is recommended for avoiding sunburn. Nanosized titanium dioxide and zinc oxide offer effective protection and enhance cosmetic appearance but entail health concerns regarding their photocatalytic activity, which generates reactive oxygen species. These concerns are absent in nanodiamonds (NDs). Among the UV wavelengths in sunlight, UVB irradiation primarily threatens human health. The efficacy and safety of NDs in UVB protection were evaluated using cell cultures and mouse models. We determined that 2 mg/cm(2) of NDs efficiently reduced over 95% of UVB radiation. Direct UVB exposure caused cell death of cultured keratinocyte, fibroblasts and skin damage in mice. By contrast, ND-shielding significantly protected the aforementioned pathogenic alterations in both cell cultures and mouse models. NDs are feasible and safe materials for preventing UVB-induced skin damage.

  19. Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue

    International Nuclear Information System (INIS)

    Singh, Rupesh; Das, Koushik; Okajima, Junnosuke; Maruyama, Shigenao; Mishra, Subhash C.

    2015-01-01

    This article deals with the spatial and the temporal evolution of tissue temperature during skin surface cooled laser induced hyperthermia. Three different skin surface cooling methodologies viz., optical window contact cooling, cryogenic spray cooling and cryogen cooled optical window contact cooling are considered. Sapphire, yttrium aluminum garnet, lithium tantalate, and magnesium oxide doped lithium niobate are the considered optical windows. The cryogens considered are liquid CO_2 and R1234yf. Heat transfer in the multilayer skin tissue embedded with thermally significant blood vessels pairs is modeled using the Pennes and Weinbaum–Jiji bioheat equations. Weinbaum–Jiji bioheat equation is used for the vascularized tissue. Laser transport in the tissue is modeled using the radiative transfer equation. Axial and radial (skin surface) temperature distributions for different combinations of optical windows and cryogens are analyzed. Liquid CO_2 cooled yttrium aluminum garnet is found to be the best surface cooling mechanism. - Highlights: • Skin surface cooled laser induced hyperthermia is studied. • A multi-layer 2-D cylindrical tissue geometry is considered. • Both Pennes and Weinbaum–Jiji bioheat models are considered. • Laser transport in the tissue is modeled using discrete ordinate method. • Results for 4 optical windows and 2 cryogens for skin cooling are presented.

  20. Antioxidant and Anti-Inflammatory Effects of Shungite against Ultraviolet B Irradiation-Induced Skin Damage in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Ma. Easter Joy Sajo

    2017-01-01

    Full Text Available As fullerene-based compound applications have been rapidly increasing in the health industry, the need of biomedical research is urgently in demand. While shungite is regarded as a natural source of fullerene, it remains poorly documented. Here, we explored the in vivo effects of shungite against ultraviolet B- (UVB- induced skin damage by investigating the physiological skin parameters, immune-redox profiling, and oxidative stress molecular signaling. Toward this, mice were UVB-irradiated with 0.75 mW/cm2 for two consecutive days. Consecutively, shungite was topically applied on the dorsal side of the mice for 7 days. First, we found significant improvements in the skin parameters of the shungite-treated groups revealed by the reduction in roughness, pigmentation, and wrinkle measurement. Second, the immunokine profiling in mouse serum and skin lysates showed a reduction in the proinflammatory response in the shungite-treated groups. Accordingly, the redox profile of shungite-treated groups showed counterbalance of ROS/RNS and superoxide levels in serum and skin lysates. Last, we have confirmed the involvement of Nrf2- and MAPK-mediated oxidative stress pathways in the antioxidant mechanism of shungite. Collectively, the results clearly show that shungite has an antioxidant and anti-inflammatory action against UVB-induced skin damage in hairless mice.

  1. Effect of tumor promoters on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunz, B.A.; Hannan, M.A.; Haynes, R.H.

    1980-01-01

    Recently, it has been suggested that mitotic recombination is involved in tumor promotion. On this basis, one might expect tumor promoters to be recombinagenic. D7 is a diploid strain of yeast in which both mutation and mitotic recombination can be measured. We have used this strain to assay the known tumor promoters, iodacetate, anthralin, and 12-0-tetradecanoylphorbol-13-acetate, and the cocarcinogen, catechol, for mutagenicity, recombinagenicity, and the ability to enhance ultraviolet light (UV)-induced genetic events. In the absence of preirradiation with UV, iodoacetate was found to be recombinagenic whereas catechol was mutagenic; however, in both cases, the effects were small. Iodoacetate, anthralin, and catechol potentiated UV-induced mitotic crossing-over, aberrant colony formation, and mutation, while catechol also increased UV-induced gene conversion. We were unable to detect any mutagenic or recombinagenic effect of 12-0-tetradecanoyl-phorbol-13-acetate in either whole cells or spheroplasts. Our results do not indicate any consistent correlation between tumor-promoting activity and the ability of an agent to induce mitotic recombination in yeast. However, the ability to potentiate UV-induced mutation and mitotic recombination may reflect the cocarcinogenic activity of certain promoters

  2. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Acute skin reactions observed in fractionated proton irradiation

    International Nuclear Information System (INIS)

    Arimoto, Takuro; Maruhashi, Noboru; Takada, Yoshihisa; Hayakawa, Yoshinori; Inada, Tetsuo; Kitagawa, Toshio

    1989-01-01

    Between May 1985 and July 1987, 49 skin reactions of 43 patients treated by proton irradiation were observed at the Particle Radiation Medical Science Center (PARMS), the University of Tsukuba. Taking the peak skin score as an endpoint, the radiobiological effects [relative biological effectiveness (RBE) and time-dose relationship] of the proton beam in multi-fractionated treatments were estimated. Factors influencing the skin dose, such as the prescribed tumor dose, tumor site, and number of applied fields, were also analyzed. The following conclusions regarding acute skin reactions to the clinical use of proton irradiation were obtained: 1) the physical skin-sparing effect of proton irradiation in single-field irradiation, especially in superficial regions, is not large compared with that of high-energy photon irradiation; 2) multidirectional proton irradiation significantly reduced the skin dose and severity of acute reasons; 3) the radiobiological effects of the proton beam, RBE and the time factor, estimated in human skin in multi-fractional treatment were slightly smaller than those of X-rays, i.e., 0.92 and -0.25±0.09, respectively. (author)

  4. Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System

    Directory of Open Access Journals (Sweden)

    Maya Ben Yehuda Greenwald

    2017-01-01

    Full Text Available Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf2 pathway and induce phase II cytoprotective enzymes. Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases.

  5. Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System

    Science.gov (United States)

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben Sasson, Shmuel; Bitton, Ronit; Bianco-Peled, Havazelet

    2017-01-01

    Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf2 pathway and induce phase II cytoprotective enzymes). Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases. PMID:28757910

  6. Intervention of radiation‐induced skin fibrosis by RNA interference

    DEFF Research Database (Denmark)

    Nawroth, Isabel

    ‐α (TNFα) production by macrophages might promote RIF. RNA interference (RNAi) is an evolutionary conserved gene‐silencing mechanism capable of degrading mRNA containing a homologous sequence to an exogenously introduced double stranded small interfering RNA (siRNA). These siRNAs can induce RNAi...... and inhibit the expression of target proteins. Therefore, siRNAs are considered as promising therapeutics for treatment of various diseases including genetic and viral diseases, and cancer. In this study, the therapeutic potential of RNA interference was investigated as an intervention strategy for radiation......‐induced skin fibrosis. Chitosan‐based nanoparticles (or polyplexes) formed by self‐assembly with siRNA were applied to overcome extracellular and intracellular barriers and deliver siRNA site‐specific. In this work we show that intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα...

  7. Chronic UVA (365-nm) irradiation induced scratching in hairless mice: dose-time dependency and the effect of ketanserin

    International Nuclear Information System (INIS)

    Laat, J.M.T. de; Groenendijk, M.; Vloten, W.A. van; Gruijl, F.R. de; Seite, S.

    1997-01-01

    In a study on the dose-response relationship for longwave UVA (UVA1; 340-400 nm) carcinogenesis in hairless mice scratch marks appeared after months of daily exposure as an unwanted side effect. Tumor induction in the highest of the 4 tested dose groups (receiving a daily dose of 430 kJ/m 2 of 365-nm radiation) could not be determined because extensive scarification occurred prior to the development of any tumors. The induction of scratch marks could be scored and quantified in all 4 dose groups tested. The UVA1 dose-dependencies for the induction of tumors and scratch marks were compared. We found that the induction of scratch marks depended mainly on the cumulative UVA1 exposure, whereas tumor induction showed a lesser dose-dependency. An attempt was made to prevent the apparent pruritogenic effect of UVA1 irradiation and to understand its mechanism. The influence of ketanserin, a serotonin/histamine antagonist, on the UVA1 induction of scratch marks was tested in groups of 8 mice daily irradiated with 430 kJ/m 2 . No difference was found between treated and untreated animals. Histological examination of skin biopsies from irradiated mice from the 430-kJ/m 2 dose group from the UVA1 carcinogenic experiment, showed no changes in numbers of mast cells or other inflammatory features when compared to skin biopsies from unirradiated control mice. This indicated that UVA1-induced scratching is not mediated through mast cell release of serotonin and/or histamine. An adequate therapeutic treatment which can prevent UVA1-induced scratching would enable us to test tumor induction with UVA1 over a larger dose range, and may provide additional insight in how this radiation damages the skin. It remains conjectural whether there exists and analogous UVA-induced pruritus in human skin. (au)

  8. Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy.

    Science.gov (United States)

    Zhao, Yang; Zhang, Chenran; Gao, Liquan; Yu, Xinhe; Lai, Jianhao; Lu, Dehua; Bao, Rui; Wang, Yanpu; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2017-11-01

    Increased recruitment of tumor-associated macrophages (TAM) to tumors following chemotherapy promotes tumor resistance and recurrence and correlates with poor prognosis. TAM depletion suppresses tumor growth, but is not highly effective due to the effects of tumorigenic mediators from other stromal sources. Here, we report that adoptive macrophage transfer led to a dramatically enhanced photodynamic therapy (PDT) effect of 2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-alpha (HPPH)-coated polyethylene glycosylated nanographene oxide [GO(HPPH)-PEG] by increasing its tumor accumulation. Moreover, tumor treatment with commonly used chemotherapeutic drugs induced an increase in macrophage infiltration into tumors, which also enhanced tumor uptake and the PDT effects of GO(HPPH)-PEG, resulting in tumor eradication. Macrophage recruitment to tumors after chemotherapy was visualized noninvasively by near-infrared fluorescence and single-photon emission CT imaging using F4/80-specific imaging probes. Our results demonstrate that chemotherapy combined with GO(HPPH)-PEG PDT is a promising strategy for the treatment of tumors, especially those resistant to chemotherapy. Furthermore, TAM-targeted molecular imaging could potentially be used to predict the efficacy of combination therapy and select patients who would most benefit from this treatment approach. Cancer Res; 77(21); 6021-32. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Pinkney, Alfred E., E-mail: Fred_Pinkney@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Harshbarger, John C., E-mail: jcharshbarger@verizon.net [Department of Pathology, George Washington University Medical Center, 2300 I Street, NW, Washington, DC 20037 (United States); Karouna-Renier, Natalie K., E-mail: nkarouna@usgs.gov [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Jenko, Kathryn [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Balk, Lennart, E-mail: lennart.balk@itm.su.se [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Skarphe Latin-Small-Letter-Eth insdottir, Halldora; Liewenborg, Birgitta [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Rutter, Michael A., E-mail: mar36@psu.edu [Department of Mathematics, Penn State Erie, The Behrend College, 5091 Station Road, Erie, PA 16563 (United States)

    2011-12-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and {sup 32}P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2 Prime -deoxyguanosine (O6Me-dG) and O6-ethyl-2 Prime -deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. {sup 32}P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors

  10. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    International Nuclear Information System (INIS)

    Pinkney, Alfred E.; Harshbarger, John C.; Karouna-Renier, Natalie K.; Jenko, Kathryn; Balk, Lennart; Skarphéðinsdóttir, Halldóra; Liewenborg, Birgitta; Rutter, Michael A.

    2011-01-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and 32 P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2′-deoxyguanosine (O6Me-dG) and O6-ethyl-2′-deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. 32 P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors. - Highlights: ► We

  11. Inhibitory effect of cucurbitacin B on imiquimod-induced skin inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng Jun; Shin, Jung-Min; Choi, Dae-Kyoung; Lim, Seul Ki [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Yoon, Tae-Jin [Department of Dermatology, School of Medicine, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Young Ho [Department of Anatomy, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Sohn, Kyung-Cheol; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jeung-Hoon, E-mail: jhoon@cnu.ac.kr [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Skin Med Company, Daejeon (Korea, Republic of)

    2015-04-17

    Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin B resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis. - Highlights: • Cucurbitacin B has a potential for inhibiting the growth of keratinocytes. • Cucurbitacin B inhibits imiquimod-induced inflammatory reaction in keratinocytes. • Cucurbitacin B inhibits imiquimod-induced psoriasiform dermatitis in experimental animal.

  12. Inhibitory effect of cucurbitacin B on imiquimod-induced skin inflammation

    International Nuclear Information System (INIS)

    Li, Zheng Jun; Shin, Jung-Min; Choi, Dae-Kyoung; Lim, Seul Ki; Yoon, Tae-Jin; Lee, Young Ho; Sohn, Kyung-Cheol; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok; Lee, Jeung-Hoon

    2015-01-01

    Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin B resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis. - Highlights: • Cucurbitacin B has a potential for inhibiting the growth of keratinocytes. • Cucurbitacin B inhibits imiquimod-induced inflammatory reaction in keratinocytes. • Cucurbitacin B inhibits imiquimod-induced psoriasiform dermatitis in experimental animal

  13. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging I: Reduced Skin Elasticity, Highly Associated with Enhanced Dermal Elastase Activity, Triggers Wrinkling and Sagging

    Science.gov (United States)

    Imokawa, Genji; Ishida, Koichi

    2015-01-01

    The repetitive exposure of skin to ultraviolet B (UVB) preferentially elicits wrinkling while ultraviolet A (UVA) predominantly elicits sagging. In chronically UVB or UVA-exposed rat skin there is a similar tortuous deformation of elastic fibers together with decreased skin elasticity, whose magnitudes are greater in UVB-exposed skin than in UVA-exposed skin. Comparison of skin elasticity with the activity of matrix metalloproteinases (MMPs) in the dermis of ovariectomized rats after UVB or UVA irradiation demonstrates that skin elasticity is more significantly decreased in ovariectomized rats than in sham-operated rats, which is accompanied by a reciprocal increase in elastase activity but not in the activities of collagenases I or IV. Clinical studies using animal skin and human facial skin demonstrated that topical treatment with a specific inhibitor or an inhibitory extract of skin fibroblast-derived elastase distinctly attenuates UVB and sunlight-induced formation of wrinkling. Our results strongly indicated that the upregulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. PMID:25856675

  14. SU-F-T-189: Dosimetric Comparison of Spot-Scanning Proton Therapy Techniques for Liver Tumors Close to the Skin Surface

    International Nuclear Information System (INIS)

    Takao, S; Matsuzaki, Y; Matsuura, T; Umegaki, K; Fujii, Y; Fujii, T; Katoh, N; Shimizu, S; Shirato, H

    2016-01-01

    Purpose: Spot-scanning technique has been utilized to achieve conformal dose distribution to large and complicated tumors. This technique generally does not require patient-specific devices such as aperture and compensator. The commercially available spot-scanning proton therapy (SSPT) systems, however, cannot deliver proton beams to the region shallower than 4 g/cm2. Therefore some range compensation device is required to treat superficial tumors with SSPT. This study shows dosimetric comparison of the following treatment techniques: (i) with a tabletop bolus, (ii) with a nozzle-mounted applicator, and (iii) without any devices and using intensity-modulated proton therapy (IMPT) technique. Methods: The applicator composed of a combination of a mini-ridge filter and a range shifter has been manufactured by Hitachi, Ltd., and the tabletop bolus was made by .decimal, Inc. Both devices have been clinically implemented in our facility. Three patients with liver tumors close to the skin surface were examined in this study. Each treatment plan was optimized so that the prescription dose of 76 Gy(RBE) or 66 Gy(RBE) would be delivered to 99% of the clinical target volume in 20 fractions. Three beams were used for tabletop bolus plan and IMPT plan, whereas two beams were used in the applicator plan because the gantry angle available was limited due to potential collision to patient and couch. The normal liver, colon, and skin were considered as organs at risk (OARs). Results: The target heterogeneity index (HI = D_5/D_9_5) was 1.03 on average in each planning technique. The mean dose to the normal liver was considerably less than 20 Gy(RBE) in all cases. The dose to the skin could be reduced by 20 Gy(RBE) on average in the IMPT plan compared to the applicator plan. Conclusion: It has been confirmed that all treatment techniques met the dosimetric criteria for the OARs and could be implemented clinically.

  15. SU-F-T-189: Dosimetric Comparison of Spot-Scanning Proton Therapy Techniques for Liver Tumors Close to the Skin Surface

    Energy Technology Data Exchange (ETDEWEB)

    Takao, S; Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Fujii, Y; Fujii, T [Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Katoh, N [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Shimizu, S; Shirato, H [Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: Spot-scanning technique has been utilized to achieve conformal dose distribution to large and complicated tumors. This technique generally does not require patient-specific devices such as aperture and compensator. The commercially available spot-scanning proton therapy (SSPT) systems, however, cannot deliver proton beams to the region shallower than 4 g/cm2. Therefore some range compensation device is required to treat superficial tumors with SSPT. This study shows dosimetric comparison of the following treatment techniques: (i) with a tabletop bolus, (ii) with a nozzle-mounted applicator, and (iii) without any devices and using intensity-modulated proton therapy (IMPT) technique. Methods: The applicator composed of a combination of a mini-ridge filter and a range shifter has been manufactured by Hitachi, Ltd., and the tabletop bolus was made by .decimal, Inc. Both devices have been clinically implemented in our facility. Three patients with liver tumors close to the skin surface were examined in this study. Each treatment plan was optimized so that the prescription dose of 76 Gy(RBE) or 66 Gy(RBE) would be delivered to 99% of the clinical target volume in 20 fractions. Three beams were used for tabletop bolus plan and IMPT plan, whereas two beams were used in the applicator plan because the gantry angle available was limited due to potential collision to patient and couch. The normal liver, colon, and skin were considered as organs at risk (OARs). Results: The target heterogeneity index (HI = D{sub 5}/D{sub 95}) was 1.03 on average in each planning technique. The mean dose to the normal liver was considerably less than 20 Gy(RBE) in all cases. The dose to the skin could be reduced by 20 Gy(RBE) on average in the IMPT plan compared to the applicator plan. Conclusion: It has been confirmed that all treatment techniques met the dosimetric criteria for the OARs and could be implemented clinically.

  16. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  17. THE STUDY OF MECHANISMS OF PHOTOINDUCED APOPTOSIS IN THE SKIN MALIGNANT MELANOMA CELL MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Gelfond

    2016-01-01

    Full Text Available The results of the experimental study of immune response of human skin malignant melanoma cells Mel 226 on photodynamic exposure are represented in the article. Photoinduced apoptosis of skin malignant melanoma was studied in vitro. The study showed that irradiation with the agent fotoditazin at dose of 0.5–2.5 µg/ml (6 and 10 min exposure 30 min before irradiation; irradiation parameters: wavelength of 662 nm, total light dose from 40 to 60 J/cm2 induced early apoptosis. The increase of the time of laser irradiation significantly accelerates the conversion of photosensitized tumor cells from early to late apoptosis.

  18. Histological case-control study of peeling-induced skin changes by different peeling agents in surgically subcutaneous undermined skin flaps in facelift patients.

    Science.gov (United States)

    Gonser, P; Kaestner, S; Jaminet, P; Kaye, K

    2017-11-01

    A histological evaluation of peeling-induced skin changes in subcutaneous undermined preauricular facial skin flaps of nine patients was performed. There were three treatment groups: Trichloroacetic acid (TCA) 25%, TCA 40% and phenol/croton oil; one group served as control. Two independent evaluators determined the epidermal and dermal thickness and the depth of necrosis (micrometre). The percentual tissue damage due to the peeling was calculated, and a one-sample t-test for statistical significance was performed. On the basis of the histomorphological changes, peeling depth was classified as superficial, superficial-partial, deep-partial and full thickness chemical burn. The histological results revealed a progression of wound depth for different peeling agents without full thickness necrosis. TCA peels of up to 40% can be safely applied on subcutaneous undermined facial skin flaps without impairing the vascular patency, producing a predictable chemical burn, whereas deep peels such as phenol/croton oil peels should not be applied on subcutaneous undermined skin so as to not produce skin slough or necrosis by impairing vascular patency. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Analysis of a Mouse Skin Model of Tuberous Sclerosis Complex.

    Directory of Open Access Journals (Sweden)

    Yanan Guo

    Full Text Available Tuberous Sclerosis Complex (TSC is an autosomal dominant tumor suppressor gene syndrome in which patients develop several types of tumors, including facial angiofibroma, subungual fibroma, Shagreen patch, angiomyolipomas, and lymphangioleiomyomatosis. It is due to inactivating mutations in TSC1 or TSC2. We sought to generate a mouse model of one or more of these tumor types by targeting deletion of the Tsc1 gene to fibroblasts using the Fsp-Cre allele. Mutant, Tsc1ccFsp-Cre+ mice survived a median of nearly a year, and developed tumors in multiple sites but did not develop angiomyolipoma or lymphangioleiomyomatosis. They did develop a prominent skin phenotype with marked thickening of the dermis with accumulation of mast cells, that was minimally responsive to systemic rapamycin therapy, and was quite different from the pathology seen in human TSC skin lesions. Recombination and loss of Tsc1 was demonstrated in skin fibroblasts in vivo and in cultured skin fibroblasts. Loss of Tsc1 in fibroblasts in mice does not lead to a model of angiomyolipoma or lymphangioleiomyomatosis.

  20. The Human Papillomavirus Type 16 E6 Gene Alone Is Sufficient To Induce Carcinomas in Transgenic Animals

    Science.gov (United States)

    Song, Shiyu; Pitot, Henry C.; Lambert, Paul F.

    1999-01-01

    High-risk human papillomaviruses (HPVs) are the causative agents of certain human cancers. HPV type 16 (HPV16) is the papillomavirus most frequently associated with cervical cancer in women. The E6 and E7 genes of HPV are expressed in cells derived from these cancers and can transform cells in tissue culture. Animal experiments have demonstrated that E6 and E7 together cause tumors. We showed previously that E6 and E7 together or E7 alone could induce skin tumors in mice when these genes were expressed in the basal epithelia of the skin. In this study, we investigated the role that the E6 gene plays in carcinogenesis. We generated K14E6 transgenic mice, in which the HPV16 E6 gene was directed in its expression by the human keratin 14 promoter (hK14) to the basal layer of the epidermis. We found that E6 induced cellular hyperproliferation and epidermal hyperplasia and caused skin tumors in adult mice. Interestingly, the tumors derived from E6 were mostly malignant, as opposed to the tumors from E7 mice, which were mostly benign. This result leads us to hypothesize that E6 may contribute differently than E7 to HPV-associated carcinogenesis; whereas E7 primarily contributes to the early stages of carcinogenesis that lead to the formation of benign tumors, E6 primarily contributes to the late stages of carcinogenesis that lead to malignancy. PMID:10364340