WorldWideScience

Sample records for skin electroporation effects

  1. Delineating the cell death mechanisms associated with skin electroporation.

    Science.gov (United States)

    Schultheis, Katherine; Smith, Trevor R F; Kiosses, William B; Kraynyak, Kimberly A; Wong, Amelia; Oh, Janet; Broderick, Kate Elizabeth

    2018-06-28

    The immune responses elicited following delivery of DNA vaccines to the skin has previously been shown to be significantly enhanced by the addition of electroporation (EP) to the treatment protocol. Principally, EP increases the transfection of pDNA into the resident skin cells. In addition to increasing the levels of in vivo transfection, the physical insult induced by EP is associated with activation of innate pathways which are believed to mediate an adjuvant effect, further enhancing DNA vaccine responses. Here, we have investigated the possible mechanisms associated with this adjuvant effect, primarily focusing on the cell death pathways associated with the skin EP procedure independent of pDNA delivery. Using the minimally invasive CELLECTRA®-3P intradermal electroporation device that penetrates the epidermal and dermal layers of the skin, we have investigated apoptotic and necrotic cell death in relation to the vicinity of the electrode needles and electric field generated. Employing the well-established TUNEL assay, we detected apoptosis beginning as early as one hour after EP and peaking at the 4 hour time point. The majority of the apoptotic events were detected in the epidermal region directly adjacent to the electrode needle. Using a novel propidium iodide in vivo necrotic cell death assay, we detected necrotic events concentrated in the epidermal region adjacent to the electrode. Furthermore, we detected up-regulation of calreticulin expression on skin cells after EP, thus labeling these cells for uptake by dendritic cells and macrophages. These results allow us to delineate the cell death mechanisms occurring in the skin following intradermal EP independently of pDNA delivery. We believe these events contribute to the adjuvant effect observed following electroporation at the skin treatment site.

  2. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation.

    Science.gov (United States)

    Dermol-Cerne, Janja; Miklavcic, Damijan

    2018-02-01

    Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.

  3. Efficacy of In Vivo Electroporation-Mediated IL-10 Gene Delivery on Survival of Skin Flaps.

    Science.gov (United States)

    Seyed Jafari, S Morteza; Shafighi, Maziar; Beltraminelli, Helmut; Weber, Benedikt; Schmid, Ralph A; Geiser, Thomas; Gazdhar, Amiq; Hunger, Robert E

    2018-04-01

    Despite advances in understanding the underlying mechanisms of flap necrosis and improvement in surgical techniques, skin flap necrosis after reconstructive surgery remains a crucial issue. We investigated the efficacy of electroporation-mediated IL-10 gene transfer to random skin flap with an aim to accelerate wound healing and improve skin flap survival. Nine male Wistar rats (300-330 g) were divided in two groups (a) control group (n = 5), only surgery no gene transfer, and (b) experimental group, received electroporation-mediated IL-10 gene transfer 24 h before the surgery as prophylaxis (n = 4). Random skin flap (McFarlane) was performed in both groups. Planimetry, Laser Doppler imaging, and immunohistochemistry were used to evaluate the effect of IL-10 gene transfer between study groups at day 7. Electroporation-mediated IL-10 gene transfer decreased percentage of flap necrosis (p value = 0.0159) and increased cutaneous perfusion compared to the control group (p value = 0.0159). In addition, Spearman's rank correlation showed a significant negative correlation between percentage of flap necrosis and Laser Index (p value = 0.0083, r -0.83, respectively). Furthermore, significantly higher mean CD31 + vessel density was detected in the experimental group compared to the control group (p value = 0.0159). Additionally, semi-quantitative image analysis showed lower inflammatory cell count in experimental group compared to control group (p value = 0.0317). In vivo electroporation-mediated IL-10 gene transfer reduced necrosis, enhanced survival and vascularity in the ischemic skin flap.

  4. A review of electroporation-based antitumor skin therapies and investigation of betulinic acid-loaded ointment.

    Science.gov (United States)

    Bakonyi, Monika; Berko, Szilvia; Eros, Gabor; Varju, Gabor; Dehelean, Cristina; Szucs, Maria Budai; Csanyi, Erzsebet

    2017-11-13

    Electrochemotherapy is a novel treatment for cutaneous and subcutaneous tumors utilizing the combination of electroporation and chemotherapeutic agents. Since tumors have an increasing incidence nowadays as a result of environmental and genetic factors, electrochemotherapy could be a promising treatment for cancer patients. The aim of this article is to summarize the novel knowledge about the use of electroporation for antitumor treatments and to present a new application of electrochemotherapy with a well-known plant derived antitumor drug betulinic acid. For the review we have searched the databases of scientific and medical research to collect the available publications about the use of electrochemotherapy in the treatment of various types of cancer. By the utilization of the available knowledge, we investigated the effect of electroporation on the penetration of a topically applied betulinic acid formulation into the skin by ex vivo Raman spectroscopy on hairless mouse skin Results: Raman measurements have demonstrated that the penetration depth of betulinic acid can be remarkably ameliorated by the use of electroporation, so this protocol can be a possibility for the treatment of deeper localized cancer nodules. Furthermore, it proved the influence of various treatment times, since they caused different spatial distributions of the drug in the skin. The review demonstrates that electrochemotherapy is a promising tool to treat different kinds of tumors with high efficiency and with only a few moderate adverse effects. Moreover, it presents a non-invasive method to enhance the penetration of antitumor agents, which can offer novel prospects for antitumor therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.

    Science.gov (United States)

    Gupta, Rakesh; Rai, Beena

    2018-04-30

    Skin electroporation has been used significantly to increase the drug permeation. However, molecular mechanism, which resulted in enhancement of flux through skin, is still not known. In this study, extensive atomistic molecular dynamics simulation of skin lipids (made up of ceramide (CER), cholesterol (CHOL) and free fatty acid (FFA)) have been performed at various external electric field. We show for the first time the pore formation in the skin lipid bilayer during the electroporation. We show the effect of applied external electrical field on the pore formation dynamics in lipid bilayer of different size and composition. The pore formation and resealing kinetics were different and was found to be highly dependent on the composition of skin lipid bilayer. The pore formation time decreased with increase in the bilayer size. The pore sustaining electric field was found to be in the range of 0.20-0.25 V/nm for equimolar CER, CHOL and FFA lipid bilayer. The skin lipid bilayer (1:1:1), sealed itself within 20 ns after the removal of external electric field. We also present the molecular mechanism of enhancement of drug permeation in the presence of external field as compared to the passive diffusion. The molecular level understanding obtained here could help in optimizing/designing the electroporation experiments for effective drug delivery. For a given skin composition and size of drug molecule, the combination of pore formation time and pore growth model can be used to know aproiri the desired electric field and time for application of electric field.

  6. Perspectives on Transdermal Electroporation

    Science.gov (United States)

    Ita, Kevin

    2016-01-01

    Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191

  7. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    Science.gov (United States)

    Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang

    2017-01-01

    Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109

  8. Electroporation-based DNA delivery technology

    DEFF Research Database (Denmark)

    Gothelf, A; Gehl, Julie

    2014-01-01

    DNA delivery to for example skin and muscle can easily be performed with electroporation. The method is efficient, feasible, and inexpensive and the future possibilities are numerous. Here we present our protocol for gene transfection to mouse skin using naked plasmid DNA and electric pulses....

  9. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration.

    Science.gov (United States)

    Berkó, Szilvia; Szűcs, Kálmán F; Balázs, Boglárka; Csányi, Erzsébet; Varju, Gábor; Sztojkov-Ivanov, Anita; Budai-Szűcs, Mária; Bóta, Judit; Gáspár, Róbert

    2016-01-01

    Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Both intravenously and EP-administered neostigmine (0.2-66.7 μg/kg) increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 μg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice.

  10. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  11. Use of electroporation and reverse iontophoresis for extraction of transdermal multibiomarkers

    Directory of Open Access Journals (Sweden)

    Ching CTS

    2012-02-01

    Full Text Available Congo Tak-Shing Ching1,2, Lin-Shien Fu3-5, Tai-Ping Sun1, Tzu-Hsiang Hsu1, Kang-Ming Chang21Department of Electrical Engineering, National Chi Nan University, Puli, Nantou County, 2Department of Photonics and Communication Engineering, Asia University, Wufeng, Taichung, 3Department of Pediatrics, National Yang Ming University, Taipei, 4Institute of Technology, National Chi Nan University, Puli, 5Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, TaiwanBackground: Monitoring of biomarkers, like urea, prostate-specific antigen (PSA, and osteopontin, is very important because they are related to kidney disease, prostate cancer, and ovarian cancer, respectively. It is well known that reverse iontophoresis can enhance transdermal extraction of small molecules, and even large molecules if reverse iontophoresis is used together with electroporation. Electroporation is the use of a high-voltage electrical pulse to create nanochannels within the stratum corneum, temporarily and reversibly. Reverse iontophoresis is the use of a small current to facilitate both charged and uncharged molecule transportation across the skin. The objectives of this in vitro study were to determine whether PSA and osteopontin are extractable transdermally and noninvasively and whether urea, PSA, and osteopontin can be extracted simultaneously by electroporation and reverse iontophoresis.Methods: All in vitro experiments were conducted using a diffusion cell assembled with the stratum corneum of porcine skin. Three different symmetrical biphasic direct currents (SBdc, five various electroporations, and a combination of the two techniques were applied to the diffusion cell via Ag/AgCl electrodes. The three different SBdc had the same current density of 0.3 mA/cm2, but different phase durations of 0 (ie, no current, control group, 30, and 180 seconds. The five different electroporations had the same pulse width of 1 msec and number of pulses per second

  12. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration

    Directory of Open Access Journals (Sweden)

    Berkó S

    2016-05-01

    Full Text Available Szilvia Berkó,1,* Kálmán F Szűcs,2,* Boglárka Balázs,1,3 Erzsébet Csányi,1 Gábor Varju,4 Anita Sztojkov-Ivanov,2 Mária Budai-Szűcs,1 Judit Bóta,2 Róbert Gáspár2 1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 2Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 3Gedeon Richter Plc., Budapest, 4Dr Derm Clinic of Anti-Aging Dermatology, Aesthetic Laser and Plastic Surgery, Budapest, Hungary *These authors contributed equally to this work Purpose: Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. Methods: The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Results: Both intravenously and EP-administered neostigmine (0.2–66.7 µg/kg increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 µg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. Conclusion: The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice. Keywords: transdermal

  13. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Chambers David

    2011-04-01

    Full Text Available Abstract Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current and less than 0.5% (current + DNA, respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.

  14. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2012-01-01

    in vivo. Calcium electroporation elicited dramatic antitumor responses in which 89% of treated tumors were eliminated. Histologic analyses indicated complete tumor necrosis. Mechanistically, calcium electroporation caused acute ATP depletion likely due to a combination of increased cellular use of ATP......, decreased production of ATP due to effects on the mitochondria, as well as loss of ATP through the permeabilized cell membrane. Taken together, our findings offer a preclinical proof of concept for the use of electroporation to load cancer cells with calcium as an efficient anticancer treatment...

  15. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  16. Detecting electroporation by assessing the time constants in the exponential response of human skin to voltage controlled impulse electrical stimulation.

    Science.gov (United States)

    Bîrlea, Sinziana I; Corley, Gavin J; Bîrlea, Nicolae M; Breen, Paul P; Quondamatteo, Fabio; OLaighin, Gearóid

    2009-01-01

    We propose a new method for extracting the electrical properties of human skin based on the time constant analysis of its exponential response to impulse stimulation. As a result of this analysis an adjacent finding has arisen. We have found that stratum corneum electroporation can be detected using this analysis method. We have observed that a one time-constant model is appropriate for describing the electrical properties of human skin at low amplitude applied voltages (30V). Higher voltage amplitudes (>30V) have been proven to create pores in the skin's stratum corneum which offer a new, lower resistance, pathway for the passage of current through the skin. Our data shows that when pores are formed in the stratum corneum they can be detected, in-vivo, due to the fact that a second time constant describes current flow through them.

  17. The effects of metallic implants on electroporation therapies: feasibility of irreversible electroporation for brachytherapy salvage.

    Science.gov (United States)

    Neal, Robert E; Smith, Ryan L; Kavnoudias, Helen; Rosenfeldt, Franklin; Ou, Ruchong; Mclean, Catriona A; Davalos, Rafael V; Thomson, Kenneth R

    2013-12-01

    Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.

  18. Use of electroporation to study the cytotoxic effects of fluorodeoxyuridylate in intact cells.

    Science.gov (United States)

    Jastreboff, M M; Sokoloski, J A; Bertino, J R; Narayanan, R

    1987-04-15

    The introduction of 2'-deoxyuridine 5'-monophosphate and its analog, 5-fluoro-2'-deoxyuridine 5'-monophosphate, into intact CCRF-CEM and NIH3T3 cells was achieved by electroporation. Following electroporation, cells were shown to be fully functional as monitored by the incorporation of deoxyuridylate, after conversion to thymidylate, into DNA. Pretreatment of cells with fluorodeoxyuridine completely abolished this effect. In contrast, introduction of the fluoro analog into cells by electroporation markedly inhibited both DNA synthesis and cell growth in a time-dependent manner. Thus, electroporation offers a powerful tool to permeabilize cells to a variety of cellular metabolites and antimetabolites.

  19. Electroporation-induced electrosensitization.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available BACKGROUND: Electroporation is a method of disrupting the integrity of cell membrane by electric pulses (EPs. Electrical modeling is widely employed to explain and study electroporation, but even most advanced models show limited predictive power. No studies have accounted for the biological consequences of electroporation as a factor that alters the cell's susceptibility to forthcoming EPs. METHODOLOGY/PRINCIPAL FINDINGS: We focused first on the role of EP rate for membrane permeabilization and lethal effects in mammalian cells. The rate was varied from 0.001 to 2,000 Hz while keeping other parameters constant (2 to 3,750 pulses of 60-ns to 9-µs duration, 1.8 to 13.3 kV/cm. The efficiency of all EP treatments was minimal at high rates and started to increase gradually when the rate decreased below a certain value. Although this value ranged widely (0.1-500 Hz, it always corresponded to the overall treatment duration near 10 s. We further found that longer exposures were more efficient irrespective of the EP rate, and that splitting a high-rate EP train in two fractions with 1-5 min delay enhanced the effects severalfold. CONCLUSIONS/SIGNIFICANCE: For varied experimental conditions, EPs triggered a delayed and gradual sensitization to EPs. When a portion of a multi-pulse exposure was delivered to already sensitized cells, the overall effect markedly increased. Because of the sensitization, the lethality in EP-treated cells could be increased from 0 to 90% simply by increasing the exposure duration, or the exposure dose could be reduced twofold without reducing the effect. Many applications of electroporation can benefit from accounting for sensitization, by organizing the exposure either to maximize sensitization (e.g., for sterilization or, for other applications, to completely or partially avoid it. In particular, harmful side effects of electroporation-based therapies (electrochemotherapy, gene therapies, tumor ablation include convulsions

  20. Influence of DMPS on the water retention capacity of electroporated stratum corneum: ATR-FTIR study.

    Science.gov (United States)

    Sckolnick, Maria; Hui, Sek-Wen; Sen, Arindam

    2008-02-28

    Anionic lipids like phosphatidylserine are known to significantly enhance electroporation mediated transepidermal transport of polar solutes of molecular weights up to 10kDa. The underlying mechanism of the effect of anionic lipids on transdermal transport is not fully understood. The main barrier to transdermal transport lies within the intercellular lipid matrix (ILM) of the stratum corneum (SC) and our previous studies indicate that dimyristoyl phosphatidylserine (DMPS) can perturb the packing of this lipid matrix. Here we report on our investigation on water retention in the SC following electroporation in the presence and the absence of DMPS. The water content in the outer most layers of the SC of full thickness porcine skin was determined using ATR-FTIR-spectroscopy. The results show that in the presence of DMPS, the SC remains in a state of enhanced hydration for longer periods after electroporation. This increase in water retention in the SC by DMPS is likely to play an important role in trans-epidermal transport, since improved hydration of the skin barrier can be expected to increase the partitioning of polar solutes and possibly the permeability.

  1. The Effects of Irreversible Electroporation on the Achilles Tendon: An Experimental Study in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Yue Song

    Full Text Available To evaluate the potential effects of irreversible electroporation ablation on the Achilles tendon in a rabbit model and to compare the histopathological and biomechanical changes between specimens following electroporation ablation and radiofrequency ablation.A total of 140 six-month-old male New Zealand rabbits were used. The animals were randomly divided into two groups, 70 in the radiofrequency ablation group and 70 in the electroporation group. In situ ablations were applied directly to the Achilles tendons of rabbits using typical electroporation (1800 V/cm, 90 pulses and radiofrequency ablation (power control mode protocols. Histopathological and biomechanical evaluations were performed to examine the effects of electroporation ablation and radiofrequency ablation over time.Both electroporation and radiofrequency ablation produced complete cell ablation in the target region. Thermal damage resulted in tendon rupture 3 days post radiofrequency ablation. In contrast, electroporation-ablated Achilles tendons preserved their biomechanical properties and showed no detectable rupture at this time point. The electroporation-ablated tendons exhibited signs of recovery, including tenoblast regeneration and angiogenesis within 2 weeks, and the restoration of their integral structure was evident within 12 weeks.When applying electroporation to ablate solid tumors, major advantage could be that collateral damage to adjacent tendons or ligaments is minimized due to the unique ability of electroporation ablation to target the cell membrane. This advantage could have a significant impact on the field of tumor ablation near vital tendons or ligaments.

  2. The Effects of Irreversible Electroporation on the Achilles Tendon: An Experimental Study in a Rabbit Model.

    Science.gov (United States)

    Song, Yue; Zheng, Jingjing; Yan, Mingwei; Ding, Weidong; Xu, Kui; Fan, Qingyu; Li, Zhao

    2015-01-01

    To evaluate the potential effects of irreversible electroporation ablation on the Achilles tendon in a rabbit model and to compare the histopathological and biomechanical changes between specimens following electroporation ablation and radiofrequency ablation. A total of 140 six-month-old male New Zealand rabbits were used. The animals were randomly divided into two groups, 70 in the radiofrequency ablation group and 70 in the electroporation group. In situ ablations were applied directly to the Achilles tendons of rabbits using typical electroporation (1800 V/cm, 90 pulses) and radiofrequency ablation (power control mode) protocols. Histopathological and biomechanical evaluations were performed to examine the effects of electroporation ablation and radiofrequency ablation over time. Both electroporation and radiofrequency ablation produced complete cell ablation in the target region. Thermal damage resulted in tendon rupture 3 days post radiofrequency ablation. In contrast, electroporation-ablated Achilles tendons preserved their biomechanical properties and showed no detectable rupture at this time point. The electroporation-ablated tendons exhibited signs of recovery, including tenoblast regeneration and angiogenesis within 2 weeks, and the restoration of their integral structure was evident within 12 weeks. When applying electroporation to ablate solid tumors, major advantage could be that collateral damage to adjacent tendons or ligaments is minimized due to the unique ability of electroporation ablation to target the cell membrane. This advantage could have a significant impact on the field of tumor ablation near vital tendons or ligaments.

  3. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    International Nuclear Information System (INIS)

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Research highlights: → MD simulations show that deformability and thermal motion of membrane affect electroporation. → Stiffer membrane inhibits electroporation and makes water penetrate from both sides. → Higher temperature accelerates electroporation. -- Abstract: Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0 kcal/(mol A 2 ) in the external electric field of 1.4 kcal/(mol A e), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2 kcal/(mol A 2 ) in the position constraints on lipid tails in the external electric field of 2.0 kcal/(mol A e), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease.

  4. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption.

    Science.gov (United States)

    Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Mardor, Yael; Miklavcic, Damijan

    2016-03-01

    Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.

  5. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type.

    Science.gov (United States)

    Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor

    2016-10-01

    Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.

  6. Effect of electroporation on radiosensitization with cisplatin in two cell lines with different chemo- and radiosensitivity

    International Nuclear Information System (INIS)

    Kranjc, S.; Cemazar, M.; Grosel, A.; Pipan, Z.; Sersa, G.

    2003-01-01

    Aim. Radiosensitization with cisplatin can be enhanced by electroporation of cells and tumours. The aim of this study was to extend our previous studies on two carcinoma tumour models with different chemo- and radiosensitivity in order to evaluate whether this treatment is effective also on less chemo- and radiosensitive tumour cells. Materials and methods. This in vitro study was performed on carcinoma SCK and EAT-E cells. The cytotoxicity of three-modality treatment consisting of cisplatin, electroporation and irradiation was determined by the clonogenic assay. Results. The radiosensitizing effect of cisplatin on the two cell lines was greatly enhanced by electroporation. By this combined treatment, less chemo and radiosensitive EAT-E cells were rendered as sensitive as more chemo and radiosensitive SCK cells. Conclusion. The enhancement of cisplatin-induced radiosensitization of cells by electroporation could be beneficially used in the treatment of intrinsically less chemo- and radiosensitive tumours. (author)

  7. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation

    International Nuclear Information System (INIS)

    Zupanic, Anze; Kos, Bor; Miklavcic, Damijan

    2012-01-01

    In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments. (paper)

  8. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle

    Directory of Open Access Journals (Sweden)

    Camilla Brolin

    2015-01-01

    Full Text Available Peptide nucleic acid (PNA is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m. PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA, electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue.

  9. Electroporation in food processing and biorefinery.

    Science.gov (United States)

    Mahnič-Kalamiza, Samo; Vorobiev, Eugène; Miklavčič, Damijan

    2014-12-01

    Electroporation is a method of treatment of plant tissue that due to its nonthermal nature enables preservation of the natural quality, colour and vitamin composition of food products. The range of processes where electroporation was shown to preserve quality, increase extract yield or optimize energy input into the process is overwhelming, though not exhausted; e.g. extraction of valuable compounds and juices, dehydration, cryopreservation, etc. Electroporation is--due to its antimicrobial action--a subject of research as one stage of the pasteurization or sterilization process, as well as a method of plant metabolism stimulation. This paper provides an overview of electroporation as applied to plant materials and electroporation applications in food processing, a quick summary of the basic technical aspects on the topic, and a brief discussion on perspectives for future research and development in the field. The paper is a review in the very broadest sense of the word, written with the purpose of orienting the interested newcomer to the field of electroporation applications in food technology towards the pertinent, highly relevant and more in-depth literature from the respective subdomains of electroporation research.

  10. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry

    DEFF Research Database (Denmark)

    Joergensen, Mette; Agerholm-Larsen, Birgit; Nielsen, Peter E

    2011-01-01

    Electroporation is potentially a very powerful technique for both in vitro cellular and in vivo drug delivery, particularly relating to oligonucleotides and their analogs for genetic therapy. Using a sensitive and quantitative HeLa cell luciferase RNA interference mRNA splice correction assay...... with a functional luciferase readout, we demonstrate that parameters such as peptide nucleic acid (PNA) charge and the method of electroporation have dramatic influence on the efficiency of productive delivery. In a suspended cell electroporation system (cuvettes), a positively charged PNA (+8) was most efficiently...... transferred, whereas charge neutral PNA was more effective in a microtiter plate electrotransfer system for monolayer cells. Surprisingly, a negatively charged (-23) PNA did not show appreciable activity in either system. Findings from the functional assay were corroborated by pulse parameter variations...

  11. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  12. A nonlinear electromechanical coupling model for electropore expansion in cell electroporation

    KAUST Repository

    Deng, Peigang

    2014-10-15

    Under an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane\\'s edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.

  13. A theoretical analysis of the feasibility of a singularity-induced micro-electroporation system.

    Directory of Open Access Journals (Sweden)

    Gregory D Troszak

    Full Text Available Electroporation, the permeabilization of the cell membrane lipid bilayer due to a pulsed electric field, has important implications in the biotechnology, medicine, and food industries. Traditional macro and micro-electroporation devices have facing electrodes, and require significant potential differences to induce electroporation. The goal of this theoretical study is to investigate the feasibility of singularity-induced micro-electroporation; an electroporation configuration aimed at minimizing the potential differences required to induce electroporation by separating adjacent electrodes with a nanometer-scale insulator. In particular, this study aims to understand the effect of (1 insulator thickness and (2 electrode kinetics on electric field distributions in the singularity-induced micro-electroporation configuration. A non-dimensional primary current distribution model of the micro-electroporation channel shows that while increasing insulator thickness results in smaller electric field magnitudes, electroporation can still be performed with insulators thick enough to be made with microfabrication techniques. Furthermore, a secondary current distribution model of the singularity-induced micro-electroporation configuration with inert platinum electrodes and water electrolyte indicates that electrode kinetics do not inhibit charge transfer to the extent that prohibitively large potential differences are required to perform electroporation. These results indicate that singularity-induced micro-electroporation could be used to develop an electroporation system that consumes minimal power, making it suitable for remote applications such as the sterilization of water and other liquids.

  14. CT-guided Irreversible Electroporation in an Acute Porcine Liver Model: Effect of Previous Transarterial Iodized Oil Tissue Marking on Technical Parameters, 3D Computed Tomographic Rendering of the Electroporation Zone, and Histopathology

    International Nuclear Information System (INIS)

    Sommer, C. M.; Fritz, S.; Vollherbst, D.; Zelzer, S.; Wachter, M. F.; Bellemann, N.; Gockner, T.; Mokry, T.; Schmitz, A.; Aulmann, S.; Stampfl, U.; Pereira, P.; Kauczor, H. U.; Werner, J.; Radeleff, B. A.

    2015-01-01

    PurposeTo evaluate the effect of previous transarterial iodized oil tissue marking (ITM) on technical parameters, three-dimensional (3D) computed tomographic (CT) rendering of the electroporation zone, and histopathology after CT-guided irreversible electroporation (IRE) in an acute porcine liver model as a potential strategy to improve IRE performance.MethodsAfter Ethics Committee approval was obtained, in five landrace pigs, two IREs of the right and left liver (RL and LL) were performed under CT guidance with identical electroporation parameters. Before IRE, transarterial marking of the LL was performed with iodized oil. Nonenhanced and contrast-enhanced CT examinations followed. One hour after IRE, animals were killed and livers collected. Mean resulting voltage and amperage during IRE were assessed. For 3D CT rendering of the electroporation zone, parameters for size and shape were analyzed. Quantitative data were compared by the Mann–Whitney test. Histopathological differences were assessed.ResultsMean resulting voltage and amperage were 2,545.3 ± 66.0 V and 26.1 ± 1.8 A for RL, and 2,537.3 ± 69.0 V and 27.7 ± 1.8 A for LL without significant differences. Short axis, volume, and sphericity index were 16.5 ± 4.4 mm, 8.6 ± 3.2 cm 3 , and 1.7 ± 0.3 for RL, and 18.2 ± 3.4 mm, 9.8 ± 3.8 cm 3 , and 1.7 ± 0.3 for LL without significant differences. For RL and LL, the electroporation zone consisted of severely widened hepatic sinusoids containing erythrocytes and showed homogeneous apoptosis. For LL, iodized oil could be detected in the center and at the rim of the electroporation zone.ConclusionThere is no adverse effect of previous ITM on technical parameters, 3D CT rendering of the electroporation zone, and histopathology after CT-guided IRE of the liver

  15. CT-guided Irreversible Electroporation in an Acute Porcine Liver Model: Effect of Previous Transarterial Iodized Oil Tissue Marking on Technical Parameters, 3D Computed Tomographic Rendering of the Electroporation Zone, and Histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Fritz, S., E-mail: stefan.fritz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Vollherbst, D., E-mail: dominikvollherbst@web.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de [German Cancer Research Center (dkfz), Medical and Biological Informatics (Germany); Wachter, M. F., E-mail: fredericwachter@googlemail.com; Bellemann, N., E-mail: nadine.bellemann@med.uni-heidelberg.de; Gockner, T., E-mail: theresa.gockner@med.uni-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de; Schmitz, A., E-mail: anne.schmitz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Aulmann, S., E-mail: sebastian.aulmann@mail.com [University Hospital Heidelberg, Department of General Pathology (Germany); Stampfl, U., E-mail: ulrike.stampfl@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P., E-mail: philippe.pereira@slk-kliniken.de [SLK Kliniken Heilbronn GmbH, Clinic for Radiology, Minimally-invasive Therapies and Nuclear Medicine (Germany); Kauczor, H. U., E-mail: hu.kauczor@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Werner, J., E-mail: jens.werner@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Radeleff, B. A., E-mail: boris.radeleff@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

    2015-02-15

    PurposeTo evaluate the effect of previous transarterial iodized oil tissue marking (ITM) on technical parameters, three-dimensional (3D) computed tomographic (CT) rendering of the electroporation zone, and histopathology after CT-guided irreversible electroporation (IRE) in an acute porcine liver model as a potential strategy to improve IRE performance.MethodsAfter Ethics Committee approval was obtained, in five landrace pigs, two IREs of the right and left liver (RL and LL) were performed under CT guidance with identical electroporation parameters. Before IRE, transarterial marking of the LL was performed with iodized oil. Nonenhanced and contrast-enhanced CT examinations followed. One hour after IRE, animals were killed and livers collected. Mean resulting voltage and amperage during IRE were assessed. For 3D CT rendering of the electroporation zone, parameters for size and shape were analyzed. Quantitative data were compared by the Mann–Whitney test. Histopathological differences were assessed.ResultsMean resulting voltage and amperage were 2,545.3 ± 66.0 V and 26.1 ± 1.8 A for RL, and 2,537.3 ± 69.0 V and 27.7 ± 1.8 A for LL without significant differences. Short axis, volume, and sphericity index were 16.5 ± 4.4 mm, 8.6 ± 3.2 cm{sup 3}, and 1.7 ± 0.3 for RL, and 18.2 ± 3.4 mm, 9.8 ± 3.8 cm{sup 3}, and 1.7 ± 0.3 for LL without significant differences. For RL and LL, the electroporation zone consisted of severely widened hepatic sinusoids containing erythrocytes and showed homogeneous apoptosis. For LL, iodized oil could be detected in the center and at the rim of the electroporation zone.ConclusionThere is no adverse effect of previous ITM on technical parameters, 3D CT rendering of the electroporation zone, and histopathology after CT-guided IRE of the liver.

  16. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0kcal/(molÅ2) in the external electric field of 1.4kcal/(molÅe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2kcal/(molÅ2) in the position constraints on lipid tails in the external electric field of 2.0kcal/(molÅe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. © 2010 Elsevier Inc.

  17. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    International Nuclear Information System (INIS)

    Chen, C; Robinson, M P; Evans, J A; Smye, S W; O'Toole, P

    2010-01-01

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m -1 . Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  18. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Robinson, M P [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Evans, J A [Academic Unit of Medical Physics, University of Leeds, Leeds LS2 9JT (United Kingdom); Smye, S W [Department of Medical Physics and Engineering, Leeds Teaching Hospitals, St. James' s University Hospital, Leeds LS9 7TF (United Kingdom); O' Toole, P [Department of Biology, University of York, Heslington, York YO10 5DD (United Kingdom)

    2010-02-21

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m{sup -1}. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  19. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  20. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  1. Network for development of electroporation-based technologies and treatments: COST TD1104.

    Science.gov (United States)

    Miklavčič, Damijan

    2012-10-01

    Exposure of biological cells to a sufficiently strong external electric field results in increased permeability of cell membranes, referred to as "electroporation." Since all types of cells (animal, plant and microorganism) can be effectively electroporated, electroporation is considered to be a universal method and a platform technology. Electroporation has become a widely used technology applicable to, e.g., cancer treatment, gene transfection, food and biomass processing and microbial inactivation. However, despite significant progress in electroporation-based applications, there is a lack of coordination and interdisciplinary exchange of knowledge between researchers from different scientific domains. Thus, critical mass for new major breakthroughs is missing. This is why we decided to establish cooperation between research groups working in different fields of electroporation. Cooperation in Science and Technology (COST), which funds networking and capacity-building activities, presents a perfect framework for such scientific cooperation. This COST action aims at (1) providing necessary steps toward EU cooperation of science and technology to foster basic understanding of electroporation; (2) improving communication between research groups, resulting in streamlining European research and development activities; and (3) enabling development of new and further development of existing electroporation-based applications by integrating multidisciplinary research teams, as well as providing comprehensive training for early-stage researchers. Results of this COST action will provide multiple societal, scientific and technological benefits from improving existing electroporation-based applications to adding new ones in the fields of medicine, biotechnology and environmental preservation.

  2. The Effect of Electroporation of a Lyotroic Liquid Crystal Genistein-Based Formulation in the Recovery of Murine Melanoma Lesions.

    Science.gov (United States)

    Danciu, Corina; Berkó, Szilvia; Varju, Gábor; Balázs, Boglárka; Kemény, Lajos; Németh, István Balázs; Cioca, Andreea; Petruș, Alexandra; Dehelean, Cristina; Cosmin, Citu Ioan; Amaricai, Elena; Toma, Claudia Crina

    2015-07-08

    A lamellar lyotropic liquid crystal genistein-based formulation (LLC-Gen) was prepared in order to increase the aqueous solubility of the lipophilic phytocompound genistein. The formulation was applied locally, in a murine model of melanoma, with or without electroporation. The results demonstrated that, when the formulation was applied by electroporation, the tumors appeared later. During the 21 days of the experiment, the LLC-Gen formulation decreased the tumor volume, the amount of melanin and the degree of erythema, but when electroporation was applied, all these parameters indicated a better prognosis even (lower tumor volume, amount of melanin and degree of erythema). Although hematoxylin-eosin (HE) staining confirmed the above events, application of the LLC-Gen formulation by electroporation did not lead to a significant effect in terms of the serum concentrations of the protein S100B and serum neuron specific enolase (NSE), or the tissue expression of the platelet-derived growth factor receptor β (PDGFRβ) antibody.

  3. The Effect of Electroporation of a Lyotroic Liquid Crystal Genistein-Based Formulation in the Recovery of Murine Melanoma Lesions

    Directory of Open Access Journals (Sweden)

    Corina Danciu

    2015-07-01

    Full Text Available A lamellar lyotropic liquid crystal genistein-based formulation (LLC-Gen was prepared in order to increase the aqueous solubility of the lipophilic phytocompound genistein. The formulation was applied locally, in a murine model of melanoma, with or without electroporation. The results demonstrated that, when the formulation was applied by electroporation, the tumors appeared later. During the 21 days of the experiment, the LLC-Gen formulation decreased the tumor volume, the amount of melanin and the degree of erythema, but when electroporation was applied, all these parameters indicated a better prognosis even (lower tumor volume, amount of melanin and degree of erythema. Although hematoxylin–eosin (HE staining confirmed the above events, application of the LLC-Gen formulation by electroporation did not lead to a significant effect in terms of the serum concentrations of the protein S100B and serum neuron specific enolase (NSE, or the tissue expression of the platelet-derived growth factor receptor β (PDGFRβ antibody.

  4. Tutorial: Electroporation of cells in complex materials and tissue

    Science.gov (United States)

    Rems, L.; Miklavčič, D.

    2016-05-01

    Electroporation is being successfully used in biology, medicine, food processing, and biotechnology, and in some environmental applications. Recent applications also include in addition to classical electroporation, where cells are exposed to micro- or milliseconds long pulses, exposures to extremely short nanosecond pulses, i.e., high-frequency electroporation. Electric pulses are applied to cells in different structural configurations ranging from suspended cells to cells in tissues. Understanding electroporation of cells in tissues and other complex environments is a key to its successful use and optimization in various applications. Thus, explanation will be provided theoretically/numerically with relation to experimental observations by scaling our understanding of electroporation from the molecular level of the cell membrane up to the tissue level.

  5. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium

  6. Biomedical Application of Electroporation: Electrochemotherapy and Electrogene Therapy in Treatment of Cutaneous and Deep Seated Tumors

    International Nuclear Information System (INIS)

    Sersa, G.; Cemazar, M.; Gadzijev, E.; Edhemovic, I.; Brecelj, E.; Snoj, M.

    2011-01-01

    side effects. Local side effects were contractions of the muscles underlying the treated area, but muscle contractions and associated pain are present only during the application of electric pulses. Besides membrane electroporation, the application of electric pulses to tissues induces a transient but reversible reduction of blood flow. Electrochemotherapy acts also on stromal cells, including endothelial cells in the lining of tumor blood vessels, resulting in their death, abrogation of tumor blood flow and consequently a cascade of tumor cell death surrounding the vessels. Currently electrochemotherapy is in clinical use in more than 60 European cancer centers for treatment of cutaneous tumor nodules. Predominantly melanoma metastases were treated; therefore electrochemotherapy has been included also into European guidelines for treatment of melanoma. Another application of electroporation is introduction of nucleic acids into the tissues like tumors, muscle or skin (electrogene therapy). Therapeutic applications of gene electrotransfer were focused mainly on two fields: DNA vaccination against infectious disease, and cancer gene therapy. To date, only intramuscular electrogene therapy with IL-12 was tested in combination with local radiotherapy. Electrogene therapy in oncology is also at the clinical stage of testing. In Slovenia we also initiated the first gene therapy trial on melanoma patients with plasmid DNA encoding antiangiogenic gene and we are in preparation for the IL-12 gene therapy trial. (author)

  7. CRY 1AB trangenic cowpea obtained by nodal electroporation ...

    African Journals Online (AJOL)

    Electroporation-mediated genetic transformation was used to introduce Cry 1 Ab insecticidal gene into cowpea. Nodal buds were electroporated in planta with a plasmid carrying the Cry 1Ab and antibiotic resistance npt II genes driven by a 35S CaMV promoter. T1 seeds derived from electroporated branches were selected ...

  8. Therapeutic levels of erythropoietin (EPO) achieved after gene electrotransfer to skin in mice

    DEFF Research Database (Denmark)

    Gothelf, A; Hojman, P; Gehl, Julie

    2010-01-01

    Gene electrotransfer refers to gene transfection by electroporation and is an effective non-viral method for delivering naked DNA into cells and tissues. This study presents data from gene electrotransfer with erythropoietin (EPO) to mouse skin. Nine-week-old female NMRI mice received one, two...

  9. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells.

    Science.gov (United States)

    Hornstein, Benjamin D; Roman, Dany; Arévalo-Soliz, Lirio M; Engevik, Melinda A; Zechiedrich, Lynn

    2016-01-01

    The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.

  10. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    International Nuclear Information System (INIS)

    Cemazar, Maja; Wilson, Ian; Dachs, Gabi U; Tozer, Gillian M; Sersa, Gregor

    2004-01-01

    Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model

  11. Electric field computation and measurements in the electroporation of inhomogeneous samples

    Science.gov (United States)

    Bernardis, Alessia; Bullo, Marco; Campana, Luca Giovanni; Di Barba, Paolo; Dughiero, Fabrizio; Forzan, Michele; Mognaschi, Maria Evelina; Sgarbossa, Paolo; Sieni, Elisabetta

    2017-12-01

    In clinical treatments of a class of tumors, e.g. skin tumors, the drug uptake of tumor tissue is helped by means of a pulsed electric field, which permeabilizes the cell membranes. This technique, which is called electroporation, exploits the conductivity of the tissues: however, the tumor tissue could be characterized by inhomogeneous areas, eventually causing a non-uniform distribution of current. In this paper, the authors propose a field model to predict the effect of tissue inhomogeneity, which can affect the current density distribution. In particular, finite-element simulations, considering non-linear conductivity against field relationship, are developed. Measurements on a set of samples subject to controlled inhomogeneity make it possible to assess the numerical model in view of identifying the equivalent resistance between pairs of electrodes.

  12. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  13. Simple Genome Editing of Rodent Intact Embryos by Electroporation.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available The clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated (Cas system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN comprised the edited targeted gene as a knockout (67% of mice and 88% of rats or knock-in (both 33%. The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.

  14. A nonlinear electromechanical coupling model for electropore expansion in cell electroporation

    KAUST Repository

    Deng, Peigang; Lee, Yi Kuen; Zhang, Tong Yi

    2014-01-01

    the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict

  15. Electroporation-Induced Cell Modifications Detected with THz Time-Domain Spectroscopy

    Science.gov (United States)

    Romeo, Stefania; Vernier, P. Thomas; Zeni, Olga

    2018-04-01

    Electroporation (electropermeabilization) increases the electrical conductivity of biological cell membranes and lowers transport barriers for normally impermeant materials. Molecular simulations suggest that electroporation begins with the reorganization of water and lipid head group dipoles in the phospholipid bilayer interface, driven by an externally applied electric field, and the evolution of the resulting defects into water-filled, lipid pores. The interior of the electroporated membrane thus contains water, which should provide a signature for detection of the electropermeabilized state. In this feasibility study, we use THz time-domain spectroscopy, a powerful tool for investigating biomolecular systems and their interactions with water, to detect electroporation in human cells subjected to permeabilizing pulsed electric fields (PEFs). The time-domain response of electroporated human monocytes was acquired with a commercial THz, time-domain spectrometer. For each sample, frequency spectra were calculated, and the absorption coefficient and refractive index were extracted in the frequency range between 0.2 and 1.5 THz. This analysis reveals a higher absorption of THz radiation by PEF-exposed cells, with respect to sham-exposed ones, consistent with the intrusion of water into the cell through the permeabilized membrane that is presumed to be associated with electroporation.

  16. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells.

    Science.gov (United States)

    Van Tendeloo, V F; Ponsaerts, P; Lardon, F; Nijs, G; Lenjou, M; Van Broeckhoven, C; Van Bockstaele, D R; Berneman, Z N

    2001-07-01

    Designing effective strategies to load human dendritic cells (DCs) with tumor antigens is a challenging approach for DC-based tumor vaccines. Here, a cytoplasmic expression system based on mRNA electroporation to efficiently introduce tumor antigens into DCs is described. Preliminary experiments in K562 cells using an enhanced green fluorescent protein (EGFP) reporter gene revealed that mRNA electroporation as compared with plasmid DNA electroporation showed a markedly improved transfection efficiency (89% versus 40% EGFP(+) cells, respectively) and induced a strikingly lower cell toxicity (15% death rate with mRNA versus 51% with plasmid DNA). Next, mRNA electroporation was applied for nonviral transfection of different types of human DCs, including monocyte-derived DCs (Mo-DCs), CD34(+) progenitor-derived DCs (34-DCs) and Langerhans cells (34-LCs). High-level transgene expression by mRNA electroporation was obtained in more than 50% of all DC types. mRNA-electroporated DCs retained their phenotype and maturational potential. Importantly, DCs electroporated with mRNA-encoding Melan-A strongly activated a Melan-A-specific cytotoxic T lymphocyte (CTL) clone in an HLA-restricted manner and were superior to mRNA-lipofected or -pulsed DCs. Optimal stimulation of the CTL occurred when Mo-DCs underwent maturation following mRNA transfection. Strikingly, a nonspecific stimulation of CTL was observed when DCs were transfected with plasmid DNA. The data clearly demonstrate that Mo-DCs electroporated with mRNA efficiently present functional antigenic peptides to cytotoxic T cells. Therefore, electroporation of mRNA-encoding tumor antigens is a powerful technique to charge human dendritic cells with tumor antigens and could serve applications in future DC-based tumor vaccines.

  17. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Directory of Open Access Journals (Sweden)

    Dachs Gabi U

    2004-11-01

    Full Text Available Abstract Background Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Methods Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Results Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Conclusions Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous

  18. Handbook of electroporation

    CERN Document Server

    2017-01-01

    This major reference work is a one-shot knowledge base on electroporation and the use of pulsed electric fields of high intensity and their use in biology, medicine, biotechnology, and food and environmental technologies. The Handbook offers a widespread and well-structured compilation of 156 chapters ranging from the foundations to applications in industry and hospital. It is edited and written by most prominent researchers in the field. With regular updates and growing in its volume it is suitable for academic readers and researchers regardless of their disciplinary expertise, and will also be accessible to students and serious general readers. The Handbook's 276 authors have established scholarly credentials and come from a wide range of disciplines. This is crucially important in a highly interdisciplinary field of electroporation and the use of pulsed electric fields of high intensity and its applications in different fields from medicine, biology, food proce ssing, agriculture, process engineering, en...

  19. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation

    International Nuclear Information System (INIS)

    Kranjc, M; Miklavčič, D; Bajd, F; Serša, I

    2014-01-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage–current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage–current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes. (paper)

  20. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  1. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  2. Feasibility of Parylene Coating for Planar Electroporation Copper Electrodes

    Directory of Open Access Journals (Sweden)

    Vitalij NOVICKIJ

    2017-08-01

    Full Text Available This paper is focused on the feasibility study of parylene as a biocompatible coating for planar electroporation microelectrodes. The planar parallel and the circular interdigitated electrodes are applied in the analysis. The electrodes feature 100 μm width with a 300 μm gap between anode and cathode. The parylene coating thickness was varied in the 250 nm – 2 μm range. The resultant electric field distribution evaluation has been performed using the finite element method. The electrodes have been applied in electroporation experiments with Saprolegnia parasitica. For reference the additional experiments using conventional electroporation cuvette (1 mm gap have been performed. It has been determined that the parylene coating with hydrophobic properties has limited applicability for the passivation of the planar electroporation electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14953

  3. Immobilization of Electroporated Cells for Fabrication of Cellular Biosensors: Physiological Effects of the Shape of Calcium Alginate Matrices and Foetal Calf Serum

    Directory of Open Access Journals (Sweden)

    Nikos Katsanakis

    2009-01-01

    Full Text Available In order to investigate the physiological effect of transfected cell immobilization in calcium alginate gels, we immobilized electroporated Vero cells in gels shaped either as spherical beads or as thin membrane layers. In addition, we investigated whether serum addition had a positive effect on cell proliferation and viability in either gel configuration. The gels were stored for four weeks in a medium supplemented or not with 20% (v/v foetal calf serum. Throughout a culture period of four weeks, cell proliferation and cell viability were assayed by optical microscopy after provision of Trypan Blue. Non-elaborate culture conditions (room temperature, non-CO2 enriched culture atmosphere were applied throughout the experimental period in order to evaluate cell viability under less than optimal storage conditions. Immobilization of electroporated cells was associated with an initially reduced cell viability, which was gradually increased. Immobilization was associated with maintenance of cell growth for the duration of the experimental period, whereas electroporated cells essentially died after a week in suspension culture. Considerable proliferation of immobilized cells was observed in spherical alginate beads. In both gel configurations, addition of serum was associated with increased cell proliferation. The results of the present study could contribute to an improvement of the storability of biosensors based on electroporated, genetically or membrane-engineered cells.

  4. Characterization of CD8+ T-Cell Responses in the Peripheral Blood and Skin Injection Sites of Melanoma Patients Treated with mRNA Electroporated Autologous Dendritic Cells (TriMixDC-MEL

    Directory of Open Access Journals (Sweden)

    Daphné Benteyn

    2013-01-01

    Full Text Available Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL stimulates T-cell responses against the presented tumor-associated antigens (TAAs. In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71% patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  5. Characterization of CD8+ T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL).

    Science.gov (United States)

    Benteyn, Daphné; Van Nuffel, An M T; Wilgenhof, Sofie; Corthals, Jurgen; Heirman, Carlo; Neyns, Bart; Thielemans, Kris; Bonehill, Aude

    2013-01-01

    Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL) stimulates T-cell responses against the presented tumor-associated antigens (TAAs). In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8(+) T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs) and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71%) patients screened, CD8(+) T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8(+) T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8(+) T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8(+) T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  6. Enhancing Irreversible Electroporation by Manipulating Cellular Biophysics with a Molecular Adjuvant.

    Science.gov (United States)

    Ivey, Jill W; Latouche, Eduardo L; Richards, Megan L; Lesser, Glenn J; Debinski, Waldemar; Davalos, Rafael V; Verbridge, Scott S

    2017-07-25

    Pulsed electric fields applied to cells have been used as an invaluable research tool to enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the cell membrane, with subsequent alteration of transmembrane potential that is a function of cell biophysics and geometry. For traditional electroporation parameters, larger cells experience a greater degree of membrane potential alteration. However, we have recently demonstrated that the nuclear/cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells treated with high-frequency irreversible electroporation (IRE). In this study, we leverage a targeted molecular therapy, ephrinA1, known to markedly collapse the cytoplasm of cells expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from NCR manipulation affect the response to IRE at varying frequencies. We present evidence that the increase in the NCR mitigates the cell death response to conventional electroporation pulsed-electric fields (∼100 μs), consistent with the previously noted size dependence. However, this same molecular treatment enhanced the cell death response to high-frequency electric fields (∼1 μs). This finding demonstrates the importance of considering cellular biophysics and frequency-dependent effects in developing electroporation protocols, and our approach provides, to our knowledge, a novel and direct experimental methodology to quantify the relationship between cell morphology, pulse frequency, and electroporation response. Finally, this novel, to our knowledge, combinatorial approach may provide a paradigm to enhance in vivo tumor ablation through a molecular manipulation of cellular morphology before IRE application. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes.

    Directory of Open Access Journals (Sweden)

    Simon E Tröder

    Full Text Available Electroporation of zygotes represents a rapid alternative to the elaborate pronuclear injection procedure for CRISPR/Cas9-mediated genome editing in mice. However, current protocols for electroporation either require the investment in specialized electroporators or corrosive pre-treatment of zygotes which compromises embryo viability. Here, we describe an easily adaptable approach for the introduction of specific mutations in C57BL/6 mice by electroporation of intact zygotes using a common electroporator with synthetic CRISPR/Cas9 components and minimal technical requirement. Direct comparison to conventional pronuclear injection demonstrates significantly reduced physical damage and thus improved embryo development with successful genome editing in up to 100% of living offspring. Hence, our novel approach for Easy Electroporation of Zygotes (EEZy allows highly efficient generation of CRISPR/Cas9 transgenic mice while reducing the numbers of animals required.

  8. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug.

    Science.gov (United States)

    Balázs, Boglárka; Sipos, Péter; Danciu, Corina; Avram, Stefana; Soica, Codruta; Dehelean, Cristina; Varju, Gábor; Erős, Gábor; Budai-Szűcs, Mária; Berkó, Szilvia; Csányi, Erzsébet

    2016-01-01

    The aim of the present work was the optimization of the transdermal delivery of a lyotropic liquid crystal genistein-based formulation (LLC-GEN). LLC was chosen as medium in view of the poor solubility of GEN in water. Membrane diffusion and penetration studies were carried out with a Franz diffusion cell, through a synthetic membrane in vitro, a chick chorioallantoic membrane ex ovo, and ex vivo excised human epidermis. Thereafter, LLC-GEN was combined with electroporation (EP) to enhance the transdermal drug delivery. The synergistic effect of EP was verified by in vivo ATR-FTIR and ex vivo Raman spectroscopy on hairless mouse skin.

  9. Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions

    DEFF Research Database (Denmark)

    Zibert, John Robert; Wallbrecht, Katrin; Schön, Margarete

    2011-01-01

    Dysregulated angiogenesis is a hallmark of chronic inflammatory diseases, including psoriasis, a common skin disorder that affects approximately 2% of the population. Studying both human psoriasis in 2 complementary xenotransplantation models and psoriasis-like skin lesions in transgenic mice......-15) by in vivo electroporation reduced cutaneous angiogenesis and vascularization in all 3 models. As demonstrated using red fluorescent protein-coupled RDD, the treatment resulted in muscular expression of the gene product and its deposition within the cutaneous hyperangiogenic connective tissue....... High-resolution ultrasound revealed reduced cutaneous blood flow in vivo after electroporation with RDD but not with control plasmids. In addition, angiogenesis- and inflammation-related molecular markers, keratinocyte proliferation, epidermal thickness, and clinical disease scores were downregulated...

  10. Electroporation of DC-3F cells is a dual process.

    Science.gov (United States)

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-07

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere

  11. Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation

    International Nuclear Information System (INIS)

    Kranjc, Matej; Miklavcic, Damijan; Bajd, Franci; Serša, Igor

    2013-01-01

    Electroporation is a phenomenon caused by externally applied electric field to cells that results in an increase of cell membrane permeability to various molecules. Accurate coverage of the tissue with a sufficiently large electric field presents one of the most important conditions for successful membrane permeabilization. Applications based on electroporation would greatly benefit with a method for monitoring the electric field, especially if it could be done in situ. As the membrane electroporation is a consequence of an induced transmembrane potential, which is directly proportional to the local electric field, we have been investigating current density imaging and magnetic resonance electrical impedance tomography techniques to determine the electric field distribution during electroporation. In this paper, we present comparison of current density and electric field distribution in an agar phantom and in a liver tissue exposed to electroporation pulses. As expected, a region of increased electrical conductivity was observed in the liver tissue exposed to sufficiently high electric field but not in agar phantom.

  12. Theory and in vivo application of electroporative gene delivery.

    Science.gov (United States)

    Somiari, S; Glasspool-Malone, J; Drabick, J J; Gilbert, R A; Heller, R; Jaroszeski, M J; Malone, R W

    2000-09-01

    Efficient and safe methods for delivering exogenous genetic material into tissues must be developed before the clinical potential of gene therapy will be realized. Recently, in vivo electroporation has emerged as a leading technology for developing nonviral gene therapies and nucleic acid vaccines (NAV). Electroporation (EP) involves the application of pulsed electric fields to cells to enhance cell permeability, resulting in exogenous polynucleotide transit across the cytoplasmic membrane. Similar pulsed electrical field treatments are employed in a wide range of biotechnological processes including in vitro EP, hybridoma production, development of transgenic animals, and clinical electrochemotherapy. Electroporative gene delivery studies benefit from well-developed literature that may be used to guide experimental design and interpretation. Both theory and experimental analysis predict that the critical parameters governing EP efficacy include cell size and field strength, duration, frequency, and total number of applied pulses. These parameters must be optimized for each tissue in order to maximize gene delivery while minimizing irreversible cell damage. By providing an overview of the theory and practice of electroporative gene transfer, this review intends to aid researchers that wish to employ the method for preclinical and translational gene therapy, NAV, and functional genomic research.

  13. Irreversible electroporation: state of the art

    Directory of Open Access Journals (Sweden)

    Wagstaff PGK

    2016-04-01

    Full Text Available Peter GK Wagstaff,1 Mara Buijs,1 Willemien van den Bos,1 Daniel M de Bruin,2 Patricia J Zondervan,1 Jean JMCH de la Rosette,1 M Pilar Laguna Pes1 1Department of Urology, 2Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands Abstract: The field of focal ablative therapy for the treatment of cancer is characterized by abundance of thermal ablative techniques that provide a minimally invasive treatment option in selected tumors. However, the unselective destruction inflicted by thermal ablation modalities can result in damage to vital structures in the vicinity of the tumor. Furthermore, the efficacy of thermal ablation intensity can be impaired due to thermal sink caused by large blood vessels in the proximity of the tumor. Irreversible electroporation (IRE is a novel ablation modality based on the principle of electroporation or electropermeabilization, in which electric pulses are used to create nanoscale defects in the cell membrane. In theory, IRE has the potential of overcoming the aforementioned limitations of thermal ablation techniques. This review provides a description of the principle of IRE, combined with an overview of in vivo research performed to date in the liver, pancreas, kidney, and prostate. Keywords: irreversible electroporation, IRE, tumor, ablation, focal therapy, cancer

  14. Selective effect of irreversible electroporation on parenchyma of the pancreas and its vascular structures - an in vivo experiment on a porcine model

    Directory of Open Access Journals (Sweden)

    Roman Svatoň

    2016-01-01

    Full Text Available Irreversible electroporation is a local, non-thermal ablation method, where short electrical pulses of high voltage lead to changes in cell membrane permeability and cell death. Recent experimental studies have shown that it does not lead to damage of blood vessels, nerves, bile duct or ureters. The aim of our experimental study was to evaluate the negative effect of irreversible electroporation regarding damage to the vascular wall and porcine pancreatic tissue. Irreversible electroporation of the pancreas was performed in 6 pigs after medial laparotomy. Irreversible electroporation was applied to each pig to the splenic lobe of the pancreas in order to assess damage to the pancreatic tissue and to the duodenal lobe of the pancreas to assess damage to the vascular structure of the pancreatic tissue. Higher ablation electric intensity (minimum 500 V/cm – maximum 1,750 V/cm, step 250 V/cm in 90 μs pulses was utilized on each pig. After 7 days, macroscopic and microscopic evaluations of en bloc resected specimen (pancreas with duodenum were performed. During 7 post-ablation days, no deaths or clinical worsening occurred in any of the pigs. Necrotic changes in the pancreatic tissue were recorded at an electric intensity of 750 V/cm. Changes in the outer layers of the wall of the arteries and veins occurred at 1,000 V/cm. Transmural vascular wall damage was not recorded in any case. Irreversible electroporation allows for relatively efficient cell death in the target tissues. Our independent experimental work confirms the safety of this method towards vascular structures located in the ablation zone.

  15. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation

    Science.gov (United States)

    Ruiz, Newton; de Abreu, Leonardo Araujo; Parizi, Luís Fernando; Kim, Tae Kwon; Mulenga, Albert; Braz, Gloria Regina Cardoso; Vaz, Itabajara da Silva; Logullo, Carlos

    2015-01-01

    RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT) / Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis. PMID:26091260

  16. Low vulnerability of the right phrenic nerve to electroporation ablation

    NARCIS (Netherlands)

    van Driel, Vincent J. H. M.; Neven, KGEJ; van Wessel, Harri; Vink, Aryan; Doevendans, Pieter A. F. M.; Wittkampf, Fred H. M.

    BACKGROUND Circular electroporation ablation is a novel ablation modality for electrical pulmonary vein isolation. With a single 200-3 application, deep circular myocardial lesions can be created. However, the acute and chronic effects of this energy source on phrenic nerve (PN) function are

  17. A combined approach of hollow microneedles and nanocarriers for skin immunization with plasmid DNA encoding ovalbumin

    Directory of Open Access Journals (Sweden)

    Pamornpathomkul B

    2017-01-01

    Full Text Available Boonnada Pamornpathomkul,1 Adisak Wongkajornsilp,2 Wanida Laiwattanapaisal,3 Theerasak Rojanarata,1 Praneet Opanasopit,1 Tanasait Ngawhirunpat1 1Department of Pharmaceutical Technology, Faculty of Pharmacy, Pharmaceutical Development of Green Innovations Group, Silpakorn University, Nakhon Pathom, 2Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 3Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand Abstract: The aim of this study was to investigate the use of different types of microneedles (MNs and nanocarriers for in vitro skin permeation and in vivo immunization of plasmid DNA encoding ovalbumin (pOVA. In vitro skin permeation studies indicated that hollow MNs had a superior enhancing effect on skin permeation compared with solid MN patches, electroporation (EP patches, the combination of MN and EP patches, and untreated skin. Upon using hollow MNs combined with nanocarriers for pOVA delivery, the skin permeation was higher than for the delivery of naked pOVA, as evidenced by the increased amount of pOVA in Franz diffusion cells and immunoglobulin G (IgG antibody responses. When the hollow MNs were used for the delivery of nanocarrier:pOVA complexes into the skin of mice, they induced a stronger IgG immune response than conventional subcutaneous (SC injections. In addition, immunization of mice with the hollow MNs did not induce signs of skin infection or pinpoint bleeding. Accordingly, the hollow MNs combined with a nanocarrier delivery system is a promising approach for delivering pOVA complexes to the skin for promoting successful immunization. Keywords: hollow microneedle, solid microneedle, electroporation, plasmid DNA encoding ovalbumin, skin immunization, nanocarrier

  18. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.

    Science.gov (United States)

    Dermol, Janja; Miklavčič, Damijan

    2014-12-01

    High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Seeing the electroporative uptake of cell-membrane impermeable fluorescent molecules and nanoparticles

    Science.gov (United States)

    Kim, Kisoo; Kim, Jeong Ah; Lee, Soon-Geul; Lee, Won Gu

    2012-07-01

    This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities that occurred at cell membranes in both uptake directions toward the electrodes have been sequentially recorded and quantitatively analyzed pixel by pixel. In our experiments, we found that fluorescent molecules, even not labeled to target biomolecules, had their own uptake direction with different intensities. It is also observed that the uptake intensity toward the cell membrane had a maximal value at a certain electric voltage, not at the highest value of voltages applied. The results also imply that the uptake direction of fluorescence-doped nanoparticles can be determined by a net surface charge of uptake materials and sizes in the electroporative environments. In summary, we performed a quantitative screening and direct visualization of uptake directionality for a set of fluorescent molecules and fluorescence-doped nanoparticles using electric-pulsation. Taking a closer look at the uptake direction of exogenous materials will help researchers to understand an unknown uptake phenomenon in which way foreign materials are inclined to move, and furthermore to design functional nanoparticles for electroporative gene delivery.This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities

  20. Electroporation-based treatment planning for deep-seated tumors based on automatic liver segmentation of MRI images.

    Science.gov (United States)

    Pavliha, Denis; Mušič, Maja M; Serša, Gregor; Miklavčič, Damijan

    2013-01-01

    Electroporation is the phenomenon that occurs when a cell is exposed to a high electric field, which causes transient cell membrane permeabilization. A paramount electroporation-based application is electrochemotherapy, which is performed by delivering high-voltage electric pulses that enable the chemotherapeutic drug to more effectively destroy the tumor cells. Electrochemotherapy can be used for treating deep-seated metastases (e.g. in the liver, bone, brain, soft tissue) using variable-geometry long-needle electrodes. To treat deep-seated tumors, patient-specific treatment planning of the electroporation-based treatment is required. Treatment planning is based on generating a 3D model of the organ and target tissue subject to electroporation (i.e. tumor nodules). The generation of the 3D model is done by segmentation algorithms. We implemented and evaluated three automatic liver segmentation algorithms: region growing, adaptive threshold, and active contours (snakes). The algorithms were optimized using a seven-case dataset manually segmented by the radiologist as a training set, and finally validated using an additional four-case dataset that was previously not included in the optimization dataset. The presented results demonstrate that patient's medical images that were not included in the training set can be successfully segmented using our three algorithms. Besides electroporation-based treatments, these algorithms can be used in applications where automatic liver segmentation is required.

  1. Efficacy of transgene expression in porcine skin as a function of electrode choice

    DEFF Research Database (Denmark)

    Gothelf, A; Mahmood, Faisal; Dagnaes-Hansen, Frederik

    2011-01-01

    , have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited. We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally...... and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed. Interestingly, we found needle electrodes to be more efficient than plate electrodes (p...

  2. Use of electroporation for high-molecular-weight DNA-mediated gene transfer.

    Science.gov (United States)

    Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R

    1987-08-01

    Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.

  3. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  4. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2017-05-01

    Full Text Available ABSTRACT The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB. The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

  5. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a

  6. Acute and Long-Term Effects of Full-Power Electroporation Ablation Directly on the Porcine Esophagus

    NARCIS (Netherlands)

    Neven, Kars; van Es, René; van Driel, Vincent; van Wessel, Harry; Fidder, Herma; Vink, Aryan; Doevendans, Pieter; Wittkampf, Fred

    BACKGROUND: Esophageal ulceration and fistula are complications of pulmonary vein isolation using thermal energy sources. Irreversible electroporation is a novel, nonthermal ablation modality for pulmonary vein isolation. A single 200 J application can create deep myocardial lesions. Acute and

  7. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.

    Science.gov (United States)

    Madison, Andrew C; Royal, Matthew W; Vigneault, Frederic; Chen, Liji; Griffin, Peter B; Horowitz, Mark; Church, George M; Fair, Richard B

    2017-09-15

    Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 8 cfu·μg -1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm -1 . Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.

  8. Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Hoyer

    2015-01-01

    Full Text Available For therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs. However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs’ immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs. We used 16 different RNAs, encoding tumor antigens (MelanA, NRAS, BRAF, GNAQ, GNA11, and WT1, and variants thereof. None of those RNAs induced changes in the expression of CD25, CD40, CD83, CD86, and CD70 or the secretion of the cytokines IL-8, IL-6, and TNFα of more than 1.5-fold compared to the control condition, while an mRNA encoding an NF-κB-activation protein as positive control induced massive secretion of the cytokines. To determine whether mRNA electroporation had any effect on the whole transcriptome of the DCs, we performed microarray analyses of DCs of 6 different donors. None of 60,000 probes was significantly different between mock-electroporated DCs and MelanA-transfected DCs. Hence, we conclude that no transcriptional programs were induced within cocktail-matured DCs by electroporation of single tumor-antigen-encoding mRNAs.

  9. Electroporation of Postimplantation Mouse Embryos In Utero.

    Science.gov (United States)

    Huang, Cheng-Chiu; Carcagno, Abel

    2018-02-01

    Gene transfer by electroporation is possible in mouse fetuses within the uterus. As described in this protocol, the pregnant female is anesthetized, the abdominal cavity is opened, and the uterus with the fetuses is exteriorized. A solution of plasmid DNA is injected through the uterine wall directly into the fetus, typically into a cavity like the brain ventricle, guided by fiber optic illumination. Electrodes are positioned on the uterus around the region of the fetus that was injected, and electrical pulses are delivered. The uterus is returned to the abdominal cavity, the body wall is sutured closed, and the female is allowed to recover. The manipulated fetuses can then be collected and analyzed at various times after the electroporation. This method allows experimental access to later-stage developing mouse embryos. © 2018 Cold Spring Harbor Laboratory Press.

  10. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE

    Directory of Open Access Journals (Sweden)

    Kos Bor

    2015-09-01

    Full Text Available Background. Irreversible electroporation (IRE is a tissue ablation method, which relies on the phenomenon of electroporation. When cells are exposed to a sufficiently electric field, the plasma membrane is disrupted and cells undergo an apoptotic or necrotic cell death. Although heating effects are known IRE is considered as non-thermal ablation technique and is currently applied to treat tumors in locations where thermal ablation techniques are contraindicated.

  11. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation.

    Directory of Open Access Journals (Sweden)

    Kihyuck Kwak

    Full Text Available Naked DNA vaccines can be manufactured simply and are stable at ambient temperature, but require improved delivery technologies to boost immunogenicity. Here we explore in vivo electroporation for multivalent codon-optimized human papillomavirus (HPV L1 and L2 DNA vaccination.Balb/c mice were vaccinated three times at two week intervals with a fusion protein comprising L2 residues ∼11-88 of 8 different HPV types (11-88×8 or its DNA expression vector, DNA constructs expressing L1 only or L1+L2 of a single HPV type, or as a mixture of several high-risk HPV types and administered utilizing electroporation, i.m. injection or gene gun. Serum was collected two weeks and 3 months after the last vaccination. Sera from immunized mice were tested for in-vitro neutralization titer, and protective efficacy upon passive transfer to naive mice and vaginal HPV challenge. Heterotypic interactions between L1 proteins of HPV6, HPV16 and HPV18 in 293TT cells were tested by co-precipitation using type-specific monoclonal antibodies.Electroporation with L2 multimer DNA did not elicit detectable antibody titer, whereas DNA expressing L1 or L1+L2 induced L1-specific, type-restricted neutralizing antibodies, with titers approaching those induced by Gardasil. Co-expression of L2 neither augmented L1-specific responses nor induced L2-specific antibodies. Delivery of HPV L1 DNA via in vivo electroporation produces a stronger antibody response compared to i.m. injection or i.d. ballistic delivery via gene gun. Reduced neutralizing antibody titers were observed for certain types when vaccinating with a mixture of L1 (or L1+L2 vectors of multiple HPV types, likely resulting from heterotypic L1 interactions observed in co-immunoprecipitation studies. High titers were restored by vaccinating with individual constructs at different sites, or partially recovered by co-expression of L2, such that durable protective antibody titers were achieved for each type

  12. Efficacy of transgene expression in porcine skin as a function of electrode choice

    DEFF Research Database (Denmark)

    Gotholf, Anita; Mahmood, Faisad; Dagnæs-Hansen, Frederik

    2011-01-01

    , have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited. We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally...... and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed. Interestingly, we found needle electrodes to be more efficient than plate electrodes (p..., our data support that needle electrodes should be used in human clinical studies of gene electrotransfer to skin for improved expression....

  13. Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach.

    Science.gov (United States)

    Čorović, Selma; Mahnič-Kalamiza, Samo; Miklavčič, Damijan

    2016-04-07

    Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011-2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. The main objective of this study was to investigate whether the educational content the e

  14. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer.

    Science.gov (United States)

    Kotnik, Tadej

    2013-09-01

    Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism--cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT. © 2013 Elsevier B.V. All rights

  15. 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies

    CERN Document Server

    Kramar, Peter

    2016-01-01

    This volume presents the proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies (WC2015). The congress took place in Portorož, Slovenia, during the week of September 6th to 10th, 2015. The scientific part of the Congress covered different aspects of electroporation and related technologies and included the following main topics:   ·         Application of pulsed electric fields technology in food: challenges and opportunities ·         Electrical impedance measurement for assessment of electroporation yield ·         Electrochemistry and electroporation ·         Electroporation meets electrostimulation ·         Electrotechnologies for food and biomass treatment ·         Food and biotechnology applications ·         In vitro electroporation - basic mechanisms ·         Interfacial behaviour of lipid-assemblies, membranes and cells in electric f...

  16. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    Science.gov (United States)

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  17. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    Report 3. DATES COVERED (From – To) March 2013 to July 2015 4. TITLE AND SUBTITLE Electroporation of mammalian cells by nanosecond electric field...Prescribed by ANSI Std. Z39.18 1Scientific RepoRts | 5:13818 | DOi: 10.1038/srep13818 www.nature.com/scientificreports Electroporation of mammalian cells...first to demonstrate that mammalian cells can be electroporated by damped sine wave electric stimuli of nanosecond duration. By comparing the

  18. Flow-through electroporation based on constant voltage for large-volume transfection of cells.

    Science.gov (United States)

    Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang

    2010-05-21

    Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.

    Science.gov (United States)

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H

    2010-11-15

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.

  20. Electroporation - a biophysical method for transferring nano-sized systems and drugs in vitro and in vivo

    International Nuclear Information System (INIS)

    Nikolova, B.; Atanasova, S.; Pehlivanova, V.; Jelev, J.; Tsoneva, Y.; Bakalova, R.; Peycheva, E.

    2017-01-01

    The aim of this study was to investigate the electrostatic internalisation of quinatum dots (QDs) and QDs containing nano-hydrogels in the Colon 26 cell line and their effect on cell viability as well as their passive and electrically mediated delivery in solid murine tumor models. Materials and methods: Colon 26 cancer cell line was used for in vitro experiments, survival was followed by a MTS test, and images were obtained by confocal microscopy. For in vivo experiments, mouse models with implanted Colon 26 cells were used. All in vivo measurements are carried out ~ 9-10 days after the inoculation, when the tumor size is ~ 100 mm 3 . Results: Electroporation facilitates the delivery of nanoparticles - both in vivo and in vitro. We demonstrate that increasing the applied tension leads to increased nanoparticle penetration into the cells without significantly reducing cell survival. The penetration of nano-hydrogels into tumor tissue is visualized by fluorescence imaging and MRI. The highest intensity of the tumor signal was recorded 30 minutes after the combined treatment (electroporation and QDs loaded nano-hydrogels), even 48 hours post electroporation. The data show a more efficient penetration and long retention of nanoparticles in the tumor after electroporation, due to the increased permeability of the cell membranes and local cleavage of the blood vessels. Conclusion: The internalization and retention of nano-hydrogels is a promising tool both in future strategies for the treatment of cancer and nano medicine. [bg

  1. Efficient transfection of DNA into primarily cultured rat sertoli cells by electroporation.

    Science.gov (United States)

    Li, Fuping; Yamaguchi, Kohei; Okada, Keisuke; Matsushita, Kei; Enatsu, Noritoshi; Chiba, Koji; Yue, Huanxun; Fujisawa, Masato

    2013-03-01

    The expression of exogenous DNA in Sertoli cells is essential for studying its functional genomics, pathway analysis, and medical applications. Electroporation is a valuable tool for nucleic acid delivery, even in primarily cultured cells, which are considered difficult to transfect. In this study, we developed an optimized protocol for electroporation-based transfection of Sertoli cells and compared its efficiency with conventional lipofection. Sertoli cells were transfected with pCMV-GFP plasmid by square-wave electroporation under different conditions. After transfection of plasmid into Sertoli cells, enhanced green fluorescent protein (EGFP) expression could be easily detected by fluorescent microscopy, and cell survival was evaluated by dye exclusion assay using Trypan blue. In terms of both cell survival and the percentage expressing EGFP, 250 V was determined to produce the greatest number of transiently transfected cells. Keeping the voltage constant (250 V), relatively high cell survival (76.5% ± 3.4%) and transfection efficiency (30.6% ± 5.6%) were observed with a pulse length of 20 μm. The number of pulses significantly affected cell survival and EGFP expression (P transfection methods, the transfection efficiency of electroporation (21.5% ± 5.7%) was significantly higher than those of Lipofectamine 2000 (2.9% ± 1.0%) and Effectene (1.9% ± 0.8%) in this experiment (P transfection of Sertoli cells.

  2. Transformation of group A streptococci by electroporation

    NARCIS (Netherlands)

    Suvorov, Alexander; Kok, Jan; Venema, Gerhardus

    1988-01-01

    The introduction, via electroporation, of free plasmid DNA into three strains of Streptococcus pyogenes is described. The method is very simple and rapid and efficiencies vary from 1 × 10^3 to 4 × 10^4 per µg of DNA. The method was also used to introduce an integrative plasmid and transformants were

  3. Direct and efficient transfection of mouse neural stem cells and mature neurons by in vivo mRNA electroporation.

    Science.gov (United States)

    Bugeon, Stéphane; de Chevigny, Antoine; Boutin, Camille; Coré, Nathalie; Wild, Stefan; Bosio, Andreas; Cremer, Harold; Beclin, Christophe

    2017-11-01

    In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons. © 2017. Published by The Company of Biologists Ltd.

  4. Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field.

    Science.gov (United States)

    Geng, Tao; Zhan, Yihong; Lu, Chang

    2012-01-01

    Electroporation is one of the most widely used physical methods to deliver exogenous nucleic acids into cells with high efficiency and low toxicity. Conventional electroporation systems typically require expensive pulse generators to provide short electrical pulses at high voltage. In this work, we demonstrate a flow-through electroporation method for continuous transfection of cells based on disposable chips, a syringe pump, and a low-cost power supply that provides a constant voltage. We successfully transfect cells using either DC or AC voltage with high flow rates (ranging from 40 µl/min to 20 ml/min) and high efficiency (up to 75%). We also enable the entire cell membrane to be uniformly permeabilized and dramatically improve gene delivery by inducing complex migrations of cells during the flow.

  5. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang; Lee, Yi-Kuen; Lin, Ran; Zhang, Tong-Yi

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical

  6. Studies on mRNA electroporation of immature and mature dendritic cells: Effects on their immunogenic potential

    DEFF Research Database (Denmark)

    Met, O.; Eriksen, J.; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-transl...

  7. The effects of irreversible electroporation (IRE on nerves.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available BACKGROUND: If a critical nerve is circumferentially involved with tumor, radical surgery intended to cure the cancer must sacrifice the nerve. Loss of critical nerves may lead to serious consequences. In spite of the impressive technical advancements in nerve reconstruction, complete recovery and normalization of nerve function is difficult to achieve. Though irreversible electroporation (IRE might be a promising choice to treat tumors near or involved critical nerve, the pathophysiology of the nerve after IRE treatment has not be clearly defined. METHODS: We applied IRE directly to a rat sciatic nerve to study the long term effects of IRE on the nerve. A sequence of 10 square pulses of 3800 V/cm, each 100 µs long was applied directly to rat sciatic nerves. In each animal of group I (IRE the procedure was applied to produce a treated length of about 10 mm. In each animal of group II (Control the electrodes were only applied directly on the sciatic nerve for the same time. Electrophysiological, histological, and functional studies were performed on immediately after and 3 days, 1 week, 3, 5, 7 and 10 weeks following surgery. FINDINGS: Electrophysiological, histological, and functional results show the nerve treated with IRE can attain full recovery after 7 weeks. CONCLUSION: This finding is indicative of the preservation of nerve involving malignant tumors with respect to the application of IRE pulses to ablate tumors completely. In summary, IRE may be a promising treatment tool for any tumor involving nerves.

  8. DNA Vaccine Electroporation and Molecular Adjuvants

    Science.gov (United States)

    2016-03-16

    Suschak and Schmaljohn DNA Vaccine Electroporation and Molecular Adjuvants 1 Abstract To date, there is no protective vaccine for Ebola virus...the formulation of DNA launched virus-like particles (VLP). In this case, the antigen is encoded in one DNA plasmid, while structural proteins are...Virol, 2010. 155(12): p. 2083-103. 2. Feldmann, H. and T.W. Geisbert, Ebola haemorrhagic fever. Lancet, 2011. 377(9768): p. 849-62. 3. Hart, M.K

  9. A new equivalent circuit model for micro electroporation systems

    KAUST Repository

    Shagoshtasbi, Hooman; Lee, Yi-Kuen

    2011-01-01

    Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability of the cell membrane increases, the membrane resistance decreases. The numerical simulations of the transmembrane current responses to different applied voltages (1∼6V) are consistent with the experimental results using HeLa cells. Besides, the transmembrane voltage as a function of applied voltages is determined as well. These transmembrane current and voltage responses can be extremely useful for the design of new generation of micro EP systems for transfection of large DNA molecules in the future. © 2011 IEEE.

  10. A new equivalent circuit model for micro electroporation systems

    KAUST Repository

    Shagoshtasbi, Hooman

    2011-02-01

    Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability of the cell membrane increases, the membrane resistance decreases. The numerical simulations of the transmembrane current responses to different applied voltages (1∼6V) are consistent with the experimental results using HeLa cells. Besides, the transmembrane voltage as a function of applied voltages is determined as well. These transmembrane current and voltage responses can be extremely useful for the design of new generation of micro EP systems for transfection of large DNA molecules in the future. © 2011 IEEE.

  11. Bleomycin--electrical pulse delivery: electroporation therapy-bleomycin--Genetronics; MedPulser-bleomycin--Genetronics.

    Science.gov (United States)

    2004-01-01

    Genetronics Biomedical is using its electroporation therapy technology to deliver bleomycin to tumour cells for the treatment of cancer. Genetronics have developed the MedPulser Electroporation Therapy System, which consists of an electrical pulse generator and disposable electrode applicators. The MedPulser system enables the delivery of large molecules into cells by briefly applying an electric field to the cell. This causes a transient permeability in the cell's outer membrane characterised by the appearance of pores across the membrane. After the field is discontinued, the pores close, trapping the therapeutic molecules inside the target cells. Genetronics is using the MedPulser System in conjunction with bleomycin, an antineoplastic antibiotic that binds to DNA causing strand scissions. Genetronics is seeking a licensing partner for the use of electroporation for the delivery of drugs in chemotherapy. In 1998, Genetronics entered a licensing and development agreement with Ethicon for electroporation and electrofusion. Under the terms of this agreement, Ethicon was to develop and clinically test the Genetronics electroporation delivery system and conduct all regulatory activities throughout the world except Canada. Ethicon would also market the products once regulatory approval has been obtained and Genetronics was to receive a percentage of the net sales and as license fees. However, in July 2000, Ethicon exercised its rights to terminate the agreement without cause. All rights were returned to Genetronics in January 2001. In 1997, Genetronics entered an agreement with Abbott Laboratories for the manufacture of bleomycin for use in the US in its MedPulsar system after regulatory approval had been granted for its use in the treatment of solid tumours. In a separate supply agreement, Faulding Inc. has agreed to manufacture bleomycin for Genetronic for use in Canada after regulatory approval had been granted. The MedPulsar Electroporation Therapy System with

  12. Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Rabussay, Dietmar [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States); Dev, Nagendu B [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States); Fewell, Jason [Valentis, Inc., 8301 New Trails Drive, The Woodlands, TX (United States); Smith, Louis C [Valentis, Inc., 8301 New Trails Drive, The Woodlands, TX (United States); Widera, Georg [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States); Zhang Lei [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States)

    2003-02-21

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as 'electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing 'pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm{sup -1} generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes

  13. Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    International Nuclear Information System (INIS)

    Rabussay, Dietmar; Dev, Nagendu B; Fewell, Jason; Smith, Louis C; Widera, Georg; Zhang Lei

    2003-01-01

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as 'electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing 'pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm -1 generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes. The safety and pharmaco

  14. The optimization of voltage parameter for tissue electroporation in ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... bodies, peptides or pharmaceuticals into the cell. Electro- ... acetic acid; MS, Murashige and Skoog; 2,4-D, 2,4-dichloro- ... sterile water and transferred to each ice-cold 0.4 cm electroporation ... (X-gluc) and 20% methanol.

  15. Theoretical and experimental study of electroporation of red blood cells using MEMS technology

    KAUST Repository

    Deng, Peigang; Yin, Guangyao; Zhang, Tong Yi; Chang, Donald C.; Lee, Yi Kuen

    2010-01-01

    A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC's membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.

  16. Theoretical and experimental study of electroporation of red blood cells using MEMS technology

    KAUST Repository

    Deng, Peigang

    2010-01-01

    A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC\\'s membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.

  17. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  18. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle

    DEFF Research Database (Denmark)

    Hjortkjær, Camilla Brolin; Shiraishi, Takehiko; Hojman, Pernille

    2015-01-01

    for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI......Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality...... switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find...

  19. Anistropically varying conductivity in irreversible electroporation simulations.

    Science.gov (United States)

    Labarbera, Nicholas; Drapaca, Corina

    2017-11-01

    One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to propose a mathematical model that incorporates a tissue's conductivity increasing more in the direction of the electrical field as this has been shown to occur in experiments. It was necessary to mathematically derive a valid form of the conductivity tensor such that it is dependent on the electrical field direction and can be easily implemented into numerical software. The derivation of a conductivity tensor that can take arbitrary functions for the conductivity in the directions tangent and normal to the electrical field is the main contribution of this paper. Numerical simulations were performed for isotropic-varying and anisotropic-varying conductivities to evaluate the importance of including the electrical field's direction in the formulation for conductivity. By starting from previously published experimental results, this paper derived a general formulation for an anistropic-varying tensor for implementation into irreversible electroporation modeling software. The anistropic-varying tensor formulation allows the conductivity to take into consideration both electrical field direction and magnitude, as opposed to previous published works that only took into account electrical field magnitude. The anisotropic formulation predicts roughly a five percent decrease in ablation size for the monopolar simulation and approximately a ten percent decrease in ablation size for the bipolar simulations. This is a positive result as previously reported results found the isotropic formulation to overpredict ablation size for both monopolar and bipolar simulations. Furthermore, it was also reported that the isotropic formulation overpredicts the ablation size more for the bipolar case than the monopolar case. Thus, our

  20. Synthesis of ABA Tri-Block Co-Polymer Magnetopolymersomes via Electroporation for Potential Medical Application

    Directory of Open Access Journals (Sweden)

    Jennifer Bain

    2015-12-01

    Full Text Available The ABA tri-block copolymer poly(2-methyloxazoline–poly(dimethylsiloxane–poly(2-methyloxazoline (PMOXA–PDMS–PMOXA is known for its capacity to mimic a bilayer membrane in that it is able to form vesicular polymersome structures. For this reason, it is the subject of extensive research and enables the development of more robust, adaptable and biocompatible alternatives to natural liposomes for biomedical applications. However, the poor solubility of this polymer renders published methods for forming vesicles unreproducible, hindering research and development of these polymersomes. Here we present an adapted, simpler method for the production of PMOXA–PDMS–PMOXA polymersomes of a narrow polydispersity (45 ± 5.8 nm, via slow addition of aqueous solution to a new solvent/polymer mixture. We then magnetically functionalise these polymersomes to form magnetopolymersomes via in situ precipitation of iron-oxide magnetic nanoparticles (MNPs within the PMOXA–PDMS–PMOXA polymersome core and membrane. This is achieved using electroporation to open pores within the membrane and to activate the formation of MNPs. The thick PMOXA–PDMS–PMOXA membrane is well known to be relatively non-permeable when compared to more commonly used di-block polymer membranes due a distinct difference in both size and chemistry and therefore very difficult to penetrate using standard biological methods. This paper presents for the first time the application of electroporation to an ABA tri-block polymersome membrane (PMOXA–PDMS–PMOXA for intravesicular in situ precipitation of uniform MNPs (2.6 ± 0.5 nm. The electroporation process facilitates the transport of MNP reactants across the membrane yielding in situ precipitation of MNPs. Further to differences in length and chemistry, a tri-block polymersome membrane structure differs from a natural lipid or di-block polymer membrane and as such the application and effects of electroporation on this type of

  1. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  2. Inhibition of TC-1 tumor progression by cotransfection of Saxatilin and IL-12 genes mediated by lipofection or electroporation.

    Science.gov (United States)

    Park, Y S; Kim, K S; Lee, Y K; Kim, J S; Baek, J Y; Huang, L

    2009-01-01

    Recently, a number of reports have demonstrated that coexpression of therapeutic genes having different anticancer mechanisms is a more effective strategy for anticancer gene therapy than single gene expression. Saxatilin, a novel disintegrin from snake venom, has recently been shown to have potent antiangiogenic functions, such as inhibition of platelet aggregation, bFGF-induced proliferation of HUVEC, and vitronectin-induced smooth muscle cell migration. IL-12 is a well-known immune modulator that promotes Thl-type antitumor immune responses and inhibits angiogenesis as well. The saxatilin and/or IL-12 genes were transfected intratumorally into C57BL/6 mice carrying TC-1 transformed mouse lung endothelial cells by either lipofection or electroporation. The plasmids encoding saxatilin and IL-12 were administered to tumor tissues via novel cationic liposomes consisting of dimyristyl-glutamyl-lysine (DMKE). On the other hand, expression of the genes was also induced by electroporation after naked pDNA injection to the tumor tissues. Lipofection of saxatilin and/or IL-12 genes appeared to be slightly more effective in inhibition of tumor growth than electroporation of the same genes. Cotransfection of saxatilin and IL-12 genes was clearly more effective than individual administration of either gene. This result implies that cotransfection of saxatilin and IL-12 genes represents an innovative modality for anticancer gene therapy.

  3. Finite-element modelling and preliminary validation of microneedle-based electrodes for enhanced tissue electroporation.

    Science.gov (United States)

    Houlihan, Ruth; Grygoryev, Konstantin; Zhenfei Ning; Williams, John; Moore, Tom; O'Mahony, Conor

    2017-07-01

    This paper investigates the use of microneedle-based electrodes for enhanced testis electroporation, with specific application to the production of transgenic mice. During the design phase, finite-element software has been used to construct a tissue model and to compare the relative performance of electrodes employing a) conventional flat plates, b) microneedle arrays, and c) invasive needles. Results indicate that microneedle-based electrodes can achieve internal tissue field strengths which are an order of magnitude higher than those generated using conventional flat electrodes, and which are comparable to fields produced using invasive needles. Using a double-sided etching process, conductive microneedle arrays were then fabricated and used in prototype electrodes. In a series of mouse model experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP), the performance of flat and microneedle electrodes was compared by measuring GFP expression after electroporation. The main finding, supported by experimental and simulated data, is that use of microneedle-based electrodes significantly enhanced electroporation of testis.

  4. Efficacy of irreversible electroporation in human pancreatic adenocarcinoma: advanced murine model

    Directory of Open Access Journals (Sweden)

    Prejesh Philips

    Full Text Available Irreversible electroporation (IRE is a promising cell membrane ablative modality for pancreatic cancer. There have been recent concerns regarding local recurrence and the potential use of IRE as a debulking (partial ablation modality. We hypothesize that incomplete ablation leads to early recurrence and a more aggressive biology. We created the first ever heterotopic murine model by inoculating BALB/c nude mice in the hindlimb with a subcutaneous injection of Panc-1 cells, an immortalized human pancreatic adenocarcinoma cell line. Tumors were allowed to grow from 0.75 to 1.5 cm and then treated with the goal of complete ablation or partial ablation using standard IRE settings. Animals were recovered and survived for 2 days (n = 6, 7 (n = 6, 14 (n = 6, 21 (n = 6, 30 (n = 8, and 60 (n = 8 days. All 40 animals/tumors underwent successful IRE under general anesthesia with muscle paralysis. The mean tumor volume of the animals undergoing ablation was 1,447.6 mm3 ± 884. Histologically, in the 14-, 21-, 30-, and 60-day survival groups the entire tumor was nonviable, with a persistent tumor nodule completely replaced fibrosis. In the group treated with partial ablation, incomplete electroporation/recurrences (N = 10 animals were seen, of which 66% had confluent tumors and this was a significant predictor of recurrence (P < 0.001. Recurrent tumors were also significantly larger (mean 4,578 mm3 ± SD 877 versus completed electroporated tumors 925.8 ± 277, P < 0.001. Recurrent tumors had a steeper growth curve (slope = 0.73 compared with primary tumors (0.60, P = 0.02. Recurrent tumors also had a significantly higher percentage of EpCAM expression, suggestive of stem cell activation. Tumors that recur after incomplete electroporation demonstrate a biologically aggressive tumor that could be more resistant to standard of care chemotherapy. Clinical correlation of this data is limited, but should be considered when IRE of pancreatic cancer is being

  5. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation

    NARCIS (Netherlands)

    Romero, Diego; Perez-Garcia, Alejandro; Veening, Jan-Willem; de Vicente, Antonio; Kuipers, Oscar P.; de, Vicente A.

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool

  6. Effects of radiation on the skin

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    The effects of X-irradiation on pig skin are described, comparing and contrasting the effects seen in human and rodent skin. It is concluded that, anatomically, pig skin is the best animal model for human skin. The applications of the 'pig skin model' to investigations of the problems of radiation therapy and radiological protection of human skin are discussed. (U.K.)

  7. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields

    Science.gov (United States)

    Castellví, Quim; Mercadal, Borja; Moll, Xavier; Fondevila, Dolors; Andaluz, Anna; Ivorra, Antoni

    2018-02-01

    Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm-1 whereas that of dc pulses is about 0.5 kV cm-1.

  8. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery

    Science.gov (United States)

    Best, Simon R.; Peng, Shiwen; Juang, Chi-Mou; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.; Pai, Sara I.

    2009-01-01

    DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC Class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery - in the ability to generate antigen specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin’s role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials. PMID:19622402

  9. A method of combined single-cell electrophysiology and electroporation.

    Science.gov (United States)

    Graham, Lyle J; Del Abajo, Ricardo; Gener, Thomas; Fernandez, Eduardo

    2007-02-15

    This paper describes a method of extracellular recording and subsequent electroporation with the same electrode in single retinal ganglion cells in vitro. We demonstrate anatomical identification of neurons whose receptive fields were measured quantitatively. We discuss how this simple method should also be applicable for the delivery of a variety of intracellular agents, including gene delivery, to physiologically characterized neurons, both in vitro and in vivo.

  10. In Vivo Production of Monoclonal Antibodies by Gene Transfer via Electroporation Protects against Lethal Influenza and Ebola Infections

    Directory of Open Access Journals (Sweden)

    Chasity D. Andrews

    2017-12-01

    Full Text Available Monoclonal antibodies (mAbs have wide clinical utility, but global access is limited by high costs and impracticalities associated with repeated passive administration. Here, we describe an optimized electroporation-based DNA gene transfer platform technology that can be utilized for production of functional mAbs in vivo, with the potential to reduce costs and administration burdens. We demonstrate that multiple mAbs can be simultaneously expressed at protective concentrations for a protracted period of time using DNA doses and electroporation conditions that are feasible clinically. The expressed mAbs could also protect mice against lethal influenza or Ebola virus challenges. Our findings suggest that this DNA gene transfer platform technology could be a game-changing advance that expands access to effective mAb therapeutics globally.

  11. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  12. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE).

    Science.gov (United States)

    Kos, Bor; Voigt, Peter; Miklavcic, Damijan; Moche, Michael

    2015-09-01

    Irreversible electroporation (IRE) is a tissue ablation method, which relies on the phenomenon of electroporation. When cells are exposed to a sufficiently electric field, the plasma membrane is disrupted and cells undergo an apoptotic or necrotic cell death. Although heating effects are known IRE is considered as non-thermal ablation technique and is currently applied to treat tumors in locations where thermal ablation techniques are contraindicated. The manufacturer of the only commercially available pulse generator for IRE recommends a voltage-to-distance ratio of 1500 to 1700 V/cm for treating tumors in the liver. However, major blood vessels can influence the electric field distribution. We present a method for treatment planning of IRE which takes the influence of blood vessels on the electric field into account; this is illustrated on a treatment of 48-year-old patient with a metastasis near the remaining hepatic vein after a right side hemi-hepatectomy. Output of the numerical treatment planning method shows that a 19.9 cm3 irreversible electroporation lesion was generated and the whole tumor was covered with at least 900 V/cm. This compares well with the volume of the hypodense lesion seen in contrast enhanced CT images taken after the IRE treatment. A significant temperature raise occurs near the electrodes. However, the hepatic vein remains open after the treatment without evidence of tumor recurrence after 6 months. Treatment planning using accurate computer models was recognized as important for electrochemotherapy and irreversible electroporation. An important finding of this study was, that the surface of the electrodes heat up significantly. Therefore the clinical user should generally avoid placing the electrodes less than 4 mm away from risk structures when following recommendations of the manufacturer.

  13. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    International Nuclear Information System (INIS)

    Golberg, A; Laufer, S; Rabinowitch, H D; Rubinsky, B

    2011-01-01

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  14. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, A; Laufer, S [Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rabinowitch, H D [Robert H Smith Faculty of Agriculture, Food and Environment, Robert H Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76 100 (Israel); Rubinsky, B, E-mail: Rabin@agri.huji.ac.il [Department of Mechanical Engineering, Graduate Program in Biophysics, University of California at Berkeley, Berkeley, CA 84720 (United States)

    2011-02-21

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  15. The effects of different concentrations of ccBA-GFP promoter with electroporation methods on the quality of koi sperm (Cyprinus carpio var. koi)

    Science.gov (United States)

    Soeprijanto, A.; Aisyah, D.

    2018-04-01

    The effectiveness of the use of promoter concentration which will be inserted into the Koi sperm as the medium of gene transfer is important. The objective of this research is to find out the influence of the adding of different concentrations of the ccBA-GFP promoter with electroporation methods to the motility, viability and the fertilization rate of the Koi sperm. This study was conducted at Central Lab of Life Sciences Brawijaya University in April 2017. Electroporation methods were conducted by using 30-volt voltage, 4 times shocks with 0.5 seconds per shock. The treatment of different concentration was done through 3 types of ccBA-GFP promoter concentration, namely: 10 ng/µl, 30 ng/µl, and 50 ng/µl. The best motility percentage with the score of 4 is at the treatment A (10ng/µl concentration), the best viability percentage is 77.83 % at the treatment A (10 ng/µl concentration) and the best fertilization rate is 73.09 % at the treatment A (10 ng/µl concentration). The result shows that there is a relationship between the treatment given to the motility and viability of the Koi sperm, at which, the higher the shocks, the lower the percentage of the motility and viability of the Koi sperm.

  16. Visualization through Magnetic Resonance Imaging of DNA Internalized Following “In Vivo” Electroporation

    Directory of Open Access Journals (Sweden)

    Simonetta Geninatti Crich

    2005-01-01

    Full Text Available The ability to visualize plasmid DNA entrapment in muscle cells undergoing an “in vivo” electroporation treatment was investigated on BALB/c mice using a 7-T magnetic resonance imaging (MRI scanner using the paramagnetic Gd–DOTA–spd complex as imaging reporter. Gd–DOTA–spd bears a tripositively charged spermidine residue that yields a strong binding affinity toward the negatively charged DNA chain (6.4 kb, Ka = 2.2 × 103 M−1 for approximately 2500 ± 500 binding sites. Cellular colocalization of Gd-DOTA-spd and plasmid DNA has been validated by histological analysis of excised treated muscle. In vivo MRI visualization of Gd-DOTA-spd distribution provides an excellent route to access the cellular entrapment of plasmid DNA upon applying an electroporation pulse.

  17. Studies on mRNA electroporation of immature and mature dendritic cells

    DEFF Research Database (Denmark)

    Met, Ozcan; Eriksen, Jens; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-transl...

  18. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    DEFF Research Database (Denmark)

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria

    2010-01-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological...

  19. A method of genetically engineering acidophilic, heterotrophic, bacteria by electroporation and conjugation

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, F.F.; Glenn, A.W.; Ward, T.E.

    1990-08-07

    A method of genetically manipulating an acidophilic bacteria is provided by two different procedures. Using electroporation, chimeric and broad-host range plasmids are introduced into Acidiphilium. Conjugation is also employed to introduce broad-host range plasmids into Acidiphilium at neutral pH.

  20. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    Science.gov (United States)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  1. Gene Electrotransfer to Skin; Review of Existing Literature and Clinical Perspectives

    DEFF Research Database (Denmark)

    Gothelf, A.; Gehl, Julie

    2010-01-01

    Gene electrotransfer, which designates the combination of gene transfer and electroporation, is a non-viral means for transfecting genes into cells and tissues. It is a safe and efficient method and reports regarding the use of this technique in a variety of animal models and organs have been...... to now more than 40 papers have been published in which gene electrotransfer was the technique used for gene transfection to skin in vivo. The aim of this review is to summarize which plasmids were injected and the electrical parameters applied. Furthermore an overview of the clinical perspectives...

  2. Electroporation ablation: A new energy modality for ablation of arrhythmogenic cardiac substrate

    NARCIS (Netherlands)

    van Driel, VJHM

    2016-01-01

    At the very end of the Direct Current (DC) era, low-energy DC ablation was demonstrated to cause myocardial lesions by non-thermal irreversible electroporation (IRE) (permanent formation of pores in the cell membrane, leading to cell death), without arcing and/or barotrauma. To eliminate rather

  3. Site-targeted non-viral gene delivery by direct DNA injection into the pancreatic parenchyma and subsequent in vivo electroporation in mice.

    Science.gov (United States)

    Sato, Masahiro; Inada, Emi; Saitoh, Issei; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi

    2013-11-01

    The pancreas is considered an important gene therapy target because the organ is the site of several high burden diseases, including diabetes mellitus, cystic fibrosis, and pancreatic cancer. We aimed to develop an efficient in vivo gene delivery system using non-viral DNA. Direct intra-parenchymal injection of a solution containing circular plasmid pmaxGFP DNA was performed on adult anesthetized ICR female mice. The injection site was sandwiched with a pair of tweezer-type electrode disks, and electroporated using a square-pulse generator. Green fluorescent protein (GFP) expression within the injected pancreatic portion was observed one day after gene delivery. GFP expression reduced to baseline within a week of transfection. Application of voltages over 40 V resulted in tissue damage during electroporation. We demonstrate that electroporation is effective for safe and efficient transfection of pancreatic cells. This novel gene delivery method to the pancreatic parenchyma may find application in gene therapy strategies for pancreatic diseases and in investigation of specific gene function in situ. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptions are made.

  4. Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2015-04-01

    Full Text Available Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In addition, synaptic strength is not always accurately revealed by just the size of these structures. Structural and functional dynamics of synapses could be studied more reliably using fluorescent synaptic proteins as markers for size and function. These proteins are often large and possibly interfere with circuit development, which renders them less suitable for conventional transfection or transgenesis methods such as viral vectors, in utero electroporation and germline transgenesis. Single cell electroporation has been shown to be a potential alternative for transfection of recombinant fluorescent proteins in adult cortical neurons. Here we provide proof of principle for the use of single cell electroporation to express and subsequently image fluorescently tagged synaptic proteins over days to weeks in vivo.

  5. Developing a de novo targeted knock-in method based on in utero electroporation into the mammalian brain.

    Science.gov (United States)

    Tsunekawa, Yuji; Terhune, Raymond Kunikane; Fujita, Ikumi; Shitamukai, Atsunori; Suetsugu, Taeko; Matsuzaki, Fumio

    2016-09-01

    Genome-editing technology has revolutionized the field of biology. Here, we report a novel de novo gene-targeting method mediated by in utero electroporation into the developing mammalian brain. Electroporation of donor DNA with the CRISPR/Cas9 system vectors successfully leads to knock-in of the donor sequence, such as EGFP, to the target site via the homology-directed repair mechanism. We developed a targeting vector system optimized to prevent anomalous leaky expression of the donor gene from the plasmid, which otherwise often occurs depending on the donor sequence. The knock-in efficiency of the electroporated progenitors reached up to 40% in the early stage and 20% in the late stage of the developing mouse brain. Furthermore, we inserted different fluorescent markers into the target gene in each homologous chromosome, successfully distinguishing homozygous knock-in cells by color. We also applied this de novo gene targeting to the ferret model for the study of complex mammalian brains. Our results demonstrate that this technique is widely applicable for monitoring gene expression, visualizing protein localization, lineage analysis and gene knockout, all at the single-cell level, in developmental tissues. © 2016. Published by The Company of Biologists Ltd.

  6. Evaluating Electroporation and Lipofectamine Approaches for Transient and Stable Transgene Expressions in Human Fibroblasts and Embryonic Stem Cells

    Science.gov (United States)

    Sharifi Tabar, Mehdi; Hesaraki, Mahdi; Esfandiari, Fereshteh; Sahraneshin Samani, Fazel; Vakilian, Haghighat; Baharvand, Hossein

    2015-01-01

    Objective Genetic modification of human embryonic stem cells (hESCs) is critical for their extensive use as a fundamental tool for cell therapy and basic research. Despite the fact that various methods such as lipofection and electroporation have been applied to transfer the gene of interest (GOI) into the target cell line, however, there are few re- ports that compare all parameters, which influence transfection efficiency. In this study, we examine all parameters that affect the efficiency of electroporation and lipofection for transient and long-term gene expression in three different cell lines to introduce the best method and determinant factor. Materials and Methods In this experimental study, both electroporation and lipofection approaches were employed for genetic modification. pCAG-EGFP was applied for tran- sient expression of green fluorescent protein in two genetically different hESC lines, Roy- an H5 (XX) and Royan H6 (XY), as well as human foreskin fibroblasts (hFF). For long-term EGFP expression VASA and OLIG2 promoters (germ cell and motoneuron specific genes, respectively), were isolated and subsequently cloned into a pBluMAR5 plasmid backbone to drive EGFP expression. Flow cytometry analysis was performed two days after trans- fection to determine transient expression efficiency. Differentiation of drug resistant hESC colonies toward primordial germ cells (PGCs) was conducted to confirm stable integration of the transgene. Results Transient and stable expression suggested a variable potential for different cell lines against transfection. Analysis of parameters that influenced gene transformation ef- ficiency revealed that the vector concentrations from 20-60 μg and the density of the sub- jected cells (5×105and 1×106cells) were not as effective as the genetic background and voltage rate. The present data indicated that in contrast to the circular form, the linearized vector generated more distinctive drug resistant colonies. Conclusion

  7. Greenhouse effect in double-skin facade

    Energy Technology Data Exchange (ETDEWEB)

    Gratia, E.; Herde, A. de [Universite Catholique de Louvain, Architecture et Climat, Louvain-La-Neuve (Belgium)

    2007-02-15

    In these last years, a great deal of interest has been devoted to double-skin facades due to the advantages claimed by this technology (in terms of energy saving in the cold season, high-tech image, protection from external noise and wind loads). One of the great characteristics of the double-skin facade is the greenhouse effect. We identify the factors that influence the greenhouse effect. The identified parameters are solar radiation level, orientation and shading devices use, opaque wall/window proportion of the interior facade, wind speed, colour of shading devices and of interior facade, depth of the cavity of the double-skin, glazing type in the interior facade and openings in the double-skin. We analyze the impact of these parameters on the mean air temperature evolution in the cavity. After that analyse, the article answers the question: is greenhouse effect favourable? The answer is moderate according to the double-skin orientation. (author)

  8. Gene therapy by electroporation for the treatment of chronic renal failure in companion animals

    Directory of Open Access Journals (Sweden)

    Pope Melissa A

    2009-01-01

    Full Text Available Abstract Background Growth hormone-releasing hormone (GHRH plasmid-based therapy for the treatment of chronic renal failure and its complications was examined. Companion dogs (13.1 ± 0.8 years, 29.4 ± 5.01 kg and cats (13.2 ± 0.9 years, 8.5 ± 0.37 kg received a single 0.4 mg or 0.1 mg species-specific plasmid injection, respectively, intramuscularly followed by electroporation, and analyzed up to 75 days post-treatment; controls underwent electroporation without plasmid administration. Results Plasmid-treated animals showed an increase in body weight (dogs 22.5% and cats 3.2% compared to control animals, and displayed improved quality of life parameters including significant increases in appetite, activity, mentation and exercise tolerance levels. Insulin-like growth factor I (IGF-I, the downstream effector of GHRH levels were increased in the plasmid treated animals. Hematological parameters were also significantly improved. Protein metabolism changes were observed suggesting a shift from a catabolic to an anabolic state in the treated animals. Blood urea nitrogen and creatinine did not show any significant changes suggesting maintenance of kidney function whereas the control animal's renal function deteriorated. Treated animals survived longer than control animals with 70% of dogs and 80% of cats surviving until study day 75. Only 17% and 40% of the control dogs and cats, respectively, survived to day 75. Conclusion Improved quality of life, survival and general well-being indicate that further investigation is warranted, and show the potential of a plasmid-based therapy by electroporation in preventing and managing complications of renal insufficiency.

  9. The effects of magnetite (Fe3O4 nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3 cells and in RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Liu YC

    2012-03-01

    Full Text Available Yen-Chin Liu1, Ping-Ching Wu2, Dar-Bin Shieh2–5, Sheng-Nan Wu3,6,71Department of Anesthesiology, 2Institute of Oral Medicine and Department of Stomatology, 3Department of Physiology, National Cheng Kung University Hospital, College of Medicine, 4Advanced Optoelectronic Technology Center, 5Center for Micro/Nano Science and Technology, National Cheng Kung University, 6Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, 7Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, TaiwanAims: Fe3O4 nanoparticles (NPs have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.Methods: We evaluated whether amine surface-modified Fe3O4 NPs have any effect on ion currents in pituitary tumor (GH3 cells via voltage clamp methods.Results: The addition of Fe3O4 NPs decreases the amplitude of membrane electroporation-induced currents (IMEP with a half-maximal inhibitory concentration at 45 µg/mL. Fe3O4 NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of IMEP, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.Conclusion: The modulation of magnetic electroporation-induced currents by Fe3O4 NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.Keywords: iron oxide, ion current, free radical

  10. Electroporation-mediated in vivo gene delivery of the Na+/K+-ATPase pump reduced lung injury in a mouse model of lung contusion.

    Science.gov (United States)

    Machado-Aranda, David A; Suresh, M V; Yu, Bi; Raghavendran, Krishnan

    2012-01-01

    Lung contusion (LC) is an independent risk factor for acute respiratory distress syndrome. The final common pathway in ARDS involves accumulation of fluid in the alveoli. In this study, we demonstrate the application of a potential gene therapy approach by delivering the Na+/K+-ATPase pump subunits in a murine model of LC. We hypothesized that restoring the activity of the pump will result in removal of excess alveolar fluid and additionally reduce inflammation. Under anesthesia, C57/BL6 mice were struck along the right posterior axillary line 1 cm above the costal margin with a cortical contusion impactor. Immediately afterward, 100 μg of plasmid DNA coding for the α,β of the Na+/K+-ATPase pump were instilled into the lungs (LC-electroporation-pump group). Contusion only (LC-only) and a sham saline instillation group after contusion were used as controls (LC-electroporation-sham). By using a BTX 830 electroporator, eight electrical pulses of 200 V/cm field strength were applied transthoracically. Mice were killed at 24 hours, 48 hours, and 72 hours after delivery. Bronchial alveolar lavage was recollected to measure albumin and cytokines by enzyme-linked immunosorbent assay. Pulmonary compliance was measured, and lungs were subject to histopathologic analysis. After the electroporation and delivery of genes coding for the α,β subunits of the Na+/K+-ATPase pump, there was a significant mitigation of acute lung injury as evidenced by reduction in bronchial alveolar lavage levels of albumin, improved pressure volume curves, and reduced inflammation seen on histology. Electroporation-mediated gene transfer of the subunits of the Na+/K+-ATPase pump enhanced recovery from acute inflammatory lung injury after LC.

  11. Induction of rat liver tumor using the Sleeping Beauty transposon and electroporation.

    Science.gov (United States)

    Park, June-Shine; Kim, Bae-Hwan; Park, Sung Goo; Jung, Sun Young; Lee, Do Hee; Son, Woo-Chan

    2013-05-10

    The Sleeping Beauty (SB) transposon system has been receiving much attention as a gene transfer method of choice since it allows permanent gene expression after insertion into the host chromosome. However, low transposition frequency in higher eukaryotes limits its use in commonly-used mammalian species. Researchers have therefore attempted to modify gene delivery and expression to overcome this limitation. In mouse liver, tumor induction using SB introduced by the hydrodynamic method has been successfully accomplished. Liver tumor in rat models using SB could also be of great use; however, dose of DNA, injection volume, rate of injection and achieving back pressure limit the use of the hydrodynamics-based gene delivery. In the present study, we combined the electroporation, a relatively simple and easy gene delivery method, with the SB transposon system and as a result successfully induced tumor in rat liver by directly injecting the c-Myc, HRAS and shp53 genes. The tumor phenotype was determined as a sarcomatoid carcinoma. To our knowledge, this is the first demonstration of induction of tumor in the rat liver using the electroporation-enhanced SB transposon system. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry.

    Science.gov (United States)

    Su, Baofeng; Shang, Mei; Li, Chao; Perera, Dayan A; Pinkert, Carl A; Irwin, Michael H; Peatman, Eric; Grewe, Peter; Patil, Jawahar G; Dunham, Rex A

    2015-04-01

    Channel catfish (Ictalurus punctatus) embryos were electroporated with sterilization constructs targeting primordial germ cell proteins or with buffer. Some embryos then were treated with repressor compounds, cadmium chloride, copper sulfate, sodium chloride or doxycycline, to prevent expression of the transgene constructs. Promoters included channel catfish nanos and vasa, salmon transferrin (TF), modified yeast Saccharomyces cerevisiae copper transport protein (MCTR) and zebrafish racemase (RM). Knock-down systems were the Tet-off (nanos and vasa constructs), MCTR, RM and TF systems. Knock-down genes included shRNAi targeting 5' nanos (N1), 3' nanos (N2) or dead end (DND), or double-stranded nanos RNA (dsRNA) for overexpression of nanos mRNA. These constructs previously were demonstrated to knock down nanos, vasa and dead end, with the repressors having variable success. Exogenous DNA affected percentage hatch (% hatch), as all 14 constructs, except for the TF dsRNA, TF N1 (T), RM DND (C), vasa DND (C), vasa N1 (C) and vasa N2 (C), had lower % hatch than the control electroporated with buffer. The MCTR and RM DND (T) constructs resulted in delayed hatch, and the vasa and nanos constructs had minimal effects on time of hatch (P nanos constructs, doxycycline greatly delayed hatch (P < 0.05). Adverse effects of the transgenes and repressors continued for several treatments for the first 6 days after hatch, but only in a few treatments during the next 10 days. Repressors and gene expression impacted the yield of putative transgenic channel catfish fry, and need to be considered and accounted for in the hatchery phase of producing transgenically sterilized catfish fry and their fertile counterparts. This fry output should be considered to ensure that sufficient numbers of transgenic fish are produced for future applications and for defining repressor systems that are the most successful.

  13. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  14. Irreversible electroporation of locally advanced solid pseudopapillary carcinoma of the pancreas: A case report

    Directory of Open Access Journals (Sweden)

    Luciano Tarantino

    2018-04-01

    Full Text Available Introduction: Solid pseudopapillary Carcinoma (SPC is a rare pancreatic Tumor with variable, usually low, malignancy potential. Howewer, several SPC are associated with aggressive behavior, local vascular infiltration, organ invasion, distant metastasis, and can be unresectable. Irreversible Electroporation (IRE is an emerging non-thermal ablation technique for the treatment of locally advanced pancreatic carcinoma. We report the results of four year disease-free follow-up in a case of locally advanced unresectable SPC treated with IRE. Presentation of case: A 24-year female patient with SPC of the pancreas underwent IRE during laparotomy under general anesthesia with intubation. Computed Tomography (CT showed complete tumor thrombosis of splenic vein, encasement of celiac artery and mesenteric vein. Six insertions of 3–4 electrodes per insertion were performed. One month-CT-control showed shrinkage of the tumor. 6 months-post-treatment imaging showed complete regression of the mass, patent Splenic/mesenteric veins, absence of local recurrence or distant metastasis. Post treatment CTs at 12-18-24-30-36-42-48 months follow-up confirmed absence of local or distant recurrence. Discussion: Surgery is the first choice curative treatment of SPC. Howewer aggressive surgery (duodeno-pancreasectomy in unresectable cases, may have a high risk of recurrences, morbidities and death, and bring concerns about endocrine and exocrine insufficiency in a young patient. In these cases, IRE could be a safe and effective alternative treatment and could realize, in selected cases, the condition for a radical surgery, and a bridge to R-0 resection. Conclusions: IRE could represent an effective alternative therapy to surgery in local advanced, unresectable SPC. Keywords: Pancreatic neoplasm, Solid papillary carcinoma, Intraoperative ultrasound, Irreversible electroporation, Case report

  15. The second phase of bipolar, nanosecond-range electric pulses determines the electroporation efficiency.

    Science.gov (United States)

    Pakhomov, Andrei G; Grigoryev, Sergey; Semenov, Iurii; Casciola, Maura; Jiang, Chunqi; Xiao, Shu

    2018-03-29

    Bipolar cancellation refers to a phenomenon when applying a second electric pulse reduces ("cancels") cell membrane damage by a preceding electric pulse of the opposite polarity. Bipolar cancellation is a reason why bipolar nanosecond electric pulses (nsEP) cause weaker electroporation than just a single unipolar phase of the same pulse. This study was undertaken to explore the dependence of bipolar cancellation on nsEP parameters, with emphasis on the amplitude ratio of two opposite polarity phases of a bipolar pulse. Individual cells (CHO, U937, or adult mouse ventricular cardiomyocytes (VCM)) were exposed to either uni- or bipolar trapezoidal nsEP, or to nanosecond electric field oscillations (NEFO). The membrane injury was evaluated by time-lapse confocal imaging of the uptake of propidium (Pr) or YO-PRO-1 (YP) dyes and by phosphatidylserine (PS) externalization. Within studied limits, bipolar cancellation showed little or no dependence on the electric field intensity, pulse repetition rate, chosen endpoint, or cell type. However, cancellation could increase for larger pulse numbers and/or for longer pulses. The sole most critical parameter which determines bipolar cancellation was the phase ratio: maximum cancellation was observed with the 2nd phase of about 50% of the first one, whereas a larger 2nd phase could add a damaging effect of its own. "Swapping" the two phases, i.e., delivering the smaller phase before the larger one, reduced or eliminated cancellation. These findings are discussed in the context of hypothetical mechanisms of bipolar cancellation and electroporation by nsEP. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Improvement of in vivo transfer of plasmid DNA in muscle : Comparison of electroporation versus ultrasound

    NARCIS (Netherlands)

    Kusumanto, Yoka H.; Mulder, Nanno H.; Dam, Wendy A.; Losen, Mario H.; Meijer, Coby; Hospers, Geke A. P.

    Plasmid-based gene delivery to muscle is a treatment strategy for many diseases with potential advantages above viral-based gene delivery methods, however, with a relative low transfection efficiency. We compared two physical methods-electroporation and ultrasound-that facilitate DNA uptake into

  17. Electrocutaneous sensitivity: effects of skin temperature.

    Science.gov (United States)

    Larkin, W D; Reilly, J P

    1986-01-01

    The effect of human skin temperature on electrocutaneous sensitivity was examined using brief capacitive discharges. Stimuli were designed to ensure that sensory effects would be independent of skin resistance and would reflect underlying neural excitability as closely as possible. Skin temperature was manipulated by immersing the forearm in circulating hot or cold air. Detection thresholds on the arm and fingertip were raised by cooling, but were not altered by heating. Temperature-related sensitivity shifts were described by the same multiplicative factors for both threshold and suprathreshold levels. The temperature coefficient (Q10) for cutaneous sensitivity under these conditions was approximately 1.3.

  18. Effects of air pollution on the skin: A review.

    Science.gov (United States)

    Puri, Poonam; Nandar, Shashi Kumar; Kathuria, Sushruta; Ramesh, V

    2017-01-01

    The increase in air pollution over the years has had major effects on the human skin. Various air pollutants such as ultraviolet radiation, polycyclic aromatic hydrocarbons, volatile organic compounds, oxides, particulate matter, ozone and cigarette smoke affect the skin as it is the outermost barrier. Air pollutants damage the skin by inducing oxidative stress. Although human skin acts as a biological shield against pro-oxidative chemicals and physical air pollutants, prolonged or repetitive exposure to high levels of these pollutants may have profound negative effects on the skin. Exposure to ultraviolet radiation has been associated with extrinsic skin aging and skin cancers. Cigarette smoke contributes to premature aging and an increase in the incidence of psoriasis, acne and skin cancers. It is also implicated in allergic skin conditions such as atopic dermatitis and eczema. Polyaromatic hydrocarbons are associated with extrinsic skin aging, pigmentation, cancers and acneiform eruptions. Volatile organic compounds have been associated with atopic dermatitis. Given the increasing levels of air pollution and its detrimental effects on the skin, it is advisable to use strategies to decrease air pollution.

  19. Nanochannel Electroporation as a Platform for Living Cell Interrogation in Acute Myeloid Leukemia.

    Science.gov (United States)

    Zhao, Xi; Huang, Xiaomeng; Wang, Xinmei; Wu, Yun; Eisfeld, Ann-Kathrin; Schwind, Sebastian; Gallego-Perez, Daniel; Boukany, Pouyan E; Marcucci, Guido I; Lee, Ly James

    2015-12-01

    A living cell interrogation platform based on nanochannel electroporation is demonstrated with analysis of RNAs in single cells. This minimally invasive process is based on individual cells and allows both multi-target analysis and stimulus-response analysis by sequential deliveries. The unique platform possesses a great potential to the comprehensive and lysis-free nucleic acid analysis on rare or hard-to-transfect cells.

  20. Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D.A.; Harlander, S.K. (Univ. of Minnesota, St. Paul (USA))

    1989-03-01

    The objective of this study was to develop a system for electroporating intact cells of Lactococcus lactis subsp. lactis LM0230 (previously designated Streptococcus lactis LM0230) with a commercially available electroporation unit. Parameters which influenced the efficiency of transformation included growth phase and final concentration of cells, ionic strength of the suspending medium, concentration of plasmid DNA, and the amplitude and duration of the pulse. Washed suspensions of intact cells suspended in deionized distilled water were subjected to one high-voltage electric pulse varying in voltage (300 to 900 V corresponding to field strengths of 5 to 17 kV/cm) and duration (100 {mu}s to 1 s). Transformation efficiencies of 10{sup 3} transformants per {mu}g of DNA were obtained when dense suspensions (final concentration, 5 {times} 10{sup 10} CFU/ml) of stationary-phase cells were subjected to one pulse with a peak voltage of 900 V (field strength, 17 kV/cm) and a pulse duration of 5 ms in the presence of plasmid DNA. Dilution of porated cells in broth medium followed by an expression period of 2 h at 30{degree}C was beneficial in enhancing transformation efficiencies. Plasmids ranging in size from 9.8 to 30.0 kilobase pairs could be transformed by this procedure.

  1. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation

    DEFF Research Database (Denmark)

    Glahder, Jacob; Norrild, Bodil; Persson, Mikael B

    2005-01-01

    Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 microg DNA in 90 microl low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and puls...

  2. Study of the skin effect in superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Szeftel, Jacob, E-mail: jszeftel@lpqm.ens-cachan.fr [ENS Cachan, LPQM, 61 avenue du Président Wilson, 94230 Cachan (France); Sandeau, Nicolas [Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille (France); Khater, Antoine [Université du Maine, UMR 6087 Laboratoire PEC, F-72000 Le Mans (France)

    2017-05-03

    Highlights: • Comprehensive theoretical study of the skin effect in superconductors. • Based on Newton and Maxwell's equations. • Usual and anomalous skin effects dealt with in the same framework. - Abstract: The skin effect is analyzed to provide the numerous measurements of the penetration depth of the electromagnetic field in superconducting materials with a theoretical basis. Both the normal and anomalous skin effects are accounted for within a single framework, focusing on frequencies less than the superconducting gap. The emphasis is laid on the conditions required for the penetration depth to be equal to London's length, which enables us to validate an assumption widely used in the interpretation of all current experimental results.

  3. Skin-effect in a dense ionizing plasma

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.; Taranenko, S.B.

    1989-01-01

    Effect of multiple ionization and radiation (bremmstrahlung and photorecombination) on skin effect in a dense plasma is investigated. Limiting cases are considered: 1) fast skin-effect, when plasma movement and any types of losses (radiation, electron thermal conductivity) have no time to manifest themselves during short heating times; 2) deceleration of skinning under effect of radiation achieving equilibrium with Joule heating. Self-simulating solutions of the problem for half-space are investigated. The results are applied to analysing experiments with exploding wires. It is shown that under conditions, typical of heavy-current decelerators tubular structures are produced as a result of heat and current skinning under free dispersion of plasma produced during the explosion. Their dimensions are of the order of dozens of microns, and the temperature exceeds 50 eV. The linear power and complete ''tube'' radiation yield at this stage are able to make a substantial contribution to the energy balance in the group

  4. Effects of ultraviolet irradiation on skin of guinea pig

    International Nuclear Information System (INIS)

    Zhang Wenwen; Chen Qiang; Li Peng; Ling Ling; Lin Xiaochen; Ren Shuping; Liu Yajuan; Li Yun

    2008-01-01

    Objective: To explore the adverse effects of ultraviolet B (UV-B) on the skin of guinea pig. Methods: Guinea pig skin was irradiated with UV-B, the skin changes in external appearance, pathology, and the contents of OH and O 2 - produced in the skin were determined to study the adverse effects of UV-B on the guinea pig skin. Results: UV-B caused red swelling and desquamation of skin, with the increasing of the UV-B irradiation, the cells in stratum spinosum began to proliferate vigorously, the MDA and ROS contents in UVB radiation group were significantly higher than those in control group (P<0.05). Conclusion: UV-B can cause injury to guinea pig skin and has the potential to produce skin cancer. (authors)

  5. Ex vivo electroporation of retinal cells: a novel, high efficiency method for functional studies in primary retinal cultures.

    Science.gov (United States)

    Vergara, M Natalia; Gutierrez, Christian; O'Brien, David R; Canto-Soler, M Valeria

    2013-04-01

    Primary retinal cultures constitute valuable tools not only for basic research on retinal cell development and physiology, but also for the identification of factors or drugs that promote cell survival and differentiation. In order to take full advantage of the benefits of this system it is imperative to develop efficient and reliable techniques for the manipulation of gene expression. However, achieving appropriate transfection efficiencies in these cultures has remained challenging. The purpose of this work was to develop and optimize a technique that would allow the transfection of chick retinal cells with high efficiency and reproducibility for multiple applications. We developed an ex vivo electroporation method applied to dissociated retinal cell cultures that offers a significant improvement over other currently available transfection techniques, increasing efficiency by five-fold. In this method, eyes were enucleated, devoid of RPE, and electroporated with GFP-encoding plasmids using custom-made electrodes. Electroporated retinas were then dissociated into single cells and plated in low density conditions, to be analyzed after 4 days of incubation. Parameters such as voltage and number of electric pulses, as well as plasmid concentration and developmental stage of the animal were optimized for efficiency. The characteristics of the cultures were assessed by morphology and immunocytochemistry, and cell viability was determined by ethidium homodimer staining. Cell imaging and counting was performed using an automated high-throughput system. This procedure resulted in transfection efficiencies in the order of 22-25% of cultured cells, encompassing both photoreceptors and non-photoreceptor neurons, and without affecting normal cell survival and differentiation. Finally, the feasibility of the technique for cell-autonomous studies of gene function in a biologically relevant context was tested by carrying out gain and loss-of-function experiments for the

  6. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  7. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2013-01-01

    offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...

  8. Cation selectivity of the plasma membrane of tobacco protoplasts in the electroporated state.

    Science.gov (United States)

    Wegner, Lars H

    2013-08-01

    Cation selectivity of the cellular membrane of tobacco culture cells (cell line 'bright yellow-2') exposed to pulsed electric fields in the millisecond range was investigated. The whole cell configuration of the patch clamp technique was established on protoplasts prepared from these cells. Ion selectivity of the electroporated membrane was investigated by measuring the reversal potential of currents passing through field-induced pores. To this end the membrane was hyper- or depolarized for 10ms (prepulse); subsequently the voltage was driven to opposite polarity at a constant rate (+40 or -40mV/ms, respectively). The experiment was started by polarizing the membrane to moderately negative or positive voltages (prepulse potential ±150mV) that would not induce pore formation. Subsequently, an extended voltage range was scanned in the porated state of the membrane (prepulse potential ±600mV). IV curves in the porated and the non-porated state (obtained at the same prepulse polarity) were superimposed to determine the voltage at which both curves intersected ('Intersection potential'). Using a modified version of the Goldmann-Hodgkin-Katz equation relative permeabilities to Ca(2+) and various monovalent alkali and organic cations were calculated. Pores were found to be fairly cation selective, with a selectivity sequence determined to be Ca(2+)>Li(+)>Rb(+)≈K(+)≈Na(+)>TEA(+)≈TBA(+)>Cl(-). Relative permeability to monovalent cations was inversely related to the ionic diameter. By fitting a formalism suggested by Dwyer at al. (J. Gen. Physiol. 75 (1980), 469-492) the effective average diameter of field induced pores was estimated to be about 1.8nm. Implications of these results for biotechnology and electroporation theory are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  10. Experimental study on ablating goat liver tissue with ultrasound imaging guided percutaneous irreversible electroporation

    Directory of Open Access Journals (Sweden)

    Ying LIU

    2011-03-01

    Full Text Available Objective To investigate the proper method of percutaneous irreversible electroporation(IRE to ablate goat liver tissue under ultrasonic guidance,and observe the features of ultrasound imaging and histological changes.Methods The pulse electric fields(PEFs with permanent duration(100 μs,frequency(1Hz,voltage(2000V and pulses(120 pieces were applied to the electrodes,and the electrodes were placed into goats’ liver under ultrasound guidance through the animal skin to the target area.The treated area was observed by real-time ultrasound scanning,and the histopathological changes were assessed by hematoxylin and eosin(HE staining under light microscope at the time of 0h and 24h after IRE ablation.The circumscribed ablated area was compared with that of finite element modeling(FEM calculation method.Results Ultrasound imaging guidance was accurate in focusing on the target area.Imaging captured by the ultrasound after IRE procedure was quite different from that of the normal liver imaging.Complete hepatic cell death with a sharp demarcation between the ablated zone and the non-ablated zone was well visualized 24 hours after the procedure.Necrospy-based measurement demonstrated a high consistence with FEM-anticipated ablation zones.Conclusion With real-time monitoring by ultrasonography and well-controlled ablation of the target tissue,percutaneous IRE can provide a novel and unique ablative method for cancer treatment.The present paper provides a fundamental experimental work for future studies on clinical application of IRE.

  11. Effect of interstitial low level laser stimulation in skin density

    Science.gov (United States)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  12. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang; Chang, Donald C.; Lee, Yi Kuen; Zhou, Junwei; Li, Gang

    2011-01-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  13. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang

    2011-02-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  14. Ca2+ uptake and cellular integrity in rat EDL muscle exposed to electrostimulation, electroporation, or A23187

    DEFF Research Database (Denmark)

    Gissel, Hanne; Clausen, Torben

    2003-01-01

    We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2+ ionoph...

  15. Biophysical effects of water and synthetic urine on skin.

    Science.gov (United States)

    Mayrovitz, H N; Sims, N

    2001-01-01

    Pressure ulcers often occur at sites subjected to pressure and wetness. Although skin wetness is a risk factor for pressure ulcers,the mechanisms and effects of wetness versus urine constituents on skin breakdown is unclear. The hypothesis that wetness reduces skin hardness and, thereby, increases vulnerability of underlying blood vessels to pressure-induced flow reductions was tested in this study. Pads saturated with water and with a water solution mixed with the main chemical constituents of urine (synthetic urine; s-urine) were applied to forearm skin of 10 healthy subjects for 5.5 hours. Skin hardness, blood flow change caused by 60 mm Hg of pressure, erythema, and temperature were compared among dry, water, and s-urine test sites. 10 healthy women. Research Center, Nova Southeastern University, Health Professions Division, Fort Lauderdale, FL. S-urine and water caused significant reductions in initial hardness and caused greater initial perfusion decreases during pressure load when compared with dry sites. Skin temperature and erythema were lower at wet sites when compared with dry sites. The findings of this study are consistent with the concept that sustained skin wetness increases vulnerability to pressure-induced blood flow reduction. The effect appears to be mainly dependent on wetness, but urine constituents may exacerbate the effect. In addition, wetness-related skin cooling may play a role. In the healthy subjects studied, the blood flow decrease was not sustained due to perfusion recovery under pressure. Skin wetness would likely have more sustained effects in patients with compromised recovery mechanisms. Measures to diminish skin exposure to wetness in these patients, whatever the wetness source, are an important consideration in a multifaceted strategy to reduce the risk of pressure ulcers.

  16. Antibacterial effect of glycerol as preservative on donor skin

    International Nuclear Information System (INIS)

    Van Baare, J.; Ligtvoet, E.E.J.; Middelkoop, E.

    1999-01-01

    Glycerolised cadavetic allografts have been used widely since 1984 in the treatment of bum wounds. Rejections reaction to glycerolised skin were reported to be attenuated. Structural integrity of the skin was maintained and antiviral and antibacterial effects were noted. The Euro Skin Bank has gathered approximately 2000 data since 1987 concerning bacteriology cultures of glycerolised skin. These data are presented. Bacteriological data from skin donors were examined from 1987 till 1995 (1927 data). Donor skin sent to the laboratory and found to be positive for bacteria was quarantined and another container with skin samples was sent to the laboratory at a later time point. This was repeated until all cultures were negative. In 1987, 25 donors were processed without using antibiotics. These results were compared with donor skin treated with antibiotics. The average day for first culture was 19.7 ? 17.2. The average percentage of contaminated skin was 10.1? 3.7%. Antibiotics reduced contamination of glycerolised skin from 80% to 10.1%. Glycerol treatment also showed an antibacterial effect as all contaminated skin eventually became negative. Of the contaminated skin Staphylococcus epidermidis was found most frequently: in 70.7 ? 10.8% of the cases. Not all bacteria are equally sensitive to glycerol: Staphylococcus epidennidis contaminated skin became sterile after 48?24 days, whereas for Bacillus species it took 195? 1 37.9 days. We show that glycerol preservation of donor skin has important advantages over conservative methods such as cryopreservation. Initial contamination of the skin is no longer a reason to discard the material. Prolonged storage in glycerol will eliminate bacterial contamination. This allows an increase in yield of at least 10%

  17. Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip

    DEFF Research Database (Denmark)

    Selmeczi, David; Hansen, Thomas; Met, Özcan

    2011-01-01

    We present a hybrid chip of polymer and stainless steel designed for high-throughput continuous electroporation of cells in suspension. The chip is constructed with two parallel stainless steel mesh electrodes oriented perpendicular to the liquid flow. The relatively high hydrodynamic resistance ...

  18. Cholesterol Induced Changes in the Characteristics of the Time Series From Planar Lipid Bilayer Membrane during Electroporation

    International Nuclear Information System (INIS)

    Kotulska, M.; Koronkiewicz, S.; Kalinowski, S.

    2002-01-01

    The electroporation can be used as a non-toxic method for introducing exogenous macromolecules, especially DNA and drugs, into various types of cells. Research in to new therapeutic methods based on Long Duration Electroporation (LDE) is of special interest. A new current-clamp method makes possible the electroporation of very long duration with no damage to bio-membranes. In this paper we compare responses of lipid planar bilayer membranes at physiological concentration of KCl, with lipid membranes formed at higher ionic strength, and membranes containing cholesterol. A longer lifespan of the membranes with cholesterol and membranes with increased ionic strength could be observed. Sensitivity of the power spectrum response to the presence of cholesterol, ionic strength, current intensity, and membrane ageing was examined. The membrane memory was analyzed by means of autocorrelation function and rescaled range analysis. We showed that the memory of the system decreases for higher current intensities and this relation is pronounced better at higher ionic strength. At low current intensities all membranes showed slightly persistent type of noise behavior with crossover to Brownian type of noise for higher current value. The transition w as much faster for higher ionic strength, where the next transition to anti-persistent response was observed for relatively low currents. Very interesting results were obtained from power spectrum analysis. At low current intensity, all membranes exhibited 1/f noise, which disappeared for higher currents, maintaining f β type with rising value of β. Membranes formed at lower ionic strength and with cholesterol showed a pronounced tendency to lose flicker noise while ageing, also with rising β value. (author)

  19. Field enhancement due to anomalous skin effect inside a target

    International Nuclear Information System (INIS)

    Ma, G.; Tan, W.

    1996-01-01

    A new method based on Fourier transformation to study the skin effects is presented. Using this method, the field amplitude in plasma is represented in terms of electric conductivity, and the normal and anomalous skin effects are described through one formula by omitting the plasma dispersion or not. The results are in agreement with other publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558 (1992)] for equivalent parameters. But for deeper positions inside a target, which have not been studied by others, it is found that the field amplitude is considerably enhanced due to an anomalous skin effect, even for constant collision frequency. In addition, the skin absorptions and some calculations on an anomalous skin effect for different collision frequencies are also presented. copyright 1996 American Institute of Physics

  20. In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8+ T cells.

    Science.gov (United States)

    Sales, Natiely S; Silva, Jamile R; Aps, Luana R M M; Silva, Mariângela O; Porchia, Bruna F M M; Ferreira, Luís Carlos S; Diniz, Mariana O

    2017-12-19

    In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8 + T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8 + T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. CONVECTIVE DRYING OF CHERRY TOMATO: STUDY OF SKIN EFFECT

    Directory of Open Access Journals (Sweden)

    R. KHAMA

    2016-03-01

    Full Text Available A whole single cherry tomato was dried in a forced convective micro-dryer. The experiments were carried out at constant air velocity and humidity and temperatures of 50, 60, 70 °C. In order to study the effect of the skin, two sets of experiments were performed using a tomato with and without skin (easily removed. Shorter drying times were obtained when increasing drying temperatures as well as when removing sample skin. X-ray microtomography, a non-destructive 3D imaging technique was used to follow shrinkage of the samples. This phenomenon was introduced in the modelling part of this study. Analytical solutions of the Fick’law were used to determine the diffusion coefficient at the three temperatures studied, and then the activation energy was obtained through fitting the Arrhenius equation. The skin effect was clearly evidenced by showing that the mass transfer parameter values of an original tomato with skin were largely smaller than the one without skin. Indeed, the moisture effective diffusivity ranged from 2.56×10-11 to 7.67×10-11 m2·s-1 with activation energy of 50430 J·mol-1 for tomato with skin an ranged from 4.59×10-10 m2·s-1 to 6.73×10-10 m2·s-1 with activation energy of 17640 J.mol-1 for tomato without skin.

  2. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  3. [Effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals].

    Science.gov (United States)

    Roh, So Young; Kim, Kye Ha

    2013-12-01

    The purpose of this study was to examine the effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals. The participants were elders over 65 years old admitted to long-term care. They were assigned to the experimental group (26) or control group (28). Data were collected from May to August, 2012. Visual Analogue Scale and Verran and Snyder-Halpern Sleep scale were used to identify levels of pruritus and sleep. A skin-pH meter and moisture checker were used to measure skin pH and skin hydration. Aroma massage was performed three times a week for 4 weeks for elders in the experimental group. The data were analyzed using the SPSS Win 17.0 program. There were significant differences in pruritus, skin pH and skin hydration between the two groups. However there was no significant difference in sleep. The results indicate that aroma massage is effective in reducing pruritus, skin pH and increasing skin hydration in elders. Therefore, this intervention can be utilized in clinical practice as an effective nursing intervention to reduce pruritus in elders in long-term care hospitals.

  4. Skin thickness effects on in vivo LXRF

    International Nuclear Information System (INIS)

    Preiss, I.L.; Washington, W. II

    1995-01-01

    The analysis of lead concentration in bone utilizing LXRF can be adversely effected by overlying issue. A quantitative measure of the attenuation of the 10.5 keV Pb L a x-ray signal by skin and skin equivalent plastic has been conducted. Concentration ranges in plaster of Paris and goat bone from 7 to 90 ppm with attenuators of Lucite reg-sign and pig skin were examined. It is concluded that no quantitative or semi quantitative analysis can be achieved if overlying sue thickness exceeds 3 mm for Ph concentrations of less than 30 porn Ph in bone

  5. Inhibitory effect of corn silk on skin pigmentation.

    Science.gov (United States)

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-03-03

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  6. Inhibitory Effect of Corn Silk on Skin Pigmentation

    Directory of Open Access Journals (Sweden)

    Sang Yoon Choi

    2014-03-01

    Full Text Available In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  7. Effect of alcohol on skin permeation and metabolism of an ester-type prodrug in Yucatan micropig skin.

    Science.gov (United States)

    Fujii, Makiko; Ohara, Rieko; Matsumi, Azusa; Ohura, Kayoko; Koizumi, Naoya; Imai, Teruko; Watanabe, Yoshiteru

    2017-11-15

    We studied the effect that three alcohols, ethanol (EA), propanol (PA), and isopropanol (IPA), have on the skin permeation of p-hydroxy benzoic acid methyl ester (HBM), a model ester-type prodrug. HBM was applied to Yucatan micropig skin in a saturated phosphate buffered solution with or without 10% alcohol, and HBM and related materials in receptor fluid and skin were determined with HPLC. In the absence of alcohol, p-hydroxy benzoic acid (HBA), a metabolite of HBM, permeated the skin the most. The three alcohols enhanced the penetration of HBM at almost the same extent. The addition of 10% EA or PA to the HBM solution led to trans-esterification into the ethyl ester or propyl ester of HBA, and these esters permeated skin as well as HBA and HBM did. In contrast, the addition of 10% IPA promoted very little trans-esterification. Both hydrolysis and trans-esterification in the skin S9 fraction were inhibited by BNPP, an inhibitor of carboxylesterase (CES). Western blot and native PAGE showed the abundant expression of CES in micropig skin. Both hydrolysis and trans-esterification was simultaneously catalyzed by CES during skin permeation. Our data indicate that the alcohol used in dermal drug preparations should be selected not only for its ability to enhance the solubility and permeation of the drug, but also for the effect on metabolism of the drug in the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Saeid [University of Toronto, Department of Chemistry (Canada); Li Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-04-15

    Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

  9. The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer.

    Science.gov (United States)

    Usaj, Marko; Kanduser, Masa

    2012-09-01

    The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells' response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41 ± 9 % yield, while in isotonic buffer 32 ± 11 % yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1 % in isotonic buffer to 10 ± 4 % in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.

  10. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Vroomen, Laurien G. P. H., E-mail: la.vroomen@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Kazemier, Geert, E-mail: g.kazemier@vumc.nl; Tol, M. Petrousjka van den, E-mail: mp.vandentol@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2016-01-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth–Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure.

  11. Efficient in vivo electroporation of the postnatal rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Camille Boutin

    Full Text Available Functional gene analysis in vivo represents still a major challenge in biomedical research. Here we present a new method for the efficient introduction of nucleic acids into the postnatal mouse forebrain. We show that intraventricular injection of DNA followed by electroporation induces strong expression of transgenes in radial glia, neuronal precursors and neurons of the olfactory system. We present two proof-of-principle experiments to validate our approach. First, we show that expression of a human isoform of the neural cell adhesion molecule (hNCAM-140 in radial glia cells induces their differentiation into cells showing a neural precursor phenotype. Second, we demonstrate that p21 acts as a cell cycle inhibitor for postnatal neural stem cells. This approach will represent an important tool for future studies of postnatal neurogenesis and of neural development in general.

  12. The effect of skin thermistor fixation method on weighted mean skin temperature

    International Nuclear Information System (INIS)

    Tyler, Christopher James

    2011-01-01

    The purpose of this study was to investigate the effect of three different skin thermistor attachment methods on weighted mean skin temperature (WMT sk ) at three different ambient temperatures (∼24 °C (TEMP); ∼30 °C (WARM); ∼35 °C (HOT)) compared to uncovered thermistors. Eleven, non-acclimated, volunteers completed three 5 min bouts of submaximal cycling (∼70 W mechanical work)—one at each environmental condition in sequential order (TEMP, WARM, HOT). One thermistor was fixed to the sternal notch whilst four skin thermistors were spaced at 3 cm intervals on each of the sites on the limbs as per the formula of Ramanathan (1964 J. Appl. Physiol. 19 531–3). Each thermistor was either held against the skin uncovered (UC) or attached with surgical acrylic film dressing (T); surgical acrylic film dressing and hypoallergenic surgical tape (TT) or surgical acrylic film dressing, hypoallergenic surgical tape and surgical bandage (TTC). The WMT sk calculated was significantly lower in UC compared to T, TT and TTC (p < 0.001, d = 0.46), in T compared to TT and TTC (p < 0.001, d = 0.33) and in TT compared to TTC (p < 0.001; d = 0.25). The mean differences (across the three temperatures) were + 0.27 ±0.34 °C, + 0.52 ± 0.35 °C and + 0.82 ± 0.34 °C for T, TT and TTC, respectively. The results demonstrate that the method of skin thermistor attachment can result in the significant over-estimation of weighted mean skin temperature

  13. Supplemental Material, PWQ42_2_747845_Choma_and_Prusaczyk - The Effects of System Justifying Beliefs on Skin-Tone Surveillance, Skin-Color Dissatisfaction, and Skin-Bleaching Behavior

    OpenAIRE

    Choma, Becky L.; Prusaczyk, Elvira

    2018-01-01

    Supplemental Material, PWQ42_2_747845_Choma_and_Prusaczyk for The Effects of System Justifying Beliefs on Skin-Tone Surveillance, Skin-Color Dissatisfaction, and Skin-Bleaching Behavior by Becky L. Choma, and Elvira Prusaczyk in Psychology of Women Quarterly

  14. Effect of skin tumor properties on laser penetration

    CSIR Research Space (South Africa)

    Karsten, AE

    2009-06-01

    Full Text Available Computer modeling can be a valuable tool to determine the absorption of laser light in different skin layers. For this study, the optical properties of three different skin tumors were used in the model to evaluate the effect on penetration depth...

  15. Analysis of effect of different construction methods of piles on the end effect on skin friction of piles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hongbo; CHEN Zhuchang

    2007-01-01

    Based on the comparative analysis of end effect on skin friction of displacement-pile (driven pile),the end effect on skin friction of bored pile is studied.The end effect on skin friction between driven pile and bored pile is different and the end effect on skin friction of bored pile is reduce of skin friction in the soil layer adjacent to the pile end.The degradation degree of skin friction is deduced with the increase of the distance from pile end.The concept of additional mud cake formed by the effect of cushion at the bottom of borehole during pouring concrete is introduced to explain the mechanism of end effect on skin friction of the bored pile.The test results of post-grouting piles indicate that the post-grouting technique is an effective way to improve the end effect on skin friction of bored pile.

  16. Skin Protective Effect of Epigallocatechin Gallate

    Directory of Open Access Journals (Sweden)

    Eunji Kim

    2018-01-01

    Full Text Available Epigallocatechin gallate (EGCG is a catechin and an abundant polyphenol in green tea. Although several papers have evaluated EGCG as a cosmetic constituent, the skin hydration effect of EGCG is poorly understood. We aimed to investigate the mechanism by which EGCG promotes skin hydration by measuring hyaluronic acid synthase (HAS and hyaluronidase (HYAL gene expression and antioxidant and anti-pigmentation properties using cell proliferation assay, Western blotting analysis, luciferase assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH assay, and reverse transcription polymerase chain reaction (RT-PCR analysis. RT-PCR showed that EGCG increased the expression of natural moisturizing factor-related genes filaggrin (FLG, transglutaminase-1, HAS-1, and HAS-2. Under UVB irradiation conditions, the expression level of HYAL was decreased in HaCaT cells. Furthermore, we confirmed the antioxidant activity of EGCG and also showed a preventive effect against radical-evoked apoptosis by downregulation of caspase-8 and -3 in HaCaT cells. EGCG reduced melanin secretion and production in melanoma cells. Together, these results suggest that EGCG might be used as a cosmetic ingredient with positive effects on skin hydration, moisture retention, and wrinkle formation, in addition to radical scavenging activity and reduction of melanin generation.

  17. Effects of various vehicles on skin hydration in vivo.

    Science.gov (United States)

    Wiedersberg, S; Leopold, C S; Guy, R H

    2009-01-01

    The stratum corneum, the outermost layer of the skin, regulates the passive loss of water to the environment. Furthermore, it is well accepted that drug penetration is influenced by skin hydration, which may be manipulated by the application of moisturizing or oleaginous vehicles. Measurements of transepidermal water loss (TEWL), and of skin hydration using a corneometer, were used to assess the effect of different vehicles on stratum corneum barrier function in vivo in human volunteers. A microemulsion significantly increased skin hydration relative to a reference vehicle based on medium chain triglycerides; in contrast, Transcutol(R) lowered skin hydration. TEWL measurements confirmed these observations. Copyright 2009 S. Karger AG, Basel.

  18. Introduction of exogenous DNA into gonads of chick embryos by lipofection and electroporation of stage X blastoderms in vivo.

    Science.gov (United States)

    Sano, A; Tagami, T; Harumi, T; Matsubara, Y; Naito, M

    2003-03-01

    1. In order to introduce exogenous DNA into gonads of chick embryos, stage X blastoderms of freshly laid and unincubated eggs were transfected by lipofection and electroporation in vivo. 2. The introduced DNA, green fluorescence protein (GFP) gene, was efficiently expressed in the blastoderms incubated for 24 h (78.8%, 78/99). 3. The GFP gene was present in most of the embryonic bodies and extra-embryonic membranes died by d 10 of incubation, when analysed by polymerase chain reaction. On d 16 to 20 of incubation, the GFP gene was detected in 7.0 to 20.9% of embryos in the heart, liver, stomach and brain, but not in the sartorius muscle. For the gonads, the GFP gene was detected in 22.2% (6/27) of the testes and 6.3% (1/18) of the ovaries examined. 4. These results suggest that it is possible to introduce exogenous DNA into gonads of chick embryos by lipofection and electroporation of stage X blastoderms in vivo.

  19. Clinical picture of delayed radiation effects in the skin

    International Nuclear Information System (INIS)

    Hundeiker, M.

    1987-01-01

    Chronic radiation injuries of the skin develop over years or decades. Gradually increasing atrophy, sclerosis, telangiectasis, possibly - in highly exposed parts of the skin - keratosis due to radiation ulcers, carcinomas and basilomas occur after a latency period of decades, not so much in X-ray-injured skin after tumour therapy as in diffusely altered X-ray-injured skin after multiple exposure to low doses. Radiotherapy is indispensable, but like other effective methods of treatment it requires stringent indications, accurate execution and careful after-treatment. (TRV) [de

  20. Skin Effect of Reversely Switched Dynistor in Short Pulse Discharge Application

    Institute of Scientific and Technical Information of China (English)

    Lin Liang; Yue-Hui Yu

    2009-01-01

    The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.

  1. Evaluation of skin moisturizer effects using terahertz time domain imaging

    Science.gov (United States)

    Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.

    2018-02-01

    We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.

  2. Topical isoflavones provide effective photoprotection to skin.

    Science.gov (United States)

    Lin, Jing-Yi; Tournas, Joshua A; Burch, James A; Monteiro-Riviere, Nancy A; Zielinski, Jan

    2008-04-01

    Isoflavones, one main group of phytoestrogens, have antioxidative and photoprotective effects in cellular and mouse studies. The aim of this study is to obtain a more comprehensive understanding of the isoflavone-mediated photoprotection with the pig skin model, a more human-resembling model. The pig skin was treated with five well-known isoflavone compounds (genistein, equol, daidzein, biochanin A, and formononetin) and one antioxidant combination solution of 15% vitamin C and 1% vitamin E and 0.5% ferulic acid (CEF) daily for 4 days. Skin was irradiated with solar-simulated UV irradiation, 1 to 5 minimal erythema dose (MED) at 1-MED intervals. Evaluation was carried out 24 h later by colorimeter-measured erythema and sunburn cell numbers. Topical application of 0.5% solutions of three individual phytoestrogens - genistein, daidzein, biochanin A - are better than similar solutions of equol or formononetin in protecting pig skin from solar-simulated ultraviolet (SSUV)-induced photodamage, as measured by sunburn cell formation and/or erythema. However, the protection was less than that provided by a topical combination antioxidant standard containing 15% L-ascorbic acid, 1%alpha-tocopherol, and 0.5% ferulic acid. Isoflavones provide effective photoprotection and are good candidate ingredients for protection against ultraviolet (UV) photodamage.

  3. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  4. Clinical and histological effects of blue light on normal skin.

    NARCIS (Netherlands)

    Kleinpenning, M.M.; Smits, T.; Frunt, M.H.A.; Erp, P.E.J. van; Kerkhof, P.C.M. van de; Gerritsen, R.M.

    2010-01-01

    INTRODUCTION: Phototherapy with visible light is gaining interest in dermatological practice. Theoretically, blue light could induce biological effects comparable to ultraviolet A (UVA) radiation. OBJECTIVES: To study the effects of blue light on normal skin in terms of photodamage, skin ageing and

  5. Effect of emulsification on the skin permeation and UV protection of catechin.

    Science.gov (United States)

    Yoshino, Sachie; Mitoma, Tomoaki; Tsuruta, Keiko; Todo, Hiroaki; Sugibayashi, Kenji

    2014-06-01

    An anti-aging effect may be obtained by skin application of tea catechins (Camellia sinensis) since they have high ultraviolet (UV)-protection activity. In this study, the skin permeation of catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) was determined and compared, and the effect of emulsification on the skin permeation of C was measured. The UV-protective effect of C was also determined. The in vitro skin permeability of each catechin derivative was determined using side-by-side diffusion of cells. The UV-protective effect of C was determined by applying different concentrations of C to the solution or emulsion on a three-dimensional cultured human skin model or normal human epidermal keratinocytes with UV-irradiation. ECg and EGCg with gallate groups showed lower skin permeability than C, EC and EGC without gallate groups, suggesting that the skin permeability of catechin derivatives may be dependent on the existence of a gallate group. Interestingly, the skin permeation of C was increased by an o/w emulsification. In addition, the C emulsion showed a significantly higher UV-protective effect by C than that with its aqueous solution. These results suggest that the o/w emulsion of catechin derivatives is probably useful as a cosmetic formulation with anti-aging efficacy.

  6. Cosmetotextiles with Gallic Acid: Skin Reservoir Effect

    Directory of Open Access Journals (Sweden)

    Meritxell Martí

    2013-01-01

    Full Text Available The antioxidant gallic acid (GA has been incorporated into cotton (CO and polyamide (PA through two different vehicles, that is, liposomes and mixed micelles, and their respective absorption/desorption processes have been studied. Moreover, in vitro percutaneous absorption tests of different cosmetotextiles have been performed to demonstrate antioxidant penetration within the layers of the skin. When GA was embedded into the cosmetotextiles, it always promoted a reservoir effect that was much more marked than that observed for polyamide. Similar penetration was observed in the textiles treated with GA in mixed micelles or liposomes in such compartments of the skin as the stratum corneum, epidermis, and even the dermis. GA was detected in receptor fluid only when CO was treated with MM. This methodology may be useful in verifying how encapsulated substances incorporated into textile materials penetrate human skin. Indeed, such materials can be considered strategic delivery systems that release a given active compound into the skin at specific doses.

  7. Characterization of ionizing radiation effects on human skin allografts

    International Nuclear Information System (INIS)

    Bourroul, Selma Cecilia

    2004-01-01

    The skin has a fundamental role in the viability of the human body. In the cases of extensive wounds, allograft skin provides an alternative to cover temporarily the damaged areas. After donor screening and preservation in glycerol (above 85%), the skin can be stored in the Skin Banks. The glycerol at this concentration has a bacteriostatic effect after certain time of preservation. On the other hand, skin sterilization by ionizing radiation may reduces the quarantine period for transplantation in patients and its safety is considered excellent. The objectives of this work were to establish procedures using two sources of ionizing radiation for sterilization of human skin allograft, and to evaluate the skin after gamma and electron beam irradiation. The analysis of stress-strain intended to verify possible effects of the radiation on the structure of preserved grafts. Skin samples were submitted to doses of 25 kGy and 50 kGy in an irradiator of 60 Co and in an electron beam accelerator. Morphology and ultra-structure studies were also accomplished. The samples irradiated with a dose of 25 kGy seemed to maintain the bio mechanic characteristics. The gamma irradiated samples with a dose of 50 kGy and submitted to an electron beam at doses of 25 kGy and 50 kGy presented significant differences in the values of the elasticity modulus, in relation to the control. The analysis of the ultramicrographies revealed modifications in the structure and alterations in the pattern of collagen fibrils periodicity of the irradiated samples. (author)

  8. Gamma radiation effects on peanut skin antioxidants

    International Nuclear Information System (INIS)

    Camargo, Adriano Costa de; Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia

    2011-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a 60 Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  9. Gamma radiation effects on peanut skin antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Adriano Costa de [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d' Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia, E-mail: sgcbraza@usp.b, E-mail: tvieira@esalq.usp.b, E-mail: mabra@esalq.usp.b, E-mail: macdomin@esalq.usp.b [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao

    2011-07-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a {sup 60}Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  10. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    International Nuclear Information System (INIS)

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO 2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema

  11. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    Science.gov (United States)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  12. Sun’s effect on skin

    Science.gov (United States)

    The skin uses sunlight to help manufacture vitamin D, which is important for normal bone formation. But sometimes its ultraviolet light can be ... the pigment melanin. Melanin protects skin from the sun's ultraviolet rays, which can burn the skin, and ...

  13. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  14. Investigation on the effect of developed product and new food for radiation-induced skin damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Kim, Jong Chun; Bae, Chun Sik; Kim, Se Ra; Lee, Hae Jun; Bang, Dae Won; Lee, Jin Hee; Kim, Joong Sun; Ki, Sun Ah; Song, Myung Seop [Chonnam National University, Gwangju (Korea, Republic of)

    2007-07-15

    In vivo evaluation of the developed pilot product on the skin protection against UV irradiation and screening of new candidate materials. Project Results are Establishment of experimental methods for 3 morphological indices of UV-induced skin damages -Establishment of experimental methods for whitening effect evaluation -Evaluation of HemoHIM administration on the skin damage indices -Evaluation of HemoHIM skin application on the skin damage indices -Evaluation of HemoTonic administration on the skin damage indices -Evaluation of HemoTonic skin application on the skin damage indices -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 1 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 2 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 3 -Evaluation of HemoHIM on the antiinflamatory effects in the TNBS-induced colitis -Evaluation of HemoHIM on the anti-wrinkle effects in the skin -Evaluation of HemoHIM on the protective effects on the skin tissue (epidermal thickening, dermal cellularity, dermal cyst) -Evaluation of HemoHIM on the protective effects on the skin tumor development

  15. Investigation on the effect of developed product and new food for radiation-induced skin damage

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Kim, Jong Chun; Bae, Chun Sik; Kim, Se Ra; Lee, Hae Jun; Bang, Dae Won; Lee, Jin Hee; Kim, Joong Sun; Ki, Sun Ah; Song, Myung Seop

    2007-07-01

    In vivo evaluation of the developed pilot product on the skin protection against UV irradiation and screening of new candidate materials. Project Results are Establishment of experimental methods for 3 morphological indices of UV-induced skin damages -Establishment of experimental methods for whitening effect evaluation -Evaluation of HemoHIM administration on the skin damage indices -Evaluation of HemoHIM skin application on the skin damage indices -Evaluation of HemoTonic administration on the skin damage indices -Evaluation of HemoTonic skin application on the skin damage indices -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 1 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 2 -Evaluation of HemoHIM on the antiinflamatory effects in the inflammation stage 3 -Evaluation of HemoHIM on the antiinflamatory effects in the TNBS-induced colitis -Evaluation of HemoHIM on the anti-wrinkle effects in the skin -Evaluation of HemoHIM on the protective effects on the skin tissue (epidermal thickening, dermal cellularity, dermal cyst) -Evaluation of HemoHIM on the protective effects on the skin tumor development

  16. [Effect of heijiang pill on radiation skin ulcer in rats].

    Science.gov (United States)

    Fu, Qi; Yang, Yang; Xu, Yong-Mei

    2008-05-01

    To investigate the relationship between single dosage of 60Co radiation and the degree of radiation-induced skin ulcers, and to evaluate the curative effect of Heijiang Pill (HJP) on skin ulcer induced by various dosages of radiation in rats. Sixty-six Wistar female rats were randomly divided into three groups, the blank control group (n = 6) and the two radiation groups, each 30 rats, with their right hind leg exposed respectively to 60 Gy and 40 Gy of 60 Co radiation. The time of emergence and degree of skin ulcer were recorded. Then rats in the two radiation groups were subdivided into the HJP group, the Ethacridine group and the model group, 10 in each group, they received corresponding treatment after ulceration, and the incidence, pathology, cure rate and cure time of skin ulcer were observed in the 90 days of observation. The incidence of skin ulcer was higher and occurred earlier in rats radiated with 60 Gy than that with 40 Gy (P ulcer healing rate in rats treated with HJP was higher than that treated with Ethacridine (P cure time in the HJP group was shorter (P ulcers. HJP can effectively cure radiation skin ulcer, and the effect is especially significant on the ulcer induced by low dose radiation.

  17. The effect of skin surface topography and skin colouration cues on perception of male facial age, health and attractiveness.

    Science.gov (United States)

    Fink, B; Matts, P J; Brauckmann, C; Gundlach, S

    2018-04-01

    Previous studies investigating the effects of skin surface topography and colouration cues on the perception of female faces reported a differential weighting for the perception of skin topography and colour evenness, where topography was a stronger visual cue for the perception of age, whereas skin colour evenness was a stronger visual cue for the perception of health. We extend these findings in a study of the effect of skin surface topography and colour evenness cues on the perceptions of facial age, health and attractiveness in males. Facial images of six men (aged 40 to 70 years), selected for co-expression of lines/wrinkles and discolouration, were manipulated digitally to create eight stimuli, namely, separate removal of these two features (a) on the forehead, (b) in the periorbital area, (c) on the cheeks and (d) across the entire face. Omnibus (within-face) pairwise combinations, including the original (unmodified) face, were presented to a total of 240 male and female judges, who selected the face they considered younger, healthier and more attractive. Significant effects were detected for facial image choice, in response to skin feature manipulation. The combined removal of skin surface topography resulted in younger age perception compared with that seen with the removal of skin colouration cues, whereas the opposite pattern was found for health preference. No difference was detected for the perception of attractiveness. These perceptual effects were seen particularly on the forehead and cheeks. Removing skin topography cues (but not discolouration) in the periorbital area resulted in higher preferences for all three attributes. Skin surface topography and colouration cues affect the perception of age, health and attractiveness in men's faces. The combined removal of these features on the forehead, cheeks and in the periorbital area results in the most positive assessments. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Toxic effects of ultraviolet radiation on the skin

    International Nuclear Information System (INIS)

    Matsumura, Yasuhiro; Ananthaswamy, Honnavara N.

    2004-01-01

    Ultraviolet (UV) irradiation present in sunlight is an environmental human carcinogen. The toxic effects of UV from natural sunlight and therapeutic artificial lamps are a major concern for human health. The major acute effects of UV irradiation on normal human skin comprise sunburn inflammation (erythema), tanning, and local or systemic immunosuppression. At the molecular level, UV irradiation causes DNA damage such as cyclobutane pyrimidine dimers and (6-4) photoproducts, which are usually repaired by nucleotide excision repair (NER). Chronic exposure to UV irradiation leads to photoaging, immunosuppression, and ultimately photocarcinogenesis. Photocarcinogenesis involves the accumulation of genetic changes, as well as immune system modulation, and ultimately leads to the development of skin cancers. In the clinic, artificial lamps emitting UVB (280-320 nm) and UVA (320-400 nm) radiation in combination with chemical drugs are used in the therapy of many skin diseases including psoriasis and vitiligo. Although such therapy is beneficial, it is accompanied with undesirable side effects. Thus, UV radiation is like two sides of the same coin--on one side, it has detrimental effects, and on the other side, it has beneficial effects

  19. Effects of a skin neuropeptide (substance p on cutaneous microflora.

    Directory of Open Access Journals (Sweden)

    Lily Mijouin

    Full Text Available BACKGROUND: Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP, a peptide released by nerve endings in the skin on bacterial virulence. METHODOLOGY/PRINCIPAL FINDINGS: Bacillus cereus, a member of the skin transient microflora, was used as a model. Exposure to SP strongly stimulated the cytotoxicity of B. cereus (+553±3% with SP 10(-6 M and this effect was rapid (<5 min. Infection of keratinocytes with SP treated B. cereus led to a rise in caspase1 and morphological alterations of the actin cytoskeleton. Secretome analysis revealed that SP stimulated the release of collagenase and superoxide dismutase. Moreover, we also noted a shift in the surface polarity of the bacteria linked to a peel-off of the S-layer and the release of S-layer proteins. Meanwhile, the biofilm formation activity of B. cereus was increased. The Thermo unstable ribosomal Elongation factor (Ef-Tu was identified as the SP binding site in B. cereus. Other Gram positive skin bacteria, namely Staphylococcus aureus and Staphylococcus epidermidis also reacted to SP by an increase of virulence. Thermal water from Uriage-les-Bains and an artificial polysaccharide (Teflose® were capable to antagonize the effect of SP on bacterial virulence. CONCLUSIONS/SIGNIFICANCE: SP is released in sweat during stress and is known to be involved in the pathogenesis of numerous skin diseases through neurogenic inflammation. Our study suggests that a direct effect of SP on the skin microbiote should be another mechanism.

  20. Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins.

    Science.gov (United States)

    Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels

    2017-01-01

    Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 10 6 to approximately 10 8 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.

  1. Assessment of Chronological Effects of Irreversible Electroporation on Hilar Bile Ducts in a Porcine Model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Woong, E-mail: cooljay@korea.ac.kr; Lu, David S. K., E-mail: dlu@mednet.ucla.edu; Osuagwu, Ferdnand, E-mail: fosuagwu@mednet.ucla.edu; Raman, Steven, E-mail: sraman@mednet.ucla.edu [David Geffen School of Medicine at UCLA, Department of Radiology (United States); Lassman, Charles, E-mail: classman@mednet.ucla.edu [David Geffen School of Medicine at UCLA, Department of Pathology (United States)

    2013-11-07

    PurposeTo evaluate the chronological effects of irreversible electroporation (IRE) on large hilar bile ducts in an in vivo porcine model correlated with computed tomography (CT) cholangiography and histopathology.Materials and MethodsTwelve IRE zones were made along hilar bile ducts intraoperatively under ultrasound (US)-guidance in 11 pigs. Paired electrodes were placed either on opposing sides of the bile duct (straddle [STR]) or both on one side of the bile duct (one-sided [OSD]). The shortest electrode-to-duct distance was classified as periductal (≤2 mm) or nonperiductal (>2 mm). CT cholangiography and laboratory tests were performed before IRE and again at 2 days, 4 weeks, and 8 weeks after IRE. Degree of bile duct injury were graded as follows: grade 0 = no narrowing; grade 1 = ≤50 % duct narrowing; grade 2 = >50 % narrowing without proximal duct dilatation; grade 3 = grade 2 with proximal duct dilatation; and grade 4 = grade 3 with enzyme elevation. Pigs were selected for killing and histopathology at 2 days, 4, and 8 weeks.ResultsNonperiductal electrode placement produced no long-term strictures in 5 of 5 ducts. Periductal electrode placement produced mild narrowing in 6 of 7 ducts: 5 grade 1 and 1 grade 2. None showed increased enzymes. There was no significant difference between STR versus OSD electrode placement. Histopathology showed minor but relatively greater ductal mural changes in narrowed ducts.ConclusionIn the larger hilar ducts, long-term patency and mural integrity appear resistant to IRE damage with the energy deposition used, especially if the electrode is not immediately periductal in position.

  2. Assessment of Chronological Effects of Irreversible Electroporation on Hilar Bile Ducts in a Porcine Model

    International Nuclear Information System (INIS)

    Choi, Jae Woong; Lu, David S. K.; Osuagwu, Ferdnand; Raman, Steven; Lassman, Charles

    2014-01-01

    PurposeTo evaluate the chronological effects of irreversible electroporation (IRE) on large hilar bile ducts in an in vivo porcine model correlated with computed tomography (CT) cholangiography and histopathology.Materials and MethodsTwelve IRE zones were made along hilar bile ducts intraoperatively under ultrasound (US)-guidance in 11 pigs. Paired electrodes were placed either on opposing sides of the bile duct (straddle [STR]) or both on one side of the bile duct (one-sided [OSD]). The shortest electrode-to-duct distance was classified as periductal (≤2 mm) or nonperiductal (>2 mm). CT cholangiography and laboratory tests were performed before IRE and again at 2 days, 4 weeks, and 8 weeks after IRE. Degree of bile duct injury were graded as follows: grade 0 = no narrowing; grade 1 = ≤50 % duct narrowing; grade 2 = >50 % narrowing without proximal duct dilatation; grade 3 = grade 2 with proximal duct dilatation; and grade 4 = grade 3 with enzyme elevation. Pigs were selected for killing and histopathology at 2 days, 4, and 8 weeks.ResultsNonperiductal electrode placement produced no long-term strictures in 5 of 5 ducts. Periductal electrode placement produced mild narrowing in 6 of 7 ducts: 5 grade 1 and 1 grade 2. None showed increased enzymes. There was no significant difference between STR versus OSD electrode placement. Histopathology showed minor but relatively greater ductal mural changes in narrowed ducts.ConclusionIn the larger hilar ducts, long-term patency and mural integrity appear resistant to IRE damage with the energy deposition used, especially if the electrode is not immediately periductal in position

  3. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    International Nuclear Information System (INIS)

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-01-01

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency

  4. Evaluating the Effect of Mother – Baby Skin- to- Skin Care on Neonatal Outcomes in Preterm Infants

    Directory of Open Access Journals (Sweden)

    M Kalhor

    2016-08-01

    Full Text Available Introduction: Involving the parents in caring of premature newborns is one of the best and effective manners for preventing the hospitalization of premature newborns. The present study aimed to evaluate the effect of mother – baby skin- to- skin care on neonatal outcomes in preterm infants, in Kosar hospital. Methods: This was a descriptive comparative study conducted on 400 nulliparous women with premature infants admitted to neonatal intensive care unit of Kosar hospital during April 2012 and March 2015. Sampling was performed via convenience sampling. Sample population divided into two groups, one of them 200, the kangaroo care and non- care groups. The data were obtained by a researcher prepared check list, including mother’s demographic characteristics and neonatal outcomes. Both descriptive and statistical analysis methods were applied. For analyzing the data, chi-square test, t-test, and logistic regression tests was applied (P 0.05. In the intervention group, the relationship between maternal variables and neonatal outcome was significant (P <0.05. Conclusion: Mother – baby skin- to- skin care has a positive effect on neonatal outcomes. Thus, supporting and awareness of premature infants’ mothers in order to implement this type of care can reduce the neonatal complications. Moreover, it is effective in decreasing the treatment costs.

  5. Effect of fluocinolone acetonide cream on human skin blood flow

    International Nuclear Information System (INIS)

    Chimoskey, J.E.; Holloway, A. Jr.; Flanagan, W.J.

    1975-01-01

    Blood flow rate was measured in the forearm skin of human subjects exposed to ultraviolet irradiation. Blood flow was determined by the 133 Xe disappearance technique 18 hr after ultraviolet (UV) irradiation with a Westinghouse RS sunlamp held 10 inches from the skin for 10 min. Ultraviolet irradiation caused skin blood flow to increase. Application of fluocinolone acetonide cream, 0.025 percent, 4 times in the 16 hr following UV irradiation had no effect on either control skin blood flow or the UV-induced hyperemia

  6. Irreversible Electroporation in a Swine Lung Model

    International Nuclear Information System (INIS)

    Dupuy, Damian E.; Aswad, Bassam; Ng, Thomas

    2011-01-01

    Purpose: This study was designed to evaluate the safety and tissue effects of IRE in a swine lung model. Methods: This study was approved by the institutional animal care committee. Nine anesthetized domestic swine underwent 15 percutaneous irreversible electroporation (IRE) lesion creations (6 with bipolar and 3 with 3–4 monopolar electrodes) under fluoroscopic guidance and with pancuronium neuromuscular blockade and EKG gating. IRE electrodes were placed into the central and middle third of the right mid and lower lobes in all animals. Postprocedure PA and lateral chest radiographs were obtained to evaluate for pneumothorax. Three animals were sacrificed at 2 weeks and six at 4 weeks. Animals underwent high-resolution CT scanning and PA and lateral radiographs 1 h before sacrifice. The treated lungs were removed en bloc, perfused with formalin, and sectioned. Gross pathologic and microscopic changes after standard hematoxylin and eosin staining were analyzed within the areas of IRE lesion creation. Results: No significant adverse events were identified. CT showed focal areas of spiculated high density ranging in greatest diameter from 1.1–2.2 cm. On gross inspection of the sectioned lung, focal areas of tan discoloration and increased density were palpated in the areas of IRE. Histological analysis revealed focal areas of diffuse alveolar damage with fibrosis and inflammatory infiltration that respected the boundaries of the interlobular septae. No pathological difference could be discerned between the 2- and 4-week time points. The bronchioles and blood vessels within the areas of IRE were intact and did not show signs of tissue injury. Conclusion: IRE creates focal areas of diffuse alveolar damage without creating damage to the bronchioles or blood vessels. Short-term safety in a swine model appears to be satisfactory.

  7. Effects of hair removal alexandrite laser on biometric parameters of the skin.

    Science.gov (United States)

    Alavi, Shiva; Abolhasani, Ehsan; Nilforoushzadeh, Mohammadali

    2016-04-01

    The effects of alexandrite laser (AL) on skin parameters such as melanin content, skin layer depth, elasticity, and density have not been investigated through biometric methods. We aim to assess the effect of AL on the skin parameters through biometric devices to determine whether it has positive effects on treated region. In this pretest-posttest study, we recruited patients who attended Laser Clinic of Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran, from January through December 2014. Patients had to be free of any dermatologic conditions and lesion at the site of treatment or any contraindication to laser therapy. Baseline measurements were performed and patients received four sessions of AL therapy (spot size, 12 mm; fluence, 12 J/cm(2); and pulse width, 5 Hz) with 4-week intervals. Four weeks after the last treatment session, the same parameters were assessed that included skin color, transepidermal water loss (TEWL), dermis and epidermis density and depth (through skin ultrasonography), melanin content, erythema intensity, and skin elasticity. Biometric parameters of 33 patients (27 females [81.8%]), with mean (SD) age of 35.7 (9.5) years were evaluated. The mean percent changes of skin parameters were as follows: skin color, 5.88% through Visioface and by 56.8% through Colorimeter devices (became lighter); melanin content, -15.95%; TEWL, -2.96%; elasticity, +14.88%; dermis depth -19.01%; and dermis density, +1580.11% (P < 0.001 for changes in each parameter). AL could decrease melanin content of the skin and make the skin thinner while it could increase elasticity and density of epidermis and dermis, which might indicate increased collagen content of skin.

  8. [Effect of dibunol liniment on posttraumatic skin regeneration in mice].

    Science.gov (United States)

    Krutova, T V; Efimov, E A; Korman, D B

    1984-10-01

    The effect of dibunol liniment (5-50 mg/kg) on excised mouse skin was studied. The liniment caused complete skin regeneration with hair and gland formation in the majority of treated mice. Application of the liniment led to a considerable increase in proliferative activity of skin epithelial cells and inhibition of wound area reduction within the first day of healing as compared with controls.

  9. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics.

    Science.gov (United States)

    Souza-Barros, Leanna; Dhaidan, Ghaith; Maunula, Mikko; Solomon, Vaeda; Gabison, Sharon; Lilge, Lothar; Nussbaum, Ethne L

    2018-04-01

    To examine the role of skin color and tissue thickness on transmittance, reflectance, and skin heating using red and infrared laser light. Forty volunteers were measured for skin color and skin-fold thickness at a standardized site near the elbow. Transmittance, reflectance and skin temperature were recorded for energy doses of 2, 6, 9, and 12 Joules using 635 nm (36 mW) and 808 nm (40 mW) wavelength laser diodes with irradiances within American National Standards Institute safety guidelines (4.88 mm diameter, 0.192 W/cm 2 and 4.88 mm diameter, 0.214 W/cm 2 , respectively). The key factors affecting reflectance to an important degree were skin color and wavelength. However, the skin color effects were different for the two wavelengths: reflectance decreased for darker skin with a greater decrease for red light than near infrared light. Transmittance was greater using 808 nm compared with 635 nm. However, the effect was partly lost when the skin was dark rather than light, and was increasingly lost as tissue thickness increased. Dose had an increasing effect on temperature (0.7-1.6°C across the 6, 9, and 12 J doses); any effects of wavelength, skin color, and tissue thickness were insignificant compared to dose effects. Subjects themselves were not aware of the increased skin temperature. Transmittance and reflectance changes as a function of energy were very small and likely of no clinical significance. Absorption did not change with higher energy doses and increasing temperature. Skin color and skin thickness affect transmittance and reflectance of laser light and must be accounted for when selecting energy dose to ensure therapeutic effectiveness at the target tissue. Skin heating appears not to be a concern when using 635 and 808 nm lasers at energy doses of up to 12 J and irradiance within American National Standards Institute standards. Photobiomodulation therapy should never exceed the American National Standards Institute

  10. Pathological study on the testis of mice irradiated by γ-rays after transfecting pprI gene by in vivo electroporation

    International Nuclear Information System (INIS)

    Lian Lixia; Chen Tingting; Zhang Yongqin; Wang Xiuzhen; Yang Zhanshan

    2011-01-01

    To investigate the effects of pprI gene from Deinococcus radiodurans transferred by in vivo electroporation on γ-ray injury of mice, the morphological changes of testis in the mice were observed. The pCMV-HA-pprI plasmid containing pprI gene was injected into the muscle of mice. The pprI gene was transfected into the cells by in vivo gene electroporation technology. Then the control group and the transferred pCMV-HA-pprI group were exposed to γ-ray radiation of 6 Gy. The muscle tissue at the site of the injection and the testis tissue were taken on days 1, 7, 14, 28 and 35 after radiation. Then total protein was extracted and used to test the expression of PprI with western blotting technology. The testis specimen prepared by hematoxylin-eosin staining was then examined by light microscopy. The expression of PprI is remarkable on the 1 st day after irradiation to prove that the pprI gene was successfully transfected into the mice. On the 1 st day after irradiation there was no obvious pathological change of the testis tissue of the control group. On the 7th day there was degeneration and necrosis of some spermatogonia and spermatocytes in sections of tubules. On the 14th day, the reduction of spermatogonia was generally marked, and there was considerable reduction in the number of primary spermatocytes associated with atrophy of the seminiferous tubules. On the 28th day there was complete depletion of spermatogenic epithelium when spermatocytes and spermatids had largely disappeared, with no regeneration of spermatogonia and only sertoli cells nuclei remaining along the basement membrane. On the 35th day, spermatogonia were actively regenerating in some of the tubules. Compared with the control group, there was also no significant difference on the 1 st after irradiation in the transgenic animal. On the 7th day the degeneration and necrosis of some spermatogonia and spermatocytes in sections of tubules was less than that of the control group. On the 14th day the

  11. The effect of pregnancy on paternal skin allograft survival

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Elucidation of maternal-fetal tolerance mechanisms clarifies the role of regulatory T cells (Treg) in transplant tolerance. This study aim to investigate the effect of pregnancy on paternal skin allograft survival. Flow cytometry techniques, mixed lymphocytes reaction (MLR), PCR, real-time PCR and skin transplantation were key methods. Treg increased significantly from 4.2% before pregnancy to peak at 6.8% day 8 after pregnancy. Both heme oxygenase-1 (HO-1) and indoleamine 2,3-dioxygenase (IDO) mRNA express high in placenta while low in spleen (P<0.05). Although Treg increased during pregnancy, and splenocytes from the pregnant mice showed lower MLR response toward the paternal stimulator, single time pregnancy showed no significant protective effect on paternal skin allograft survival in the tested condition.

  12. Effect of age on leather and skin traits of slaughter ostriches | Cloete ...

    African Journals Online (AJOL)

    Little is known about the factors affecting leather and skin traits in ostriches. The effect of age on physical skin traits of slaughter ostriches was consequently investigated. Forty skins representing slaughter ages ranging from five to 14 months were selected to represent means of the respective age groups with regard to skin ...

  13. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation.

    Science.gov (United States)

    Toyama, H; Anthony, C; Lidstrom, M E

    1998-09-01

    Methylobacterium extorquens AM1 is a pink-pigmented facultative methylotroph which is widely used for analyzing pathways of C1 metabolism with biochemical and molecular biological techniques. To facilitate this approach, we have applied a new method to construct insertion or disruption mutants with drug resistance genes by electroporation. By using this method, mutants were obtained in four genes present in the mxa methylotrophy gene cluster for which the functions were unknown, mxaR, mxaS, mxaC and mxaD. These mutants were unable to grow on methanol except the mutant of mxaD, which showed reduced growth on methanol.

  14. Effects of industrial detergents on the barrier function of human skin

    DEFF Research Database (Denmark)

    Nielsen, G D; Nielsen, Jesper Bo; Andersen, Klaus Ejner

    2000-01-01

    Detergents are involved in the causation of contact dermatitis and in promoting percutaneous absorption of toxic chemicals, but limited information is available to allow an assessment of their relative effects on the skin barrier function. The effect of detergents on skin permeability to water...

  15. Skin hydration and cooling effect produced by the Voltaren® vehicle gel.

    Science.gov (United States)

    Hug, Agnes M; Schmidts, Thomas; Kuhlmann, Jens; Segger, Dörte; Fotopoulos, Grigorios; Heinzerling, Johanna

    2012-05-01

    Voltaren vehicle gel is the carrier substance of the topical Voltaren products. This vehicle gel is especially formulated to be easily applied on the skin, while providing some sensory benefits. The present study aims to substantiate the widely perceived hydrating and cooling effect of Voltaren vehicle gel. Volar forearm skin hydration and transepidermal water loss (TEWL) were measured and user satisfaction was evaluated by questionnaires, after application in 31 healthy, female volunteers. The cooling effect was investigated for 40 min with thermal imaging on 12 forearm sites of six healthy subjects. Voltaren vehicle gel application increased skin hydration by 13.1% (P = 0.0002) when compared with the untreated site, 8 h after the final treatment after 2 weeks. TEWL decreased on both treated (0.37 g/m(2) /h) and untreated (0.74 g/m(2) /h) forearm sites after 2 weeks (8 h after last treatment), demonstrating a relative increase of 6.5% in water loss. Voltaren vehicle gel application resulted in a rapid reduction of skin surface temperature by 5.1°C after only 3 min with an average maximum reduction of 5.8°C after 10 min. The cooling effect was experienced by 94% subjects, while 74% felt that their skin became softer. No adverse events, including skin irritation, were reported during the study and by the 37 participants. This study showed a statistically significant increase in skin hydration as well as a rapid cooling effect lasting approximately 30 min, after application of Voltaren vehicle gel. The small relative increase in water loss may be attributed to an additional skin surface water loss secondary to the increased water content brought into the skin by the Voltaren vehicle gel. The use did not induce any skin irritation and was found acceptable to use by the majority of participants. © 2011 John Wiley & Sons A/S.

  16. The effect of a daily facial cleanser for normal to oily skin on the skin barrier of subjects with acne.

    Science.gov (United States)

    Draelos, Zoe D

    2006-07-01

    Acne vulgaris is a common skin disorder that affects many people every year, especially the teenaged population. People with acne find the condition especially difficult to manage because of the disease's chronicity and variability in response to treatment. Acne is the result of pores clogged with shed skin cells combined with sebum in the hair follicle. Successful treatment of acne is important because acne has the potential to result in lasting physical and emotional scarring. For many years, physicians have agreed that although cleansing is not effective on its own, effective cleansing is an important part of any acne treatment regimen. However, patients have not been satisfied with the types of cleansers available. In addition to containing dyes and perfumes that can irritate and exacerbate acne, these cleansers often are too harsh and can result in excessive drying of the skin, which leads to overcompensation by the oil glands and ultimately to more oil on the surface of the skin. This study examined the use of a daily facial cleanser formulated for normal to oily skin in subjects with mild facial acne. The cleanser was studied for 2 weeks in the absence of additional treatments to eliminate the confounding effects of various treatments. Subjects were monitored for skin barrier function through transepidermal water loss (TEWL) and corneometry, sebum level, and lesion counts. The results of the study indicate that the facial cleanser is gentle and does not damage the skin barrier or result in sebum overcompensation; additionally, the cleanser is effective at deep-pore cleansing, which may help to manage some acne-associated symptoms.

  17. Cost-Effectiveness Analysis of a Skin Awareness Intervention for Early Detection of Skin Cancer Targeting Men Older Than 50 Years.

    Science.gov (United States)

    Gordon, Louisa G; Brynes, Joshua; Baade, Peter D; Neale, Rachel E; Whiteman, David C; Youl, Philippa H; Aitken, Joanne F; Janda, Monika

    2017-04-01

    To assess the cost-effectiveness of an educational intervention encouraging self-skin examinations for early detection of skin cancers among men older than 50 years. A lifetime Markov model was constructed to combine data from the Skin Awareness Trial and other published sources. The model incorporated a health system perspective and the cost and health outcomes for melanoma, squamous and basal cell carcinomas, and benign skin lesions. Key model outcomes included Australian costs (2015), quality-adjusted life-years (QALYs), life-years, and counts of skin cancers. Univariate and probabilistic sensitivity analyses were undertaken to address parameter uncertainty. The mean cost of the intervention was A$5,298 compared with A$4,684 for usual care, whereas mean QALYs were 7.58 for the intervention group and 7.77 for the usual care group. The intervention was thus inferior to usual care. When only survival gain is considered, the model predicted the intervention would cost A$1,059 per life-year saved. The likelihood that the intervention was cost-effective up to A$50,000 per QALY gained was 43.9%. The model was stable to most data estimates; nevertheless, it relies on the specificity of clinical diagnosis of skin cancers and is subject to limited health utility data for people with skin lesions. Although the intervention improved skin checking behaviors and encouraged men to seek medical advice about suspicious lesions, the overall costs and effects from also detecting more squamous and basal cell carcinomas and benign lesions outweighed the positive health gains from detecting more thin melanomas. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Effect of friction on vibrotactile sensation of normal and dehydrated skin.

    Science.gov (United States)

    Chen, S; Ge, S; Tang, W; Zhang, J

    2016-02-01

    Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effect of olive and sunflower seed oil on the adult skin barrier: implications for neonatal skin care.

    Science.gov (United States)

    Danby, Simon G; AlEnezi, Tareq; Sultan, Amani; Lavender, Tina; Chittock, John; Brown, Kirsty; Cork, Michael J

    2013-01-01

    Natural oils are advocated and used throughout the world as part of neonatal skin care, but there is an absence of evidence to support this practice. The goal of the current study was to ascertain the effect of olive oil and sunflower seed oil on the biophysical properties of the skin. Nineteen adult volunteers with and without a history of atopic dermatitis were recruited into two randomized forearm-controlled mechanistic studies. The first cohort applied six drops of olive oil to one forearm twice daily for 5 weeks. The second cohort applied six drops of olive oil to one forearm and six drops of sunflower seed oil to the other twice daily for 4 weeks. The effect of the treatments was evaluated by determining stratum corneum integrity and cohesion, intercorneocyte cohesion, moisturization, skin-surface pH, and erythema. Topical application of olive oil for 4 weeks caused a significant reduction in stratum corneum integrity and induced mild erythema in volunteers with and without a history of atopic dermatitis. Sunflower seed oil preserved stratum corneum integrity, did not cause erythema, and improved hydration in the same volunteers. In contrast to sunflower seed oil, topical treatment with olive oil significantly damages the skin barrier, and therefore has the potential to promote the development of, and exacerbate existing, atopic dermatitis. The use of olive oil for the treatment of dry skin and infant massage should therefore be discouraged. These findings challenge the unfounded belief that all natural oils are beneficial for the skin and highlight the need for further research. © 2012 Wiley Periodicals, Inc.

  20. Effects of Fermented Dairy Products on Skin: A Systematic Review.

    Science.gov (United States)

    Vaughn, Alexandra R; Sivamani, Raja K

    2015-07-01

    Fermented dairy products, such as yogurt, have been proposed as a natural source of probiotics to promote intestinal health. Growing evidence shows that modulation of the gastrointestinal tract microbiota can modulate skin disease as well. This systematic review was conducted to examine the evidence for the use of ingested fermented dairy products to modulate skin health and function. We also sought to review the effects of the topical application of dairy products. The PubMed and Embase databases were systematically searched for clinical studies involving humans only that examined the relationship between fermented dairy products and skin health. A total of 312 articles were found and a total of 4 studies met inclusion criteria. Three studies evaluated the effects of ingestion, while one evaluated the effects of topical application. All studies noted improvement with the use of fermented dairy. Overall, there is early and limited evidence that fermented dairy products, used both topically and orally, may provide benefits for skin health. However, existing studies are limited and further studies will be important to better assess efficacy and the mechanisms involved.

  1. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

    Directory of Open Access Journals (Sweden)

    Niranjan Y. Sardesai

    2013-07-01

    Full Text Available Lassa virus (LASV causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC that expressed the LASV glycoprotein precursor gene (GPC. This plasmid was used to vaccinate guinea pigs (GPs using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6 with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

  2. The effect of vitamin E on acute skin reaction caused by radiotherapy.

    Science.gov (United States)

    Dirier, A; Akmansu, M; Bora, H; Gurer, M

    2007-09-01

    Ionizing radiation affects healthy organs and tissues as well as diseased tissues during radiation therapy. Skin reactions varying from acute erythema to necrosis can be seen. It has been found that vitamin E can prevent mutagenic and/or carcinogenic effects of ionizing radiation in both animals and cell cultures. This study investigated the preventative effect of antioxidant vitamin E on irradiation-induced acute skin reactions. No protective effect of vitamin E was demonstrated. It is possible that the vehicle induced free radical exposure in the irradiated skin.

  3. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Orlicky, David J. [Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); White, Carl W. [Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@UCDenver.edu [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  4. Focused transhepatic electroporation mediated by hypersaline infusion through the portal vein in rat model. Preliminary results on differential conductivity

    Directory of Open Access Journals (Sweden)

    Pañella Clara

    2017-11-01

    Full Text Available Spread hepatic tumours are not suitable for treatment either by surgery or conventional ablation methods. The aim of this study was to evaluate feasibility and safety of selectively increasing the healthy hepatic conductivity by the hypersaline infusion (HI through the portal vein. We hypothesize this will allow simultaneous safe treatment of all nodules by irreversible electroporation (IRE when applied in a transhepatic fashion.

  5. Application of Electroporation Technique in Biofuel Processing

    Directory of Open Access Journals (Sweden)

    Yousuf Abu

    2017-01-01

    Full Text Available Biofuels production is mostly oriented with fermentation process, which requires fermentable sugar as nutrient for microbial growth. Lignocellulosic biomass (LCB represents the most attractive, low-cost feedstock for biofuel production, it is now arousing great interest. The cellulose that is embedded in the lignin matrix has an insoluble, highly-crystalline structure, so it is difficult to hydrolyze into fermentable sugar or cell protein. On the other hand, microbial lipid has been studying as substitute of plant oils or animal fat to produce biodiesel. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae investing minimum energy.Electroporation (EP of LCB results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. EP is required to alter the size and structure of the biomass, to reduce the cellulose crystallinity, and increase their porosity as well as chemical composition, so that the hydrolysis of the carbohydrate fraction to monomeric sugars can be achieved rapidly and with greater yields. Furthermore, EP has a great potential to disrupt the microbial cell walls within few seconds to bring out the intracellular materials (lipid to the solution. Therefore, this study aims to describe the challenges and prospect of application of EP technique in biofuels processing.

  6. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    Science.gov (United States)

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products.

  7. Effect of mother-infant early skin-to-skin contact on breast feeding status: a randomized controlled trial

    International Nuclear Information System (INIS)

    Mahmood, I.; Jamal, M.; Khan, N.

    2011-01-01

    Objective: To evaluate the effect of mother-infant early skin-to-skin contact on breast feeding behavior of infants. Study Design: A randomized controlled trial. Place and Duration of Study: The study was conducted in the Department of Obstetrics of Pakistan Institute of Medical Sciences, Islamabad, from November to December 2009. Methodology: Eligible mothers were assessed for the successful breast feeding by using IBFAT tool. The time to initiate the first feed, time to effective breast feeding, maternal satisfaction with the care provided, preference for the same care in future and level of exclusive breast feeding at the age of one month were also noted. The data was compared by using X2 and t-test. Significant p-value was taken as < 0.05. Results: A total of 183 mother-infant pairs (92 in skin-to-skin care [SSC] group and 91 in conventional care [CC] group) were analyzed for breast feeding behavior of the infants. The first breast feed was 26.25% more successful in SSC group (58.8% in SSC group as compared to 32.5% in CC group with p-value of 0.001). In SSC group, the mean time to initiate first breast feed was 61.6 minutes shorter than CC group (40.62 vs. 101.88; p < 0.001). Mean time to achieve effective breast feeding was 207 minutes earlier in SSC group (149.69 vs. 357.50; p < 0.001). The level of satisfaction in the mothers of SSC group was significantly high as compared to controls (56% vs. 6.2%). Similarly, 53.8% mothers of SSC group showed reference for similar care in future as compared to 5% in CC group. In SSC group 85.3% infants were exclusively breast fed at one month as compared to 65.7% in CC group (p=0.025). Conclusion: Maternal-infant early skin-to-skin contact significantly enhanced the success of first breast feed and continuation of exclusive breast feeding till one month of age. It also reduced the time to initiate first feed and time to effective breast feeding. (author)

  8. Why we should not routinely apply irreversible electroporation as an alternative curative treatment modality for localized prostate cancer at this stage.

    Science.gov (United States)

    Wendler, J J; Ganzer, R; Hadaschik, B; Blana, A; Henkel, T; Köhrmann, K U; Machtens, S; Roosen, A; Salomon, G; Sentker, L; Witzsch, U; Schlemmer, H P; Baumunk, D; Köllermann, J; Schostak, M; Liehr, U B

    2017-01-01

    Irreversible electroporation (IRE), a new tissue ablation procedure available since 2007, could meet the requirements for ideal focal therapy of prostate cancer with its postulated features, especially the absence of a thermal ablation effect. Thus far, there is not enough evidence of its effectiveness or adverse effects to justify its use as a definitive treatment option for localized prostate cancer. Moreover, neither optimal nor individual treatment parameters nor uniform endpoints have been defined thus far. No advantages over established treatment procedures have as yet been demonstrated. Nevertheless, IRE is now being increasingly applied for primary prostate cancer therapy outside clinical trials, not least through active advertising in the lay press. This review reflects the previous relevant literature on IRE of the prostate or prostate cancer and shows why we should not adopt IRE as a routine treatment modality at this stage.

  9. Fractional nonablative laser resurfacing: is there a skin tightening effect?

    Science.gov (United States)

    Kauvar, Arielle N B

    2014-12-01

    Fractional photothermolysis, an approach to laser skin resurfacing that creates microscopic thermal wounds in skin separated by islands of spared tissue, was developed to overcome the high incidence of adverse events and prolonged healing times associated with full coverage ablative laser procedures. To examine whether fractional nonablative laser resurfacing induces skin tightening. A literature review was performed to evaluate the clinical and histologic effects of fractional nonablative laser resurfacing and full coverage ablative resurfacing procedures. Fractional nonablative lasers produce excellent outcomes with minimal risk and morbidity for a variety of clinical conditions, including photodamaged skin, atrophic scars, surgical and burn scars. Efforts to induce robust fibroplasia in histologic specimens and skin tightening in the clinical setting have yielded inconsistent results. A better understanding of the histology of fractional laser resurfacing will help to optimize clinical outcomes.

  10. Effects of UV irradiation on a living skin equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D; Gay, R J [Organogenesis Incorporated, Camton, MA (United States)

    1993-05-01

    The Living Skin Equivalent is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-''alpha, tumor necrosis factor-[alpha] and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of UV radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A. (Author).

  11. Effects of UV irradiation on a living skin equivalent

    International Nuclear Information System (INIS)

    Nelson, D.; Gay, R.J.

    1993-01-01

    The Living Skin Equivalent is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-''alpha, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of UV radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A. (Author)

  12. The Effects of Yin, Yang and Qi in the Skin on Pain.

    Science.gov (United States)

    Adams, James David

    2016-01-29

    The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.

  13. The Effects of Yin, Yang and Qi in the Skin on Pain

    Directory of Open Access Journals (Sweden)

    James David Adams

    2016-01-01

    Full Text Available The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang and antagonists (yin that help the body control pain. Acupuncture works through modulation of these receptor activities (qi in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.

  14. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    Science.gov (United States)

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  15. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    NARCIS (Netherlands)

    Vienneau, Danielle; de Hoogh, Kees; Hauri, Dimitri D.; Vicedo-Cabrera, Ana M; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    BACKGROUND: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. OBJECTIVES: We investigated the effects of radon

  16. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin.

    Science.gov (United States)

    Kochhar, Jaspreet Singh; Quek, Ten Cheer; Soon, Wei Jun; Choi, Jaewoong; Zou, Shui; Kang, Lifeng

    2013-11-01

    Microneedles are being fast recognized as a useful alternative to injections in delivering drugs, vaccines, and cosmetics transdermally. Owing to skin's inherent elastic properties, microneedles require an optimal geometry for skin penetration. In vitro studies, using rat skin to characterize microneedle penetration in vivo, require substrates with suitable mechanical properties to mimic human skin's subcutaneous tissues. We tested the effect of these two parameters on microneedle penetration. Geometry in terms of center-to-center spacing of needles was investigated for its effect on skin penetration, when placed on substrates of different hardness. Both hard (clay) and soft (polydimethylsiloxane, PDMS) substrates underneath rat skin and full-thickness pig skin were used as animal models and human skins were used as references. It was observed that there was an increase in percentage penetration with an increase in needle spacing. Microneedle penetration with PDMS as a support under stretched rat skin correlated better with that on full-thickness human skin, while penetration observed was higher when clay was used as a substrate. We showed optimal geometries for efficient penetration together with recommendation for a substrate that could better mimic the mechanical properties of human subcutaneous tissues, when using microneedles fabricated from poly(ethylene glycol)-based materials. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Local Control of Perivascular Malignant Liver Lesions Using Percutaneous Irreversible Electroporation: Initial Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Achim, E-mail: Achim.Eller@uk-erlangen.de; Schmid, Axel, E-mail: axel.schmid@uk-erlangen.de [University Hospital Erlangen, University of Erlangen-Nuremberg, Department of Radiology (Germany); Schmidt, Joachim, E-mail: joachim.schmidt@kfa.imed.uni-erlangen.de [University Hospital Erlangen, University of Erlangen-Nuremberg, Department of Anesthesiology (Germany); May, Matthias, E-mail: matthias.may@uk-erlangen.de; Brand, Michael, E-mail: michael.brand@uk-erlangen.de; Saake, Marc, E-mail: marc.saake@uk-erlangen.de; Uder, Michael, E-mail: michael.uder@uk-erlangen.de; Lell, Michael, E-mail: michael.lell@uk-erlangen.de [University Hospital Erlangen, University of Erlangen-Nuremberg, Department of Radiology (Germany)

    2015-02-15

    PurposeThis study was designed to assess efficacy and safety in the treatment of perivascular malignant liver lesions using percutaneous, computed tomography (CT)-guided irreversible electroporation (IRE).MethodsFourteen patients (mean age 58 ± 11 years) with 18 malignant liver lesions were consecutively enrolled in this study. IRE was performed in patients not eligible for surgery and lesions abutting large vessels or bile ducts. Follow-up exams were performed using multislice-CT (MS-CT) or MRI.ResultsMedium lesion diameter was 20 ± 5 mm. Ten of 14 (71 %) were successfully treated with no local recurrence to date (mean follow-up 388 ± 160 days). One case left initial tumor control unclear and additional RFA was performed 4 weeks after IRE. Complications occurred in 4 of 14 (29 %) cases. In one case, intervention was terminated and abdominal bleeding required laparotomy. In two cases, a postinterventional hematothorax required intervention. In another case, abdominal bleeding could be managed conservatively. No complications related to the bile ducts occurred.ConclusionsPercutaneous IRE seems to be effective in perivascular lesions but is associated with a higher complication rate compared with thermoablative techniques.

  18. lipolytic effect of calotropis procera in the skin of wistar rats.

    African Journals Online (AJOL)

    Femi Olaleye

    used as an antiseptic for skin infection. Several studies have been carried out on the effects of various extracts of Calotropis procera on different organs of animals (Al-Robai et al, 1993a, 1993b;. Jam et al, 1996; Basu et al, 1997). On the contrar), there is little or no information on the effect of the plant extract on the skin.

  19. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine.

    Science.gov (United States)

    Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter

    2012-04-01

    Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.

  20. Observation of radiation effects on skin clinical roentgenologists

    International Nuclear Information System (INIS)

    Chen Weizhong; Liu Yunling

    1987-01-01

    The clinical observation of the effects of chronic irradiation on skin in 158 cases of clinical roentgenologists was reported. The results revealed that the incidence of morphological changes of microcirculaton in finger nail fold was as high as 47.6% for roentgenologists in contract to 5.2% for healthy adults. Other positive signs for skin injury were found in about 10.8-46.2% of roentgenologists. Two cases with typical chronic dermatitis were reported in this paper as well. These resuls attracted our attention to the radiation protection for clinical roentgenologists

  1. Non-ablative skin tightening with radiofrequency in Asian skin.

    Science.gov (United States)

    Kushikata, Nobuharu; Negishi, Kei; Tezuka, Yukiko; Takeuchi, Kaori; Wakamatsu, Shingo

    2005-02-01

    The recent successful application of radiofrequency (RF) in non-ablative skin tightening for skin laxity has attracted attention worldwide. The efficacy and clinical effect of RF were assessed in Asian skin, with additional study on the duration of the effect and any complications. Eighty-five Japanese females were enrolled in the study for treatment of nasolabial folds, marionette lines, and sagging jowls with 6-month follow-up. RF treatment was effective for nasolabial folds, marionette lines, and jowls. Objective physician evaluation found relatively good improvement at 3 months post-treatment, and even better improvement at the 6-month evaluation. RF treatment was very satisfactory for skin tightening in Asian facial skin. When compared with published literature from the United States, the results suggested that there might be race-related differences in the treatment parameters. (c) 2005 Wiley-Liss, Inc.

  2. Effect of heme oxygenase-1 on radiation-induced skin injury

    International Nuclear Information System (INIS)

    Song Chuanjun; Meng Xingjun; Xie Ling; Chen Qing; Zhou Jundong; Zhang Shuyu; Wu Jinchang

    2012-01-01

    Objective: To investigate the effect of heme oxygenase-1 (HO-1) on the acute radiation-induced skin injury by gene transfer. Methods: Thirty-three male SD rats were randomly divided into three groups as PBS-injected group, Ad-EGFP-injected group and Ad-HO-1-injected group (n=11). In each group, three rats were used for determining the expression of target gene and the other rats were irradiated on the buttock skin with 40 Gy electron beam generated by a linear accelerator. Immediately after irradiation, rats were administered with a subcutaneous injection of PBS, Ad-EGFP or Ad-HO-1, respectively. Subsequently, the skin reactions were measured twice a week using the semi-quantitative skin injury scale. Results: The strong positive expression of HO-1 was observed in subcutaneous dermal tissue after injection of Ad-HO-1. Compared to the PBS-injected group or the Ad-EGFP-injected group, a significant mitigation of skin injury was observed in Ad-HO-1-injected mice 14 d after irradiation (q=0.000-0.030, P<0.05). Conclusions: HO-1 could significantly mitigate radiation-induced acute skin injury and Ad-HO-1 could be used to treat radiation-induced skin injury. (authors)

  3. An Effective Algorithm for Management of Noses with Thick Skin.

    Science.gov (United States)

    Guyuron, Bahman; Lee, Michelle

    2017-04-01

    Thicker nasal skin blunts the definition of the underlying osseocartilaginous frame and the delicate topography of the nose posing additional challenges in producing desirable tip definition. Despite the recognized challenge in this patient population, there is a paucity of literature on how to overcome this problem. The goal of this article is to provide a systematic algorithm to manage patients with thick nasal skin. Approach to the thick nasal skin patient begins with an evaluation of the etiology of their skin thickness. Skin thickness secondary to sebaceous overactivity is diminished with the use of retinoic acid derivatives, lasers or isotretinoin (Accutane), commonly under the advice of the dermatologist. Rhinoplasty maneuvers include open technique, raising a healthy and reasonably thick skin flap overlying the tip, removing the remaining fat overlying and between the domes, creating a firm cartilaginous frame and eliminating dead space using the supratip suture reported by the senior author, and trimming redundant nasal skin envelope when indicated. This systematic approach has been greatly effective in achieving often predictable and aesthetically pleasing rhinoplasty results. This journal requires that authors assign a level of evidence to each article. For a full description of these evidence-based medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  4. Effectiveness of an employee skin cancer screening program for secondary prevention.

    Science.gov (United States)

    Uslu, Ugur; Hees, Felix; Winnik, Eva; Uter, Wolfgang; Sticherling, Michael

    2016-08-01

    Incidences of UV-induced skin cancer are continuously increasing. For this reason, early diagnosis is becoming more important. In this study, 783 employees of a technical company participated in an employee skin cancer screening program, which consisted of a physical examination for benign and malignant skin lesions and premalignant conditions. To ensure the quality of the examinations, screening was only performed by 5 trained dermatologists. Participants also were asked to complete a standardized questionnaire prior to examination. A total of 661 skin lesions were diagnosed among 48% of participants; 12.8% of participants exhibited 50 or more melanocytic nevi and the risk for developing skin cancer was categorized as at least moderate for 64.9%. Additionally, 84.4% of participants with at least 1 skin lesion were advised to have a checkup within 1 year. The high rate of suspicious nevi detected in this study suggested that employee skin cancer screening programs are effective and also should be recommended at companies where employees are not at increased risk for developing skin cancer due to the nature of their work (eg, those who work outdoors). Despite the comparatively selective and young study population, these examinations provide evidence of the importance of skin cancer screening for the wider population.

  5. Trait Positive Affect Buffers the Effects of Acute Stress on Skin Barrier Recovery

    Science.gov (United States)

    Robles, Theodore F.; Brooks, Kathryn P.; Pressman, Sarah D.

    2010-01-01

    Objective This study examines the role of self-reported trait positive affect (PA) on skin barrier recovery after skin disruption, and whether the role of trait PA in wound healing is consistent with the direct effects model or the stress-buffering model of PA and health. Design Sixty healthy participants (mean age 22.7 ± 3.9 years) completed a self-report measure of trait positive and negative affect, underwent a “tape-stripping” procedure that disrupts normal skin barrier function, and were randomly assigned to a Stress (Trier Social Stress Test) or No Stress (reading task) condition. Main Outcome Measures Skin barrier recovery was assessed by measuring transepidermal water loss up to 2 hr after skin disruption. Results Multilevel modeling indicated that greater trait PA was related to faster skin barrier recovery (p < .05). The effects of PA on skin barrier recovery were independent of levels of trait NA. Conclusion These findings suggest that trait PA may influence skin barrier recovery following a brief stressor. In addition, these results provide additional evidence that trait PA can positively impact objective health outcomes. PMID:19450044

  6. Effects of turning on skin-bed interface pressures in healthy adults.

    Science.gov (United States)

    Peterson, Matthew J; Schwab, Wilhelm; van Oostrom, Johannes H; Gravenstein, Nikolaus; Caruso, Lawrence J

    2010-07-01

    This paper is a report of a study of the effects of lateral turning on skin-bed interface pressures in the sacral, trochanteric and buttock regions, and its effectiveness in unloading at-risk tissue. Minimizing skin-support surface interface pressure is important in pressure ulcer prevention, but the effect of standard patient repositioning on skin interface pressure has not been objectively established. Data were collected from 15 healthy adults from a university-affiliated hospital. Mapped 24-inch x 24-inch (2304 half-inch sensors) interface pressure profiles were obtained in the supine position, followed by lateral turning with pillow or wedge support and subsequent head-of-bed elevation to 30 degrees . Raising the head-of-bed to 30 degrees in the lateral position statistically significantly increased peak interface pressures and total area > or = 32 mmHg. Comparing areas > or = 32 mmHg from all positions, 93% of participants had skin areas with interface pressures > or = 32 mmHg throughout all positions (60 +/- 54 cm(2)), termed 'triple jeopardy areas'. The triple jeopardy area increased statistically significantly with wedges as compared to pillows (153 +/- 99 cm(2) vs. 48 +/- 47 cm(2), P turning by experienced intensive care unit nurses does not reliably unload all areas of high skin-bed interface pressures. These areas remain at risk for skin breakdown, and help to explain why pressure ulcers occur despite the implementation of standard preventive measures. Support materials for maintaining lateral turned positions can also influence tissue unloading and triple jeopardy areas.

  7. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    Directory of Open Access Journals (Sweden)

    Lécluse Yann

    2007-07-01

    Full Text Available Abstract Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC, precursors formed earlier in the yolk sac (YS display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors or early somite (hematopoietic precursors stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ

  8. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age.

    Science.gov (United States)

    Kingma, B R M; Frijns, A J H; Saris, W H M; van Steenhoven, A A; van Marken Lichtenbelt, W D

    2010-07-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18-28 years) and 16 elderly (E: 68-78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33 degrees C. Next, local temperature was reduced to 24 degrees C. After 15 min of local cooling, noradrenaline (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: -76 +/- 3 vs. E: -60 +/- 5 (P forearm, elderly did not show a blunted response to local cooling and noradrenaline at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age.

  9. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit

    2015-01-01

    BACKGROUND: Tissue permeabilization by electroporation (EP) is a promising technique to treat certain cancers. Non-invasive methods for verification of induced permeabilization are important, especially in deep-seated cancers. In this study we evaluated diffusion-weighted magnetic resonance imaging...... (NP), transient membrane permeabilization (TMP), and permanent membrane permeabilization (PMP), respectively. DW-MRI was acquired 5 minutes, 2 hours, 24 hours and 48 hours after EP. Histology was performed for validation of the permeabilization states. Tissue content of water, Na+, K+, Ca2...... minutes after EP, compared to NP. Kurtosis was also significantly higher at 24 hours (pstates, supporting the DW-MRI findings. We conclude that DW-MRI is capable of detecting EP...

  10. Is Kinesio Taping to Generate Skin Convolutions Effective for Increasing Local Blood Circulation?

    Science.gov (United States)

    Yang, Jae-Man; Lee, Jung-Hoon

    2018-01-14

    BACKGROUND It is unclear whether traditional application of Kinesio taping, which produces wrinkles in the skin, is effective for improving blood circulation. This study investigated local skin temperature changes after the application of an elastic therapeutic tape using convolution and non-convolution taping methods (CTM/NCTM). MATERIAL AND METHODS Twenty-eight pain-free men underwent CTM and NCTM randomly applied to the right and left sides of the lower back. Using infrared thermography, skin temperature was measured before, immediately after application, 5 min later, 15 min later, and after the removal of the tape. RESULTS Both CTM and NCTM showed a slight, but significant, decrease in skin temperature for up to 5 min. The skin temperature at 15 min and after the removal of the tape was not significantly different from the initial temperature for CTM and NCTM. There were also no significant differences in the skin temperatures between CTM and NCTM. CONCLUSIONS Our findings do not support a therapeutic effect of wrinkling the skin with elastic tape application as a technique to increase local blood flow.

  11. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    Science.gov (United States)

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging.

    Science.gov (United States)

    Roh, Eunmiri; Kim, Jong-Eun; Kwon, Jung Yeon; Park, Jun Seong; Bode, Ann M; Dong, Zigang; Lee, Ki Won

    2017-05-24

    Whereas green tea has historically been consumed in high quantities in Northeast Asia, its popularity is also increasing in many Western countries. Green tea is an abundant source of plant polyphenols exhibiting numerous effects that are potentially beneficial for human health. Accumulating evidence suggests that green tea polyphenols confer protective effects on the skin against ultraviolet (UV) irradiation-induced acceleration of skin aging, involving antimelanogenic, antiwrinkle, antioxidant, and anti-inflammatory effects as well as prevention of immunosuppression. Melanin pigmentation in the skin is a major defense mechanism against UV irradiation, but pigmentation abnormalities such as melasma, freckles, senile lentigines, and other forms of melanin hyperpigmentation can also cause serious health and aesthetic issues. Furthermore, UV irradiation initiates the degradation of fibrillar collagen and elastic fibers, promoting the process of skin aging through deep wrinkle formation and loss of tissue elasticity. UV irradiation-induced formation of free radicals also contributes to accelerated photoaging. Additionally, immunosuppression caused by UV irradiation plays an important role in photoaging and skin carcinogenesis. In this review, we summarize the current literature regarding the antimelanogenic, antiwrinkle, antioxidant, and immunosuppression preventive mechanisms of green tea polyphenols that have been demonstrated to protect against UV irradiation-stimulated skin photoaging, and gauge the quality of evidence supporting the need for clinical studies using green tea polyphenols as anti-photoaging agents in novel cosmeceuticals.

  13. Environmental and Host Effects on Skin Bacterial Community Composition in Panamanian Frogs

    Directory of Open Access Journals (Sweden)

    Brandon J. Varela

    2018-02-01

    Full Text Available Research on the amphibian skin microbiota has focused on identifying bacterial taxa that deter a pathogenic chytrid fungus, and on describing patterns of microbiota variation. However, it remains unclear how environmental variation affects amphibian skin bacterial communities, and whether the overall functional diversity of the amphibian skin microbiota is associated to such variation. We sampled skin microbial communities from one dendrobatoid frog species across an environmental gradient along the Panama Canal, and from three dendrobatoid frog species before and after the onset of the wet season in one site. We found frog skin microbial alpha diversity to be highest in frogs from sites with low soil pH, but no clear effect of the onset of the wet season. However, we found frog skin microbial community structure to be affected by soil pH and the onset of the wet season, which also resulted in a decrease in between-sample variation. Across the sampled frog species, bacterial functional groups changed with the onset of the wet season, with certain bacterial functional groups entirely disappearing and others differing in their relative abundances. In particular, we found the proportion of Bd-inhibitory bacteria to correlate with mean soil pH, and to increase in two of the frog species with the onset of the wet season. Taken together, our results suggest that structure and predicted function of amphibian bacterial skin communities may be influenced by environmental variables such as pH and precipitation, site effects, and host effects.

  14. Pulse testing in the presence of wellbore storage and skin effects

    Energy Technology Data Exchange (ETDEWEB)

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  15. Effect of glove occlusion on the skin barrier

    DEFF Research Database (Denmark)

    Tiedemann, Daniel; Clausen, Maja Lisa; John, Swen Malthe

    2016-01-01

    that the negative effect of occlusion in itself is limited, and that only extensive and long-term occlusion will cause barrier impairment. However, studies investigating combined effect of occlusion and exposure to soaps/detergents indicate that occlusion significantly enhances the skin barrier damage caused...... by detergents/soaps in a dose-response fashion....

  16. High-frequency irreversible electroporation (H-FIRE for non-thermal ablation without muscle contraction

    Directory of Open Access Journals (Sweden)

    Arena Christopher B

    2011-11-01

    Full Text Available Abstract Background Therapeutic irreversible electroporation (IRE is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE. A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for

  17. Effects of radiation on the skin blood volume pulse in humans

    Energy Technology Data Exchange (ETDEWEB)

    Zanelli, G D [Mount Vernon Hospital, Northwood (UK)

    1977-01-01

    Measurements have been made of the changes in skin blood volume pulse (BVP) in the irradiated skin of three patients (two female, one male) during and up to 250 days after radiotherapy for malignant disease. The instrumentation comprised a modified commercial finger photo-plethysmograph probe with associated electronics, and a survey of the literature revealed that the consensus of opinion seems to be that the recorded pulsations arise from small 'muscular' arteries and arterioles in the 40 to 300 ..mu..m size range. The results show that, as expected, normal, untreated skin shows sizeable variations in BVP. The BVP of irradiated skin became significantly greater than that of normal skin when a dose of 1000 to 1500 rad has been accumulated. The maximum amplitude of the BVP of the irradiated skin seemed to correlate well with the overall severity of the erythema, but increases in BVP preceded erythema flare-ups. In two patients, elevated BVP were recorded for irradiated areas even when most visual signs of erythema had disappeared. Mild cooling of irradiated and non-irradiated skin had differing effects in the BVP. The measurement of the BVP of irradiated skin is a simple, reliable and completely atraumatic method for investigating vascular damage to superficial tissues in humans.

  18. Supplementation with Eskimo Skin Care improves skin elasticity in women. A pilot study.

    Science.gov (United States)

    Segger, Dörte; Matthies, Andreas; Saldeen, Tom

    2008-01-01

    To investigate the question of whether supplementation with an oral oil formulation rich in natural stable fish oil can alter skin elasticity, transepidermal water loss (TEWL), and skin roughness in healthy women. Twenty-four healthy women aged 40-60 years participated in a single-blind randomized trial for testing the effect of a proprietary oral supplement for skin nutrition (Eskimo Skin Care) on skin elasticity, TEWL, and skin roughness. Skin elasticity was measured by an optical cutometer, TEWL by a water-loss module based upon the vapour gradient principle, and skin roughness with a three-dimensional microtopography imaging system. Skin elasticity increased by 10% after 3 months of treatment with the supplement, a statistically significant increase in comparison with the control group (p=0.0298). There was a trend, though not statistically significant, towards a positive influence on the skin's barrier function. No effect on the skin roughness was observed. Eskimo Skin Care, an oral preparation rich in natural stable fish oil, can improve skin elasticity.

  19. Effect of blood transfusion and skin grafting on rats with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Yan Yongtang; Ran Xinze; Wei Shuqing

    1990-01-01

    The therapeutic effect of escharectomy and skin grafting at different times on rats with combined radiation-burn injuries (5 Gy total body irradiation plus flash radiation from a 5 kW bromotungstenic lamp to induce a 15% TBSA full thickness burn on back) treated with blood transfusion (BT) were studied. The treatment with BT and escharectomy plus skin grafting at 24, 48, and 72 h after injury showed significant therapeutic effects. In these treated groups, early recovery of WBC counts, the granulocytes and total lymphocytes, T, B-cells, bone marrow cells or CFU-F counts were evident within 30 days after injury. The 30-day survival rates of the skin grafts in the group treated with BT and skin grafting at 24 h after injury was 80%, in the group with skin grafting alone was 50%, while all the skin grafts sloughted within 30 days when the grafting was performed 48 and 72 h after injury. The 30-day survival rate of the recipients treated with skin grafting plus BT was higher than that of the animals with skin grafting alone. The results showed that satisfactory results were achieved with BT plus escharectomy and skin grafting within 24 h after injury, while skin grafting performed at 48 or 72 h after injury was ineffective for the survival of skin grafts

  20. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin

    Science.gov (United States)

    Chen, Tiejun; Hou, Hu; Lu, Jiaohan; Zhang, Kai; Li, Bafang

    2016-08-01

    The objective of this study was to investigate the effect of gelatin (SG) isolated from salmon skin and its hydrolysate (SGH) on photoaging skin, and the mechanism responsible for anti-photoaging. The average molecular weights of SG and SGH were 65 kDa and 873 Da, respectively. The amino acid compositions of SG and SGH were similar. Both of them were abundant in hydrophobic amino acids. Twenty-five peptides were identified from SGH. SG and SGH could improve UV irradiation-induced pathological changes of macroscopical tissue texture and skin morphology. Hydroxyproline content is an indicator of matrix collagen content, SG and SGH could inhibit the decrease of hydroxyproline content in photoaging skin in a dose dependent manner. In addition, SG and SGH could alleviate UV irradiation-induced oxidative damages to skin by increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), increasing the content of glutathione (GSH) and decreasing the content of malonaldehyde (MDA). Moreover, SG and SGH could enhance immune regulation system by increasing the thymus index. Thus, the anti-photoaging mechanisms of SG and SGH were by inhibiting the depletion of antioxidant defense components, involving in the synthesis of collagen and enhancing the function of immune system. Besides, SGH showed a better result in protecting skin from photoaging than SG.

  1. Dual Effects of Alpha-Hydroxy Acids on the Skin

    Directory of Open Access Journals (Sweden)

    Sheau-Chung Tang

    2018-04-01

    Full Text Available AHAs are organic acids with one hydroxyl group attached to the alpha position of the acid. AHAs including glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid are often used extensively in cosmetic formulations. AHAs have been used as superficial peeling agents as well as to ameliorate the appearance of keratoses and acne in dermatology. However, caution should be exercised in relation to certain adverse reactions among patients using products with AHAs, including swelling, burning, and pruritus. Whether AHAs enhance or decrease photo damage of the skin remains unclear, compelling us to ask the question, is AHA a friend or a foe of the skin? The aim of this manuscript is to review the various biological effects and mechanisms of AHAs on human keratinocytes and in an animal model. We conclude that whether AHA is a friend or foe of human skin depends on its concentration. These mechanisms of AHAs are currently well understood, aiding the development of novel approaches for the prevention of UV-induced skin damage.

  2. Clinical use of radiation sterile porcine skin and Ag-skin of porcine

    International Nuclear Information System (INIS)

    Zhu Xiaobo

    1995-01-01

    Clinical examination revealed that either radiation sterilized skin or Ag-skin of pig are effective biologic dressing. When used as temporary skin coverage for fresh burn wound, for wound after escharectomy, and for wounds among skin grafts, they are effective in preventing infection and loss of body fluid. They can also be used for covering the infected granulation wound to control bacterial growth and further contamination

  3. Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, J. J., E-mail: johann.wendler@med.ovgu.de; Porsch, M.; Huehne, S.; Baumunk, D. [University of Magdeburg, Department of Urology (Germany); Buhtz, P. [Institute of Pathology, University of Magdeburg (Germany); Fischbach, F.; Pech, M. [University of Magdeburg, Department of Radiology (Germany); Mahnkopf, D. [Institute of Medical Technology and Research (Germany); Kropf, S. [Institute of Biometry, University of Magdeburg (Germany); Roessner, A. [Institute of Pathology, University of Magdeburg (Germany); Ricke, J. [University of Magdeburg, Department of Radiology (Germany); Schostak, M.; Liehr, U.-B. [University of Magdeburg, Department of Urology (Germany)

    2013-04-15

    Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histological follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.

  4. Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model

    International Nuclear Information System (INIS)

    Wendler, J. J.; Porsch, M.; Hühne, S.; Baumunk, D.; Buhtz, P.; Fischbach, F.; Pech, M.; Mahnkopf, D.; Kropf, S.; Roessner, A.; Ricke, J.; Schostak, M.; Liehr, U.-B.

    2013-01-01

    Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histological follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.

  5. Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.

    Science.gov (United States)

    Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür

    2014-09-01

    The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.

  6. The Relative Utility of Skin Resistance and Skin Conductance

    National Research Council Canada - National Science Library

    Barland, Gordon

    1990-01-01

    The effectiveness of two circuits (constant current = skin resistance; constant voltage = skin conductance) used for measuring electrodermal activity during a psychophysiological detection of deception...

  7. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  8. [Effect of ionizing radiation and other factors on the thermal sensitivity of mouse skin].

    Science.gov (United States)

    Kurpeshev, O K; Konopliannikov, A G

    1987-03-01

    A study was made of the effect of various agents on skin injury by hyperthermia in experiments on noninbred albino mice. The effects of heating were assessed by the frequency of skin necrosis development. The results of the study showed that irradiation of the skin (30 Gy) before heating did not influence its thermosensitivity whereas heating 45-180 days after irradiation proved more effective. Ethanol, metronidazole, thyrocalcitonin and actinomycin D decreased skin thermosensitivity, and cyclohexamide, serotonin, hyperglycemia and applying a tourniquet increased it. The DMF value for actinomycin D depended on the temperature of heating. One should distinguish between true modification of tissue thermosensitivity (determined by cellular factors) and indirect modification (associated with change in volumetric circulation rate).

  9. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis

    Directory of Open Access Journals (Sweden)

    Cremer Harold

    2011-04-01

    Full Text Available Abstract Background Postnatal olfactory bulb (OB neurogenesis involves the generation of granule and periglomerular cells by neural stem cells (NSCs located in the walls of the lateral ventricle (LV. Recent studies show that NSCs located in different regions of the LV give rise to different types of OB neurons. However, the molecular mechanisms governing neuronal specification remain largely unknown and new methods to approach these questions are needed. Results In this study, we refine electroporation of the postnatal forebrain as a technique to perform precise and accurate delivery of transgenes to NSCs located in distinct walls of the LV in the mouse. Using this method, we confirm and expand previous studies showing that NSCs in distinct walls of the LV produce neurons that invade different layers of the OB. Fate mapping of the progeny of radial glial cells located in these distinct LV walls reveals their specification into defined subtypes of granule and periglomerular neurons. Conclusions Our results provide a baseline with which future studies aiming at investigating the role of factors in postnatal forebrain neuronal specification can be compared. Targeted electroporation of defined LV NSC populations will prove valuable to study the genetic factors involved in forebrain neuronal specification.

  10. Evaluation of effects of platelet-rich plasma on human facial skin.

    Science.gov (United States)

    Yuksel, Esra Pancar; Sahin, Gokhan; Aydin, Fatma; Senturk, Nilgun; Turanli, Ahmet Yasar

    2014-10-01

    Platelet-rich plasma (PRP) has been used for rapid healing and tissue regeneration in many fields of medicine. This study was conducted to evaluate the effects of PRP application procedure on human facial skin. PRP was applied thrice at 2-week intervals on the face of ten healthy volunteers. It was applied to individual's forehead, malar area, and jaw by a dermaroller, and injected using a 27-gauge injector into the wrinkles of crow's feet. Participants were asked to grade on a scale from 0 to 5 for general appearance, skin firmness-sagging, wrinkle state and pigmentation disorder of their own face before each PRP procedure and 3 months after the last PRP procedure. While volunteers were evaluating their own face, they were also assessed by three different dermatologists at the same time by the same five-point scale. There was statistically significant difference regarding the general appearance, skin firmness-sagging and wrinkle state according to the grading scale of the patients before and after three PRP applications. Whereas there was only statistically significant difference for the skin firmness-sagging according to the assessment of the dermatologists. PRP application could be considered as an effective procedure for facial skin rejuvenation.

  11. Chyawanprash, a formulation of traditional Ayurvedic medicine, shows a protective effect on skin photoaging in hairless mice.

    Science.gov (United States)

    Takauji, Yuki; Morino, Kyoko; Miki, Kensuke; Hossain, Mohammad; Ayusawa, Dai; Fujii, Michihiko

    2016-11-01

    Chronic exposure to ultraviolet (UV) radiation induces skin photoaging (premature skin aging). UV irradiation generates reactive oxygen species (ROS), which are shown to play a pivotal role in skin photoaging. Ayurveda is a holistic traditional medical system, and Chyawanprash is one of the most popular formulations in Ayurveda. Since maintenance of the function and appearance of skin is important, we examined whether Chyawanprash has a protective effect on skin photoaging. To examine the effect of Chyawanprash on skin photoaging, hairless mice were administered with Chyawanprash in drinking water for 3 weeks, and then repeatedly exposed to ultraviolet light B (UVB) irradiation (225 or 450 mJ/cm 2 ) to induce skin photoaging. To further examine the function of Chyawanprash, its effects were examined in cells cultured in vitro. Chyawanprash was added in culture medium, and examined for the effect on the growth of human keratinocytes, and for the ability to eliminate ROS which generated by paraquat (50 μmol/L) in HeLa cells. UVB irradiation caused symptoms such as rough skin, erythema, and edema on the skin in hairless mice, but administration of Chyawanprash relieved these symptoms. Further, Chyawanprash significantly suppressed epidermal thickening, a typical marker of skin photoaging, in mice. We then analyzed the effect of Chyawanprash in human cells in culture, and found that Chyawanprash enhanced the growth of human keratinocytes, and efficiently eliminated ROS, which are causally involved in skin photoaging, in HeLa cells. These findings suggested that Chyawanprash may have beneficial effects on slowing skin photoaging.

  12. An evaluation of costs and effects of a nutrient-based skin care program as a component of prevention of skin tears in an extended convalescent center.

    Science.gov (United States)

    Groom, Marjorie; Shannon, Ronald J; Chakravarthy, Debashish; Fleck, Cynthia A

    2010-01-01

    A decision model was developed in a pilot study comparing a regimen using a skin care product line containing active ingredients and nutrients with a commercially available alternative skin care regimen in an elderly convalescent care hospital-based center. Using a decision-tree model, skin treatment with a nutrient-based skin care (NBSC) formulation was compared with products without nutrients. The number of skin-tear-free days was the primary outcome measure. A cost-effectiveness ratio was calculated for each skin treatment as the average cost for reaching a particular outcome. Incidence of skin tear data was collected from residents in a convalescent center from 2004 to 2005. An independent t test was used to compare differences in the number of skin tears between periods when NBSC and other formulations were used. All costs in the decision model were adjusted to 2007 dollars. Sensitivity analysis was used to test uncertain data. The NBSC provided more skin-tear-free days and was less costly than the use of non-NBSC products. The expected skin-tear-free days for a patient in the model treated with NBSC were 179.7 days compared with 154.6 days for non-NBSC products, yielding an incremental effect of 25.1 days. The expected cost of preventing skin tears and treatment via skin treatment per patient in the NBSC group was $281.00 versus $324.10 for periods when other products were used. The NBSC had a lower projected cost for prevention of skin tears and more skin-tear-free days when compared with non-NBSC products.

  13. Hairy skin exposure to VX in vitro: effectiveness of delayed decontamination.

    Science.gov (United States)

    Rolland, P; Bolzinger, M-A; Cruz, C; Josse, D; Briançon, S

    2013-02-01

    The chemical warfare agents such as VX represent a threat for both military and civilians, which involves an immediate need of effective decontamination systems. Since human scalp is usually unprotected compared to other body regions covered with clothes, it could be a preferential site of exposure in case of terrorist acts. The purpose of this study was to determine if skin decontamination could be efficient when performed more than 1h after exposure. In addition, the impact of hairs in skin contamination was investigated. By using in vitro skin models, we demonstrated that about 75% of the applied quantity of VX was recovered on the skin surface 2h after skin exposition, which means that it is worth decontaminating even if contamination occurred 2h before. The stratum corneum reservoir for VX was quickly established and persistent. In addition, the presence of hairs modified the percutaneous penetration of the nerve agent by binding of VX to hairs. Hair shaft has thus to be taken into account in the decontamination process. Reactive Skin Decontamination Lotion (RSDL) and Fuller's Earth (FE) were active in the skin decontamination 45min post-exposure, but RSDL was more efficient in reducing the amount of VX either in the skin or in the hair. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Understanding the Effects of Host Evolution and Skin Bacteria Composition on Disease Vector Choices

    Science.gov (United States)

    2016-04-14

    Distribution Unlimited UU UU UU UU 14-04-2016 1-Sep-2014 31-Dec-2015 Final Report: Understanding the effects of host evolution and skin bacteria ...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mosquito, skin, bacteria , primate REPORT...reviewed journals: Final Report: Understanding the effects of host evolution and skin bacteria composition on disease vector choices Report Title Here

  15. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  16. Protective effects of oleum curcumae wenchowensis on skin damage due to UVB

    International Nuclear Information System (INIS)

    Wang Zhicheng; Zhao Hongguang; Du Xiang; Li Yanbo; Guo Wei; Gong Shouliang; Xiao Jian; Yao Chongshun; Li Xiaokun

    2006-01-01

    Objective: To study the protective effects of oleum curcumae wenchowensis on skin damage exposed to UVB and its mechanism, and to provide the experimental basis for the protection of skin damage exposed to UVB. Methods: The skin of guinea pigs was exposed to UVB (28.38 J/cm 2 · 30 d) to establish the oxidative damage model. The skin erythema and the rough were observed during the experiment; the thickness of epiderm and the number of fibroblast were observed under light microscope after the experiment. The activities of GSH-Px, SOD, CAT and T-AOC and the contain of MDA in the supernate of skin homogenate were detected with biochemical methods. Results: The epiderm in UVB exposure group and blank group thickened, but that in protective group weren't observed; the number of fibroblast in UVB exposure group and blank group decreased, while that in protective group increased, but that in control group didn't. The content of MDA in the supemate of skin homogenate in UVB exposure group and blank group increased, but that in protective group deceased, and the activities of GSH-Px, SOD, CAT and T-AOC in UVB exposure group and blank group decreased, but those in protective group increased, and control group had no change. Conclusions: Oleum curcumae wenchowensis has the protective effects on skin damage exposed to UVB, which may be mediated by increasing the contain of antioxidases and eliminating the flee radical. (authors)

  17. The GMD Method for Inductance Calculation Applied to Conductors with Skin Effect

    Directory of Open Access Journals (Sweden)

    H. A. Aebischer

    2017-09-01

    Full Text Available The GMD method (geometric mean distance to calculate inductance offers undoubted advantages over other methods. But so far it seemed to be limited to the case where the current is uniformly distributed over the cross section of the conductor, i.e. to DC (direct current. In this paper, the definition of the GMD is extended to include cases of nonuniform distribution observed at higher frequencies as the result of skin effect. An exact relation between the GMD and the internal inductance per unit length for infinitely long conductors of circularly symmetric cross section is derived. It enables much simpler derivations of Maxwell’s analytical expressions for the GMD of circular and annular disks than were known before. Its salient application, however, is the derivation of exact expressions for the GMD of infinitely long round wires and tubular conductors with skin effect. These expressions are then used to verify the consistency of the extended definition of the GMD. Further, approximate formulae for the GMD of round wires with skin effect based on elementary functions are discussed. Total inductances calculated with the help of the derived formulae for the GMD with and without skin effect are compared to measurement results from the literature. For conductors of square cross section, an analytical approximation for the GMD with skin effect based on elementary functions is presented. It is shown that it allows to calculate the total inductance of such conductors for frequencies from DC up to 25 GHz to a precision of better than 1 %.

  18. Development and evaluation of a skin organ model for the analysis of radiation effects

    International Nuclear Information System (INIS)

    Meineke, V.; Mueller, K.; Ridi, R.; Cordes, N.; Beuningen, D. van; Koehn, F.M.; Ring, J.; Mayerhofer, A.

    2004-01-01

    Background and purpose: the reaction of tissues to ionizing radiation involves alterations in cell-cell and cell-matrix interactions mediated by cellular adhesion molecules. The aim of this study was to develop and evaluate an artificial skin organ model for the analysis of radiation effects. Material and methods: a human co-culture system consisting of the spontaneously immortalized keratinocyte cell line HaCaT and primary HDFa fibroblasts embedded into a collagen sponge was established. This skin organ model has been characterized and evaluated for its suitability for radiobiological investigations. For that purpose, expression of β 1 -integrin following irradiation was compared in the skin organ model and in HaCaT monolayer cells (FACScan and immunohistochemistry). Furthermore, the influence of ionizing radiation on DNA fragmentation was investigated in the skin organ model (TUNEL assay). Results: the novel skin organ model showed characteristics of human skin as demonstrated by cytokeratin and Ki-67 immunoreactivity and by electron microscopy. A single dose of 5 Gy X-irradiation induced an upregulation of β 1 -integrin expression both in the skin organ model and in HaCaT cells. Following irradiation, β 1 -integrin immunoreactivity was intensified in the upper layers of the epidermis equivalent whereas it was almost absent in the deeper layers. Additionally, irradiation of the skin organ model also caused a marked increase of DNA fragmentation. Conclusion: these results demonstrate that the novel skin organ model is suitable to investigate cellular radiation effects under three-dimensional conditions. This allows to investigate radiation effects which cannot be demonstrated in monolayer cell cultures. (orig.)

  19. Effect of repeated ultraviolet irradiation on skin of hairless mice

    International Nuclear Information System (INIS)

    Alpermann, H.; Vogel, H.G.

    1978-01-01

    The effect of repeated UV-irradiation on mechanical and biochemical parameters was studied in skin of hairless mice. uV-A irradiation for a period of 1 h daily over 8 weeks caused only a slight increase in skin thickness and a decrease in ultimate strain. The changes induced by UV-B and C, however, were quite remarkable. Skin thickness was increased depending on the daily dose exposure time (15-90 s at an irradiation rate of 20mW/cm 2 UV-B and A and of 14mW/cm 2 UV-C) and the duration of treatment (1-6 weeks). Ultimate load, tensile strength and modulus of elasticity showed an increase following medium dosages after 1 and 2 weeks, however, a decrease after high dosages and longterm treatment. Ultimate strain was found to be the most sensitive parameter being decreased depending on exposure time and duration of treatment. Insoluble collagen and total collagen were decreased after long-term treatment thus being correlated with the mechanical parameters. The elastin content was only barely influenced and not correlated with the mechanical data, e.g. the modulus of elasticity. Thus, a favourable effect of short-treatment with low doses of UV-irradiation of mechanical parameters of skin could be demonstrated. Long-term treatment with relatively high doses of UV-B, however, resulted in unfavourable effects, whereby first ultimate strain, then ultimate load, modulus of elasticity and tensile strength were decreased. (orig.) [de

  20. In vivo effect of carbon dioxide laser-skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model.

    Science.gov (United States)

    Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos

    2006-03-01

    Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and pSkin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.

  1. An "Off-the-Shelf" System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy.

    Science.gov (United States)

    Neal, Robert E; Kavnoudias, Helen; Thomson, Kenneth R

    2015-06-01

    Irreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators. We describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator. Accuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues. This system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents-sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  2. The effect of repeated laser stimuli to ink-marked skin on skin temperature—recommendations for a safe experimental protocol in humans

    Directory of Open Access Journals (Sweden)

    Victoria J. Madden

    2016-01-01

    Full Text Available Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing.Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back.Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure.Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it.

  3. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  4. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2014-01-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628

  5. Side Effects: Skin and Nail Changes

    Science.gov (United States)

    Cancer treatments can cause skin to become dry, itchy, red, or peel. Nails may become dark, yellow, or cracked. Learn about signs of skin problems that may need urgent medical care. Get a helpful list of questions to ask your doctor.

  6. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    Science.gov (United States)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Jiang, L.; Silvain, J.-F.; Lu, Y. F.

    2015-10-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0-10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm2. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  7. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    Energy Technology Data Exchange (ETDEWEB)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F., E-mail: ylu2@unl.edu [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States); Jiang, L. [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Silvain, J.-F. [Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS) 87, Avenue du Docteur Albert Schweitzer F-33608 Pessac Cedex (France)

    2015-10-21

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm{sup 2}. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  8. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    International Nuclear Information System (INIS)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F.; Jiang, L.; Silvain, J.-F.

    2015-01-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm 2 . The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films

  9. In situ formation of magnetopolymersomes via electroporation for MRI

    Science.gov (United States)

    Bain, Jennifer; Ruiz-Pérez, Lorena; Kennerley, Aneurin J.; Muench, Stephen P.; Thompson, Rebecca; Battaglia, Giuseppe; Staniland, Sarah S.

    2015-09-01

    As the development of diagnostic/therapeutic (and combined: theranostic) nanomedicine grows, smart drug-delivery vehicles become ever more critical. Currently therapies consist of drugs tethered to, or encapsulated within nanoparticles or vesicles. There is growing interest in functionalising them with magnetic nanoparticles (MNPs) to target the therapeutics by localising them using magnetic fields. An alternating magnetic field induces remote heating of the particles (hyperthermia) triggering drug release or cell death. Furthermore, MNPs are diagnostic MRI contrast agents. There is considerable interest in MNP embedded vehicles for nanomedicine, but their development is hindered by difficulties producing consistently monodisperse MNPs and their reliable loading into vesicles. Furthermore, it is highly advantageous to "trigger" MNP production and to tune the MNP's size and magnetic response. Here we present the first example of a tuneable, switchable magnetic delivery vehicle for nanomedical application. These are comprised of robust, tailored polymer vesicles (polymersomes) embedded with superparamagnetic magnetite MNPs (magnetopolymersomes) which show good MRI contrast (R2* = 148.8 s-1) and have a vacant core for loading of therapeutics. Critically, the magnetopolymersomes are produced by a pioneering nanoreactor method whereby electroporation triggers the in situ formation of MNPs within the vesicle membrane, offering a switchable, tuneable magnetic responsive theranostic delivery vehicle.

  10. The effect of grape-skin extract on oxidative status

    DEFF Research Database (Denmark)

    Young, J. F.; Dragsted, L. O.; Daneshvar, B.

    2000-01-01

    dismutase or catalase. Likewise, no effect was found on 2-aminoadipic semialdehyde (AAS) residues, a plasma protein oxidation product, or on malondialdehyde in plasma or in LDL, which are markers of lipoprotein oxidation. A marginal effect of grape-skin intervention was observed on plasma ascorbate levels...

  11. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    Science.gov (United States)

    de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M.; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    Background: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. Objectives: We investigated the effects of radon and UV exposure on skin cancer mortality. Methods: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. Results: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p=0.09). Conclusions: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825 PMID:28686556

  12. Surgical treatment of delayed radiation effects in the skin and its indication

    International Nuclear Information System (INIS)

    Tilkorn, H.; Drepper, H.

    1987-01-01

    Since 1960 a total of 1200 patients with skin disease as delayed radiation effects were treated at the Hornheide special clinic, 40% of whom received plastic surgery. This requires knowledge of the type of radiation applied and when it was applied, additional harmful influences, exposure, differentiation in cases of ulcers between primary, cumulative, and combination effect, early radiation effects, and late radiation effects. Secondary factors leading possibly to necrosis may be: recidivation of the primary tumours, benign or malignant neoplasms, traumatic injuries such as injections, sampling, tight clothing, chemical factors like therapeuticals for local application, allergies, infections of the skin with bacteria or fungi, osteomyelitis, non-infections skin disease, and internal disease. A precondition for successful dermatological and surgical treatment are a careful review of the previous case history and exact diagnosis. Some clinical cases serve to illustrate the theoretical explanations and point out possibilities for surgical treatment. (TRV) [de

  13. The effect of ceramide-containing skin care products on eczema resolution duration.

    Science.gov (United States)

    Draelos, Zoe Diana

    2008-01-01

    Eczema is a common dermatologic condition that affects children as well as adults and is related to a defective skin barrier, which is most commonly caused by damage to the intercellular lipids from improper selection of skin cleansers and moisturizers. A new concept in skin care is the incorporation of ceramides into therapeutic cleansers and moisturizers. Ceramides are important components of the intercellular lipids that are necessary to link the protein-rich corneocytes into a waterproof barrier that is capable of protecting the underlying skin tissues and regulating body homeostasis. This study evaluated the effect of both a multilamellar vesicular emulsion (MVE) ceramide-containing liquid cleanser and moisturizing cream plus fluocinonide cream 0.05% compared with a bar cleanser plus fluocinonide cream 0.05% in the treatment of mild to moderate eczema. The addition of an MVE ceramide-containing liquid cleanser and moisturizing cream to a high-potency corticosteroid enhanced the treatment outcome of mild to moderate eczema compared with the use of a bar cleanser and high-potency corticosteroid in reducing disease duration, time to disease clearance, and symptoms. Thus, skin care product selection can have an important clinical effect on the clearance of mild to moderate eczema.

  14. Radiation Effects of Mobile Phones and Tablets on the Skin: A Systematic Review.

    Science.gov (United States)

    Keykhosravi, A; Neamatshahi, M; Mahmoodi, R; Navipour, E

    2018-01-01

    Skin health has become a worldwide concern. Most of the studies investigated the effect of mobile phone radiation on DNA and animals, but a few studies were carried out about skin diseases in mobile phone and tablet users. Few systematic studies have examined the relationship between mobile phone exposure and skin diseases. We evaluated the association between mobile phones and tablets and skin diseases. We checked databases including PubMed, Scopus, Springer, Cochrane, and Google Scholar from 1995 to 2013. The eligibility criteria were descriptive, and observational studies were in English and Persian language, and the subjects were of all ages and reported skin disease. Most of the studies focused on signs and less on skin cancer. In total, 6 studies were included with 392119 participants with age over 25 years. In a nationwide cohort study in Denmark for BCC, the IRR (incidence rate ratios) estimates remained near unity among men and women. In the other studies, they reported an increase in temperature, hypersensitivity of warmth, facial dermatitis, angiosarcoma of the scalp, and burning sensations in the facial skin after mobile phone use on the exposed side and more within the auricle and behind/around the ear. Overall evaluations showed that the level of evidence associated with the effects of radiation from the mobile phone and tablet on the skin is poor. This review shows a necessity for more studies in this area.

  15. Radiation Effects of Mobile Phones and Tablets on the Skin: A Systematic Review

    Directory of Open Access Journals (Sweden)

    A. Keykhosravi

    2018-01-01

    Full Text Available Background. Skin health has become a worldwide concern. Most of the studies investigated the effect of mobile phone radiation on DNA and animals, but a few studies were carried out about skin diseases in mobile phone and tablet users. Few systematic studies have examined the relationship between mobile phone exposure and skin diseases. Methods. We evaluated the association between mobile phones and tablets and skin diseases. We checked databases including PubMed, Scopus, Springer, Cochrane, and Google Scholar from 1995 to 2013. The eligibility criteria were descriptive, and observational studies were in English and Persian language, and the subjects were of all ages and reported skin disease. Results. Most of the studies focused on signs and less on skin cancer. In total, 6 studies were included with 392119 participants with age over 25 years. In a nationwide cohort study in Denmark for BCC, the IRR (incidence rate ratios estimates remained near unity among men and women. In the other studies, they reported an increase in temperature, hypersensitivity of warmth, facial dermatitis, angiosarcoma of the scalp, and burning sensations in the facial skin after mobile phone use on the exposed side and more within the auricle and behind/around the ear. Conclusions. Overall evaluations showed that the level of evidence associated with the effects of radiation from the mobile phone and tablet on the skin is poor. This review shows a necessity for more studies in this area.

  16. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion.

    Science.gov (United States)

    Loo, Ch; Basri, M; Ismail, R; Lau, Hln; Tejo, Ba; Kanthimathi, Ms; Hassan, Ha; Choo, Ym

    2013-01-01

    To study the effects of varying lipid concentrations, lipid and oil ratio, and the addition of propylene glycol and lecithin on the long-term physical stability of nanostructured lipid nanocarriers (NLC), skin hydration, and transepidermal water loss. The various NLC formulations (A1-A5) were prepared and their particle size, zeta potential, viscosity, and stability were analyzed. The formulations were applied on the forearms of the 20 female volunteers (one forearm of each volunteer was left untreated as a control). The subjects stayed for 30 minutes in a conditioned room with their forearms uncovered to let the skin adapt to the temperature (22°C ± 2°C) and humidity (50% ± 2%) of the room. Skin hydration and skin occlusion were recorded at day one (before treatment) and day seven (after treatment). Three measurements for skin hydration and skin occlusion were performed in each testing area. NLC formulations with the highest lipid concentration, highest solid lipid concentration, and additional propylene glycol (formulations A1, A2, and A5) showed higher physical stability than other formulations. The addition of propylene glycol into an NLC system helped to reduce the particle size of the NLC and enhanced its long-term physical stability. All the NLC formulations were found to significantly increase skin hydration compared to the untreated controls within 7 days. All NLC formulations exhibited occlusive properties as they reduced the transepidermal water loss within 7 days. This effect was more pronounced with the addition of propylene glycol or lecithin into an NLC formulation, whereby at least 60% reduction in transepidermal water loss was observed. NLCs with high lipid content, solid lipid content, phospholipid, and lecithin are a highly effective cosmetic delivery system for cosmetic topical applications that are designed to boost skin hydration.

  17. Electroporation and use of hepatitis B virus envelope L proteins as bionanocapsules.

    Science.gov (United States)

    Yamada, Tadanori; Jung, Joohee; Seno, Masaharu; Kondo, Akihiko; Ueda, Masakazu; Tanizawa, Katsuyuki; Kuroda, Shun'ichi

    2012-06-01

    Hepatitis B virus (HBV) envelope L proteins, when synthesized in yeast cells, form a hollow bionanocapsule (BNC) in which genes (including large plasmids up to 40 kbp), small interfering RNA (siRNA), drugs, and proteins can be enclosed by electroporation. BNCs made from L proteins have several advantages as a delivery system: Because they display a human liver-specific receptor (the pre-S region of the L protein) on their surface, BNCs can efficiently and specifically deliver their contents to human liver-derived cells and tissues ex vivo (in cell culture) and in vivo (in a mouse xenograft model). Retargeting can be achieved simply by substituting other biorecognition molecules such as antibodies, ligands, receptors, and homing peptides for the pre-S region. In addition, BNCs have already been proven to be safe for use in humans during their development as an immunogen of hepatitis B vaccine. This protocol describes the loading of BNCs and their use in cell culture and in vivo.

  18. Effect of skin hydration on the dynamics of fingertip gripping contact.

    Science.gov (United States)

    André, T; Lévesque, V; Hayward, V; Lefèvre, P; Thonnard, J-L

    2011-11-07

    The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.

  19. The effect of skin thickness determined using breast CT on mammographic dosimetry

    International Nuclear Information System (INIS)

    Huang Shihying; Boone, John M.; Yang, Kai; Kwan, Alexander L. C.; Packard, Nathan J.

    2008-01-01

    The effect of breast skin thickness on dosimetry in mammography was investigated. Breast computed tomography (CT) acquisition techniques, combined with algorithms designed for determining specific breast metrics, were useful for estimating skin thickness. A radial-geometry edge detection scheme was implemented on coronal reconstructed breast CT (bCT) images to measure the breast skin thickness. Skin thickness of bilateral bCT volume data from 49 women and unilateral bCT volume data from 2 women (10 healthy women and 41 women with BIRADS 4 and 5 diagnoses) was robustly measured with the edge detection scheme. The mean breast skin thickness (±inter-breast standard deviation) was found to be 1.45±0.30 mm. Since most current published normalized glandular dose (D gN ) coefficients are based on the assumption of a 4-mm breast skin thickness, the D gN values computed with Monte Carlo techniques will increase up to 18% due to the thinner skin layers (e.g., 6-cm 50% glandular breast, 28 kVp Mo-Mo spectrum). The thinner skin dimensions found in this study suggest that the current D gN values used for mammographic dosimetry lead to a slight underestimate in glandular dose

  20. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang; Zhang, Mengying; Chen, Shuyu; Wang, Limu; Chang, Donald Choy; Wen, Weijia

    2010-01-01

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang

    2010-08-27

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  3. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    Science.gov (United States)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  4. Effect of seasonal and geographical differences on skin and effect of treatment with an osmoprotectant: Sorbitol.

    Science.gov (United States)

    Muizzuddin, Neelam; Ingrassia, Michael; Marenus, Kenneth D; Maes, Daniel H; Mammone, Thomas

    2013-01-01

    Human skin maintains an optimal permeability barrier function in a terrestrial environment that varies considerably in humidity. Cells cultured under hyperosmotic stress accumulate osmolytes including sorbitol. Epidermal keratinocytes experience similar high osmolality under dry environmental conditions because of increased transepidermal water loss (TEWL) and concomitant drying of the skin. This study was designed to determine if epidermal keratinocytes, in vitro, could be protected from high osmotic stress, with the exogenous addition of sorbitol. In addition, we evaluated the effect of a formulation containing topical sorbitol on skin barrier and moisturization of subjects living in arid and humid regions in summer as well as in winter. Results from in vitro experiments showed that 50 mM sorbitol protected epidermal keratinocytes from osmotic toxicity induced by sodium chloride. Clinical studies indicated that skin chronically exposed to hot, dry environment appeared to exhibit stronger skin barrier and a lower baseline TEWL. In addition, skin barrier was stronger in summer than in winter. Sorbitol exhibited significant improvement in both barrier repair and moisturization, especially in individuals subjected to arid environmental conditions.

  5. Urinary Tract Effects After Multifocal Nonthermal Irreversible Electroporation of the Kidney: Acute and Chronic Monitoring by Magnetic Resonance Imaging, Intravenous Urography and Urinary Cytology

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Johann Jakob, E-mail: johann.wendler@med.ovgu.de [University of Magdeburg, Department of Urology (Germany); Pech, Maciej [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Porsch, Markus; Janitzky, Andreas [University of Magdeburg, Department of Urology (Germany); Fischbach, Frank [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Buhtz, Peter; Vogler, Klaus [University of Magdeburg, Institute of Pathology (Germany); Huehne, Sarah [University of Magdeburg, Department of Urology (Germany); Borucki, Katrin [University of Magdeburg, Institute of Clinical Chemistry (Germany); Strang, Christof [University of Magdeburg, Department of Anaesthesiology (Germany); Mahnkopf, Dirk [Institute of Medical Technology and Research (Germany); Ricke, Jens [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Liehr, Uwe-Bernd [University of Magdeburg, Department of Urology (Germany)

    2012-08-15

    Purpose: The nonthermal irreversible electroporation (NTIRE) is a novel potential ablation modality for renal masses. The aim of this study was the first evaluation of NTIRE's effects on the renal urine-collecting system using intravenous urography (IVU) and urinary cytology in addition to histology and magnetic resonance imaging (MRI). Methods: Eight percutaneous NTIRE ablations of the renal parenchyma, including the calyxes or pelvis, were performed in three male swine. MRI, IVU, histology, and urinary cytology follow-ups were performed within the first 28 days after treatment. Results: MRI and histological analysis demonstrated a localized necrosis 7 days and a localized scarification of the renal parenchyma with complete destruction 28 days after NTIRE. The urine-collecting system was preserved and showed urothelial regeneration. IVU and MRI showed an unaltered normal morphology of the renal calyxes, pelvis, and ureter. A new urinary cytology phenomenon featured a temporary degeneration by individual vacuolization of detached transitional epithelium cells within the first 3 days after NTIRE. Conclusions: This first urographical, urine-cytological, and MRI evaluation after porcine kidney NTIRE shows multifocal parenchyma destruction while protecting the involved urine-collecting system with regenerated urothelial tissue. NTIRE could be used as a targeted ablation method of centrally located renal masses.

  6. [In vitro percutaneous absorption of chromium powder and the effect of skin cleanser].

    Science.gov (United States)

    D'Agostin, F; Crosera, M; Adami, G; Malvestio, A; Rosani, R; Bovenzi, M; Maina, G; Filon, F Larese

    2007-01-01

    Occupational chromium dermatitis occurs frequently among cement and metal workers, workers dealing with leather tanning and employees in the ceramic industry. The present study, using an in-vitro system, evaluated percutaneous absorption of chromium powder and the effect of rapid skin decontamination with a common detergent. Experiments were performed using the Franz diffusion cell method with human skin. Physiological solution was used as receiving phase and a suspension of chromium powder in synthetic sweat was used as donor phase. The tests were performed without or with decontamination using the cleanser 30 minutes after the start of exposure. The amount of chromium permeated through the skin was analysed by Inductively Coupled Plasma Atomic Emission Spectroscopy and Electro Thermal Atomic Absorption Spectroscopy. Speciation analysis and measurements of chromium skin content were also performed. We calculated a permeation flux of 0.843 +/- 0.25 ng cm(-2) h(-1) and a lag time of 1.1 +/- 0.7 h. The cleaning procedure significantly increased chromium skin content, whereas skin passage was not increased. These results showed that chromium powder can pass through the skin and that skin decontamination did not decrease skin absorption. Therefore, it is necessary to prevent skin contamination when using toxic agents.

  7. Skin effect suppression for Cu/CoZrNb multilayered inductor

    Science.gov (United States)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  8. Chimney Effect Assessment of the Double-skin Facade

    Institute of Scientific and Technical Information of China (English)

    QIU Zhong-zhu; LI Peng; CHOW Tin-tai; REN Jian-xing; WANG Wen-huan

    2009-01-01

    The mathematic model of heat transfer through ventihted double glazing was verified with themeasured data,which were from a test chamber equipped with glass face temperature,solar radiation,ambient temperature,and wind speed measurement facility.Mter the model validation,the double-skin facade assess-ment was carried out through simulation with ESP-r software integrating thermal simulation and air low net work module.The air flow situation in the air gap was analyzed on the basis of the hourly air velocity simulation data within typical winter week,summer week,spring week and autumn week.The differences of chimney ef-fect in different seasons were discussed,and the thermal loads resulted from the ventilated and unventihted dou-ble skin facade were presented.

  9. The role of natural and UV-induced skin pigmentation on low-fluence IPL-induced side effects

    DEFF Research Database (Denmark)

    Thaysen-Petersen, Daniel; Lin, Jennifer Y; Nash, Jf

    2014-01-01

    BACKGROUND AND OBJECTIVES: The risk of adverse skin effects following light-based hair removal is greater in pigmented skin based on the theory of selective photothermolysis. Thus sunlight-induced pigment i.e., facultative pigmentation, increases the risk of adverse skin effects, perhaps dispropo...... pigmentation regardless of the origin, i.e., constitutive versus UV induced....

  10. Shining Light on Skin Pigmentation: The Darker and the Brighter Side of Effects of UV Radiation†

    Science.gov (United States)

    Maddodi, Nityanand; Jayanthy, Ashika; Setaluri, Vijayasaradhi

    2012-01-01

    The term barrier function as applied to human skin often connotes the physical properties of this organ that provide protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on a) the mechanisms of involved in selective effects of subcomponents of UV radiation on human skin pigmentation and b) the interactive influences between keratinocytes and melanocytes, acting as ‘epidermal melanin unit’, that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the non-ionizing solar radiation, at cellular and molecular levels, on human skin pigmentation. PMID:22404235

  11. The effect of compressed air massage on skin blood flow and temperature.

    Science.gov (United States)

    Mars, Maurice; Maharaj, Sunil S; Tufts, Mark

    2005-01-01

    Compressed air massage is a new treatment modality that uses air under pressure to massage skin and muscle. It is claimed to improve skin blood flow but this has not been verified. Several pilot studies were undertaken to determine the effects of compressed air massage on skin blood flow and temperature. Skin blood flow (SBF), measured using laser Doppler fluxmetry and skin temperature was recorded under several different situations: (i) treatment, at 1 Bar pressure using a single-hole (5-mm) applicator head, for 1 min at each of several sites on the right and left lower legs, with SBF measured on the dorsum of the left foot; (ii) at the same treatment pressure, SBF was measured over the left tibialis anterior when treatment was performed at different distances from the probe; (iii) SBF and skin temperature of the lower leg were measured with treatment at 0 or 1 Bar for 45 min, using two different applicator heads; (iv) SBF was measured on the dorsum of the foot of 10 subjects with treatment for 1 min at 0, 0.5, 1, 1.5 and 2 Bar using three different applicator heads. (i) SBF of the left foot was not altered by treatment of the right leg or chest, but was significantly increased during treatment of the left sole and first web, p Compressed air massage causes an immediate increase in SBF, and an immediate fall in SBF when treatment is stopped. The effect appears to be locally and not centrally mediated and is related to the pressure used. Treatment cools the skin for at least 15 min after a 45-min treatment.

  12. Percutaneous Irreversible Electroporation Lung Ablation: Preliminary Results in a Porcine Model

    International Nuclear Information System (INIS)

    Deodhar, Ajita; Monette, Sébastien; Single, Gordon W.; Hamilton, William C.; Thornton, Raymond H.; Sofocleous, Constantinos T.; Maybody, Majid; Solomon, Stephen B.

    2011-01-01

    Objective: Irreversible electroporation (IRE) uses direct electrical pulses to create permanent “pores” in cell membranes to cause cell death. In contrast to conventional modalities, IRE has a nonthermal mechanism of action. Our objective was to study the histopathological and imaging features of IRE in normal swine lung. Materials and Methods: Eleven female swine were studied for hyperacute (8 h), acute (24 h), subacute (96 h), and chronic (3 week) effects of IRE ablation in lung. Paired unipolar IRE applicators were placed under computed tomography (CT) guidance. Some applicators were deliberately positioned near bronchovascular structures. IRE pulse delivery was synchronized with the cardiac rhythm only when ablation was performed within 2 cm of the heart. Contrast-enhanced CT scan was performed immediately before and after IRE and at 1 and 3 weeks after IRE ablation. Representative tissue was stained with hematoxylin and eosin for histopathology. Results: Twenty-five ablations were created: ten hyperacute, four acute, and three subacute ablations showed alveolar edema and necrosis with necrosis of bronchial, bronchiolar, and vascular epithelium. Bronchovascular architecture was maintained. Chronic ablations showed bronchiolitis obliterans and alveolar interstitial fibrosis. Immediate post-procedure CT images showed linear or patchy density along the applicator tract. At 1 week, there was consolidation that resolved partially or completely by 3 weeks. Pneumothorax requiring chest tube developed in two animals; no significant cardiac arrhythmias were noted. Conclusion: Our preliminary porcine study demonstrates the nonthermal and extracellular matrix sparing mechanism of action of IRE. IRE is a potential alternative to thermal ablative modalities.

  13. Effect of a desogestrel-containing oral contraceptive on the skin.

    Science.gov (United States)

    Katz, H I; Kempers, S; Akin, M D; Dunlap, F; Whiting, D; Norbart, T C

    2000-12-01

    This pilot study evaluated the effects of a desogestrel-containing oral contraceptive (DSG-OC) on facial seborrhea (oiliness), acne and related factors in otherwise healthy women with moderate facial acne vulgaris. In this double-blind, placebo-controlled study, 41 women received DSG-OC (50/100/150 microg desogestrel plus 35/30/30 microg ethinylestradiol given in a 7/7/7 day regimen) and 41 received placebo for six cycles. Seborrhea and skin assessments, and hormone analyses were performed regularly. Analyses of sebum output (measured using Sebutape) indicated that the effect of DSG-OC on the skin varied with facial area. Compared with placebo, DSG-OC had a statistically significant effect on the cheeks (60% relative reduction in sebum output; p = 0.02), and a non-significant effect on the forehead (30% relative reduction in sebum output). Acne lesion counts did not differ significantly between groups. Both patient and investigator assessments of skin condition (visual analog scale) indicated significant improvements with DSG-OC compared with placebo. The reduced sebum output with DSG-OC is associated with a three-fold increase in sex hormone binding globulin, as well as an expected decrease in free testosterone and other androgens that were found in this group. These results suggest that DSG-OC reduces facial oiliness and may be a useful contraceptive choice for women with this problem.

  14. Skin Diseases: Skin Health and Skin Diseases

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Skin Health and Skin Diseases Past Issues / Fall 2008 Table of Contents ... acne to wrinkles Did you know that your skin is the largest organ of your body? It ...

  15. Irreversible electroporation of the pancreas is feasible and safe in a porcine survival model.

    Science.gov (United States)

    Fritz, Stefan; Sommer, Christof M; Vollherbst, Dominik; Wachter, Miguel F; Longerich, Thomas; Sachsenmeier, Milena; Knapp, Jürgen; Radeleff, Boris A; Werner, Jens

    2015-07-01

    Use of thermal tumor ablation in the pancreatic parenchyma is limited because of the risk of pancreatitis, pancreatic fistula, or hemorrhage. This study aimed to evaluate the feasibility and safety of irreversible electroporation (IRE) in a porcine model. Ten pigs were divided into 2 study groups. In the first group, animals received IRE of the pancreatic tail and were killed after 60 minutes. In the second group, animals received IRE at the head of the pancreas and were followed up for 7 days. Clinical parameters, computed tomography imaging, laboratory results, and histology were obtained. All animals survived IRE ablation, and no cardiac adverse effects were noted. Sixty minutes after IRE, a hypodense lesion on computed tomography imaging indicated the ablation zone. None of the animals developed clinical signs of acute pancreatitis. Only small amounts of ascites fluid, with a transient increase in amylase and lipase levels, were observed, indicating that no pancreatic fistula occurred. This porcine model shows that IRE is feasible and safe in the pancreatic parenchyma. Computed tomography imaging reveals significant changes at 60 minutes after IRE and therefore might serve as an early indicator of therapeutic success. Clinical studies are needed to evaluate the efficacy of IRE in pancreatic cancer.

  16. A new approach for noninvasive transdermal determination of blood uric acid levels

    Directory of Open Access Journals (Sweden)

    Ching CTS

    2014-06-01

    Full Text Available Congo Tak-Shing Ching,1,2 Kok-Khun Yong,3 Yan-Dong Yao,4 Huan-Ting Shen,3 Shiu-Man Hsieh,5 Deng-Yun Jheng,1 Tai-Ping Sun,1,6 Hsiu-Li Shieh11Department of Electrical Engineering, National Chi Nan University, Nantou, 2Department of Photonics and Communication Engineering, Asia University, Taichung, 3Department of Internal Medicine, Puli Christian Hospital, Nantou, People’s Republic of China; 4Division of Science and Technology, Hong Kong Community College, Hong Kong; 5Department of Orthopedic Surgery, Puli Christian Hospital, 6Department of Electronic Engineering, Nan Kai University of Technology, Nantou, People’s Republic of ChinaAbstract: The aims of this study were to investigate the most effective combination of physical forces from laser, electroporation, and reverse iontophoresis for noninvasive transdermal extraction of uric acid, and to develop a highly sensitive uric acid biosensor (UAB for quantifying the uric acid extracted. It is believed that the combination of these physical forces has additional benefits for extraction of molecules other than uric acid from human skin. A diffusion cell with porcine skin was used to investigate the most effective combination of these physical forces. UABs coated with ZnO2 nanoparticles and constructed in an array configuration were developed in this study. The results showed that a combination of laser (0.7 W, electroporation (100 V/cm2, and reverse iontophoresis (0.5 mA/cm2 was the most effective and significantly enhanced transdermal extraction of uric acid. A custom-designed UAB coated with ZnO2 nanoparticles and constructed in a 1×3 array configuration (UAB-1×3-ZnO2 demonstrated enough sensitivity (9.4 µA/mM for quantifying uric acid extracted by the combined physical forces of laser, electroporation, and RI. A good linear relationship (R2=0.894 was demonstrated to exist between the concentration of uric acid (0.2–0.8 mM inside the diffusion cell and the current response of the

  17. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    Science.gov (United States)

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  18. An “Off-the-Shelf” System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Robert E., E-mail: Robert.Neal@alfred.org.au; Kavnoudias, Helen; Thomson, Kenneth R. [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia)

    2015-06-15

    IntroductionIrreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators.MethodsWe describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator.ResultsAccuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues.ConclusionsThis system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents—sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  19. Is Kinesio Taping to Generate Skin Convolutions Effective for Increasing Local Blood Circulation?

    OpenAIRE

    Yang, Jae-Man; Lee, Jung-Hoon

    2018-01-01

    Background It is unclear whether traditional application of Kinesio taping, which produces wrinkles in the skin, is effective for improving blood circulation. This study investigated local skin temperature changes after the application of an elastic therapeutic tape using convolution and non-convolution taping methods (CTM/NCTM). Material/Methods Twenty-eight pain-free men underwent CTM and NCTM randomly applied to the right and left sides of the lower back. Using infrared thermography, skin ...

  20. Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals.

    Science.gov (United States)

    Braga, Rodolpho C; Alves, Vinicius M; Muratov, Eugene N; Strickland, Judy; Kleinstreuer, Nicole; Trospsha, Alexander; Andrade, Carolina Horta

    2017-05-22

    Chemically induced skin sensitization is a complex immunological disease with a profound impact on quality of life and working ability. Despite some progress in developing alternative methods for assessing the skin sensitization potential of chemical substances, there is no in vitro test that correlates well with human data. Computational QSAR models provide a rapid screening approach and contribute valuable information for the assessment of chemical toxicity. We describe the development of a freely accessible web-based and mobile application for the identification of potential skin sensitizers. The application is based on previously developed binary QSAR models of skin sensitization potential from human (109 compounds) and murine local lymph node assay (LLNA, 515 compounds) data with good external correct classification rate (0.70-0.81 and 0.72-0.84, respectively). We also included a multiclass skin sensitization potency model based on LLNA data (accuracy ranging between 0.73 and 0.76). When a user evaluates a compound in the web app, the outputs are (i) binary predictions of human and murine skin sensitization potential; (ii) multiclass prediction of murine skin sensitization; and (iii) probability maps illustrating the predicted contribution of chemical fragments. The app is the first tool available that incorporates quantitative structure-activity relationship (QSAR) models based on human data as well as multiclass models for LLNA. The Pred-Skin web app version 1.0 is freely available for the web, iOS, and Android (in development) at the LabMol web portal ( http://labmol.com.br/predskin/ ), in the Apple Store, and on Google Play, respectively. We will continuously update the app as new skin sensitization data and respective models become available.

  1. Radioprotective effect of c-ski on rat skin fibroblast in vitro

    International Nuclear Information System (INIS)

    Liu Xia; Li Ping; Zhang En; Liu Ping; Zhou Ping; Zhou Yuanguo

    2006-01-01

    Objective: To examine radioprotective effect of c-ski on rat skin fibroblast in vitro and explore its possible mechanism. Methods: The effect of soft X-ray irradiation at dose varied from 2 to 8 Gy on cell apoptosis in rat skin fibroblast were determined by flow cytometry with Annexin-V-FITC-PI labelling. The effect of c-ski gene transfection on cell apoptosis was evaluated after soft X-ray irradiation of 4 Gy. The protein expressions of Bax and Bcl-2 after c-ski gene transfection were measured with the Western blot method. Results: Soft X-ray irradiation increases cell apoptosis, and the increase is proportional to the irradiation dose. Apoptosis ratio increases with time since the irradiation, and reaches its peak at 36h after the irradiation, c-ski gene was observed to markedly decrease apoptosis index at 24 h after soft X-ray irradiation of 4 Gy compared to the control group, significant increase of the protein expression of Bcl-2 was observed. C-ski gene was found no significant effect on the protein expression of Bax. Conclusion: c-ski gene can decrease radiation sensitivity of skin fibroblast, promoting Bcl-2 protein expression is one of its possible mechanism for this radioprotective effects. (authors)

  2. Skin hydration, microrelief and greasiness of normal skin in Antarctica.

    Science.gov (United States)

    Tsankov, N; Mateev, D; Darlenski, R

    2018-03-01

    The skin is the primary defence of the human body against external factors from physical, chemical, mechanical and biologic origin. Climatic factors together with low temperature and sun radiation affect the skin. The effect of climatic conditions in Antarctica on healthy skin has not been previously addressed. The aim of this study was to evaluate the changes in the skin hydration, greasiness and microrelief due to the extreme climatic environmental factors during the stay of the members of the Bulgarian Antarctic expedition. Fifty-nine Caucasian healthy subjects, 42 men and 17 women with mean age 50.9 years (27-68), were enrolled. The study was performed in five consecutive years from 2011 to 2016 at the Bulgarian Antarctic base camp at Livingston Island. The study protocol consisted of two parts: study A: duration of 15 days with measurement of skin physiology parameters on a daily basis, and study B: five measurements at baseline and at days 14, 30, 45 and 50 upon arrival in Antarctica. We measured three biophysical parameters related to skin physiology at cheek skin by an impedance measuring device. No statistically significant difference between parameters at the different measurement points. There is a variation in skin hydration reaching its lower point at day 11 and then returning to values similar to baseline. Initially, an increase in skin greasiness was witnessed with a sharp depression at day 11 and final values at day 15 resembling the ones at baseline. An increase, although not statistically significant, in skin roughness was observed in the first 15 days of the study. Study B showed no statistically significant variances between values of the three parameters. Our studies show the pioneer results of the effect of Antarctic climate on human skin physiology. © 2017 European Academy of Dermatology and Venereology.

  3. A new method for skin color enhancement

    Science.gov (United States)

    Zeng, Huanzhao; Luo, Ronnier

    2012-01-01

    Skin tone is the most important color category in memory colors. Reproducing it pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the skin color preference on photographic color reproduction. Two key factors to successfully enhance skin colors are: a method to detect original skin colors effectively even if they are shifted far away from the regular skin color region, and a method to morph skin colors toward a preferred skin color region properly without introducing artifacts. A method for skin color enhancement presented by the authors in the same conference last year applies a static skin color model for skin color detection, which may miss to detect skin colors that are far away from regular skin tones. In this paper, a new method using the combination of face detection and statistical skin color modeling is proposed to effectively detect skin pixels and to enhance skin colors more effectively.

  4. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  5. Vascular effects of leukotriene D4 in human skin

    DEFF Research Database (Denmark)

    Bisgaard, H

    1987-01-01

    Leukotriene D4 (LTD4) increased the blood flow rate in human skin, equipotent to histamine in the dose range of 3.1-200 pmol. The vasodilatation lasted for up to 60 min, and no late reactions occurred. Indomethacin did not affect the LTD4-induced blood flow rate. H1 and H2 antagonists reduced...... as a mediator of the axon reflex, and show that LTD4 causes a direct vasodilatory effect that is not mediated via histamine or cyclooxygenase products. The laser-Doppler flowmeter was applied for dynamic studies of the vasopressor response in the skin during a Valsalva maneuver, and the relative changes...

  6. Novel Inhibitory Effect of N-(2-Hydroxycyclohexylvaliolamine on Melanin Production in a Human Skin Model

    Directory of Open Access Journals (Sweden)

    Bum-Ho Bin

    2014-07-01

    Full Text Available Hyper-pigmentation causes skin darkness and medical disorders, such as post-inflammatory melanoderma and melasma. Therefore, the development of anti-melanogenic agents is important for treating these conditions and for cosmetic production. In our previous paper, we demonstrated that the anti-diabetic drug voglibose, a valiolamine derivative, is a potent anti-melanogenic agent. In addition, we proposed an alternative screening strategy to identify valiolamine derivatives with high skin permeability that act as anti-melanogenic agents when applied topically. In this study, we synthesized several valiolamine derivatives with enhanced lipophilicity and examined their inhibitory effects in a human skin model. N-(2-hydroxycyclohexylvaliolamine (HV possesses a stronger inhibitory effect on melanin production than voglibose in a human skin model, suggesting that HV is a more potent anti-melanogenic agent for the skin.

  7. Thermosensitive Hydrogel Mask Significantly Improves Skin Moisture and Skin Tone; Bilateral Clinical Trial

    Directory of Open Access Journals (Sweden)

    Anna Quattrone

    2017-06-01

    Full Text Available Objective: A temperature-sensitive state-changing hydrogel mask was used in this study. Once it comes into contact with the skin and reaches the body temperature, it uniformly and quickly releases the active compounds, which possess moisturizing, anti-oxidant, anti-inflammatory and regenerative properties. Methods: An open label clinical trial was conducted to evaluate the effects of the test product on skin hydration, skin tone and skin ageing. Subjects applied the product to one side of their face and underwent Corneometer® and Chromameter measurements, Visual assessment of facial skin ageing and facial photography. All assessments and Self-Perception Questionnaires (SPQ were performed at baseline, after the first application of the test product and after four applications. Results: After a single treatment we observed an increase in skin moisturisation, an improvement of skin tone/luminosity and a reduction in signs of ageing, all statistically significant. After four applications a further improvement in all measured parameters was recorded. These results were confirmed by the subjects’ own perceptions, as reported in the SPQ both after one and four applications. Conclusion: The hydrogel mask tested in this study is very effective in improving skin hydration, skin radiance and luminosity, in encouraging an even skin tone and in reducing skin pigmentation.

  8. The effects of using a moldable skin barrier on peristomal skin condition in persons with an ostomy: results of a prospective, observational, multinational study.

    Science.gov (United States)

    Szewczyk, Maria Teresa; Majewska, Grazyna; Cabral, Mary V; Hölzel-Piontek, Karin

    2014-12-01

    Peristomal skin problems are the most commonly experienced physical complication following ostomy surgery and often are caused by leakage or a poorly fitting skin barrier. A prospective, multicenter, observational evaluation of persons with a colostomy, ileostomy, or urostomy was conducted to assess the incidence of peristomal lesions and level of patient satisfaction with moldable skin barriers. Peristomal skin was assessed using the Studio Alterazoni Cutanee Stomale (SACS™) scale, and patients were asked to rate barrier application and usage variables. During a period of 12 months, and using convenience sampling, 561 patients from 90 centers in 3 countries were enrolled: 28 in Germany, 48 in Poland, and 14 in the United States. Participants included 277 new stoma patients (average time since surgery 0.3 months; average age 64.7 ± 12.86 years) who had a colostomy (174), ileostomy (72), or urostomy (10); and 284 patients with an existing stoma (average time since surgery 18.2 months; average age 66 ± 12.62 years) who had a colostomy (174), ileostomy (88), or urostomy (22) who experienced skin complications using a traditional skin barrier (ie, a solid or flexible barrier with precut opening or one requiring cutting an opening to accommodate the stoma). All patients were assessed at baseline and after 1 and 2 months. In the patients with a new stoma, 225 (90.4%) had intact skin at baseline, 239 (95.6%) had intact skin after 2 months, and 98% rated overall satisfaction with the barrier as good or excellent. In the patients with an existing stoma, intact skin was observed in 103 patients (39.5%) at baseline and 225 (86.2%) after 2 months, with 96.5% of patients rating overall satisfaction with the barrier as good or excellent. In this group, the proportion of patients who used accessory products (eg, belt, deodorants, powder) was 73% at baseline and 64.2% at the 2-month follow-up. The moldable skin barriers evaluated were effective in preventing and healing

  9. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  10. Characterization of oily mature skin by biophysical and skin imaging techniques.

    Science.gov (United States)

    de Melo, M O; Maia Campos, P M B G

    2018-02-13

    The skin is a complex biological system and may suffer change according to the environmental factors, as higher temperatures can increase sebum excretion, presenting oiliness and acne. These alterations can persist during the aging and provoke more changes in aged skin. In this study we evaluated the mature oily skin characteristics using biophysical and skin imaging techniques. Sixty healthy female subjects, aged between 39 and 55 years old were recruited and separated into 2 groups according to their skin type: normal/dry and oily skin. The skin was evaluated in terms of stratum corneum water content, transepidermal water loss (TEWL) sebum content, dermis thickness and echogenicity, skin microrelief, and pores content. The mature oily skin presented no significant differences when compared to the normal/dry skin on the stratum corneum water content and TEWL parameters. The sebum content was significantly higher on the oily skin group. The microrelief analysis showed an increase of skin roughness values in the oily skin and increase of scaliness in the normal/dry skin. The oily skin showed lower dermis echogenicity mainly in the frontal region and higher dermis thickness when compared to normal/dry skin. The mature oily skin showed different characteristics from normal/dry skin in terms of sebum content, microrelief parameters, and dermis thickness. This way, the characterization of mature oily skin in an objective way is very important to development of dermocosmetic products for more effective treatments focused specially on this type of skin. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effect of compositions in nanostructured lipid carriers (NLC on skin hydration and occlusion

    Directory of Open Access Journals (Sweden)

    Loo CH

    2012-12-01

    Full Text Available CH Loo,1,2 M Basri,2 R Ismail,1 HLN Lau,1 BA Tejo,2 MS Kanthimathi,3 HA Hassan,1 YM Choo11Malaysian Palm Oil Board, Bandar Baru Bangi, 2Department of Chemistry, Universiti Putra Malaysia, Serdang, 3Department of Molecular Medicine, University of Malaya, Kuala Lumpur, MalaysiaPurpose: To study the effects of varying lipid concentrations, lipid and oil ratio, and the addition of propylene glycol and lecithin on the long-term physical stability of nanostructured lipid nanocarriers (NLC, skin hydration, and transepidermal water loss.Methods: The various NLC formulations (A1–A5 were prepared and their particle size, zeta potential, viscosity, and stability were analyzed. The formulations were applied on the forearms of the 20 female volunteers (one forearm of each volunteer was left untreated as a control. The subjects stayed for 30 minutes in a conditioned room with their forearms uncovered to let the skin adapt to the temperature (22°C ± 2°C and humidity (50% ± 2% of the room. Skin hydration and skin occlusion were recorded at day one (before treatment and day seven (after treatment. Three measurements for skin hydration and skin occlusion were performed in each testing area.Results: NLC formulations with the highest lipid concentration, highest solid lipid concentration, and additional propylene glycol (formulations A1, A2, and A5 showed higher physical stability than other formulations. The addition of propylene glycol into an NLC system helped to reduce the particle size of the NLC and enhanced its long-term physical stability. All the NLC formulations were found to significantly increase skin hydration compared to the untreated controls within 7 days. All NLC formulations exhibited occlusive properties as they reduced the transepidermal water loss within 7 days. This effect was more pronounced with the addition of propylene glycol or lecithin into an NLC formulation, whereby at least 60% reduction in transepidermal water loss was observed

  12. Effect of chemical peeling on the skin in relation to UV irradiation.

    Science.gov (United States)

    Funasaka, Yoko; Abdel-Daim, Mohamed; Kawana, Seiji; Nishigori, Chikako

    2012-07-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. However, it needs to be clarified whether the repetitive procedure of chemical peeling on photodamaged skin is safe and whether the different chemicals used for peeling results in similar outcomes or not. In this article, we reviewed the effect of peeling or peeling agents on the skin in relation to ultraviolet (UV) radiation. The pretreatment of peeling agents usually enhance UV sensitivity by inducing increased sunburn cell formation, lowering minimum erythematous dose and increasing cyclobutane pyrimidine dimers. However, this sensitivity is reversible and recovers to normal after 1-week discontinuation. Using animals, the chronic effect of peeling and peeling agents was shown to prevent photocarcinogenesis. There is also an in vitro study using culture cells to know the detailed mechanisms of peeling agents, especially on cell proliferation and apoptotic changes via activating signalling cascades and oxidative stress. It is important to understand the effect of peeling agents on photoaged skin and to know how to deal with UV irradiation during the application of peeling agents and treatment of chemical peeling in daily life. © 2012 John Wiley & Sons A/S.

  13. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    International Nuclear Information System (INIS)

    Bottini, H; Kurita, M; Iijima, H; Fukagata, K

    2015-01-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity–temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques. (paper)

  14. Skin rejuvenating effects of chemical peeling: a study in photoaged hairless mice.

    Science.gov (United States)

    Han, Sung Hyup; Kim, Hong Jig; Kim, Si Yong; Kim, You Chan; Choi, Gwang Seong; Shin, Jeong Hyun

    2011-09-01

    Chemical peeling is a dermatologic treatment for skin aging. However, the mechanism by which the chemical peel achieves its results is not clear. We investigated the effects of chemical peeling and the mechanism of wrinkle reduction in photoaged hairless mice skin. After inducing photoaged skin in hairless mice by repetitive ultraviolet-B irradiation applied over 14 weeks, we applied trichloroacetic acid (TCA) 30%, TCA 50%, and phenol on areas of the same size on the backs of the mice. Punch biopsies were obtained 7, 14, 28, and 60 days after the procedure for histologic and immunohistochemical analyses. Histologic examination showed an increase in dermal thickness, collagen fibers, and elastic fibers in the dermis of intervention groups compared with control groups. These increases were maintained significantly for 60 days. This study demonstrates that chemical peeling reduces wrinkles and regenerates skin by increasing dermal thickness and the amount of collagen and elastic fibers in photoaged skin. © 2011 The International Society of Dermatology.

  15. Nutrition and skin.

    Science.gov (United States)

    Pappas, Apostolos; Liakou, Aikaterini; Zouboulis, Christos C

    2016-09-01

    Nutrition has long been associated with skin health, including all of its possible aspects from beauty to its integrity and even the aging process. Multiple pathways within skin biology are associated with the onset and clinical course of various common skin diseases, such as acne, atopic dermatitis, aging, or even photoprotection. These conditions have been shown to be critically affected by nutritional patterns and dietary interventions where well-documented studies have demonstrated beneficial effects of essential nutrients on impaired skin structural and functional integrity and have restored skin appearance and health. Although the subject could be vast, the intention of this review is to provide the most relevant and the most well-documented information on the role of nutrition in common skin conditions and its impact on skin biology.

  16. Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2012-11-01

    Full Text Available Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale friction and durability of damaged skin were measured and compared with those of virgin (intact/undamaged skin. The effect of skin cream on friction and durability of damaged and virgin skin samples is discussed. The effects of velocity, normal load, relative humidity and number of cycles were studied. The nanoscale studies were performed by using atomic force microscope (AFM, and macroscale studies were performed by using a pin-on-disk (POD reciprocating tribometer. It was found that damaged skin has different mechanical properties, surface roughness, contact angle, friction and durability compared to that of virgin skin. But similar changes occur after skin cream treatment. Rat and pig skin show similar trends in friction and durability.

  17. FALLOUT RADIATION: EFFECTS ON THE SKIN

    Energy Technology Data Exchange (ETDEWEB)

    Conard, R. A.; Cronkite, E. P.; Bond, V. P.

    1963-02-06

    Until recently it has been generally assumed that injury to the skin from ionizing radiation was not a serious hazard associated with the detonation of nuclear dcvices. However, in 1954 the importance of this hazard became apparent when widespread lesions of the skin developed in a large group of people accidentally exposed to fallout radiation in the Marshall Islands following the experimental detonation of a large nuclear device. The accident in the Marshall Islands affords an example of large numbers of lesions of the skin in human beings from the fallout. Studies have been documented and will be referred to frequently in this chapter. The possibility of such accidents must be considered seriously in view of the increasingly widespread use of radioisotopes.

  18. The effects of mucopolysaccharide polysulphate on hydration and elasticity of human skin.

    Science.gov (United States)

    Wanitphakdeedecha, Rungsima; Eimpunth, Sasima; Manuskiatti, Woraphong

    2011-01-01

    Background. Mucopolysaccharide polysulphate (MPS) has been used in medicine as an anti-inflammatory and antithrombotic agent for over 50 years. Its chemical structure permits considerable hydrogen bonding with adjacent water molecules, which effectively leads to hydration of the surrounding tissue. In addition, it stimulates endogenous hyaluronate synthesis, resulting in an increase in water-binding capacity and viscoelasticity of the skin. Objective. To study the efficacy of 0.1% MPS on hydration and elasticity of human skin. Methods. The first part of this study was a randomized double blind placebo-controlled study which included 60 female volunteers aged 30-45 years with dry skin, defined by Corneometer CM 825. The volunteers were treated with either 0.1% MPS or vehicle control. All subjects were asked to apply 1 g of cream to their face twice daily for a total period of 4 weeks. Skin hydration and elasticity were measured at baseline and week 4 with Corneometer CM 825 and cutometer MPA 580, respectively, at forehead and both cheeks. The second part of this study focused on the efficacy of 0.1% MPS on skin hydration after single application. 20 female volunteers aged 30-45 years with dry skin, defined by Corneometer CM 825, were recruited to the study. All subjects were asked to apply 2 g of 0.1% MPS cream on entirely randomly selected forearm. Skin hydration at the middle of both forearms was measured at baseline, immediately after application, and every 1 hour after application for a period of 10 hours. Results. 57 subjects (28 in vehicle control group, 29 in MPS) completed treatment protocol. The baseline skin hydration of both groups was not significantly different (P = 0.47). Hower, there was a statistically significant difference in skin hydration at 4 weeks between MPS and placebo group (P = 0.01). Skin elasticity was significantly improved at week 4 in both groups (vehicle-control, P skin elasticity between MPS and vehicle-control group

  19. Chronic effects of UV on human skin

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    1996-01-01

    Chronic exposures and acute accidents of the skin to UV has been recognized as an important risk for skin cancers in human. Attempts have been made with mathematical models to correlate the ambient UV dose and occupational irradiations with the risk of skin cancers. Development of accurate global measurements of solar irradiance and personal dosimetry is expected in the future in order to reduce the exposure of the general population, to precise the measures to be taken for indoor and outdoor workers. (author)

  20. Reducing the Harmful Effects of Infrared Radiation on the Skin Using Bicosomes Incorporating β-Carotene.

    Science.gov (United States)

    Fernández, Estibalitz; Fajarí, Lluís; Rodríguez, Gelen; Cócera, Mercedes; Moner, Verónica; Barbosa-Barros, Lucyanna; Kamma-Lorger, Christina S; de la Maza, Alfonso; López, Olga

    2016-01-01

    In this work the effect of infrared (IR) radiation, at temperatures between 25 and 30°C, on the formation of free radicals (FRs) in the skin is studied. Additionally, the influence of IR radiation at high temperatures in the degradation of skin collagen is evaluated. In both experiments the protective effect against IR radiation of phospholipid nanostructures (bicosomes) incorporating β-carotene (Bcb) is also evaluated. The formation of FRs in skin under IR exposure was measured near physiological temperatures (25-30°C) using 5,5-dimethyl-1-pyrroline-N-oxide spin trap and electron paramagnetic resonance (EPR) spectroscopy. The study of the collagen structure was performed by small-angle X-ray scattering using synchrotron radiation. EPR results showed an increase in the hydroxyl radical in the irradiated skin compared to the native skin. The skin collagen was degraded by IR exposure at high temperatures of approximately 65°C. The treatment with Bcb reduced the formation of FRs and kept the structure of collagen. The formation of FRs by IR radiation does not depend on the increase of skin temperature. The decrease of FRs and the preservation of collagen fibers in the skin treated with Bcb indicate the potential of this lipid system to protect skin under IR exposure. © 2016 S. Karger AG, Basel.

  1. Shining light on skin pigmentation: the darker and the brighter side of effects of UV radiation.

    Science.gov (United States)

    Maddodi, Nityanand; Jayanthy, Ashika; Setaluri, Vijayasaradhi

    2012-01-01

    The term barrier function as applied to human skin often connotes the physical properties of this organ that provides protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing in the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on (1) the mechanisms involved in selective effects of subcomponents of UV radiation on human skin pigmentation and (2) the interactive influences between keratinocytes and melanocytes, acting as "epidermal melanin unit," that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the nonionizing solar radiation, at cellular and molecular levels, on human skin pigmentation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  2. Compensation of the skin effect in low-frequency potential drop measurements

    OpenAIRE

    Corcoran, J; Nagy, PB

    2016-01-01

    Potential drop measurements are routinely used in the non-destructive evaluation of component integrity. Potential drop measurements use either direct current (DC) or alternating current (AC), the latter will have superior noise performance due to the ability to perform phase sensitive detection and the reduction of flicker noise. AC measurements are however subject to the skin effect where the current is electromagnetically constricted to the surface of the component. Unfortunately, the skin...

  3. Effects of Ginsenoside Rb1 on Skin Changes

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kimura

    2012-01-01

    Full Text Available Ginseng roots (Panax ginseng CA Meyer have been used traditionally for the treatment, especially prevention, of various diseases in China, Korea, and Japan. Both experimental and clinical studies suggest ginseng roots to have pharmacological effects in patients with life-style-related diseases such as non-insulin-dependent diabetic mellitus, atherosclerosis, hyperlipidemia, and hypertension. The topical use of ginseng roots to treat skin complaints including atopic suppurative dermatitis, wounds, and inflammation is also described in ancient Chinese texts; however, there have been relatively few studies in this area. In the present paper, we describe introduce the biological and pharmacological effects of ginsenoside Rb1 isolated from Red ginseng roots on skin damage caused by burn-wounds using male Balb/c mice (in vivo and by ultraviolet B irradiation using male C57BL/6J and albino hairless (HR-1 mice (in vivo. Furthermore, to clarify the mechanisms behind these pharmacological actions, human primary keratinocytes and the human keratinocyte cell line HaCaT were used in experiments in vitro.

  4. Improved treatment of radiation effects on the skin

    International Nuclear Information System (INIS)

    Wandl, E.O.; Kaercher, K.H.; Wandl-Hainberger, I.

    1985-01-01

    The treatment concept developed by K.H. Kaercher was extended by a therapy using Elasten S cream. In the course of a highvoltage therapy using fast electrons or cobalt-60, interesting aspects in the treatment and progression of the radiation reactions of the skin were established. The dermato-therapeutic principles layed down by K.H. Kaercher with the treatment palette used hitherto, have without doubt invariably proven their value. The exclusive powder treatment, however, may be made more practical by application of the new treatment cream in accordance with the intervals in radiation treatment or as a basic treatment towards the end of therapy. Furthermore it is ideally suited for the care and after-treatment of skin, strained by radiation. It reduces considerably the remaining visible radiation reactions. The treatment with powder and emulsion has for more than 10 years proven effective. After the excellent results of the new cream during radiation treatment, additional positive effects are expected in a long-term trial which will be reported on separately. (orig.) [de

  5. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils.

    Science.gov (United States)

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-12-27

    Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  6. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  7. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols

    Science.gov (United States)

    Nobile, Vincenzo; Michelotti, Angela; Cestone, Enza; Caturla, Nuria; Castillo, Julián; Benavente-García, Obdulio; Pérez-Sánchez, Almudena; Micol, Vicente

    2016-01-01

    Background Plant polyphenols have been found to be effective in preventing ultraviolet radiation (UVR)-induced skin alterations. A dietary approach based of these compounds could be a safe and effective method to provide a continuous adjunctive photoprotection measure. In a previous study, a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) extracts has exhibited potential photoprotective effects both in skin cell model and in a human pilot trial. Objective We investigated the efficacy of a combination of rosemary (R. officinalis) and grapefruit (C. paradisi) in decreasing the individual susceptibility to UVR exposure (redness and lipoperoxides) and in improving skin wrinkledness and elasticity. Design A randomised, parallel group study was carried out on 90 subjects. Furthermore, a pilot, randomised, crossover study was carried out on five subjects. Female subjects having skin phototype from I to III and showing mild to moderate chrono- or photoageing clinical signs were enrolled in both studies. Skin redness (a* value of CIELab colour space) after UVB exposure to 1 minimal erythemal dose (MED) was assessed in the pilot study, while MED, lipoperoxides (malondialdehyde) skin content, wrinkle depth (image analysis), and skin elasticity (suction and elongation method) were measured in the main study. Results Treated subjects showed a decrease of the UVB- and UVA-induced skin alterations (decreased skin redness and lipoperoxides) and an improvement of skin wrinkledness and elasticity. No differences were found between the 100 and 250 mg extracts doses, indicating a plateau effect starting from 100 mg extracts dose. Some of the positive effects were noted as short as 2 weeks of product consumption. Conclusions The long-term oral intake of Nutroxsun™ can be considered to be a complementary nutrition strategy to avoid the negative effects of sun exposure. The putative mechanism for these effects is most likely to take place through the

  8. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis and grapefruit (Citrus paradisi polyphenols

    Directory of Open Access Journals (Sweden)

    Vincenzo Nobile

    2016-07-01

    Full Text Available Background: Plant polyphenols have been found to be effective in preventing ultraviolet radiation (UVR-induced skin alterations. A dietary approach based of these compounds could be a safe and effective method to provide a continuous adjunctive photoprotection measure. In a previous study, a combination of rosemary (Rosmarinus officinalis and grapefruit (Citrus paradisi extracts has exhibited potential photoprotective effects both in skin cell model and in a human pilot trial. Objective: We investigated the efficacy of a combination of rosemary (R. officinalis and grapefruit (C. paradisi in decreasing the individual susceptibility to UVR exposure (redness and lipoperoxides and in improving skin wrinkledness and elasticity. Design: A randomised, parallel group study was carried out on 90 subjects. Furthermore, a pilot, randomised, crossover study was carried out on five subjects. Female subjects having skin phototype from I to III and showing mild to moderate chrono- or photoageing clinical signs were enrolled in both studies. Skin redness (a* value of CIELab colour space after UVB exposure to 1 minimal erythemal dose (MED was assessed in the pilot study, while MED, lipoperoxides (malondialdehyde skin content, wrinkle depth (image analysis, and skin elasticity (suction and elongation method were measured in the main study. Results: Treated subjects showed a decrease of the UVB- and UVA-induced skin alterations (decreased skin redness and lipoperoxides and an improvement of skin wrinkledness and elasticity. No differences were found between the 100 and 250 mg extracts doses, indicating a plateau effect starting from 100 mg extracts dose. Some of the positive effects were noted as short as 2 weeks of product consumption. Conclusions: The long-term oral intake of Nutroxsun™ can be considered to be a complementary nutrition strategy to avoid the negative effects of sun exposure. The putative mechanism for these effects is most likely to take place

  9. Effectiveness of skin protection creams in the prevention of occupational dermatitis: results of a randomized, controlled trial.

    Science.gov (United States)

    Winker, Robert; Salameh, Bayda; Stolkovich, Sabine; Nikl, Michael; Barth, Alfred; Ponocny, Elisabeth; Drexler, Hans; Tappeiner, Gerhard

    2009-04-01

    The aim of the trial was to investigate whether the publicized effects of skin protection creams can be replicated in a real occupational setting during activities that expose the skin. A prospective, randomized, four-tailed controlled pilot trial was performed to compare the effect of skin protection and skin care alone or in combination with cleansing against a control group (only cleansing). Two branches were selected for the investigation: the building industry and the timber industry. A total of 1,006 workers from these two branches were recruited, and out of these 485 workers were examined longitudinally for at least three time points over 1 year (lost for follow-up: 430 workers, exclusion: 91 workers). At each time point, as a primary outcome measure, we assessed the condition of the skin at both hands in a blinded manner and the individual was assigned to one of the following categories: no eczema, mild, moderate and severe eczema. As a secondary outcome measure, the worker's transepidermal water loss (TEWL) was measured under standardized conditions at the back of both hands. In addition, the workers were asked to evaluate their skin condition during the study. With regard to differences in the occurrence of eczemas, we found only in workers in building industry without application of skin protection or skin care creams a statistical significant increase in the incidence between the first and the second visit and a statistical significant decrease in the incidence between the second and third visit. When evaluating the secondary outcome-measurement changes in the TEWL values, an improvement was found for the group skin protection and skin care in combination and by skin care alone. Females in the timber industry started with better TEWL values than males, which may be due to better overall skin care. In this group we found an improvement for the group skin protection and skin care in combination and by skin protection alone. For skin protection alone, we

  10. What is the effect of different skin types on the required dose for photodynamic therapy?

    CSIR Research Space (South Africa)

    Karsten, AE

    2008-11-01

    Full Text Available For effective laser treatment it is very important to provide the correct dose at the required treatment depth. In South Africa we have a richness of ethnic groups contributing to a large variety in skin tones. Effective laser treatment of skin...

  11. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age

    OpenAIRE

    Kingma, B.R.M.; Frijns, A.J.H.; Saris, W.H.M.; Steenhoven, van, A.A.; Marken Lichtenbelt, van, W.D.

    2010-01-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfus...

  12. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    Directory of Open Access Journals (Sweden)

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  13. Effect of Acer tegmentosum bark on atopic dermatitis-like skin lesions in NC/Nga mice.

    Science.gov (United States)

    Yang, Gabsik; An, Duckgun; Lee, Mi-Hwa; Lee, Kyungjin; Kim, Bumjung; Suman, Chinannai Khanita; Ham, Inhye; Choi, Ho-Young

    2016-01-11

    Atopic dermatitis (AD) is a chronic and relapsing inflammatory condition characterized by pruritic and eczematous skin lesions that requires safe and effective pharmacological therapy. The bark of Acer tegmentosum Maxim trees has been used in Korean folk and traditional medicine to treat abscesses, surgical bleeding, liver diseases, and AD. To investigate the therapeutic effect of A. tegmentosum, on a mouse model of Dermatophagoides farinae (Df)-induced AD. Development of AD-like skin lesions was induced by repetitive skin contact with barrier-disrupted backs of NC/Nga mice with Df body ointment, and the effects of A. tegmentosum were evaluated on the basis of histopathological skin assessment results, ear swelling, and cytokine production in the dorsal skin. The component of A. tegmentosum, salidroside, inhibited the production of TSLP in KCMH-1 cells, which indicated that its production could be pharmacologically regulated. Topical application of A. tegmentosum for 1 week after Df body ointment challenge significantly reduced ear swelling and improved dorsal skin lesions. Suppression of dermatitis by combined therapy was accompanied by a decrease in the skin level of Th2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13, plasma levels of thymus and activation-regulated chemokine, and IgE. Induction of thymic stromal lymphopoietin, which leads to a systemic Th2 response, was also reduced in in vivo and in vitro by A. tegmentosum and salidroside. Our findings suggest that A. tegmentosum treatment has a significant therapeutic effect on Df-induced AD-like skin lesions on NC/Nga mice through inhibition of thymic stromal lymphopoietin and IgE via a mechanism that may inhibit Th2-mediated immune responses. These results suggest that A. tegmentosum and salidroside may be useful tools for the treatment of AD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. A simple derivation for the skin effect in a round wire

    Science.gov (United States)

    Smith, Glenn S.

    2014-03-01

    The skin effect in a round wire is an important electromagnetic phenomenon with practical consequences; however, it is usually not presented in any detail at the undergraduate level but reserved for graduate study. The purpose of this paper is to remedy this situation by providing a simple derivation for the skin effect in a round wire that only requires background usually familiar to these students: Maxwell’s equations in integral form, integral calculus (specifically integration of a power) and some elementary properties of series. Graphical results are used to clearly show the current concentrating near the surface as the frequency increases and the accompanying increase in the resistance and decrease in the inductance of the wire. A brief review of the history of the subject shows that several of the scientists familiar to students made contributions to our understanding of the skin effect in a round wire; they include J C Maxwell, Lord Rayleigh, Lord Kelvin, O Heaviside and J J Thomson. The validity of the theory is demonstrated by comparing results from the theory with resistances and inductances measured by some of the early pioneers of wireless communication.

  15. A simple derivation for the skin effect in a round wire

    International Nuclear Information System (INIS)

    Smith, Glenn S

    2014-01-01

    The skin effect in a round wire is an important electromagnetic phenomenon with practical consequences; however, it is usually not presented in any detail at the undergraduate level but reserved for graduate study. The purpose of this paper is to remedy this situation by providing a simple derivation for the skin effect in a round wire that only requires background usually familiar to these students: Maxwell’s equations in integral form, integral calculus (specifically integration of a power) and some elementary properties of series. Graphical results are used to clearly show the current concentrating near the surface as the frequency increases and the accompanying increase in the resistance and decrease in the inductance of the wire. A brief review of the history of the subject shows that several of the scientists familiar to students made contributions to our understanding of the skin effect in a round wire; they include J C Maxwell, Lord Rayleigh, Lord Kelvin, O Heaviside and J J Thomson. The validity of the theory is demonstrated by comparing results from the theory with resistances and inductances measured by some of the early pioneers of wireless communication. (paper)

  16. Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo.

    Science.gov (United States)

    Saint-Mezard, Pierre; Chavagnac, Cyril; Bosset, Sophie; Ionescu, Marius; Peyron, Eric; Kaiserlian, Dominique; Nicolas, Jean-Francois; Bérard, Frédéric

    2003-10-15

    Psychological stress affects the pathophysiology of infectious, inflammatory, and autoimmune diseases. However, the mechanisms by which stress could modulate immune responses in vivo are poorly understood. In this study, we report that application of a psychological stress before immunization exerts an adjuvant effect on dendritic cell (DC), resulting in increased primary and memory Ag-specific T cell immune responses. Acute stress dramatically enhanced the skin delayed-type hypersensitivity reaction to haptens, which is mediated by CD8(+) CTLs. This effect was due to increased migration of skin DCs, resulting in augmented CD8(+) T cell priming in draining lymph nodes and enhanced recruitment of CD8(+) T cell effectors in the skin upon challenge. This adjuvant effect of stress was mediated by norepinephrine (NE), but not corticosteroids, as demonstrated by normalization of the skin delayed-type hypersensitivity reaction and DC migratory properties following selective depletion of NE. These results suggest that release of NE by sympathetic nerve termini during a psychological stress exerts an adjuvant effect on DC by promoting enhanced migration to lymph nodes, resulting in increased Ag-specific T cell responses. Our findings may open new ways in the treatment of inflammatory diseases, e.g., psoriasis, allergic contact dermatitis, and atopic dermatitis.

  17. Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin.

    Directory of Open Access Journals (Sweden)

    Itsuo Murakami

    Full Text Available Resveratrol (RESV is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV.

  18. Effectiveness of Fibrin Glue in Adherence of Skin Graft.

    Science.gov (United States)

    Reddy, Konda Sireesha; Chittoria, Ravi Kumar; Babu, Preethitha; Marimuthu, Senthil Kumaran; Kumar, Sudhanva Hemanth; Subbarayan, Elan Kumar; Chavan, Vinayak; Mohapatra, Devi Prasad; Sivakumar, Dinesh Kumar; Friji, M T

    2017-01-01

    Graft fixation is important for graft take. Fibrin glue has been proposed as an ideal material, because of its human origin and it provides firm adhesion in seconds or minutes. To evaluate the efficiency of fibrin glue, in increasing the take of skin graft. Assessment includes surgical time taken for graft fixation, haematoma/seroma formation, engraftment and wound closure by day 14. The study is an observational prospective study conducted in the Department of Plastic Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, from January 2016 to June 2016. Sixteen patients who underwent split skin grafting were assessed during the study period. Fibrin glue was used on the recipient bed before grafting. Better haemostasis and graft adhesion, with a significant reduction of surgical time, were noted. The safety profile of fibrin glue was excellent as indicated by the lack of any related serious adverse experiences. These findings demonstrate that it is safe and effective for attachment of skin grafts, with outcomes at least as good as conventional methods.

  19. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age

    NARCIS (Netherlands)

    Kingma, B.R.M.; Frijns, A.J.H.; Saris, W.H.M.; Steenhoven, van A.A.; Marken Lichtenbelt, van W.D.

    2010-01-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have

  20. Effects of irradiation of skin flaps

    International Nuclear Information System (INIS)

    Sumi, Y.; Ueda, M.; Oka, T.; Torii, S.

    1984-01-01

    The reaction of skin flaps to irradiation and the optimum postoperative time for irradiation was studied in the rat. Flaps showed different reactions depending on the time of irradiation. There was a correlation between the radiosensitivity and the vascularity of the flap. Those flaps in the marginal hypovascular stage of revascularization showed reactions similar to normal skin. However, severe adverse reactions were observed in the marginal hypervascular stage

  1. Contrasting effects of ultraviolet-A and ultraviolet B exposure on induction of contact sensitivity in human skin

    DEFF Research Database (Denmark)

    Skov, Lone; Hansen, Henrik; Barker, J. N.

    1997-01-01

    Ultraviolet-B (UVB), in addition to direct effects on DNA, induces immunological changes in the skin that predispose to the development of skin cancer. Whether ultraviolet-A (UVA) induces similar changes is unknown. This effect can be investigated in humans in vivo using epicutaneous antigens...... as a model of tumour antigens. Volunteers (n = 46) were randomly assigned to received no sensitization, sensitization with the allergen diphenylcyclopropenone (DPCP) on non-UV-exposed normal skin, or sensitization with DPCP on skin exposed to three minimal erythema doses (MED) of either UVA or UVB radiation...... the immunization rate compared with sensitization on non-irradiated skin (P UVA radiation did not result in a decreased immunization rate compared with non-irradiated skin. These results indicate that in humans erythemagenic...

  2. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils

    Directory of Open Access Journals (Sweden)

    Tzu-Kai Lin

    2017-12-01

    Full Text Available Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter. Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  3. Effects of whole body cryotherapy and cold water immersion on knee skin temperature

    OpenAIRE

    Costello, J. T.; Donnelly, A. E.; Karki, A.; Selfe, J.

    2014-01-01

    This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of −110°C whole body cryotherapy and 8°C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature (

  4. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-L-Methionine.

    Science.gov (United States)

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-07-01

    S-methyl- L -methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.

  5. Effect of piracetam and nimodipine on full-thickness skin burns in rabbits.

    Science.gov (United States)

    Sari, Elif; Dincel, Gungor C

    2016-08-01

    The potential of several drugs for full-thickness skin burns has been investigated, but the treatment of such burns remains a challenge in plastic surgery. The present study was designed to determine the effect of systemic and topical administration of piracetam and nimodipine on full-thickness skin burn wound healing. A total of 36 New Zealand male rabbits were divided into six groups. Full-thickness skin burns were produced in all the groups, except the control group. Piracetam was administered systemically (piracetam-IV) and topically (piracetam-C) for 14 days, and nimodipine was administered systemically (nimodipine-IV) and topically (nimodipine-C) over the burn wounds for 14 days. The sham group underwent burn injury but was not administered any drug. After 21 days, gross examination and histopathological analysis were performed and the results were compared statistically. Nimodipine-C and nimodipine-IV had no effect on burn wound healing. However, both piracetam-IV and piracetam-C significantly enhanced the healing of the full-thickness skin burn wounds, although the latter was more effective, useful and practical in burn wound healing. The histopathological features of the wounds in the piracetam-C group were closer to those of the control group than those of the other groups. Piracetam-C rather than piracetam-IV may promote full-thickness burn wound healing in rabbits. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  7. Emu oil-based lotion effects on neonatal skin barrier during transition from intrauterine to extrauterine life

    Directory of Open Access Journals (Sweden)

    Zanardo V

    2017-08-01

    Full Text Available Vincenzo Zanardo,1 David Giarrizzo,2 Francesca Volpe,1 Lara Giliberti,1 Gianluca Straface1 1Division of Perinatal Medicine, Policlinico Abano Terme, Abano Terme, 2CALANTHA Physiology of Lactation Laboratory, Padua, Italy Abstract: Both appropriate hydration and skin surface pH are fundamental in preventing baby skin barrier damage during transition from intrauterine to extrauterine life. However, effects of topical moisturizers on neonatal stratum corneum temperature, pH, hydration, and elasticity have not been scientifically evaluated in vivo. We checked 31 full-term breastfeeding neonates by non-invasive bioengineering method, which is able to evaluate the basal skin barrier (left heel, and assessed at 6±1 hours after birth, and at 1 and 24 hours after emu oil-based topical treatment. The basal skin barrier of right heel (no oil exposure of each newborn was considered as control. We found that a single application of an emu oil-based lotion was effective in improving heel stratum corneum hydration, which increases both skin pH and elasticity without any effect on temperature. Further studies are needed to confirm long-term beneficial effects of this treatment in a very sensitive patient population. Keywords: skin barrier, neonate, emu oil-based lotion, topical treatment

  8. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity

    Directory of Open Access Journals (Sweden)

    Qiraouani Boucetta K

    2015-01-01

    Full Text Available Kenza Qiraouani Boucetta,1 Zoubida Charrouf,2 Hassan Aguenaou,3 Abdelfattah Derouiche,4 Yahya Bensouda1 1Research Team on Formulation and Biopharmacy, Research Center for Drug, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco; 2Faculty of Sciences, Mohammed V University, Rabat, Morocco; 3Mixed Unit of Research in Nutrition, ITU / CNESTEN, Ibn Tofail University, Kenitra, Morocco; 4Faculty of Sciences, Hassan II University, Casablanca, Morocco Background: During menopause, the decrease of estrogenic secretion induces the disruption of skin functioning, thus causing the decline in skin elasticity characteristic of skin aging. The purpose of this study was to evaluate in postmenopausal women the effect of daily consumption and/or application of argan oil on skin elasticity.Materials and methods: Sixty postmenopausal women consumed butter during the stabilization period and were randomly divided into two groups for the intervention period: the treatment group of 30 participants received dietary argan oil, the control group of 30 participants received olive oil, and both groups applied cosmetic argan oil in the left volar forearm during a 60-day period. Assessments of skin elasticity parameters, ie, the three R-parameters (R2 or gross-elasticity of the skin, R5 or net elasticity of the skin, and R7 or biological elasticity, and the resonance running time (RRT at both volar forearms of the two groups were performed during three visits: before starting oils consumption and application, after 30 days of oils consumption and application, and after 60 days of oils consumption and application.Results: The consumption of argan oil led to a significant increase of gross-elasticity of the skin (R2 (P<0.001, net elasticity of the skin (R5 (P<0.001, biological elasticity (R7 (P<0.001, and a significant decrease of RRT (P=0.002. The application of argan oil led to a significant increase of gross-elasticity of the skin (R2 (P<0.001, net

  9. An improved modelling of asynchronous machine with skin-effect ...

    African Journals Online (AJOL)

    The conventional method of analysis of Asynchronous machine fails to give accurate results especially when the machine is operated under high rotor frequency. At high rotor frequency, skin-effect dominates causing the rotor impedance to be frequency dependant. This paper therefore presents an improved method of ...

  10. Development of effective skin cancer treatment and prevention in xeroderma pigmentosum.

    Science.gov (United States)

    Lambert, W Clark; Lambert, Muriel W

    2015-01-01

    Xeroderma pigmentosum (XP) is a rare, recessively transmitted genetic disease characterized by increasingly marked dyspigmentation and xerosis (dryness) of sun-exposed tissues, especially skin. Skin cancers characteristically develop in sun-exposed sites at very much earlier ages than in the general population; these are often multiple and hundreds or even thousands may develop. Eight complementation groups have been identified. Seven groups, XP-A…G, are associated with defective genes encoding proteins involved in the nucleotide excision DNA repair (NER) pathway that recognizes and excises mutagenic changes induced in DNA by sunlight; the eighth group, XP-V, is associated with defective translesion synthesis (TLS) bypassing such alterations. The dyspigmentation, xerosis and eventually carcinogenesis in XP patients appear to be due to their cells' failure to respond properly to these mutagenic DNA alterations, leading to mutations in skin cells. A subset of cases, especially those in some complementation groups, may develop neurological degeneration, which may be severe. However, in most XP patients, in the past the multiple skin cancers have led to death at an early age due to either metastases or sepsis. Using either topical 5-fluorouracil or imiquimod, we have developed a protocol that effectively prevents most skin cancer development in XP patients. © 2014 The American Society of Photobiology.

  11. Radiation effects control: eyes, skin. Final report, 1 October 1969--31 December 1974

    International Nuclear Information System (INIS)

    Hightower, D.; Smathers, J.B.

    1974-12-01

    Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited. (auth)

  12. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements.

    Directory of Open Access Journals (Sweden)

    Rosemary A Bamford

    Full Text Available Förster resonance energy transfer (FRET technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5 complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.

  13. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  14. Skin effect modifications of the Resistive Wall Mode dynamics in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Villone, Fabio, E-mail: villone@unicas.it [Ass. Euratom/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Via Di Biasio 43, 03043 Cassino, FR (Italy); Pustovitov, Vladimir D. [Institute of Tokamak Physics, National Research Centre ‘Kurchatov Institute’, Pl. Kurchatova 1, Moscow 123182 (Russian Federation)

    2013-11-22

    We present the first evidence of the skin-effect modification of the Resistive Wall Mode (RWM) dynamics in a tokamak. The computations are performed with the CarMa code, using its unique ability of treating volumetric 3D conducting structures. The results prove that conventional thin-wall models and codes, assuming the thin equivalent wall located on the inner side of a real (thick) wall, may fail to get accurate estimates of RWM growth rates, since the inclusion of the skin effect makes the growth rates always larger than otherwise. The difference is noticeable even for the conventional slow RWMs and becomes substantial for faster modes. Some possible equivalent thin-wall modeling approaches are also discussed.

  15. Cutaneous exposure to vesicant phosgene oxime: Acute effects on the skin and systemic toxicity

    International Nuclear Information System (INIS)

    Tewari-Singh, Neera; Goswami, Dinesh G; Kant, Rama; Croutch, Claire R; Casillas, Robert P; Orlicky, David J; Agarwal, Rajesh

    2017-01-01

    Phosgene Oxime (CX), an urticant or nettle agent categorized as a vesicant, is a potential chemical warfare and terrorist weapon. Its exposure can result in widespread and devastating effects including high mortality due to its fast penetration and ability to cause immediate severe cutaneous injury. It is one of the least studied chemical warfare agents with no effective therapy available. Thus, our goal was to examine the acute effects of CX following its cutaneous exposure in SKH-1 hairless mice to help establish a relevant injury model. Results from our study show that topical cutaneous exposure to CX vapor causes blanching of exposed skin with an erythematous ring, necrosis, edema, mild urticaria and erythema within minutes after exposure out to 8 h post-exposure. These clinical skin manifestations were accompanied with increases in skin thickness, apoptotic cell death, mast cell degranulation, myeloperoxidase activity indicating neutrophil infiltration, p53 phosphorylation and accumulation, and an increase in COX-2 and TNFα levels. Topical CX-exposure also resulted in the dilatation of the peripheral vessels with a robust increase in RBCs in vessels of the liver, spleen, kidney, lungs and heart tissues. These events could cause a drop in blood pressure leading to shock, hypoxia and death. Together, this is the first report on effects of CX cutaneous exposure, which could help design further comprehensive studies evaluating the acute and chronic skin injuries from CX topical exposure and elucidate the related mechanism of action to aid in the identification of therapeutic targets and mitigation of injury. - Highlights: • Phosgene oxime cutaneous exposure causes skin blanching, edema and urticaria. • Penetration of phosgene oxime causes dilation of vasculature in internal organs. • Mast cells could play an important role in phosgene oxime-induced skin injury. • Phosgene oxime could induce low blood pressure and hypoxia leading to mortality. • Data is

  16. Cutaneous exposure to vesicant phosgene oxime: Acute effects on the skin and systemic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tewari-Singh, Neera, E-mail: Neera.tewari-singh@ucdenver.edu [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Goswami, Dinesh G; Kant, Rama [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Croutch, Claire R; Casillas, Robert P [MRIGlobal, Kansas City, MO 64110 (United States); Orlicky, David J [Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Agarwal, Rajesh [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)

    2017-02-15

    Phosgene Oxime (CX), an urticant or nettle agent categorized as a vesicant, is a potential chemical warfare and terrorist weapon. Its exposure can result in widespread and devastating effects including high mortality due to its fast penetration and ability to cause immediate severe cutaneous injury. It is one of the least studied chemical warfare agents with no effective therapy available. Thus, our goal was to examine the acute effects of CX following its cutaneous exposure in SKH-1 hairless mice to help establish a relevant injury model. Results from our study show that topical cutaneous exposure to CX vapor causes blanching of exposed skin with an erythematous ring, necrosis, edema, mild urticaria and erythema within minutes after exposure out to 8 h post-exposure. These clinical skin manifestations were accompanied with increases in skin thickness, apoptotic cell death, mast cell degranulation, myeloperoxidase activity indicating neutrophil infiltration, p53 phosphorylation and accumulation, and an increase in COX-2 and TNFα levels. Topical CX-exposure also resulted in the dilatation of the peripheral vessels with a robust increase in RBCs in vessels of the liver, spleen, kidney, lungs and heart tissues. These events could cause a drop in blood pressure leading to shock, hypoxia and death. Together, this is the first report on effects of CX cutaneous exposure, which could help design further comprehensive studies evaluating the acute and chronic skin injuries from CX topical exposure and elucidate the related mechanism of action to aid in the identification of therapeutic targets and mitigation of injury. - Highlights: • Phosgene oxime cutaneous exposure causes skin blanching, edema and urticaria. • Penetration of phosgene oxime causes dilation of vasculature in internal organs. • Mast cells could play an important role in phosgene oxime-induced skin injury. • Phosgene oxime could induce low blood pressure and hypoxia leading to mortality. • Data is

  17. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin.

    Science.gov (United States)

    Atef, Eman; Altuwaijri, Njoud

    2018-01-01

    The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin.

  18. Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Kim, Hye-Joung; Im, Gun-Il

    2011-12-01

    The purpose of this study was to test the hypothesis that the SOX trio genes (SOX-5, SOX-6, and SOX-9) have a lower level of expression during the chondrogenic differentiation of mesenchymal stem cells (MSCs) compared with chondrocytes and that the electroporation-mediated gene transfer of SOX trio promotes chondrogenesis from human MSCs. An in vitro pellet culture was carried out using MSCs or chondrocytes at passage 3 and analyzed after 7 and 21 days. Then, MSCs were transfected with SOX trio genes and analyzed for the expression of chondrogenic markers after 21 days of in vitro culture. Without transforming growth factor-β1, the untransfected MSCs had a lower level of SOX trio gene and protein expression than chondrocytes. However, the level of SOX-9 gene expression increased in MSCs when treated with transforming growth factor-β1. GAG level significantly increased 7-fold in MSCs co-transfected with SOX trio, which was corroborated by Safranin-O staining. SOX trio co-transfection significantly increased COL2A1 gene and protein and decreased COL10A1 protein in MSCs. It is concluded that the SOX trio have a significantly lower expression in human MSCs than in chondrocytes and that the electroporation-mediated co-transfection of SOX trio enhances chondrogenesis and suppresses hypertrophy of human MSCs.

  19. Effectiveness of Alkali and Acid to Produce Collagen from Fish Skin of Striped Catifish

    Directory of Open Access Journals (Sweden)

    Hilda Lu’lu’in Nanda Alfira Devi

    2017-08-01

    Full Text Available Fish skin is one of the alternative sources contained high protein  to isolate collagen. Fish skin generally extracted by the method of acid, alkali and enzymes. The study aim to determine the effectiveness of NaOHand acetic acid on catfish (Pangasius sp. skin extraction  process.  The concentrations of alkaline pretreatment were 0,05; 0,1; 0,15 and 0,2 M with the soaking time of 2, 4, 6, 8 and 10 h by NaOH replacement in every 2 h. The concentrations of acetic acid for hydrolisis process were 0.05; 0.1; 0.15 and 0.2 M with the soaking time of 1, 2, and 3 h. The experimental design used for pretreatment process is split splot, while for the hydrolysis process is factorial completely randomized design. The results showed that pretreatment with a concentration of 0.05 M NaOH for 4 h has a significant effect for eliminating non-collagen protein (p<0.05. The acetic acid concentration of 0.15 M for 1 h also has a significant effect on fish skin swelling. The yield of striped catfish collagen was 17.272%, the protein content was 86%, and the viscosity was 12 cP. Fish skin extract was identified as type I collagen by functional groups and electrophoretic analysis. Collagen from striped catfish skin has α1 and α2 and protein structure with the molecular weight of α chain were 94 and 98 kDa, meanwhile the molecular wheight of β chain was 204 kD.

  20. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.

    Science.gov (United States)

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-08-07

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue(®) and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm(2)) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm(2)). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10(-4) M (MTT assay), 3.8 × 10(-5) M (AlamarBlue(®) assay), and 7.6 × 10(-4) M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  1. The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin.

    Science.gov (United States)

    Miyamura, Yoshinori; Coelho, Sergio G; Schlenz, Kathrin; Batzer, Jan; Smuda, Christoph; Choi, Wonseon; Brenner, Michaela; Passeron, Thierry; Zhang, Guofeng; Kolbe, Ludger; Wolber, Rainer; Hearing, Vincent J

    2011-02-01

    The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis. 2010 John Wiley & Sons A/S. This article is a US Government work and is in the public domain in the USA.

  2. Protection of mice against the highly pathogenic VVIHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity.

    Science.gov (United States)

    Bissa, Massimiliano; Quaglino, Elena; Zanotto, Carlo; Illiano, Elena; Rolih, Valeria; Pacchioni, Sole; Cavallo, Federica; De Giuli Morghen, Carlo; Radaelli, Antonia

    2016-10-01

    The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradicated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by accidental or deliberate release of variola virus has stimulated new research for second-generation vaccine development based on attenuated VV strains. Considering the closely related animal poxviruses that also arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that cannot replicate in mammals should improve the safety of conventional vaccines, and protect from zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP) recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix, respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by electroporation, and boosted with 4FPmix applied intranasally. The lethal VV IHD-J strain was then administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and IFNγ-producing T lymphocytes were measured in the blood and spleen of the protected mice, as compared to controls. VV IHD-J neutralizing antibodies in sera from the protected mice suggest that the prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal administration routes contributed to effective immune responses and mouse survival. Copyright

  3. Skin decontamination

    International Nuclear Information System (INIS)

    Moehrle, G.

    1975-01-01

    A general survey of skin decontamination is given. The success of every decontamination treatments depends mainly on the speed, but also on the care, with which the action is taken. The best way to remove the skin contaminants is thorough washing under lukewarm running water with mild soap and a soft brush. This washing is to be repeated several times for a period of several minutes. If results are not satisfactory, light duty detergents and wetting agents available commercially may also be used. Some solutions which have proved useful are mentioned. The decontamination solutions are best used in the order given. When one has no satisfactory decontamination effect, the next one is to be used. If necessary, these agents must be used several times in the stated order as long as this does not involve too much strain for the skin. All the decontamination measures mentioned refer, of course, to intact healthy skin. After decontamination has been completed, the skin should be treated with a protective cream

  4. SKIN CARE IN INFANTS

    Directory of Open Access Journals (Sweden)

    I. N. Zakharova

    2014-01-01

    Full Text Available Human skin is a complex organ in its structure. Numerous functions of the skin may be impaired in its pathology. Anatomical and physiological characteristics of the skin in children predispose to common diseases of the skin. Diaper dermatitis is one of the most common skin diseases during infancy and childhood. Diapered skin is exposed to friction and excessive hydration, has a higher pH than nondiapered skin, and is repeatedly soiled with feces that contains enzymes with high irritation potential for the skin. Diaper dermatitis may vary in clinical severity and course. Therapeutically, frequent diaper changes and adequate skin care are most important. Appropriate skin care can help to prevent the occurrence of diaper dermatitis and to speed up the healing of affected skin. This includes frequent diaper changes and aeration, gentle cleansing, and the use of a barrier cream. For the treatment of diaper dermatitis agents selected depending on the presence and severity of complications. For prevention and treatment of uncomplicated diaper dermatitis effective means of containing dexpantenol.

  5. Safety of long-term subcutaneous free flap skin banking after skin-sparing mastectomy.

    Science.gov (United States)

    Verstappen, Ralph; Djedovic, Gabriel; Morandi, Evi Maria; Heiser, Dietmar; Rieger, Ulrich Michael; Bauer, Thomas

    2018-03-01

    A persistent problem in autologous breast reconstruction in skin-sparing mastectomies is skin restoration after skin necrosis or secondary oncological resection. As a solution to facilitate reconstruction, skin banking of free-flap skin has been proposed in cases where the overlying skin envelope must be resected, as this technique spares the patient an additional donor site. Herein, we present the largest series to date in which this method was used. We investigated its safety and the possibility of skin banking for prolonged periods of time. All skin-sparing mastectomies and immediate autologous breast reconstructions from December 2009 until June 2013 at our institution were analysed. We identified 31 patients who underwent 33 free flap reconstructions in which skin banking was performed. Our median skin banking period was 7 days, with a maximum duration of 171 days. In 22.5% of cases, the banked skin was used to reconstruct overlying skin defects, and in 9.6% of cases to reconstruct the nipple-areolar complex. Microbiological and histological investigations of the banked skin revealed neither clinical infections nor malignancies. In situ skin banking, even for prolonged periods of time, is a safe and cost-effective method to ensure that skin defects due to necrosis or secondary oncological resection can be easily reconstructed.

  6. Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery

    Science.gov (United States)

    Jang, Hun-jae; Yeo, Seonggu; Yoh, Jack J.

    2016-04-01

    An Er:YAG laser with 2940-nm wavelength and 150-µs pulse duration was built for the purpose of combined ablation and microjet injection. A shorter pulse duration compared to common erbium lasers in dentistry is desirable for a synchronization of skin ablation and subsequent microjet injection into target skin for transdermal injection of liquid dose. A single laser beam is split into two for an optimal energy of pre-ablation of skin and the residual energy allocated to a microjet ejection. A newly designed injector consists of an L-shaped chamber and a parabolic mirror in a single unit, and the handheld laser is a part of an integrated system requiring no optical fiber. Through various injection tests using the porcine skin, the effectiveness of the new delivery system is herein evaluated.

  7. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    Science.gov (United States)

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  8. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  9. Effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in mice.

    Science.gov (United States)

    Satoh, T; Murata, M; Iwabuchi, N; Odamaki, T; Wakabayashi, H; Yamauchi, K; Abe, F; Xiao, J Z

    2015-01-01

    Probiotics have been shown to have a preventative effect on skin photoaging induced by short term UV irradiation, however, the underlying mechanisms and the effect of probiotics on skin photoaging induced by chronic UV irradiation remain unclear. In this study, we investigated the effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in hairless mice. Mice were irradiated with UVB three times weekly and orally administered B. breve B-3 (2×10(9) cfu/mouse /day) for 7 weeks. Nonirradiated mice and UVB-irradiated mice without probiotic treatment were used as controls. B. breve B-3 significantly suppressed the changes of transepidermal water loss, skin hydration, epidermal thickening and attenuated the damage to the tight junction structure and basement membrane induced by chronic UVB irradiation. Administration of B. breve B-3 tended to suppress the UV-induced interleukin-1β production in skin (P=0.09). These results suggest that B. breve B-3 could potentially be used to prevent photoaging induced by chronic UV irradiation.

  10. The development of criteria for limiting the non-stochastic effects of non-uniform skin exposure

    International Nuclear Information System (INIS)

    Charles, M.W.; Wells, J.

    1980-01-01

    The recent recommendations of the International Commission on Radiological Protection (ICRP, 1977) have underlined the lack of knowledge relating to small area skin exposures and have highlighted the difficulties of integrating stochastic and nonstochastic effects into a unified radiation protection philosophy. A system of limitation is suggested which should be appropriate to the wide range of skin irradiation modes which are met in practice. It is proposed for example, that for large area exposures, the probability of skin cancer induction should be considered as the limiting factor. For partial-body skin exposures the probability of the stochastic response will be reduced and late nonstochastic effects will become limiting as the area exposed is reduced. Highly non-uniform exposures such as from small sources or radioactive particulates should be limited on the basis of early rather than late effects. A survey of epidemiological and experimental work is used to show how detailed guidance for limitation in these cases can be provided. Due to the detailed morphology of the skin the biological response depends critically upon the depth dose. In the case of alpha and beta radiation this should be reflected in a less restrictive limitation system, particularly for non-stochastic effects. Up-to-date and on-going experimental studies are described which can provide guidance in this field. (author)

  11. Cost-effectiveness of a Ceramide-Infused Skin Barrier Versus a Standard Barrier

    Science.gov (United States)

    Berger, Ariel; Inglese, Gary; Skountrianos, George; Karlsmark, Tonny; Oguz, Mustafa

    2018-01-01

    PURPOSE: To assess the cost-effectiveness of a ceramide-infused skin barrier (CIB) versus other skin barriers (standard of care) among patients who have undergone ostomy creation. DESIGN: Cost-effectiveness analysis, based on a decision-analytic model that was estimated using data from the ADVOCATE (A Study Determining Variances in Ostomy Skin Conditions And The Economic Impact) trial, which investigated stoma-related healthcare costs over 12 weeks among patients who recently underwent fecal ostomy, and from other sources. SUBJECTS AND SETTING: Analysis was based on a hypothetical cohort of 1000 patients who recently underwent fecal ostomy; over a 1-year period, 500 patients were assumed to use CIB and 500 were assumed to use standard of care. METHODS: We adapted a previous economic model to estimate expected 1-year costs and outcomes among persons with a new ostomy assumed to use CIB versus standard of care. Outcomes of interest included peristomal skin complications (PSCs) (up to 2 during the 1-year period of interest) and quality-adjusted life days (QALDs); QALDs vary from 1, indicating a day of perfect health to 0, indicating a day with the lowest possible health (deceased). Subjects were assigned QALDs on a daily basis, with the value of the QALD on any given day based on whether the patient was experiencing a PSC. Costs included those related to skin barriers, ostomy accessories, and care of PSCs. The incremental cost-effectiveness of CIB versus standard of care was estimated as the incremental cost per PSC averted and QALD gained, respectively; net monetary benefit of CIB was also estimated. All analyses were run using the perspective of an Australian payer. RESULTS: On a per-patient basis, use of CIB was expected over a 1-year period to result in 0.16 fewer PSCs, an additional 0.35 QALDs, and a savings of A$180 (Australian dollars, US $137) in healthcare costs all versus standard of care. Management with CIB provided a net monetary benefit (calculated as

  12. Stem cell recovering effect of copper-free GHK in skin.

    Science.gov (United States)

    Choi, Hye-Ryung; Kang, Youn-A; Ryoo, Sun-Jong; Shin, Jung-Won; Na, Jung-Im; Huh, Chang-Hun; Park, Kyoung-Chan

    2012-11-01

    The peptide Gly-His-Lys (GHK) is a naturally occurring copper(II)-chelating motifs in human serum and cerebrospinal fluid. In industry, GHK (with or without copper) is used to make hair and skin care products. Copper-GHK plays a physiological role in the process of wound healing and tissue repair by stimulating collagen synthesis in fibroblasts. We also reported that copper-GHK promotes the survival of basal stem cells in the skin. However, the effects of copper-free GHK (GHK) have not been investigated well. In this study, the effects of GHK were studied using cultured normal human keratinocytes and skin equivalent (SE) models. In monolayer cultured keratinocytes, GHK increased the proliferation of keratinocytes. When GHK was added during the culture of SE models, the basal cells became more cuboidal than control model. In addition, there was linear and intense staining of α6 and β1 integrin along the basement membrane. The number of p63 and proliferating cell nuclear antigen positive cells was also significantly increased in GHK-treated SEs than in control SEs. Western blot and slide culture experiment showed that GHK increased the expression of integrin by keratinocytes. All these results showed that GHK increased the stemness and proliferative potential of epidermal basal cells, which is associated with increased expression of integrin. In conclusion, copper-free GHK showed similar effects with copper-GHK. Thus, it can be said that copper-free GHK can be used in industry to obtain the effects of copper-GHK in vivo. Further study is necessary to explore the relationship between copper-free GHK and copper-GHK. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  13. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Matteo Crosera

    2015-08-01

    Full Text Available Titanium dioxide nanoparticles (TiO2NPs suspensions (concentration 1.0 g/L in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2 while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2. Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay, 3.8 × 10−5 M (AlamarBlue® assay, and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death. Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  14. A ‘suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans

    Science.gov (United States)

    Wang, Yu; Wei, Dongsheng; Zhu, Xiangyang; Pan, Jiao; Zhang, Ping; Huo, Liang; Zhu, Xudong

    2016-01-01

    Loss-of-function mutagenesis is an important tool used to characterize gene functions, and the CRISPR-Cas9 system is a powerful method for performing targeted mutagenesis in organisms that present low recombination frequencies, such as the serotype D strains of Cryptococcus neoformans. However, when the CRISPR-Cas9 system persists in the host cells, off-target effects and Cas9 cytotoxicity may occur, which might block subsequent genetic manipulation. Here, we report a method of spontaneously eliminating the CRISPR-Cas9 system without impairing its robust editing function. We successfully expressed single guide RNA under the driver of an endogenous U6 promoter and the human codon-optimized Cas9 endonuclease with an ACT1 promoter. This system can effectively generate an indel mutation and efficiently perform targeted gene disruption via homology-directed repair by electroporation in yeast. We then demonstrated the spontaneous elimination of the system via a cis arrangement of the CRISPR-Cas9 expression cassettes to the recombination construct. After a system-mediated double crossover, the CRISPR-Cas9 cassettes were cleaved and degraded, which was validated by Southern blotting. This ‘suicide’ CRISPR-Cas9 system enables the validation of gene functions by subsequent complementation and has the potential to minimize off-target effects. Thus, this technique has the potential for use in functional genomics studies of C. neoformans. PMID:27503169

  15. Skin and antioxidants.

    Science.gov (United States)

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  16. Safety of long-term subcutaneous free flap skin banking after skin-sparing mastectomy

    Directory of Open Access Journals (Sweden)

    Ralph Verstappen

    2018-03-01

    Full Text Available Background A persistent problem in autologous breast reconstruction in skin-sparing mastectomies is skin restoration after skin necrosis or secondary oncological resection. As a solution to facilitate reconstruction, skin banking of free-flap skin has been proposed in cases where the overlying skin envelope must be resected, as this technique spares the patient an additional donor site. Herein, we present the largest series to date in which this method was used. We investigated its safety and the possibility of skin banking for prolonged periods of time. Methods All skin-sparing mastectomies and immediate autologous breast reconstructions from December 2009 until June 2013 at our institution were analysed. Results We identified 31 patients who underwent 33 free flap reconstructions in which skin banking was performed. Our median skin banking period was 7 days, with a maximum duration of 171 days. In 22.5% of cases, the banked skin was used to reconstruct overlying skin defects, and in 9.6% of cases to reconstruct the nipple-areolar complex. Microbiological and histological investigations of the banked skin revealed neither clinical infections nor malignancies. Conclusions In situ skin banking, even for prolonged periods of time, is a safe and cost-effective method to ensure that skin defects due to necrosis or secondary oncological resection can be easily reconstructed.

  17. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng

    Directory of Open Access Journals (Sweden)

    Eunji Kim

    2018-04-01

    Full Text Available Background: Compound K (CK is a ginsenoside, a metabolite of Panax ginseng. There is interest both in increasing skin health and antiaging using natural skin care products. In this study, we explored the possibility of using CK as a cosmetic ingredient. Methods: To assess the antiaging effect of CK, RT-PCR was performed, and expression levels of matrix metalloproteinase-1, cyclooxygenase-2, and type I collagen were measured under UVB irradiation conditions. The skin hydrating effect of CK was tested by RT-PCR, and its regulation was explored through immunoblotting. Melanin content, melanin secretion, and tyrosinase activity assays were performed. Results: CK treatment reduced the production of matrix metalloproteinase-1 and cyclooxygenase-2 in UVB irradiated NIH3T3 cells and recovered type I collagen expression level. Expression of skin hydrating factors—filaggrin, transglutaminase, and hyaluronic acid synthases-1 and -2—were augmented by CK and were modulated through the inhibitor of κBα, c-Jun N-terminal kinase, or extracellular signal-regulated kinases pathway. In the melanogenic response, CK did not regulate tyrosinase activity and melanin secretion, but increased melanin content in B16F10 cells was observed. Conclusion: Our data showed that CK has antiaging and hydrating effects. We suggest that CK could be used in cosmetic products to protect the skin from UVB rays and increase skin moisture level. Keywords: compound K, melanogenesis, Panax ginseng, skin protection, UVB irradiation

  18. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    Directory of Open Access Journals (Sweden)

    Ghazikhanlou-sani K.

    2016-06-01

    Full Text Available Introduction: There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method: A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA maps were performed using the FSL (FMRI software library software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result: The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05. Conclusion: DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.

  19. Protective effect of transparent film dressing on proton therapy induced skin reactions

    International Nuclear Information System (INIS)

    Whaley, Jonathan T; Kirk, Maura; Cengel, Keith; McDonough, James; Bekelman, Justin; Christodouleas, John P

    2013-01-01

    Proton therapy can result in clinically significant radiation dermatitis. In some clinical scenarios, such as lung or breast cancer, the risk of severe radiation dermatitis may limit beam arrangement and prescription doses. Patients undergoing proton therapy for prostate cancer commonly develop mild radiation dermatitis. Herein, we report the outcomes of two prostate cancer patients whose radiation dermatitis appears to have been substantially diminished by transparent film dressings (Beekley stickers). This is a descriptive report of the skin toxicity observed in two patients undergoing proton therapy for prostate cancer at a single institution in 2011. A phantom dosimetric study was performed to evaluate the impact of a transparent film dressing on a beam’s spread out Bragg peak (SOBP). Two patients with low risk prostate cancer were treated with proton therapy to a total dose of 79.2Gy (RBE) in 1.8 Gy (RBE) fractions using two opposed lateral beams daily. Both patients had small circular (2.5 cm diameter) transparent adhesive markers placed on their skin to assist with daily alignment. Patient 1 had markers in place bilaterally for the entirety of treatment. Patient 2 had a marker in place for three weeks on one side and six weeks on the other. Over the course of therapy, both men developed typical Grade 1 radiation dermatitis (asymptomatic erythema) on their hips; however, in both patients, the erythema was substantially decreased beneath the markers. Patient 2 demonstrated less attenuation and thus greater erythema in the skin covered for three weeks compared to the skin covered for six weeks. The difference in skin changes between the covered and uncovered skin persisted for at least 1 month. A phantom study of double scattered beam SOBP with and without the marker in the beam path showed no gross dosimetric effect. Transparent adhesive markers appear to have attenuated radiation dermatitis in these two patients without affecting the SOBP. One patient may

  20. Effects of Cosmetic Formulations Containing Hydroxyacids on Sun-Exposed Skin: Current Applications and Future Developments

    Directory of Open Access Journals (Sweden)

    Andrija Kornhauser

    2012-01-01

    Full Text Available This paper describes recent data on the effects of various skin formulations containing hydroxyacids (HAs and related products on sun-exposed skin. The most frequently used classes of these products, such as α- and β-hydroxyacids, polyhydroxy acids, and bionic acids, are reviewed, and their application in cosmetic formulations is described. Special emphasis is devoted to the safety evaluation of these formulations, particularly on the effects of their prolonged use on sun-exposed skin. We also discuss the important contribution of cosmetic vehicles in these types of studies. Data on the effects of HAs on melanogenesis and tanning are also included. Up-to-date methods and techniques used in those explorations, as well as selected future developments in the cosmetic area, are presented.

  1. Clonal and Widespread Gene Transfer by Proviral Electroporation for Analysis of Brain Laminar Formation

    Science.gov (United States)

    Sugiyama, Sayaka; Nakamura, Harukazu

    An essential approach to understanding the mechanisms of development is to alter a gene function/expression. In vivo electroporation has been adapted as one such technique (Muramatsu et al., 1997). It is a very useful tool to achieve a gain- and loss-of-function (by using RNAi or morpholinos) of a gene of interest (Funahashi et al., 1999; Fukuchi-Shimogori and Grove, 2001; Kos et al., 2001; Katahira and Nakamura, 2003; Sugiyama and Nakamura, 2003). The technique has allowed the altering of gene expression temporally and spatially. Pulse-labeling technique is an approach to manipulate a specific cell population temporally, depending on its birthday, as this chapter describes. This technique is more advantageous over the BrdU application, as it can reveal cell lineage; it also has the ability to manipulate a gain- and loss-of-function into specific precursor cells (Tabata and Nakajima, 2001; Sugiyama and Nakamura, 2003; Huber et al., 2008).

  2. Effect of Tension and Curvature of Skin on Insertion Characteristics of Microneedle Array

    Science.gov (United States)

    Tachikawa, Hiroto; Takano, Naoki; Nishiyabu, Kazuaki; Miki, Norihisa; Ami, Yoshimichi

    Recent MEMS (micro electro mechanical system) fabrication techniques have made it possible to produce painless microneedles precisely enough to be inserted into epidermis layer penetrating the stratum corneum of human skin. This paper presents a testing procedure to evaluate the insertion characteristics of microneedle array using cultured human skin considering the tension and the curvature. First, the biaxial strain applied to the cultured human skin was measured by optical technique with image processing. It was found that almost constant strain could be successfully given within a certain area and that error factors in the experiment except the thickness variation of the cultured skin were negligible. Next, using a microneedle square array for brain machine interface (BMI) application, the effects of biaxial tension and the curvature on insertion characteristics were discussed. Within the above mentioned area with high strain, the needles were successfully inserted.

  3. Clinical effects of an oral supplement rich in antioxidants on skin radiance in women

    Directory of Open Access Journals (Sweden)

    Dumoulin M

    2016-10-01

    Full Text Available Marion Dumoulin, David Gaudout, Benoit Lemaire Activ’Inside, Libourne, France Background: Environmental factors impact the skin aging resulting in decrease of skin radiance. Nutrition and particularly antioxidants could help to fight against skin degradation.Objective: The aim of this study was to evaluate the effects of an oral supplement rich in specific antioxidants, SkinAx2TM, on the improvement of the skin radiance in women.Methods: The open-label clinical study enrolled 35 women, aged 40–70, with facial dull complexion. Subjects were supplemented orally with a daily dosage of 150 mg of an antioxidant-rich formulation containing superoxide dismutase-rich melon concentrate, grape seed extract rich in monomers of flavanols, vitamin C, and zinc for 8 weeks. Each subject served as her own control. The C.L.B.T.™ test has been used to evaluate facial skin coloring (C, luminosity (L, brightness (B, and transparency (T involved in skin radiance. Facial skin imperfections have been assessed by clinical assessment. Firmness has been evaluated by clinical assessment and cutometer measurement. Finally, an auto-questionnaire has been carried out in order to evaluate the satisfaction of the subjects concerning different parameters involved in skin radiance and the global efficacy of the supplement.Results: Skin “red pink” and “olive” colors were significantly improved after supplementation (P<0.0001. Luminosity was increased by 25.9% (P<0.0001 whereas brightness and transparency were not affected by the supplementation. Facial skin imperfections were significantly reduced after the antioxidant-rich formulation intake (global reduction: –18.0%; P<0.0001. Indeed, dark circles, redness, and spots significantly diminished after oral treatment. Firmness and elasticity have been shown to be improved. Subjects were globally satisfied by the product (82.4% and have found improvements on their facial skin. Furthermore, 64.7% reported to look

  4. General considerations of the choice of dose limits, averaging areas and weighting factors for the skin in the light of revised skin cancer risk figures and experimental data on non-stochastic effects

    International Nuclear Information System (INIS)

    Charles, M.W.

    1990-01-01

    Recent biological data from man and pig on the non-stochastic effects following exposure with a range of β-emitters are combined with recent epidemiological analyses of skin cancer risks in man to form a basis for suggested improved protection criteria following whole- or partial-body skin exposures. Specific consideration is given to the choice of an organ weighting factor for evaluation of effective dose-equivalent. Since stochastic and non-stochastic end-points involve different cell types at different depths in the skin, the design of an ideal physical dosemeter may depend on the proportion of the body skin exposed and the radiation penetrating power. Possible choices of design parameters for skin dosemeters are discussed. Limitation of skin exposure from small radioactive sources ('hot particles') is addressed using animal data. (author)

  5. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient.

    Science.gov (United States)

    Garcia, P A; Pancotto, T; Rossmeisl, J H; Henao-Guerrero, N; Gustafson, N R; Daniel, G B; Robertson, J L; Ellis, T L; Davalos, R V

    2011-02-01

    Non-thermal irreversible electroporation (N-TIRE) has shown promise as an ablative therapy for a variety of soft-tissue neoplasms. Here we describe the therapeutic planning aspects and first clinical application of N-TIRE for the treatment of an inoperable, spontaneous malignant intracranial glioma in a canine patient. The N-TIRE ablation was performed safely, effectively reduced the tumor volume and associated intracranial hypertension, and provided sufficient improvement in neurological function of the patient to safely undergo adjunctive fractionated radiotherapy (RT) according to current standards of care. Complete remission was achieved based on serial magnetic resonance imaging examinations of the brain, although progressive radiation encephalopathy resulted in the death of the dog 149 days after N-TIRE therapy. The length of survival of this patient was comparable to dogs with intracranial tumors treated via standard excisional surgery and adjunctive fractionated external beam RT. Our results illustrate the potential benefits of N-TIRE for in vivo ablation of undesirable brain tissue, especially when traditional methods of cytoreductive surgery are not possible or ideal, and highlight the potential radiosensitizing effects of N-TIRE on the brain.

  6. The morphological effect of electron irradiation on the healing of skin wounds and skin grafts in the rat

    International Nuclear Information System (INIS)

    Wang, Q.

    1995-01-01

    Current oncological practice frequently uses pre-, intra- or post-operative radiotherapy/chemotherapy. Before such treatment can begin it is imperative to establish that satisfactory wound healing will occur. Many previous studies have examined the response of wound healing to ionizing and non-ionizing radiation. In general, clinical and experimental reports indicate that ionizing radiation produces poor to difficult healing of wounds, and can even prevent healing altogether. It is for this reason that the effect of radiation on wound repair has been a long standing concern for surgeons, radiotherapists and radiobiologists. Electron irradiation produces large differences in depth-dose distributions. This enables the delivery of a constant maximal dose throughout the superficial layer of tissue, for example, the total depth of skin, with less damage in deeper tissue layers, compared to that produced by the use of electromagnetic radiation such as X-rays. It is for this reason that electron beam irradiation has been selected as a radiation source for radiation of the graft bed. To date there have been few morphological examinations of the effect of electron radiation on the healing of skin wounds in rats. A review of the literature shows no information on the use of radiation of the graft bed in skin graft surgery. In the present work the processes involved in wound repair in response to radiation were studied, morphologically, using two experimental models, incisional wounds combined with pre-operative radiation and skin autografts combined with radiation of the wound bed. In the latter case an unirradiated skin graft was surgically attached to an irradiated wound bed. Light microscopy (LM), backscattered electron imaging (BEI), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used as investigative tools. These repair processes include inflammation, re-epithelialization, re-formation of the dermo-epidermal junction, re

  7. The morphological effect of electron irradiation on the healing of skin wounds and skin grafts in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q

    1995-07-01

    Current oncological practice frequently uses pre-, intra- or post-operative radiotherapy/chemotherapy. Before such treatment can begin it is imperative to establish that satisfactory wound healing will occur. Many previous studies have examined the response of wound healing to ionizing and non-ionizing radiation. In general, clinical and experimental reports indicate that ionizing radiation produces poor to difficult healing of wounds, and can even prevent healing altogether. It is for this reason that the effect of radiation on wound repair has been a long standing concern for surgeons, radiotherapists and radiobiologists. Electron irradiation produces large differences in depth-dose distributions. This enables the delivery of a constant maximal dose throughout the superficial layer of tissue, for example, the total depth of skin, with less damage in deeper tissue layers, compared to that produced by the use of electromagnetic radiation such as X-rays. It is for this reason that electron beam irradiation has been selected as a radiation source for radiation of the graft bed. To date there have been few morphological examinations of the effect of electron radiation on the healing of skin wounds in rats. A review of the literature shows no information on the use of radiation of the graft bed in skin graft surgery. In the present work the processes involved in wound repair in response to radiation were studied, morphologically, using two experimental models, incisional wounds combined with pre-operative radiation and skin autografts combined with radiation of the wound bed. In the latter case an unirradiated skin graft was surgically attached to an irradiated wound bed. Light microscopy (LM), backscattered electron imaging (BEI), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used as investigative tools. These repair processes include inflammation, re-epithelialization, re-formation of the dermo-epidermal junction, re

  8. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987.

  9. Studies on the protection effects of functional foods for skin immune system from radiation damage

    International Nuclear Information System (INIS)

    Yee, Sung Tae; Shin, Seong Hae; Kim, Do Sun; Heo, Ji Yun; Kang, Hye In

    2007-07-01

    We evaluated the protective effects of pilot products (HemoHIM and HemoTonic) on the UV-induced skin immune damages as the following. · Protective effects of HemoHIM and HemoTonic against UV using contact hypersensitivity model - Protection against depression of contact hypersensitivity by administration and skin application of HemoHIM and HemoTonic - Induction of dendritic cell differentiation and maturation by HemoHIM and HemoTonic treatment - Improvement of antigen-presenting activity of dedritic cells by HemoHIM and HemoTonic treatment · Protective effects of HemoHIM and HemoTonic on skin immune system against UV-irradiation - Protection of antigen-presenting activity of dendritic cells under UV-irradiation - In vivo protection of antigen-presenting activity of Langerhans cells in UV-irradiated mice · Protective effects of HemoHIM on UV-induced apoptosis of dendritic cells - Inhibition of cell membrane change, mitochondrial potential change, SubG1 cell population, nuclear condensation, and DNA fragmentation in UV-irradiated dendritic cells · Anti-allergic effects of HemoHIM and HemoTonic in human adipocyte HMC-1 cells - Inhibition of allergic histamine release from adipocytes - Inhibition of secretion of inflammatory cytokines (IL-6, IL-8, TNF-α, GM-CSF) - Inhibition of c-kit, tryptase, FcεRI mRNA expression From these results, the developed functional food products (HemoHIM, HemoTonic) showed the protection and recovery of the immune functions in the UV-irradiated skin. It is suggested that these products may be used as a new functional food or cosmetic material for the protection of skin damage and the promotion of recovery

  10. The effect of the moisture content of a local heat source on the blood flow response of the skin.

    Science.gov (United States)

    Petrofsky, Jerrold Scott; Bains, Gurinder; Raju, Chinna; Lohman, Everett; Berk, Lee; Prowse, Michelle; Gunda, Shashi; Madani, Piyush; Batt, Jennifer

    2009-09-01

    Numerous studies have examined the effect of local and global heating of the body on skin blood flow. However, the effect of the moisture content of the heat source on the skin blood flow response has not been examined. Thirty-three subjects, without diabetes or cardiovascular disease, between the ages of 22 and 32 were examined to determine the relationship between the effects of dry vs. moist heat applied for the same length of time and with the skin clamped at the same skin temperature on the blood flow response of the skin. The skin, heated with an infrared heat lamp (skin temperature monitored with a thermocouple) to 40 degrees C for 15 min, was either kept moist with wet towels or, in a separate experiment, kept dry with Drierite (a desiccant) between the towels to remove any moisture. Before and after heat exposure of the forearm, blood pressure, heart rate, skin moisture content, skin temperature, and skin blood flow were recorded. The results of the experiment showed that there was no change in skin moisture after 15 min exposure to dry heat at 40 degrees C. However, with moist heat, skin moisture increased by 43.7%, a significant increase (P heat, blood flow increased from the resting value by 282.3% whereas with moist heat, blood flow increased by 386% over rest, a significant increase over dry heat (P heat was a better heating modality than dry heat. The reason may be linked to moisture sensitivity in calcium channels in the vascular endothelial cell.

  11. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy

    Science.gov (United States)

    Meinke, Martina C.; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M.

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  12. Thermal Effect of Pulsed Laser on Human Skin

    OpenAIRE

    N. C. Majumdar; V. K. Kochhar

    1985-01-01

    An attempt has been made to derive from theoretical considerations, some idea about safety limits of exposure with regard to radiant energy skin burns. This may be regarded as a preliminary enquiry in respect of thermal tissue damage by pulsed laser radiation, since the effects of isolated single pulses from ruby laser only have been considered. The study needs to be extended to other wavelengths as well as to trains of pulses.

  13. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng.

    Science.gov (United States)

    Kim, Eunji; Kim, Donghyun; Yoo, Sulgi; Hong, Yo Han; Han, Sang Yun; Jeong, Seonggu; Jeong, Deok; Kim, Jong-Hoon; Cho, Jae Youl; Park, Junseong

    2018-04-01

    Compound K (CK) is a ginsenoside, a metabolite of Panax ginseng . There is interest both in increasing skin health and antiaging using natural skin care products. In this study, we explored the possibility of using CK as a cosmetic ingredient. To assess the antiaging effect of CK, RT-PCR was performed, and expression levels of matrix metalloproteinase-1, cyclooxygenase-2, and type I collagen were measured under UVB irradiation conditions. The skin hydrating effect of CK was tested by RT-PCR, and its regulation was explored through immunoblotting. Melanin content, melanin secretion, and tyrosinase activity assays were performed. CK treatment reduced the production of matrix metalloproteinase-1 and cyclooxygenase-2 in UVB irradiated NIH3T3 cells and recovered type I collagen expression level. Expression of skin hydrating factors-filaggrin, transglutaminase, and hyaluronic acid synthases-1 and -2-were augmented by CK and were modulated through the inhibitor of κBα, c-Jun N-terminal kinase, or extracellular signal-regulated kinases pathway. In the melanogenic response, CK did not regulate tyrosinase activity and melanin secretion, but increased melanin content in B16F10 cells was observed. Our data showed that CK has antiaging and hydrating effects. We suggest that CK could be used in cosmetic products to protect the skin from UVB rays and increase skin moisture level.

  14. Biological effects of brachytherapy using a 32P-patch on the skin of Sencar mice

    International Nuclear Information System (INIS)

    Salgueiro, Maria J.; Medina, Vanina; Zubillaga, Marcela

    2008-01-01

    In recent years, specially designed patches containing beta emitters have been developed for contact brachytherapy of skin lesions. The aim of the present work is to evaluate the biological effects of the 32 P-patch on the skin of Sencar mice as a result of a brachytherapy treatment. For this purpose, a 32 P-patch was prepared with Chromic 32 P-phosphate and silicone and the classical model of two-stage skin carcinogenesis was reproduced in Sencar mice. Animals were divided in two main groups in order to perform the contact brachytherapy treatment using schemes of single (SD40 and SD60) and fractionated (FD40 and FD60) doses, with their respective control groups (CSD and CFD). Additionally, a control group without carcinogenic treatment was included in order to apply the 32 P-patch in normal skin. The endpoint to evaluate treatment effects was tumor size after a follow-up period of 44 days and finally, animals were sacrificed in order to get samples of all tumors for histological analysis. Additionally, PCNA staining was evaluated in all groups and the biologically effective dose (BED) of each scheme was calculated taken into account the linear-quadratic model. Erythema, dermatitis and skin ulceration developed in almost all treated animals, but they gradually healed with regeneration of tissue during the follow-up period. Radiation effects on the skin of SD40, SD60, FD40 and FD60 showed a significant reduction of the tumor size with regard to controls, independently of the scheme and the radiation dose considered. PCNA staining scores of groups in the single dose scheme resulted higher for control than for treated tumors, and the same pattern was observed for groups of the fractionated dose scheme. This radioactive 32 P-silicone-patch which, is easy to prepare and use in the treatment of skin diseases and seems promissory as a radioactive device for clinical use. (author)

  15. Radiation protection guidelines for the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1990-01-01

    This paper reviews the history of radiation protection standards for the skin with particular reference to past recommendations of the ICRP concerning dose limits to the skin and the work of the ICRP Task Group appointed in 1987. Data are also presented on the effect of radiation on Langerhans cells in the skin, and the effect of interaction of ultraviolet radiation and x-rays and of protraction of radiation on skin cancer induction in mice. (UK)

  16. Effects of endothelium-derived nitric oxide on skin and digital blood flow in humans.

    Science.gov (United States)

    Coffman, J D

    1994-12-01

    The effects of NG-monomethyl-L-arginine (L-NMMA) on total finger and forearm, and dorsal finger and forearm skin, blood flows were studied in the basal state and during reflex sympathetic vasoconstriction in normal subjects. Total flows were measured by venous occlusion plethysmography and skin flows by laser-Doppler flowmetry (LDF). L-NMMA in doses of 2, 4, and 8 microM/min given by constant infusion via a brachial artery catheter significantly decreased finger blood flow, forearm blood flow, and vascular conductances. At 8 microM/min, total finger blood flow decreased 38.4% and forearm blood flow decreased 24.8%. Dorsal finger and forearm skin LDF were also significantly decreased (25 and 37% at 8 microM/min). Body cooling significantly decreased finger blood flow (73.6%), vascular conductance, and finger LDF (59.7%). L-NMMA had no effect on total finger blood flow or dorsal finger LDF during body cooling. Nitric oxide or related compounds contribute to the basal dilator tone of the dorsal finger and forearm skin but not during reflex sympathetic vasoconstriction.

  17. Treatment of Mesh Skin Grafted Scars Using a Plasma Skin Regeneration System

    Directory of Open Access Journals (Sweden)

    Takamitsu Higashimori

    2010-01-01

    Full Text Available Objectives. Several modalities have been advocated to treat traumatic scars, including surgical techniques and laser resurfacing. Recently, a plasma skin regeneration (PSR system has been investigated. There are no reports on plasma treatment of mesh skin grafted scars. The objective of our study is to evaluate the effectiveness and complications of plasma treatment of mesh skin grafted scars in Asian patients. Materials and Methods. Four Asian patients with mesh skin grafted scars were enrolled in the study. The plasma treatments were performed at monthly intervals with PSR, using energy settings of 3 to 4 J. Improvement was determined by patient questionnaires and physician evaluation of digital photographs taken prior to treatment and at 3 months post treatment. The patients were also evaluated for any side effects from the treatment. Results. All patients showed more than 50% improvement. The average pain score on a 10-point scale was 6.9 +/− 1.2 SD and all patients tolerated the treatments. Temporary, localized hypopigmentation was observed in two patients. Hyperpigmentation and worsening of scarring were not observed. Conclusions. Plasma treatment is clinically effective and is associated with minimal complications when used to treat mesh skin grafted scars in Asian patients.

  18. Modelling the effect of mixture components on permeation through skin.

    Science.gov (United States)

    Ghafourian, T; Samaras, E G; Brooks, J D; Riviere, J E

    2010-10-15

    A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the skin and rate of transport. Despite the huge amount of effort made for the understanding and modelling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from formulations remains a challenging objective. In this investigation, quantitative structure-activity relationship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression analysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant descriptors were octanol/water partition coefficient, logP and the ninth order path molecular connectivity index, and the solvent property was the difference between boiling and melting points. The negative relationship between skin permeability coefficient and logP was attributed to the fact that most of the drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the common skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles with small boiling and melting point gaps will be expected to have higher permeation through skin. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396. The chemical space of the dataset was compared with that of the known skin permeability datasets and gaps were identified for future skin permeability measurements. Copyright 2010 Elsevier B.V. All rights reserved.

  19. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types.

    Science.gov (United States)

    Yan, Liangwen; Hu, Sijung; Alzahrani, Abdullah; Alharbi, Samah; Blanos, Panagiotis

    2017-06-21

    Different skin pigments among various ethnic group people have an impact on spectrometric illumination on skin surface. To effectively capture photoplethysmographic (PPG) signals, a multi-wavelength opto-electronic patch sensor (OEPS) together with a schematic architecture of electronics were developed to overcome the drawback of present PPG sensor. To perform a better in vivo physiological measurement against skin pigments, optimal illuminations in OEPS, whose wavelength is compatible with a specific skin type, were optimized to capture a reliable physiological sign of heart rate (HR). A protocol was designed to investigate an impact of five skin types in compliance with Von Luschan's chromatic scale. Thirty-three healthy male subjects between the ages of 18 and 41 were involved in the protocol implemented by means of the OEPS system. The results show that there is no significant difference ( p: 0.09, F = 3.0) in five group tests with the skin types across various activities throughout a series of consistent measurements. The outcome of the present study demonstrates that the OEPS, with its multi-wavelength illumination characteristics, could open a path in multiple applications of different ethnic groups with cost-effective health monitoring.

  20. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types

    Directory of Open Access Journals (Sweden)

    Liangwen Yan

    2017-06-01

    Full Text Available Different skin pigments among various ethnic group people have an impact on spectrometric illumination on skin surface. To effectively capture photoplethysmographic (PPG signals, a multi-wavelength opto-electronic patch sensor (OEPS together with a schematic architecture of electronics were developed to overcome the drawback of present PPG sensor. To perform a better in vivo physiological measurement against skin pigments, optimal illuminations in OEPS, whose wavelength is compatible with a specific skin type, were optimized to capture a reliable physiological sign of heart rate (HR. A protocol was designed to investigate an impact of five skin types in compliance with Von Luschan’s chromatic scale. Thirty-three healthy male subjects between the ages of 18 and 41 were involved in the protocol implemented by means of the OEPS system. The results show that there is no significant difference (p: 0.09, F = 3.0 in five group tests with the skin types across various activities throughout a series of consistent measurements. The outcome of the present study demonstrates that the OEPS, with its multi-wavelength illumination characteristics, could open a path in multiple applications of different ethnic groups with cost-effective health monitoring.

  1. Skin Picking Disorder

    Directory of Open Access Journals (Sweden)

    Pinar Cetinay Aydin

    2014-08-01

    Full Text Available Skin picking disorder is not a dermatological disorder and it is a table characterized with picking skin excessively and repetitively, leading to damage in skin tissue. Unlike normal picking behaviour, psychogenic skin picking is repetitive and it can lead to severe damage in the skin and even complications which constitute vital danger. While some patients define frequent but short lasting picking attacks, others define rarer attacks which last a few hours. Skin picking disorder, which is not included in the classification systems up to DSM-5 as a separate diagnosis category, is included as an independent diagnosis in Obsessive Compulsive Disorder and Associated Disorders category in DSM-5. In case reports, open label studies and double blind studies selective serotonin reuptake inhibitors are shown to be effective in the treatment of skin picking disorder. Mostly, cognitive-behaviourial techniques are used and have been proven to be useful in psychotherapy. Habit reversal is one of the behaviourial techniques which are frequently applied, give positive results in which well-being state can be maintained. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(4.000: 401-428

  2. Induced pluripotent stem cells (iPSCs) derived from a patient with frontotemporal dementia caused by a R406W mutation in microtubule-associated protein tau (MAPT)

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel A.; Hjermind, Lena E.; Hasholt, Lis F.

    2016-01-01

    Skin fibroblasts were obtained from a 59-year-old woman diagnosed with frontotemporal dementia. The disease is caused by a R406W mutation in microtubule-associated protein tau (MAPT). Induced pluripotent stem cells (iPSCs) were established by electroporation with episomal plasmids containing hOCT4...

  3. Induced pluripotent stem cells (iPSCs) derived from af pre-symptomatic carrier of a R406W mutation in microtubule-associated protein tau (MAPT) causing frontotemporal dementia

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel A.; Hjermind, Lena Elisabeth; Hasholt, Lis Frydenreich

    2016-01-01

    Skin fibroblasts were obtained from a 28-year-old pre-symptomatic woman carrying a R406W mutation in microtubule-associated protein tau (MAPT), known to cause frontotemporal dementia. Induced pluripotent stem cell (iPSCs) were established by electroporation with episomal plasmids containing hOCT4...

  4. Radiation Therapy for Skin Cancer

    Science.gov (United States)

    ... complete chart of side effects. Side effects of Skin Cancer Treatment OrganSystem General Body • cTo ( i D rme ... scrilineesnr/ desbuaoocrnfettedhh) e( ersatkrrieena) tment HELPFUL WEBSITES ON SKIN CANCER TARG E T I NG C A NC ...

  5. Non-ablative fractionated laser skin resurfacing for the treatment of aged neck skin.

    Science.gov (United States)

    Bencini, Pier Luca; Tourlaki, Athanasia; Galimberti, Michela; Pellacani, Giovanni

    2015-06-01

    Aging of the neck skin includes poikiloderma of Civatte, skin laxity and wrinkles. While the vascular alterations of poikiloderma of Civatte can be effectively treated with lasers or intense pulsed light, a successful treatment of dyschromia, skin laxity and wrinkles is still difficult to achieve. To evaluate the safety and efficacy of non-ablative fractional 1540 erbium glass laser for the treatment of aged neck skin, also by means of in vivo reflectance confocal microscopy (RCM). A prospective study for neck resurfacing in 18 women with aged neck skin. Six laser treatments were performed in 4-week intervals with a 1540-nm erbium-glass fiber laser. By using a 6-point grading scale, the mean score (±SD; range) at baseline was 3.6 (±1.5; 1-6) for skin dyschromia, 2.9 (±1.4; 1-6) for laxity and 3.3 (±1.3; 1-5) for wrinkles. Three months after the last laser session, we found a significant clinical improvement of dyschromia (p = 0.0002; Wilcoxon test), and wrinkles (p = 0.0004; Wilcoxon test), with a mean (±SD) reduction of 2.5 (±1.0) and 1.9 (±1.1) points in the 6-point grading scale, respectively. No change was observed in laxity. These results were also supported by structural changes documented by RCM. Non-ablative fractional 1540 erbium glass laser was both safe and effective for the treatment of dyschromia and wrinkles, but not effective for the laxity of the neck skin.

  6. The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice

    Science.gov (United States)

    McMahon, Aisling C.; Ruohonen, Kari; Raubenheimer, David; Ballard, J. William O.; Le Couteur, David G.; Nicholls, Caroline; Li, Zhe; Maitz, Peter K. M.; Wang, Yiwei; Simpson, Stephen J.

    2016-01-01

    Nutrition influences skin structure; however, a systematic investigation into how energy and macronutrients (protein, carbohydrate and fat) affects the skin has yet to be conducted. We evaluated the associations between macronutrients, energy intake and skin structure in mice fed 25 experimental diets and a control diet for 15 months using the Geometric Framework, a novel method of nutritional analysis. Skin structure was associated with the ratio of dietary macronutrients eaten, not energy intake, and the nature of the effect differed between the sexes. In males, skin structure was primarily associated with protein intake, whereas in females carbohydrate intake was the primary correlate. In both sexes, the dermis and subcutaneous fat thicknesses were inversely proportional. Subcutaneous fat thickness varied positively with fat intake, due to enlarged adipocytes rather than increased adipocyte number. We therefore demonstrated clear interactions between skin structure and macronutrient intakes, with the associations being sex-specific and dependent on dietary macronutrient balance. PMID:27832138

  7. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  8. A novel method for real-time skin impedance measurement during radiofrequency skin tightening treatments.

    Science.gov (United States)

    Harth, Yoram; Lischinsky, Daniel

    2011-03-01

    The thermal effects of monopolar and bipolar radiofrequency (RF) have been proven to be beneficial in skin tightening. Nevertheless, these effects were frequently partial or unpredictable because of the uncontrolled nature of monopolar or unipolar RF and the superficial nature of energy flow for bipolar or tripolar configurations. One of the hypotheses for lack or predictability of efficacy of the first-generation RF therapy skin tightening systems is lack of adaptation of delivered power to differences in individual skin impedance. A novel multisource phase-controlled system was used (1 MHz, power range 0-65 W) for treatment and real-time skin impedance measurements in 24 patients (EndyMed PRO™; EndyMed, Cesarea, Israel). This system allows continuous real-time measurement of skin impedance delivering constant energy to the patient skin independent of changes in its impedance. More than 6000 unique skin impedance measurements on 22 patients showed an average session impedance range was 215-584 Ohm with an average of 369 Ohm (standard deviation of 49 Ohm). Analyzing individual pulses (total of 600 readings) showed a significant decrease in impedance during the pulse. These findings validate the expected differences in skin impedance between individual patients and in the same patients during the treatment pulse. Clinical study on 30 patients with facial skin aging using the device has shown high predictability of efficacy (86.7% of patients had good results or better at 3 months' follow-up [decrease of 2 or more grades in Fitzpatrick's wrinkle scale]). The real-time customization of energy according to skin impedance allows a significantly more accurate and safe method of nonablative skin tightening with more consistent and predictable results. © 2011 Wiley Periodicals, Inc.

  9. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction

    Directory of Open Access Journals (Sweden)

    Amnuaikit T

    2011-06-01

    Full Text Available Thanaporn Amnuaikit, Toon Chusuit, Panithi Raknam, Prapaporn BoonmeDepartment of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, ThailandBackground: Cellulose masks obtained from natural sources such as bacteria are of interest as cosmetic devices for the treatment of dry skin because they not only improve hydration of the skin, but have low toxicity and are biodegradable. The aims of this study were to determine the in vivo effects of a cellulose mask obtained from Acetobacter xylinum on skin characteristics and to evaluate user satisfaction with the product.Methods: Thirty healthy Thai volunteers aged 21–40 years participated in the study. The volunteers were randomly separated into a control group and an experimental group. For the control group, volunteers were assigned to apply moist towels to the face for 25 minutes. For the experimental group, the volunteers were assigned to apply the masks, ie, translucent patches which could be fitted onto the face for the same period. The following week, the groups were changed over to the alternative treatment. Skin moisture, sebum, elasticity, texture, dullness, and desquamation levels were assessed using a system used for routine skin counseling before applying the trial product and five minutes after its removal. Degree of satisfaction with use of the cellulose mask was investigated using a five-point rating scale.Results: The cellulose mask increased moisture levels in the skin significantly more than moist towels (P < 0.05 after a single application. No obvious effects on other skin characteristics were found. The cellulose mask product rated around 4/5 on the satisfaction rating scale.Conclusions: A single application of the trial cellulose mask enhanced moisture uptake by facial skin. Users also reported being satisfied with the trial product.Keywords: bacterial cellulose, facial mask, skin characteristics, skin hydration, user

  10. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens

    International Nuclear Information System (INIS)

    Popov, A P; Priezzhev, A V; Lademann, J; Myllylae, R

    2005-01-01

    Protecting human skin against harmful UV-B radiation coming from the sun is currently a problem. Due to the decreased thickness of the ozone layer, a more dangerous amount of UV-B light reaches the surface of our planet. This causes increased frequency of skin diseases. Titanium dioxide (TiO 2 ) fine particles are embedded with sunscreens into the skin to effectively attenuate UV-B radiation. This study evaluates the most appropriate size of such particles assuming they are spheres. The distribution of TiO 2 particles within the skin, achieved with topically applied sunscreens, is determined experimentally by the tape-stripping technique. Computer code implementing the Monte Carlo method is used to simulate photon migration within the plain 20 μm thick horny layer matrix partially filled with nano-sized TiO 2 particles. Dependences of harmful UV-B radiation of 307-311 nm absorbed by, backscattered from and transmitted through the horny layer on the concentration of TiO 2 particles are obtained and analysed. As a result, particles of 62 nm are found to be the most effective in protecting skin against UV-B light

  11. Effects of Ionizing Radiation on Murine Gene Expression in Skin and Bone

    Science.gov (United States)

    Terada, Masahiro; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Alwood, Joshua; Tahimic, Candice; Sowa, Marianne B.; Globus, Ruth K.

    2017-01-01

    Long duration spaceflight causes a negative calcium balance and reduces bone density in astronauts. The potential for exposure to space radiation to contribute to lasting decrements in bone mass is not yet understood. Sustained changes to bone mass have a relatively long latency for development, however skin is a radiation sensitive organ and changes in skin gene expression may serve as an early radiation biomarker of exposures and may correlate with adverse effects on skeletal tissue. Previous studies have shown that FGF18 gene expression levels of hair follicles collected from astronauts on the ISS rose over time. In the hair follicle, FGF18 signaling mediates radioresistance in the telogen by arresting the cell cycle, and FGF18 has the potential to function as a radioprotector. In bone, FGF18 appears to regulate cell proliferation and differentiation positively during osteogenesis and negatively during chondrogenesis. Cellular defense responses to radiation are shared by a variety of organs, hence in this study, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We have examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (TBI). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and TBI (0.5 Gy Fe-56 600 MeV/n and 0.5 Gy H-1 150 MeV/n). Animals were euthanized one and 11 days post-IR. Statistical analysis was performed via a Student's ttest. In skin samples one day after IR, skin expression of FGF18 was significantly greater (3.8X) than sham-irradiated controls (3.8X), but did not differ 11 days post TBI. Expression levels of other radiation related genes (Nfe2l2, Trp53, Cdkn1a, FoxO3

  12. Influence of Clothing Fabrics on Skin Microcirculation

    Institute of Scientific and Technical Information of China (English)

    CHENG Ling; PAN Ning; ZHAO Lian-ying; HUAUNG Gu

    2010-01-01

    This study investigated the effects of clothing fabric on human skin microcirculation. Once skin is covered with a clothing fabric, human sensations, namely, coolness, warmth, softness, and roughness, are amused immediately, and the cutaneous micrecireulation may be changed consequently. Since the complex relationships of the human skin, the environment, and the clothing, there is few publication focusing on the physiological responses of the skin to the fabrics. In this paper, a Laser Doppler Flowmetry (LDF) was used to test the dynamic responses of the skin blood flow when the fabric was placed on the skin. Effects of different fabrics on the skin blood flux were investigated. The results show that cold stimulation of fabric has remarkable influences on the skin blood flux, and the surface properties of fabric are of importance to affect the human skin blood flow.

  13. The role of natural and UV-induced skin pigmentation on low-fluence IPL-induced side effects: a randomized controlled trial.

    Science.gov (United States)

    Thaysen-Petersen, Daniel; Lin, Jennifer Y; Nash, Jf; Beerwerth, Frank; Wulf, Hans C; Philipsen, Peter A; Haedersdal, Merete

    2014-02-01

    The risk of adverse skin effects following light-based hair removal is greater in pigmented skin based on the theory of selective photothermolysis. Thus sunlight-induced pigment i.e., facultative pigmentation, increases the risk of adverse skin effects, perhaps disproportionately. The aim of this study was to evaluate the influence of constitutive and facultative skin pigmentation on low-fluence intense pulsed light (IPL)-induced adverse skin effects. Twenty-one subjects with Fitzpatrick skin type II-IV were enrolled. Two buttock blocks were randomized to receive 0 or 8 solar simulated ultraviolet radiation (UVR) exposures of consecutively increasing Standard Erythema Doses (2-4 SED). Each block was subdivided into four sites, randomized to receive IPL of 0, 7, 8, or 10 J/cm(2) , once a week for 3 weeks. Biopsies were taken 16-24 hours after the first IPL exposure and subjects were seen 1 and 4 weeks after the last IPL exposure. Outcome measures were: (i) skin reactions, (ii) pain, (iii) mRNA expression of pigment-markers microphthalmia-associated transcription factor (MITF) and pro-opiomelanocortin (POMC), and (iv) clinical appearance of biopsy wounds. Skin pigmentation increased after UVR (baseline median 13.8%, after UVR 28.1%, P = 0.0001) in all skin types. Subjects reported low pain intensities (median 1.5, scale 0-10) and experienced transient erythema immediately after IPL exposure. No persistent erythema, blisters, crusting, textual, or pigment changes were observed. The risk of erythema and pain intensities increased with IPL dose and skin pigmentation (P skin reactions in skin with similar degree of natural and facultative pigmentation (P ≥ 0.104). Expression of cellular pigment-markers was not influenced by IPL exposure, neither in constitutive nor in facultative pigmented skin. Clinical appearance of biopsy wounds was unaffected by IPL exposure. The prevalence and intensity of low-fluence IPL-induced adverse skin effects depended on IPL

  14. In vivo THz imaging of human skin: Accounting for occlusion effects.

    Science.gov (United States)

    Sun, Qiushuo; Parrott, Edward P J; He, Yuezhi; Pickwell-MacPherson, Emma

    2018-02-01

    In vivo terahertz (THz) imaging of human skin needs to be done in reflection geometry due to the high attenuation of THz light by water in the skin. To aid the measurement procedure, there is typically an imaging window onto which the patient places the area of interest. The window enables better pulse alignment and helps keep the patient correctly positioned during the measurement. In this paper, we demonstrate how the occlusion caused by the skin contact with the imaging window during the measurement affects the THz response. By studying both rapid point measurements and imaging over an area of a human volar forearm, we find that even 5 seconds of occlusion affects the THz response. As the occlusion time increases, the skin surface water content increases, resulting in the reduction of the amplitude of the reflected THz pulse, especially in the first 3 minutes. Furthermore, it was found that the refractive index of the volar forearm increased by 10% to 15% after 20 minutes of occlusion. In this work, we examine and propose a model for the occlusion effects due to the quartz window with a view to compensating for its influence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Stabilization of collagen fibres during development and through growth to maturation has now become fairly documented. In vitro effect of mechanical stretching of ratsf skin on oxidative deamination of ε-NH2-groups of lysine and hydroxylysine, and functional properties of its type . collagen were studied. Experiments were ...

  16. Effects of permafrost microorganisms on skin wound reparation.

    Science.gov (United States)

    Kalenova, L F; Novikova, M A; Subbotin, A M

    2015-02-01

    Local application of ointment with Bacillus spp. strain MG8 (15,000-20,000 living bacterial cells), isolated from permafrost specimens, on the skin wound of about 60 mm(2) stimulated the reparation processes in experimental mice. A possible mechanism stimulating the regeneration of the damaged tissues under the effect of MG8 could be modulation of the immune system reactivity with more rapid switchover to humoral immunity anti-inflammatory mechanisms aimed at de novo synthesis of protein.

  17. Effect of atopic skin stressors on natural moisturizing factors and cytokines in healthy adult epidermis

    DEFF Research Database (Denmark)

    Engebretsen, K A; Kezic, S; Jakasa, I

    2018-01-01

    : To explore the effect of selected exogenous skin stressors on NMF and skin cytokines levels in healthy adult epidermis. MATERIAL AND METHODS: 40 healthy volunteers (18-49 years) were exposed to hard, soft, and chlorinated water, 0.5% SLS, house dust mite, cat allergen, staphylococcal enterotoxin B (SEB...... of various skin cytokines in healthy individuals. Our data highlight environmental factors that might play a role in AD pathophysiology, but needs confirmation in AD patients. This article is protected by copyright. All rights reserved....

  18. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  19. Response-surface models for deterministic effects of localized irradiation of the skin by discrete β/γ -emitting sources

    International Nuclear Information System (INIS)

    Scott, B.R.

    1995-01-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete Β- and γ-emitting (ΒγE) sources (e.g., ΒγE hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot ΒγE particles are 60 Co- or nuclear fuel-derived particles with diameters > 10 μm and < 3 mm and contain at least 3.7 kBq (0.1 μCi) of radioactivity. For such ΒγE sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for evaluating the risk of deterministic effects of localized Β irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete ΒγE sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to Β radiation from ΒγE sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects

  20. Studies on the protection effects of functional foods for skin immune system from radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Shin, Seong Hae; Kim, Do Sun; Heo, Ji Yun; Kang, Hye In [Sunchon National University, Sunchon (Korea, Republic of)

    2007-07-15

    We evaluated the protective effects of pilot products (HemoHIM and HemoTonic) on the UV-induced skin immune damages as the following. centre dot Protective effects of HemoHIM and HemoTonic against UV using contact hypersensitivity model - Protection against depression of contact hypersensitivity by administration and skin application of HemoHIM and HemoTonic - Induction of dendritic cell differentiation and maturation by HemoHIM and HemoTonic treatment - Improvement of antigen-presenting activity of dedritic cells by HemoHIM and HemoTonic treatment centre dot Protective effects of HemoHIM and HemoTonic on skin immune system against UV-irradiation - Protection of antigen-presenting activity of dendritic cells under UV-irradiation - In vivo protection of antigen-presenting activity of Langerhans cells in UV-irradiated mice centre dot Protective effects of HemoHIM on UV-induced apoptosis of dendritic cells - Inhibition of cell membrane change, mitochondrial potential change, SubG1 cell population, nuclear condensation, and DNA fragmentation in UV-irradiated dendritic cells centre dot Anti-allergic effects of HemoHIM and HemoTonic in human adipocyte HMC-1 cells - Inhibition of allergic histamine release from adipocytes - Inhibition of secretion of inflammatory cytokines (IL-6, IL-8, TNF-alpha, GM-CSF) - Inhibition of c-kit, tryptase, FcepsilonRI mRNA expression From these results, the developed functional food products (HemoHIM, HemoTonic) showed the protection and recovery of the immune functions in the UV-irradiated skin. It is suggested that these products may be used as a new functional food or cosmetic material for the protection of skin damage and the promotion of recovery

  1. Effect of controlled laser microporation on drug transport kinetics into and across the skin.

    Science.gov (United States)

    Bachhav, Y G; Summer, S; Heinrich, A; Bragagna, T; Böhler, C; Kalia, Y N

    2010-08-17

    The objectives of this study were to investigate a novel laser microporation technology ( P.L.E.A.S.E. Painless Laser Epidermal System) and to determine the effect of pore number and depth on the rate and extent of drug delivery across the skin. In addition, the micropores were visualized by confocal laser scanning microscopy and histological studies were used to determine the effect of laser fluence (energy applied per unit area) on pore depth. Porcine ear skin was used as the membrane for both the pore characterization and drug transport studies. Confocal images in the XY-plane revealed that the pores were typically 150-200 microm in diameter. Histological sections confirmed that fluence could be used to effectively control pore depth - low energy application (4.53 and 13.59 J/cm(2)) resulted in selective removal of the stratum corneum (20-30 microm), intermediate energies (e.g., 22.65 J/cm(2)) produced pores that penetrated the viable epidermis (60-100 microm) and higher application energies created pores that reached the dermis (>150-200 microm). The effects of pore number and pore depth on molecular transport were quantified by comparing lidocaine delivery kinetics across intact and porated skin samples. After 24h, cumulative skin permeation of lidocaine with 0 (control), 150, 300, 450 and 900 pores was 107+/-46, 774+/-110, 1400+/-344, 1653+/-437 and 1811+/-642 microg/cm(2), respectively; there was no statistically significant difference between 300, 450 and 900 pore data - probably due to the effect of drug depletion since >50% of the applied dose was delivered. Importantly, increasing fluence did not produce a statistically significant increase in lidocaine permeation; after 24h, cumulative lidocaine permeation was 1180+/-448, 1350+/-445, 1240+/-483 and 1653+/-436 microg/cm(2) at fluences of 22.65, 45.3, 90.6 and 135.9 J/cm(2), respectively. Thus, shallow pores were equally effective in delivering lidocaine. Increasing lidocaine concentration in the

  2. Green tea moisturizer improves skin hydration in elderly

    OpenAIRE

    Oentarini Tjandra; Linda J Wijayadi; Marcella E Rumawas

    2018-01-01

    BACKGROUND Dry skin is a major skin health problem in elderly. Green tea, which has an antioxidant effect, has recently been used as an active ingredient in moisturizing creams; yet the effect has not been well studied. This study compares the skin hydration effect of green tea and vitamin E moisturizer among elderly. METHODS This quasi-experimental study involved 60 elderly living in Tresna Werda Budi Mulia 4 Social Institution, Jakarta. Using the Runve HL 611 skin analyzer, skin c...

  3. Sparing effect of x-ray fractionation in mammary tumours and skin reactions of mice

    International Nuclear Information System (INIS)

    Fowler, J.F.; Denekamp, J.; Sheldon, P.W.; Smith, A.M.; Begg, A.C.; Harris, S.R.; Page, A.L.

    1975-01-01

    The increase in total dose with number of fractions of x-rays between 2 and 15 was found to be similar for local control of tumours (TCD 50 ) and for skin reactions. This result could be explained if the gain from reoxygenation of hypoxic tumour cells was the same for two fractions as for larger numbers, and the dose-sparing effect of repair and repopulation was similar for the tumour and for skin. In addition, a split-dose experiment was carried out with the tumours clamped off to make them acutely hypoxic during irradiation. The resulting value of (D 2 -D 1 )sub(24h) was not significantly smaller than the value previously found for skin reactions. 1290 rad was found in anoxic conditions, corresponding to a dose increment for repair in oxygenated conditions of 430 to 520 rad, assuming an oxygen enhancement ratio of 3 to 2.5. Reduced values have been found from regrowth experiments on two other types of tumour in mice. These results are consistent with no significant difference in the sparing effect of x-ray fractionation on skin or C 3 H mammary tumours in mice for up to 15 equal fractions given in 18 days; but reduced repair plus more proliferation in tumours than in skin cannot be excluded. (author)

  4. Skin barrier response to occlusion of healthy and irritated skin: differences in trans-epidermal water loss, erythema and stratum corneum lipids

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2010-01-01

    Occlusion of the skin is a risk factor for development of irritant contact dermatitis. Occlusion may, however, have a positive effect on skin healing. No consensus on the effect of occlusion has been reached.......Occlusion of the skin is a risk factor for development of irritant contact dermatitis. Occlusion may, however, have a positive effect on skin healing. No consensus on the effect of occlusion has been reached....

  5. The effect of skin temperature on performance during a 7.5-km cycling time trial

    NARCIS (Netherlands)

    Levels, K.; de Koning, J.J.; Foster Jr., C.C.; Daanen, H.A.M.

    2012-01-01

    Aerobic exercise performance is seriously compromised in the heat. Possibly, a high skin temperature causes a rating of perceived exertion (RPE)-mediated decrease in exercise intensity. The purpose of this study was to determine the effect of skin temperature on power output during a 7.5-km cycling

  6. Modelling the effect of hydration on skin conductivity.

    Science.gov (United States)

    Davies, L; Chappell, P; Melvin, T

    2017-08-01

    Electrical signals are recorded from and sent into the body via the skin in a number of applications. In practice, skin is often hydrated with liquids having different conductivities so a model was produced in order to determine the relationship between skin impedance and conductivity. A model representing the skin was subjected to a variety of electrical signals. The parts of the model representing the stratum corneum were given different conductivities to represent different levels of hydration. The overall impedance and conductivity of the cells did not vary at frequencies below 40 kHz. Above 40 kHz, levels of increased conductivity caused the overall impedance to decrease. The variation in impedance with conductivity between 5 and 50 mSm -1 can be modelled quadratically while variation in impedance with conductivity between 5 and 5000 mSm -1 can be modelled with a double exponential decay. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Antioxidant effects of an ozonized theobroma oil formulation on damaged-inflammatory rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Y.; Diaz, M.F.; Hernandez, F.; Gila, D.; Ga, G.

    2011-07-01

    The aim of this study was to determine whether a cosmetic formulation elaborated with ozonized theobroma oil may exert beneficial effects in the restoring of the antioxidant activity on the skin of rats previously irradiated with ultraviolet light. 0.5 g of the formulation was applied on the skin of rats for five days. Superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activity were determined in a homogenate of rat skin. Malondialdehyde (MDA), conjugated dienes (CD) and total hydroperoxide (THP) content were determined as biomarkers of oxidative stress. Using these parameters, antioxidant and oxidant activity, redox index and oxidative stress grade were determined. The total antioxidant activity was significantly increased while the redox index, total oxidant activity and oxidative stress grade decreased significantly in damaged rats treated with the formulation. These results show the antioxidant properties of the cosmetic formulation due to the stimulation of antioxidant enzymes such as SOD and GPx, preventing skin injury induced by ultraviolet irradiation. (Author).

  8. Nutritional skin care : health effects of micronutrients and fatty acids

    NARCIS (Netherlands)

    Boelsma, E.; Hendriks, H.F.J.; Roza, L.

    2001-01-01

    Human skin is continuously exposed to internal and external influences that may alter its condition and functioning. As a consequence, the skin may undergo alterations leading to photoaging, inflammation, immune dysfunction, imbalanced epidermal homeostasis, or other skin disorders. Modern

  9. Biothermomechanical behavior of skin tissue

    Institute of Scientific and Technical Information of China (English)

    F.Xu; T.J.Lu; K.A.Seffen

    2008-01-01

    Advances in laser,microwave and similar tech nologies have led to recent developments of thermal treatments involving skin tissue.The effectiveness of these treatments is governed by the coupled thermal,mechanical,biological and neural responses of the affected tissue:a favorable interaction results in a procedure with relatively little pain and no lasting side effects.Currently,even though each behavioral facet is to a certain extent established and understood,none exists to date in the interdisciplinarv area.A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin,involving bioheat transfer.biomechanics and physiology.A comprehensive literature review penrtinent to the subject is presented in this paper,covering four subject areas:(a)skin structure,(b)skin bioheat transfer and thermal damage,(c)skin biomechanics,and(d)skin biothermomechanics.The major problems,issues,and topics for further studies are also outlined.This review finds that significant advances in each of these aspects have been achieved in recent years.Although focus is placed upon the biothermomechanical behavior of skin tissue,the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.

  10. Effect of saline iontophoresis on skin barrier function and cutaneous irritation in four ethnic groups.

    Science.gov (United States)

    Singh, J; Gross, M; Sage, B; Davis, H T; Maibach, H I

    2000-08-01

    The effect of saline iontophoresis on skin barrier function and irritation was investigated in four ethnic groups (Caucasians, Hispanics, Blacks and Asians). Forty healthy human volunteers were recruited according to specific entry criteria. Ten subjects, five males and five females, were assigned to each ethnic group. Skin barrier function was examined after 4 hours of saline iontophoresis at a current density of 0.2 mA/cm(2) on a 6.5 cm(2) area in terms of the measured responses: transepidermal water loss (TEWL), skin capacitance, skin temperature and visual scores. There were significant differences in TEWL among the ethnic groups prior to patch application. TEWL at baseline in ethnic groups was in the rank order: Caucasian>Asian>Hispanic>Black. Iontophoresis was generally well tolerated, and skin barrier function was not irreversibly affected by iontophoresis in any group. There was no significant skin temperature change, compared to baseline, in any ethnic groups at any observation point. Edema was not observed. At patch removal, the erythema score was elevated in comparison to baseline in all ethnic groups; erythema resolved within 24 hours. Thus, saline iontophoresis produced reversible changes in skin barrier function and irritation in healthy human subjects.

  11. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin

    International Nuclear Information System (INIS)

    Ito, Shinobu; Itoga, Kazuyoshi; Yamato, Masayuki; Akamatsu, Hirohiko; Okano, Teruo

    2010-01-01

    The role of fullerene as a pro-oxidant or anti-oxidant in Ultraviolet B ray (UV-B)-induced disorders in mouse skin was investigated. Fullerene gave no photo-toxic effect to UV-B-irradiated mouse skin. Since erythema was concentrated at the pore circumference in a UV-B irradiation experiment in mouse skin, the sebaceous gland pairs was strongly implicated as a site for the generation of reactive oxygen species (ROS). In a histological evaluation of the skin stained with CH 3 MDFDA (ROS index) and YO-Pro-1 (apoptosis index), the fluorescence intensity of a sebaceous gland significantly increased with UV-B irradiation. With the application of fullerene to UV-irradiated mouse skin, no toxicity was recognized in comparison with the control, and erythema, the ROS index, and the apoptosis index decrease with the application of fullerene. Ascorbyl radical (AA·) increased with the application of ascorbate (AA) to UV-B-irradiated mouse skin, and AA· decreased with the application of fullerene. The co-application of AA and fullerene, which suppressed AA· in vitro, significantly suppressed erythema, and also suppressed both the ROS index and apoptosis index in mouse skin after UV-B irradiation. In both mouse skin at 48 h after UV-B irradiation and in an attempt to reproduce this phenomenon artificially in vitro, a similar high AA· peak (AA·/H· > 4) was observed in electron spin resonance (ESR) charts. The binding of fullerene with AA impairs the Fenton reaction between AA and Fe-protein based on the observation of ascorbate-specific UV absorption and a linear equation for the calibration curve. Therefore, fullerene may impair the intercalation of AA to a heme pocket by binding with AA. These results suggest that the co-application of AA and fullerene is effective against oxidative skin damage caused by UV-B irradiation, and the development of an AA· inhibitor such as fullerene should be useful for reducing organ damage associated with Fe-protein oxidation.

  12. The Effect in Topical Use of Lycogen(TM) via Sonophoresis for Anti-aging on Facial Skin.

    Science.gov (United States)

    Hsin-Ti, Lai; Wen-Sheng, Liu; Yi-Chia, Wu; Ya-Wei, Lai; Wen, Zhi-Hong; David, Wang Hui-Min; Su-Shin, Lee

    2015-01-01

    Anti-aging skin care is a growing popular topic in cosmetic and aesthetic fields, and skin care rather then makeup tips draw more attention nowadays. The phenomenon of skin aging includes thinning of skin losses of elasticity and moisture, pigmented spot formation, and wrinkle development. Along with growth in age, the decreased rates of epithelium renewal and cellular recovery as well as the reduced contents of elastin, collagen, and glycosaminoglycans all contribute to creases or folds of skin. Available strategies for wrinkle treatments include topical use of skin care products with anti-aging contents, dermabrasion, laser, Botox injection, fillers injection, and facelift. Though all of these above options can provide different degrees of improvement in facial wrinkles, the cost-effect, pain of intervention therapy, and necessity of repetitive treatment may impact on choices made. Topical use of anti-aging skin products is the most convenient and cheap way to achieve skin anti-aging effect. Lycogen(TM) is an antioxidant, which can prevent the downregulation of pro-collagen I, intracellular accumulation of malondialdehyde (MDA) and achieve the aim of skin rejuvenation. Twenty-six female patients were included in our study with ages between 30 and 45. They were randomly assigned to two groups: the vehicle control group and the experimental group. Patients in the control group applied a skin care product without Lycogen(TM)to the face via sonophoresis after facial cleanser use in the morning and at night. The experimental group applied a Lycogen(TM) -containing skin care product via sonophoresis in the same time schedule. We evaluated results, including pigmented spots, wrinkles, texture, pores, and red area by VISIA on weeks 0, 1, 2, 4, 6, 8, and 10 respectively. In the aspect of pigmented spots, the experimental group showed significant difference in comparison with the vehicle control group on weeks 2, 6, 8, and 10. For wrinkles, the experimental group had

  13. Combined effects of treatment with vitamin C, vitamin E and selenium on the skin of diabetic rats.

    Science.gov (United States)

    Sokmen, B B; Basaraner, H; Yanardag, R

    2013-04-01

    The aim of this study was to investigate the effects of vitamin C, vitamin E and selenium (Se) on the skin tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into four groups: control, control + antioxidants, diabetic, diabetic + antioxidants groups. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin. Vitamin C (250 mg/kg), vitamin E (250 mg/kg) and Se (0.2 mg/kg) were given by gavage technique to rats of one diabetic and one control group for 30 days. In the diabetic group, the levels of serum urea and creatinine, skin lipid peroxidation and nonenzymatic glycosylation levels increased, but skin glutathione levels decreased. Treatment with vitamin C, vitamin E and Se reversed these effects. The present study showed that vitamin C, vitamin E and Se exerted antioxidant effects and consequently may prevent skin damage caused by streptozotocin-induced diabetes.

  14. A Simple Device For Measuring Skin Friction

    Directory of Open Access Journals (Sweden)

    Gupta A.B

    1995-01-01

    Full Text Available A simple device for measuring skin friction in vivo is described. The frictional coefficient of normal Indian skin and the effect of hydration and application of talc and glycerol on the frictional coefficient and also the friction of ichthyotic skin have been determined with its help. The average value of friction of friction of normal India skin at forearm is found to be 0.41 +- 0.08, the hydration raises the value to 0.71 +- 0.11 and the effect of glycerol is also to school it up to 0.70+- 0.05, almost equal to that of water. The effect of talc however is opposite and its application lowers the friction to 0.21+-0.07. The mean coeff of friction for ichthyotic skin is found to be 0.21+- 0.0.5, which closely agrees with talc-treated normal skin. A good positive correlation (p<0.01 between friction and sebum level at skin site, with r = 0.64, has been observed.

  15. Synergetic skin targeting effect of hydroxypropyl-β-cyclodextrin combined with microemulsion for ketoconazole.

    Science.gov (United States)

    Che, Junxiu; Wu, Zushuai; Shao, Weiyan; Guo, Penghao; Lin, Yuanyuan; Pan, Wenhui; Zeng, Weidong; Zhang, Guoguang; Wu, Chuanbin; Xu, Yuehong

    2015-06-01

    The objective was to develop a ternary skin targeting system for ketoconazole (KET) using a combined strategy of microemulsion (ME) and cyclodextrin (HP-β-CD), i.e., KET-CD-ME, which exploits both virtues of cyclodextrin complex and ME to obtain the synergetic effect. KET-CD-ME was formulated using Labrafil M 1944 CS as oil phase, Solutol HS 15 as surfactant, Transcutol P as cosurfactant, and HP-β-CD solution as aqueous phase. The formulation of KET-CD-ME was optimized and the optimal formulation was characterized in terms of particle size, size distribution, pH value, and viscosity. Long term stability experiment showed that HP-β-CD could increase the physical stability of ternary system and KET chemical stability. Percutaneous permeation of KET from KET-CD-ME in vitro through rat skin was investigated in comparison with KET microemulsion (KET-ME), KET HP-β-CD inclusion solution (KET-CD), KET aqueous suspension, and commercial KET cream; the results showed that the combination of ME with HP-β-CD exhibited significantly synergistic effect on KET deposition within the skin (29.38 ± 1.79 μg/cm(2)) and a slightly synergistic effect on KET penetration through the skin (11.3 μg/cm(2)/h). The enhancement of the combination on skin deposition was further visualized by confocal laser scanning microscope (CLSM). In vitro sensitivity against Candida parapsilosis test indicated that KET-CD-ME enhanced KET antifungal activity mainly owing to the solubilization of HP-β-CD on KET in the ternary system. Moreover, the interactions between HP-β-CD and KET in the ternary system were elucidated through microScale thermophoresis (MST) and 2D (1)H NMR spectroscopy. The profiles from MST confirmed the host-guest interactions of HP-β-CD with KET in the ternary system and a deep insight into the interactions between KET and HP-β-CD were obtained by means of 2D (1)H NMR spectroscopy. The results indicate that the ternary system of ME combination with HP-β-CD may be a promising

  16. Effects of Turmeric (Curcuma longa) on Skin Health: A Systematic Review of the Clinical Evidence.

    Science.gov (United States)

    Vaughn, Alexandra R; Branum, Amy; Sivamani, Raja K

    2016-08-01

    Turmeric (Curcuma longa), a commonly used spice throughout the world, has been shown to exhibit antiinflammatory, antimicrobial, antioxidant, and anti-neoplastic properties. Growing evidence shows that an active component of turmeric, curcumin, may be used medically to treat a variety of dermatologic diseases. This systematic review was conducted to examine the evidence for the use of both topical and ingested turmeric/curcumin to modulate skin health and function. The PubMed and Embase databases were systematically searched for clinical studies involving humans that examined the relationship between products containing turmeric, curcumin, and skin health. A total of 234 articles were uncovered, and a total of 18 studies met inclusion criteria. Nine studies evaluated the effects of ingestion, eight studies evaluated the effects of topical, and one study evaluated the effects of both ingested and topical application of turmeric/curcumin. Skin conditions examined include acne, alopecia, atopic dermatitis, facial photoaging, oral lichen planus, pruritus, psoriasis, radiodermatitis, and vitiligo. Ten studies noted statistically significant improvement in skin disease severity in the turmeric/curcumin treatment groups compared with control groups. Overall, there is early evidence that turmeric/curcumin products and supplements, both oral and topical, may provide therapeutic benefits for skin health. However, currently published studies are limited and further studies will be essential to better evaluate efficacy and the mechanisms involved. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Assessing the impacts of lifetime sun exposure on skin damage and skin aging using a non-invasive method

    International Nuclear Information System (INIS)

    Kimlin, Michael G.; Guo, Yuming

    2012-01-01

    Background: Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. Objectives: This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. Methods: We recruited 180 participants (73 males, 107 females) aged 18–83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. Results: There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. Conclusion: The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. - Highlights: ► This is the first study finding the non-linear relationship between lifetime sun exposure and skin damage and skin aging. ► This study finds there is negative interaction between lifetime sun exposure and age for skin damage and aging. ► This study suggests that future health promotion for sun exposure needs to pay attention to youth group for skin cancer

  18. Assessing the impacts of lifetime sun exposure on skin damage and skin aging using a non-invasive method

    Energy Technology Data Exchange (ETDEWEB)

    Kimlin, Michael G., E-mail: m.kimlin@qut.edu.au; Guo, Yuming, E-mail: guoyuming@yahoo.cn

    2012-05-15

    Background: Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. Objectives: This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. Methods: We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. Results: There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. Conclusion: The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. - Highlights: Black-Right-Pointing-Pointer This is the first study finding the non-linear relationship between lifetime sun exposure and skin damage and skin aging. Black-Right-Pointing-Pointer This study finds there is negative interaction between lifetime sun exposure and age for skin damage and aging. Black-Right-Pointing-Pointer This study suggests that future

  19. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Science.gov (United States)

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Age influences the skin reaction pattern to mechanical stress and its repair level through skin care products.

    Science.gov (United States)

    Zouboulis, Christos C; Elewa, Rana; Ottaviani, Monica; Fluhr, Joachim; Picardo, Mauro; Bernois, Armand; Heusèle, Catherine; Camera, Emanuela

    2018-03-01

    Skin aging is associated with alterations of surface texture, sebum composition and immune response. Mechanical stress induces repair mechanisms, which may be dependent on the age and quality of the skin. The response to mechanical stress in young and aged individuals, their subjective opinion and the objective effectiveness of skin care products were evaluated by biophysical skin quality parameters (stratum corneum hydration, transepidermal water loss, skin pH, pigmentation and erythema) at baseline, 1, 6, 24h and 7days at the forearms of 2 groups of healthy volunteers, younger than 35 years (n=11) and older than 60 years (n=13). In addition, casual surface lipid composition was studied under the same conditions at the baseline and day 7 after mechanical stress induction. Evaluations were also performed in stressed skin areas treated daily with skin care products and the subjective opinion of the volunteers was additionally documented. The tested groups exhibited age-associated baseline skin functions as well as casual surface lipid composition and different reaction patterns to mechanical stress. Skin care was more effective in normalizing skin reaction to stress in the young than in the aged group. The subjective volunteer opinion correlated with the objective measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biostimulative effects of 809 nm diode laser on cutaneous skin wounds

    Science.gov (United States)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2015-03-01

    The use of low-level laser therapy (LLLT) for therapeutic purposes in medicine has become widespread recently. There are many studies in literature supporting the idea of therapeutic effects of laser irradiation on biological tissues. The aim of this study is to investigate the biostimulative effect of 809nm infrared laser irradiation on the healing process of cutaneous incisional skin wounds. 3-4 months old male Wistar Albino rats weighing 300 to 350 gr were used throughout this study. Lowlevel laser therapy was applied through local irradiation of 809nm infrared laser on open skin incisional wounds of 1 cm length. Each animal had six identical incisions on their right and left dorsal region symmetrical to each other. The wounds were separated into three groups of control, 1 J/cm2 and 3 J/cm2 of laser irradiation. Two of these six wounds were kept as control group and did not receive any laser application. Rest of the incisions was irradiated with continuous diode laser of 809nm in wavelength and 20mW power output. Two of them were subjected to laser irradiation of 1 J/cm2 and the other two were subjected to laser light with energy density of 3 J/cm2. Biostimulation effects of irradiation were studied by means of tensile strength tests and histological examinations. Wounded skin samples were morphologically examined and removed for mechanical and histological examinations at days 3, 5 and 7 following the laser applications. Three of the six fragments of skin incisions including a portion of peripheral healthy tissue from each animal were subjected to mechanical tests by means of a universal tensile test machine, whereas the other three samples were embedded in paraffin and stained with hematoxylin and eosin for histological examinations. The findings of the study show that tissue repair following laser irradiation of 809nm has been accelerated in terms of tissue morphology, strength and cellular content. These results seem to be consistent with the results of many

  3. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William C Weldon

    Full Text Available Recent studies have demonstrated the effectiveness of vaccine delivery to the skin by vaccine-coated microneedles; however there is little information on the effects of adjuvants using this approach for vaccination. Here we investigate the use of TLR ligands as adjuvants with skin-based delivery of influenza subunit vaccine. BALB/c mice received 1 µg of monovalent H1N1 subunit vaccine alone or with 1 µg of imiquimod or poly(I:C individually or in combination via coated microneedle patches inserted into the skin. Poly(I:C adjuvanted subunit influenza vaccine induced similar antigen-specific immune responses compared to vaccine alone when delivered to the skin by microneedles. However, imiquimod-adjuvanted vaccine elicited higher levels of serum IgG2a antibodies and increased hemagglutination inhibition titers compared to vaccine alone, suggesting enhanced induction of functional antibodies. In addition, imiquimod-adjuvanted vaccine induced a robust IFN-γ cellular response. These responses correlated with improved protection compared to influenza subunit vaccine alone, as well as reduced viral replication and production of pro-inflammatory cytokines in the lungs. The finding that microneedle delivery of imiquimod with influenza subunit vaccine induces improved immune responses compared to vaccine alone supports the use of TLR7 ligands as adjuvants for skin-based influenza vaccines.

  4. Penicillin skin testing is a safe and effective tool for evaluating penicillin allergy in the pediatric population.

    Science.gov (United States)

    Fox, Stephanie J; Park, Miguel A

    2014-01-01

    Penicillin skin testing has been validated in the evaluation of adult patients with penicillin allergy. However, the commercially available benzylpenicilloyl polylysine (Pre-Pen) is not indicated in the pediatric population. Moreover, the safety and validity of penicillin skin testing in the pediatric population has not been well studied. We describe the safety and validity of penicillin skin testing in the evaluation of children with a history of penicillin allergy. Children (penicillin allergy were evaluated with penicillin skin tests and were reviewed for basic demographics, penicillin skin test results, adverse drug reaction to penicillin after penicillin skin test, and adverse reaction to penicillin skin test. By using the χ(2) test, we compared the differences in the proportion of children and adults with a positive penicillin skin test. P value (penicillin skin testing; 703 of 778 patients had a negative penicillin skin test (90.4%), 66 had a positive test (8.5%), and 9 had an equivocal test (1.1%). Children were more likely to have a positive penicillin skin test (P penicillin skin test (52%) were challenged with penicillin, and 14 of 369 patients (3.8%) had an adverse drug reaction. No adverse reactions to penicillin skin testing were observed. Penicillin skin testing was safe and effective in the evaluation of children with a history of penicillin allergy. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. The effectiveness of using a bath oil to reduce signs of dry skin: A randomized controlled pragmatic study.

    Science.gov (United States)

    Kottner, Jan; Kanti, Varvara; Dobos, Gabor; Hahnel, Elisabeth; Lichterfeld-Kottner, Andrea; Richter, Claudia; Hillmann, Kathrin; Vogt, Annika; Blume-Peytavi, Ulrike

    2017-01-01

    Dry skin (xerosis cutis) is increasingly recognized as a relevant health problem in daily life and in health and nursing care. The use of bath additives such as oils is common to reduce dry skin, but empirical evidence supporting this practice is limited. The aim of this study was to investigate the effectiveness of using a bath oil additive in improving skin barrier function and ameliorating dry skin in comparison to non-oil containing skin cleansers for bathing or showering. Single centre randomized observer blind pragmatic parallel group trial. Outpatient/community care. Volunteers showing clinically mild to moderate dry skin recruited from the city of Berlin. Healthy children and adults were randomly assigned to use either a commercially available bath oil or to continue using their regular non-oil containing skin cleansers every other day over a study period of 28days. Skin barrier parameters and the severity of dry skin were assessed at baseline and at two follow-up visits at the study centre. Transepidermal water loss was the primary outcome. All sixty participants randomized completed the trial. Median age was 32.5 (IQR 8.3 to 69) years. At the end of study the mean transepidermal water loss in the intervention group was statistically significant lower compared to the control group (mean difference -1.9 (95% CI -3.1 to -0.8) g/m 2 /h). Stratum corneum hydration was statistically significantly higher in the intervention group at the end of the study. Skin surface pH and roughness were comparable in both groups and remained unchanged, while both groups showed a trend to improvement in dry skin symptoms CONCLUSIONS: This pragmatic trial provides empirical evidence that the regular use of the investigated bath oil is effective in improving the skin barrier function in children and adults with mild dry skin when used in routine skin care and supports its use as a basic element for the management of a broad spectrum of dry skin conditions. Clinical

  6. Skin perfusion measurement: the normal range, the effects of ambient temperature and its clinical application

    International Nuclear Information System (INIS)

    Henry, R.E.; Malone, J.M.; Daly, M.J.; Hughes, J.H.; Moore, W.S.

    1982-01-01

    Quantitation of skin perfusion provides objective criteria to determine the optimal amputation level in ischemic limb disease, to assess the maturation of pedicle flaps in reconstructive surgery, and to select appropriate treatment for chronic skin ulcers. A technique for measurement of skin perfusion using intradermal (ID) Xe-133 and a gamma camera/minicomputer system was previously reported. An update of this procedure is now reported, the normal range for the lower extremity in men, observations on the effects of ambient temperature, and an experience using the procedure to determine amputation level

  7. Cutaneous effects of topical indomethacin, an inhibitor of prostaglandin synthesis, on uv-damaged skin

    International Nuclear Information System (INIS)

    Snyder, D.S.

    1975-01-01

    Topical application of a 2.5 percent indomethacin (IM) solution to the sunburned skin of humans and guinea pigs resulted in a marked decrease in ultraviolet light (UVL)-induced erythema. In humans, a decrease in skin temperature and hyperalgesia to near normal levels was also observed. Epidermal responses to UVL injury such as keratinocyte cell death and altered DNA synthesis proceeded unmodified by IM. Repeated applications of IM in the 48-hr period following UVL exposure did not improve upon the results obtained following a single treatment. Guinea-pig skin provides a relevant model system for evaluating the effects of topical nonsteroidal anti-inflammatory agents on sunburn

  8. dermaOXY skin assay: effect and evidence

    DEFF Research Database (Denmark)

    Menov, Lasse; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    of the instrument set DermaLab®Combo, which is used for the physical characterization of skin status after treatment. The report consists of four main parts, dedicated to 1. the properties of human skin 2. the anti-aging methods applied by the dermaOXY treatment 3. the analytical methods applied by derma......This text is a videnkupon report supported by the Danish Innovation Fonds and conducted by L.M. and B.K. for dermaOXY (by MedicTinedic ApS, Varde, Denmark). It involves two dermaOXY products: dermaOXY HYALURON SERUM and dermaOXY SYN SERUM. These are applied to the facial skin in combination....... This knowledge is important for assessing the dermaOXY approach to slow down (or better yet inhibit) the phenotypical signs of aging. Professor Beate Klösgen and B.Sc. Lasse Menov performed the study and wrote this report. Lars Melgaard, COO of dermaOXY, provided the information on the dermaOXY approach. Doris...

  9. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement.

    Science.gov (United States)

    Dragicevic, Nina; Maibach, Howard

    2018-02-06

    Dermal and transdermal drug delivery (due to its non-invasiveness, avoidance of the first-pass metabolism, controlling the rate of drug input over a prolonged time, etc.) have gained significant acceptance. Several methods are employed to overcome the permeability barrier of the skin, improving drug penetration into/through skin. Among chemical penetration enhancement methods, nanocarriers have been extensively studied. When applied alone, nanocarriers mostly deliver drugs to skin and can be used to treat skin diseases. To achieve effective transdermal drug delivery, nanocarriers should be applied with physical methods, as they act synergistically in enhancing drug penetration. This review describes combined use of frequently used nanocarriers (liposomes, novel elastic vesicles, lipid-based and polymer-based nanoparticles and dendrimers) with the most efficient physical methods (microneedles, iontophoresis, ultrasound and electroporation) and demonstrates superiority of the combined use of nanocarriers and physical methods in drug penetration enhancement compared to their single use. Copyright © 2018. Published by Elsevier B.V.

  10. Effect of Skin Protection and Skin Irritation on the Internal Exposure to Carbon Disulfide in Employees of the Viscose Industry.

    Science.gov (United States)

    Kilo, Sonja; Zonnur, Nina; Uter, Wolfgang; Göen, Thomas; Drexler, Hans

    2015-10-01

    Occupational exposure to carbon disulfide (CS2) leads to inhalative and dermal uptake and thereby to internal exposure. In order to prevent occupational contact dermatitis, gloves and skin protection creams are used at the workplace. The aim of the study was the evaluation of the influence of personal skin protection and irritation on the internal exposure to CS2 of employees in the viscose industry. One hundred and eighty-two male CS2-exposed employees were included in the study and were examined regarding working conditions, use of personal protective measures und skin status. Personal air monitoring and biological monitoring was performed and the 'relative internal exposure' (RIE, internal exposure in relation to external exposure) calculated. A multiple regression analysis calculated the influence of skin protection and irritation on CS2 uptake. Usage of skin protection creams and gloves (and both in combination) while working was associated with a significantly higher RIE indicating a higher dermal penetration of CS2. Equally, irritated skin and younger age was associated with a higher internal burden. Gloves and skin protection creams are useful for preventing occupational skin diseases. However, when handling skin-resorptive substances like CS2, they can increase internal exposure or skin irritation. Therefore, we recommend the careful consideration of benefits and risks of protective creams and gloves at the workplace. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Skin-to-skin contact is associated with earlier breastfeeding attainment in preterm infants.

    Science.gov (United States)

    Oras, Paola; Thernström Blomqvist, Ylva; Hedberg Nyqvist, Kerstin; Gradin, Maria; Rubertsson, Christine; Hellström-Westas, Lena; Funkquist, Eva-Lotta

    2016-07-01

    This study investigated the effects of skin-to-skin contact on breastfeeding attainment, duration and infant growth in preterm infants, as this has not been sufficiently explored. A prospective longitudinal study on Kangaroo mother care was carried out, comprising 104 infants with a gestational age of 28 + 0 to 33 + 6 and followed up to one year of corrected age. Parents and staff recorded the duration of skin-to skin contact during the stay in the neonatal intensive care unit (NICU). Medical data were collected through patient records, and follow-up questionnaires were filled in by parents. The 53 infants who attained full breastfeeding in the NICU did so at a median (range) of 35 + 0 (32 + 1 to 37 + 5) weeks of postmenstrual age, and skin-to-skin contact was the only factor that influenced earlier attainment in the regression analysis (R(2) 0.215 p skin-to-skin contact during the stay in the NICU did not affect the duration of breastfeeding or infant growth after discharge. Furthermore, infant growth was not affected by the feeding strategy of exclusive, partial breastfeeding or no breastfeeding. A longer daily duration of skin-to-skin contact in the NICU was associated with earlier attainment of exclusive breastfeeding. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  12. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects.

    Science.gov (United States)

    Knott, Anja; Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. © 2015 International Union of Biochemistry and Molecular Biology.

  13. Effect of a neutron skin on collective dipoles modes in nuclei

    International Nuclear Information System (INIS)

    Warner, D.D.; Van Isacker, P.; Nagarajan, M.A.

    1992-01-01

    One of the principal motivations for accelerated radioactive beams is to probe nuclear structure at the limits of nuclear stability. For neutron-rich nuclei, an indication of the new phenomena which may occur has already appeared, in the guise of the neutron halo discovered in very light nuclei. More generally, a steadily increasing neutron skin thickness is expected as the neutron excess increases. The presence of such a mantle of dominantly neutron matter will then particularly affect the properties of collective modes involving the out-of-phase motion of neutrons and protons. This paper explores the effect of the neutron skin thickness on the isovector M1 and E1 modes in medium and heavy mass nuclei. A simple model is used, couched in terms of classical oscillations of neutron and proton densities. The treatment includes the open-quotes pygmyclose quotes E1 mode, which corresponds to motion of the core against the loosely-bound neutrons in the mantle and predicts a significant lowering of this mode, even at relatively modest values of the skin thickness

  14. Biological effects of brachytherapy using a 32P-patch on the skin of Sencar mice

    International Nuclear Information System (INIS)

    Salgueiro, M.J.; Collia, N.; Duran, H.; Palmieri, M.; Medina, V.; Ughetti, R.; Nicolini, J.; Zubillaga, M.

    2009-01-01

    In recent years, specially designed patches containing beta emitters have been developed for contact brachytherapy of skin lesions. The aim of the present work was to evaluate the biological effects of the 32 P-patch on the skin of Sencar mice as a result of a brachytherapy treatment. For this purpose, a 32 P-patch was prepared with Chromic 32 P-phosphate and silicone and the classical model of two-stage skin carcinogenesis was reproduced in Sencar mice. Animals were divided in six groups. Four groups received the contact brachytherapy treatments using a scheme of a single session of 40 and 60 Gy (SD40 and SD60) and a scheme of two sessions of 40 and 60 Gy each (FD40 and FD60). The other two groups were used as controls of the single (CSD) and the fractionated (CFD) treatments. Radiation doses were estimated with equations derived from the MIRD DOSE scheme, and biologically effective doses (BED) were calculated according to equations derived from the linear-quadratic model. The endpoint to evaluate the treatments effects was tumor size after a follow-up period of 44 days. Finally, animals were sacrificed in order to get samples of all tumors for histological analysis and PCNA staining. Erythema, dermatitis and skin ulceration developed in almost all treated animals, but they gradually healed with regeneration of tissue during the follow-up period. Radiation effects on the skin of SD40, SD60, FD40 and FD60 showed a significant reduction of the tumor size with regard to controls, independently of the scheme and the radiation dose considered. PCNA staining scores of control groups were higher than for treated groups, independently of the scheme and the radiation dose considered. This radioactive 32 P-silicone-patch which is easy to prepare and use in the treatment of skin diseases, seems promising as a radioactive device for clinical use.

  15. Exploring cucumber extract for skin rejuvenation | Akhtar | African ...

    African Journals Online (AJOL)

    This study was designed to develop a topical skin-care cream water in oil (w/o) ... versus its vehicle (Base) as control and evaluates its effects on skin-melanin, skin erythema, skin moisture, skin sebum and transepidermal water loss (TEWL).

  16. Beyond UV radiation: a skin under challenge.

    Science.gov (United States)

    Dupont, E; Gomez, J; Bilodeau, D

    2013-06-01

    Since ancient times, human beings have been trying to protect their skin against the adverse effects of the sun. From the first mineral sunscreens used by Egyptians, to the current more sophisticated ultraviolet (UVA/UVB) organic sunscreens, progress has been made in terms of sun protection and deeper knowledge of skin physiology has been acquired in the process. The solar spectrum is composed of radiations of various wavelengths having specific, as well as overlapping effects on skin. UVB is mainly responsible for sunburn and DNA dimer formation that can lead to mutation. UVA generates oxidative reactions affecting DNA, proteins and lipids, and is also immunosuppressive. Recently, visible light and infrared radiation (IR) have been associated with oxidative damage and IR has been additionally linked to adverse heat effects on skin. Numerous other extrinsic factors, related to environment and lifestyle, also affect the appearance of skin, precipitating ageing. New molecular mechanisms linking sun and environmental factors to skin ageing have been identified: IR affects mitochondrial integrity and specific heat receptors also mediate some of its effects, tryptophan is a chromophore for UVB, and the aryl hydrocarbon receptor (AhR) is activated by light and xenobiotics to alter skin physiology. Integrating all these new elements is changing the way we think about skin extrinsic ageing. Is UVA/UVB sunscreen protection still enough for our skin? © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Contamination and decontamination of skin

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    In external contamination the beta radiation dose is the prevalent component of the total dose absorbed by the skin. There exist four types of radionUclide bonds to the skin: mechanical retention of solid particles or solution on the surface and in the pores, physical adsorption of nondissociated molecules or colloids, the ion exchange effect, and chemisorption. Radionuclides then penetrate the skin by transfollicular transfer. The total amount of radioactive substances absorbed into the skin depends on the condition of the skin. Skin is decontaminated by washing with lukewarm water and soap or with special decontamination solutions. The most widely used components of decontamination solutions are detergents, chelaton, sodium hexametaphosphate, oxalic acid, citric acid. The main principles of the decontamination of persons are given. (M.D.)

  18. Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa.

    Science.gov (United States)

    Tuntiyasawasdikul, Sarunya; Limpongsa, Ekapol; Jaipakdee, Napaphak; Sripanidkulchai, Bungorn

    2017-04-01

    Curcuma comosa (C. comosa) is widely used in traditional medicine as a dietary supplement for health promotion in postmenopausal women in Thailand. It contains several diarylheptanoids, which are considered to be a novel class of phytoestrogens. However, the diarylheptanoids isolated from the plant rhizome are shown to have low oral bioavailability and faster elimination characteristics. The aim of this study was to investigate the permeation behavior of the active compounds of diarylheptanoids. The effects of binary vehicle systems and permeation enhancers on diarylheptanoids permeation and accumulation within the skin were studied using side-by-side diffusion cells through the porcine ear skin. Among the tested binary vehicle systems, the ethanol/water vehicle appeared to be the most effective system for diarylheptanoids permeation with the highest flux and shortest lag time. The presence of transcutol in the vehicle system significantly increased diarylheptanoid's permeation and accumulation within the skin in a concentration-dependent manner. Although the presence of terpenes in formulation decreased the flux of diarylheptanoids, it raised the amount of diarylheptanoids retained within the skin substantially. Based on the feasibility of diarylheptanoid permeation, C. comosa extract should be further developed into an effective transdermal product for health benefits and hormone replacement therapy.

  19. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    Science.gov (United States)

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  20. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical–Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin